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ABSTRACT 

Dry root rot caused by Rhizoctonia bataticola (Taub.) Butler [Pycnidial stage: 

Macrophomina phaseolina (Tassi) Goid] is a soil borne fungal pathogen. Keeping in view 

the importance of the disease due to change in climatic conditions, studies were conducted 

on distribution of the disease, cultural, morphological, pathological and molecular 

diversity. Effect of temperature and moisture on the disease severity was studied. Various 

biochemical and physiological changes associated with the development of the disease in 

susceptible and moderately resistant genotypes under glass house conditions were 

conducted at ICRISAT, Hyderabad.  

A survey was conducted in January, 2014 rabi cropping season in different 

chickpea growing locations of central (Madhya Pradesh and Maharashtra) and southern 

(Andhra Pradesh, Telangana and Karnataka) India. Due to diversified weather conditions 

and variation in sowing dates in different states, different crop growth stages i.e. from 

seedling (20 days old) to podding stage were observed and the disease was observed in all 

the stages.  The maximum dry root rot incidence was observed in Telangana (18.28%) and 

the least in Maharashtra (5.38%). Disease occurrence was observed irrespective of 

cropping system, soil types and cultivars. Mostly the disease incidence was low in the 

irrigated fields compared to rainfed fields.  

Disease severity rating of 2.5 to 9.0 was observed in the 68 isolates inoculated on 

BG 212 and their incubation period varied from 1.0 to 4.8 days. It was observed that with 

an increase in disease severity there was decrease in incubation period in all the isolates. 

Diversity in cultural characters viz., radial growth ranged from 17.7 mm to 80.0 mm at 72h 

after incubation; colony colour of black, black with grey aerial mycelium, dark brown and 

grey colour; colony texture of appressed, fluffy and velvety were observed.   

The morphological characters such as hyphal cell size varied from 9.38 x 3.80 µm 

(Rb10) to 14.88 x 7.50 µm (Rb 63) and sclerotial size varied from 54.86 x 45.49 µm (Rb 

46) to 216.08 x 181.09 µm (Rb 59). Ratio between length and width of sclerotia varied 

from 1.00 (Rb 5) to 1.64 (Rb 23). The isolates categorized into irregular, round and ovoid 

groups based on shape of sclerotia, rough and smooth groups based on texture of sclerotia.  

Isolates took 1.7 (Rb1) to 4.3 days (Rb4, Rb23 and Rb 28) for sclerotial initiation and their 

intensity per microscopic field (10x) varied from 11.67 (Rb 63) to 70.67 (Rb 56).  



The similarity coefficient ranged from 0.63 to 0.92 indicating that no any two or 

more isolates were 100% similar. The highest similarity coefficient (0.92) was between 

isolates Rb 2 and Rb 4. The results of the present study also indicated that, all the isolates 

were not necessarily showing the geographical linearity. 

Influence of different temperature, osmotic potential and pH were tested on growth 

of R. bataticola. The maximum mycelial growth was observed at 35ºC followed by 30 and 

25ºC.  Among different osmotic potential levels of NaCl, KCl and dextrose, maximum 

mean radial growth was observed at -0.5 MPa viz., 27.5 mm, 31.1 and 38.2 mm 

respectively while the minimum growth was observed in -1.0 (4.9 mm), -1.5 (2.1 mm) and 

-2.5MPa (10.7 mm) respectively. The growth was observed at all the levels of pH tested. 

Maximum radial growth was observed at pH 5.0 (67.3mm) followed by pH 6.0 (64.4) while 

the least was observed at pH 11.0 (14.6mm) followed by pH 10.0 (33.0mm).  

 

The optimum temperature for dry root rot severity rating was at 35°C (8.5) followed 

by 30°C (7.9) followed by 25°C (7.0). In black soil, the disease severity rating was 9.0, 8.9, 

8.1, 6.9, 5.3, 3.8 and 2.3 while in red soil, it was 9.0, 8.9, 8.7,  7.9, 6.5, 4.7 and 3.0 at 40, 

50, 60, 70, 80, 90 and100% soil moisture, respectively. The disease severity decreased as 

the soil moisture increased in both the types of soil.   

The susceptible genotype BG 212 was having fewer amounts of total sugars 

compared to moderately resistant genotypes viz., ICCV 5530 and ICCV 8305. The total 

sugar was more in the control plants as compared to plants in sick soil, while in the sick 

soil, the amount of increase was more in 100% as compared to 60% soil moisture 

condition. Similar results were present in reducing and non reducing sugars. 

Total phenol, Phenylalanine Ammonia Lyase, Polyphenol oxidase and Peroxidase 

were maximum at 30DAS in sick soil with 60% soil moisture in all the three genotypes. 

The amount of increase was more in the inoculated plants grown at 60% compared to 100% 

soil moisture condition. The amount of phenol and enzymes were more in the moderately 

resistant genotypes (ICCV 5530 and ICCV 8305) compared to susceptible genotype (BG 

212) 

Among the genotypes, the dry weight of the genotypes was more in the 100% soil 

moisture as compared to 60% moisture. With respect to the sick and control soil, it was 

observed that, severe disease in the sick soil made the disintegration of the roots and there 

by losing the weight of plants in sick soil at 60% compared to control.  

Genotypes grown in 100% moisture in control soil had more transpiration and 

stomatal conductance while the least was noticed in sick soil at 60% soil moisture in 

contrast, leaf temperature was more in the genotypes grown in sick soil at 60% moisture 

and the least was noticed in control soil with 100% soil moisture.  

Overall results showed that dry root rot present in all the locations of central and 

southern India and may become severe disease due to change in climate. The determination 

of changes in biochemical and physiology of the genotypes help in screening the resistant 

genotypes and also early detection of the disease in fields.     

 

 



 

 

 

 

 

 

 

 

 

 

 

INTRODUCTION  
 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter I 

INTRODUCTION 

Chickpea (CicerarietinumL.) is the premier pulse crop grown in more than 50 

countries originated in south west Asia and is cultivated from ancient times both in Asia 

and European countries. It is the world’s second most important food legume next to 

common bean.Asia accounts 89.20% of the chickpea area and 84.47% of production. The 

major chickpea producing countries, which contributed to about 90% of the global 

chickpea production, include India (67.4%), Australia (6.21%), Pakistan (5.73%), Turkey 

(3.86%), Myanmar (3.74%)and Iran (2.25%) (FAOSTAT,2013). In India, chickpea is 

grown in an area of 10.22million hectares with a production of 9.53million tonnes and 

productivity of 967kgha-1. Madhya Pradesh, Chhattisgarh, Rajasthan, Maharashtra, Uttar 

Pradesh, Andhra Pradesh and Karnataka together contribute 95.71% of production and 90% 

of area in the country (Ministry of Agriculture, Govt. of India., 2013-14). 

Chickpea belongs to Leguminaceae family usually grown after rainy season on 

conserved soil moisture during winter in the tropics; in spring in the temperate and 

Mediterranean regions. It is the important grain legume grown for proteinrich seeds for 

human consumption and to maintain the soil fertility by its nitrogen fixing 

capability.Chickpea seeds of deshi type are brown to black in colour with a rough surface 

whereas seeds of kabuli type are light coloured having smooth surface. The roots usually 

include a central strong tap root with numerous lateral root branches that spread out in all 

directions in the upper layers of the soil. Chickpea seeds contain 23% protein, 64% 

carbohydrates, 47% starch, 5% fat, 6% crude fiber, 6% soluble sugar and 3% ash,minerals 

such as calcium (202 mg), phosphorous (312mg), iron (10.2mg), vitamin C(3.0 

mg),calorific value (360 cal), small amounts of B complex, fiber (3.9g) and moisture 

(9.8g).Predominantlychickpea is being consumed as dhal or variety of snack foods, sweets 

and condiments. Husk and split beans are useful as livestock feed.Acidic liquid from 

glandular hairs of the plant contain 94% malic acid and 6% oxalic acid, has medicinal value 

and used in preparation of vinegar. 

Chickpea cultivation is often subjected to significant yield losses due to insects and 

diseases ranging from 5-10% in temperate and 50-100% in tropical regions (Van Emden et 

al., 1988). Currently chickpea is attacked by 172 pathogens viz., 67 fungi, 3 bacteria, 22 

viruses and mycoplasma, and 80 nematodes reported from 55 countries. Maximum number 

of pathogensinfecting chickpea (89) had been reported from India while in other countries, 

it varied from 1 to 40. The pathogens that are most widely distributed are Ascochytarabiei 

(35 countries), Fusariumoxysporumf. spciceri (32 countries), Uromycescicerisarietini (25 

countries), bean leaf roll virus (23 countries), Rhizoctoniabataticola (21 countries), Botrytis 

cinerea (15 countries), Sclerotiniasclerotiorum(15 countries) and cucumber mosaic virus (9 

countries) (Nene et al., 1996). 



Among the diseases of chickpea, dry root rotis emerging as the most destructive 

constraint to chickpea productivity and production, asthe disease is more prevalent during 

hot temperatureof 30 to 35°C and low soil moisture conditions (Tayaet al., 1988; Pande 

and Sharma, 2010). Dry root rot caused by Rhizoctoniabataticola (Taub.) Butler [Pycnidial 

stage: Macrophominaphaseolina(Tassi) Goid] is a soil and seed borne necrotrophic fungal 

pathogen that has a global distribution, which can infect more than 284 plant species 

throughout the world including monocot and dicots(Farret al., 1995).  

In chickpea field, the onset of the disease appears as scattered drying of the plants. 

Affected plants are usually straw coloured, but in some cases the lower leaves and stems 

show brown discolouration. The tap root appears black, rotten and devoid of most of the 

lateral and fine roots. The dead root become quite brittle and shows shredding of bark. 

Dark minute sclerotial bodies can be seen on the roots exposed or inside the wood. When 

the dry stem of the collar region is split vertically, sparse mycelium or minute sclerotia can 

be seen in the pith (Nene et al., 1991). 

Successful survival and adaptation of Rhizoctoniabataticolato various geographic 

environments has been confirmed by several workers demonstrating morphological 

(Mayek-Pérez et al., 2001), pathogenic (Mayek-Pérez et al., 2001; Su et al., 2001) and 

genetic diversity(Vandemarket al., 2000; Mayek-Pérez et al., 2001; Su et al., 2001; 

Almeida et al., 2003; Jana et al., 2003; Aboshoshaet al., 2007) in various crops.Techniques 

such as RAPD markers are useful for measuring genetic relationships and variations within 

and among populations of Rhizoctoniabataticolain different countries like Australia 

(Fuhlbohm, 1997), Brazil (Almeida et al., 2003) and India (Jana et al., 2003).Pathogenic 

variability in the target production area is a prerequisite for identifying genotypes with a 

stable resistance to the variable pathogen populations. 

Environmental conditions like temperature, soil moisture and pH play an important 

role in the viability and growth of Rhizoctoniabataticola(Khan, 2007). 

Rhizoctoniabataticolais able to produce microsclerotia under relatively low water 

conditions while viability of microsclerotiais drastically reduced at high water potentials 

(Olayaet al., 1996).Temperature and soil moisture are the two important weather 

parameters influencing the dry root rot infection, colonization and development in 

chickpea. Better understanding the role of temperature and soil moisture will help in 

standardization of dry root rot resistance screening techniques which will assist breeders in 

developingbreeding strategy for dry root rot resistance over broader geographical areas. 

Infection by pathogen brings changes in vital processes inside the plant leading to 

wide fluctuations in sugar content (Klement and Goodman, 1967). The estimation of these 

compounds help in understanding the extent of host resistance to the pathogen. Interaction 

between a plant and a pathogen results in the induction of numerous hostspecific 

biochemical responses, so that the plant could withstand attack from pathogens. These 

responses are based not only on preformed defenses, but also on induced mechanisms. The 

induced mechanisms are associated with local changes at the site of pathogen infection, 



such as the hypersensitive response, which is one of the most efficient forms of plant 

defenses (Kortekamp and Zyprian, 2003). Phenols are the most widely distributed 

secondary plant products (Harborne, 1989) act asan important first line plant defense 

response against infection by its very rapid synthesis and their polymerization in the cell 

wall (Matern and Kneusel, 1988). 

In addition to causing accumulation of antimicrobial compounds like phenolic 

compounds (Ortega et al., 2005), the hypersensitive response also leads to an increase in 

the activity of various oxidative enzymes.  Phenylalanine ammonia lyase, polyphenol 

oxidase and peroxidase are enzymes involved in phenol oxidation and correlated with plant 

defense mechanisms (Karban and Kuc, 1999). Phenylalanine ammonia lyase is considered 

to be the principal enzyme of phenylpropanoid biosynthesis, which serves as a precursor of 

various secondary metabolites such as lignin, suberin, wallbound phenolics, 

flavanoidsetc(Chen et al., 2000; Gerasimovaet al., 2005).Polyphenol oxidase is an enzyme 

with a wide distribution among plants and catalyzes the o-hydroxylation of monophenols to 

o-diphenols and their oxidation to o-diquinones (Vaughn and Duke, 1984) which are often 

more toxic to the microorganisms than the original phenolic compounds (Gandia-Herreroet 

al., 2005). Peroxidase contributes to resistance by participating in the cell wall 

polysaccharides processes such as oxidation of phenols, suberization and lignification of 

host plant cells during the defense reaction against pathogenic agents (Breusegemet al., 

2001; Lin and Kao,2001). 

Transpiration is essential for plants to maintain turgidity, for uptake and 

translocation of solute and for reduction of temperature (Devlin and Witham, 2000). Plant 

diseases have been reported to affect transpiration, some diseases increased the rate of 

transpiration (Cruickshank and Rider, 1961; Gerwitz and Durbin, 1965) while others 

decreased transpiration (Mignucci and Boyer, 1979; Ellis et al., 1981). Only in few cases, 

no effect of pathogen on transpiration has been reported (Spotts and Ferree, 1979). In 

general, plantsurface temperature is dependent on transpiration rate. At high transpiration 

rate, the leaf temperature isdecreases while at lower transpiration rate, this temperature 

increases. Surface leaf temperature is thus anindirect parameter to evaluate the overall 

physiological status of a plant (Chaerleet al., 2004). As such, it has been largelyapplied to 

monitor plant water status. It is also powerful to identify stressed plants by both bioticand 

abiotic stresses (Leinonenet al., 2004). Thus, this method has been applied to detect the 

presence of several plantdiseases both in field and laboratory indicating that infrared 

imaging could be used to detect vascular wiltdiseased plants (Wang et al., 2012). However, 

the potential of these methods indetectionof disease progression in dry root rot has not been 

explored in chickpea. Thus, we used the chickpea-Rhizoctoniabataticolapathosystem to 

evaluate the potential of biochemical assay and infrared thermal imaging as a method to 

discriminate susceptible and moderately resistant plants. 

Therefore, as the disease has become an emerging threat to chickpea production and 

very little information is available on dry root rot of chickpea system, proper understanding 



of pathogen distribution and its variability, the environmental factors favouring disease 

development, the quantitative determination of the biochemical and physiology changes in 

chickpea will help in better understanding of dry root rot – chickpea system.The present 

study has been proposed with the following objectives: 

1.   To survey the occurrence and distribution of dry root rot incidence in major 

chickpeagrowing regions of central and southern India. 

2. To study morphological, cultural, pathological and molecular variability among the 

collected isolates. 

3.    To study the environmental factors influencing dry root rot development in chickpea. 

4. To study the biochemical changes associated with dry root rot development in chickpea. 

5.  To study the physiological changes associated with dry root rot development in 

chickpea. 
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Chapter II 

REVIEW OF LITERATURE 

 A brief review of literature pertaining to occurrence and distribution of dry root rot 

disease, symptomatology, causal organism responsible for the disease and its cultural, 

morphological, pathological and molecular variability among the isolates, effect of 

temperature, moisture and pH on the development of the pathogen, various biochemical 

and physiological changes occurring with respect to disease development in plants were 

presented in this chapter. Wherever the literature on particular aspect of Rhizoctonia 

bataticola on chickpea was scanty, it was amply supplemented with and supported by other 

pathogens and crops. 

2.1 Occurrence and distribution of disease 

An association of Fusarium sp. and Rhizoctonia sp. with wilted chickpea was first 

reported by Narasimhan (1929). Subsequently, it was reported from Punjab by Luthra 

(1938), Madhya Pradesh (Sharma and Khare, 1969; Kotasthane et al., 1979), West Bengal 

(Biswas and Guptha, 1981) and Haryana (Tripathi and Sharma, 1983). It has been reported 

from Egypt, Iran, Kenya, Lebanon, Mexico, Myanmar, Pakistan, Spain Srilanka, Sudan, 

Syria, Tanzania, Turkey, Uganda, USA and Zambia. It causes considerable yield losses that 

vary from 5-50% and may cause 100% losses in susceptible cultivars under favourable 

conditions (Nene et al., 1996).   

The incidence of R. bataticola (Macrophomina phaseolina) on Cicer arietinum was 

higher in sandy than clay soil. Low soil moisture was conducive to disease development 

(Taya et al.1988). 

Pandey and Singh (1990) conducted the survey in Allahabad region of Uttar 

Pradesh and reported that the chickpea was infected by Rhizoctonia bataticola in 83% of 

villages with less than 25% disease intensity. 

Rhizoctonia bataticola isolates of chickpea from several locations in Myanmar 

collected by Than et al. (1991) reported the possible occurrence of more than one type of 

isolate in a same field and the existence of closely related isolates at different places. 



The incidence of dry root rot in chickpea caused by Rhizoctonia bataticola was 

studied in 20 locations in Uttar Pradesh and Uttaranchal, India during February to March of 

1998-2000 and reported disease was widespread in Uttar Pradesh. It was severe in bold 

seeded cultivars (Prajapati et al., 2003). 

Survey conducted by Shubha and Gurha (2006) in different blocks of 

Bhundelkhand region of Uttar Pradesh found infection of Rhizoctonia bataticola on 

chickpea ranged from 5-22%. 

Chickpea fields in Shimoga, Raichur and Bangalore districts in Karnataka were 

surveyed by Gurha and Trivedi (2008) for the prevalence of dry root rot. R. bataticola was 

the predominant pathogen infecting 60 to 70% of the plants in the fields of Gulbarga, 

Manchalapur, Eklaspur, Raichur and Tengri.  

Intensive roving survey conducted by Manjunatha et al. (2011) during November to 

December, 2008 in the farmers’ fields at Raichur, Gulbarga and Bidar districts in 

Karnataka. The maximum dry root rot incidence in chickpea was noticed in Gulbarga 

district (9.8%) followed by Raichur (7.6%) and the least (6.18 %) in Bidar.  The overall 

incidence of dry root rot ranged from1-19% across the districts. This was mainly attributed 

due to variation in soil type (black and red soil) and cultivars grown (Annegiri and JG 11) 

under rain fed condition. 

The survey for the occurrence and severity of chickpea dry root rot was made 

during crop season 2010-11 in Jammu and Kashmir. The highest incidence was up to 40% 

in Shangus and lowest up to 4.11% in Naina of Jammu and Kashmir. The incidence of dry 

root rot in chickpea caused by R. bataticola was observed in late October to mid 

November. The intensity of the disease was high in the month of February and March 

during late flowering and podding stage (Khan et al., 2012). 

A survey was conducted in 2010-2011 rabi cropping season to obtain information 

on the distribution and incidence of chickpea diseases with respect to soil type, cultivar 

used, seed treatment in Central and Southern parts of India (Andhra Pradesh, Karnataka, 

Madhya Pradesh and Chhattisgarh). Local cultivars Annigeri (19.23%) followed by 

Harbora (12.82%) were most frequently grown by the farmers. However, among the 

improved varieties JG 11, JG 130, JG 16, JG 74 and Jawahar were most commonly grown 

covering 34.61% area. Dry root rot disease was found in all the sites surveyed where the 

incidence ranged from 8.9-10.3% irrespective of cultivar type and location. The local 



variety occupied 48% area in Karnataka while in Andhra Pradesh it was 39%. Disease 

incidence was lower on improved (9%) as compared to local varieties (14%). Sixty three 

percent of the farmers practiced seed treatment with fungicides.  The disease incidence in 

seed treated fields ranged from 6.63-12.40% compared with untreated 9.22-20.02% (Ghosh 

et al., 2013). 

In soils where soybean or susceptible hosts are planted successively year after year, 

M. phaseolina populations tend to increase. Cook et al. (1973) reported an increase in 

microsclerotia in a field planted on soybeans for three years from 80, 120 to 149 

microsclerotia per gram of soil. 

High levels of M. phaseolina colonization are positively correlated with poor seed 

quality and lower yields. After harvesting, roots loaded with microsclerotia start decaying 

and release the microsclerotia into the soil (Olaya et al., 1996). Inoculum survival in the 

soil depends on soil moisture and the soil microbial community (Collins et al., 1991) 

 Macrophomina phaseolina poses greater problem in pigeon pea at high temperature 

(>30oC) and dry weather. This disease was more prevalent in vertisols than alfisols. Rain 

after a prolonged dry spell predisposed plants to disease early (Bajpal et al., 1999). 

Rajkrishan et al. (1999) studied the effect of edaphic factors and moisture regime on 

the incidence of Macrophomina root rot in sesame. Amongst the various soil types, sandy 

soil supported maximum disease (78.33%) as compared with clay soil (51.56%). Similarly, 

more disease incidence of 48.33% was observed when pots were irrigated after the interval 

of seven days as compared to pots receiving irrigation every day. 

2.2 Disease symptomatology  

According to Dastur (1935) only mature plants were affected, showing bronzing of 

the leaves on one or more of the lower branches. The colour of leaves later changed to 

yellow and then brown. The affected branches and leaf stalks of diseased plants were stiff 

and turned upwards and leaflets stand more or less vertically and shed prematurely. The 

terminal part of the tap root was black or brown and shriveled.  

Singh et al. (1990) reported that roots inoculated with Rhizoctonia bataticola (M. 

phaseolina) caused disintegration of cortical tissues with mycelial and sceloritial bodies 

plugging the xylem vessels.  

The dried plants due to disease generally appeared during flowering and podding 

time. These were scattered in the field. The seedlings can also get infected. Drooping of 



petioles and leaflets was confined to those at top of the plant.  Leaves and stem of affected 

plant usually straw coloured but in some cases, the lower portion of the stem was brown. 

When the plant was uprooted, lower portion of the tap root remains in the soil. It was 

devoid of lateral and finer roots. Dark minute sclerotial bodies can be seen on the roots 

exposed inside the wood (Nene et al., 1991). 

2.3 Pathogen  

Rhizoctonia bataticola (Taub.) Butler as a plant pathogen was recognized by 

Halsted (1890). Taubenhaus (1913) gave the name of the genus as Sclerotium because of 

absence of spores and the species name as bataticola because it was pathogenic to Ipomea 

batatus (L.) Lam. Briton Jones (1925) transferred the fungus to the genus Rhizoctonia 

based on the identification of cultures by Butler (1918). Ashby (1927) accepted 

Macrophomina and rejected the binomial Macrophomina phaseoli and proposed a new 

binomial M. phaseolina as the pycnidial stage of R. bataticola on the basis that M. phaseoli 

was the earliest applicable binomial. He was not aware that Tassi had earlier described 

Macrophomina phaseolina. Haigh (1930) suggested that R. bataticola be used for sclerotia 

isolate and pycnidial strains should be called M. phaseolina. Goidanich (1947) examined 

the original material of Tassi and compared it with Macrophomina phaseoli, M. corchori, 

M. cajani, M. sesami, M. philippinensis, Dothiorella cajani and D. phaseoli. He confirmed 

all of them were identical. He corrected the mistake made by Ashby. According to the 

International Code of Botanical Nomenclature, the binomial Macrophomia phaseolina was 

the valid name for the pycnidial stage of R bataticola.  

Mycelia width varied from approximately 2-11µm and distance between two 

consecutive septa measured 46µm. However, the most important character regarding 

taxonomy and classification were the production size and composition of microsclerotia 

(Reichert and Hellinger, 1947). 

Sclerotia within plant parts were black, smooth, hard and varied in size from 100 

µm-1mm while in culture, it varied from 50-300µm. These descriptions were given by 

Common wealth Mycological Institute (CMI), Kew, England (1970). 

During the sclerotial formation, 50–200 individual hyphal cells aggregate to give 

multicellular bodies called microsclerotia. The microsclerotia were black and variable in 

size from 50–150 μm depending on the available nutrients of the substrate on which the 

propagules were produced (Short and Wyllie, 1978). 

 



2.4 Morphological variability of Rhizoctonia bataticola 

2.4.1 Hyphal variability 

Gupta et al. (2012) observed variation in size of hyphal width of 40 Rhizoctonia 

bataticola isolates from chickpea. 18 highly virulent isolates were classified under very 

thin (5.2-6.5 μm), 17 highly virulent and 2 virulent isolates under thin (6.6 -7.9 μm) and 

only three highly virulent isolates from Chhattisgarh and Gujrat exhibited (8.0 - 9.3 μm) 

thick hyphal width.  

Sobti and Sharma (1992) reported that the width of hyphae varied from 4.16-

8.48μm in Rhizoctonia bataticola isolates from groundnut. 

Thirty six isolates of M. phaseolina of mung bean collected from different region of 

North, South, North East and Central India were studied for morphological variability. 

Typical right-angled branching of mycelium was found in isolate MP-1 and it was acute to 

right angled in isolates MP-2 and MP 3 (Devi and Singh, 1998). 

Pathogen isolation was done from T9, PU 30, TPU 4, UK 17, UPU97-10 of black 

gram plants by Suryawanshi et al. (2008) from stem and leaves. The mycelium was 

superficial, hyaline to brown, septate and tree like in form.  

2.4.2 Sclerotial variability 

Sclerotial diameter of Rhizoctonia bataticola in gram varied from 98.1-119.2 μm 

(Ghosh and Sen, 1973). Hildebrand et al. (1945) observed the sclerotia were black, smooth 

varying from spherical to oblong to irregular shaped. The sclerotial shape of any isolate 

varied with substrate on which fungus was grown.  

Twenty three isolates of Rhizoctonia bataticola causing dry root rot of chickpea 

collected from 10 different major chickpea growing states (Karnataka, Haryana, New 

Delhi, Punjab, Uttar Pradesh, Maharashtra, Jharkhand, Rajasthan, Madhya Pradesh and 

Chattisgarh) of India were highly variable in their morphological characters. The sclerotia 

formed in different isolates were dark brown to black and size varied from 40 - 600 μm. 

The isolates from Bangalore (Rb1) and Faridkot (Rb 5) produced the largest size sclerotia 

ranged from 200 – 600 μm and 100 – 400 μm respectively. Dumka (Rb19) isolate produced 

small sized sclerotia which ranged from 43.9- 81 μm. They observed most virulent isolate 



(Rb1 from Bangalore, Karnataka) was fast growing and produced largest sclerotia. The 

isolates were highly variable in virulence (Aghakhani and Dubey, 2009). 

Thirty isolates of Rhizoctonia bataticola causing dry root rot of chickpea collected 

from three major chickpea growing regions variable in their characters were categorized 

into three groups. The first group comprised of all isolates from Bidar except RB7 and 

exhibited light brown with fluffy growth and formed dark brown sclerotia centrally with 

clustering growth pattern. The second group comprised of all isolates from Raichur and 

Gulbarga except RG3 and RG7 and also an isolate from Bidar RB7 and showed brownish 

black with flat sclerotia which were uniformly distributed. Third group comprised of only 

RG3 and RG7 isolates from Gulbarga which showed flat colony and brown coloured 

sclerotia formed at the center of the culture (Manjunatha and Naik, 2011). 

Forty isolates of Rhizoctonia bataticola from chickpea were studied by Gupta et al. 

(2012) observed sclerotial sizes varied form 72.7- 117.2 x 57.1-106.5 μm. Based on 

sclerotial size, the isolates were divided into three groups’ viz. minute size (72.7 - 87.5 x 

57.1-73.0 μm), medium size (87.6 - 103.2 x 73.5 - 90.0 μm) and bold (103.3 -117.2 x 90.1-

106.5 μm) size of sclerotia groups. Bold size of sclerotia was observed in six highly 

virulent isolates belong to Madhya Pradesh and Maharashtra. Rest of the thirty two highly 

virulent and two virulent isolates placed in minute and medium size of sclerotial groups. 

The isolate from Betul, Madhya Pradesh produced maximum number of sclerotia (22.3 

sclerotia per microscopic field) and isolate from Dhule, Maharashtra exhibited minimum 

number of sclerotia (8.1 sclerotia per microscopic field). The shape of sclerotia ranged 

from oblong (12 isolates) to round (28 isolates). 

Morphological variability among thirty six isolates of M. phaseolina from mung 

bean collected from different region of North, South, North East and Central India were 

studied for by Devi and Singh (1998) and observed bigger sclerotia in isolate MP-2 (400 x 

280 μm). 

Seven isolates of M. phaseolina on maize collected from Ludhiana, Hyderabad, 

Delhi, Arabhavi, Udaipur, Bangalore and Coimbatore by Shekhar et al. (2006) observed 

Hyderabad isolate produced highest number of sclerotia (180.3 sclerotia 9 mm-1 disc) of 

bigger size (95.7 μm) compared to other isolates. On the basis of sclerotial morphology, 

isolates were divided into oblong shape having a regular edges and round with regular 



edges. On the basis of disease expression, Hyderabad isolate was more virulent compared 

to other isolates.  

The diversity patterns of 15 isolates from Mexico and 15 isolates from other 

countries of M. phaseolina on beans were analyzed based on morphological characteristics 

such as shape (round, ovoid and irregular) and production of microsclerotia. Microsclerotia 

were higher in most Mexican isolates than in non-Mexican isolates. However, no 

significant differences between Mexican and non-Mexican isolates were found in length, 

width and length/width ratios of microsclerotia (Fernandez et al., 2006). 

Macrophomina phaseolina isolation was done from T9, PU 30, TPU 4, UK 17, 

UPU97-10 cultivars of black gram by Suryawanshi et al. (2008) from stem and leaves. The 

typically dark black to brown colony observed on PDA medium. The mycelium was 

superficial, hyaline to brown, septate and tree like in form. The sclerotia produced were 

round, oblong and irregular in shape. 

 Variations in the 35 isolates of M. phaseolina collected from the major sesame 

producing regions in central China comprising of Hubei, Henan, Anhui, Jiangxi province 

were studied by Linhai et al. (2011). Sclerotia quantity and size had high variations. Pingyu 

and Xiaogan produced no sclerotia after 24 h of culture and sclerotium size of 7 days old 

culture varied between 0.10 mm (Wuxue) and 0.16 mm (Jiayu) with average of 0.13 mm.  

Isolates of M. phaseolina were collected from semi arid regions of Maharashtra, 

Andhra Pradesh and Karnataka states of India. Variability in shape, length, width and 

length/width in morphological characters of microsclerotia were studied and observed AP 

21isolate varied in length/width ratio (483.3/200.0 μm) while no significant differences 

were observed in others (Prasad et al., 2014). 

Eleven isolates of R. bataticola from different pulse crops viz., redgram, greengram, 

cowpea, soybean, blackgram showed variability in sclerotial intensity, shape and intensity 

of pigment synthesis. All isolates were more aggressive on the original host from which it 

was isolated than on other hosts (Sundravadana et al., 2012). 

From 14 Iranian provinces, fifty two Macrophomina phaseolina isolates were 

recovered from 24 host plant species. These isolates were studied for average size and time 

taken for microsclerotia formation. Isolates from Khorasan and Isfashan kashan had the 



largest microsclerotia while isolates Yazd and Kerman had the smallest microsclerotia 

(Mahdizadeh et al., 2011). 

Iqbal and Mukhtar (2014) collected 65 specimens of charcoal rot caused by M. 

phaseolina in mungbean from Punjab and Khyber Pakhtunkhwa provinces of Pakistan. 

They classified nine isolates under large sized, 26 under small sized and remaining 30 

isolates as medium sized sclerotia. Maximum sclerotial size was observed in isolates MP-

20 and MP-3 showing 29.00 and 27.33 μm diameter respectively, while the isolates MP-39 

and MP-28 were found to be the smallest in size. The average sclerotial size of isolates 

ranged from17.00 to 29.00 μm.  

2.5 Cultural variability among Rhizoctonia batatiocla 

2.5.1 Variability in radial growth 

Twenty three isolates of Rhizoctonia bataticola causing dry root rot of chickpea 

collected from 10 different major chickpea growing states (Karnataka, Haryana, New 

Delhi, Punjab, Uttar Pradesh, Maharashtra, Jharkhand, Rajasthan, Madhya Pradesh and 

Chattisgarh) of India were highly variable in their cultural characters. After 48 hours of 

incubation, highest radial growth in Rb1 (Bangalore) followed Rb4 (Faridkot) was 

observed. Rb3 (New Delhi) and Rb5 (Faridkot) were next best with statistically similar 

colony diameters (83.5 mm). Least and similar colony diameter of 51.3 mm was recorded 

in Rb7 and Rb10 (Kanpur) isolates (Aghakhani and Dubey, 2009). 

Thirty isolates of Rhizoctonia bataticola causing dry root rot of chickpea collected 

from three major chickpea growing regions were highly variable in their cultural 

characters. Among these, twelve isolates were fast in growth, another twelve were 

moderate and the remaining six isolates were slow in growth (Manjunatha and Naik, 2011). 

Dhingra and Sinclair (1973) collected nine isolates of M. phaseolina from various 

parts of United States reported variation in growth rate and colony characters. Further, the 

growth rate was correlated with pathogenicity. 

Lokesha and Benagi (2004) reported among four isolates of M. phaseolina in 

pigeon pea maximum growth was recorded in ICRISAT isolate which was significantly 

superior over other isolates (82.7 mm) followed by Bidar isolate (78.35 mm).  



The radial growth was found maximum after 24 hours of incubation on PDA (40.3 

mm) followed by potato sucrose agar (39.0 mm) and it completely covered the PDA plate 

by 48 hours of incubation (Chowdary and Govindaiah, 2007). 

Iqbal and Mukhtar (2014) collected 65 isolates of charcoal rot caused by M. 

phaseolina in mung bean from Punjab and Khyber Pakhtunkhwa provinces of Pakistan 

were studied for cultural variability. Significant differences were noticed among 65 isolates 

with sixteen isolate rated as fast growing, 11 as slow growing and the rest as medium 

growing. Maximum colony diameter of 87.17 and 86.67 mm was observed in isolate MP- 7 

(Dera Ghazi Khan) and MP-26 (Layyah) proved to be the fast growing, while isolates MP-

8, MP-29 and MP-30 showed minimum radial growth and rated as slow growing.  

2.5.2 Variability in colony texture 

Twenty three isolates of Rhizoctonia bataticola (Macrophomina phaseolina) 

causing dry root rot of chickpea collected from 10 different major chickpea growing states 

(Karnataka, Haryana, New Delhi, Punjab, Uttar Pradesh, Maharashtra, Jharkhand, 

Rajasthan, Madhya Pradesh and Chattisgarh) of India were highly variable in colony 

texture. The majority of nineteen isolates produced suppressed mycelium whereas 4 

isolates in which three from Kanpur and one from Rohtak produced aerial mycelium 

(Aghakhani and Dubey, 2009). 

Thirty isolates of Rhizoctonia bataticola causing dry root rot of chickpea collected 

from three major chickpea growing regions were highly variable in their colony texture. 

These isolates were categorized into three groups. The first group comprised of all isolates 

from Bidar (except RB7) exhibited light brown with fluffy growth and formed dark brown 

sclerotia centrally with clustering growth pattern. The second group comprised of all 

isolates from Raichur, Gulbarga (except RG3 and RG7) and an isolate from Bidar (RB7) 

exhibited brownish black with flat colony and sclerotia which were uniformly distributed. 

Third group comprised of only RG3 and RG7 isolates from Gulbarga which showed flat 

colony and brown colour sclerotia formed at the center of the culture (Manjunatha and 

Naik, 2011). 

Dhingra and Sinclair (1978) noticed fluffy growth in stem isolates, partially fluffy 

growth in root isolates and appressed growth in all other plant part isolates of 

Macrophomina phaseolina on soybean.  



Thirty six isolates of M. phaseolina of mung bean collected from different region of 

North, South, North East and Central India and observed MP-1 isolate had cottony mycelial 

growth while MP-2 isolate showed 5 μm appressed mycelial growth (Devi and Singh, 

1998).  

The diversity patterns of 15 isolates from Mexico and 15 isolates from other 

countries of M. phaseolina on beans were analyzed based on presence or absence of aerial 

mycelium. They observed 15 isolates had intermediate and 15 isolates had poor aerial 

mycelium. Eight from Mexican isolates and 7 isolates of non Mexican isolates had 

intermediate aerial growth (Fernandez et al., 2006). 

Edraki and Banishashemi (2010) studied sixty isolates of M. phaseolina collected 

from different parts of Iran on various crops like soyabean, cucumber and sesame. Isolates 

were grouped in to four phenotypes viz., fluffy with abundant sclerotia, fluffy with few 

sclerotia, partially fluffy and appressed growth.  

  Variability among the eleven isolates of R. bataticola from different pulse crops 

(redgram, greengram, cowpea, soybean, blackgram) were categorized into three groups viz., 

linear, fluffy and linear at the end with fluffy growth at the centre. All isolates were more 

aggressive on the original host from which it was isolated, which was shown by the 

variability in pathogenic characters (Sundravadana et al, 2012). 

2.5.3 Colony pigmentation 

Twenty three isolates of Rhizoctonia bataticola (Macrophomina phaseolina) causing 

dry root rot of chickpea collected from 10 different major chickpea growing states 

(Karnataka, Haryana, New Delhi, Punjab, Uttar Pradesh, Maharashtra, Jharkhand, 

Rajasthan, Madhya Pradesh and Chattisgarh) of India were highly variable in pigmentation 

of isolates. Pigmentation varied from white to dull white, creamy, grey and black. Black 

was prominent among the isolates (Aghakhani and Dubey, 2009). 

Thirty six isolates of M. phaseolina of mung bean collected from different region of 

North, South, North East and Central India were studied for colony colour.  MP-1 isolate 

had pale grey colonies while brown in MP-2 (Devi and Singh, 1998). 

The diversity patterns of 30 isolates of M. phaseolina of beans 15 from Mexico and 

15 from other countries were analyzed based on morphological characteristics such as 



colour of colony (grey and black) and observed 22 isolates were grey, 4 isolates were white 

and 4 isolates were black in colour  (Fernandez et al., 2006). 

Aboshosha et al. (2007) observed colonies of Macrophomina isolates of sunflower 

charcoal rot were mostly grey, dark grey, black and brown for fourteen stem isolates in 

frequencies of 4, 3, 5 and 1 on PDA and 4, 5, 2 and 2 on Czapek-Dox Agar while white 

colony was observed in only one isolate on both media.  

2.6 Pathogenic variability  

Jayanti and Bhatt (1993) sown pre-germinated seed of 21 chickpea varieties in soil 

inoculated with R. bataticola which caused seed rot within 24h in NEC874 and EG234. 

Bold 2375, BG209, JG62, JG315, ICC 3357 and JG1133 developed necrotic lesion in 3-5 

cells deep at hypocotyl region within 7 days. RSG-44, AGC677, NEC41, GL269, JG74, 

ICC8983 and ICC 5003 developed only superficial necrosis along the hypocotyl region. 

BGM 416, BG 416, ICC 1376 and ICC 113314 were resistant. Resistant cultivars had a 

greater number of lateral roots during early growth phases. 

Pande et al. (2004) screened 29 chickpea germplasm lines and 10 cultivars against 

dry root rot caused by Rhizoctonia bataticola in chickpea using paper towel method 

developed by Nene et al. (1981). Germplasm line ICC 14395, cultivar ICCV 2 and 

advanced breeding line (ICCX830203-BH-BH-11H) were found resistant to dry root rot, 22 

moderately resistant, 19 susceptible and 3 highly susceptible were observed in the 

remaining lines. The disease severity in the two susceptible line BG 212 and ICC 12267 

used as control was rated highest. The identified genotypes were used as source of 

resistance to dry root rot. 

Pot culture experiment was conducted by Jayalakshmi et al. (2008) for screening 12 

promising entries  of chickpea (JG-11, GBS 964, GBS 963, GBC 2, GBM 6, GBM 2, GBM 

10, BGD 103, GCP 107, GCP 101, A1, ICCV 10, L- 550 + 1 susceptible check JG-62) 

against dry root rot during rabi season, 2004-05 and 2005-06. Out of 12 genotypes tested 

against root rot disease, 4 resistant, 2 moderately susceptible, 3 susceptible and 3 highly 

susceptible to dry root rot disease were observed.  

