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Abstract

Sugarcane (Saccharum spp.) and other members of Saccharum spp. are attractive biofuel feedstocks. One of the two World
Collections of Sugarcane and Related Grasses (WCSRG) is in Miami, FL. This WCSRG has 1002 accessions, presumably with
valuable alleles for biomass, other important agronomic traits, and stress resistance. However, the WCSRG has not been fully
exploited by breeders due to its lack of characterization and unmanageable population. In order to optimize the use of this
genetic resource, we aim to 1) genotypically evaluate all the 1002 accessions to understand its genetic diversity and
population structure and 2) form a core collection, which captures most of the genetic diversity in the WCSRG. We screened
36 microsatellite markers on 1002 genotypes and recorded 209 alleles. Genetic diversity of the WCSRG ranged from 0 to 0.5
with an average of 0.304. The population structure analysis and principal coordinate analysis revealed three clusters with all
S. spontaneum in one cluster, S. officinarum and S. hybrids in the second cluster and mostly non-Saccharum spp. in the third
cluster. A core collection of 300 accessions was identified which captured the maximum genetic diversity of the entire
WCSRG which can be further exploited for sugarcane and energy cane breeding. Sugarcane and energy cane breeders can
effectively utilize this core collection for cultivar improvement. Further, the core collection can provide resources for forming
an association panel to evaluate the traits of agronomic and commercial importance.
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Introduction Brazil [7], sugarcane lignocellulosic biomass-based ethanol is an
increasingly attractive biofuel to supplement fossil fuels. As a
result, energy cane breeding programs have emerged and
separated from sugarcane breeding programs, though both
breeding programs employ interspecific hybrids from crosses
between species primarily within the genus Saccharum. Sugarcane
cultivars are selected primarily for high sucrose content and energy
cultivars for high biomass and fiber with low sucrose content.
Biomass level of energy cane cultivars out-performs many other
grasses cultivated for biofuel production, including switchgrass,
elephant grass, Miscanthus, and sorghum in the southern US
[8,9]. Thus, energy cane is suited for lignocellulosic ethanol

Sugarcane (Saccharum spp.) is a perennial grass, belonging to
the Poaceae family and Andropogoneae tribe, which is grown
widely in tropical and subtropical regions. It is the highest yielding
crop worldwide [1] and accounts for approximately 75% of the
world sugar production [2,3]. In recent years, sugarcane has
gained increasing attention as a biofuel crop due to its high
biomass yield potential [4]. As a C4 plant, sugarcane is one of the
world’s most efficient crops in converting solar energy into
chemical energy through photosynthesis and has a favorable
energy input/output ratio [5,6]. Besides sucrose-based ethanol
production, which replaces 30% of the gasoline consumed in
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production while sugarcane can be used for sucrose ethanol
production as in Brazil.

The origin of modern sugarcane cultivars is from inter-specific
hybridizations of domesticated species S. officinarum (2n= 80,
x = 10) which is characterized by high sugar and low fiber content
[10] and the wild species S. spontaneum (2n=40-128, x=8),
which is resistant to biotic and abiotic stresses [11-13]. Modern
sugarcane genotypes are highly polyploid and aneuploid with
multiple alleles at each locus. The genome composition of
sugarcane cultivars has been estimated as 85% from S.
officinarum and 15% from S. spontaneum [14]. The genome
complexity in Saccahrum spp. has made sugarcane and energy
cane breeding cumbersome. The genotypes utilized over decades
in earlier breeding programs are a limited number of S.
spontaneum and S. officinarum clones, which has resulted in a
narrow genetic base of sugarcane cultivars [15]. Hence, it is
important to characterize the genetic variation among the
domestic cultivars and the available genetic resources in order to
exploit them and accelerate sugarcane and energy cane improve-
ment. A germplasm collection with high genetic diversity would
enable breeders to broaden the genetic base of parental lines and
thereby facilitate genetic gains of sugarcane and energy cane
cultivars [16,17].