Forty isolates of Rhizoctonia bataticola causing dry root rot of chickpea collected 

from four major chickpea growing states viz., Madhya Pradesh, Chhattisgarh, Gujarat and 

Maharashtra of central India were screened for virulence of the isolates on susceptible 



chickpea variety BG 212 by blotter paper technique. The highly virulent isolates from 

Madhya Pradesh, Chhattisgarh, and Maharashtra were fast growing isolates and exhibited 

largest sclerotia. The sclerotial size and number of sclerotia of R. bataticola isolates had 

positive correlation with virulence (Gupta et al, 2012). 

Lekhraj et al., (2012) conducted pathogenic variability of Macrophomina 

phaseolina isolates collected on infected chickpea from 9 various parts of Rajasthan, Hissar 

and New Delhi. Pathogenicity of these isolates tested on 40 day old chickpea cv. C-235 

showed there was no direct relationship between cultural characters and virulence of the 

isolates. The isolate BKN had scanty, suppressed growth was highly pathogenic. Isolates 

SGN, NHR, DUR, HAU, DEL and HNG having different types of colony growth were 

moderately pathogenic and the isolates CHR and UPR with different mycelium characters 

were less pathogenic. Similarly, there was no apparent correlation between the virulence 

and growth rate of the fungal colonies. 

Fifty isolates of Rhizoctonia bataticola collected on chickpea from different agro 

climatic zones in India were evaluated for the degree variability in pathogenicity test. All 

the isolates proved pathogenic on chickpea cultivar BG 212. The dry root rot disease 

severity ranged from 4 to 9 (1-9 severity rating scale). The effect of isolates on severity was 

significant. The pathogenic and non pathogenic isolates were not concentrated in any one 

particular state/region (Sharma et al, 2012). 

Among the 94 isolates of R. bataticola collected from different agro ecological 

zones, 8 isolates from Andhra Pradesh and Madhya Pradesh showed less aggressive on 

chickpea cultivar BG 212 (Sharma et al., 2012). 

2.7 Genetic diversity in Rhizoctonia bataticola using RAPD marker 

 Jana et al. (2003) showed single RAPD primer A13 could be used to identify and 

discriminate several isolates of M. phaseolina and Fusarium sp. obtained from 20 hosts 

including soybean, cotton, chickpea and safflower. 

Universal rice primers were used to cluster 40 isolates of M. phaseolina from 

soybean, cotton and chickpea (Jana et al. 2005). 

Thirty isolates of Rhizoctonia bataticola from chickpea were studied for molecular 

variability by Manjunatha (2009) using three primers OPO-10, OPO-12 and OPN-12. 

There were four isolates in Group-I, 16 isolates in Group-II and 10 isolates in Group-III. 



However, in Group-II, three isolates (RG-18, RG-19 and RG-20) exhibited 100 per cent 

similarity. RB-29, RB-25 and RG-16 isolates from Bidar and Gulbarga respectively 

showed genetically diversity among thirty isolates.  

  Bayraktar and Dolar (2009) observed intra and inter specific polymorphism among 

fungal pathogens that cause root rot on chickpea by using 30 RAPD primers. UPGMA 

cluster analysis of RAPD datasets using Dice's coefficient differentiated all fungal isolates 

from each other and revealed considerable genetic variability between the isolates.  

Genetic diversity of 23 isolates from chickpea and 4 from other host crops (mung 

bean, urd bean, bean leaf, ground nut) of Rhizoctonia bataticola representing 11 different 

states of India were studied by Aghakhani and Dubey (2009) using RAPD. The clusters 

generated by RAPD grouped all the isolates into six categories at 40% genetic similarity. 

High level of diversity was observed among the isolates of different as well as same state. 

Some of the RAPD primers viz., OPN 4, OPN 12 and OPN 20 clearly distinguished 

majority of the isolates into the area specific groups based on variability in virulence. 

Fifty isolates of Rhizoctonia bataticola collected from different agro climatic zones 

in India were evaluated for the degree of subdivision in isolates level by Sharma et al., 

(2012). Genetic characteristics were analyzed based on the sequence of rDNA- ITS region. 

The phylogenetic tree based on rDNA-ITS analysis showed maximum number of R. 

bataticola isolates were very diverse and did not depend on geographical origin. Both 

pathological and molecular data correlated with each other supported that the R. bataticola 

present in India were very diverse and independent to their origin. 

M. phaseolina isolates of maize from Ludhiana, Hyderabad, Delhi, Arabhavi, 

Udaipur, Bangalore and Coimbatore analyzed through RAPD marker for genetic diversity 

by Shekhar et al. (2006). The UPGMA cluster analysis for 706 loci score permitted for 

identification of three main clusters. Similarity matrix and Jaccard’s similarity coefficient 

between the isolates indicated that the maximum genetic variation was among isolates of 

Arabhavi and Coimbatore with 70.8% followed by Ludhiana and Coimbatore with 69.5%. 

The most closely related isolates were Hyderabad and Delhi with an affinity percentage of 

65.5% followed by Udaipur and Bangalore isolates with 62.9% similarity. 

 Fourteen isolates of Macrophomina phaseolina collected from different groundnut 

growing regions in India were studied for their virulence and genetic diversity using PCR-



RAPD markers by Kumar and Gaur (2011). A total of 85 amplicon levels were obtained 

with 7 primers with an average of 12.1 bands per primer were available for analysis, of 

which 83 were polymorphic (97.74%). It was possible to discriminate all the isolates with 

any of the 7 primers employed. The UPGMA clustering of data indicated the isolates 

shared varied levels of genetic similarity within a range of 0.069 to 0.65 similarity 

coefficient index. Isolates Bikaner, Churu, Delhi, Hissar which were clustered in one group 

happened to be more virulent reflecting correlation of similarity with pathogenicity to some 

extent but there was practically no direct correlation between the virulence and RAPD 

genetic markers of all the isolates. 

 The genomic DNA of 21 isolates of Rhizoctonia bataticola of soybean from 

Jabalpur were subjected for diversity analysis with 8 randomly selected decamer primers 

which amplified 64 RAPD marker loci. Out of these 64 bands, 29 bands (45.3%) were 

polymorphic. Similarity coefficient values for 21 accessions of R. bataticola in RAPDs 

marker was 0.69–0.98 (Pancheswar et al, 2012). 

2.8 Influence of temperature on Rhizoctonia bataticola  

Rhizoctonia bataticola on chickpea grew over a wide range of temperatures viz., 

10ºC to 45ºC. The optimum temperature for its growth was found to be 30ºC while the next 

best was 35ºC. Statistically the growth of the pathogen gradually decreased both below and 

above the optimum temperature (30ºC). Minimum growth was recorded at 10ºC (Khan et 

al, 2012). 

The growth and sclerotial production of M. phaseolina causing root rot in mulberry 

at different temperatures in vitro were studied by Chowdary and Govindaiah (2007) 

recorded maximum growth of 90mm at 30 and 35ºC and minimum of 40 mm at 20ºC. 

Sclerotial production was observed in all the temperatures except at 20ºC. 

Variability in Rhizoctonia bataticola isolates from roots, leaf and seeds of pulses 

viz., blackgram, greengram, cowpea, soybean, and redgram were studied at different 

temperatures. It was observed that 15°, 20° and 25°C had recorded mean mycelial growth 

of 26.83, 34.23 and 48.51 mm respectively. The maximum mycelial growth of 74.76 and 

74.20 mm was recorded at 30˚ and 35°C respectively. As the temperature increased from 

10° to 30°C, the mycelial growth gradually increased and at 35°C there was gradual 



decrease. Temperature was the specific limitation for the growth and its pathogenicity 

(Sundravadana et al., 2012). 

Lotfalinezhad et al. (2013) collected forty three isolates of M. phaseolina on 

different hosts (canola, cotton, melon, olive, pine, potato, safflower, soybean, sunflower, 

tomato and watermelon) from North, Northwest and Southwest of Iran. The optimum 

temperature for growth was 25ºC for 33 isolates and 33ºC for 10 isolates, when these 

isolates were incubated at 5, 10, 15, 20, 25, 30, 33, 35 and 40ºC. Isolates growth rate varied 

considerably at all temperatures but maximum variability occurred at 20 and 33ºC between 

isolates. They concluded environmental condition of the North and Northwest areas of Iran 

were similar but differ from those of the Southwest. High optimum temperature was 

detected for growth of southwest isolates as they were from warm area in contrast to other 

isolates.  

2.9 Influence of temperature on disease development 

In chickpea, seed exudates increased when incubated at 35ºC than 15 and 25ºC was 

reported by Singh and Mehrotra (1982). They also observed that increased seed exudation 

was a major factor contributed to increased pre-emergence damping off of gram seedling 

by R. bataticola at high temperatures. 

Severity of dry root rot in chickpea with respect to temperature was studied by 

Sharma and Pande (2013) under controlled environment. Out of five temperature regimes 

viz.,15°C, 20°C, 25°C, 30°C and 35°C, optimum temperature for disease severity was 35°C 

with maximum disease severity of 9 on 1-9 severity rating scale. This was followed by 

30°C, 25°C, 20°C and 15°C. The disease severity was very low (2 - 3 rating on 1-9 scale) 

at 20 and 25°C. The control plants did not show any symptoms at their respective 

temperatures. They confirmed that high temperature predisposed chickpea to R. bataticola 

infection, colonization and development. 

Agarwal et al. (1973) reported that charcoal rot in soybean found to occur only at 

temperatures between 25º to 40ºC.  

Ratnoo et al. (1997) reported the infection and development of ashy grey stem 

blight in cowpea caused by M. phaseolina was most favoured by high temperature 25 - 

40ºC.  

2.10 Effect of osmotic potential on radial growth  

Olaya and Abawi (1996) studied the influence of water potential on growth of 

Macrophomina phaseolina in bean was determined at 30°C on potato dextrose agar 



adjusted to different water potentials with KCl, NaCl or sucrose. Radial growth of M. 

phaseolina on PDA was maximum at water potential values between -1,220 and -1,880 J 

kg-1. Growth was reduced at lower water potential values and completely inhibited at water 

potential between -8,270 and -12,020 J kg-1. The influence of water potential adjusted by 

KCl, NaCl or sucrose on M. phaseolina followed a similar pattern, but growth of M. 

phaseolina was much greater in media adjusted with sucrose. Results of this study showed 

that M. phaseolina can grow and produce large quantities of sclerotia under relatively low 

water potentials.  

Garcia et al. (2003) studied influence of osmotic potential on in vitro growth and 

morphology of four isolates of Macrophomina phaseolina in common bean was studied 

using potato glucose agar adjusted to different osmotic potentials with KCl, NaCl and 

sucrose. The three sources of osmotic potential reduced M. phaseolina growth under in 

vitro conditions. NaCl caused the highest negative effects. Concentrations of NaCl higher 

than 250 mM showed significant reduction of M. phaseolina growth in all isolates, while 

1000 mM of NaCl inhibited growth completely. Sucrose did not cause significant 

reductions on in vitro growth of M. phaseolina at low concentration while growth was 

favoured. The high solute concentrations reduced the synthesis of mycelial pigments and 

the size and shape of microsclerotia.   

The effect of osmotic potential on mycelial growth and sclerotial production of 

Rhizoctonia solani [Anastomosis Groups (AGs) 2-1 and 3] from potato were studied by 

Ritchie et al. (2006) on potato dextrose agar adjusted osmotically with sodium chloride, 

potassium chloride and glycerol. All isolates from AGs 2-1 and AG-3 exhibited fastest 

mycelial growth on unamended PDA and growth declined with decreasing osmotic 

potentials. Growth ceased between -3.5 and -4.0 MPa on osmotically adjusted media with 

slight differences between isolates. Sclerotia yield in AG 2-1 and AG-3 declined with 

decreasing osmotic potential and formation ceased between -1.5 and -3.0 MPa and -2.5 and 

-3.5 MPa respectively.  

2.11 Effect of moisture on disease development  

Dry root rot was observed in gram when exposed to temperature more than 30ºC. 

The disease was aggravated by dry soil conditions especially at flowering stage leading 

plants to sudden drying (Singh and Mehrotra, 1982). 

Colonization of M. phaseolina on chickpea roots was high when subjected to 

moisture stress conditions compared to unstressed plants. Soils artificially inoculated 



produced poor growth of plants both in low and high moisture compared to natural soil. 

Root colonization was greater at 40-50% moisture holding capacity as compared to 10-20% 

soil moisture holding capacity (Husain and Ghaffar, 1995). 

Patel and Anahosur (2001) conducted an experiment with chickpea cultivars ICC 

4951 (susceptible) and Bheema (resistant) in earthen pots filled up with artificially infected 

soil with Macrophomina phaseolina at four levels of soil moisture viz., 25, 50, 75 and 

100%. They observed M. phaseolina infection was maximum at 25% and minimum at 

100% soil moisture. ICC 4951 developed higher disease than Bheema at 25% soil moisture. 

Both cultivars showed maximum disease incidence at the lowest soil moisture level 

compared to high moisture.  

Role of soil moisture on disease severity of dry root rot in chickpea was studied by 

Sharma and Pande (2013) under controlled environment. The plants exposed to 40% 

moisture stress showed higher mortality as compared to 60%, 80% and 100%. It was 

observed that 40% soil moisture was insufficient for the normal growth of the plants as the 

plants grown in control showed the physiological stress (wilting of the plants due to lack of 

moisture). At 60% soil moisture, no physiological stress was found in control plants and 

dry root rot severity was maximum 35 days after imposing moisture stress. Disease 

progressed slowly at 80% and 100% soil moisture had least disease severity. 

When cotton plants grown in soil temperatures of 20 - 40ºC were subjected to soil 

water stress, the severity of Macrophomina phaseolina was much greater in moisture stress 

condition than those provided with sufficient soil water (Ghaffar and Erwin, 1969). 

 Ratnoo et al. (1997) reported the infection and development of ashy grey stem 

blight in cowpea caused by M. phaseolina was most favoured by higher temperature 25-

40ºC and  low in flooded soil compared to dry soil of 40-60% soil moisture. 

Role of edaphic factors on the incidence of dry root rot of sesame caused by 

Rhizoctonia bataticola were studied by Rajkrishan et al. (1999). Among various soil types, 

sandy soil supported maximum disease incidence (78.33%) as compared with clay soil 

(51.56%). More disease incidence of 48.33% was observed when pots were irrigated after 

the interval of seven days as compared to pots receiving irrigation every day.  



Wokocha (2000) observed the disease incidence of dry root rot of soybean was 

significantly low when the soil moisture was 60 - 70% but it was 5.0% at 10 - 20% soil 

moisture. 

 

2.12 Influence of pH on Rhizoctonia bataticola 

Dry root rot caused by Rhizoctonia bataticola on chickpea could grow over a wide 

range of pH from 3.0 to 9.0. The optimum pH for its growth was found to be 5.5 followed 

by 6.0. However with increase up to 7.0 and thereafter it declined. The minimum growth of 

the pathogen was recorded at pH 3.0 (Khan et al., 2012). 

R. bataticola isolates collected from 19 districts of Madhya Pradesh on13 different 

crops were evaluated for responses to different pH levels viz., 5.5, 6.0, 6.5, 7.0 and 7.5. 

Good growth was observed at pH 5.5 - 7.5, but pH 7.0 was optimum (Jha and Sharma, 

2005). 

Singh and Chohan (1982) reported pH 5.0-6.0 as the optimum for the mycelium 

development of Macrophomina  phaseolina causing charcoal rot in muskmelon.  

2.13 Biochemical changes due to pathogen and stress in host  

2.13.1 Total sugars, reducing sugars and non reducing sugars 

Carbendazim, carboxin, captan and thiram (0.2%) used as seed treatment, soil 

drench and seed treatment + soil drench significantly reduced the incidence of dry root rot 

of chickpea with a corresponding increase in carbohydrates in the plants (Rajider and 

Sindhan, 1998). 

Cluster bean genotypes 116565 (moderately resistant) and 116676 (highly 

susceptible) were grown in sick and control soil with Macrophomina phaseolina. At 65 

days after sowing, leaves and roots of sick and control plants were collected and analyzed. 

Total soluble sugars and reducing sugars decreased with pathogen inoculation (Joshi et al., 

2003). 

  

2.13.2 Phenols 

Carbendazim, carboxin, captan and thiram (0.2%) used as seed treatment, soil 

drench and seed treatment + soil drench significantly reduced the incidence of dry root rot 



of chickpea with a corresponding increase in phenolic compounds in the plants (Singh and 

Sindhan, 1998). 

Trichoderma viride and T. harzianum used as seed treatments, soil inoculum and 

soil inoculum + seed treatments proved effective in reducing the incidence of dry root rot 

(Rhizoctonia bataticola) in chickpea with increased levels of phenols (Singh et al., 1998). 

Cell wall protein extracted from Macrophomina phaseolina was tested against 

chickpea to elucidate elicitor properties. The chickpea seedlings exposed to cell wall 

protein showed enhanced synthesis of phenol relative to water treated control. Charcoal rot 

of chickpea was significantly reduced in seedlings following cell wall protein treatment. 

The results suggested cell wall protein of Macrophomina had elicitor property and 

effectively induced resistance in chickpea (Ratul et al., 2006). 

Khirbat and Jalali (2003) conducted field experiment to investigate the effect of 

blight (A. rabiei) on the total phenol in chickpea cultivars E100Y (resistant) and H 208 

(susceptible). The pathogen isolates from the cultivars H-208 and Pb 7 were used. 

Challenge inoculation with both isolates at 2 to 10 day intervals resulted in an increase in 

the total phenol content in the resistant cultivar and decrease in total phenol content in the 

susceptible cultivar.        

Induction of some defense related enzymes and phenolics in roots of two different 

genotypes of chickpea cultivars which were susceptible (L 550) and resistant (ICCV 10) to 

wilt disease treated with salicylic acid, spermine, salicylic acid + spermine and Fusarium 

oxysporum f. sp. ciceri was investigated. Higher levels phenols were observed in roots of 

resistant cultivar than that of susceptible cultivar on treatment with elicitors and pathogen. 

The pathogen invasion was more in susceptible cultivar compared with resistant cultivar. 

Further, the invasion was restricted in roots of resistant cultivar treated with salicylic acid. 

These results suggest that accumulation of phenolics might have contributed to restrict the 

invasion of F.oxysporum f. sp. ciceri in resistant cultivar ICCV10 (Raju et al., 2008).  

Rathod and Vakharia (2011) conducted experiment to see the changes in total 

phenol content at different stages of infection of wilt disease in chickpea roots. The results 

indicated that total phenol content was significantly higher in root of all the cultivars 

obtained from sick plot. Total phenol in root tissues obtained from sick plot revealed higher 

amount of total phenol (0.83 mg g-1fresh weight) as compared to the tissue received from 



normal plot (0.65 mg g-1 fresh weight). Among the cultivars, GG-2 showed maximum 

amount of total phenol content (0.88 mg g-1 fresh weight) while susceptible cultivar JG-62 

contained the lowest value of total phenol.  

The maximum accumulation of phenolic acids in infected guar plants by 

Macrophomina phaseolina was revealed to be 23% higher than in control after 120 hours 

of infection in all the four cultivars. Phenolic acid accumulation in the compatible host 

pathogen combination presumes that it participated actively in the guar resistance 

to root rot (Sharma et al., 2011).  

Cluster bean genotypes 116565 (moderately resistant) and 116676 (highly 

susceptible) were grown in pots and inoculated with Macrophomina phaseolina. At 65 days 

after sowing, leaves and roots of inoculated and uninoculated plants were collected and 

analyzed. Total phenol content increased with pathogen inoculation and was higher in 

moderately resistant genotype than in highly susceptible genotype (Joshi et al., 2003). 

Bean seeds inoculated with both Macrophomina phaseolina and Botrytis cinerea 

had higher total phenol contents as compared to control seeds and the concentrations 

recorded an uptrend up to 20 days of storage after inoculation and thereafter started 

declining.  Phenols were higher in relatively Giza-6 cultivar than in Local variety (22.0 mg 

g-1 and 11.23 mg g-1 fresh weight respectively). In case of inoculated seeds with M. 

phaseolina maximum phenols compounds content was attained in samples incubated at 

35˚C for 20 days in both cultivars (Zahra, 2012). 

2.13.3 Enzymes 

Cell wall protein extracted from Macrophomina phaseolina was tested against 

chickpea to elucidate elicitor properties. The chickpea seedlings exposed to cell wall 

protein showed enhanced synthesis of phenylalanine ammonia lyase and peroxidase 

relative to water treated control. Charcoal rot of chickpea was significantly reduced in 

seedlings following cell wall protein treatment. The results suggested cell wall protein of 

Macrophomina had elicitor property and effectively induced resistance in chickpea (Ratul 

et al., 2006). 

Cherif et al. (2007) showed induced resistance through activation of key enzymes 

viz., peroxidase, polyphenoloxidase in phenylpropanoid and isoflavonoid pathways which 

play crucial role in the biological control and resistance of chickpea to pathogenic attacks.  



Induction of some defense related enzymes in roots of two different genotypes of 

chickpea viz., susceptible (L550) and resistant (ICCV10) to wilt disease treated with 

salicylic acid, spermine, salicylic acid + spermine and Fusarium oxysporum f. sp. ciceri 

was investigated. Higher levels of polyphenol oxidase (PPO) and phenylalanine ammonia 

lyase (PAL) were observed in roots of resistant cultivar than that of susceptible cultivar on 

treatment with elicitors and pathogen. However, no major changes were observed in 

susceptible cultivar after the treatments. The pathogen invasion was more in susceptible 

cultivar compared with resistant cultivar when observed under microscopic studies. 

Further, the invasion was restricted in roots of resistant cultivar treated with salicylic acid. 

These results suggest that induction of defense enzymes and accumulation might have 

contributed to restrict the invasion of F.oxysporum f. sp. ciceri in resistant cultivar ICCV10 

(Raju et al., 2008). 

Phenylalanine ammonia lyase activity was also significantly increased by 37% after 

96 or 120 hours of infection depending upon the cultivar in comparison to control. 

Enhanced phenylalanine ammonia lyase activity in the compatible host pathogen 

combination presumes that both participated actively in the guar resistance to root rot 

(Sharma et al., 2011). 

Changes in defense enzymes of guar leaves were compared by spray of fungal 

suspension and sorghum seed infection by Macrophomina phaseolina. Induction of 

infection in guar by either mode of infection showed a significant increase in the activity of 

phenylalanine ammonia-lyase. Result also showed increase in activities of all defense 

related proteins to varying degrees at different stages of infection. Further, extent of 

defense response in RGC 1031 was more than that of rest three cultivars, which proves this 

cultivar was more potent in fighting against the invading pathogen. Thus there was a 

possibility of gene transfer from RGC 1031 to other cultivars (Sharma et al., 2012). 

Induction of defense enzymes such as peroxidase, polyphenol oxidase, 

phenylalanine ammonia lyase content were studied by treating greengram plants with 

Macrophomina phaseolina. The accumulation was greater in treated plants as compared to 

untreated control. The induced systemic resistance was enhancing the disease resistance in 

greengram plants against leaf blight disease by the application of plant extracts and 

fungicides (Sundaramoorthy et al., 2013). 



Cluster bean genotypes 116565 (moderately resistant) and 116676 (highly 

susceptible) grown in pots were inoculated with Macrophomina phaseolina. At 65 days 

after sowing, roots of inoculated and uninoculated plants were collected and analyzed 

for biochemical parameters showed increased activity of peroxidase, polyphenol oxidase 

and phenylalanine ammonialyase in  roots of both genotypes due to pathogen inoculation. 

The activity of these enzymes was higher in moderately resistant genotype than in highly 

susceptible genotype (Joshi et al., 2003). 

Oxidative enzymes in bean seeds infected with Botrytis cinerea and M. phaseolina 

increased gradually in both tested cultivars, but the increase in enzyme concentration in 

Giza-6 cultivar was more than in Libyan cultivar. The higher increase was obtained after 10 

days from inoculation in both cultivars and continued for up to 20 days in incubation then 

these enzyme activities decreased in healthy and inoculated seeds of both cultivars. The 

increased peroxidase activity was observed in seed inoculation more than pholyphenol 

oxidase activity. The role of peroxidase in plant resistance had been attributed to its ability 

to oxidize important metabolites either of the pathogen or the host plant (Zahra, 2012). 

The increased reactive oxygen species formation was associated with induction of 

defense response in the moth bean against Macrophomina phaseolina. Changes in 

peroxidase activity were determined in control and fungal pathogen inoculated plants of 

two varieties viz. RMO-40 and FMM-96. The peroxidase activity was higher in the 

pathogen inoculated plants as compared to control. Varietal differences were also observed 

as the peroxidase activity was comparatively higher in variety FMM-96 (moderately 

resistant) as compared to RMO-40 (susceptible variety). The data indicate hydrogen 

peroxide production and a distinct role of peroxidase in the defense response of moth bean 

plants against disease (Indu and Sharma, 2011). 

2.14 Growth changes due to pathogen and stress in host 

Greenhouse studies were undertaken to determine the impact of different soil 

conditions on seedling establishment, development of root rot and productivity of desi 

(Tyson) and kabuli (Sanford) chickpea plants sown in the presence of R. solani AG-4. The 

host responded to warm soils by increasing its growth rate and the pathogen by increasing 

its virulence. The kabuli cultivar Sanford showed greater susceptibility to root rot caused 

by R. solani than the desi cultivar Tyson. Shoot biomass of infected treatments for kabuli 



was substantially lower than the controls while the biomass of Tyson was affected to a 

lesser degree (Chang et al, 2004). 

Root biomass had been identified as the most promising plant traits in chickpea for 

terminal drought tolerance. ICCV-4958, H-208, HC-5, RSG-931 and CSJ-379 had wide 

adaptability to drought prone areas at national level were assessed for various root 

characteristics under two environments i.e. irrigated and rainfed. Biomass per plant of the 

root was higher in ICCV-4958 (6.7 g) and HC- 5 (5.6 g) under rainfed conditions. Similar 

observations were recorded for root/shoot ratio, dry weights of stem, leaf and total dry 

weight per plant. The moisture stress increased biomass partitioning towards the roots 

(Zaman-Allah, 2011). 

Drought stress showed higher negative effects than M. Phaseolina on water 

relations at vegetative growth in common bean. It decreased dry weight of all vegetative 

structures. It increased charcoal rot disease in inoculated and moisture stress condition 

(Mayek et al, 2002). 

2.15 Physiological changes due to pathogen and stress in host 

Siddiqui (2004) conducted glass house studies to assess the effects of soil inoculants 

and wilt fungus, Fusarium oxysporum f. sp. ciceri on growth and transpiration of chickpea. 

Inoculation of F. oxysporum f. sp. ciceri reduced plant growth, transpiration and caused 

severe wilting. Application of soil inoculants alone or in combination increased chickpea 

growth and transpiration from 1st week onwards. However, T. harzianum alone had no 

effect on growth and transpiration of chickpea in plants without F. oxysporum f. sp. ciceri 

while Rhizobium and G. fasciculatum increased growth and transpiration from 1st week 

onwards. Use of T. harzianum alone caused a greater increase in growth and transpiration 

of F. oxysporum f. sp. ciceri inoculated plants than Rhizobium. Better growth and more 

transpiration of F. oxysporum f. sp. ciceri-inoculated plants were observed when all the 

three soil inoculants were applied together.  

Physiological responses of tea plants to Phomopsis infection in term of transpiration 

rate and stomatal conductance were studied in susceptible TRI-2024 and tolerant TRI-

QOES cultivars. Growth characteristics such as height, dry weight and plant strength of 

infected and healthy plants were also studied. The results revealed that all the growth 

characteristics and physiological responses were reduced significantly in infected plants 



than healthy plants. The reduction was more prominent in susceptible cultivar than in 

tolerant ones (Ponmurugan and Baby, 2007). 

Charcoal rot caused by Macrophomina phaseolina in soybean was a soil borne 

disease associated with hot dry weather. To separate the affects of disease from drought, 

four soybean cultivars viz., DT97-4290, DPL 4546, R01-581F and LS980358 were grown 

in microplots with soil that was either infested or non-infested with M. phaseolina. Half of 

the plots were kept well watered and the other half under water stress. Canopy temperature 

and stomatal conductance of plants was measured periodically though out the season. 

Based on infared radiation, water stressed plants and infested plants had higher canopy 

temperatures than well watered or noninfested plants. Water stressed plants and infested 

plants had lower stomatal conductance than well watered or non-infested plants. These 

results suggest that infection with M. phaseolina may limit the water uptake in the plant 

before the onset of visible symptoms (Doubledee, 2010). 
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Chapter III 

MATERIALS AND METHODS 

All the investigations were conducted under laboratory and glasshouse during 2013-

14 and 2014-15 at Legumes Pathology laboratory, International Crops Research Institute 

for the Semi-Arid tropics (ICRISAT), Patancheru, Hyderabad, India situated at 17.53o 

North latitude, 78.27o East longitude at an Altitude of 545 MSL. 

 

3.1. Survey and collection of Rhizoctonia bataticola isolates  

A roving survey was conducted to record the occurrence and distribution of dry root 

rot of chickpea in 23 districts of the five major chickpea growing states in central and 

southern parts of India viz. Andhra Pradesh, Karnataka, Maharashtra, Madhya Pradesh and 

Telangana during Rabi 2013-14 (Fig 3.1). The districts in each region were selected 

randomly. The number of fields visited per district ranged from 20 to 30 and a distance of 

15 - 20 km was allowed between sites, but the distance was greater where chickpea fields 

were far apart, resulting in a less number of sites visited in such districts. A total of 68 

fields covering 23 districts were surveyed and information on soil type, cultivars grown, 

disease incidence and agronomic practices followed were recorded. 

Four 1m2 quadrants were randomly selected in each field and infected plants were 

counted in each quadrant. Based on infected and total number of plants, disease incidence 

was calculated. Chickpea plants showing the typical dry root rot symptoms were collected 

from surveyed areas, packed in labeled paper bags and brought to the laboratory for 

isolation of the pathogen. 

 

   Per cent disease incidence =   Number of plants infected   x 100 

                                       Total number of plants 

3.2 Isolation and purification of Rhizoctonia bataticola isolates 

Plants showing typical dry root rot symptoms were washed under running tap water 

and blot dried. Infected roots were cut into pieces of 5-6mm size and were surface sterilized 

by dipping in 0.8% sodium hypochlorite for 2 min. After thorough washing in sterile 

distilled water, the pieces were then transferred by using forceps on to sterilized potato 

dextrose agar (PDA) medium in Petri dishes and incubated at 25 ±2°C to obtain mycelial 

growth. After 48h of incubation, hyphal tips of the growing mycelium were marked on the  
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underside of the Petri dish with a glass marker by viewing through a light 

microscope. The hyphal tips from margins of resulting colonies were cut with the help of 

sterilized 2mm cork borer and transferred to Petri dish containing PDA. The cultures were 

purified by single sclerotial isolation and transferred to PDA slants. On the basis of 

morphological characters of mycelium and sclerotia, the isolates were identified as 

Rhizoctonia bataticola. The pure cultures of all the 68 isolates grown on PDA slants were 

stored at 4 ±1°C for further studies.  

3.3 Variability among Rhizoctonia bataticola isolates 

3.3.1 Morphological and cultural characterization of Rhizoctonia bataticola 

All the 68 isolates of Rhizoctonia bataticola were characterized for morphological 

and cultural characteristics. The mycelial discs of 5 mm diameter were cut from the edge of 

a three days old culture and transferred aseptically to 80mm Petri dish containing 15ml 

PDA. These plates were incubated at 35°C with 12h photoperiod. Each treatment was 

replicated thrice.  

The colonies of isolates were characterized for growth rate at 72h after incubation. 

Seven days old cultures were used to record texture, colour and presence or absence of 

aerial mycelium. At the seventh day after incubation length and width of hyphal cells, 

number of sclerotia/microscopic field (10x), sclerotia size and shape were recorded by 

using Q-capture image analyzer. All the cultures were observed daily for recording the time 

taken for sclerotial initiation. 

3.3.2 Characterization of Rhizoctonia bataticola isolates for pathogenicity  

         Pathogenicity test for all the 68 isolates was performed in laboratory on a susceptible 

genotype BG 212 by paper towel technique (Nene et al., 1981). Inoculum was prepared 

from the seven days old culture of Rhizoctonia bataticola grown on 100ml potato dextrose 

broth medium (PDB). The culture of each isolate was grinded in a blender by adding 50ml 

of sterile distilled water to each fungal mat. Seven day old seedlings of BG 212 grown in 

sterilized sand were uprooted, washed under running water and were inoculated by dipping 

in the inoculum of Rhizoctonia bataticola for 2 min. Seedlings inoculated with sterile 

deionized water served as control.  Seven to ten inoculated seedlings were placed in paper 

towel with the shoot left outside, folded, moistened and placed in trays. Trays were 

transferred to incubators maintained at 35 ± 1°C with 12h photoperiod and regularly 

moistened with sterile deionized water for seven days. The inoculated seedlings were 



observed daily for symptom expression and the data on incubation period was recorded as 

and when the symptom was observed. At seven days after inoculation, the data on disease 

severity was recorded using 1 to 9 disease severity rating scale developed by Nene et al. 

(1991). Those isolates which showed 1-5 rating on disease scale were considered the least 

virulent while those with 6 rating as virulent and 7-9 rating as highly virulent.  

Table 3.1 Rating scale used to record disease severity of dry root rot in chickpea 

 

Rating Observation 

1 No infection on roots 

>1 - ≤3 Very few small lesions on roots 

>3 - ≤5 Lesions on roots clear but small, new roots free from infection 

>5 - ≤7 Lesions on roots many, new roots generally free from lesions 

>7 - 9 Roots infected and completely discoloured 

 

3.3.3 Molecular characterization of Rhizoctonia bataticola  

Molecular variability among R. bataticola isolates from chickpea was studied by 

using RAPD marker. Of the 68 isolates, 50 isolates were selected representing all the 

districts as well as the variation among them in cultural and morphological characters were 

selected for the molecular variability study.  Total genomic DNA from all the selected 

isolates was extracted by Sodium dodecyl sulphate (SDS)-lysis buffer method. 

3.3.3.1 Materials for DNA isolation and RAPD profiling 

i.  Lysis buffer: 

200mM tris base (pH 8.5)                        :    2.422g 

250mM NaCl            :    1.461g 

25mM EDTA            :    0.931g 

0.5 % Sodium dodecyl sulphate (SDS)     :    0.5g 

Sterile milli Q water           :    100ml 

     Tris base was first added to 50ml double distilled water and adjusted to pH 8.5. The 

above stated chemicals were added to 50ml double distilled water and both the solutions 

were mixed thoroughly. Finally the solution was autoclaved at 121.6ºC (15psi) for 20min.    



 ii. Ribonuclease solution  

     Ten milligrams of RNase-A powder was dissolved in 1ml of 10 mM Tris buffer (pH 

7.5). 

iii. Tris EDTA (TE) buffer: 

1M Tris base (pH 8.0)  :2.5 µl 

0.5M EDTA (pH 8.0)  : 0.5µl 

Sterile MilliQ water  : 250ml 

All the above ingredients were added and mixed. Finally, the solution was autoclaved at 

a temperature of 121.6ºC (15lb pressure) for 20min.      

iv. Phenol: chloroform: isoamyl alchohol 

     Phenol, chloroform and isoamyl alchohol were added in 25:24:1 ratio. 

v. TBE buffer  

Stock solution (50X TBE) was prepared by  dissolving 109g of Tris and 55g of boric 

acid in 800ml distilled water and then 40 ml of 0.5M EDTA (pH 8.0) was added. The 

volume was made up to one liter with distilled water and sterilized by autoclaving. This 

was stored at 4°C.  

Working solution (1X TBE) was prepared by taking 20ml of 50X TBE buffer and 

volume was made up to 1000ml by using distilled water. 

vi. Ethidium bromide (10mg/ml) 

A quantity of 100mg ethidium bromide was dissolved in 10ml of distilled water. The 

vessel containing this solution was wrapped in aluminum foil and stored at 4°C. 

vii. Agarose gel 

To prepare 1% agarose gel, one gram of agarose was added in 100ml of 1X TBE buffer 

and heated using microwave oven until agarose powder was completely dissolved. 

To prepare 1% agarose gel, three gram of agarose was added in 200 ml of 1X TBE 

buffer and heated using microwave oven until agarose powder was completely dissolved. 

viii. Orange loading dye 

0.5 M EDTA (pH 8.0)   : 10 ml 

5 M NaCl    : 1 ml 



Glycerol    : 50 ml 

Distilled water       : 39 ml 

Orange dye powder (Orange G, Gurr CertistainR) was added to the above chemicals 

till the colour became sufficiently dark. 

3.3.3.2 Fungal cultures 

 Mycelial discs of 5mm diameter were cut from the periphery of actively growing 

three day old cultures of 50 selected isolates and inoculated into conical flask (250ml) 

containing potato dextrose broth @100ml. Flasks were incubated at 25±2ºC for three days. 

After incubation, the fungal biomass was filtered through whatman no.1 filter paper and 

kept in -80ºC for further use. 

3.3.3.3 Isolation of genomic DNA 

The total genomic DNA of 50 selected isolates of R. bataticola was isolated from 

mycelia by employing the method of Raeda and Broda (1985) with minor modifications. 

For DNA extraction, 200mg of freeze dried mycelium was ground with the help of pestle 

and mortar in liquid nitrogen until fine powder of mycelium was obtained. The mycelium 

powder was transferred to 2 ml Eppendorf tube containing 1000µl of extraction lysis buffer 

and the resulting slurry was incubated at 60ºC for 20-25min in a water bath. Equal volume 

of phenol: chloroform: isoamyl alcohol (25:24:1) was added to the incubated slurry, mixed 

gently and centrifuged at 10,000 rpm at 4ºC for 20min.The supernatant was transferred to a 

new sterile Eppendorf tubes and to which 3µl RNase solution (10mg/ml) was added and 

kept for incubation for 10min at 37ºC. To this, equal volume of chloroform: isoamyl 

alcohol (24:1) was added and mixed gently. The tubes were centrifuged for 10min at 

10,000rpm in 4ºC and the same step was repeated twice. The supernatant was pipetted out 

and to this Eppendorf tube ice cold 70 per cent ethyl alcohol and 3M sodium acetate (pH 5) 

were added. This mixture was kept overnight at -80ºC followed by centrifugation at 

13000rpm for 10min at 4ºC to collect DNA in pellet form. Then the supernatant was 

pipetted out and the pellet was air dried in laminar air flow chamber. The pellet was 

resuspended in 20-100µl TE buffer (pH 8) and stored at -20ºC.  

 

 



3.3.3.4 Assessment of DNA quality and quantity  

Agarose gel of 1% was prepared and allowed to cool to 60˚C. After cooling, 5μl of 

ethidium bromide solution was added and the resulting mixture was poured into the gel 

casting tray for solidification. Before the gel solidified, an acrylic comb of desired well 

number was placed on the agarose solution to form wells for loading the samples. Each 

well was loaded with 5μl of sample aliquot having 3μl distilled water, 1μl orange dye and 

1μl of DNA sample. The DNA samples in known concentration (lambda DNA of 50ng/μl, 

100ng/μl and 200ng/μl) were also loaded on to the gel to estimate the DNA concentration 

of the experimental samples. The gel was run at 70V for 20min. After completing the 

electrophoresis run, DNA on the gel was visualized under UV light and photographed. If 

the DNA was observed as a clear and intact band, the quality was considered good, 

whereas a smear of DNA indicating poor quality was discarded and reisolated. The 

extracted DNA was quantified by using nanodrop to get desired concentration of 15-

20ng/µl.  

3.3.3.5 RAPD genotyping 

RAPD was carried out for molecular characterization of the isolates as per the 

protocol described by Williams et al. (1990) with slight modifications.  

A set of ten RAPD primers were selected to study the polymorphism among 50 

selected isolates of Rhizoctonia bataticola. The primers were synthesized by Xceleris 

genomic, Xceleris Lab Ltd., Ahmedabad, India. Genomic DNA of all the isolates were 

diluted to 15-20ng/µl and used as template for amplification of DNA. The PCR reactions 

were performed in 0.5ml PCR tubes consisting of 0.5μl of 15ng/μl DNA template, 0.5μl of 

2.5mM dNTPs, 3.0μl of 2.5mM MgCl2, 1.5μl of primer (Table 3.2), 2.5μl of 10X PCR 

reaction buffer and 5U of Taq DNA polymerase. These ingredients were mixed in 16.7μl of 

nuclease free water. The reaction mixture was mixed thoroughly by using vortex and 

briefly centrifuged to avoid sticking of chemicals to wall.  

PCR amplification was performed in a thermal cycler with the temperature profiles 

of 95oC for 5min of initial denaturation, followed by 35 cycles of denaturation at 95oC for 

60sec, with constant annealing at 39°C for 60sec and extension at 72°C for 60sec with final 

extension at 72°C for 10min. After completion of the polymerase chain reaction, the 

products were stored at 4ºC until the gel electrophoresis was done. 



Table 3.2 List of RAPD primers used for PCR amplification 

S. No. Primer Name Primer Sequence (5’-3’)  

1 OPC-06  GAACGGACTC 

2 OPG-15  ACTGGGACTC 

3 OPP-14 CCAGCCGAAC 

4 OPU-07    CCTGCTCATC  

5 OPAA-04 AGGACTGCTC 

6 OPAC-14 GTCGGTTGTC 

7 OPA-03 AGTCAGCCAC 

8 OPA-09 GGGTAACGCC 

9 OPA-11 CAATCGCCGT 

10 OPA-18 AGGTGACCGT 

 

 3.3.3.6 Separation of amplified products by agarose gel electrophoresis 

Agarose gel of 1.5% was prepared and allowed to cool to 60˚C. After cooling, 10μl 

of ethidium bromide (0.5μg/ml) was added. The solution was mixed and poured into the gel 

casting platform after inserting the comb in the trough. While pouring, sufficient care was 

taken for not allowing the air bubbles to trap in the gel. The gel was allowed to solidify and 

the comb was removed after placing the solidified gel into the electrophoresis apparatus 

containing sufficient buffer (1X TBE) so as to cover the wells completely. The 20μl of 

amplified products were carefully loaded into the sample wells after adding orange dye 

with the help of micropipette. Electrophoresis was carried out at 60V until the tracking dye 

migrated to the end of the gel. Ethidium bromide stained DNA bands were viewed under 

UV transilluminator and photographed for documentation. 

3.3.3.7 Scoring and analysis of the amplified fragments  

The amplified profiles for all the primers were compared with each other and bands 

of DNA fragment were scored as ‘l’ for presence and ‘0’ for absence, generating ‘0’ and 

‘1’ matrix. Faint bands were not scored. Binary matrices were analyzed by NTSYS-PC 

(version 2.0; Exeter Biological Software, Setauket, NY) to calculate Jaccard’s similarity 

coefficient for each pair wise comparison. Jaccard’s coefficients were clustered to generate 

dendrogram using the SAHN clustering program selecting the unweighted pair group 

method with arithmetic average (UPGMA) algorithm in NTSYS PC (Rohlf, 1998). 



3. 4 Effect of environmental factors on Rhizoctonia bataticola and dry root rot 

development 

 Effect of environmental factors such as temperature and moisture were studied 

under in vitro and in vivo conditions. Influence of pH on growth of pathogen was studied 

under in vitro. Five isolates viz. Rb 2, Rb 13, Rb 22, Rb 40 and Rb 63 with disease severity 

rating more than 7 and representing 5 different states were selected to perform the 

experiments pertaining to effect of temperature on growth and disease development.  

3.4.1 Effect of temperature on growth of Rhizoctonia bataticola 

  Effect of seven different temperatures viz. 15°C, 20°C, 25°C, 30°C, 35°C, 40°C 

and 45°C were studied on growth of Rhizoctonia bataticola on PDA. Mycelial discs of 

5mm diameter were cut from the edge of a 3 days old culture of five selected representative 

isolates grown in 25ºC were transferred to the center of 90mm Petri dish and incubated at 

different temperatures with 12h photoperiod. Each treatment was replicated three times in a 

completely randomized design. The average diameter of the fungal colony was recorded at 

48h, 72h and 96h after incubation. Plants inoculated with deionized water served as contol. 

3.4.2 Effect of temperature on disease development  

Effect of different temperatures viz. 15˚C, 20˚C, 25˚C, 30˚C, 35˚C, 40˚C and 45˚C 

on severity of dry root rot in susceptible genotype BG 212 was studied by adopting paper 

towel technique. The experiment was conducted with same five representative isolates in 

completely randomized design (CRD) with three replications. Inoculation was done 

through root dip inoculation technique which was already explained in 3.3.2. In each 

replication, 7-10 plants/ paper towel were maintained. Disease severity was recorded at 

seven days after inoculation by using 1 - 9 disease severity rating scale. Plants inoculated 

with deionized water served as control. 

3.4.3 Effect of different osmotic potentials on growth of Rhizoctonia bataticola 

Among five selected isolates of Rhizoctonia bataticola, the most virulent isolate Rb 

63 was used to study the effect of different osmotic potentials on growth of Rhizoctonia 

bataticola at different temperatures. The different osmotic potentials viz. -0.5MPa, -

1.0MPa, -1.5MPa, -2.0MPa and -2.5MPa were obtained with KCl, NaCl and dextrose 

amended in PDA medium. These levels of osmotic potentials were obtained by using 

Wescor Psypro instrument. Unamended PDA medium served as control. Mycelia discs of 

5mm diameter of Rb 63 were cut from 3 days old culture was transferred to Petri dishes 



(80mm) containing PDA at different osmotic potential. Each treatment was replicated 

thrice. These Petri plates were incubated at different temperatures viz. 20°C, 25°C, 30°C, 

35°C and 40°C. The average diameter of the fungal colony was recorded at 24h, 48h and 

72h after incubation.  

3.4.4 Effect of soil moisture on disease severity 

i. Development of sick soil 

The five representative isolates viz. Rb 2, Rb 13, Rb 22, Rb 40 and Rb 63 were used 

for the study. Sand maize medium was prepared by mixing 90g sand and 10g maize 

granules in 250ml flask to which 10ml sterile distilled water was added. These flasks were 

autoclaved at 15lb pressure for 20min. Each flask was inoculated with a bit of actively 

growing fungal culture and incubated at 25ºC for 15 days. This fungus in sand maize 

medium was mixed with autoclaved black and red soils separately @50g/kg which were 

used to fill pots having 2kg capacity. The soil in pots was incubated for 4 days to allow the 

pathogen to multiply in soil. After 4 days, fifteen seeds of highly susceptible genotype BG 

212 were sown in each pot at 2-3 cm depth and watered regularly. Healthy plants were 

removed after 30 days and diseased plants were chopped and incorporated into the soil. 

Again sowing was taken up in the same soil until >90% dry root rot incidence was 

observed. These sick pots were used for further studies. 

ii. Determination of soil moisture 

The soil moisture was determined using the gravimetric method on oven dry basis. 

In this complete saturation of soil sample with water was done and weight was recorded. 

This saturated soil was placed in hot air oven for drying at 100-110˚C until the weight 

remains constant. Samples were cooled slowly to room temperature and weighed again. 

The difference in weight was equivalent to amount of moisture in the soil. The available 

soil moisture in the soil was calculated by the following formula.  

 Soil moisture per cent =      (Saturated soil weight -oven dry soil weight) x 100  

                    Oven dry soil weight  

Different soil moisture levels viz. 40%, 50%, 60%, 70%, 80%, 90% and 100% were 

maintained by regular weighing and replacing the moisture deficit in each pot by watering 

soil in pots. Sterile deionized water was used for maintaining the soil moisture in each pot. 

Soil moisture effect on the severity of dry root rot in sick soil of five highly virulent 

isolates viz. Rb 2, Rb 13, Rb 22, Rb 40 and Rb 63 representing 5 different states was 



studied. Uninoculated soil maintained at same moisture levels served as control. The 

experiment was conducted at an optimum temperature of 35˚C. Each treatment was 

replicated thrice. Five surface sterilized BG 212 seeds were sown in each sick pot. At 45 

days after sowing, the data on disease severity was recorded separately from the pots filled 

with black and red soils maintained at different soil moisture levels. 

 

3.4.5 Effect of different pH levels on radial growth of R. bataticola 

The five selected isolates viz. Rb 2, Rb 13, Rb 22, Rb 40 and Rb 63 were grown on 

the PDA adjusted to different pH levels viz., 3, 4, 5, 6, 7, 8, 9, 10, 11. The pH levels were 

obtained by adding 0.1N NaOH or 0.1N HCl to PDA before autoclaving and poured into 

90mm Petri plates. The 5mm mycelial discs from seven day old culture of R. bataticola 

were transferred aseptically on to PDA in Petri plates. Three replications were maintained 

for each treatment. The average diameter of the fungal colony was recorded at 24h, 48h and 

72h after incubation.  

3.5 Study of biochemical changes associated with dry root development in chickpea 

Three genotypes viz., one highly susceptible genotype BG 212 and two moderately 

resistant genotypes ICCV 5530 and ICCV 8305 were selected for determining the 

biochemical changes with respect to dry root rot disease development. Pots filled with sick 

soil of isolate Rb 63 were used, maintained at two different soil moisture conditions viz., 

60% and 100% by gravimetric method. Seedlings were allowed to grow under glass house 

conditions up to 45 DAS. Root samples of seedlings were collected at three time point’s 

viz., 15, 30 and 45 DAS. Each treatment was replicated thrice with suitable controls. 

 

3.5.1 Extraction of plant tissues  

To determine phenols, total sugar, reducing and non-reducing sugars, the extraction 

of plant tissues was done in alcohol. For this purpose, root tissue of 1000 mg weight was 

taken and made into small pieces and plunged in boiling alcohol for 15 min. The pieces of 

the tissue were ground thoroughly in a mortar and pestle with 5 ml of 80% ethyl alcohol. 

The extract was passed through muslin cloth. The above step was repeated once again with 

the filtrate. The homogenate obtained after filtration was centrifuged at 10000 rpm for 15 

min. The supernatant was collected and stored in a refrigerator at 4°C.  

 



3.5.2 Determination of phenol  

        Phenol content in the roots of three genotypes of chickpea was determined with folin 

ciocalteu reagent method of Bray and Thorpe (1954).  

Reagents  

i.   Ethanol 80%  

     To prepare 80% ethanol, 80 ml of absolute ethanol was added with 20 ml of distilled 

water. 

ii.  Folin-ciocalteu reagent  

     One millilitre of 2 N folin-ciocalteu reagent was added to 1 ml of sterile distilled water. 

iii. 20% Na2 CO3  

      Na2CO3 of 20 g was added with 100 ml of sterile distilled water. 

iv.  Catechol 

      100 mg of catechol was dissolved in 100 ml of water. This acted as standard solutions. 

Working standard was prepared from standard solution by diluting to get required 

concentration by serial dilution. 

Procedure  

One millilitre of each alcohol extract was taken in a test tube to which 1 ml of 1 N 

folin-ciocalteu reagent was added. After three minutes, 2 ml of sodium carbonate solution 

(20%) was added. The tubes were shaken well and heated in a hot water bath for exactly 

one minute and then cooled under running tap water. The blue colour complex absorbance 

was read at 650 nm in a spectrophotometer. The amount of phenols present in sample was 

calculated from a standard curve prepared from catechol. A standard curve was prepared to 

find out the concentration of phenols in the test sample and expressed as mg catechol 

100mg-1 root sample. 

3.5.3 Determination of total soluble sugars  

Reagents 

i.   Anthrone solution: It was prepared by mixing 0.4 g of anthrone with 200 ml ice cold 

95% H2SO4 in 250 ml volumetric flask. Required anthrone solution was prepared 

freshly before use.  

ii.  Glucose solution: 100 mg of glucose was dissolved in 100 ml of water. This acted as 

standard solutions. Working standard was prepared from standard solution by diluting 

to get required concentration by serial dilution. 



iii. Blank solution: To prepare blank solution, 1 ml of distilled water was added to 4 ml of 

anthrone solution in a test tube.  

Procedure 

Total sugar content was estimated by anthrone method (Hedge and Hofreiter, 1962). 

Ethanol extract of 200 µl taken in test tube was placed in a water bath at 80°C to evaporate 

alcohol and then 1 ml of water was added to it to dissolve the sugars present in extract. To 

this, 4 ml of freshly prepared anthrone reagent was added and heated for 8 min in a boiling 

water bath and cooled rapidly. Then the reaction mixture appeared green in colour. The 

absorbance of the green coloured solution was measured at 630 nm using 

spectrophotometer. D-glucose was used as standard. The total sugar content was expressed 

in terms of mg 100mg-1 of fresh weight. 

3.5.4 Determination of reducing sugar 

Reagents 

i. Dinitro salicylic acid reagent (DNS Reagent) 

One gram of dinitro salicylic acid, 200 mg of crystalline phenol and 50 mg sodium 

sulphite were dissolved in 100 ml 1% NaOH contained in a 250 ml conical flask and stored 

at 4˚C. Since sodium sulphite deteriorates the reagent, it was added just before use. 

ii. 40% Rochelle salt solution (potassium sodium tartrate) 

 To prepare 40% Rochelle salt solution, 40 g potassium sodium tartarate was added 

to 100 ml of water. 

Procedure 

Ethanol extract of 0.5ml was taken in test tube and the volume was made up to 3 ml 

with water in all the tubes. To this, 3 ml of DNS reagent was added and heated in a boiling 

water bath for 5 min. When the contents of the tubes were still warm, 1 ml of 40% Rochelle 

salt solution was added. The intensity of dark red colour was measured at 510 nm. D-

glucose was used as standard. The reducing sugar content was expressed in mg 100 mg-1 

fresh weight (Miller, 1972). 

3.5.5 Determination of non-reducing sugars 

The quantity of non-reducing sugars was calculated by deducting the reducing sugar 

content from that of the total soluble sugars. 

 

 



3.5.6 Determination of peroxidase activity 

Using chilled pestle and mortar, 1 g of root sample was homogenized in 2 ml of 

0.1M sodium phosphate buffer (pH 6.8) to which a pinch of polyvinyl pyrollidone (PVP) 

was added. The homogenate was centrifuged at 12000 rpm for 20 min at 4°C and the 

supernatant was used as the enzyme source for the assay of peroxidase activity.  

Peroxidase activity was assayed using a slight modification of the method of Hartee 

(1955). The reaction mixture consisting of 1.5 ml of 0.05 M pyrogallol, 0.5 ml of enzyme 

extract and 0.5 ml of 1% H2O2 was incubated at room temperature. At the start of enzyme 

reaction, the absorbance of mixture was set to zero at 420 nm in the spectrophotometer and 

the change in the absorbance was recorded at 30 s intervals for 2 min. Boiled enzyme 

preparation served as blank. The peroxidase activity was expressed as ΔAbs420nm-1min-1g-1 

on fresh weight basis (Hammerchmidt, 1982). 

3.5.7 Determination of polyphenol oxidase (PPO) 

 Using chilled pestle and mortar, one gram of root sample was homogenized in 2 ml 

of 0.1M sodium phosphate buffer (pH 6.5). The homogenate was centrifuged at 12000 rpm 

for 20 min at 4°C and the supernatant was used as the enzyme source for the assay. 

Polyphenol oxidase activity was assayed using the modified method of Mayer et al. (1965). 

The standard reaction mixture was prepared by adding 1.5 ml 0.1M sodium phosphate 

buffer (pH 6.5) and 200 µl of 0.01M catechol. To this reaction mixture finally enzyme 

extract of 200 µl was added. The reaction mixture was incubated at room temperature and 

the absorbance was set to zero at 495 nm.  The change in the absorbance was recorded at 

30 s intervals for 2 min and the polyphenol oxidase activity was expressed as ΔAbs495nm-

1min-1g-1 on fresh weight basis. 

3.5.8 Assay of phenylalanine ammonia lyase (PAL)  

One gram of root sample was homogenized in 5 ml of 25mM Tris HCl buffer (pH 

8.8) using chilled pestle and mortar. The homogenate was centrifuged at 10000 rpm for 30 

min at 4ºC. The supernatant was used for the assay of phenylalanine ammonia lyase 

activity.  



Phenylalanine ammonia lyase activity was determined using the modified method 

of the conversion of L-phenylalanine to cinnamic acid at 290 nm (Dickerson et al., 1984). 

The reaction mixture contained 0.4 ml of 25mM Tris HCl buffer (pH 8.8), 0.5 ml of 50 mM 

L-phenylalanine and the enzyme extract of 0.1 ml. The blank reaction was taken with 0.4 

ml of 25mM Tris HCl buffer (pH 8.8), 0.5 ml of 50 mM L-phenylalanine and 0.1 ml of 

heated enzyme extract. The reaction mixture and blank were incubated at 40°C for 60 min 

and the reaction was stopped by adding 60 µl of 5N HCl. The absorbance was read at 290 

nm in the spectrophotometer. Phenyl alanine ammonia lyase activity was expressed in 

µmoles of cinnamic acid h-1 g-1 on fresh weight basis. 

3.6. Physiological changes associated with dry root rot development in chickpea 

Three genotypes viz., one highly susceptible genotype BG 212 and two moderately 

resistant genotypes ICCV 5530 and ICCV 8305 were selected for determining the 

physiological changes with respect to dry root rot development in chickpea. Two different 

soil moisture conditions viz., 60% and 100% were maintained by gravimetric method. Sick 

soil of Rb 63 isolate was used for this experiment. These soils were covered with plastic 

beads to avoid evaporation losses. Sampling was done at two time points viz., 15 and 45 

DAS. Each treatment was replicated thrice with suitable controls. 

3.6.1 Leaf transpiration 

Pots containing sick soil were maintained at 60 and 100% soil moisture levels by 

watering with sterile deionized water at one hour before conducting the experiment and the 

soil was covered with plastic beads to avoid evaporation. Pots were weighed with a 0.1 g 

precision weighing balance at 08:15 h and 16:15 h. Plant transpiration was estimated from 

the loss in weight of each pot per eight hours. Leaf transpiration was estimated at 15 and 45 

days after sowing (DAS) expressed in g of H2O 8h-1.  

The plants were removed from the pots carefully without damaging roots at the end 

of transpiration measurement after 16:15 h. The plant parts were cut separately into shoot, 

root and leaves. These were kept in labeled paper bags and kept in 70ºC hot air oven for 48 

h. Dry weights of individual parts were recorded separately.  

3.6.2 Canopy temperature 

Canopy temperatures of the genotypes were measured from thermal images 

obtained with an infrared flex Cam S (Infrared Solutions, Plymouth, MN, USA) with a 

sensitivity of 0.09ºC. The images were taken between 12:00PM and 2:00PM of the day at 



15 and 45 days after sowing (DAS). Smart view 2.1.0.10 software (fluke thermography 

everett, WA, USA) was used to estimate the canopy temperatures.  

3.6.3 Stomatal conductance 

Variation in stomatal conductance in response to different moisture levels was 

determined at mid day from the upper leaf that was well exposed to sunlight. It was 

measured by leaf porometer (Decagon devices Inc., Pullman, WA, 99163, USA) at 15 and 

45 DAS and expressed in mol m−2 s−1. 

3.7 Statistical analysis 

 Statistical analysis of all the laboratory experiments was carried out using 

Completely Randomized Design (CRD). The data was statistically analyzed (Gomez and 

Gomez, 1984) using the GENSTAT statistical package (version 13.0., Rothamsted 

Experiment Station, Herpenden Herts AL52JQ, UK). The data was subjected to angular 

transformation where ever necessary (data which had per cent values). 

 Data was subjected to analysis of variance (ANOVA) at significant levels (P<0.05 

and P < 0.01) and treatment means were compared by critical difference (CD). 
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Chapter IV 

RESULTS AND DISCUSSION 

The present investigations on various aspects of dry root rot of chickpea caused by 

Rhizoctonia bataticola (Taub.) Butler [Pycnidial stage: Macrophomina phaseolina (Tassi) 

Goid] included survey on disease incidence, collection of pathogen isolates, diversity 

among isolates with respect to cultural, morphological, pathological and molecular 

characteristics, influence of environmental factors on disease development and biochemical 

and physiological changes associated with the disease development. The results obtained 

on these aspects are presented hereunder and discussed critically based on the previous 

information available on these aspects. 

4.1 Occurrence and distribution of dry root rot of chickpea in major crop growing 

regions of central and southern India 

A roving survey was conducted during January, 2014 in different chickpea growing 

areas of central (Madhya Pradesh and Maharashtra) and southern (Andhra Pradesh, 

Telangana and Karnataka) India to assess the status of dry root rot incidence and to collect 

diseased samples infected by Rhizoctonia bataticola under field condition. The data 

pertaining to survey is given in Table 4.1. 

It is evident from the table that the mean maximum dry root rot incidence was 

observed in Telangana (18.28%) followed by Madhya Pradesh (18.10%) which however, 

were at par with each other.  This was followed by Karnataka (7.85%), Andhra Pradesh 

(5.40%) and the least in Maharashtra (5.38%). There was no significant difference in 

disease incidence between Andhra Pradesh and Maharashtra. Out of 68 locations surveyed, 

the crop was cultivated in vertisols in 66 locations while in two locations viz., Gandemala 

and Kurnool in Kurnool district of Andhra Pradesh, it was cultivated in alfisols. The 

highest disease incidence of 31.34% and 8.00% was recorded in Daroor village of 

Rangareddy district and Gandemala village of Kurnool district among vertisol and alfisol 

type locations, respectively.  

In Madhya Pradesh, significantly highest disease incidence was noticed in Hardua 

village (28.0%) of Jabalpur district and the least in Bandol village (3.33%) of Seoni district 



Table  4.1.  Survey on occurrence and distribution of dry root rot of chickpea in central and southern 

India 

 

S. 

No

. 
District Location Previous crop 

Cultiva

r 

Seed 

treatmen

t 

Irrigatio

n facility 

Percent 

disease 

incidence* 

Madhya Pradesh 

1 

Jabalpur 

Tovaria Sorghum JG 11 No No 10.00(18.06) 

2 Hardua Maize JG 11 No No 28.00 (31.91) 

3 Bidagad Rice JG 62 Yes Yes 7.33 (15.67) 

4 Narsingapur Barnagh Rice JG 11 No Yes 22.67 (28.35) 

5 Seoni Bandol Sorghum JG 11 No No 3.33 (10.14) 

6 Chhindwara Chaurai Maize KAK 2 No No 24.00 (29.31) 

7 
Hoshangaba

d 
Pipariya Rice JG 11 No No 24.00 (29.31) 

8 Damoh Damoh Sorghum JG 62 No No 25.33 (30.16) 

 
Mean 18.10(21.16) 

Karnataka 

9 

Gulbarga 

Suntnoor Greengram Desi No No 6.67 (14.92) 

10 Sarsamba Sorghum Desi Yes Yes 2.67 (9.26) 

11 Sikhapur Maize Desi Yes No 3.33 (10.14) 

12 
Raichur 

Devadurga Maize Desi No No 10.67 (19.04) 

13 Raichur Maize Desi No No 15.33 (23.04) 

Mean 7.85(16.26) 

Maharashtra 

14 Osmanabad Edsi Rice Desi No No 2.67 (9.26) 

15 Beed Nagajhari Soyabean Desi No No 2.67 (9.26) 

16 Jalna Gauretaluka Sorghum Desi No No 2.67 (9.26) 

17 

Buldhana 

Sindkhedgav Kharif fallow Desi No No 2.00 (6.55) 

18 Kaparkeda Soybean JG11 No No 4.00 (11.28) 

19 Mekar Soybean Desi No No 23.33 (28.87) 

20 Yavatmal Vuttarana Soybean Desi Yes No 2.67 (9.26) 

21 Wasim Dongargiri Soybean Desi No No 2.00 (6.55) 

22 

Akola 

Rajapur Soybean 
Improved 

desi 
No Yes 1.33 (5.42) 

23 Pailpada Soybean 
Improved 

desi 
No No 3.33 (10.40) 

24 Vurum Soybean Desi No No 8.00 (16.34) 

25 Maulikhed Soybean Desi No No 11.33 (19.55) 

26 Yavatmal Lacina Soybean Wardha No Yes 2.00 (6.55) 

27 Amaravathi Velora Soybean Desi No No 5.33 (13.163) 

Mean 5.38(13.38) 

Andhra Pradesh 

28 

Anantpur 

Egnoor Maize Desi Yes Yes 3.33 (10.39) 

29 
Chimalavagupal

li 
Sorghum JG11 Yes No 2.67 (7.43) 

30 Pedakallu Sorghum JG11 No No 1.33 (5.41) 

31 Chinakallu Rice JG11 No No 1.33 (5.42) 

32 

Guntur 

Lam Green gram JG 11 No No 6.67 (14.79) 

33 Chilakaluripeta Cotton JG 11 No Yes 10.00 (18.38) 

34 Pedanandipadu Black gram JG 11 No No 2.67 (9.27) 



.  

 

 

 

 

35 Kurnool Nandyal Kharif fallow L550 No No 27.33 (31.49) 

36 

Kurnool 

Ayyaluru Rice MNK 1 No Yes 1.33 (3.84) 

37 Alur Kharif fallow JG11 No No 4.00 (11.53) 

38 Oruvagallu kharif fallow Desi Yes Yes 0.67 (2.71) 

39 Chelkuru Maize Desi No yes 2.00 (6.55) 

40 Rudipadu kharif fallow JG11 No No 4.67 (12.41) 

41 Devanoor Pigeon pea Desi No No 2.67 (7.43) 

42 Medthur Sorghum Desi No No 22.00 (27.95) 

43 Gandemala Maize JG11 No No 8.00 (16.07) 

44 Gospadu Maize JG11 Yes Yes 1.33 (5.42) 

45 Kollur Cotton JG11 Yes Yes 2.00 (6.55) 

46 Kurnool Maize JG11 No No 2.67 (9.26) 

47 Kolimigundla Maize JG 11 Yes No 1.33 (5.41) 

48 Chelpur kharif fallow Desi No No 2.00 (8.12) 

49 

Prakasam 

Naguluppalapad

u 
kharif fallow JG 11 No No 9.33 (17.63) 

50 Paduchuru Kharif fallow KAK 2 No No 8.00 (16.07) 

51 Marturu kharif fallow JG 11 No No 3.33 (10.14) 

 
Mean 5.40(13.48) 

 
Telangana State 

52 

Medak 

Patancheru Sorghum JG 62 No Yes 10.00 (18.37) 

53 Patancheru kharif fallow JG 62 No Yes 29.33 (32.77) 

54 Patancheru Sorghum Desi No No 8.67 (16.64) 

55 Patancheru Sorghum JG 62 No No 27.33 (31.45) 

56 Patancheru Pearl millet JG 62 No Yes 25.33 (30.16) 

57 Patancheru kharif fallow BG 212 No Yes 24.00 (29.24) 

58 Patancheru Sorghum JG 11 No No 27.33 (31.45) 

59 Patancheru Sorghum JG 11 No No 19.33 (26.03) 

60 Patancheru Pigeonpea ICCV2 No No 14.67 (22.36) 

61 Patancheru Sorghum JG 11 No No 30.67 (33.17) 

62 Patancheru Pigeonpea 
JAKI 

9218 
No Yes 25.33 (30.16) 

63 Patancheru Sorghum JG 11 No No 18.67 (25.06) 

64 Shankerpally Sorghum Desi No No 9.33 (17.62) 

65 Rangareddy Daroor Ajowan Desi No No 31.33 (33.98) 

66 
Mahbubnaga

r 

Naraynapuram Sorghum Desi No No 3.33 (10.14) 

67 Vundavelli Maize Desi No Yes 1.33 (5.42) 

68 Rangapur Sorghum Desi No No 5.33 (13.29) 

Mean 18.28(25.29) 

CD 5.73(6.08) 

Mean CD 1.11(1.08) 



In Karnataka, maximum incidence was recorded in Raichur (15.33%) and the least 

incidence 2.67% in Sarsamba village of Gulbarga district. In Maharashtra, maximum 

incidence was in Mekar (23.33%) of Buldhana district and least in Rajapur (1.33%) of 

Akola district. In Andhra Pradesh, highest was found in Nandyal (RARS) with 27.33% 

incidence and least in Oruvagallu (0.67%) of Kurnool district. In Telangana state, the 

highest incidence (31.3%) was noticed in Daroor village of Rangareddy district and the 

least (1.34%) in Vundavelli village of Mahboobnagar district.  

The per cent disease incidence recorded in each variety varied depending on the 

place of cultivation. Desi variety was cultivated in 26 locations had disease incidence 

ranging from 0.67% in Oruvagallu of Kurnool district to 31.33% in Daroor of Rangareddy 

district. In Karnataka, chickpea was occupied by desi variety in all the five locations 

surveyed where disease incidence varied from 2.67% to 15.33% while in Maharashtra it 

ranged from 2.00% (Sindkhedgav and Dongagiri) to 23.33% (Mekar). In Andhra Pradesh 

disease incidence in desi cultivar ranged from 0.67% (Oruvagallu) to 22.00% (Medthur) 

while in Telangana it was from 1.33% (Vundavalli) to 31.33% (Daroor) where the 

difference in disease incidence was significant.  

JG 11 cultivated in 25 locations recorded the disease incidence ranging from 1.33% 

in Chinakallu of Anantapur to 30.67% in Patancheru of Medak district. Disease incidence 

varied from 3.33% (Bandol) to 28.00% (Hardua) in Madhya Pradesh and 1.33% (Gospadu, 

Kolimigundla, Chinakallu and Pedakallu) to 10.00% (Chilakaluripeta) in Andhra Pradesh. 

In Telangana, the disease incidence varied from 18.7 to 30.7 in different fields of 

Patancheru where JG 11 was cultivated and the difference in maximum and minimum 

disease incidence was significant. In Kaparkeda village of Maharashtra, the per cent disease 

incidence in JG 11 was 4.00. 

JG 62 cultivated in six locations recorded disease incidence ranging from 7.33 

(Bidagad of Jabalpur district) to 29.33% (Patancheru of Medak district). In Madhya 

Pradesh, the disease incidence varied from 7.33 (Bidagad) to 25.33 (Damoh) while in 

Telangana, it varied from 10.00 to 29.33% in different fields of Patancheru in JG 62 

cultivated locations. The difference between maximum and minimum disease incidence 

was significant.  



When compared to all the cultivars, improved desi had recorded minimum disease 

incidence which ranged from 1.33 (Rajapur) to 3.33% (Pailpada) in Akola district. KAK 2 

which was cultivated in two locations had disease incidence varying from 8.00% in 

Paduchuru of Prakasam district to 24.00% in Chaurai of Chhindwara district. The cultivars 

BG 212, JAKI 9218 and ICCV 2 cultivated in different fields of Patancheru had percent 

disease incidence of 24.00, 25.33 and 14.67, respectively. Cultivars L 550, MNK 1 and 

Wardha cultivated in Nandyal, Ayyaluru and Lacina villages recorded percent disease 

incidence of 27.33, 1.33 and 2.00, respectively.  

There was variation in disease incidence due to variation in location and type of the 

cropping system followed with chickpea. Sorghum - chickpea cropping system was 

observed in 18 locations where the percent disease incidence ranged from 1.33 Pedakallu 

village of Anatapur to 30.67 in Patancheru of Medak district. In sorghum - chickpea 

cropping system followed in Madhya Pradesh, Andhra Pradesh and Telangana, the percent 

disease incidence ranged from 3.33 (Bandol) to 25.33 (Tovaria), 1.33 (Pedakallu) to 22.00 

(Medthur) and 3.33 (Narayanapuram) to 30.67 (Patancheru). The difference between 

maximum and minimum disease incidence was significant. The percent disease incidence 

in sorghum - chickpea cropping system was 2.67 in both Sarsamba and Gauretaluka of 

Karnataka and Maharashtra, respectively.  

Maize - chickpea cropping system was observed in 12 locations where the percent 

disease incidence ranged from 1.33 in Vundavelli of Mahboobnagar to 28.00 in Hardua of 

Jabalpur district. In maize - chickpea cropping system, percent disease incidence varied 

from 24.00 (Chaurai) to 28.00 (Hardua) in Madhya Pradesh where the difference in disease 

incidence was at par while in Karnataka and Andhra Pradesh, it varied from 3.33 

(Sikhapur) to 15.33 (Devadurga) and 1.33 (Kolimigundla and Gospadu) to 8.00 

(Gandemla), respectively where the difference in disease incidence was significant. 

Kharif fallow - chickpea cropping system was observed in 11 locations where the 

percent disease incidence was between 3.33 in Marturu village of Prakasam and 29.33 in 

Patancheru of Medak district. In kharif fallow - chickpea cropping system, the percent 

disease incidence varied from 0.67 (Oruvagal) to 27.33 (Nandyal) in Andhra Pradesh and 

the difference in disease incidence was significant while in Telangana it was 24.00 to 29.33 

in Patancheru fields where the difference in disease incidence was non significant due to 



monocropping and continuous build up of pathogen inoculum levels. In this system, the 

percent disease incidence was 2.00 in Sindkhedgav of Maharashtra. 

Soybean - chickpea cropping system was observed only in Maharashtra where the 

percent disease incidence varied from 1.33 (Rajapur) to 23.33 (Mekar) and the difference in 

disease incidence was significant. Rice - chickpea cropping system was observed in six 

locations where the percent disease incidence varied from 1.33 (Chinakallu and Ayyaluru 

of Anantpur and Kurnool district respectively) to 24.00 (Pipariya) and the difference in 

disease incidence was significant. In Madhya Pradesh where rice - chickpea cropping 

system was followed, the percent disease incidence varied from 7.33 (Bidagad) to 24.00 

(Pipariya) and the difference in disease incidence was significant while in Maharashtra, it 

was 2.67 in Edsi.  

The significant difference in percent disease incidence of pigeonpea - chickpea 

cropping system was observed, which varied from 2.67 in Devanoor of Andhra Pradesh to 

25.33 in Patancheru of Telangana. Disease incidence of 6.67% was observed in Suntnoor 

and Lam of Karnataka and Andhra Pradesh respectively in greengram - chickpea cropping 

system where the difference in disease incidence was at par with other. In cotton - chickpea 

cropping system, the percent disease incidence varied from 2.00 (Kollur) to 10.00 

(Chilakaluripeta) and the difference in disease incidence was significant. In chickpea 

followed by black gram, ajowan and pearlmillet - cropping systems, percent disease 

incidence was 2.67 (Pedanandipadu), 31.33 (Daroor) and 25.33 (Patancheru). 

The per cent disease incidence recorded in different locations varied with respect to 

the cultivar and previous crop. Another important agronomic practise which generally play 

an important role in the management of soil borne pathogens during the initial stages of the 

crop growth is seed treatment.  Out of 68 locations, seed treatment was practised in ten 

locations while maximum farmers from 58 locations did not practice seed treatment. The 

percent disease incidence varied from 0.67 (Oruvagal) to 7.33 (Bidagad) in locations where 

seed treatment was practised while it was from 1.33 to 31.33 (Daroor) in locations where 

no seed treatment was practised. Comparatively, in locations where seed treatment was 

practised had less disease incidence compared to locations where no seed treatment was 

practised. Disease incidence was 7.33% in Bidagad where seed treatment was done while it 

ranged from 3.33 to 28.00 in locations where no seed treatment was practised in Madhya P 



Fig 4.1. Dry root rot symptoms on chickpea under field conditions observed                                                                                                                     

during survey 
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radesh. In Karnataka, percent disease incidence was from 2.67 (Sarsamba) to 3.33 

(Sikhapur) in the fields where seed treatment was done but it was from 6.67 (Suntnoor) to 

15.33 (Devadurga) where no seed treatment was done. In Maharashtra, percent disease 

incidence of 2.67 was recorded from Vuttarana where seed treatment was done but it was 

1.33 to 23.33 in locations where no seed treatment was practised. Disease incidence in 

Andhra Pradesh was from 0.67 to 3.33 in the fields where seed treatment was done but it 

was 1.33 to 27.33 in fields where no seed treatment was done. The difference in disease 

incidence was significant. None of the farmers in surveyed locations of Telangana had 

practised seed treatment. 

Soil moisture plays an important role in the development of the crop. It also plays 

an important role in the survival and spread of the disease like dry root rot caused by R. 

bataticola which favours low moisture conditions. Knowledge on the irrigation facility and 

soil moisture status helps in determining the percentage of disease incidence. During 

survey it was observed that irrigation was given in only 18 locations and in rest of the 

locations, crop was cultivated under residual soil moisture or rainfall during crop growth. 

The percent disease incidence in the irrigated locations varied from 0.67 (Oruvagal) to 

29.33 (Patancheru) where as in the locations where no irrigation facility was available 

there, it varied from 1.33 (Chinakallu, Pedakallu and Kolimigundla) to 31.33 (Daroor). 

Comparatively the disease incidence was less in irrigated fields over unirrigated ones. 

Disease incidence in Madhya Pradesh, Maharashtra, Andhra Pradesh, Telangana and 

Karnataka ranged from 7.33 (Bidagad) to 22.67 (Barnagh), 1.33 (Rajapur) to 2.00 (Lacina), 

0.67 (Oruvagallu) to10.00 (Chilakaluripeta), 1.33 (Vundavelli) to 29.33 (Patancheru) and 

2.67 (Sarsamba) in locations where irrigation was given while it was 3.33 (Bandol) to 

28.00 (Hardua), 2.00 (Sindkhedgav and Dongagiri) to 23.33 (Mekar), 1.33 (Pedakallu, 

Chinakallu, Kolimigundla) to 27.33 (Nandyal), 3.33 (Narayanapuram) to 31.33 (Daroor) 

and 3.33 (Sikhapur) to 15.33 (Raichur) in locations where crop was cultivated under 

residual soil moisture respectively.  

Similar results were also observed by Bajpal (1999) as hot and dry weather in 

vertisols favoured more disease development compared to alfisols. Decline in the viability 

and germination of M. phaseolina in sandy soils could be attributed to nutrient deprivation. 

In poor soil nutrient conditions, secondary microsclerotia are more likely to be smaller than 

primary microsclerotia and consequently a lower energy reserve thus reducing propagule 



viability in the long term (Gangopadhyay et al., 1982). Gurha and Trivedi (2008) observed 

dry root rot incidence in Gulberga and Raichur up to 60%.  Ghosh et al. (2013) also 

observed disease incidence ranged from 8.9 to 10.3% irrespective of cultivar and locations. 

Local cultivars were most frequently grown by the farmers. Seed treatment was practised 

by 63% of the farmers where the disease incidence was low in their fields compared to 

fields in which no seed treatment was done. After harvesting, roots loaded with 

microsclerotia start decaying and release the microsclerotia into the soil (Olaya et al., 

1996). Infected crops residues are one of the most important sources of inoculum and 

inoculum dispersal of M. phaseolina in the field and provide a mechanism of survival for 

long periods in the soil. Degradation of plant debris and relative longevity of M. phaseolina 

depends upon soil moisture and temperature (Baird et al., 2003). Macrophomina 

phaseolina populations in soybean root debris or residue in the soil tend to increase over 

time. Root debris at or near the soil surface increases the M. phaseolina population more 

rapidly than buried residue, but surface residues are more directly exposed to 

environmental variations. Fluctuations in the population are inversely related to soil depth 

(Short et al., 1978). Irrigation throughout the soybean growth season reduced the 

population and colonization of M. phaseolina on roots compared with unirrigated cropping 

system, even though the propagules remain during the season in both systems and no 

symptoms in soybean plants were found in the irrigated field (Kendig et al., 2000). 

Microsclerotia of M. phaseolina can be degraded and eliminated from the surface to 20 cm 

depth under paddy rice soil conditions. Such flooded conditions reduced the number of 

viable microsclerotia by 83% in two years (Zaki and Ghaffar, 1988). Substances found in 

flooded soils such as alcohols, volatiles and increased levels of CO2 may had a detrimental 

effect on the inoculum (Wyllie et al., 1984).  