The classification of the Saccharum spp. based on morphology,
chromosome numbers and geographic distribution has been a
matter of debate for a long time. The Saccharum genus was
believed to consist of six major species, including two wild species
S. spontaneum and S. robustum and four cultivated species, S.
officinarum, S. barberi, S. sinense and S. edule [18,19]. However,
there were controversial reports by Irvine 1999 mentioning the
existence of only two Saccharum species: viz. S. officinarum and S.
Spontaneum [19]. The Saccharum genus together with related
genera, such as Erianthus, Miscanthus, Narenga, and Sclerosta-
chya were referred to as the “Saccharum Complex” [20].
However, there are limited attempts to characterize the Sac-
charum complex using molecular markers [21,22]. There is a need
to trace the domestication and evolution of Saccharum spp by
extensive molecular dissection. Two duplicated “Saccharum
Complex” germplasm collections known collectively as the
“World Collection of Sugarcane and Related Grasses” (WCSRG)
were utilized. One WCSRG is maintained in Coimbatore, India
and the other in Miami, FL, USA. The National Germplasm
Repository located at the USDA-ARS Subtropical Horticulture
Research Station in Miami, FL. maintains the WCSRG in the
USA [23,24]. This WCSRG may contain significant genetic
diversity and many valuable alleles for numerous morphological
traits, biomass yield components, adaptations to biotic and abiotic
stresses, and many other quality traits [25]. Earlier studies on
genetic diversity analysis in selected clones in this collection have
provided limited information [26,27]. In addition, limited
numbers of clones in the WCSRG have been used for sugarcane
and energy cane improvement. This large genetically diverse
collection with vast potential remains unutilized.

With its large number and genetically complex accessions, it is a
formidable task to fully characterize and use the WCSRG in
breeding programs. A core collection that is a condensed assembly
of the entire collection with maximized genetic diversity and
minimized redundancy is essential for its utilization [28]. Such a
core collection for Saccharum spp. would provide a subset of
representative accessions and can facilitate extensive examination
at phenotypic, physiological and genetic levels. Thus, it could
substantially utilize the contributions of the WCSRG in sugarcane
and energy cane breeding programs.
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Genetic markers are widely applied for diversity analysis,
genetic trait mapping, association studies and marker assisted
selection [29]. Simple sequence repeats (SSR) or microsatellites
[30] are tandem repeats of 1 to 6 base pairs of DNA, which are
found in all eukaryotic genomes [31,32]. During the last decade,
SSR markers have been powerful tools for diversity assessment of
populations in many crops including Zea mays [33], Sorghum
bicolor [34], Solanum lycopersicum [35], Oryza sativa [36], Vitis
(37], Triticum aestivum [38], Hordeum vulgare [39] and
Eucalyptus [40]. In sugarcane, SSRs have been used for
germplasm evaluation [41-45], QTL analysis and genetic map
development [46]. Thousands of SSR markers located randomly
in the sugarcane genome available in public domain [27,47,48]
provide an essential tool for genotyping. Our objectives were to
genotypically evaluate all the 1002 accessions in WCSRG
germplasm using SSR markers and to understand the genetic
diversity and population structure of this collection and create a
core collection of 300 accessions that captures the vast majority of
genetic diversity present in the larger collection for further
utilization in breeding programs.

Materials and Methods

Plant materials

The WCSRG is part of the USA National Plant Germplasm
System (NPGS) (http://www.ars-grin.gov/npgs/index.html). The
NPGS caters the need of researchers by acquiring, preserving,
evaluating, documenting and distributing crop germplasm. There
were 1002 non-redundant accessions in the WCSRG maintained
at the USDA-ARS Subtropical Horticulture Research Station,
Miami, FL, and made available for free distribution. These
accessions were mostly survivors from Hurricane Andrew in 1992
with some curated new accessions. The S. spontanewm accessions
are maintained in 7-gallon pots on a concrete pad and not allowed
to flower as they are considered invasive. The rest of the accessions
are planted in the field and rotated to new field plots every 4 years.
The mature plants are cut to the ground every year in the early
spring until replanting. The accessions represent collections from
45 different countries (Fig. la). Saccharum officinarum, Sac-
charum hybrids and S. spontaneum comprised the major portion
of the collection and minor portion includes the other species such
as Coix gigantea, Imperata spp., Miscanthus florvidulus, Mis-
canthus hybrids, Miscanthus sinensis, Miscanthus spp., Narenga
porphyrocoma, Saccharum arundinacewm, Saccharum barberi,
Saccharum bengalense, Saccharum brevibarbe, Saccharum edule,
Saccharum hybrids, Saccharum kanashiroi, Saccharum offici-
narum, Saccharum procerum, Saccharum ravennae, Saccharum
robustum, Saccharum rufipilum, Saccharum sinense, Saccharum
spontaneum, Saccharum spp., Sorghum plumosum, Sorghum
arundinaceum and some unknown or pending accessions (Fig. 1b,
Table S1). The species name of each accession in the WCSRG
was defined based on the curator’s naming system. Young leaf
tissues of these 1002 accessions were collected in 2011 and
lyophilized for DNA isolation.