4.2 Symptomatology and collection of pathogenic isolates of Rhizoctonia bataticola 

During survey, due to diversified weather conditions and variation in sowing dates 

in different states, different crop growth stages i.e. from seedling (20 days old) to podding 

stage were observed. The crop was sown early in Karnataka and Andhra Pradesh during 

first fortnight of October while in Telangana in the second fort night of October. In 

Maharashtra sowings were done in the month of November whereas in Madhya Pradesh in 

the second fortnight of November to December. In Madhya Pradesh, seedlings infected 

with dry root rot appeared stunted without any lateral roots when uprooted and the tap root 



was black in colour. In Maharashtra and Telangana, crop was in the vegetative to flowering 

stage. Symptoms on affected plants were observed as bronzing of the leaves on one or more 

of the lower branches, leaves became yellow to brown in plants showing advanced disease 

symptoms. In such plants, the affected branches and leaf stalks were stiff, turned upwards 

and the leaflets stand more or less vertically and were shed prematurely. The terminal part 

of the tap root and lateral roots became brown to black and shriveled. The tap root without 

any lateral roots was also observed. In Karnataka and Andhra Pradesh, the crop was in 

podding and harvesting stage. The disease was scattered in the field as dried plants. It was 

also observed that, the susceptibility of plant to this disease increased with age. Sometimes 

the apical leaves on the affected plants appeared chlorotic, when the rest of the plant was 

dry. The pods on affected plants were poorly developed and the number of pods per plant 

was less. Plants showing different symptoms at different stages of the crop growth (Fig 4.1) 

were collected and kept in paper bags for conducting further studies. 

Similar symptoms were observed by Dastur (1935) as yellowing of leaves which 

later converted to brown in colour. The affected branches and leaflets were stiff and turned 

upwards, stand vertically and shed prematurely. Nene et al. (1991) observed infection in 

seedling stage. When the plants were uprooted, the lower portion of tap root remained 

inside the soil and devoid of most of lateral roots. 

4.3 Isolation and identification of the fungus 

Different isolates of Rhizoctonia bataticola were isolated from the samples 

collected from different chickpea growing areas of the country. The isolates were purified 

by single sclerotial isolation technique and were identified as R. bataticola based on 

morphological and cultural characters using the descriptions given by C.M.I (1970). The 

isolates were designated serially from Rb 1 to Rb 68. 

The mycelium was initially white in colour which was later converted to dark 

brown to black in colour. Production of aerial mycelium was also observed in some 

isolates. The vegetative mycelium was characterized by the formation of barrel shaped cells 

and the formation of septum near the origin of branch of the mycelium. Branching occurred 

mostly at right angle to parent hyphae, but branching at acute angles was also observed. 

The hyphal cell size varied from 9.38 x 3.80 µm (Rb10) to 14.88 x 7.5 µm (Rb 63) and 

sclerotial size varied from 54.86 x 45.49 µm (Rb 46) to 216.08 x 181.09 µm (Rb 59). The  



Table 4.2. Identity of the isolates along with their disease severity rate and incubation    

period 

 

S.No District Village 

Disease severity 

rating 

(1-9 rating scale)* 

Incubation 

period* 

Isolate 

code 

 
Madhya Pradesh 

1 

Jabalpur 

Tovaria 5.7 3.2 Rb 1 

2 Hardua 8.3 1.7 Rb 2 

3 Bidagad 4.8 3.7 Rb 3 

4 Narsingapur Barnagh 3.2 4.8 Rb 4 

5 Seoni Bandol 8.0 2.0 Rb 5 

6 Chhindwara Chaurai 7.0 2.5 Rb 6 

7 Hoshangabad Pipariya 7.8 2.0 Rb 7 

8 Damoh Damoh 6.7 2.2 Rb 8 

 
Karnataka 

9 

Gulbarga 

Suntnoor 7.8 2.0 Rb 9 

10 Sarsamba 2.8 4.5 Rb 10 

11 Sikhapur 7.3 2.2 Rb 11 

12 
Raichur 

Devadurga 4.7 3.5 Rb 12 

13 Raichur 7.2 2.0 Rb 13 

 
Maharastra 

14 Osmanabad Edsi 5.8 2.7 Rb 14 

15 Beed Nagajhari 7.7 1.8 Rb 15 

16 Jalna Gaure Taluka 8.0 2.0 Rb 16 

17 

Buldhana 

Sindkhedgav 8.2 1.7 Rb 17 

18 Kaparkeda 7.5 2.0 Rb 18 

19 Mekar 5.8 2.8 Rb 19 

20 Yavatmal Vuttarana 4.8 3.3 Rb 20 

21 Wasim Dongargiri 9.0 1.0 Rb 21 

22 

Akola 

Rajapur 7.2 2.2 Rb 22 

23 Pailpada 7.0 2.2 Rb 23 

24 Vurum 7.2 2.3 Rb 24 

25 Maulikhed 7.8 1.8 Rb 25 

26 Yavatmal Lacina 8.0 1.8 Rb 26 

27 Amaravathi Velora 8.7 1.3 Rb 27 

 
Andhra Pradesh 

28 

Anantpur 

Egnoor 7.7 2.0 Rb 28 

29 Chimalavagupalli 5.2 3.3 Rb 29 

30 Pedakallu 6.0 2.8 Rb 30 

31 Chinakallu 4.5 3.7 Rb 31 

32 

Guntur 

Lam (RARS) 3.8 4.3 Rb 32 

33 Chilakaluripeta 7.5 2.0 Rb 33 

34 Pedanandipadu 7.8 2.0 Rb 34 

35 

Kurnool 

Nandyal (RARS) 9.0 1.0 Rb 35 

36 Ayyaluru 6.0 2.8 Rb 36 

37 Alur 5.8 2.8 Rb 37 



S.No District Village 

Disease severity 

rating (1-9 rating 

scale) 

Incubation 

period 

Isolate 

code 

38 

Kurnool 

Oruvagallu 2.5 3.5 Rb 38 

39 Chelkuru 3.8 4.2 Rb 39 

40 Rudipadu 8.0 2.0 Rb 40 

41 Devanoor 6.7 2.7 Rb 41 

42 Medthur 6.8 2.2 Rb 42 

43 Gandemala 7.2 2.2 Rb 43 

44 Gospadu 4.2 3.8 Rb 44 

45 Kollur 4.5 3.5 Rb 45 

46 Kurnool 8.5 1.5 Rb 46 

47 Kolimigundla 5.5 3.0 Rb 47 

48 Chelpur 5.2 3.2 Rb 48 

49 

Prakasam 

Naguluppalapadu 8.0 2.0 Rb 49 

50 Paduchuru 7.2 2.2 Rb 50 

51 Marturu 5.8 2.8 Rb 51 

 
Telangana State 

52 

Medak 

Patancheru 7.0 2.5 Rb 52 

53 Patancheru 7.7 2.0 Rb 53 

54 Patancheru 5.0 3.0 Rb 54 

55 Patancheru 5.5 3.0 Rb 55 

56 Patancheru 5.5 3.0 Rb 56 

57 Patancheru 9.0 2.0 Rb 57 

58 Patancheru 8.2 1.7 Rb 58 

59 Patancheru 8.8 1.2 Rb 59 

60 Patancheru 9.0 1.0 Rb 60 

61  Patancheru 9.0 1.0 Rb 61 

62 Patancheru 7.5 2.2 Rb 62 

63 Patancheru 9.0 1.0 Rb 63 

64 Shankerpally 6.7 2.2 Rb 64 

65 Rangareddy Daroor 8.8 1.2 Rb 65 

66 

Mahboobnagar 

Naraynapuram 7.7 2.0 Rb 66 

67 Vundavelli 3.3 4.7 Rb 67 

68 Rangapur 4.8 3.3 Rb 68 

CD 0.97 0.66 

 

 

 

 

 



Table 4.3. Grouping of isolates based on disease severity and incubation period by 

artificial inoculation 

 

Charact

er 
Type 

MadhyaPr

adesh 

Karnata

ka 

Maharasht

ra 

Andhra 

Pradesh 
Telangana 

Disease 

severity  

(1-9 

rating 

scale) 

>1- 

≤3  
Rb 10 

 
Rb 38 

 

>3 - 

≤5 
Rb 4,3 Rb 12 Rb 20 

Rb32,39,44,31,

45 
Rb 67,68,54 

>5 - 

≤7 
Rb 1,8,6 

Rb9,11,1

3 
Rb14,19,23 

Rb29,48,47,37,

51,30,36,41,42 

Rb 

55,56,64,52 

>7 - 

≤9 
Rb 7,5,2 

 

Rb 

22,24,18,15,

25,16,26,17,

27,21 

Rb 

43,50,33,28,34,

40,49,46,35, 

Rb62,53,66,5

8,59,65,57,60

,61,63 

Incubati

on 

period 

(days) 

0-1.0 
   

Rb 35 Rb 60,61,63 

1.1-

2.0 
Rb2,5,7 Rb 9,13 

Rb15,16,17,

18,21,25,26,

27 

Rb 

28,33,34,40,46,

49 

Rb50,53,57,5

8,59,65 

2.1-

3.0 
Rb6,8 Rb 11 

Rb 

14,19,22,23,

24 

Rb30,36,37,41,

42,43,47,50,51 

Rb52,54,55,5

6,62,64 

3.1-

4.0 
Rb 1,3 Rb 12 Rb 20 

Rb 

29,31,38,44,45,

48 

Rb 68 

4.1-

5.0 
Rb 4 Rb 10 

 
Rb 32,39 Rb67 



shape of sclerotia varied from round, ovoid to irregular. The texture of sclerotia was 

either rough or smooth. The sclerotia were dark brown to black in colour. 

The above observations were in accordance with the descriptions given by Short 

and Willie (1978) as branching occurs at right angle to parent hyphae but branching at 

acute angles was also common. Microsclerotia were formed from the aggregation of 

hyphae with 50 to 200 individual cells. The microsclerotia of Macrophomina were black in 

colour and size varied from 50 - 150 μm with respect to host and media used.   Devi and 

Singh (1998) observed bigger sclerotia in isolate MP - 2 (400 x 280 μm) while working on 

Macrophomina phaseolina isolates in mungbean. He also observed typical right angled 

branching of mycelium in one of the isolate and acute to right angle branching in certain 

isolates.  

4.4 Pathogenicity test 

Pathogenicity of the 68 isolates of fungus obtained from different states was tested by 

artificial root dip inoculation using paper towels. The data pertaining to incubation period 

and disease severity are presented in the table 4.2 and 4.3.   

Among 68 isolates, the maximum disease severity rating of 9 was observed in Rb 

21, Rb 35, Rb 57, Rb 60, Rb 61 and Rb 63 inoculated plants while the least of 2.5 was 

observed in Rb 38. The incubation period ranged from 1.0 (Rb 21, Rb 35, Rb 60, Rb 61 and 

Rb 63) to 4.8 (Rb 4) days. It was observed that with an increase in disease severity there 

was decrease in incubation period across all the isolates tested. 

Among Madhya Pradesh isolates, the disease severity rating varied from 3.2 (Rb 4) 

to 8.3 (Rb 2) and the incubation period varied between 1.7 (Rb 2) to 4.8 (Rb 4) days. In 

case of isolates collected from Karnataka, the disease severity rating varied from 2.8 (Rb 

10) to 7.8 (Rb 9) while the incubation period fell between 2.0 (Rb 13) to 4.5 (Rb 10) days.  

Across the isolates from Maharashtra, the disease severity varied from 4.8 (Rb 20) 

to 9.0 (Rb 21) and the incubation period ranged from 1.0 (Rb 21) to 3.3 (Rb 20) days. The 

disease severity rating from Andhra Pradesh isolates varied from 2.5 (Rb 38) to 9.0 (Rb 35) 

while the incubation period of those isolates ranged between 1.0 (Rb 35) to 4.3 (Rb 32) 

days. Among Telangana isolates, the disease severity varied from 3.3 (Rb 67) to 9 (Rb 61) 



with a range of incubation period from the 1.0 (Rb 60, Rb 61 and Rb 63) to 4.7 (Rb 67) 

days.  

Similarly, Pande et al. (2004) observed the maximum disease severity rating of 9 in 

the susceptible cultivar BG 212 when screened for source of resistance to dry root rot. 

Sharma et al. (2012) also proved the pathogenicity of 50 isolates of Rhizoctonia bataticola 

using chickpea cultivar BG 212 and reported the dry root rot disease severity ranging 

between 4 and 9 (on the basis of 1 to 9 severity rating scale). Their study also indicated that 

pathogenic and non pathogenic isolates were not concentrated in any one particular region 

/state.   

 

 

4.5 Studies on variability in Rhizoctonia bataticola 

4.5.1 Cultural and morphological variability in Rhizoctonia bataticola 

Variability in the cultural and morphological characters of sixty eight isolates of 

Rhizoctonia bataticola were studied by growing on potato dextrose agar medium. The 

colony growth of the R. bataticola isolates measured at 72h after inoculation. The size of 

the hyphal cell and sclerotia was measured using Q-capture image analyzer software at 10x 

objective of the microscope. Observations on various cultural and morphological characters 

were recorded as described in material and methods and the results obtained are presented 

in Table 4.4 to 4.7 and Fig 4.2.  

Colony diameter 

The data on colony diameter presented in the table 4.4 revealed that there was a 

significant difference in the colony growth recorded among the isolates of Rhizoctonia 

bataticola which varied from 17.7 to 80.0 mm. Isolate Rb 14, Rb 17, Rb 22, Rb 26, Rb 49 

and Rb 54 showed significantly highest colony growth (80 mm) while the least colony 

diameter was observed with the isolate Rb 20 (17.7 mm) Mean colony diameter among 

Madhya Pradesh, Karnataka, Maharashtra, Andhra Pradesh and Telangana isolates ranged 

from 41.0 mm (Rb 7) to 73.0 mm (Rb 1), 48.7 mm (Rb 12) to 72.5 mm (Rb 11), 17.7mm 

(Rb 20) to 80.0mm (Rb 14, 17, 22, 26), 36.3 mm (Rb 44) to 80.0mm (Rb 49) and 33.7mm 

(Rb 64) to 80.0mm (Rb 54) respectively. 

Colonycolour.



 

Table 4.4.  Variability in cultural characteristics of Rhizoctonia bataticola isolates  

 

S. 

No. 
Isolate 

code 

Radial 

growth* 

(mm) 

Colony 

texture# 
Pigmentation# 

Aerial 

mycelium# 

1 Rb 1 73.0 Appressed Dark Brown Absent 

2 Rb 2 47.5 Velvetty Dark Brown Absent 

3 Rb 3 60.0 Velvetty Dark brown Absent 

4 Rb 4 57.7 Appressed Dark brown Present 

5 Rb 5 72.0 Velvetty Black Present 

6 Rb 6 61.0 Velvetty Black Present 

7 Rb 7 41.0 Appressed Dark brown Absent 

8 Rb 8 43.0 Appressed Black Absent 

9 Rb 9 62.5 Fluffy Black with grey aerial mycelium Present 

10 Rb 10 52.3 Appressed Black Absent 

11 Rb 11 72.5 Appressed Black Present 

12 Rb 12 48.7 Fluffy Black with grey aerial mycelium Present 

13 Rb 13 52.7 Fluffy Grey Present 

14 Rb 14 80.0 Velvetty Grey Present 

15 Rb 15 66.7 Appressed Grey Present 

16 Rb 16 68.5 Appressed Black Present 

17 Rb 17 80.0 Fluffy Black with grey aerial mycelium Present 

18 Rb 18 72.3 Velvetty Black Absent 

19 Rb 19 64.7 Fluffy Black Present 

20 Rb 20 17.7 Appressed Grey Present 

21 Rb 21 71.0 Fluffy Black with grey aerial mycelium Present 

22 Rb 22 80.0 Fluffy Black with grey aerial mycelium Present 

23 Rb 23 75.8 Fluffy Black with grey aerial mycelium Present 

24 Rb 24 74.0 Fluffy Black with grey aerial mycelium Present 

25 Rb 25 71.0 Fluffy Black Present 

26 Rb 26 80.0 Appressed Black Present 

27 Rb 27 67.7 Fluffy Black with grey aerial mycelium Present 

28 Rb 28 52.7 Velvetty Grey Present 

29 Rb 29 62.5 Fluffy Black Present 

30 Rb 30 66.7 Fluffy Black with grey aerial mycelium Present 

31 Rb 31 72.3 Fluffy Black with grey aerial mycelium Present 

32 Rb 32 64.0 Fluffy Black with grey aerial mycelium Present 

33 Rb 33 73.2 Fluffy Black with grey aerial mycelium Present 

34 Rb 34 44.7 Appressed Black Absent 

35 Rb 35 53.7 Fluffy Grey Present 

36 Rb 36 74.5 Appressed Black Absent 

37 Rb 37 68.7 Fluffy Black with grey aerial mycelium Present 

38 Rb 38 49.7 Fluffy Black Absent 

39 Rb 39 74.3 Fluffy Grey Present 



40 Rb 40 68.3 Appressed Black Absent 

41 Rb 41 49.3 Fluffy Grey Present 

S. 

No. 

Isolate 

code 

Rradial 

growth* 

(mm) 

Colony 

texture# 
Pigmentation# 

Aerial 

mycelium# 

42 Rb 42 57.7 Appressed Black Absent 

43 Rb 43 72.3 Velvetty Black with grey aerial mycelium Present 

44 Rb 44 36.3 Appressed Black Absent 

45 Rb 45 71.7 Fluffy Black with grey aerial mycelium Present 

46 Rb 46 62.7 Velvetty Grey Present 

47 Rb 47 53.3 Appressed Black Absent 

48 Rb 48 72.0 Appressed Grey Present 

49 Rb 49 80.0 Fluffy Black with grey aerial mycelium Present 

50 Rb 50 44.0 Velvetty Black Present 

51 Rb 51 66.8 Appressed Black Absent 

52 Rb 52 35.5 Appressed Dark brown Absent 

53 Rb 53 57.7 Appressed Dark Brown Absent 

54 Rb 54 80.0 Appressed Black Absent 

55 Rb 55 73.7 Appressed Black Absent 

56 Rb 56 46.8 Appressed Dark brown Absent 

57 Rb 57 71.7 Appressed Dark brown Absent 

58 Rb 58 65.7 Appressed Dark brown Absent 

59 Rb 59 64.3 Appressed Dark brown Present 

60 Rb 60 52.0 Appressed Black Absent 

61 Rb 61 71.0 Fluffy Black with grey aerial mycelium Present 

62 Rb 62 67.3 Fluffy Black with grey aerial mycelium Present 

63 Rb 63 44.3 Appressed Black Absent 

64 Rb 64 33.7 Velvetty Black Present 

65 Rb 65 63.7 Appressed Black Absent 

66 Rb 66 69.7 Appressed Grey Absent 

67 Rb 67 72.3 Fluffy Black with grey aerial mycelium Present 

68 Rb 68 73.7 Fluffy Black with grey aerial mycelium Present 

 

C.D. 1.85 

 

 

 

 

 

 

 

 

 



Appressed Fluffy Velvetty 

Ovoid 
Irregular Round 



4.2. Morphological and cultural variability among the Rhizoctonia bataticola isolates 

Based on visual observation on colony colour, the cultures were divided into four 

groups. Black colour colony was observed in 26 isolates while black with grey aerial 

mycelium was recorded in 20 isolates. Dark brown and grey colour was observed in 11 

each respectively.  

The pigmentation of the colony varied from dark brown (Rb 5, Rb 6 and Rb 8) to 

black (Rb 1, RB 2, Rb 3, Rb 4 and Rb7) in Madhya Pradesh isolates. Among Karnataka 

isolates, the pigmentation of the colony varied from grey (Rb 13), black with grey aerial 

mycelium (Rb 9 and Rb 12) and black (Rb 10 and Rb11). Across the Maharashtra isolates 

colony colour varied from grey (Rb 14, Rb 15, Rb 20), black with grey aerial mycelium 

(Rb 27, Rb 21, Rb 24, Rb 23, Rb 22 and Rb 17) to black (Rb 16, Rb 26, Rb 19, Rb 22 and 

Rb 18).  

Among the Andhra Pradesh isolates, colony colour varied from grey (Rb 48, Rb 41, 

Rb 35, Rb 39, Rb 28 and Rb 46), black with grey aerial mycelium (Rb 32, Rb 30, Rb 37, 

Rb 45, Rb 31, Rb 33, Rb 49 and Rb 43) to black (Rb 34, Rb 51, Rb 36, Rb 44, Rb 47, Rb 

42, Rb 40, Rb 38, Rb 2 and Rb 50). 

Among Telangana isolates, pigmentation of the colony varied from black with grey 

aerial mycelium (Rb 62, Rb 61, Rb 67, Rb 68, Rb 52, Rb 53, Rb 59, Rb 58, Rb 57 and Rb 

56),  black (Rb 63, Rb 60, Rb 65, Rb 54, Rb 55 and Rb 64), brown (Rb 52, Rb 53, Rb 56, 

Rb 57, Rb 58 and Rb 59) to grey colour (Rb 66).  

Colony texture 

Isolates categorized into three groups on the basis of colony texture. Maximum of 

30 isolates produced appressed colony while 27 isolates had fluffy texture. Only 11 isolates 

had produced velvety growth.  

The colony texture of appressed (Rb 4, Rb 1, Rb 7 and Rb 8) and velvety (Rb 2, Rb 

3, Rb 5 and Rb 6) were observed in Madhya Pradesh isolates. Among Karnataka isolates, 

colony texture varied from appressed (Rb 10 and Rb 11) to fluffy (Rb 9, Rb 12and Rb 13). 

Maharashtra isolates possessed three types of colony textures viz., appressed (Rb 20, Rb 15, 

Rb 16 and Rb 26), fluffy (Rb 19, Rb 27, Rb 22, Rb 21, Rb 24,  Rb 22, Rb 17 and Rb 23) 

and velvety (Rb 14 and Rb 18). Similarly all the three types were observed in Andhra 

Pradesh and Telangana isolates. Among Andhra Pradesh isolates, appressed texture was 

observed in Rb 34, Rb 51, Rb 48, Rb 36, Rb 44, Rb 47, Rb 4 and, Rb 40, while the fluffy 



texture in Rb 41, Rb 38, Rb 35, Rb 29, Rb 32, Rb 30, Rb 37, Rb 45, Rb 31, Rb 33, Rb 39, 

Rb 49 and velvety texture was observed in Rb 50, Rb 28, Rb 46, Rb 43. Among Telangana 

isolates, mostly appressed texture was observed except in Rb 62, Rb 61, Rb 67, Rb 68 

which had fluffy and only Rb 64 had developed velvety type texture. 

Aerial mycelium 

Maximum number of 42 isolates produced aerial mycelium and 26 isolates did not 

develop any aerial mycelium. No aerial mycelium was observed in most of the isolates that 

had appressed colony. 

In Madhya Pradesh isolates mostly there was no aerial mycelial growth except in 

Rb 4, Rb 5 and Rb 6 while in Karnataka and Maharashtra isolates, aerial mycelial growth 

was observed in all except in Rb 10 and Rb 18 respectively. 

Among Andhra Pradesh isolates, aerial mycelial growth was present in all the 

isolates except in Rb 34, Rb 51, Rb 36, Rb 44, Rb 47, Rb 42, Rb 40 and Rb 38 while in 

Telangana isolates, the aerial mycelial growth was observed only in Rb 64, Rb 62, Rb 61, 

Rb 67, Rb 68, Rb 59.  

Hyphal cell 

The hyphal cell size varied from 9.38 x 3.80 µm (Rb10) in Karnataka to 14.88 x 

7.50 µm (Rb 63) in Telangana.  When the data on length of hyphal cell was subjected to 

statistical analysis no significant difference was observed between isolates Rb 10, Rb 27, 

Rb 3, Rb 2, Rb 25 and Rb 24. Ratio between length and width of hyphal cell varied from 

1.35 (Rb 27) to 2.96 (Rb 65). 

Among Madhya Pradesh isolates, mean hyphal cell size varied from 9.55 x 5.14 µm 

(Rb 3) to 13.34 x 5.2 µm (Rb 1). The isolates Rb 6, Rb 5 and Rb 1 showed significant 

difference for mean hyphal cell length while there was no significant difference between 

isolates Rb 3 and Rb2. Ratio between the length and width varied from 1.57 (Rb 7) to 2.56 

(Rb 1). There was significant difference between the isolates for length by width ratio 

except Rb 6 and Rb 8 which were at par with each other. 

Among Karnataka isolates, mean hyphal cell size varied from 9.38 x 3.8 µm (Rb 10) to 

14.14 x 5.53 µm (Rb 9). There was significant difference among the isolates for mean 

hyphal cell size. The length/width of hyphal cell varied from 1.8 (Rb 13) to 2.67 (Rb 9).  

There was significant difference among the isolates for length by width except in Rb 11 

and Rb13 which were at par with each other. 



Among Maharashtra isolates, hyphal cell size varied from 9.49 x 7.04 µm (Rb 27) 

to 14.58 x 6.84 µm (Rb 16). There was significant difference between the isolates Rb 16, 

Rb 17, Rb 14, Rb 20, Rb 21 and Rb 27 while there was no significant difference between 

Rb 19, Rb 14 and Rb 18. The length/ width of hyphal cell varied from 1.35 (Rb 27) to 2.75 

(Rb 15). There was significant difference among the isolates except Rb 28 and Rb20, and 

Rb 17 and Rb16 which were at par with each other. 

Among Andhra Pradesh isolates, mean hyphal cell size varied from 10.28 x 5.00 

µm (Rb 51) to 14.29 x 6.44 µm (Rb 49). There was significant difference between the Rb 

51, Rb30, Rb36, Rb 45 and Rb 48 while there was no significant difference between the Rb 

40, Rb 48, Rb 41 and Rb 49. The length/ width varied from 1.56 (Rb 34) to 2.89 (Rb 47). 

Among Telangana isolates, mean hyphal cell size varied from 10.35 x 6.6µm (Rb 

52) to 14.88 x 7.5µm (Rb 63). There was significant difference between the Rb 52, Rb 53, 

Rb 55, Rb 65 and Rb 63 while there was no significant difference between the Rb 53, Rb 

62, Rb 68 and Rb 54. The length/width of hyphal cell varied from 1.53 (Rb 60) to 2.96 (Rb 

65). There was significant difference between the Rb 60, Rb 52, Rb 59, Rb 56, Rb 54, 

Rb57, Rb 62, Rb 63, Rb 53, Rb 55, Rb 67, Rb 68 and Rb 65 while there was no significant 

difference between the Rb 59 and Rb 61; Rb 57 and Rb 58.  

Sclerotial size  

The size of sclerotia varied from 54.86 x 45.49 µm (Rb 46) in Andhra Pradesh to 

216.08 x 181.09 µm (Rb 59) in Telangana state. Ratio between length and width of 

sclerotia varied from 1.00 (Rb 5) to 1.64 (Rb 23). 

The sclerotia size varied from 116.38 x 103.49 µm (Rb 6) to195.47x193.76 µm (Rb 

1) among Madhya Pradesh isolates.  There was significant difference between the isolates 

for size of sclerotia. Ratio between length and width of sclerotia varied from 1.00 (Rb 5) to 

1.24 Among Karnataka isolates, the sclerotial size varied from 138.23 x 105.52 (Rb 9) -

150.22 x 142.06 µm (Rb 10). The length/ width varied from 1.06 (Rb 10) to 1.31 (Rb 9). 

There was significant difference among the isolates for length by width of sclerotia except 

in Rb 11 and Rb13 which were at par with each other. 

The sclerotial size varied from 83.29 x 50.93 (Rb 23) to 155.43-143.78 µm (Rb 17) 

among Maharashtra isolates. There were significant differences between the isolates except  

(Rb4)



 

Table 4.5. Grouping of isolates based on cultural characteristics 

 

Character Type Madhya Pradesh Karnataka Maharashtra Andhra Pradesh Telangana 

Radial growth 

(mm) 

<40 
  

Rb 20 Rb 44 Rb 52,64 

40.01-50 Rb2,7,8 Rb 12 
 

Rb34,38,41,50 Rb 56,63 

50.01-60 Rb 4 Rb 10,13 
 

Rb 28,35,42,47 Rb 53,60 

60.01-70 Rb3, 6 Rb 9 Rb 15,16,19,27 
Rb 

9,30,32,37,40,46,51 
Rb 59,62,65,66 

70.01-80 Rb 5,1 Rb 11 

Rb14,17, 

18,21,22,26,23,24, 

25 

Rb 

31,33,36,39,43,45,4

8,49 

Rb 

54,55,57,58,61,67,68 

Colony texture 

Appressed Rb ,4,7,8 Rb 10,11 Rb 15,16,20,26 
Rb34,36,40,42,44,4

7,48,51 

Rb52,53,54,55,56,57,

58,59,60,63,65,66 

Velvetty Rb2,3,5,6 Rb9,12,13 Rb14,18 Rb28,43,46,50 Rb 64 

Fluffy 
  

Rb17,19,21,22,23,24

,25,27 

Rb29,30,31,32,33,3

7,38,39,41,45,49 
Rb 61,62,67,68 

Pigmentation 

Dark brown Rb1,2,3,4,7 
   

Rb 52,53,56,57,58,59 

Black Rb 5,6,8 Rb 10,11 Rb 16,18,19,25,26 
Rb29,34,36,38,40,4

2,44,47,50,51 
Rb 54,55,60,63,64,65 

Grey 
 

Rb 13 Rb 14,15,20 
Rb 

28,35,39,41,46,48 
Rb 66 

Black with 

grey  
Rb 9,12 

Rb 

17,21,22,23,24,27 

Rb30,31,32,33,37,4

3,45,49 
Rb 61,62,67,68 

 



. 

Table 4.6. Variability in morphological characteristics of Rhizoctonia 

bataticola isolates 

 

S. 

No

. 

Isol

ate 

Cod

e 

Hyphal cell Sclerotia 

Length 

x 

Width 

(µm)* 

Len

gth/ 

Wid

th* 

Length x 

Width 

(µm)* 

Leng

th/ 

Widt

h* 

Intensity 

per 10x 

microscopi

c field* 

Initiat

ion 

(Days

)** 

Shape 

1 

Rb 

1 

13.34x5

.20 2.56 

195.47x1

93.76 1.01 23.33 1.7 Round 

2 

Rb 

2 

9.62x4.

62 2.08 

183.42x1

74.45 1.05 33.67 3.3 Ovoid 

3 

Rb 

3 

9.55x5.

14 1.86 

121.59x1

18.04 1.03 11.67 3.3 Ovoid 

4 

Rb 

4 

10.67x5

.46 1.95 

140.23x1

13.25 1.24 33.33 4.3 

Irregul

ar 

5 

Rb 

5 

12.68x6

.23 2.04 

131.52x1

30.90 1.00 16.67 2.0 Round 

6 

Rb 

6 

11.79x7

.19 1.64 

116.38x1

03.49 1.12 38.33 3.0 Round 

7 

Rb 

7 

11.53x7

.33 1.57 

165.95x1

48.09 1.12 21.67 3.3 Round 

8 

Rb 

8 

10.9x6.

73 1.62 

139.68x1

30.36 1.07 19.67 3.3 Round 

9 

Rb 

9 

14.14x5

.30 2.67 

138.23x1

05.52 1.31 28.67 3.0 Round 

10 

Rb 

10 

9.38x3.

80 2.47 

150.22x1

42.06 1.06 23.33 3.3 Round 

11 

Rb 

11 

11.56x6

.39 1.81 

143.12x1

19.60 1.20 42.67 2.7 

Irregul

ar 

12 

Rb 

12 

12.46x6

.29 1.98 

148.43x1

38.50 1.07 13.67 2.7 Ovoid 

13 

Rb 

13 

10.78x6

.00 1.80 

139.32x1

14.86 1.21 39.67 2.0 Ovoid 

14 

Rb 

14 

12.52x5

.27 2.38 

129.03x1

06.96 1.21 57.33 2.0 

Irregul

ar 

15 

Rb 

15 

12.23x4

.45 2.75 

115.01x1

09.14 1.05 28.67 3.3 

Irregul

ar 

16 

Rb 

16 

14.58x6

.84 2.13 

150.52x1

37.52 1.09 31.67 3.3 Ovoid 

17 

Rb 

17 

13.25x6

.23 2.13 

155.43x1

43.78 1.08 34.33 2.0 Ovoid 

18 

Rb 

18 

12.87x6

.38 2.02 

120.31x1

17.18 1.03 51.67 2.3 Ovoid 

19 

Rb 

19 

12.52x5

.74 2.18 

96.35x79.

11 1.22 34.67 2.3 Ovoid 



20 

Rb 

20 

11.79x5

.81 2.03 

108.65x1

05.24 1.03 41.33 3.3 

Irregul

ar 

S. 

No

. 

Isol

ate 

Cod

e 

Hyphal cell Sclerotia 

Length 

x 

Width 

(µm)* 

Len

gth/ 

Wid

th* 

Length x 

Width 

(µm)* 

Leng

th/ 

Widt

h* 

Intensity 

per 10x 

microscopi

c field* 

Initiat

ion 

(Days

)** 

Shape 

 

22 

Rb 

22 

10.64x6

.16 1.73 

109.84x1

04.35 1.05 18.67 2.0 

Irregul

ar 

23 

Rb 

23 

10.49x7

.04 1.49 

83.29x50.

93 1.64 24.33 4.3 Ovoid 

24 

Rb 

24 

9.97x5.

97 1.67 

126.71x1

20.41 1.05 24.67 3.0 

Irregul

ar 

25 

Rb 

25 

9.81x6.

71 1.46 

151.13x1

12.1 1.35 30.67 3.0 

Irregul

ar 

26 

Rb 

26 

12.27x6

.78 1.81 

151.52x1

31.62 1.15 28.67 3.0 

Irregul

ar 

27 

Rb 

27 

9.49x7.

04 1.35 

146.80x1

46.02 1.01 28.33 2.0 Round 

28 

Rb 

28 

10.85x5

.59 1.94 

191.92x1

80.12 1.07 35.67 4.3 

Irregul

ar 

29 

Rb 

29 

10.97x5

.25 2.09 

103.83x9

5.01 1.09 19.00 3.0 

Irregul

ar 

30 

Rb 

30 

11.01x4

.38 2.52 

148.78x1

32.02 1.13 24.33 3.0 

Irregul

ar 

31 

Rb 

31 

11.16x4

.93 2.27 

109.68x1

06.44 1.03 31.33 3.0 Round 

32 

Rb 

32 

11.25x5

.57 2.02 

160.50x1

49.80 1.07 31.67 3.0 Round 

33 

Rb 

33 

11.38x4

.67 2.44 

129.89x1

15.05 1.13 32.67 3.3 Round 

34 

Rb 

34 

11.47x7

.33 1.56 

187.45x1

51.33 1.24 35.67 3.3 Ovoid 

35 

Rb 

35 

11.79x6

.67 1.77 

141.68x1

35.38 1.05 35.33 3.3 Ovoid 

36 

Rb 

36 

12.09x6

.89 1.76 

153.41x1

40.6 1.09 36.33 2.7 Round 

37 

Rb 

37 

12.72x5

.21 2.44 

128.37x1

18.98 1.08 33.67 2.7 

Irregul

ar 

38 

Rb 

38 

13.32x7

.25 1.84 

166.36x1

54.15 1.08 33.67 2.0 Round 

39 

Rb 

39 

13.44x7

.69 1.75 

119.28x9

9.50 1.20 35.33 3.0 Round 

40 

Rb 

40 

13.77x6

.63 2.08 

109.54x9

5.48 1.15 28.67 3.0 Ovoid 

41 

Rb 

41 

13.99x6

.16 2.27 

162.75x1

35.17 1.20 22.00 4.0 Round 



42 

Rb 

42 

11.4x6.

60 1.73 

129.64x1

24.59 1.04 17.67 3.0 Round 

43 

Rb 

43 

11.58x6

.78 1.71 

141.52x1

40.05 1.01 42.67 3.0 Round 

S. 

No

. 

Isol

ate 

Cod

e 

Hyphal cell Sclerotia 

Length 

x 

Width 

(µm)* 

Len

gth/ 

Wid

th* 

Length x 

Width 

(µm)* 

Leng

th/ 

Widt

h* 

Intensity 

per10x 

microscopi

c field* 

Initiat

ion 

(Days

)** 

Shape 

45 

Rb 

45 

13.05x6

.10 2.14 

132.81x1

29.42 1.03 26.00 2.0 Ovoid 

46 

Rb 

46 

12.26x5

.18 2.37 

54.86x45.

49 1.21 20.67 3.0 Round 

47 

Rb 

47 

13.07x4

.52 2.89 

163.65x1

28.49 1.27 60.00 4.0 

Irregul

ar 

48 

Rb 

48 

13.94x5

.19 2.69 

97.79x89.

92 1.09 28.67 4.0 

Irregul

ar 

49 

Rb 

49 

14.29x6

.44 2.22 

160.97x1

49.20 1.08 19.33 2.0 Ovoid 

50 

Rb 

50 

12.48x5

.81 2.15 

214.55x1

82.80 1.17 26.67 3.0 Ovoid 

51 

Rb 

51 

10.28x5

.00 2.05 

191.76x1

69.94 1.13 27.67 3.0 Round 

52 

Rb 

52 

10.35x6

.60 1.57 

162.32x1

48.81 1.09 23.33 4.0 Ovoid 

53 

Rb 

53 

11.38x5

.30 2.15 

118.05x1

14.63 1.03 43.67 2.0 Round 

54 

Rb 

54 

11.73x6

.57 1.79 

151.51x1

49.15 1.02 22.67 2.0 Round 

55 

Rb 

55 

12.29x5

.43 2.27 

188.59x1

69.28 1.11 26.33 3.0 

Irregul

ar 

56 

Rb 

56 

12.45x7

.13 1.75 

138.13x1

25.90 1.10 70.67 4.0 Ovoid 

57 

Rb 

57 

12.50x6

.70 1.87 

178.20x1

48.91 1.20 30.67 3.0 Ovoid 

58 

Rb 

58 

12.53x6

.66 1.88 

97.56x71.

96 1.36 23.67 3.0 Round 

59 

Rb 

59 

12.65x7

.49 1.69 

216.08x1

81.09 1.19 28.00 3.0 Ovoid 

60 

Rb 

60 

13.38x8

.76 1.53 

165.75x1

29.55 1.28 38.00 4.0 Ovoid 

61 

Rb 

61 

13.81x8

.11 1.70 

167.63x1

41.64 1.18 23.67 3.0 Ovoid 

62 

Rb 

62 

11.41x5

.90 1.94 

125.79x1

16.98 1.08 38.67 3.0 Round 

63 

Rb 

63 

14.88x7

.50 1.99 

203.43x1

88.01 1.08 21.00 3.0 Ovoid 



64 

Rb 

64 

12.49x5

.13 2.43 

135.11x1

26.78 1.07 14.00 3.0 Round 

65 

Rb 

65 

13.33x4

.51 2.96 

129.55x1

23.52 1.05 34.67 3.7 Round 

66 

Rb 

66 

13.41x5

.91 2.27 

125.65x1

24.44 1.01 34.67 3.0 Ovoid 

S. 

No

. 

Isol

ate 

Cod

e 

Hyphal cell Sclerotia 

Length 

x 

Width 

(µm)* 

Len

gth/ 

Wid

th* 

Length x 

Width 

(µm)* 

Leng

th/ 

Widt

h* 

Intensity 

per10x 

microscopi

c field* 

Initiat

ion 

(Days

)** 

Shape 

68 

Rb 

68 

11.66x4

.16 2.81 

165.76x1

52.70 1.09 24.00 2.3 Round 

 

CD 0.59 0.03 2.26 0.05 2.80 0.55 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4.7. Grouping of isolates based on morphological characteristics 

Charac

ter 
Type 

Madhya 

Pradesh 

Karnata

ka 

Maharashtr

a 

Andhra 

Pradesh 
Telangana 

 

Scleroti

a shape 

Irregul

ar 
Rb 4 Rb 11 

Rb14,15,20,2

1,22,2,25,26 

Rb28,29,30,37,

47,48 
Rb 55 

Ovoid Rb 2, 3 Rb 12, 13 
Rb 16, 

17,18,19,23 

Rb 

34,35,40,45,49,

50 

Rb52,56,57,

59,60,61,63,

66 

Round 
Rb 1, 5, 6, 

7, 8 
Rb 9, 10 Rb 27 

Rb31,32,33,36,

38,39,41,42,43,

44,46,51 

Rb53,54,58,

62,64,65,67,

68 

Scleroti

a 

texture 

Smoot

h 

Rb 

2,3,5,6,7,

8 

Rb 10, 

12, 13 

Rb16,17,18,1

9,23,7 

Rb28,29,30,37,

41,43,5,46,48,4

9 

Rb52,53,54,

56,58,59,60,

61,62,63,64,

65,67,68 

Rough Rb 1,4 Rb 9, 11 
Rb14,15,20,2

1,22,24,25,26 

Rb31,32,33,34,

35,36,38,39,40,

42,44,47,50,51 

Rb 55,57,66 

Scleroti

a 

initiatio

n 

(days) 

1 to 

1.99 
Rb 1 

    

2 to 

2.99 
Rb 5 

Rb11,12,

13 

Rb14,17,18,1

9,22,27 

Rb 

36,37,38,45,49 

Rb 

53,54,67,68 

3 to 

3.99 

Rb 

2,3,4,6,7,

8 

Rb 9,10 
Rb15,16,20,2

1,24,25,26 

Rb29,30,31,32,

33,34,35,39,40,

42,43,46,50,51, 

Rb55,57,58,

59,61,62,63,

64,65,66 

4 or 

more   
Rb 23 

Rb 28, 

41,44,47,48 
Rb 52,56,60 

Intensit

y per 

microsc

opic 

field 

(10x) 

 

10 to 

19.99 
Rb 3,5,8 Rb 12 Rb 22 Rb 29,42,49 Rb 64 

20 to 

29.99 
Rb 1,7 Rb 9, 10 

Rb 15, 

23,24,26,27 

Rb30,40,41,45,

46,48,50,51 

Rb52,54,55,

58,59,61,63,

67,68 

30 to 

39.99 
Rb 2,4,6 Rb 13 

Rb 

16,17,19,21,2

5 

Rb28,31,32,33,

34,35,36,37,38,

39 

Rb57,60,62,

65,66 

Charac

ter 
Type 

Madhya 

Pradesh 

Karnata

ka 

Maharashtr

a 

Andhra 

Pradesh 
Telangana 

Intensit

y per 

microsc

opic 

field 

(10x) 

40 to 

40.99  
Rb 11 Rb 20 Rb 43,44 Rb 53 

50or 

more   
Rb 14,18 Rb 47 Rb 56 

Hyphal 

size 

(µm) 

9to 11 Rb 3,2,4,8 Rb 10,13 
Rb27,25,24,2

3,22,21 
Rb51, 28, 29 Rb52 

11 to 

13 
Rb 7,6,5,1 Rb 11, 12 

Rb 20, 15, 

26, 14, 19, 18 

Rb 30,31, 32, 

33, 42, 34, 43, 

Rb53,62,68,

54,55,56,64,



44, 35, 36, 46, 

50, 37 

57,58,59 

13 to 

15  
Rb 9 Rb 17,16 

Rb45,47,38,39,

40,48,41,49 

Rb65,60,66,

67,61,63 

Hyphal 

length/

width 

 

 

1 to 

1.5   
Rb 27,25,23 

  

1.5 to 

2.0 

Rb 7, 

8,6,3,4 

Rb 13, 

11, 12 

Rb 24, 22,21, 

26, 

Rb34,43,42,39,

36,35,38,28,44 

Rb60,52,59,

61,56,54,57,

58,62,63 

2.0 to 

2.5 
Rb 5, 2, Rb 10 

Rb 18, 20, 

16, 17, 19, 

14, 

Rb32,51,40,29,

45,50,49,31,41,

46,33,37 

Rb53,55,66,

67,64, 

2.5 to 

3.0 
Rb 1 Rb 9 Rb 15 Rb 30,48,47 Rb 68,65 

Scleroti

a size 

(µm) 

50 to 

100   
Rb 23, 19 Rb 46, 48 Rb 57 

100 to 

150 

Rb 

6,3,5,8,4 

Rb 

9,13,11,1

2 

Rb20,22,21,1

5,18,24,14,27 

Rb29,40,31,39,

37,42,44,33,45,

43,35,30 

Rb52,64,53,

67,66,56 

150 to 

200 
Rb 7, 2, 1 Rb10 

Rb 

16,25,26,17 

Rb36,32,49,41,

47,38,34,51,28 

Rb59,60,62,

65,63,54,61 

>200 
   

Rb50 Rb 55,68,58 



Rb 20 and Rb 22, Rb 21 and Rb 15 which were at par with each other.  The length/ 

width varied from 1.01 (Rb 27) to 1.64 (Rb 23). There was significant difference between 

the isolates of Rb 26 and Rb 14, Rb 25 and Rb 23 while others were at par with each other. 

Among Andhra Pradesh isolates, the sclerotia size varied from 54.86 x 45.49 (Rb 

46) to 214.55 x 182.8 µm (Rb 50).  There was significant difference between the isolates 

Rb 46, Rb 48, Rb 29, Rb 40, Rb 39, Rb 37, Rb 45, Rb 43, Rb 30, Rb 36, Rb 32, Rb 47, Rb 

38, Rb 34, Rb 51 and Rb 50 while others viz, Rb 40 and Rb 31, Rb 41 and Rb 47, Rb 51 

and Rb 28 were at par with each other. The length/ width varied from 1.01 (Rb 43) to 1.27 

(Rb 47).  There was significant difference between the isolates Rb 43, Rb 28, Rb 33, Rb 39 

and Rb 47 while others viz, Rb 49, Rb 38, Rb 48, Rb 29, Rb 36, Rb 33, Rb 30 and Rb 

51were at par with each other.  

Among Telangana isolates, the sclerotial size varied from 97.56 x 71.96 (Rb 58) to 

216.08 x 181.09 µm (Rb 59). There was significant difference between the Rb 58, Rb53, 

Rb 66, Rb 65, Rb 64, Rb 56, Rb 54, Rb 52, Rb 60, Rb 57, Rb 55, Rb 63, Rb 67 and Rb 59 

while there was no significant difference between the Rb 66 and Rb 62; Rb 60, Rb 68 and 

Rb 61. The length/ width varied from 1.01 (Rb 66) to 1.36 (Rb 58). There was significant 

difference between the Rb 66, Rb 64, Rb 61, Rb 60 and Rb 58 while there was no 

significant difference between the Rb 66, Rb 54, Rb 53, Rb 67 and Rb 65; Rb 62, Rb 63, 

Rb 52, Rb 68, Rb 56 and Rb 55. 

Sclerotial texture 

Based on sclerotial texture, the isolates were categorized into rough and smooth 

texture. Rough texture was observed in 25 isolates while smooth texture was observed in 

43 isolates.  

In Madhya Pradesh isolates, smooth texture was observed in all except Rb 1 and Rb 

4.  Among Karnataka isolates, rough texture of the sclerotia seen in Rb 9 and Rb 11 while 

smooth in Rb 10, Rb 12 and Rb 13. 

Among Maharashtra isolates, the texture of the sclerotia was rough in Rb 22, Rb 14, 

Rb 24, Rb 26, Rb 22, Rb 15, Rb 21, Rb 20 and smooth in Rb 27, Rb 17, Rb 19, Rb 18, Rb 

16, Rb 23. Among Andhra Pradesh isolates, the texture of the sclerotia varied from rough 

14 isolates to smooth in 10 isolates. Among Telangana isolates, Mostly the texture of the 

sclerotia was smooth except in Rb 55, Rb 57 and Rb 66 which had rough texture.  

Sclerotial shape 



The isolates were categorized into irregular, round and ovoid groups based on shape 

of sclerotia.  Irregular shaped sclerotia were observed in 17 isolates (Rb 22, Rb 29, Rb 30, 

Rb 24, Rb 55, Rb 26, Rb 15, Rb 48, Rb 25, Rb 21, Rb 4, Rb 37, Rb 28, Rb 20, Rb 11, Rb 

14 and Rb 47) while ovoid shaped sclerotia were observed in 23 isolates (Rb 3, Rb 12, Rb 

49, Rb 63, Rb 52, Rb 61, Rb 23, Rb 45, Rb 50, Rb 59, Rb 40, Rb 57, Rb 16, Rb 2, Rb 17, 

Rb 19, Rb 66, Rb 35, Rb 34, Rb 60, Rb 13, Rb 18 and Rb 56). Round shape of sclerotia 

was observed in 28 isolates (Rb 64, Rb 5, Rb 42, Rb 8, Rb 46, Rb 7, Rb 41, Rb 54, Rb 1, 

Rb 10, Rb 58, Rb 68, Rb 67, Rb 51, Rb 27, Rb 9, Rb 31, Rb 32, Rb 33, Rb 38, Rb 65, Rb 

39, Rb 36, Rb 6, Rb 62, Rb 44, Rb 43 and Rb 53).  

Sclerotial initiation 

The time taken for initiation of sclerotia ranged from 1.7 (Rb 1) to 4.3 (Rb 4) days 

among Madhya Pradesh isolates but among Karnataka isolates, it ranged from 2 (Rb 13) to 

3.3 (Rb 10) days. In Maharashtra isolates, sclerotial initiation was observed from 2.0 (Rb 

22, Rb 27, Rb 17, Rb 14) to 4.3 (Rb 23) days. The isolates which produced sclerotia on 

second day differed significantly from those produced sclerotia on third and fourth day and 

vice- versa. Among Andhra Pradesh isolates, the time taken for sclerotial initiation was 

from 2.0 days (Rb 49, Rb 45, Rb 38) to 4.3 days (Rb28). Among Telangana isolates, the 

time taken for sclerotial initiation was from 2.0 (Rb 54, Rb 67, Rb 53) to 4.0 (Rb 52, Rb 60, 

Rb 56) days. 

Sclerotial intensity 

The number of sclerotia per microscopic field when observed through 10x objective 

varied from 11.67 (Rb 63) to 70.67 (Rb 56). Isolates Rb 3, Rb 12 and Rb 64; Rb 1, Rb 10, 

Rb 52, Rb 58, Rb 61, Rb 68, Rb 30, Rb 23, Rb 24, Rb 67 and Rb 45 were found at par with 

each other. Rb 53, Rb 18, Rb 14, Rb 47 and Rb 56 had highly significant difference with 

other.  

  The sclerotial intensity per microscopic field (10x) varied from 11.67 (Rb 3) to 

38.33 (Rb 6) among Madhya Pradesh isolates. Among Karnataka isolates, the sclerotial 

intensity per microscopic field varied from 13.67 (Rb 12) to 42.67 (Rb 11). There was 

significant difference among the isolates for sclerotial intensity per microscopic field. 

Among Maharashtra isolates, the sclerotial intensity per microscopic field varied from 

18.67 (Rb 22) to 57.33 (Rb 14). There was significant difference among the isolates of Rb 

22, Rb 23, Rb 27, Rb17, Rb 20, Rb 18 and Rb 24 while others were at par with each other.  



Among Andhra Pradesh isolates, the sclerotial intensity per microscopic field varied 

from 17.67 (Rb 42) to 60.00 (Rb 47). There was significant difference between the isolates 

Rb 42, Rb 46, Rb 30, Rb 5, Rb 32, Rb 35, Rb 44 and Rb 47 while others viz, Rb 45, Rb 50, 

Rb 51, Rb 48 and Rb 40; Rb 37, Rb 38, Rb 35, Rb 39, Rb 28 and Rb 34 were at par with 

each other while among Telangana isolates, the sclerotial intensity per microscopic field 

varied from 14.00 (Rb 64) to 70.67 (Rb 56). There was significant difference between the 

Rb 63, Rb 64, Rb 55, Rb 57, Rb 66, Rb 60, R 53 and Rb 56 while there was no significant 

difference between the Rb 54, Rb 52, Rb 61, Rb 58 and Rb 68; Rb 66 and Rb65; and Rb60 

and Rb62.  

Similar studies on cultural and morphological characters of Rhizoctonia bataticola 

were conducted by Sharma et al., (2012) and Gupta et al., (2012). Sharma et al., (2012) 

reported the variation among 94 isolates of R. bataticola collected from chickpea and 

concluded that the light black (52.12%) colony colour was more predominant. Different 

shapes of sclerotia viz., oblong, ellipsoid, irregular and round type were also recorded. The 

isolates varied for length and width of sclerotia. However, the length/width ratio ranged 

from 1.1 to 1.8. Most of the isolates did not produce aerial mycelium except Madhya 

Pradesh and Andhra Pradesh isolates which produced very high aerial mycelium. Most of 

the isolates grew very fast and covered the plate within 96 h, while other isolates such as 

RB 21, RB 31, RB 7, RB 84 and RB 87 grew slowly and showed appressed growth. 

Sclerotial time of initiation varied from 36 to 48h after inoculation. Sclerotial intensity 

varied from very less to high and was moderate in majority of the isolates. These findings 

were in accordance with observations recorded in the present study. 

Similarly, Gupta et al. (2012) when worked with forty isolates of R. bataticola of 

chickpea collected from Madhya Pradesh, Chhattisgarh, Gujarat and Maharashtra found the 

sclerotial size ranging from 103.3-117.2 x 90.1-106.5 μm (bigger size) to 72.7-87.5 x 57.1-

73.5 μm (smaller size). Based on sclerotial morphology, they categorized the isolates into 

two groups’ viz., oblong shape with irregular edges and round with regular edges. These 

results were in agreement with the present work of difference in sizes and shapes of 

sclerotia and results reveal that the morphological characters of the R. bataticola vary with 

the isolate and age of the culture.  

 



4.5. Correlation between cultural, morphological and pathological characters of 

Rhizoctonia bataticola 

Correlation studies were done to know the effect of different parameters on the 

virulence of Rhizoctonia bataticola isolates. The results (Table 4.8) indicated that 

significant positive correlation was observed between colony texture and aerial mycelium 

(r=0.658), sclerotia texture and its shape (r=0.544), sclerotia length and width (r=0.925) 

while significant negative correlation was observed between time taken for sclerotial 

initiation and colony growth (r= -0.485), incubation period and disease severity(r= -0.974), 

hyphal width and hyphal length/width (r= -804).   

With respect to disease severity, positive correlation was observed with colony 

growth, pigmentation, hyphal width and length, sclerotial length, width, length/ width, 

sclerotial shape, texture and its initiation, sclerotial intensity per microscopic field (10x) 

while negative correlation was observed with aerial mycelium, colony texture, hyphal 

length/ width but these were not significant.  

Similar results were also observed by Sharma et al. (2012) in R. bataticola isolates 

of chickpea as significant positive relationship between time taken for sclerotial initiation- 

sclerotial intensity, disease severity- time taken for sclerotial initiation, isolates-disease 

severity, isolates-sclerotial intensity and disease severity-sclerotial intensity was observed. 

Hooda and Grover (1988) also reported relationship between sclerotial intensity and 

pathogenicity as more pathogenic isolates produced more sclerotia, but Manici et al. (1992) 

observed no such positive correlation. Simosa and Delgado (1991) observed negative 

correlation between cottony type and sclerotial productions.  

4.5.2. RAPD analysis of Rhizoctonia bataticola 

 The molecular variability among different isolates of R. bataticola was analyzed by 

RAPD analysis using 10 random primers to characterize the population structure of R. 

bataticola in Andhra Pradesh, Karnataka, Maharashtra, Madhya Pradesh and Telangana of 

India. The 10 random primers which produced consistent and reproducible RAPD patterns 

were used for analysis. All the 10 RAPD primers generated 158 polymorphic bands (Fig 4.3). 

When fingerprints of these isolates were compared, some bands common to all isolates were 

observed while others were unique to one or a few isolates. All the RAPD bands produced 

by 10 primers in the 50 isolates of R. bataticola (50 isolates were selected based on the 



 

Table  4.8.Correlation matrix among morphological, cultural and pathological 

characteristics of Rhizoctonia bataticola 

 

Bold values highly significant at 5% CD 

 

 

  

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Aerial 

mycelium 1 

1.0

00                               

Colony 

texture 2 
0.6

58 

1.0

00                             

Radial 

growth 3 

0.2

98 

0.2

59 

1.0

00                           

Pigmentation 4 

0.2

42 

0.1

32 

-

0.0

14 

1.0

00                         

Sclerotia 

shape 5 

-

0.0

46 

-

0.0

12 

0.0

93 

-

0.0

43 

1.0

00                       

Sclerotia 

texture 6 

0.0

11 

0.0

33 

0.0

08 

-

0.1

17 
0.5

44 

1.0

00                     

Disease 

severity 7 

-

0.0

05 

-

0.0

91 

0.0

28 

0.0

37 

0.1

33 

0.1

35 

1.0

00                   

Hyphallengt

h/ width 8 

0.1

00 

0.0

29 

0.0

92 

0.0

86 

-

0.1

79 

-

0.2

16 

-

0.2

4 

1.0

00                 

Hyphal 

width 9 

-

0.1

07 

-

0.0

90 

-

0.0

08 

-

0.1

48 

0.2

67 

0.2

67 

0.3

49 

-

0.8

04 

1.0

00               

Hypal length 

1

0 

-

0.0

02 

-

0.0

84 

0.1

27 

-

0.0

26 

0.0

64 

-

0.0

94 

0.1

53 

0.3

7 

0.2

06 

1.0

00             

Incubation 

period 

1

1 

-

0.0

01 

0.0

74 

0.0

05 

-

0.0

35 

-

0.1

23 

-

0.1

49 

-

0.9

74 

0.2

35 

-

0.3

29 

-

0.1

26 

1.0

00           

Sclerotia 
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differences between isolates with respect to cultural and morphological variation) were 

subjected to hierarchical cluster analysis based on the principle of UPGMA and a 

dendrogram was generated (Fig 4.4). The similarity coefficient ranged from 0.63 to 0.92 

indicating that no any two or more isolates were 100% similar. The highest similarity 

coefficient (0.92) was between isolates Rb 2 and Rb 4. The UPGMA cluster analysis 

grouped the isolates into three major groups’ viz., group I, group II and group III based on 

high magnitude of genetic diversity among the isolates of R. bataticola. Group I consisted 

of 36 isolates. These were again sub grouped into cluster IA and cluster IB. Cluster IA 

consisted of 28 isolates. Of these, 7 isolates were from Madhya Pradesh, 5 isolates were 

from Karnataka, 8 isolates were from Maharashtra, 7 isolates were from Andhra Pradesh 

and one was from Telangana. Cluster IB consisted of one each from Maharashtra and 

Telangana and 6 from Andhra Pradesh. Group II consisted of 12 isolates. These were again 

sub grouped into cluster II A and cluster II B. Cluster II A consisted of two isolates. Of 

these, one was from Maharashtra and the other was from Telangana. Cluster II B consisted 

of 10 isolates. Of which, Rb 15 was from Maharashtra and Rb 48 was from Andhra 

Pradesh. The remaining eight isolates were from Telangana. Group III consisted of two 

isolates viz., Rb 26 and Rb 32 from Maharashtra and Andhra Pradesh, respectively. 

The results indicated that, all the isolates of Madhya Pradesh and Karnataka were 

present under same group IA. The Maharashtra isolates were distributed across all the three 

groups and were found in IA, IIA and III, while the Andhra Pradesh isolates were grouped 

under all the three groups, but were found in IA, IB, IIB and III. The Telangana isolates 

were found in IA, IB, IIA and IIB groups. The results of the present study also indicated 

that, all the isolates were not necessarily showing the geographical linearity.    

Similar observations were noted by Aghakhani and Dubey (2009) in genetic 

diversity studies conducted in 27 isolates (23 from chickpea and 4 from other host crops) of 

R. bataticola representing 11 different states of India by RAPD. The clusters generated by 

RAPD grouped all the isolates into six categories at 40% genetic similarity.  

The results of study conducted by Manjunatha (2009) were also in agreement with 

present study representing high level of diversity among the isolates of Rhizoctonia 

bataticola from chickpea of different as well as same state. Thirty isolates were categorized 

into three groups with 4, 16 and10 in group I, II and III respectively by using three primers 

OPO-10, OPO-12 and OPN-12. However, the three isolates (RG-18, RG-19 and RG-20) of 



group II exhibited 100 per cent similarity. Isolates RB-29 and RB-25 from Bidar and 

isolate RG-16 from Gulbarga found genetically divergent among isolates studied.  

4.6 Influence of environmental factors on dry root rot development in chickpea 

4.6.1 Effect of temperature on colony growth of Rhizoctonia bataticola  

Temperature was known to have profound effect on the growth of fungal organism. 

Present studies were taken up to know the optimum, minimum and maximum temperature 

requirements for the growth of pathogen. Five isolates (Rb 2, Rb 13, Rb 22, Rb 40 and Rb 

63) representing 5 different states were selected to conduct the study. All the isolates were 

grown at seven different temperatures viz., 15ºC, 20ºC, 25ºC, 30ºC, 35ºC, 40ºC and 45ºC. 

The data on colony growth was presented in the table 4.9. 

At 48h after inoculation, among the seven different temperatures tested, the 

maximum colony growth was observed in Rb 22 (13.0mm) and no growth was observed in 

Rb 63 at 15ºC whereas the maximum colony growth was observed in Rb 63 (38.3mm) and 

the least in Rb 2 (27.7 mm) at 20ºC. Maximum colony growth of 54.0, 77.0 and 15.0 mm in 

Rb 22 and the least of 44.0, 62.3 and 3.7 mm in Rb 2 was recorded at 25, 30 and 40ºC 

respectively. In contrast to this, maximum colony growth was observed in Rb 40 (85.3mm) 

and the least in Rb 2 (71.3 mm) at 35ºC. The difference between isolates at different 

temperatures was significant except in Rb 13 and Rb 63 at 30 ºC. 

At 72h after inoculation (Fig 4.5), the maximum colony growth of 25.3 and 67.0 

mm in Rb 22 and the least growth of 17.3 and 60.3 mm was observed in Rb 13 at 15 and 

20ºC respectively while at 25ºC, maximum colony growth was observed in Rb 13 

(84.7mm) and the least in Rb 2 (67.0 mm). At 30ºC, maximum colony growth was 

observed in Rb 13, Rb 40, Rb 22 (90 mm) whose difference is at par with each other and 

the least in Rb 2 (82.0mm). At 35ºC, colony growth reached its maximum (90mm) in all 

the isolates which were at par with each other. At 40ºC, maximum colony growth was 

observed in Rb 22 (20.7mm) and the least in Rb 2 (8.3mm). There was significant 

difference between isolates at 15, 20, 25 and 40ºC except in Rb 13 and Rb 40.   

At 96h after inoculation, maximum colony growth of 35.3 and 85.3 mm was 

recorded in Rb 22 while the least was observed in Rb 40 (20.3mm) and Rb 13 (74.7mm) at 

15 and 20ºC respectively. At 25ºC, 30ºC and 35ºC, all the isolates had covered the entire 90  
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Fig 4. 4. UPAGMA dendrogram of 50 isolates of Rhizoctonia bataticola
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Fig 4.3. RAPD banding profile of Rhizoctonia bataticola isolates with primer OPC 06 

1-Rb 1, 2-Rb 2, 3-Rb 3, 4-Rb 4, 5-Rb 5, 6-Rb 6, 7-Rb 7, 8-Rb 8, 9-Rb 9, 10-Rb 10 

11-Rb 11, 12-Rb 12, 13-Rb 13, 14-Rb 14, 15-Rb 15, 16-Rb 16, 17-Rb 17, 18-Rb 20 

19-Rb 21, 20-Rb 23, 21-Rb 25, 22-Rb 26, 23-Rb 27, 24-Rb 29, 25-Rb 31, 26-Rb 32 

27-Rb 33, 28-Rb 35, 29-Rb 36, 30-Rb 38, 31-Rb 42, 32-Rb 43, 33-Rb 44, 34-Rb 45 

35-Rb 46, 36-Rb 47, 37-Rb 48, 38-Rb 50, 39-Rb 51, 40-Rb 53, 41-Rb 55, 42-Rb 56 

43-Rb 61, 44-Rb 62, 45-Rb 63, 46-Rb 64, 47-Rb 65, 48-Rb 66, 49-Rb 67, 50-Rb 68 
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mm Petri plate. The difference between the isolates at 25, 30 and 35ºC was at par with each 

other. Maximum colony growth was observed in Rb 22 (24.0mm) and the least in Rb 2 

(10.7mm) at 40ºC. No growth was observed till 96h after inoculation in any isolate and 

medium also became dry.  

The maximum colony growth was observed 72h after inoculation in all five isolates 

at 35ºC. After 96h of incubation, all the isolates had covered Petri plates at 25ºC and 30ºC. 

The sclerotial initiation was started after 48 hours at 30ºC and 35ºC. The sclerotial 

initiation started 72h after inoculation at 25ºC and it was observed at 96h after incubation in 

20ºC.  At 15ºC, it was observed that the growth was very slow and sclerotial initiation was 

observed after 144 hours after inoculation.  

The optimum growth of the fungal isolates was found in 35ºC (79.3, 90.0 and 90.0 

mm at 48, 72 and 96 hours after inoculation respectively). The next best temperature was 

30ºC with colony growth of 71.3, 88.1 and 90.0 mm at 48, 72 and 96 hours after 

inoculation respectively) followed by 25ºC, 20ºC and 15ºC. There was very meager growth 

in 40ºC (10.4, 15.0 and 17.5mm at 48, 72 and 96 hours after inoculation respectively) and 

no growth was observed at 45ºC.   Among means of the isolates, there was significant 

difference between the isolates at three time intervals except at 96 hours after inoculation 

between Rb 2 and Rb 40. 

The above results were supported by Khan et al. (2012) as they also observed 

pathogen growth over a wide range of temperature from 100C to 450C, but the optimum 

temperature for its growth was found to be 300C. The next best temperature for its growth 

was recorded 350C. Statistically the growth of the pathogen gradually decreased both at 

below 300C and above 350C. Patel and Patel (1990) also reported 35°C to be optimum 

temperature for growth and sclerotial formation of M. phaseolina in sesame. 

 

4.6.2 Effect of temperature on development of disease  

There was very significant relation between the temperature and the development of 

the disease. The disease severity on the BG 212 cultivar was observed after seven days of 

incubation after inoculation at different temperatures. The average disease severity at 

different temperatures was given in the Table 4.10.  

Maximum disease severity rating was recorded in Rb 2 and Rb 40 (1.7) and no 

symptom was observed in Rb 63 (1.0) inoculated plants at 15ºC. In contrast, maximum 

disease severity rating was recorded in Rb 63 (3.4) and the least in Rb 22 (2.9) inoculated  



 

  



Table 4.9. Colony diameter of Rhizoctonia bataticola isolates at different temperatures 

under in vitro condition 

48 HAI (mm)* 

Temperature (˚C) Rb 2 
Rb 

13 
Rb 22 

Rb 

40 
Rb 63 

Mean 

15 4.0 3.3 13.0 6.7 0.0 5.4 

20 27.7 32.7 37.0 31.7 38.3 33.5 

25 44.0 53.7 54.0 51.3 50.0 50.6 

30 62.3 71.3 77.0 75.0 71.0 71.3 

35 71.3 82.0 80.0 85.3 77.7 79.3 

40 3.7 9.3 15.0 13.7 10.3 10.4 

45 0.0 0.0 0.0 0.0 0.0 0.0 

Mean 30.4 37.7 39.4 36.5 35.3  

72  HAI  (mm) 

Temperature (˚C) Rb 2 
Rb 

13 
Rb 22 

Rb 

40 
Rb 63 

Mean 

15 20.0 17.3 25.3 17.7 18.3 19.7 

20 64.0 60.3 67.0 61.0 61.7 62.8 

25 67.0 84.7 82.0 80.0 71.7 77.1 

30 82.0 90.0 90.0 90.0 88.3 88.1 

35 90.0 90.0 90.0 90.0 90.0 90.0 

40 8.3 14.7 20.7 18.3 13.0 15.0 

45 0.0 0.0 0.0 0.0 0.0 0.0 

Mean 47.3 52.3 53.6 50.0 49.0  

96   HAI (mm) 

Temperature (˚C) Rb 2 Rb 13 Rb 22 
Rb 

40 
Rb 63 

Mean 

15 25.3 21.3 35.3 20.3 24.3 25.3 

20 80.3 74.7 85.3 78.3 75.0 78.7 

25 90.0 90.0 90.0 90.0 90.0 90.0 

30 90.0 90.0 90.0 90.0 90.0 90.0 

35 90.0 90.0 90.0 90.0 90.0 90.0 

40 10.7 17.3 24.0 20.0 15.3 17.5 

45 0.0 0.0 0.0 0.0 0.0 0.0 

Mean 55.2 57.0 59.2 55.2 54.9  

Factors 
CD 

48 HAI 72 HAI 96 HAI 

Temperature 0.64 0.54 0.55 

Isolate 0.54 0.46 0.47 

Temperature x Isolate 1.42 1.21 1.23 

HAI – Hours after inoculation    * mean of three replications 

 



Table 4.10. Disease severity (1-9 rating) of  Rhizoctonia bataticola isolates on BG 212 at different temperatures 

Isolates 

Temperatures (˚C) 

 

15 20 25 30 35 40 45 Mean 

Rb 2 1.7 3.1 6.7 7.4 8.3 9.0# 9.0# 6.5 

Rb 13 1.3 3.0 7.2 8.2 8.7 9.0# 9.0# 6.6 

Rb 22 1.3 2.9 7.0 7.9 8.3 9.0# 9.0# 6.5 

Rb 40 1.7 3.2 6.5 8.0 8.1 9.0# 9.0# 6.5 

Rb 63 1.0 3.4 7.4 8.2 9.0 9.0# 9.0# 6.7 

control 1.0 1.0 1.0 1.0 1.0 1.0## 1.0## 1.0 

Mean 1.4 3.1 7.0 7.9 8.5 9.0 9.0 
 

 
Factors C.D. 

Temperature (T) 0.2 

Isolates (I) 0.17 

T x I 0.45 
#Mortality of plants due to combined effect of physiological wilting and 

Rhizoctonia bataticola 
##Plants showed physiological wilting 

* mean of three replications 
 



plants at 20ºC. Maximum disease severity rating of 7.4 in Rb 63 inoculated plants and the 

least in Rb 40 (6.5) and Rb 2 (6.7) which were at par with each other in inoculated plants at 

25ºC. At 30ºC, maximum disease severity was observed in Rb 63 and Rb 13 (8.2) and the 

least in Rb 2 (7.4). At 35ºC, maximum disease severity was observed in Rb 63 (9.0) and 

least was observed in Rb 40 (8.1) inoculated plants. At 40 and 45ºC, mortality of plants was 

due to combined effect of physiological wilting and Rhizoctonia bataticola isolates. In 

control, plants were shriveled at 40ºC whereas at 45ºC there was complete physiological 

wilting.  It was also supported by the scarce and absence of mycelial growth in Petriplates 

at 40 and 45ºC respectively in all the isolates. 

 The optimum temperature for dry root rot development was 35°C as maximum 

disease severity rating of 8.5 was observed irrespective of the isolate. This was followed by 

30°C (7.9) followed by 25°C (7.0). It was observed that 20°C and 15°C had helped in the 

development of the lesions but could not develop further. The disease severity was very 

low 1.4 rating at 15°C while it was 3.1 at 20°C. 

Among Rb 2, Rb 13, Rb 22 and Rb 40 isolates, there was no significant difference 

while Rb 63 was virulent isolate compared to others. The plants had showed symptoms on 

the tap root leaving the lateral roots unaffected at 25°C. At 30, 35, 40, 45°C, there was 

complete blackening of the roots and the reisolation from the roots showed the presence of 

Rhizoctonia batatiocla. The uninoculated plants did not show any symptoms except at 40 

and 45°C which showed physiological wilting and death of plants by complete drying 

respectively. 

Similar observations were recorded by Sharma and Pande (2013) as disease 

incidence of dry root rot was significantly affected by high temperature. Out of five 

temperature levels viz., 15°C, 20°C, 25°C, 30°C and 35°C tested, chickpea predisposed to 

dry root rot early and severity was more at 35°C. Singh and Mehrotra (1982) observed 

increased levels of seed exudates when incubated at 35ºC than at 15 and 25ºC which 

contributed to increased pre-emergence damping off in gram seedling by R. bataticola. 

This study clearly demonstrated high temperature (35ºC) was the climate change 

predisposing chickpea to R. bataticola infection, colonization and development of disease. 

4.6.3 Effect of osmotic potential and temperatures on growth of Rhizoctonia bataticola  

Osmotic potential was recognized as an important parameter in the growth of 

pathogenic fungi. Soil fungi respond to fluctuations in the osmotic potential and 

temperature by changes in the metabolic activity and growth rate. Growth rate of isolate Rb  



  

Table 4.11. Colony growth of Rhizoctonia bataticola at different levels of osmotic potentials and temperatures 

 
NaCl KCl Dextrose 

Temp (ºC) 20 25 30 35 40 Mean 20 25 30 35 40 Mean 20 25 30 35 40 Mean 

OP (-MPa) 24 hours after incubation(mm)* 

Control 19.0 25.0 35.3 41.3 5.3 25.2 19.0 25.0 35.3 41.3 5.3 25.2 19.0 25.0 35.3 41.3 5.3 25.2 

0.5 12.0 23.0 38.6 44.5 19.5 27.5 15.0 21.5 42.5 49.5 27.0 31.1 17.0 29.5 51.5 75.5 17.5 38.2 

1.0 0.0 0.0 7.5 16.8 0.0 4.9 0.0 12.0 20.8 31.5 0.0 12.9 15.5 27.5 47.5 64.2 29.0 36.7 

1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.5 0.0 2.1 8.0 16.5 34.5 53.5 20.0 26.5 

2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.0 13.5 23.0 41.5 14.5 20.3 

2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.5 13.5 22.2 7.5 10.7 

Mean 5.2 8.0 13.6 17.1 4.1 
 

5.7 9.8 16.4 22.1 5.4 
 

11.4 20.4 34.2 49.7 15.6 
 

48 hours after incubation(mm) 

Control 38.3 50.0 62.3 71.3 10.3 46.4 38.3 50.0 62.3 71.3 10.3 46.4 38.3 50.0 62.3 71.3 10.3 46.4 

0.5 27.5 42.0 67.3 74.0 23.5 46.9 38.8 57.0 72.0 77.0 45.0 57.9 48.2 72.0 77.5 80.0 20.0 59.5 

1.0 7.0 9.5 16.5 30.0 0.0 12.6 15.0 26.0 54.5 61.7 0.0 31.4 43.0 64.5 76.0 80.0 43.5 61.4 

1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.0 15.5 30.0 0.0 11.7 25.5 45.5 72.5 80.0 39.5 52.6 

2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 23.5 42.5 71.5 73.5 37.0 49.6 

2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.5 30.0 52.5 67.5 13.5 35.2 

Mean 12.1 16.9 24.4 29.2 5.6 
 

15.3 24.3 34.1 40.0 9.2 
 

31.8 50.8 68.7 75.4 27.3 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

72 hours after incubation(mm) 

Control 61.7 71.7 80.0 80.0 13.0 61.3 61.7 71.7 80.0 80.0 13.0 61.3 61.7 71.7 80.0 80.0 13.0 61.3 

0.5 46.0 64.7 80.0 80.0 23.5 58.8 72.0 77.0 80.0 80.0 45.0 70.8 79.0 80.0 80.0 80.0 20.0 67.8 

1.0 14.0 12.0 23.3 39.3 0.0 17.7 27.0 47.0 74.3 77.5 13.0 47.8 75.0 80.0 80.0 80.0 43.5 71.7 

1.5 0.0 0.0 0.0 0.0 0.0 0.0 11.0 28.0 34.3 52.5 0.0 25.2 52.0 76.5 80.0 80.0 39.5 65.6 

2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 48.5 67.5 80.0 80.0 37.0 62.6 

2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 24.0 60.5 65.0 80.0 13.5 48.6 

Mean 20.3 24.7 30.6 33.2 6.1 
 

28.6 37.3 44.8 48.3 11.8 
 

56.7 72.7 77.5 80.0 27.8 
 

Factors 
CD 

24 48 72 

Source (S) 0.16 0.21 0.18 

Temperature (T) 0.21 0.27 0.23 

Osmotic potential 

(OP) 0.23 0.29 0.26 

S x T 0.36 0.46 0.41 

S x OP 0.39 0.50 0.44 

T x OP 0.51 0.65 0.57 

S x T x OP 0.88 1.12 0.99 



 

 

63 was studied at different osmotic potentials viz., -0.5, -1.0, -1.5, -2.0 and -2.5 MPa 

incubated at five different temperatures viz., 20ºC, 25ºC, 30ºC, 35ºC and 40 ºC. The mean 

mycelium growth at 24 h, 48 h and 72 h after inoculation was presented in the Table 4.11 

and Fig 4.6. 

At 24h after inoculation, the growth of Rhizoctonia bataticola on PDA amended 

with NaCl, KCl and dextrose at five different temperatures showed maximum mean colony 

growth at 35ºC viz., 17.1, 22.1 and 49.7 mm followed by 30ºC of 13.6, 16.4 and 34.2 mm 

respectively. The least growth was observed at 40ºC of 4.1 and 5.4mm whereas in dextrose 

amended PDA least growth was observed at 20ºC (11.4mm). Similar observations were 

also recorded at 48 and 72 h after inoculation except in dextrose where least growth was 

observed at 40ºC. 

At 24 h after inoculation, among different osmotic potential levels of NaCl, KCl 

and dextrose, maximum mean colony growth was observed at -0.5 MPa viz., 27.5 mm, 31.1 

and 38.2 mm respectively where there was significant difference between them while the 

minimum growth was observed in -1.0 (4.9 mm), -1.5 (2.1 mm) and -2.5MPa (10.7 mm) 

respectively. At 48 h after inoculation among different osmotic potential levels of NaCl, 

KCl and dextrose, maximum colony growth was observed in -0.5 MPa of 46.9 and 57.9 

mm respectively in NaCl and KCl amended medium whereas in dextrose amended medium 

it was maximum at -1.0 MPa (61.4 mm) followed by -0.5 MPa (59.5 mm). There was 

significant difference between the means of different salts. Similar observations were also 

recorded at 72 h after inoculation. 

In NaCl amended PDA medium, maximum colony growth of 19.0 and 25.0 mm 

was  recorded at 24 h after inoculation in control at 20 and 25ºC followed by -0.5 MPa of 

12.0 and 23.0 mm respectively. In contrast, maximum colony growth at 30, 35 and 40ºC 

was observed at -0.5 MPa of 38.6, 44.5 and 19.5 mm respectively followed by control. No 

growth was observed from -1.0 to 2.5 MPa at 20, 25 and 40ºC up to 24h after inoculation. 

The difference between maximum and minimum at same temperature and difference 

between the temperatures at same osmotic potential was significant. Similar type of 

observations was only recorded at 48 h after inoculation. At 72 h after inoculation in NaCl 

amended PDA medium,  maximum colony growth of 80 mm was observed at both 30 and 

35ºC in -0.5 MPa and control which were at par with each other. While maximum colony 



growth of 61.7 and 71.7 mm at 20 and 25ºC was observed in control medium respectively 

followed by -0.5 MPa of 46.0 and 64.7 mm respectively. Maximum colony growth at 40ºC 

recorded in -0.5 MPa (23.5 mm) followed by control (13.0 mm). There was no growth in 

the medium at -1.5, -2.0 and -2.5 MPa irrespective of temperature up to 72h after 

inoculation in NaCl amended PDA medium.  

Growth at 24 h after inoculation in KCl amended PDA medium showed maximum 

of 19.0 and 25.0 mm at 20 and 25ºC in control followed by -0.5 MPa osmotic potential of 

15.0 and 21.5 mm respectively. Maximum colony growth of 42.5, 49.5 and 27.0 mm at 30, 

35 and 40ºC was observed at -0.5 MPa respectively followed by control. No growth was 

observed in -1.0 MPa medium at 20 and 40ºC.  The difference between maximum and 

minimum at same temperature and difference between the temperatures at same osmotic 

potential was significant. At 48h after inoculation, maximum colony growth was observed 

at 20, 25, 30, 35 and 40ºC in -0.5MPa of 38.8, 57.0, 72.0, 77.0 and 45.0mm respectively 

followed by control. Growth was observed in the -1.5MPa osmotic potential of 13.0, 15.5 

and 30.0mm at 25, 30 and 35ºC. There was no growth at 40ºC in -1.0 and -1.5MPa. No 

growth was observed at 2.0 and 2.5MPa irrespective of temperature at 48h after inoculation 

in KCl amended PDA medium. There was significant difference between the temperatures 

within same osmotic potential. 

At 72h after inoculation, maximum colony growth was observed at 30 and 35ºC of 

80 mm at 0.5 MPa and control which were at par with each other while maximum colony 

growth at 20, 25 and 40ºC was observed in -0.5 MPa medium of 72.0, 77.0 and 45.0 mm 

respectively. There was no growth in the medium at -2.0 and -2.5 MPa irrespective of 

temperature up to 72h after inoculation. There was significant difference between the 

temperatures within same level of osmotic potential and within same temperature at 

different osmotic potential except at 30 and 35ºC at -0.5MPa and control. 