DNA extraction and PCR conditions

The genomic DNA was extracted from 500 mg lyophilized
leaves using the CTAB method according to Wang et al. [45] with
minor modifications. The quality and quantity of the genomic
DNA was checked using 1% agarose gel electrophoresis by
comparison with a known concentration of lambda DNA as a
standard (New England). The DNA with good quality was then
diluted to 1.25 ng/ul for the PCR.
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Figure 1. Distribution of the World Collection of Sugarcane and Related Grasses (WCSRG). (a) Geographic distribution of the accessions
in the WCSRG. The 1002 accessions in the WCSRG were obtained from 45 countries. Each red dot represents a sugarcane collecting location. Global
Mapper V14 software with OpenStreetMap was used to locate the accessions based on the latitude and longitude of origins. (b) Numerical
distribution of the different species in the WCSRG and the core collection identified.

doi:10.1371/journal.pone.0110856.g001

PCR reactions were carried out in a 10 pl volume containing
2.5 ng genomic DNA, 1 x PCR buffer, 25 mM MgCl,, 2 mM
dNTP, 2 uM of each primer, and 1 U Taq polymerase. The
reaction was performed in an ABI thermal cycler with the
following cycling condition: 94 °C for 3 min; followed by 35 cycles
of 94 °C for 30 s, then the appropriate annealing temperature for
30 s, 72 °C for 30 s, followed by one cycle at 72 °C for 7 min. The
annealing temperature for each primer was optimized separately
and ranged from 46 °C to 64 °C (Table S2).

SSR genotyping

In total, 191 SSR primer pairs selected from different publica-
tions (Table S2) were screened on a panel of eight diverse
genotypes belonging to S. robustum, S. arundinaceum, S.
officinarum, S. spontaneum and S. hybrid to select the SSR
markers with high polymorphic information content (PIC). The
selected SSR markers were then used for genotyping each
accession in the WCSRG.

Two genotyping platforms, polyacrylamide gel electrophoresis
(PAGE) with silver staining and capillary electrophoresis with an

PLOS ONE | www.plosone.org

ABI 3730 sequencer were used to separate/visualize the PCR
products. For the PAGE system, a C.B.S. electrophoresis unit
(G.B.S Scientific Co. Del Mar, CA) was used for the PCR product
separation. The amplified products were loaded in non-denaturing
6% polyacrylamide gel electrophoresis [160.2 mL 0.5931X TBE
buffer, 28.5 mL 40% acrylamide/bis-acrylamide solution [19:1
w/v)], 1.33 mL 10% APS (ammonium persulfate), and 66.5 pl
TEMED]. The electrophoresis was conducted in 0.5 X TBE
running buffer at 350 V for approximately 1 hour 45 minutes and
SSR amplicons were visualized by silver staining (0.2% AgNOs)
according to the modified protocol of Creste et al. [49]. The size of
each allele was determined by comparing it to the 100 bp DNA
ladder (New England Biolab INC.). The robust bands were scored
as present (1) or absent (0) and a score file binary matrix (0/1) was
used for further analysis.

For the ABI 3730 sequencer system, forward primers were
labeled with fluorescent dyes, 6-FAM, VIC, NED or PET,
allowing subsequent multiplexing. PCR reactions of the four
primer pairs were performed independently, and the amplified
PCR products were checked on a 1% agarose gel. The optimized
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amounts of four different fluorescence dye-labeled PCR products
of the same genotype were multiplexed. Combined PCR products
were denatured at 95 °C for 5 min and mixed with GeneScan™
600 LIZ™ size standard (Applied Biosystems, USA) and Hi-Di
formamide for separation on ABI 3730 Genetic Analyzer (Applied
Biosystems, USA). The GeneScan files generated were analyzed
using GeneMarker V2.4.0 (Softgenetics, LLC, State College, PA,
USA). The peak sizes were automatically calibrated against the
600 LIZ™ size standards with default module settings. The alleles
were mainly called by the GeneMarker software in couple with
manual rechecking. The presence of a peak was scored as “1”” and
its absence was designated as “0”. The genotypic data are made
publically available through the Germplasm Resources Informa-
tion Network (GRIN) database (http://www.ars-grin.gov/), which
has an open free access to scientists in the world-wide community,
and will be available upon request.