 

Growth at 24h after inoculation in dextrose amended PDA medium showed 

maximum colony growth of 19.0mm at 20ºC in control followed by -0.5MPa osmotic 

potential of 17.0mm. Maximum colony growth at 25, 30 and 35ºC was observed at -

0.5MPa of 29.5, 51.5 and 75.5mm respectively while at 40ºC it was observed at -1.0MPa of 

29.0mm. No growth was observed on -2.5MPa medium at 20ºC.  The difference between 

maximum and minimum colony growth at same temperature and difference between the 

temperatures at same osmotic potential was significant. At 48 h after inoculation, maximum



  



 

 

colony growth was observed at 20, 25, 30 and 35ºC in -0.5MPa viz., 48.2, 72.0, 77.5 

and 80.0 while at 40ºC it was recorded in -1.0MPa of 43.5mm. There was significant 

difference between the temperatures and osmotic potential except at 35ºC in -0.5, -1.0 and -

1.5MPa. 

At 72h after inoculation, mycelia growth completely covered the Petriplate (80 mm) 

at 30 and 35ºC in all osmotic potential levels except in -2.5MPa (67.5mm) at 30ºC. 

Maximum colony growth of 79.0 mm at 20ºC was observed in -0.5 MPa medium followed 

by -1.0 MPa (75.0mm). The Petriplate was completely covered in -0.5 and -1.0 MPa at 

25ºC followed by -1.5MPa (76.5mm). The maximum growth of 43.5 mm was observed in -

1.0 MPa at 40ºC. At 72h after inoculation, there was significant difference between the 

temperatures except at 30 and 35ºC in all osmotic potentials; also at 25ºC in -0.5 and -

1.0MPa levels. 

The variable response was recorded in growth of Rhizoctonia bataticola in different 

osmotic potentials amended with dextrose, KCl and NaCl at different temperatures viz., 20, 

25, 30, 35 and 40°C.  It was observed that the increase in the osmotic potential and 

temperature had positive effect on the growth of the fungus up to certain level  and then 

onwards, negative effect on the growth of the fungus at higher osmotic potentials (-2.0 to -

2.5MPa at 40ºC).  Exosmosis of the fungus and death was observed at higher osmotic 

levels amended with NaCl and KCl. 

Olaya et al. (1996) conducted similar experiment to know the influence of osmotic 

potential on growth of Macrophomina phaseolina from soyabean at 30ºC on PDA adjusted 

to different osmotic potential with KCl, NaCl and sucrose. Maximum colony growth was 

recorded between -1220 to -1880 J Kg-1 and medium amended with sucrose favoured good 

growth. Garcia et al. (2003) also studied influence of osmotic potential on growth of 

Macrophomina phaseolina from common bean on potato glucose agar adjusted to different 

osmotic potentials with KCl, NaCl and sucrose. Concentrations of NaCl higher than 250 

mM showed significant reduction of M. phaseolina growth while 1000 mM of NaCl 

completely inhibited the growth of pathogen. Sucrose did not cause significant reduction on 



growth at low concentrations. On the contrary, colony growth was favoured by sucrose. 

The above observations were in accordance with the results obtained. 

4.6.4 Effect of soil moisture on disease development 

Soil moisture plays a vital role in the development of plants. It also influences the 

growth of the soil microorganisms. In order to determine the effect of the soil moisture on 

development of dry root rot disease in chick pea, highly susceptible cultivar BG 212 was 

grown in inoculated pots with black and red soils maintained at different moisture levels by 

gravimetric method. Disease severity and disease incidence at 45 DAS in different soil 

moisture levels of black and red soils was presented in Table 4.12. 

The plants grown under 40% and 50% soil moisture showed higher stress by 

drooping and dead. It was considered that 40%  and 50% soil moisture level was 

insufficient for the normal growth of the plants as the plants grown in control (pathogen 

free soil) also showed physiological stress (wilting symptoms due to lack of moisture). No 

physiological stress was found in control pots of both black and red soils from 60% soil 

moisture.  

In black soil the disease severity rating was 9.0, 8.9, 8.1, 6.9, 5.3, 3.8 and 2.3 while 

in red soil, it was 9.0, 8.9, 8.7,  7.9, 6.5, 4.7 and 3.0 at 40, 50, 60, 70, 80, 90 and100% soil 

moisture respectively. The disease severity decreased as the soil moisture increased in both 

the types of soil.  There was significant difference between them. 

Among the selected isolates, Rb 63 showed highest disease severity of 6.7 in black 

soil while 7.5 in red soil. This was followed by Rb 2 of 6.5 and 7.2 in black and red soils 

respectively.  The least disease severity of 5.9 was observed with Rb 40 in black soil and 

6.2 with Rb 13 in red soil respectively. There was significant difference between the 

disease severities. 

The disease progressed slowly with respect to the increase in soil moisture. The 

initial symptoms of yellowing were observed 12 DAS in 40% followed by 13 DAS in 50% 

soil moisture in inoculated soil. But they also showed wilting in control. While in 60% soil 

moisture the dry root symptoms yellowing and upward turning of leaflets was started after 

17 days after sowing. In 40 to 60 per cent soil moisture they were mostly lacking the lateral 

roots and root system became completely black. Red soil had high significant impact on 

disease incidence compared to black soil as the symptoms in red soil started earlier than 

black soil. At 70 and 80% soil moisture content, dry root rot symptoms were observed on 



19 and 21DAS in red and black soils. At 90 and 100% soil moisture, initial symptoms were 

observed 25 and 26 DAS in red and black soils. Disease progressed slowly in 100% soil 

moisture as disease incidence was 25.78% and 33.11% at 45DAS in black and red soil 

respectively.  

 

 

 

 



 

 

 

 



 

 

 

 

 

Table 4.12. Disease severity (1-9rating) of Rhizoctonia bataticola isolates at various soil 

moistures levels in black soil and red soil 

Isolates and severity rating (1-9 scale)* 

Soil 

moisture 

(%) 

Black soil Red soil 

Rb 

2 

Rb 

13 

Rb 

22 

Rb

40 

Rb 

63 

Me

an 

Rb 

2 

Rb 

13 

Rb 

22 

Rb

40 

Rb 

63 

Me

an 

40 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 

50 9.0 8.3 9.0 9.0 9.0 8.9 9.0 8.7 9.0 9.0 9.0 8.9 

60 8.3 7.7 8.5 7.5 8.7 8.1 9.0 7.7 8.7 9.0 9.0 8.7 

70 7.3 6.3 7.3 5.9 7.7 6.9 8.3 6.7 7.3 8.3 8.7 7.9 

80 5.7 6.0 4.7 4.5 5.7 5.3 7.3 5.3 5.7 6.7 7.7 6.5 

90 4.0 4.0 3.3 3.2 4.3 3.8 4.7 3.7 5.0 4.3 5.7 4.7 

100 2.3 2.1 2.2 2.3 2.7 2.3 3.0 2.3 3.3 3.0 3.3 3.0 

Mean 6.5 6.2 6.3 5.9 6.7  7.2 6.2 6.9 7.0 7.5  

* mean of three replications 

 

Factors C.D. 

Soil type (S) 0.12 

Isolate (I) 0.18 

Sx I 0.26 

Soil moisture (M) 0.22 

S xM 0.31 

Ix M 0.49 

S x I x M 0.69 



In the black soil, the disease severity rating was maximum at 60% moisture condition 8.7 in 

Rb 63 followed by Rb 22 (8.5) and Rb2 (8.3), the difference between them was at par with 

each other. The least 7.5 and 7.7 was observed in Rb 40 and Rb13 inoculated plants they 

were at par with each other. The maximum disease severity rating of 7.7 at 70% in Rb 63 

pots followed by Rb 2 and Rb 22 i.e. 7.3 the difference between them was at par with each 

other while the least rating of 5.9 was observed in Rb 40 and significantly different from 

others. At 80% soil moisture, the maximum disease severity rating of 6.0 recorded in Rb 13 

pots and least Rb 40 (4.5). The difference between these isolates was significant while with 

other isolates it was at par. The maximum disease severity in 90% moisture was 4.3 in Rb 

63 and least of 3.2 in Rb 40. The difference between these isolates was significant. The 

disease severity in 100% was maximum 2.7 in Rb 63 and least 2.1 were observed in Rb 13. 

The difference in between isolates was at par with other.  

In the red soil, the disease severity rating in 60% moisture condition was 9.0 in Rb 

2, Rb 40 and Rb 63 and 8.7 in Rb 13 which were at par with each other and least of 7.7 

observed in Rb 13 which was significantly different from others. The disease severity 

rating in 70% was maximum of 8.7 in Rb 63and the least of 6.7 in Rb 13. The difference 

between them was significantly different.  The maximum disease severity rating in 80% 

soil moisture was 7.7 in Rb 63 and least of 5.3 in Rb 13. The maximum disease severity in 

90% soil moisture was 5.7 in Rb 63 and least of 3.7 in Rb 13. The difference between the 

maximum and minimum was significant. The maximum disease severity rating in 100% 

was 3.3 in Rb 63 and least of 2.3 in Rb 13.  Disease progressed slowly at 90% and 100% in 

both black and red soil.  

Similar observations were recorded by Ratnoo et al., (1997) observed that disease 

development was low in flooded soil compared to drier soil (40 to 60% moisture). Sharma 

and Pande (2013) also observed difference in the dry root rot incidence with change in soil 

moisture content. The plants grown in control showed the physiological stress at 40% 

moisture as compared to 60%, 80% and 100%. 40% soil moisture was insufficient for the 

normal growth of the plants. At 60% soil moisture, no physiological stress was found in 

control plants and dry root rot incidence was 100%. Symptoms of dry root rot on aerial 

plant parts were found to be directly related with the disease severity on roots. Blackening 

of the roots initiated 5 days after maintaining the moisture stress at 40% and 60%. Roots 

were apparently free from infection at 80% and 100%. These results supported pathogen 

acts differently with respect to different moisture levels. 



4.6.5 Influence of pH on growth of Rhizoctonia bataticola 

 pH plays an important role in providing nutrients and growth of the organisms. pH 

levels alter the growth behaviour.  Present studies were taken up to know the optimum, 

minimum and maximum pH levels suitable for growth of pathogen. The five fungal isolates 

colony growth on potato dextrose agar medium at pH levels ranging from 3.0 to 11.0 was 

given in the Table 4.13.   

 At 24h after inoculation maximum mean colony growth was observed at pH 5.0 

(67.3 mm) followed by pH 6.0 (64.4 mm) while the least was observed at pH 11.0 (14.6 

mm) followed by pH 10.0 (33.0 mm). There was significant difference between the pH 

levels at 24h after inoculation. Similar observations were also observed at 48h after 

inoculation where there was significant difference between the pH levels except pH 4.0 

(75.0 mm) and pH 7.0 (74.6 mm) which were at par with each other. At 72h after 

inoculation, maximum colony growth of 90.0mm was observed at 5.0, 6.0 and 7.0 pH 

levels which were at par with other. In the remaining pH levels there was significant 

difference between them where the least growth was observed at pH 11 of 53.5 mm. 

 Among selected Rhizoctonia bataticola isolates, maximum colony growth was 

observed in Rb 22 (48.3 mm) followed by Rb 40 (46.0 mm) while the least was observed in 

Rb 2 (38.8 mm). The similar trend was followed at 48h and 72h after inoculation. There 

was significant difference among the isolates at 24, 48 and 72h after inoculation.   

At 24h after inoculation at different pH levels, maximum colony growth of 43.0 

mm was observed at pH 3.0 in Rb 22. In pH 4.0, maximum colony growth was observed in 

Rb 40 (54.7 mm) and least in Rb 2 (42.0 mm). There was significant difference between 

the isolates at pH 4.0. Maximum colony growth at pH 5.0 was observed in Rb 22 and Rb 

13 (68.7 mm) which were at par with other while the least was observed in Rb 40 and Rb 

63 (65.3 mm) followed by Rb 2 (66.3 mm) which were at par with other. At pH 6.0, 

maximum colony growth was observed in Rb 13 (66.3 mm) and least in Rb 63 (56.3 mm) 

where there was significant difference between them. Except in Rb 40 at pH 11 (21.0 mm), 

maximum colony growth was observed in Rb 22 at pH 7.0 (60.3 mm), 8.0 (43.0 mm), 9.0 

(43.3 mm) and 10.0 (43mm) while the least was observed in Rb 2 at pH 7.0 (50.7 mm), 8.0 

(35.0 mm), 9.0 (33 mm), 10.0 (22.7mm) and 11.0 (11.0 mm). There was significant 

difference between the maximum and minimum colony growth of isolates at different pH 

levels at 24h after inoculation. Similar trend was observed at 48h after inoculation.  

 



Table 4.13. Influence of different pH levels on colony growth (mm) of Rhizoctonia 

bataticola isolates 

 

 

pH 

24 HAI 48 HAI 72 HAI 

Rb  

2 

R

b 

13 

Rb 

 22 

Rb 

 40 

R

b 

63 

Me

an 

R

b  

2 

Rb  

13 

R

b 

22 

R

b 

40 

R

b 

63 

Me

an 

R

b 

 2 

R

b 

13 

R

b 

22 

R

b 

40 

Rb  

63 

Me

an 

3.0 
28.

7 

35

.7 

43.

0 

35.

7 

31

.0 

35.

8 

58

.7 

62.

7 

68

.3 

61

.7 

61

.0 

62.

9 

78

.3 

84

.3 

87

.0 

83

.0 

81.

3 

83.

2 

4.0 
42.

0 

44

.3 

52.

7 

54.

7 

46

.7 

48.

4 

69

.0 

74.

3 

78

.3 

78

.3 

71

.0 

75.

0 

82

.3 

85

.7 

90

.0 

90

.0 

85.

3 

87.

0 

5.0 
66.

3 

68

.7 

68.

7 

65.

3 

65

.3 

67.

3 

87

.7 

88.

7 

88

.7 

84

.3 

84

.3 

87.

4 

90

.0 

90

.0 

90

.0 

90

.0 

90.

0 

90.

0 

6.0 
61.

7 

66

.3 

65.

0 

64.

7 

56

.3 

64.

4 

76

.3 

82.

0 

82

.0 

79

.3 

72

.7 

79.

9 

90

.0 

90

.0 

90

.0 

90

.0 

90.

0 

90.

0 

7.0 
50.

7 

55

.7 

60.

3 

54.

7 

51

.7 

55.

4 

73

.0 

74.

0 

77

.7 

73

.7 

74

.7 

74.

6 

90

.0 

90

.0 

90

.0 

90

.0 

90.

0 

90.

0 

8.0 
35.

0 

40

.3 

43.

0 

39.

0 

38

.0 

39.

3 

63

.0 

68.

3 

73

.7 

70

.3 

67

.0 

68.

8 

81

.3 

87

.0 

90

.0 

90

.0 

84.

7 

87.

1 

9.0 
33.

0 

36

.7 

43.

3 

41.

0 

35

.3 

38.

5 

58

.7 

67.

3 

73

.0 

72

.3 

61

.7 

67.

8 

77

.7 

87

.3 

85

.0 

87

.0 

81.

7 

84.

3 

10.0 
22.

7 

31

.3 

40.

3 

37.

7 

25

.7 

33.

0 

44

.7 

57.

7 

69

.3 

62

.3 

50

.3 

58.

5 

75

.0 

77

.0 

87

.0 

76

.7 

74.

7 

78.

9 

11.0 8.7 

10

.7 

18.

0 

21.

0 

15

.0 

14.

6 

17

.0 

26.

3 

37

.3 

46

.3 

31

.7 

31.

7 

38

.3 

53

.8 

61

.8 

60

.0 

61.

7 

53.

5 

Mean 
38.

8 

43

.3 

48.

3 

46.

0 

40

.6   

60

.9 

66.

8 

72

.0 

69

.8 

63

.8   

78

.1 

82

.8 

85

.6 

84

.1 

82.

2   

                   Factors CD 

Hours after 

incubation 24 48 72 

pH 0.59 0.63 0.51 

Isolate 0.44 0.47 0.38 

pH x Isolate 1.32 1.40 1.15 

* mean of three replications 
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pH  11.0

Fig 4.7.  Effect of  pH on colony growth of Rhizoctonia bataticola isolates at 

72 hours after inoculation

 

After 72 h after inoculation (Fig 4.7), maximum colony growth at pH 3.0 was observed in 

Rb 22 (87.0 mm). At pH 4.0 and 8.0, maximum colony growth was observed in Rb 22 and 

Rb 40 (90.0 mm) and least in Rb 2 (82.3 mm and 81.3 mm) respectively. At pH 5.0, 6.0 

and 7.0, maximum colony growth of 90.0 mm was observed in all the isolates. At pH 9.0, 



maximum colony growth was observed in Rb 13 (87.3 mm) and least in Rb 2 (77.7 mm). 

At pH 10.0, maximum colony growth was observed in Rb 22 (87 mm) and least in Rb 63 

(74.7 mm). At pH 11.0, maximum colony growth was observed in Rb 22 (61.8 mm) and 

least in Rb 2 (38.3 mm).  

Similar results were also observed by Khan et al. (2012) while studying wide range 

of pH from 3.0 to 9.0 on Rhizoctonia bataticola in chickpea observed optimum pH for its 

growth was 5.5 followed by 6.0 with increase upto to 7.0 and thereafter it declined. The 

minimum growth of the pathogen was recorded at pH 3.0. R. bataticola isolates from 19 

districts of Madhya Pradesh collected by Jha and Sharma (2005) from 13 different crops 

observed good growth at pH 5.5-7.5, but pH 7.0 was optimum when they tested at different 

pH levels viz., 5.5, 6.0, 6.5, 7.0 and 7.5. Chowdary and Govindaiah (2007) also observed 

similar observations. 

4.7 Biochemical changes associated with dry root development in chickpea 

Infection by pathogens brings about a lot of changes in biochemical processes in the 

host plant.The amount of total sugars, reducing sugars and non reducing sugars, phenols, 

activity of enzymes viz. peroxidase (POD), polyphenol oxidase (PPO) and phenylalanine 

ammonia lyase (PAL) were altered. Amount of variation in the healthy and diseased plants 

of three genotypes were studied at two different moisture levels to understand the inbuilt 

resistance in the plants. It is crucial to know the changes in metabolites at various stages of 

plant- pathogen interaction. Keeping these points in view, sampling was done at three time 

points 15, 30 and 45DAS and the results obtained after following standard protocol were 

presented in respective tables.  

The genotypes showed difference in the development of the disease with respect to 

the soil moisture and the cultivars in inoculated and uninoculated soil. The BG212 

genotype showed disease severity of 9.0 and 3.7 at 60 and 100% soil moisture. Whereas, in 

the genotypes ICCV 5530 and ICCV 8305 showed the disease severity of 4.6 and 4.2 at 

60%  soil moisture and 2.2 and 2.0 at 100% soil moisture at 45 DAS. No symptoms were 

observed in the uninoculated at both 60 and 100% moisture levels.   

 

4.7.1 Total Sugars  

Sugars in the plants act as a biochemical markers to analyse disease severity which 

varies in host cell according to fungal attack. Sugars were precursors for synthesis of 



phenols, phytoalexins, lignin and callose. Hence, they play an important role in defence 

mechanism of plants (Klement and Goodman, 1967). The estimation of these compounds 

help in understanding the extent of host resistance to the pathogen. The amount of total 

sugars was estimated by following anthrone method (Hedge and Hofreiter, 1962) as 

described in materials and methods. The results were presented in the table 4.14 and Fig 

4.8.  

Significantly maximum total sugar were found in 100% soil moisture (10.82 

mg/100 mg of fresh weight) compared to 60% (8.89 mg/100 mg of fresh weight). Plants 

grown in inoculated soil had significantly low total sugar (8.28 mg/100 mg of fresh weight) 

content than plants in uninoculated (11.44 mg/100 mg of fresh weight).  Among the 

genotypes, maximum total sugars was present in ICCV 5530 (11.99 mg/100 mg of fresh 

weight) followed by ICCV 8305 (10.60 mg/100 mg of fresh weight) and least was observed 

in BG 212 (6.98 mg/100 mg of fresh weight). There was significant increase in the total 

sugar content from 15 DAS (4.82 mg/100 mg of fresh weight) to 30DAS (9.56 mg/100 mg 

of fresh weight) and maximum was recorded at 45 DAS (15.20 mg/100 mg of fresh 

weight). There was significant difference between the factors. In interaction between 

moisture and time, maximum total sugar was observed at 45DAS (17.45 mg/100 mg of 

fresh weight) and the least (4.20 mg/100 mg of fresh weight) was observed at 100% soil 

moisture at 45 and 15 DAS respectively. In interaction between moisture and soil 

condition, maximum total sugar was present in uninoculated at 100% soil moisture of 12.78 

mg/100 mg of fresh weight while the least was observed at 60% in inoculated soil of 7.69 

mg/100 mg of fresh weight.   

In interaction between moisture and genotype, maximum total sugar was recorded 

at 100% soil moisture followed by 60% in all the genotypes. The maximum total sugar was 

observed in ICCV 5530 of 13.27 mg/100 mg of fresh weight while the least was observed 

in BG 212 of 6.51 mg/100 mg of fresh weight.   

In interaction between time point and genotype, it was observed that there was 

increase in total sugar with increase in time in all the genotypes. The maximum total sugar  

 

Table 4.14.  Sugars in chickpea genotypes grown in inoculated and unioculated soils at different 

moisture levels 



Factor 
Genotypes and sugar content (mg 100 mg-1 fresh weight) 

Total sugars Reducing sugars Non reducing sugars 

Soil 

moistur

e (%) 

Time 

point 

(DAS) 

Pathoge

n in soil 

BG 

212 

ICCV 

5530 

ICCV 

8305 

BG 

212 

ICCV 

5530 

ICCV 

8305 

BG 

212 

ICCV 

5530 

ICCV 

8305 

60 

15 

Uninocu

lated 
4.07 6.24 5.30 

2.3

3 
3.13 2.77 

1.7

4 
3.11 2.53 

Inoculat

ed 
4.42 6.73 5.91 

3.1

0 
4.85 4.19 

1.3

3 
1.88 1.71 

30 

Uninocu

lated 
7.45 10.11 9.21 

4.5

6 
5.71 5.11 

2.8

9 
4.40 4.11 

Inoculat

ed 
5.87 8.69 8.43 

3.3

6 
5.30 5.06 

2.5

1 
3.44 3.38 

45 

Uninocu

lated 

12.6

2 
19.21 16.67 

7.6

8 
11.72 10.17 

4.9

4 
7.49 6.49 

Inoculat

ed 
4.60 13.26 11.26 

2.9

9 
8.56 7.11 

1.6

1 
4.70 4.15 

100 

15 

Uninocu

lated 
3.45 4.65 4.26 

2.1

0 
2.88 2.68 

1.3

4 
1.77 1.58 

Inoculat

ed 
3.73 4.72 4.37 

2.4

7 
3.12 2.88 

1.2

6 
1.60 1.49 

30 

Uninocu

lated 
8.62 15.34 13.21 

5.9

8 
10.25 9.25 

2.6

4 
5.09 3.96 

Inoculat

ed 
6.31 10.84 10.62 

3.7

5 
6.63 6.41 

2.5

6 
4.21 4.20 

45 

Uninocu

lated 

16.3

4 
25.52 23.65 

9.9

7 
16.08 15.98 

6.3

6 
9.44 7.67 

Inoculat

ed 
6.30 18.56 14.36 

3.9

7 
11.88 9.48 

2.3

3 
6.68 4.88 

  Factor   CD 

Soil moisture (M) 0.05 0.03 0.02 

Time (T) 0.06 0.04 0.02 

Pathogen in soil (S) 0.05 0.03 0.02 

Genotype (G) 0.06 0.04 0.02 

M x T 0.08 0.05 0.03 

M x S 0.07 0.04 0.03 

T x S 0.08 0.05 0.03 

M x G 0.08 0.05 0.03 

T x G 0.10 0.06 0.04 

S x G 0.08 0.05 0.03 

M x T x S 0.12 0.07 0.04 

M x T x G 0.14 0.09 0.05 

M x S x G 0.12 0.07 0.04 

T x S x G 0.14 0.09 0.05 

M x T x S x G 0.20 0.13 0.08 

 

was present in ICCV 5530 of 19.14mg/100 mg of fresh weight at 45 DAS while the 

least was observed in BG 212 of 3.92 mg/100 mg of fresh weight at 15 DAS.   



In interaction between soil condition and genotype, it was observed that maximum 

total sugar was present in plants grown in uninoculated soil compared to plants grown in 

inoculated soil in all the genotypes. The maximum total sugar was observed in ICCV 5530 

of 13.51 mg/100 mg of fresh weight in uninoculated soil while the least was observed in 

BG 212 of 5.21 mg/100 mg of fresh weight in inoculated soil.   

In susceptible genotype BG 212, total sugars recorded was 3.45 mg/100 mg of fresh 

weight at 15 DAS and increased to 16.34mg/ 100 mg of fresh weight at 45 DAS in the 

uninoculated soil in 100% soil moisture. In moderately resistant genotype ICCV 5530, the 

lowest (4.65 mg/ 100mg of fresh weight) and the highest (25.52 mg/100 mg of fresh 

weight) amount of total sugar was recorded in uninoculated soil with 100% soil moisture at 

15 and 45 DAS respectively.  

In moderately resistant genotype ICCV 8305, the lowest (4.26 mg/100 mg of fresh 

weight) and the highest (23.65 mg/100 mg of fresh weight) amount was recorded at 15 and 

45DAS in the inoculated and uninoculated soil respectively with 100% soil moisture. 

4.7.2 Reducing sugars  

Sugars with reducing property (arising out of the presence of a potential aldehyde or 

keto groups) are called reducing sugars. Some of the reducing sugars are glucose, 

galactose, lactose and maltose. The amount of reducing sugars was altered due to infection 

by the pathogen and changes were estimated by following dinitro salicylic acid method 

(Miller, 1972) and the results are presented in table 4.12. The significantly maximum 

reducing sugars were present in 100% soil moisture (6.99 mg/100 mg of fresh weight) 

compared to 60% (5.43 mg/100 mg of fresh weight). Plants grown in inoculated soil had 

low reducing sugars (5.28 mg/100 mg of fresh weight) content than plants in uninoculated 

(7.13 mg/100 mg of fresh weight).  Among the genotypes, maximum reducing sugars were 

present in ICCV 5530 (7.51mg/100 mg of fresh weight) followed by ICCV 8305 (6.76 

mg/100 mg of fresh weight) and least amount were observed in BG 212 (4.35 mg/100 mg 

of fresh weight). There was significant increase in the reducing sugars content from 15 

DAS (3.04 mg/100 mg of fresh weight) to 30DAS (5.95 mg/100 mg of fresh weight) and 

maximum was recorded at 45 DAS (9.63mg/100 mg of fresh weight). There was significant 

difference between the factors. It was observed that maximum reducing sugars were 

observed at 45DAS in 100% soil moisture of 11.23mg/100 mg of fresh weight while the 



least were observed in 100% soil moisture at 15 DAS of 2.69mg/100 mg of fresh weight in 

interaction between moisture and time point. Maximum reducing sugars were observed in 

uninoculated at 100% soil moisture of 8.35mg/100 mg of fresh weight and the least were 

observed at 60% soil moisture in inoculated soil of 4.95mg/100 mg of fresh weight in 

interaction between moisture and soil condition. 

In interaction between moisture and genotype, more amount of reducing sugars 

were recorded at 100% soil moisture than 60% soil moisture in all the genotypes. The 

maximum reducing sugars were observed in ICCV 5530 of 8.47mg/100 mg of fresh weight 

while the least in BG 212 of 4.00 mg/100 mg of fresh weight at 60% soil moisture.   

Increase in reducing sugars was observed with increase in time in all the genotypes 

in interaction between time point and genotype. The maximum reducing sugars were 

recorded in ICCV 5530 of 12.06 mg/100 mg of fresh weight at 45 DAS while the least in 

BG 212 of 2.50 mg/100 mg of fresh weight at 15 DAS.    

In Interaction between soil condition and genotype, maximum reducing sugars were 

observed in plants grown in uninoculated soil compared to plants grown in inoculated soil 

in all the genotypes. The maximum reducing sugars was present in ICCV 5530 of 

8.29mg/100 mg of fresh weight in uninoculated soil while the least amount in BG 212 of 

3.27mg/100 mg of fresh weight in inoculated soil.   

In susceptible genotype BG 212, highest amount of 9.97 mg/100 mg of fresh weight 

of reducing sugars was recorded at 45 DAS in uninoculated soil with 100% soil moisture 

while the least amount of 2.1 mg/ 100 mg of fresh weight was observed in inoculated soil 

with 60% soil moisture after 15 DAS. 

In moderately resistant genotype ICCV 5530, maximum amount of 16.08 mg/ 

100mg of fresh weight was observed in uninoculated soil with 100% soil moisture at 45 

DAS and the least amount of 2.88 mg/100 mg of fresh weight was recorded in uninoculated 

soil with 100% soil moisture at 15 DAS.  

The higher amount of 15.98 mg/100 mg of fresh weight of reducing sugars was 

recorded at 45 DAS in uninoculated soil with 100% soil moisture in moderately resistant 

genotype ICCV 8305 while the least amount was recorded in 100% soil moisture at 15 

DAS in uninoculated with 2.68 mg/100 mg of fresh weight (Fig 4.9). 



4.7.3 Non reducing sugars 

Biochemical resistance or susceptibility of the plants against any disease depends 

mainly on pre-existing preformed substances by pathogen in host. Nutritional status prior to 

infection determines the severity of the disease. The amount of non reducing sugars was 

estimated by deducting reducing sugars from total sugars and the results were presented in 

table 4.12. Significantly maximum amount of non reducing sugars observed in 100% soil 

moisture (3.84mg/100 mg of fresh weight) compared to 60% (3.47 mg/100 mg of fresh 

weight). Plants grown in inoculated soil had low non reducing sugars (3.00mg/100 mg of 

fresh weight) content than plants in uninoculated (4.31mg/100 mg of fresh weight).  

Among the genotypes, maximum amount of non reducing sugars present in ICCV 5530 

(4.49mg/100 mg of fresh weight) followed by ICCV 8305 (3.85 mg/100 mg of fresh 

weight) and least in BG 212 (2.63mg/100 mg of fresh weight). There was significant 

increase in non reducing sugars from 15 DAS (1.78 mg/100 mg of fresh weight) to 45 DAS 

(5.56mg/100 mg of fresh weight). In interaction between moisture and time, it was 

observed that maximum amount of non reducing sugars was observed at 45DAS in 100% 

soil moisture of 6.23mg/100 mg of fresh weight while the least in 100% soil moisture at 15 

DAS of 1.51mg/100 mg of fresh weight. Interaction between moisture and soil condition, it 

was recorded that maximum non reducing sugars was present in uninoculated at 100% soil 

moisture of 4.43mg/100 mg of fresh weight while the least at 60% in inoculated soil of 

2.75mg/100 mg of fresh weight. 

In interaction between moisture and genotype, maximum non reducing sugars was 

present at 100% soil moisture followed by 60% in all the genotypes. Significantly 

maximum non reducing sugar was observed in ICCV 5530 of 4.80mg/100 mg of fresh 

weight while the least in BG 212 of 2.50 mg/100 mg of fresh weight at 60% soil moisture.   

Increase in amount of non reducing sugars was observed with increase in time in all 

the genotypes in interaction between time point and genotype. The maximum non reducing 

sugars was present in ICCV 5530 of 7.08mg/100 mg of fresh weight at 45 DAS and the 

least in BG 212 of 1.42 mg/100 mg of fresh weight at 15 DAS.    

In interaction between soil condition and genotype, it was observed that maximum 

non reducing sugars was observed in plants grown in uninoculated compared to plants 

grown in inoculated soil in all the genotypes. The maximum non reducing sugars was 



recorded in ICCV 5530 of 5.22mg/100 mg of fresh weight in uninoculated soil while the 

least was observed in BG 212 of 1.93mg/100 mg of fresh weight in inoculated soil.   

 In susceptible genotype (BG 212), higher amount of 6.36 mg/100 mg of fresh 

weight of non reducing sugars was recorded at 45 DAS in uninoculated soil with 100% soil 

moisture while the least 1.26 mg/ 100 mg of fresh weight in uninoculated soil with 100% 

soil moisture at 15 DAS. 

In moderately resistant genotype (ICCV 5530), maximum amount (9.44 mg/ 100mg 

of fresh weight) was observed in uninoculated soil with 100% soil moisture at 45 DAS and 

minimum of 1.60 mg/100 mg of fresh weight recorded in inoculated soil at 100% soil 

moisture at 15 DAS.  

In another moderately resistant genotype (ICCV 8305) the higher amount (7.67 

mg/100 mg of fresh weight) of non reducing sugars was recorded at 45 DAS in 

uninoculated soil with the 100% soil moisture while the least amount was recorded at 100% 

soil moisture at 15 DAS in inoculated soil with 1.49 mg/100 mg of fresh weight (Fig 4.10).  

A similar trend of higher amounts of reducing, non reducing and total sugars were 

observed in resistant genotypes than susceptible ones. Sugars play an important role in the 

inhibition of pectinolytic and cellulolytic enzymes which were essential for pathogen 

(Bateman et al, 1965). Similarly Joshi et al. (2003) also reported decreased levels of total 

soluble sugars and reducing sugars with pathogen inoculation in leaves and roots of 

inoculated plants as compared to uninoculated plants incluster bean genotypes grown in 

uninoculated and inoculated soil with Macrophomina phaseolina at 65 DAS.  

4.7.4 Total Phenol 

It is known that several fungal products such as proteins, gluco-proteins or 

oligosaccharides can trigger the defence mechanisms in plants. In the presence of pathogen, 

plants develop a vast array of metabolic defence responses sequentially activated by a  

 

Table 4.15. Phenols in chickpea genotypes at different moisture levels in inoculated 

and uninoculated soils with Rhizoctonia bataticola 

Factors 
Genotypes and phenol 

(mg catechol 100 mg-1 root 



sample) 

Soil moisture 

(%) 

Time point 

(DAS) 
Pathogen in soil 

BG 

212 
ICCV 5530 ICCV 8305 

60 

15 
Uninoculated 0.89 1.36 1.00 

Inoculated 1.10 2.01 1.39 

30 
Uninoculated 2.38 4.36 3.20 

Inoculated 2.76 5.92 4.19 

45 
Uninoculated 1.85 3.22 2.43 

Inoculated 2.09 4.27 3.23 

100 

15 
Uninoculated 0.80 1.25 0.95 

Inoculated 0.94 1.64 1.22 

30 
Uninoculated 2.14 3.61 2.77 

Inoculated 2.44 4.62 3.35 

45 
Uninoculated 1.74 2.82 2.24 

Inoculated 1.96 3.65 2.75 

Factors CD 

Soil moisture (M) 0.01 

Time (T) 0.01 

Pathogen in soil (S) 0.01 

Genotype (G) 0.01 

M x T 0.02 

M x S 0.02 

T x S 0.02 

M x G 0.02 

T x G 0.03 

S X G 0.02 

M x T x S 0.03 

M x T x G 0.04 

M x S x G 0.03 

T x S x G 0.04 

M x T x S x G 0.05 

 

omplex multi component network that may be local and/or systemic. The induction 

of phenols might be due to the activation of the shikimic acid pathway, through which the 

aromatic amino acids, phenylalanine and tyrosine are formed and channelled for the 

synthesis of phenolics. Phenols are secondary metabolites; constituent of lignin may 



contribute to enhance the mechanical strength of the host cell wall and may also inhibit 

fungal growth as they are fungitoxic in nature. In the present study amount of total phenols 

in different genotypes grown in various moisture levels was estimated by following Folin 

Ciocalteu reagent method (FCR) of Bray and Thorpe (1954) and the results were presented 

in table 4.15 and Fig 4.11.  

The significantly high phenol content was recorded in 60% soil moisture 

(2.65mg/100 mg of fresh weight) than 100% (2.27 mg/100 mg of fresh weight). Plants 

grown in inoculated soil had more phenol content (2.75mg/100 mg of fresh weight) than 

plants in uninoculated (2.17mg/100 mg of fresh weight).  Among the genotypes, maximum 

phenol content was present in ICCV 5530 (3.23mg/100 mg of fresh weight) followed by 

ICCV 8305 (2.39 mg/100 mg of fresh weight) and least in BG 212 (1.76mg/100 mg of 

fresh weight). There was significant increase in the phenol content from 15 DAS (1.21 

mg/100 mg of fresh weight) to 30DAS (3.48 mg/100 mg of fresh weight) and decreased at 

45 DAS (2.69mg/100 mg of fresh weight). In interaction between soil moisture and time, it 

was observed that maximum amount of phenol content was observed at 30DAS in 60% soil 

moisture of 3.80mg/100 mg of fresh weight while the least was observed at 100% soil 

moisture at 15 DAS of 1.13mg/100 mg of fresh weight. In interaction between moisture 

and soil condition, it was recorded that maximum phenol content was present in inoculated 

soil at 60% soil moisture of 3.00mg/100 mg of fresh weight while the least was in 

uninoculated soil with 100% soil moisture of 2.04mg/100 mg of fresh weight. 

Significantly maximum phenol content was present at 60% soil moisture followed 

by 100% in all the genotypes in interaction between moisture and genotype. The maximum 

phenol content was observed in ICCV 5530 of 3.52mg/100 mg of fresh weight while the 

least was present in BG 212 of 1.67 mg/100 mg of fresh weight at 60 and 100% soil 

moisture respectively.   

Interaction effect between time point and genotype showed that increase in phenol 

content with increase in time in all the genotypes upto 30DAS and then there was decline. 

The maximum phenol content was observed in ICCV 5530 of 4.63mg/100 mg of fresh 

weight at 30 DAS while the least was observed in BG 212 of 0.93 mg/100 mg of fresh 

weight at 15 DAS.    



In interaction effect between soil condition and genotype, maximum phenol content 

was noted in plants grown in inoculated soil than in uninoculated soil in all the genotypes. 

The maximum phenol content was recorded in ICCV 5530 of 3.69mg/100 mg of fresh 

weight in inoculated soil and the least in BG 212 of 1.63mg/100 mg of fresh weight in 

uninoculated soil.   

In susceptible genotype BG 212, and moderately resistant genotypes (ICCV 5530 

and ICCV 8305), total phenol content was maximum at 30DAS of 2.76, 5.92, and 4.19 

mg/100mg fresh weight of root tissue respectively in inoculated soil with 60% soil 

moisture while the least amount of 0.80, 1.25 and 0.95 mg/100mg fresh weight of root 

tissue was observed in uninoculated soil at 100% soil moisture at 15 DAS respectively.  

Similar observations of increased levels of phenols at different stages of infection 

were observed by Rathod and Vakharia (2011) in wilt disease of chickpea. Total phenol 

content was significantly higher in root of all the genotypes obtained from inoculated plot. 

The highly susceptible genotypes had lower concentration of total phenol than others. 

Sharma et al. (2011) also revealed maximum accumulation of phenolic acids in 

infected guar plants by Macrophomina phaseolina than in uninoculated after 120 hours of 

infection in all genotypes of guar. Phenolic acid accumulation in the compatible host-

pathogen combination presumes that phenol participated actively in the guar resistance 

to root rot.  Sapru and Mahajan (2010) concluded that accumulation of phenol in 

susceptible genotype was not sufficient to resist the infection in mung bean infected by 

Rhizoctonia bataticola. 

4.7.5 Phenylalanine ammonia lyase (PAL) 

Phenylalanine ammonia-lyase played an important role in the biosynthesis of 

various defence chemicals in phenylpropanoid metabolism. PAL activity was an extremely 

sensitive indicator of stress conditions and fungal challenge elevates level of the flux 

through phenylpropanoid pathway, thereby supplying the carbon skeletons for secondary 

products such as phenolics which are the precursor molecules of lignin. The variations in  



Table 4.16.  Effect of different moisture levels on enzyme activity in chickpea genotypes 

grown in uninoculated and inoculated soils 

Factors 

Peroxidase Polyphenol oxidase 
Phenylalanine 

ammonia lyase 

(ΔAbs420 nm min-1 g-1 

fresh sample) 

(ΔAbs495 nm min-1 g-1 

fresh sample) 

(µmol cinnamic acid 

hr-1 g-1 sample) 

Soil 

mois

ture 

(%) 

Time 

point 

(DA

S) 

Pathoge

n in soil 
BG 212 

ICCV 

5530 

IC

CV 

830

5 

BG 

212 

ICCV 

5530 

ICCV 

8305 

BG 

212 

ICCV 

5530 

ICCV 

8305 

60 

15 

Uninocu

lated 
0.20 0.71 

0.2

5 
0.02 0.10 0.04 0.42 0.62 0.48 

Inoculat

ed 
0.21 0.74 

0.2

5 
0.02 0.12 0.07 0.47 0.72 0.52 

30 

Uninocu

lated 
1.19 1.42 

1.3

4 
0.05 0.15 0.12 0.82 1.56 1.27 

Inoculat

ed 
1.34 1.50 

1.4

3 
0.07 0.20 0.13 1.52 2.27 1.98 

45 

Uninocu

lated 
0.95 1.33 

1.3

3 
0.04 0.13 0.10 0.51 0.85 0.70 

Inoculat

ed 
0.59 1.48 

1.4

1 
0.01 0.14 0.08 0.72 1.07 1.06 

100 

15 

Uninocu

lated 
0.17 0.61 

0.2

0 
0.01 0.04 0.04 0.35 0.50 0.39 

Inoculat

ed 
0.18 0.62 

0.2

4 
0.02 0.05 0.03 0.36 0.56 0.44 

30 

Uninocu

lated 
0.73 1.25 

1.0

3 
0.04 0.12 0.06 0.36 1.32 1.09 

Inoculat

ed 
1.26 1.38 

1.2

8 
0.07 0.13 0.08 1.40 1.96 1.54 

45 

Uninocu

lated 
0.47 1.06 

0.7

3 
0.03 0.08 0.03 0.31 0.51 0.49 

Inoculat

ed 
1.04 1.31 

1.1

0 
0.03 0.09 0.06 0.53 1.23 0.70 

Factors CD 

Soil moisture (M) 0.001 0.001 0.003 

Time (T) 0.002 0.001 0.003 

Pathogen in soil (S) 0.001 0.001 0.003 

Genotype (G) 0.002 0.001 0.003 

M x T 0.002 0.002 0.005 

M x S 0.002 0.001 0.004 

T x S 0.002 0.002 0.005 

M x G 0.002 0.002 0.005 

T x G 0.003 0.002 0.006 

S x G 0.002 0.002 0.005 

M x T x S 0.003 0.002 0.007 

M x T x G 0.004 0.003 0.008 

M x S x G 0.003 0.002 0.007 

T x S x G 0.004 0.003 0.008 

M x T x S x G 0.006 0.004 0.011 

 



PAL activity was determined in chickpea genotypes using the modified method of the 

conversion of L-phenylalanine to cinnamic acid at 290 nm (Dickerson et al., 1984) and the 

results were presented in table 4.16.  

Significantly PAL activity in 60% soil moisture (0.98µmol cinnamic acid/hr/g fresh 

sample) was higher than 100% soil moisture (0.78µmol cinnamic acid/h/g fresh sample). 

Plants grown in inoculated soil had more PAL activity (1.06µmol cinnamic acid/h/g fresh 

sample) than in uninoculated (0.70µmol cinnamic acid/h/g fresh sample).  Among the 

genotypes, maximum PAL activity was present in ICCV 5530 (1.10µmol cinnamic acid/h/g 

fresh sample) followed by ICCV 8305 (0.89µmol cinnamic acid/h/g fresh sample) and least 

was observed in BG 212 (0.65µmol cinnamic acid/h/g fresh sample). There was significant 

increase in the PAL activity from 15 DAS (0.49µmol cinnamic acid/h/g fresh sample) to 

30DAS (1.42µmol cinnamic acid/hr/g fresh sample) and decreased at 45 DAS (0.72µmol 

cinnamic acid/hr/g fresh sample). In interaction effect between moisture and time showed 

higher amount of PAL activity at 30DAS in 60% soil moisture of 1.57µmol cinnamic 

acid/h/g fresh sample while the least was observed in 100% soil moisture at 15 DAS of 

0.43µmol cinnamic acid/hr/g fresh sample. Maximum PAL activity was recorded in 

inoculated soil at 60% soil moisture of 1.15µmol cinnamic acid/h/g fresh sample while the 

least was observed at 100% in uninoculated soil of 0.59µmol cinnamic acid/h/g fresh 

sample in interaction between moisture and soil condition. 

In interaction between moisture and genotype, maximum PAL activity was present 

at 60% soil moisture than 100% in all the genotypes. The maximum PAL activity was 

recorded in ICCV 5530 of 1.18µmol cinnamic acid/h/g fresh sample while the least in BG 

212 of 0.55µmol cinnamic acid/h/g fresh sample at 60 and 100% soil moisture respectively.   

PAL activity increased with time in all the genotypes upto 30DAS and then there 

was decline in interaction between time point and genotype.  The maximum PAL activity 

was observed in ICCV 5530 of 1.78µmol cinnamic acid/h/g fresh sample at 30 DAS while 

the least in BG 212 of 0.40µmol cinnamic acid/h/g fresh sample at 15 DAS.    

Maximum PAL activity was observed in plants grown in inoculated soil than in 

uninoculated soil in all the genotypes in interaction between soil condition and genotype. 

The maximum PAL activity noted from ICCV 5530 of 1.30µmol cinnamic acid/h/g fresh 



sample in inoculated soil while the least was observed in BG 212 of 0.46µmol cinnamic 

acid/h/g fresh sample in uninoculated soil.   

In susceptible genotype (BG 212), significantly maximum PAL activity was 

recorded at 30DAS of 1.52µmol cinnamic acid/h/g fresh sample in 60% soil moisture in 

inoculated soil while the least (0.32 µmol cinnamic acid/h/ g fresh sample) in uninoculated 

with 100% soil moisture at 45 DAS. In moderately resistant genotype (ICCV 5530), 

maximum activity of 2.27µmol cinnamic acid/h/g fresh sample of PAL activity was 

observed in inoculated soil with 60% soil moisture at 30DAS while the least (0.51µmol 

cinnamic acid/h/g fresh sample) activity noted in uninoculated at 100% soil moisture at 

45DAS. In moderately resistant genotype (ICCV 8305), highest level (1.98 µmol cinnamic 

acid/h/ g fresh sample) of  PAL activity was observed in inoculated soil with 60% soil 

moisture  at 30DAS while the least (0.39 µmol cinnamic acid/h/ g fresh sample) activity in 

uninoculated soil with 100% soil moisture at15 DAS (Fig 4.12). 

 Similar results were observed in same pathogen but in Guar crop as PAL activity 

was significantly increased from 96 to 120 hours after infection depending upon the 

genotype in comparison to uninoculated. Enhanced PAL activity in the compatible host-

pathogen combination presumes that PAL participated actively in the guar resistance 

to root rot (Sharma et al., 2011).  Sundaramoorthy et al. (2013) while studying the disease 

resistance in green gram against leaf blight caused by Macrophomina phaseolina by the 

application of plant extracts and fungicides reported that PAL was greater in treated plants 

as compared to untreated uninoculated. The increase in PAL activity has frequently been 

mentioned as a defence reaction of plants to pathogen attack, showing significant increases 

after infection by pathogens or wounding (Cui et al., 2000, Logemann et al., 2000).  

4.7.8 Polyphenol oxidase (PPO) 

Polyphenol oxidase (PPO) is a nuclear encoded, plastid copper containing enzyme, 

which catalyzes the oxygen dependent oxidation of phenols to quinones. Because of 

conspicuous reaction products and induction by wounding and pathogen attack, PPO has 

frequently been suggested to participate in plant defence against pests and pathogens. The 

activity of PPO was found to be increasing in challenged plants compared to the 

unchallenged ones. PPO activity was assayed using the modified method of Mayer et al. 

(1965) and the results were presented in table 4.16.  



Plants grown in inoculated soil had high PPO activity (0.08 ΔAbs495 nm/ min/g 

fresh sample) than plants in uninoculated (0.07 ΔAbs495 nm/ min/g fresh sample). 

Significantly maximum PPO activity observed in 60% soil moisture (0.09 ΔAbs495 nm/ 

min/g fresh sample) than 100% (0.06 ΔAbs495 nm/ min/g fresh sample).  Among the 

genotypes, maximum PPO activity present in ICCV 5530 (0.11 ΔAbs495 nm/ min/g fresh 

sample) followed by ICCV 8305 (0.07 ΔAbs495 nm/ min/g fresh sample) and least was in 

BG 212 (0.03 ΔAbs495 nm/ min/g fresh sample). There was significant increase in the PPO 

activity from 15 DAS (0.05 ΔAbs495 nm/ min/g fresh sample) to 30DAS (0.10 ΔAbs495 nm/ 

min/g fresh sample) and decreased at 45DAS (0.07 ΔAbs495 nm/ min/g fresh sample). 

Interaction between moisture and time showed maximum amount of PPO activity at 

30DAS in 60% soil moisture of 0.12 ΔAbs495 nm/ min/g fresh sample while the least in 

100% soil moisture at 15DAS of 0.03 ΔAbs495 nm/ min/g fresh sample. Maximum PPO 

activity was observed in inoculated soil in 60% soil moisture of 0.09 ΔAbs495 nm/ min/g 

fresh sample while the least was observed in 100% in uninoculated soil of 0.05 ΔAbs495 

nm/ min/g fresh sample in interaction between moisture and soil condition and the 

interaction was not significant. 

In interaction between moisture and genotype, maximum PPO activity was 

observed in 60% soil moisture followed by 100% in both ICCV 5530 and ICCV 8305 

while least was in BG212 at 60 and 100% (0.03 ΔAbs495 nm/ min/g fresh sample) which 

was at par with each other. The maximum PPO activity was observed in ICCV 5530 of 

0.14 ΔAbs495 nm/ min/g fresh sample followed by ICCV 8305 in 60% soil moisture.   

In interaction between time point and genotype, it was noted that maximum PPO 

activity was observed with increase in time in all the genotypes up to 30DAS and then there 

was decline. The maximum PPO activity was observed in ICCV 5530 of 0.15 ΔAbs495 nm/ 

min/g fresh sample at 30 DAS while the least was observed in BG 212 of 0.02 ΔAbs495 nm/ 

min/g fresh sample at 15 DAS.    

Significantly maximum PPO activity was observed in plants grown in inoculated 

soil compared to plants grown in uninoculated soil in all the genotypes in interaction 

between soil condition and genotype. The maximum PPO activity was observed in ICCV 

5530 of 0.12 ΔAbs495 nm/ min/g fresh sample in inoculated soil while the least in BG 212 

of 0.03 ΔAbs495 nm/ min/g fresh sample in uninoculated soil.   



In susceptible genotype (BG 212), polyphenol oxidase activity was maximum at 30 

DAS (0.07 ΔAbs495 nm/ min/g fresh sample) in inoculated soil at 60 and 100% soil 

moisture. The critical difference between them was at par with each other. The least (0.01 

ΔAbs495 nm/ min/g fresh sample) PPO activity was observed in inoculated soil at 60% soil 

moisture at 45 DAS and 100% soil moisture at 15 DAS. These were at par with each other. 

In moderately resistant genotype (ICCV 5530) highest (0.20 ΔAbs495 nm/ min/g fresh 

sample) PPO activity was observed in inoculated soil in 60% soil moisture at 30 DAS 

while the least (0.04 ΔAbs495 nm/ min/g fresh sample) activity of PPO was observed in 

uninoculated soil at 100% soil moisture at 15 DAS.  In moderately resistant genotype 

(ICCV 8305) highest level (0.13 ΔAbs495 nm/ min/g fresh sample) of PPO was observed in 

inoculated soil with 60% soil moisture at 30DAS while the lowest activity of 0.03 ΔAbs495 

nm/ min/g fresh sample was recorded in uninoculated and inoculated soil at the 60and 

100% soil moisture at 45 and 15 DAS respectively (Fig 4.13). 

Similar results of increased PPO activity were observed by Joshi et al. (2003) in 

Macrophomina phaseolina infected roots of both moderately and susceptible genotypes of 

cluster bean at 65 days after sowing. The activity of PPO was higher in moderately resistant 

genotype than in highly susceptible genotype. Cherif et al., (2007) observed pre-treatment 

of chickpea seedlings with selected Rhizobium isolates before challenge inoculation with 

Fusarium oxysporium fsp ciceri increased significantly the levels of PPO and concluded 

higher accumulation of PPO may play a crucial role in resistance of chickpea against 

pathogenic Fusarium oxysporium fsp ciceri attack. Sundaramoorthy et al. (2013) while 

studying the disease resistance in green gram plants against leaf blight disease caused by 

Macrophomina phaseolina by the application of plant extracts and fungicides reported that 

PPO was greater in treated plants as compared to untreated uninoculated. 

4.7.9 Peroxidase (POD) 

Most phenols occur in plant tissues in less toxic forms and change into more toxic 

forms by the action of phenol oxidase enzymes such as polyphenoloxidase and peroxidase. 

Increase in the activity level of these enzymes was reported to be associated with infected 

tissues (Bateman et al., 1965). The products of peroxidase enzyme in the presence of a 

hydrogen donor and hydrogen peroxide have antimicrobial activity and even antiviral 

activity. Besides these, higher intercellular peroxidase levels may also play an integral role 

in the lignification of cell walls, which assist in the resistance of the plant to penetration by 



fungal pathogen (Retig, 1974). Peroxidase activity was assayed using the modified method 

of Hammerchmidt, 1982) and the results are presented in table 4.16. 

 Significantly maximum POD activity observed in 60% soil moisture (0.98 ΔAbs420 

nm/ min/g fresh sample) followed by 100% (0.81 ΔAbs420 nm/ min/g fresh sample). Plants 

grown in inoculated soil had significantly high POD activity (0.96 ΔAbs420 nm/ min/g fresh 

sample) than plants in uninoculated (0.83 ΔAbs420 nm/ min/g fresh sample).  Among the 

genotypes, maximum POD activity present in ICCV 5530 (1.12 ΔAbs420 nm/ min/g fresh 

sample) followed by ICCV 8305 (0.88 ΔAbs420 nm/ min/g fresh sample) while least 

activity noted in BG 212 (0.69 ΔAbs420 nm/ min/g fresh sample). There was significant 

increase in the POD activity from 15 DAS (0.36 ΔAbs420 nm/ min/g fresh sample) to 

30DAS (1.26 ΔAbs420 nm/ min/g fresh sample) and decreased at 45DAS (1.06 ΔAbs420 nm/ 

min/g fresh sample). There was significant difference between time points. In interaction 

between moisture and time, it was recorded that maximum amount of POD activity was 

observed at 30DAS in 60% soil moisture of 1.37 ΔAbs420 nm/ min/g fresh sample while the 

least was noted in 100% soil moisture at 15DAS of 0.34 ΔAbs420 nm/ min/g fresh sample. 

In interaction between moisture and soil condition, significantly maximum POD activity 

was present in inoculated soil at 60% soil moisture of 0.99 ΔAbs420 nm/ min/g fresh sample 

while the least activity in uninoculated soil  with 100% soil moisture of 0.69 ΔAbs420 nm/ 

min/g fresh sample. 

In interaction between moisture and genotype, maximum POD activity was noted in 

60% soil moisture followed by 100% in all genotypes. POD activity was significantly high 

in ICCV 5530 of 1.20 ΔAbs420 nm/ min/g fresh sample while the least was observed in BG 

212 of 0.64 ΔAbs420 nm/ min/g fresh sample in 100% soil moisture.   

In interaction between time point and genotype, it was observed that maximum 

POD activity was recorded with increase in time in all the genotypes up to 30DAS and then 

there was decline. The maximum POD activity was recorded in ICCV 5530 of 1.39 

ΔAbs420 nm/ min/g fresh sample at 30 DAS while the least was observed in BG 212 of 0.19 

ΔAbs420 nm/ min/g fresh sample at 15 DAS.    

In interaction between soil condition and genotype, POD activity was maximum in 

plants grown in inoculated soil compared to plants grown in uninoculated soil in all the 

genotypes. The maximum POD activity was recorded in ICCV 5530 of 1.17 ΔAbs420 nm/ 



min/g fresh sample in inoculated soil while the least activity in BG 212 of 0.62 ΔAbs420 

nm/ min/g fresh sample in uninoculated soil.   

In susceptible genotype (BG 212), POD activity was maximum at 30DAS in 

inoculated soil (1.34 ΔAbs420 nm/ min/g fresh sample) at 60% soil moisture while the least 

(0.17 ΔAbs420 nm/ min/g fresh sample) activity of POD was observed in uninoculated soil 

at 100% soil moisture at 15 DAS. In moderately resistant genotype ICCV 5530 highest 

(1.50 ΔAbs420 nm/ min/g fresh sample) activity of POD was observed in inoculated soil at 

60 per cent soil moisture after 30 DAS. The least (0.61 ΔAbs420 nm/ min/g fresh sample) 

accumulation of POD was observed in uninoculated soil at 100% soil moisture after 15 

DAS.  In moderately resistant genotype (ICCV 8305) highest level (1.43 ΔAbs420 nm/ 

min/g fresh sample) of POD was observed in inoculated soil at 60 per cent soil moisture 

after 30 DAS. The least activity of 0.20 ΔAbs420 nm/ min/g fresh sample was recorded in 

uninoculated soil at 100% soil moisture at 15 DAS (Fig 4.14). 

Similar results of increased POD activity in Macrophomina phaseolina infected 

roots of cluster bean genotypes were observed at 65 days after sowing by Joshi et al. 

(2003). The activity of POD was higher in moderately resistant genotype than in highly 

susceptible genotype. Cherif et al., (2007) also observed pre-treatment of chickpea 

seedlings with selected Rhizobium isolates before challenge inoculation with Fusarium 

oxysporium fsp ciceri increased significantly the levels of POD and concluded higher 

accumulation of POD may play a crucial role in resistance of chickpea against pathogenic 

Fusarium oxysporium fsp ciceri attack. Sundaramoorthy et al. (2013) reported that defence 

enzyme POD was greater in treated plants as compared to untreated uninoculated green 

gram plants against leaf blight disease caused by Macrophomina phaseolina by the 

application of plant extracts and fungicides.  

Ravi and Sharma (2011) concluded that reactive oxygen species are produced 

during the moth bean-Macrophomina phaseolina interaction and play a role in the defence 

response of the moth bean plant against the fungal pathogen Macrophomina phaseolina. 

Varietal differences are also observed, overall, one week old plants of var. FMM-96 which 

is moderately resistant showed better response in terms of peroxidase activity and H2O2 

production than RMO - 40, a susceptible variety.  

 

4.8 Growth changes associated with dry root development in chickpea 



The effect of dry root rot  at different moisture levels was studied on various plant 

parts viz. root dry weight, shoot dry weight, leaf dry weight, total dry biomass (Fig 4.15). 

The results obtained were presented in table 4.17. 

4.8.1 Root dry weight 

The roots are the beginning of the vascular system pipeline that moves water and 

minerals from the soil up to the leaves. These are affected due external moisture stress and 

diseases. The experiment was conducted to know the affect of Rhizoctonia bataticola and 

soil moisture on the root growth of chickpea.  

Plants grown in inoculated soil had significantly low root dry weight (0.35g) than 

plants in uninoculated (0.48g).  Among the genotypes, maximum root dry weight present in 

ICCV 5530 (0.49g) followed by ICCV 8305 (0.44g) and least was observed in BG 212 

(0.32g). There was significant increase in the root dry weight from 15 DAS (0.24g) to 45 

DAS (0.59g). The maximum root dry weight observed in 100% soil moisture (0.54g) 

compared to 60% (0.29g). There was significant difference between them.  

In interaction between soil condition and genotype showed maximum root dry 

weight in plants grown in uninoculated compared to plants grown in inoculated soil in all 

the genotypes. The maximum root dry weight was observed in ICCV 5530 of 0.58g in 

uninoculated soil while the least was observed in BG 212 of 0.26g in inoculated soil.   

In interaction between soil condition and time point, it was observed that maximum 

root dry weight was noted in plants grown in uninoculated followed by plants grown in 

inoculated soil at 45DAS (0.71g) while the root dry weight was at par with each other at 15 

DAS (0.24g) .  

In interaction between time point and genotype, it was recorded that maximum root 

dry weight was observed with increase in time in all the genotypes. The maximum root dry 

weight was observed in ICCV 5530 of 0.75g at 45 DAS while the least was observed in BG 

212 of 0.18g at 15 DAS.   

In interaction between moisture and soil condition, it was observed that maximum 

root dry weight was observed in 100% soil moisture followed by 60% in all the genotypes. 

Significantly more dry weight was observed in uninoculated of 0.62g while the least of 

0.25g was observed in 60% soil moisture in inoculated soil.   



 

Table 4.17.  Effect of 60 and 100% soil moisture levels on dry weights of chickpea genotypes in 

inoculated and uninoculated soils  

Factors 

Root dry 

weight (g) 

Shoot dry 

weight (g) 

Leaf dry weight 

(g) 

Total dry 

biomass (g) 

Soil 

mois

ture 

(%) 

Ti

me 

poi

nt 

(D

AS

) 

Pathoge

n in soil 

B

G 

21

2 

ICC

V 

553

0 

ICC

V 

830

5 

B

G 

21

2 

ICC

V 

553

0 

ICC

V 

830

5 

B

G 

21

2 

ICC

V 

553

0 

ICC

V 

830

5 

B

G 

21

2 

ICC

V 

553

0 

ICC

V 

830

5 

60 15 
Uninocu

lated 

0.

16 
0.22 0.24 

0.

12 
0.20 0.27 

0.

15 
0.22 0.30 

0.

43 
0.65 0.81 

60 15 
Inoculat

ed 

0.

15 
0.22 0.24 

0.

12 
0.20 0.26 

0.

14 
0.22 0.28 

0.

41 
0.63 0.78 

60 45 
Uninocu

lated 

0.

34 
0.56 0.47 

0.

35 
0.65 0.81 

0.

34 
0.41 0.42 

1.

02 
1.63 1.70 

60 45 
Inoculat

ed 

0.

18 
0.36 0.35 

0.

24 
0.53 0.76 

0.

19 
0.35 0.39 

0.

61 
1.24 1.50 

100 15 
Uninocu

lated 

0.

20 
0.25 0.39 

0.

17 
0.22 0.33 

0.

18 
0.27 0.31 

0.

55 
0.73 1.03 

100 15 
Inoculat

ed 

0.

20 
0.23 0.37 

0.

16 
0.22 0.32 

0.

17 
0.25 0.31 

0.

53 
0.70 1.00 

100 45 
Uninocu

lated 

0.

80 
1.27 0.85 

0.

61 
0.89 1.11 

0.

58 
0.86 0.92 

1.

99 
3.02 2.87 

100 45 
Inoculat

ed 

0.

52 
0.79 0.64 

0.

52 
0.77 1.05 

0.

46 
0.67 0.87 

1.

51 
2.22 2.56 

Factors CD 

Pathogen in soil (S) 0.001 0.005 0.004 0.007 

Genotype (G) 0.001 0.006 0.005 0.009 

Time (T) 0.001 0.005 0.004 0.007 

Soil moisture (M) 0.001 0.005 0.004 0.007 

S x G 0.002 0.009 0.007 0.012 

T x S 0.002 0.007 0.005 0.010 

T x G 0.002 0.009 0.007 0.012 

M x S 0.002 0.007 0.005 0.010 

M x G 0.002 0.009 0.007 0.012 

M x T 0.002 0.007 0.005 0.010 

T x S x G 0.003 0.012 0.009 0.018 

M x S x G 0.003 0.012 0.009 0.018 

M x T x S 0.002 0.010 0.008 0.014 

M x T x G 0.003 0.012 0.009 0.018 

M x T x S x G 0.004 0.018 0.013 0.025 

 



In interaction between moisture and genotype, it was recorded that maximum root 

dry weight was observed at 100% soil moisture followed by 60% in all the genotypes. The 

maximum root dry weight was observed in ICCV 5530 of 0.63g while the least was 

observed in BG 212 of 0.21g.   

Maximum root dry weight was observed at 45DAS in 100% soil moisture of 0.81g 

while the least was observed at 60% at 15 DAS of 0.21g in interaction between moisture 

and time. Maximum root dry weight was observed in uninoculated at 100% soil moisture of 

0.62g while the least at 60% in inoculated soil of 0.25g in interaction between moisture and 

soil condition.   

 Among the genotypes, BG 212 grown in 100% moisture in uninoculated soil had 

more weight of 0.80g and the least weight was noticed at 15DAS in inoculated soil at 60% 

soil moisture (0.15g). In ICCV 5530, highest root weight was recorded at 100% moisture in 

uninoculated soil of 1.27g at 45 DAS and the least weight was noticed in 60% uninoculated 

and inoculated soil which were at par each other i.e 0.22g at 15 DAS. In ICCV 8305, 

highest root weight was recorded in 100% moisture in uninoculated soil of 0.85g at 45 

DAS while the least was noticed in 60% inoculated and uninoculated soils, which were at 

par each other i.e 0.24g at 15DAS (Fig 4.16). 

From the results, it was observed there was no significant difference in the dry 

weight of the roots among same moisture conditions at different type of soil during 15 

DAS. The dry weight of the genotypes was more in the 100% soil moisture as compared to 

60% moisture in the 15 DAS. The dry weight of the roots at 45 DAS had significant 

differences. It was more in the 100% compared to the 60% uninoculated. With respect to 

the inoculated and uninoculated soil, it was observed that, severe disease in the inoculated 

soil made the disintegration of the roots and there by losing the weight of roots. It was 

observed more root weight in the 100% soil moisture compared to the 60% in inoculated 

soil. 

4.8.2 Shoot dry weight 

Plants grown in inoculated soil had low shoot dry weight (0.43g) than plants in 

uninoculated (0.48g).  Among the genotypes, maximum shoot dry weight present in ICCV 

8305 (0.61g) followed by ICCV 5530 (0.46g) and least was observed in BG 212 (0.29g). 



There was significant increase in the shoot dry weight from 15 DAS (0.22g) to 45 DAS 

(0.69g). Significantly maximum shoot dry weight observed in 100% soil moisture (0.53g) 

compared to 60% (0.38g).  

In interaction between soil condition and genotype, it was recorded that maximum 

shoot dry weight was observed in plants grown in uninoculated compared to inoculated soil 

in all the genotypes. The maximum shoot dry weight was noted in ICCV 8305 of 0.63g in 

uninoculated soil while the least in BG 212 of 0.26g in inoculated soil.   

In interaction between soil condition and time point, it was observed that maximum 

shoot dry weight was present in plants grown in uninoculated soil compared to plants 

grown in inoculated soil at 45DAS (0.74g) while the shoot dry weight was at par with each 

other at 15 DAS (0.21 and 0.22g).  

In interaction between time point and genotype, increase in shoot dry weight with 

increase in time was observed in all the genotypes. The maximum shoot dry weight was 

noted in ICCV 8305 of 0.93g at 45 DAS while the least was in BG 212 of 0.14g at 15 DAS.   

In interaction between moisture and soil condition, significantly maximum shoot 

dry weight was present in 100% soil moisture followed by 60% in all the genotypes. The 

maximum shoot dry weight was observed in uninoculated soil of 0.55g while the least of 

0.35g was observed at 60% soil moisture in inoculated soil.   

In interaction between moisture and genotype, it was observed that maximum shoot 

dry weight was observed at 100% soil moisture followed by 60% in all the genotypes. The 

maximum shoot dry weight was observed in ICCV 8305 of 0.70g while the least was 

observed in BG 212 of 0.21g.   

In interaction between moisture and time point, it was observed that maximum 

shoot dry weight was observed at 45DAS in 100% soil moisture of 0.82g while the least 

was observed at 60% at 15 DAS of 0.20g.  

 Among the genotypes, BG 212 grown in 100% moisture in uninoculated soil had 

more weight of 0.61g and the least weight was noticed at 15DAS in inoculated and 

uninoculated soil at 60% soil moisture (0.12g) which was at par with each other. In ICCV 

5530, highest root weight was recorded at 100% moisture in uninoculated soil of 0.89g at 



45 DAS and the least weight was noticed in 60% uninoculated and inoculated soil which 

were at par each other i.e 0.20g at 15 DAS. In ICCV 8305, highest root weight was 

recorded in 100% moisture in uninoculated soil of 1.11g at 45 DAS while the least was 

noticed in 60% inoculated soil of 0.26g at 15DAS (Fig 4.17). 

4.8.3 Leaf dry weight 

Plants grown in inoculated soil had low leaf dry weight (0.36g) than plants in 

uninoculated (0.41g).  Among the genotypes, maximum leaf dry weight present in ICCV 

8305 (0.47g) followed by ICCV 5530 (0.41g) and least was observed in BG 212 (0.28g). 

There was significant increase in the leaf dry weight from 15 DAS (0.23g) to 45 DAS 

(0.54g). There was significant difference between the time points. The maximum leaf dry 

weight observed in 100% soil moisture (0.49g) compared to 60% (0.28g). There was 

significant difference between them.  

In interaction between soil condition and genotype, it was observed that maximum 

leaf dry weight was observed in plants grown in uninoculated soil compared to plants 

grown in inoculated soil in all the genotypes. The maximum leaf dry weight was observed 

in ICCV 8305 of 0.49g in uninoculated soil while the least was observed in BG 212 of 

0.24g in inoculated soil.   

In interaction between soil condition and time point, it was observed that maximum 

leaf dry weight was observed in plants grown in uninoculated soil compared to plants 

grown in inoculated soil at 45DAS (0.59g) while the leaf dry weight was at par with each 

other at 15 DAS (0.23 and 0.24g).  

In interaction between time point and genotype, it was observed that maximum leaf 

dry weight was observed with increase in time in all the genotypes. The maximum leaf dry 

weight was observed in ICCV 8305 of 0.65g at 45 DAS while the least was observed in BG 

212 of 0.16g at 15 DAS.   

In interaction between moisture and soil condition, it was observed that maximum 

leaf dry weight was observed at 100% soil moisture followed by 60% in all the genotypes. 

The maximum leaf dry weight was observed in uninoculated soil was 0.52g at 100% soil 

moisture while the least of 0.26g was observed at 60% soil moisture in inoculated soil.   



In interaction between moisture and genotype, it was observed that maximum leaf 

dry weight was observed at 100% soil moisture followed by 60% in all the genotypes. The 

maximum leaf dry weight was observed in ICCV 8305 of 0.60g while the least was 

observed in BG 212 of 0.20g.   

In interaction between moisture and time point, it was observed that maximum leaf 

dry weight was observed at 45DAS in 100% soil moisture of 0.73g while the least was 

observed at 60% at 15 DAS of 0.22g.  

 Among the genotypes, BG 212 grown in 100% moisture in uninoculated soil had 

more leaf weight of 0.58g and the least weight was noticed at 15DAS in inoculated and 

uninoculated soil at 60% soil moisture (0.14 and 0.15g) which were at par with each other. 

In ICCV 5530, highest leaf weight was recorded at 100% moisture in uninoculated soil of 

0.86g at 45DAS and the least weight was noticed in 60% uninoculated and inoculated soil 

which were at par each other i.e 0.22g at 15 DAS. In ICCV 8305, highest leaf weight was 

recorded in 100% moisture in uninoculated soil of 0.92g at 45 DAS while the least was 

noticed at 60% inoculated soil of 0.28g at 15DAS (Fig 4.18). 

4.8.4Total dry biomass 

Plants grown in inoculated soil had low total plant dry weight (1.14g) than plants in 

uninoculated (1.37g).  Among the genotypes, maximum total plant dry weight recorded in 

ICCV 8305 (1.53g) followed by ICCV 5530 (1.35g) and least was observed in BG 212 

(0.88g). There was significant increase in the total plant dry weight from 15 DAS (0.69g) to 

45 DAS (1.82g). There was significant difference between the time points. The maximum 

total plant dry weight observed in 100% soil moisture (1.56g) compared to 60% (0.95g). 

There was significant difference between them.  

In interaction between soil condition and genotype, it was observed that maximum 

total plant dry weight was observed in plants grown in uninoculated soil compared to plants 

grown in inoculated soil in all the genotypes. The maximum total plant dry weight was 

observed in ICCV 8305 of 1.60g in uninoculated soil while the least was observed in BG 

212 of 0.77g in inoculated soil.   

In interaction between soil condition and time point, it was observed that maximum 

total plant dry weight was observed in plants grown in uninoculated soil compared to plants 



grown in inoculated soil at 15 and 45DAS. Maximum total plant dry weight was recorded 

as 2.04g at 45 DAS in uninoculated while the least was at 15 DAS (0.68g) in inoculated 

soil.  

In interaction between time point and genotype, it was observed that maximum total 

plant dry weight was observed with increase in time in all the genotypes. The maximum 

total plant dry weight was observed in ICCV 8305 of 2.16g at 45 DAS while the least was 

observed in BG 212 of 0.48g at 15 DAS.   

In interaction between moisture and soil condition, it was observed that maximum 

total plant dry weight was observed at 100% soil moisture followed by 60% in 

uninoculated and inoculated soil. The maximum total plant dry weight was observed in 

uninoculated soil of 1.70g at 100% soil moisture while the least of 0.86g was observed at 

60% soil moisture in inoculated soil.   

In interaction between moisture and genotype, it was observed that maximum total 

plant dry weight was observed at 100% soil moisture followed by 60% in all the genotypes. 

The maximum total plant dry weight was observed in ICCV 8305 of 1.87g while the least 

was observed in BG 212 of 0.62g.   

In interaction between moisture and time point, it was observed that maximum total 

plant dry weight was observed at 45DAS in 100% soil moisture of 2.36g while the least 

was observed at 60% at 15 DAS of 0.62g.  

 Among the genotypes, BG 212 grown in 100% moisture in uninoculated soil had 

more total plant dry weight of 1.99g and the least weight was noticed at 15DAS in 

inoculated soil at 60% soil moisture of 0.41g. In ICCV 5530, highest total plant dry weight 

was recorded at 100% moisture in uninoculated soil of 3.02g at 45DAS and the least weight 

was noticed in 60% inoculated soil of 0.63g at 15DAS. In ICCV 8305, highest total plant 

dry weight was recorded in 100% moisture in uninoculated soil of 2.87g at 45 DAS while 

the least was noticed at 60% inoculated soil of 0.78g at 15DAS (Fig 4.19). 

The stress plants and infected plants had poor growth compared to healthy and 

irrigated plants. Drought stress showed higher negative effects coupled with M. Phaseolina 

attack in vegetative growth stage in common bean. It decreased leaf area and dry weight of 

all vegetative structures significantly (Mayek et al, 2002). 



4.9 Physiological changes associated with dry root development in chickpea 

Physiology parameters viz., transpiration, leaf temperature and stomatal 

conductance at two time points were recorded. The results obtained were presented in table 

4.18. 

4.9.1Transpiration 

Plants grown in uninoculated soil had high transpiration loss (25.0g) than plants in 

inoculated soil (19.0g).  Among the genotypes, maximum transpiration loss present in 

ICCV 8305 (24.0g) followed by BG 212 (20.09g) and least was observed in ICCV 5530 

(20.9g). There was significant increase in the transpiration loss from 15 DAS (16.3g) to 45 

DAS (27.7g). There was significant difference between the time points. The maximum 

transpiration loss observed in 100% soil moisture (26.3g) compared to 60% (17.7g). There 

was significant difference between them.  

In interaction between soil condition and genotype, it was observed that maximum 

transpiration loss was observed in plants grown in uninoculated soil compared to plants 

grown in inoculated soil in all the genotypes. The maximum transpiration loss was 

observed in ICCV 8305 of 26.7g in uninoculated soil while the least was observed in BG 

212 of 17.7g in inoculated soil.   

In interaction between soil condition and time point, it was observed that maximum 

transpiration loss was observed in plants grown in uninoculated soil compared to plants 

grown in inoculated soil at 15 and 45DAS. Maximum transpiration loss of 32.6g was 

observed at 45 DAS while least was observed in 15DAS of 15.3g. 

In interaction between time point and genotype, it was observed that maximum 

transpiration loss was observed with increase in time in all the genotypes. The maximum 

transpiration loss was observed in ICCV 8305 of 30.7g at 45 DAS while the least was 

observed in BG 212 of 17.4g at 15 DAS.   

In interaction between soil moisture and soil condition, it was noted that maximum 

transpiration loss was observed at 100% soil moisture followed by 60% in all the 

genotypes. The maximum transpiration loss was observed in uninoculated soil was 29.5g at 

100% soil moisture while the least of 15.0g was observed at 60% soil moisture in 

inoculated soil.   



Table 4.18. Effect of 60 and 100% soil moisture levels on transpiration, stomatal 

conductance and leaf temperature of chickpea genotypes in inoculated and 

uninoculated soils  

Factor 

Transpiration  

(g H2O 8h-1) 

Stomatal conductance 

(mol m−2 s−1) 

Leaf temperature 

 (˚C) 

Soil 

moistur

e (%) 

Time 

point 
(DA

S) 

Pathogen in 

soil 

BG 

212 

ICCV 

5530 

ICCV 

8305 

BG 

212 

ICCV 

5530 

ICCV 

8305 

BG 

212 

ICCV 

5530 

ICCV 

8305 

60 15 Uninoculated 17.30 12.00 16.00 0.96 0.67 0.89 30.40 31.20 29.60 

60 15 Inoculated 14.30 11.00 13.70 0.79 0.61 0.76 32.70 31.80 30.60 

60 45 Uninoculated 23.70 26.70 27.00 0.62 0.70 0.71 36.60 34.50 35.50 

60 45 Inoculated 13.30 16.30 21.70 0.35 0.43 0.57 37.50 36.50 37.60 

100 15 Uninoculated 20.70 17.00 21.10 1.15 0.94 1.17 28.10 27.10 28.30 

100 15 Inoculated 19.30 14.70 18.70 1.07 0.82 1.07 28.80 28.80 28.00 

100 45 Uninoculated 36.30 39.30 42.70 0.96 1.03 1.12 32.10 32.30 29.60 

100 45 Inoculated 24.00 30.00 31.30 0.63 0.79 0.82 33.60 32.90 33.20 

Factor CD 

Pathogen in soil (S) 0.10 0.004 0.21 

Genotype (G) 0.12 0.005 0.26 

Time (T) 0.10 0.004 0.21 

Soil moisture (M) 0.10 0.004 0.21 

S x G 0.17 0.008 0.37 

T x S 0.14 0.006 0.30 

T x G 0.17 0.008 0.37 

M x S 0.14 0.006 0.3 

M x G 0.17 0.008 0.37 

M x T 0.14 0.006 0.3 

T x S x G 0.25 0.011 0.52 

M x S x G 0.25 0.011 0.52 

M x T x S 0.20 0.009 0.42 

M x T x G 0.25 0.011 0.52 

M x T x S x G 0.35 0.015 0.73 

 



In interaction between moisture and genotype, maximum transpiration loss was 

rcorded at 100% soil moisture followed by 60% in all the genotypes. The maximum 

transpiration loss was observed in ICCV 8305 of 28.4g while the least was observed in 

ICCV 5530 of 16.5g.   

In interaction between moisture and time point, maximum transpiration loss was 

observed at 45DAS in 100% soil moisture of 33.9g while the least was observed at 60% at 

15 DAS of 14.1g.  

 Among the genotypes, BG 212 grown in 100% moisture in uninoculated soil had 

transpired more of 36.3g and the least transpiration loss of 13.3g was noticed in inoculated 

soil at 60% soil moisture at 45DAS. While in ICCV 5530 highest transpiration loss was 

recorded in 100% moisture in uninoculated soil with 39.3g after 45 DAS and the least 

transpiration loss was noticed in 60% inoculated soil of 11.0g at 15DAS. In ICCV 8305, 

highest transpiration was recorded in 100% moisture in uninoculated soil with 42.7g after 

45 DAS and the least was noticed in 60% moisture in inoculated soil of 13.7g at 15 DAS 

(Fig 4.20). 

Inoculation of pathogen resulted in clogging of xylem vessels by mycelia, spores 

and tyloses. Crushing of vessels by proliferating adjacent parenchyma cells was also 

observed, which hamper the translocation of water of the infected plants. The leaves of 

infected plants transpire more water than the roots and stem can transport resulting in 

wilting symptoms (Agrios, 2005). That is why growth and transpiration were reduced in F. 

oxysporum f. sp. ciceri infected plants. Drought stress showed higher negative effects than 

M. Phaseolina on water relations, vegetative growth in common bean. It decreased 

transpiration rate and leaf area (Mayek et al., 2002). Ponmurugan and Baby (2007) 

conducted under greenhouse condition to study the physiological changes in tea plants due 

to Phomopsis infection. Physiological responses of tea plants to infection in term of 

transpiration rate studied in susceptible TRI-2024 and tolerant TRI-QOES genotypes. In 

addition, growth characteristics such as height, dry weight and plant strength. The results 

revealed that all the growth characteristics and physiological were reduced significantly in 

infected plants rather than healthy plants. However, the reduction was more prominent in 

susceptible genotype than in tolerant ones.  

4.9.2 Stomatal conductance 



Plants grown in uninoculated soil had high stomatal conductance (0.91) than plants 

in inoculated soil (0.73 mol m−2 s−1).  Among the genotypes, maximum stomatal 

conductance present in ICCV 8305 (0.82 mol m−2 s−1) followed by BG 212 (0.82 mol m−2 

s−1) and least was observed in ICCV 5530 (0.75 mol m−2 s−1). There was significant 

decrease in the stomatal conductance from 15 DAS (0.91 mol m−2 s−1) to 45 DAS (0.73 mol 

m−2 s−1). There was significant difference between the time points. The maximum stomatal 

conductance observed in 100% soil moisture (0.97 mol m−2 s−1) compared to 60% (0.67 

mol m−2 s−1). There was significant difference between them.  

In interaction between soil condition and genotype, it was observed that maximum 

stomatal conductance was observed in plants grown in uninoculated soil compared to plants 

grown in inoculated soil in all the genotypes. The maximum stomatal conductance was 

observed in ICCV 8305 of 0.97 mol m−2 s−1 in uninoculated soil while the least was 

observed in ICCV 5530 of 0.66 mol m−2 s−1 in inoculated soil.   

In interaction between soil condition and time point, it was observed that maximum 

stomatal conductance was observed in plants grown in uninoculated soil compared to plants 

grown in inoculated soil at 15 and 45DAS. Maximum stomatal conductance of 0.96 mol 

m−2 s−1 was observed at 15 DAS while least was observed in 45DAS of 0.60 mol m−2 s−1. 

In interaction between time point and genotype, significant decrease in stomatal 

conductance was noted with increase in time in all the genotypes. The maximum stomatal 

conductance was in BG 212 of 0.99 mol m−2 s−1 at 15 DAS while the least was observed in 

BG 212 of 0.64 mol m−2 s−1at 45 DAS.   

In interaction between soil moisture and soil condition, maximum stomatal 

conductance was recorded at 100% soil moisture followed by 60% in all the genotypes. 

The maximum stomatal conductance was in uninoculated soil of 1.06 mol m−2 s−1 at 100% 

soil moisture while the least of 0.59 mol m−2 s−1 was observed at 60% soil moisture in 

inoculated soil.   

Maximum stomatal conductance was observed at 100% soil moisture followed by 

60% in all the genotypes in interaction between moisture and genotype. The maximum 

stomatal conductance was observed in ICCV 8305 of 1.05 mol m−2 s−1 while the least was 

observed in ICCV 5530 of 0.60 mol m−2 s−1.   



In interaction between moisture and time point, maximum stomatal conductance 

was noted at 15DAS in 100% soil moisture of 1.04 mol m−2 s−1 while the least was at 60% 

at 45 DAS of 0.56 mol m−2 s−1.  

 Among the genotypes, BG 212 grown in 100% moisture in uninoculated had more 

stomatal conductance of 1.15mol m−2 s−1 at 15 DAS and the least was noticed at 45DAS in 

inoculated soil with 60% soil moisture of 0.35mol m−2 s−1. While in ICCV 5530, highest 

stomatal conductance was recorded in 100% moisture in uninoculated soil with 0.94 mol 

m−2 s−1 at 15 DAS and the least stomatal conductance was noticed at 60% moisture in 

inoculated soil of 0.43 mol m−2 s−1 at 45DAS. In ICCV 8305 highest stomatal conductance 

was recorded in 100% moisture in uninoculated soil with 1.17mol m−2 s−1 at 15 DAS and 

the least was noticed in 60% moisture inoculated soil of 0.57 mol m−2 s−1 at 45 DAS (Fig 

4.21). 

Drought stress showed higher negative effects than M. Phaseolina on water 

relations, vegetative growth in common bean. It increased charcoal rot and stomatal 

resistance due to damage caused to the root system (Mayek et al., 2002). 

The above results were In accordance with the work done by Doubledee (2010). 

Above ground level disease symptoms in soybean by Macrophomina phaseolina were 

difficult to distinguish from those of drought. To separate the affects of disease from 

drought, four soybean genotypes viz., DT97-4290, DPL 4546, R01-581F and LS980358 

were grown in infested or non-infested with M. phaseolina. Half of the plots were kept well 

watered and the other half were allowed to water stress. At flowering, plants in infested and 

non-irrigated plants had lower stomatal conductance than those in infested irrigated or non-

infested irrigated or non-irrigated plants. These results suggest that infection with M. 

phaseolina may limit the water uptake in the plant, before the onset of visible symptoms. 

4.9.3 Leaf temperature  

Infra-red thermography is a very powerful method to monitor changes in plant 

water status in vivo. Thus it is being largely used in agriculture for a wide range of 

applications, from scheduling irrigation to evaluating fruit maturity (Vadivambal et al., 

2011). However, the usefulness of thermal imaging has not been sufficiently explored in 

disease resistance breeding. Here, infra-red thermography used in detection of chickpea 



plants infected by the dry root rot pathogen Rhizoctonia bataticola and the discrimination 

between susceptible and moderately resistant genotypes at a very early stage of the 

interaction.  

Plants grown in uninoculated soil had low leaf temperature (31.3ºC) than plants in 

inoculated soil (32.7ºC).  Among the genotypes, maximum leaf temperature present in BG 

212 (32.5ºC) followed by ICCV 5530 (31.9ºC) and least was observed in ICCV 8305 

(31.6ºC). There was significant increase in the leaf temperature from 15 DAS (29.6ºC) to 

45 DAS (34.3ºC). There was significant difference between the time points. Significantly 

high leaf temperature observed in 60% soil moisture (33.7ºC) compared to 100% (30.2ºC).  

In interaction between soil condition and genotype, it was observed that maximum 

leaf temperature was observed in plants grown in inoculated soil compared to plants grown 

in uninoculated soil in all the genotypes. The maximum leaf temperature was observed in 

BG 212 of 33.1 ºC in inoculated soil while the least was observed in ICCV 8305 of 30.8 ºC 

in uninoculated soil.   

In interaction between soil condition and time point, it was observed that maximum 

leaf temperature was observed in plants grown in inoculated soil compared to plants grown 

in uninoculated soil at 15 and 45DAS. Maximum leaf temperature of 35.2 ºC was observed 

at 45 DAS while least was observed in 15DAS of 29.1 ºC. 

In interaction between time point and genotype, it was observed that leaf 

temperature was observed with increase in time in all the genotypes. The maximum leaf 

temperature loss was observed in BG 212 of 35.0 ºC at 45 DAS while the least was 

observed in ICCV 8305 of 29.1 ºC at 15 DAS.   

In interaction between soil moisture and soil condition, it was observed that 

maximum leaf temperature was observed at 60% soil moisture followed by 100% in all the 

genotypes. The maximum leaf temperature was observed in inoculated soil was 34.5 ºC at 

60% soil moisture while the least of 29.6 ºC was observed at 100% soil moisture in 

uninoculated soil.   

In interaction between moisture and genotype, it was observed that maximum leaf 

temperature was observed at 60% soil moisture followed by 100% in all the genotypes. The 



maximum leaf temperature was observed in BG 212 of 34.3 ºC while the least was 

observed in ICCV 8305 of 33.3 ºC.   

In interaction between moisture and time point, it was observed that maximum leaf 

temperature was observed at 45DAS in 60% soil moisture of 36.4 ºC while the least was 

observed at 100% at 15 DAS of 28.2 ºC.  

 Among the genotypes, BG 212 grown in 60% moisture in inoculated soil had more 

temperature 37.5ºC and the least temperature was noticed at 15DAS in uninoculated soil 

with 100% soil moisture of 28.1ºC. While in ICCV 5530, highest temperature was recorded 

in inoculated soil at 60% moisture with 36.5ºC after 45 DAS and the least temperature was 

noticed in  uninoculated soil at 100% moisture i.e. 27.1ºC at 15DAS. In ICCV 8305, 

highest temperature was recorded in inoculated soil at 60 per cent moisture with 37.6ºC at 

45 DAS and the least was noticed in inoculated soil at 100% i.e. 28.0ºC at 15DAS (Fig 4.22 

and 4.23). 

The above results were in accordance with the work done by Doubledee (2010) on 

soybean infected by Macrophomina phaseolina to distinguish disease from those of 

drought. Water stressed plants and infested plants had higher canopy temperatures (based 

on infared radiation expressed as Crop Water Stress Index) than well watered or non-

infested plants. These results suggest that infection with M. phaseolina may limit the water 

uptake in the plant, before the onset of visible symptoms. Changes in stomatal conductance, 

transpiration rate and superficial leaf temperature had more effect on susceptible wilted 

plants upon infection by F. oxysporum reported by Wang et al. (2013). This reinforced the 

close relationship between vascular wilt and drought. The increase in leaf temperature and 

associated stomatal closure might be related to the vessel plugging induced by the intensive 

fungal growth within xylem vessels and by the attempt of plant defence that blocked xylem 

cells. Independently of the causal effect leading to stomatal closure and transpiration rates, 

this temperature increase was only detected in susceptible accessions since the surface leaf 

temperature of resistant pea accessions was maintained at uninoculated level (Nicolas and 

Diego, 2015). 

 

 



 

 

 

Fig 4.19. Effect of 60 and 100% soil moisture levels on total dry weight of chickpea 

genotypes in inoculated and uninoculated soils 

 

 

 

 

 

Fig 4.18. Effect of 60 and 100% soil moisture levels on leaf dry weight of chickpea 

genotypes in inoculated and uninoculated soils 
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Fig 4.17. Effect of 60 and 100% soil moisture levels on shoot dry weight  of chickpea 

genotypes in inoculated and uninoculated soils 
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Fig 4.16. Effect of 60 and 100% soil moisture levels on root dry weight of chickpea 

genotypes in inoculated and uninoculated soils 
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Fig 4.22. Effect of 60 and 100% soil moisture levels on leaf temperature of chickpea 

genotypes in inoculated and uninoculated soils  
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Fig 4.21. Effect of 60 and 100% soil moisture levels on stomatal conductance of 

chickpea genotypes in inoculated and uninoculated soils  
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Fig 4.20. Effect of 60 and 100% soil moisture levels on transpiration of chickpea 

genotypes in inoculated and uninoculated soils  

 

 

0

5

10

15

20

25

30

35

40

45

Control Sick Control Sick Control Sick Control Sick

15DAS 45DAS 15DAS 45DAS

60% Soil moisture 100% Soil moisture

T
ra

n
sp

ir
a
ti

o
n

(g
 H

2
O

 /
8
h

)



 

Fig 4.11.Effect of different moisture levels on total phenols in chickpea genotypes 

grown in sick and control soils 
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Fig 4.12. Effect of different moisture levels on phenylalanine ammonia lyase in 

chickpea genotypes grown in inoculated and uninoculated soils 
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Fig 4.13. Effect of different moisture levels on polyphenol oxidase activity in chickpea 

genotypes grown in inoculated and uninoculated soils 
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Fig 4.14. Effect of different moisture levels on peroxidase activity in chickpea 

genotypes grown in inoculated and uninoculated soils 
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Fig 4.10. Non reducing sugar in chickpea genotypes grown in inoculated and 

uninoculated soils at different moisture levels 
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Fig 4.9. Reducing sugar in chickpea genotypes grown in inoculated and uninoculated 

soils at different moisture levels 
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Fig 4.8. Total sugar in chickpea genotypes grown in inoculated and uninoculated soils 

at different moisture levels 
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Fig 4.23. Infrared images of control (A), moderately resistant (B) and susceptible (C) 

genotypes at 45 DAS at 60% soil moisture 
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 SUMMARY AND CONCLUSIONS  
 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

Chapter V 

SUMMARY AND CONCLUSIONS 

The present investigation included survey on disease incidence of dry root rot, 

collection of pathogen isolates, diversity among isolates with respect to cultural, 

morphological, pathological and molecular variability, influence of environmental factors 

on growth and disease development, biochemical and physiological changes associated 

with the dry root rot disease development in chickpea caused by Rhizoctonia bataticola 

(Taub.) Butler [Pycnidial stage: Macrophomina phaseolina (Tassi) Goid]. The results 

obtained in these investigations are summarized below. 

A roving survey was conducted during January, 2014 in 68 different chickpea 

growing locations of central (Madhya Pradesh and Maharashtra) and southern (Andhra 

Pradesh, Telangana and Karnataka) India to assess the status of dry root rot incidence. 

Mean maximum dry root rot incidence was observed in Telangana (18.28%) followed by 

Madhya Pradesh (18.10%), Karnataka (7.85%), Andhra Pradesh (5.40%) and the least in 

Maharashtra (5.38%). Out of 68 locations surveyed, the crop was cultivated in vertisols in 

66 locations except in Gandemla and Kurnool in Kurnool district of Andhra Pradesh, it was 

cultivated in alfisols. In Madhya Pradesh maximum incidence was noticed in Hardua 

village (28.0%) of Jabalpur district and the least in Bandol village (3.33%) of Seoni district. 

In Karnataka, maximum incidence was noticed in Devadurga (15.33 %) and the least 

incidence was 2.67% from Sarsamba village of Gulbarga district. In Maharashtra, 

maximum incidence was in Mekar (23.33 %) of Buldhana district and least was in Rajapur 

(1.33 %) of Akola District. In Andhra Pradesh, highest was found in Nandyal (RARS) with 



27.33 % incidence and least in Oruvagalu (0.67%) of Kurnool District. In Telangana state, 

the highest incidence (31.3%) was noticed in Daroor village of Rangareddy district and the 

least (1.34 %) was in Vundavelli village of Mahboobnagar district.  

The percent disease incidence recorded in each variety varied depending on the 

place of cultivation. Desi variety was cultivated in 26 locations had disease incidence 

ranging from 0.67 in Oruvagal of Kurnool district to 31.33 in Daroor of Rangareddy 

district. JG 11 was cultivated in 25 locations recorded the disease incidence ranging from 

1.33 in chinakallu in Anantapur to 30.67 in Patancheru, Medak district. Variety JG 62 

grown in six locations recorded disease incidence ranging from 7.33 in Bidagad village in 

Jabalpur district to 29.33 in Patancheru in Medak district. The cultivar BG 212 cultivated in 

Patancheru, Medak recorded highest disease incidence of 24.00. ICCV 2 was cultivated in 

the Patancheru in Medak district recorded 14.67. Improved desi had recorded the disease 

incidence of 1.33 in Rajapur to 3.33 in Pailpada of Akola district. JAKI 9218 grown in 

Patancheru, Medak recorded 25.33 percent disease incidence. KAK 2 was cultivated in two 

locations had disease incidence varying from 8.00 in Paduchuru in Prakasam district to 

24.00 in Chaurai in Chhindwara district. L550, MNK 1 and Wardha were cultivated in 

Nandyal, Ayyaluru and Lacina villages recorded 27.33, 1.33 and 2.00,  respectively.  

Sorghum chickpea cropping system was observed in 18 locations where the disease 

incidence ranged from 1.33 Pedakallu village of Anatapur to 30.67 in Patancheru of Medak 

district. Maize chickpea cropping system was observed in 12 locations where the disease 

incidence ranged from 1.33 Vundavelli village of Mahboobnagar to 28.00 in Hardua of 

Jabalpur district. Kharif fallow chickpea cropping system was observed in 11 locations 

where the disease incidence ranged from 3.33 Marturu village of Prakasam to 29.33 in 

Patancheru of Medak district. Soyabean chickpea cropping system was followed in 

Maharashtra where the disease incidence varied from 1.33 (Rajapur) to 23.33 (Mekar) and 

the difference in disease incidence was significant. In rice chickpea cropping system 

locations, the disease incidence varied from 1.33 (Chinakallu and Ayyaluru of Anantpur 

and Kurnool district respectively) to 24.00 (Pipariya) and the difference in disease 

incidence was significant. In pigeonpea chickpea cropping system in Telangana, the disease 

incidence varied from 14.67 (Patancheru) to 25.33 (Patancheru). In black gram chickpea, 

ajowan chickpea and pearlmillet chickpea cropping systems, disease incidence was 2.67 

(Pedanandipadu), 31.33 (Daroor) and 25.33 (Patancheru) respectively.  



Out of 68 locations, seed treatment was done in ten locations while maximum 

farmers of 58 locations were not practicing seed treatment. The disease incidence in the 

seed treated locations varied from 0.67 in Oruvagal of Kurnool to 7.33 in Bidagad of 

Jabalpur district. Where as in the locations where seed treatment was not practiced the 

disease incidence varied from 1.33 to 31.33.  

Irrigation was given in 18 locations while maximum farmers in 50 locations 

cultivated the crop under residual soil moisture or rainfall during crop growth. The disease 

incidence in the irrigated locations varied from 0.67 in Oruvagal of Kurnool to 29.33 in 

Patancheru of Medak district where as in the locations where irrigation facility was not 

there, the disease incidence varied from 1.33 (Chinakallu, Pedakallu and Kolimigundla) to 

31.33 (Daroor). 

During survey, due to diversified weather conditions and variation in sowing dates 

in different states, different crop growth stages i.e. from seedling (20 days old) to podding 

stage were observed. The crop was sown early in Karnataka and Andhra Pradesh during 

first fortnight of October while in Telangana in the second fort night of October. In 

Maharashtra sowings were done in the month of November whereas in Madhya Pradesh in 

the second fortnight of November to December. In Madhya Pradesh, seedlings infected 

with dry root rot appeared stunt without any lateral roots when uprooted and the tap root 

was black in colour. In Maharashtra and Telangana, crop was in the vegetative stage to 

flowering stage. Symptoms on affected plants were observed as bronzing of the leaves on 

one or more of the lower branches, leaves became yellow to brown in plants showing 

advanced disease symptoms. In such plants, the affected branches and leafstalks were stiff, 

turned upwards and the leaflets stand more or less vertically and were shed prematurely. 

The terminal part of the tap-root and lateral roots became brown to black and shriveled. 

The tap root without any lateral roots was also observed. In Karnataka and Andhra Pradesh, 

the crop was in podding and harvesting stage. The disease was scattered in the field as 

dried plants. It was also observed that, the susceptibility of plant to this disease increased 

with age. Sometimes the apical leaves on the affected plants appeared chlorotic, when the 

rest of the plant was dry. The pods on affected plants were poorly developed and the 

number of pods per plant was less.  

The mycelium was initially white in colour which was later converted to dark 

brown to black in colour. Production of aerial mycelium was also observed in some 



isolates. The vegetative mycelium was characterized by the formation of barrel-shaped 

cells and the formation of septum near the origin of branch of the mycelium. Branching 

occurred mostly at right angle to parent hyphae, but branching at acute angles was also 

observed. The hyphal cell length varied from 9.38x3.8 µm (Rb10) to 14.88x7.5 µm (Rb 

63). The sclerotial size varied from 54.86x 45.49 µm (Rb46) to 216.08x 181.09 µm (Rb 

59). The shape of sclerotia varied from round, ovoid to irregular. The texture of sclerotia 

was either rough or smooth. The sclerotia were dark brown to black in colour. 

Among 68 isolates the maximum disease severity rating of 9 was observed in Rb 

21, Rb 40, Rb 57, Rb 60, Rb 61 and Rb 63 while the least disease severity rating of 2.5 was 

observed in Rb 38. The incubation period ranged from 1.0 (Rb 21, Rb 40, Rb 60, Rb 61 and 

Rb 63) to 4.8 (Rb 4) days. It was observed that with an increase in disease severity there 

was decrease in incubation period in all the isolates. 

Significant difference in the radial growth among the isolates of Rhizoctonia 

bataticola ranging from 17.7mm to 80.0 mm at 72h after incubation. Isolate Rb 14, Rb 17, 

Rb 22, Rb 26, Rb 49 and Rb 54 showed significantly highest colony growth (80mm). The 

least colony diameter was observed in the isolate Rb 20 (17.7mm). 

Black colour colony was observed in 26 isolates while black with grey aerial 

mycelium was recorded in 20 isolates. Dark brown and grey colour was observed in 11 

each respectively.  

Isolates assigned into three groups on the basis of colony texture into appressed, 

fluffy and velvety. Maximum of 30 isolates produced appressed colony while 27 isolates 

had fluffy texture. Only 11 isolates had produced velvety growth.  

Maximum number of 42 isolates produced aerial mycelium and 26 isolates did not 

develop any aerial mycelium. No aerial mycelium was observed in most of the isolates that 

had appressed colony. 

The hyphal cell size varied from 9.38x3.80µm (Rb10) to 14.88x7.50µm (Rb 63). 

There was no significant difference between isolates Rb 10, Rb 27, Rb 3, Rb 2, Rb 25 and 

Rb 24. Ratio between the length/width of  hyphal cell varied from 1.35 (Rb 27) to 2.96 (Rb 

65). 



The length of sclerotia varied from 54.86x45.49µm (Rb 46) to 216.08x181.09µm 

(Rb 59). Ratio between length and width of sclerotia varied from 1.00 (Rb 5) to 1.64 (Rb 

23). 

Based on sclerotial texture, the isolates were grouped into two groups viz., rough 

and smooth texture. Rough texture was observed in 25 isolates while smooth texture was 

observed in 43 isolates. The isolates were categorized into irregular, round and ovoid 

groups based on shape of sclerotia.  Irregular shaped sclerotia were observed in 20 isolates 

while round shaped sclerotia were observed in 27 isolates and ovoid shape of sclerotia was 

observed in 27 isolates. 

Isolates took 1.7 (Rb1) to 4.3 days (Rb4, Rb23 and Rb 28) for sclerotial initiation 

on PDA medium. In 13 isolates sclerotia had initiated forming by second day. Maximum of 

32 isolates had initiated sclerotia production after 2 to 3days, while 11 isolates had initiated 

sclerotial formation after 3days. The number of sclerotia per microscopic field when 

observed through 10x objective varied from 11.67 (Rb 63) to 70.67 (Rb 56). 

 All the 10 RAPD primers generated 158 polymorphic bands.  

When fingerprints of these isolates were compared, some bands common to all isolates were 

observed while others were unique to one or a few isolates. All the RAPD bands produced 

by 10 primers in the 50 isolates of R. bataticola (50 isolates were selected based on the 

differences between isolates with respect to cultural and morphological variation) were 

subjected to hierarchical cluster analysis based on the principle of UPGMA and a 

dendrogram was generated. The similarity coefficient ranged from 0.63 to 0.92 indicating 

that no any two or more isolates were 100% similar. The highest similarity coefficient 

(0.92) was between isolates Rb 2 and Rb 4. All the isolates of Madhya Pradesh and 

Karnataka fell under same group IA. The Maharashtra isolates were distributed across all 

the three groups and were found in IA, IIA and III, while the Andhra Pradesh isolates were 

also fell under all the three groups, but were found in IA, IB, IIB and III. The Telangana 

isolates were found in IA, IB, IIA and IIB groups. The results of the present study also 

indicated that, all the isolates were not necessarily showing the geographical linearity.  

The maximum radial growth was observed at 35ºC and 72h after incubation in all 

five isolates. After 96h of incubation, all the isolates had covered petriplate at 25ºC and 

30ºC. The sclerotial initiation was started after 48 hours at 30ºC and 35ºC. The sclerotial 



initiation started at 72h after incubation 25ºC and it was observed at 96h after incubation in 

20ºC.  In 15 ºC, it was observed that the growth was very slow and sclerotial initiation was 

observed after 144 hours after incubation.  

The optimum growth of the fungal isolates was found at 35ºC (79.3, 90.0 and 90.0 

mm at 48, 72 and 96 hours after incubation respectively). The next best temperature was 

30ºC with radial growth of 71.3, 88.1 and 90.0 mm at 48, 72 and 96 hours after incubation 

respectively) followed by 25ºC, 20ºC and 15ºC. There was very meager growth at 40ºC 

(10.4, 15.0 and 17.5mm at 48, 72 and 96 hours after incubation respectively) and no growth 

was observed at 45ºC.   Among means of the isolates, there was significant difference 

between the isolates at three time intervals except at 96 hours after incubation between Rb 

2 and Rb 40. 

The optimum temperature for dry root rot severity was at 35°C with maximum 

disease severity rating of 8.5 irrespective of the isolate. This was followed by 30°C with 

disease severity rating of 7.9 followed by 25°C with disease severity rating of 7.0. It was 

observed that 20°C and 15°C had helped in the development of the lesions but could not 

develop further. The disease severity was very low 1.4 rating at 15°C while it was 3.1 at 

20°C. 

Among Rb 2, Rb 13, Rb 22 and Rb 40 isolates, there was no significant difference 

while Rb 63 was virulent isolate compared to others. The plants had showed symptoms on 

the tap root leaving the lateral roots unaffected at 25°C. At 30, 35, 40, 45°C, there was 

complete blackening of the roots and the reisolation from the roots showed the presence of 

Rhizoctonia batatiocla. The uninoculated plants did not show any symptoms. The plants at 

40 and 45°C showed physiological death by complete drying of plant parts both 

uninoculated and inoculated plants.  

At 24h after incubation, the growth of Rhizoctonia bataticola on PDA amended 

with NaCl, KCl and dextrose incubated at five different temperatures showed maximum 

mean radial growth at 35ºC viz., 17.1, 22.1 and 49.7mm followed by 30ºC of 13.6, 16.4 and 

34.2mm respectively. The least growth was observed at 40ºC of 4.1 and 5.4mm whereas in 

dextrose amended PDA least growth was observed at 20ºC (11.4mm). Similar observations 

were also recorded at 48 and 72h after incubation except in dextrose where least growth 

was observed at 40ºC. 

In black soil the disease severity rating was 9.0, 8.9, 8.1, 6.9, 5.3, 3.8 and 2.3 while 

in red soil, it was 9.0, 8.9, 8.7,  7.9, 6.5, 4.7 and 3.0 at 40, 50, 60, 70, 80, 90 and100% soil 



moisture respectively. The disease severity decreased as the soil moisture increased in both 

the types of soil.  There was significant difference between them. 

Among the selected isolates, Rb 63 showed highest disease severity of 6.7 in black 

soil while 7.5 in red soil. This was followed by Rb2 of 6.5 and 7.2 in black and red soils 

respectively.  The least disease severity was observed in Rb 40 in black soil and 6.2 in Rb 

13. There was significant difference between the disease severities. 

At 24h after incubation maximum mean radial growth was observed at pH 5.0 

(67.3mm) followed by pH 6.0 (64.4) while the least was observed at pH 11.0 (14.6mm) 

followed by pH 10.0 (33.0mm). There was significant difference between the pH levels at 

24h after incubation. Similar observations were also observed at 48h after incubation where 

there was significant difference between the pH levels except pH 4.0 (75.0mm) and pH 7.0 

(74.6mm) which were at par with each other. At 72h after incubation, maximum radial 

growth of 90.0mm was observed at 5.0, 6.0 and 7.0 pH levels which were at par with other. 

In the remaining pH levels there was significant difference between them where the least 

growth was observed at pH 11 of 53.5mm. 

 Among selected Rhizoctonia bataticola isolates, maximum radial growth was 

observed in Rb 22 (48.3mm) followed by Rb 40 (46.0mm) while the least was observed in 

Rb 2 (38.8mm). The similar trend was followed at 48h and 72h after incubation. There was 

significant difference among the isolates at 24, 48 and 72h after incubation.   

The susceptible genotype BG 212 was having less total sugars compared to 

moderately resistant genotypes viz., ICCV 5530 and ICCV 8305. There was significant 

increase in the amount of the total sugars in all the genotypes grown in control soil with 

increase in age of the crop in both 60 and 100% soil moisture. There was an increase in the 

amount of the total sugars in sick soil with increase in age of the crop in both 60 and 100% 

soil moisture in sick soil and then there was decrease in the 45 DAS in inoculated soil. The 

amount of total sugar was more in the 100% soil moisture compared to 60% soil moisture 

in control soil. The total sugar was more in the healthy plants as compared to plants in sick 

soil. The amount of increase was more in the inoculated plants grown at the 100% as 

compared to the 60% soil moisture condition. The plants were more prone to the disease in 

the 60% inoculated condition and this suggests the plant was utilising more total sugars for 

the synthesis of several pathways to restrict the growth of pathogen. 



There was an increase in the amount of reducing sugars in all the treatments with 

increase in age of the crop in both 60 and 100% soil moisture in control soil. There was an 

increase in the amount of the reducing sugars in BG 212 in both 60 and 100% soil moisture 

in sick soil up to 30 DAS and there was decrease by 45 DAS in sick soil. The amount of 

reducing sugar was more in 100% soil moisture compared to 60% soil moisture in control. 

The reducing sugar was more in the healthy plants as compared to plants in sick pots. The 

amount of increase was more in the sick plants grown at the 100% as compared to the 60% 

soil moisture condition. The susceptible genotype BG 212 was having less reducing sugars 

compared to moderately resistant genotypes (ICCV 5530 and ICCV 8305). 

There was an increase in the amount of the non reducing sugars in all the treatments 

with increase in age of the crop in both 60 and 100% soil moisture in control soil. There 

was an increase in the amount of the non reducing sugars in BG 212 with increase in age of 

the crop in both 60 and 100% soil moisture in sick soil and there was decrease in the 45 

DAS in sick soil at 60% soil moisture. The amount of non reducing sugar was more in the 

100% soil moisture compared to 60% soil moisture in control. The non reducing sugar was 

more in the healthy plants as compared to plants in sick soil. The amount of increase was 

more in the sick soil grown at 100% as compared to 60% soil moisture condition. The 

susceptible genotype (BG 212) was having less non reducing sugar compared to 

moderately resistant genotype (ICCV 5530 and ICCV 8305).    

In susceptible genotype BG 212, total phenol content was maximum at 30DAS 

(2.76 mg/100mg fresh weight of root tissue) in sick soil with 60% soil moisture while the 

least amount of 0.80 mg/100mg fresh weight of root tissue was observed in control soil at 

100% soil moisture at 15 DAS. In moderately resistant genotype (ICCV 5530) highest 

amount of   total phenol (5.92mg/100mg fresh weight of root tissue) was observed in sick 

soil at 60% soil moisture at 30 DAS while the least amount of 1.25 mg/100mg fresh weight 

of root tissue was noted in control soil at 100% soil moisture at 15 DAS.  Moderately 

resistant genotype ICCV 8305 maximum amount of total phenol (4.19 mg/100mg fresh 

weight of root tissue) was observed in sick soil at 60% soil moisture at 30 DAS while the 

least amount of total phenol (0.95 mg/100mg fresh weight of root tissue) was recorded in 

the control soil with 100% soil moisture at 15 DAS. 



There was an increase in the amount of PAL in all the treatments with increase in 

age of the crop in both 60 and 100% soil moisture in sick and control soil at 15 and 30 DAS 

and there was decrease at 45 DAS. The amount of PAL activity was more in 60% soil 

moisture compared to 100% soil moisture in sick and control soil. The PAL was more in 

the diseased plants as compared to healthy plants upto 30 DAS. The amount of increase 

was more in the inoculated plants grown at 60% compared to 100% soil moisture 

condition. The plants were more prone to the disease in the 60% inoculated condition and 

this suggests the plants had more PAL activity in them as a defence mechanism against 

pathogen. The susceptible genotype (BG 212) was having less PAL activity compared to 

moderately resistant genotype (ICCV 5530 and ICCV 8305). But, these moderately 

resistant genotypes resistance mechanism was broken as there was decrease in the amount 

of the PAL as compared to healthy plants in which there was gradual decrease. 

In susceptible genotype (BG 212), polyphenol oxidase activity was maximum at 30 

DAS (0.07 ΔAbs495 nm/ min/g fresh sample) in sick soil at 60 and 100% soil moisture. The 

critical difference between them was at par with each other. The least (0.01 ΔAbs495 nm/ 

min/g fresh sample) PPO activity was observed in sick soil at 60% soil moisture at 45 DAS 

and 100% soil moisture at 15 DAS. These were at par with each other. In moderately 

resistant genotype (ICCV 5530) highest (0.20 ΔAbs495 nm/ min/g fresh sample) PPO 

activity was observed in sick soil in 60% soil moisture at 30 DAS while the least (0.04 

ΔAbs495 nm/ min/g fresh sample) activity of PPO was observed in control soil at 100% soil 

moisture at 15 DAS.  In moderately resistant genotype (ICCV 8305) highest level (0.13 

ΔAbs495 nm/ min/g fresh sample) of PPO was observed in sick soil with 60% soil moisture 

at 30DAS while the lowest activity of 0.03 ΔAbs495 nm/ min/g fresh sample was recorded 

in control and sick soil at the 60and 100% soil moisture at 45 and 15 DAS respectively. 

In susceptible genotype (BG 212), POD activity was maximum at 30DAS in sick 

soil (1.34 ΔAbs420 nm/ min/g fresh sample) at 60% soil moisture while the least (0.17 

ΔAbs420 nm/ min/g fresh sample) activity of POD was observed in control soil at 100% soil 

moisture at 15 DAS. In moderately resistant genotype ICCV 5530 highest (1.50 ΔAbs420 

nm/ min/g fresh sample) activity of POD was observed in sick soil at 60 per cent soil 

moisture after 30 DAS. The least (0.61 ΔAbs420 nm/ min/g fresh sample) accumulation of 

POD was observed in control soil at 100% soil moisture after 15 DAS.  In moderately 

resistant genotype (ICCV 8305) highest level (1.43 ΔAbs420 nm/ min/g fresh sample) of 



POD was observed in sick soil at 60 per cent soil moisture after 30 DAS. The least activity 

of 0.20 ΔAbs420 nm/ min/g fresh sample was recorded in control soil at 100% soil moisture 

at 15 DAS. 

Among the genotypes, BG 212 grown in 100% moisture in control soil had more 

weight of 0.80g and the least weight was noticed at 15DAS in sick soil at 60% soil 

moisture (0.15g). In ICCV 5530, highest root weight was recorded at 100% moisture in 

control soil of 1.27g at 45 DAS and the least weight was noticed in 60% control and sick 

soil which were at par each other i.e 0.22g at 15 DAS. In ICCV 8305, highest root weight 

was recorded in 100% moisture in control soil of 0.85g at 45 DAS while the least was 

noticed in 60% sick and control soils, which were at par each other i.e 0.24g at 15DAS. 

From the results, it was observed there was no significant difference in the dry 

weight of the roots among same moisture conditions at different type of soil during 15 

DAS. The dry weight of the genotypes was more in the 100% soil moisture as compared to 

60% moisture in the 15 DAS. The dry weight of the roots at 45 DAS had significant 

differences. It was more in the 100% compared to the 60% control. With respect to the sick 

and control soil, it was observed that, severe disease in the sick soil made the disintegration 

of the roots and there by losing the weight of roots. It was observed more root weight in the 

100% soil moisture compared to the 60% in sick soil. 

Among the genotypes, BG 212 grown in 100% moisture in control soil had more 

weight of 0.61g and the least weight was noticed at 15DAS in sick and control soil at 60% 

soil moisture (0.12g) which was at par with each other. In ICCV 5530, highest root weight 

was recorded at 100% moisture in control soil of 0.89g at 45 DAS and the least weight was 

noticed in 60% control and sick soil which were at par each other i.e 0.20g at 15 DAS. In 

ICCV 8305, highest root weight was recorded in 100% moisture in control soil of 1.11g at 

45 DAS while the least was noticed in 60% sick soil of 0.26g at 15DAS. 

Among the genotypes, BG 212 grown in 100% moisture in control soil had more 

leaf weight of 0.58g and the least weight was noticed at 15DAS in sick and control soil at 

60% soil moisture (0.14 and 0.15g) which were at par with each other. In ICCV 5530, 

highest leaf weight was recorded at 100% moisture in control soil of 0.86g at 45DAS and 

the least weight was noticed in 60% control and sick soil which were at par each other i.e 

0.22g at 15 DAS. In ICCV 8305, highest leaf weight was recorded in 100% moisture in 



control soil of 0.92g at 45 DAS while the least was noticed at 60% sick soil of 0.28g at 

15DAS. 

Among the genotypes, BG 212 grown in 100% moisture in control soil had more 

total plant dry weight of 1.99g and the least weight was noticed at 15DAS in sick soil at 

60% soil moisture of 0.41g. In ICCV 5530, highest total plant dry weight was recorded at 

100% moisture in control soil of 3.02g at 45DAS and the least weight was noticed in 60% 

sick soil of 0.63g at 15DAS. In ICCV 8305, highest total plant dry weight was recorded in 

100% moisture in control soil of 2.87g at 45 DAS while the least was noticed at 60% sick 

soil of 0.78g at 15DAS. 

Among the genotypes, BG 212 grown in 100% moisture in control soil had 

transpired more of 36.3g and the least transpiration loss of 13.3g was noticed in sick soil at 

60% soil moisture at 45DAS. While in ICCV 5530 highest transpiration loss was recorded 

in 100% moisture in control soil with 39.3g after 45 DAS and the least transpiration loss 

was noticed in 60% sick soil of 11.0g at 15DAS. In ICCV 8305, highest transpiration was 

recorded in 100% moisture in control soil with 42.7g after 45 DAS and the least was 

noticed in 60% moisture in sick soil of 13.7g at 15 DAS. 

Among the genotypes, BG 212 grown in 100% moisture in control had more 

stomatal conductance of 1.15mol m−2 s−1 at 15 DAS and the least was noticed at 45DAS in 

sick soil with 60% soil moisture of 0.35mol m−2 s−1. While in ICCV 5530, highest stomatal 

conductance was recorded in 100% moisture in control soil with 0.94 mol m−2 s−1 at 15 

DAS and the least stomatal conductance was noticed at 60% moisture in sick soil of 0.43 

mol m−2 s−1 at 45DAS. In ICCV 8305 highest stomatal conductance was recorded in 100% 

moisture in control soil with 1.17mol m−2 s−1 at 15 DAS and the least was noticed in 60% 

moisture sick soil of 0.57 mol m−2 s−1 at 45 DAS. 

Among the genotypes, BG 212 grown in 60% moisture in sick soil had more 

temperature 37.5ºC and the least temperature was noticed at 15DAS in control soil with 

100% soil moisture of 28.1ºC. While in ICCV 5530, highest temperature was recorded in 

sick soil at 60% moisture with 36.5ºC after 45 DAS and the least temperature was noticed 

in  control soil at 100% moisture i.e. 27.1ºC at 15DAS. In ICCV 8305, highest temperature 

was recorded in sick soil at 60 percent moisture with 37.6ºC at 45 DAS and the least was 

noticed in sick soil at 100% i.e. 28.0ºC at 15DAS. 



Conclusions 

• Dry root rot of chickpea distributed in all the locations of central and southern parts 

of India. 

• Presence of variability among the isolates with respect to cultural, morphological, 

pathological and molecular characters was observed.. 

• Optimum temperature of 35˚C with 60% soil moisture favourable for the pathogen 

growth and disease development. 

• It was observed that the increase in the osmotic potential and temperature had 

positive effect on the growth of the fungus up to -0.5MPa and then onwards, 

negative effect on the growth of the fungus in KCl and NaCl amended media while 

in dextrose amended media growth was observed up to -2.5MPa at 35˚C.  

• At higher osmotic potentials (-2.0 to -2.5MPa at 40ºC), ex-osmosis of the fungus 

and death was observed in media amended with NaCl and KCl. 

• The susceptible genotype had fewer amounts of total sugars, reducing and non 

reducing sugars compared to moderately resistant genotypes. The sugars were more 

in the healthy plants as compared to infected plants. In the inoculated soil, the 

amount of increase was more in 100% as compared to 60% soil moisture condition.  

• Total phenol, phenylalanine ammonia lyase, polyphenol oxidase and peroxidase 

were maximum at 30DAS in inoculated soil with 60% soil moisture in all the three 

genotypes. The amount of increase was more in the inoculated plants grown at 60% 

compared to 100% soil moisture condition. The amount of phenol and enzymes 

were more in the moderately resistant genotypes compared to susceptible genotype.  

• Dry weight of the genotypes was more in the 100% soil moisture as compared to 

60% moisture. With respect to the inoculated and uninoculated soil, it was observed 

that, severe disease in the inoculated soil made the disintegration of the roots and 

there by losing the weight of plants in inoculated soil at 60% compared to control.  

• Genotypes grown in 100% moisture in uninoculated soil had more transpiration and 

stomatal conductance while the least was noticed in inoculated soil at 60% soil 

moisture in contrast, leaf temperature was more in the genotypes grown in 



inoculated soil at 60% moisture and the least was noticed in inoculated soil with 

100% soil moisture.  
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