Genetic diversity analysis

The binary data matrix of alleles for each SSR locus was
constructed from evaluation of all the accessions in the WCSRG.
PowerMarker V3.25 software was used to calculate allele
frequency, number of alleles per locus, percentage of polymorphic
bands, PIC, and gene diversity (expected heterozygosity, He) [50].
Shannon’s Information Index of Diversity (I) and Nei’s distance
were estimated for pre-defined species by GenAlEx Ver 6.5 [51].
The probability of identity [52] and the power of exclusion [53]
were calculated using allele frequencies from the 1002 accessions.
Cluster analysis was carried out using DARwin V5.0.137 software
[54]. A dissimilarity matrix was calculated by considering Dice
coeflicient with pairwise variable deletion. The dissimilarity matrix
was used to generate a phylogenetic tree by using the Neighbour-
joining (NJ) method with 500 bootstrap replicates. For selection of
core collection, the Maximization (M) algorithm implemented in
DARwin software was applied with the highest genetic diversity.
The Principal Coordinate Analysis (PCoA) was generated based
on the Genetic Distance matrix by GenAlEx Ver 6.5 [51].

Population structure and differentiation analysis

The population structure and number of subpopulations present
in the WCSRG was assessed by model-based clustering algorithms
using STRUCTURE V2.2 [55]. The number of subpopulations
(K) was set from 1 to 15, and at least ten runs per K were
conducted separately with 100,000 generations of ‘burn-in’ and
100,000 Markov chain Monte Carlo (MCMC). The best K value
was determined based on ad hoc quantity (AK) analysis [56].
Analysis of Molecular Variance (AMOVA) was conducted to
detect the genetic variance within and among WCSRG subpop-
ulation using GenAlEx Ver 6.5 [51].

Results

SSR genotyping

A pilot experiment was carried out for screening 191 sugarcane
SSR markers (Table S2) with eight Saccharum accessions
belonging to different species. These markers yielded 276 alleles
with 2—13 alleles per primer pair and their PIC value ranged from
0.195 to 0.375. To screen WCSRG, 36 SSR markers with high
PIC values were selected to genotype each accession in the
WCSRG. Out of 36 SSR markers, 14 primer pairs could be
located on eight different sorghum chromosomes and the other 22
could not be mapped on sorghum genome (Table S2). In total, 209
alleles, which constituted 100 from PAGE and 109 from capillary
electrophoresis, were recorded among the 1002 accessions with an
average of 5.8 alleles per locus. The number of alleles recorded per
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locus ranged from 1 at UGSuM349 to 17 at UGSM667. The
highest number of alleles, 13 and 17 were found at locus SCA10
and UGSMG667 respectively (Table 1). In total, 5-12 alleles were
observed at 18 SSR and 3 or fewer alleles at 10 SSR loci. SSRs
having di-nucleotide repeats were more polymorphic than other
repeat motifs (T'able S2). Of the 36 primer pairs, 21 were screened
on the PAGE platform and 15 were screened by capillary
electrophoresis on the ABI 3730 sequencer platform. In order to
compare the results of both platforms, some labeled primers
screened by the ABI 3730 were checked on the PAGE platform
and the results were comparable in terms of molecular weight of
the amplicons.

Allele frequency and genetic diversity in the WCSRG

Major allele frequency ranged from 0.567 to 0.998 with a mean
of 0.911 (Table 1). The mean PIC value of each SSR marker
ranged from 0.1294 to 0.3717 with an average of 0.2568. The
probability of identity () was low in most cases. It ranged from
0.012 (UGSM667) to 0.395 (SEGM2dot) with an average of 0.132.
For the majority of primer pairs, the power of exclusion (Q) was
moderate ranging from 0.178 (SEGM2dot) to 0.840 (UGSM667)
with an average of 0.515 (Table 1). Out of the 209 alleles, 23
alleles showed significantly different frequency between the two
major species, S. spontaneum and S. officinarum, with 10 alleles
more frequently observed in S. spontaneum than in the other
species. Allele UGSM629_150 was observed solely in S.
spontaneum (Fig. 2). The highest percentage of polymorphic
bands (99.52%) was found in S. spontaneum followed by S.
officinarum (95.22%) and S. robustum (85.65%) (Table 2). The
average Shannon’s Information Index scores for S. spontaneum, S.
officinarum, S.hybrid, S. barberi, S. robustum, and S. sinense were
0.492, 0.456, 0.452, 0.423, 0.427 and 0.383 respectively (Table 2)
indicating S. spontanewm is genetically more diverse than the other
species. The gene diversity of each allele ranged from 0.002 to
0.500 with an average of 0.310. Among the six major pre-defined
species, the highest gene diversity was found in S. spontaneum
(0.306) followed by S. robustum (0.263), with an average of 0.276
(Table 2). Based on the Nei’s genetic distance, the largest genetic
distance (0.079) was between S. spontaneum and S. officinarum,
and the smallest (0.013) between S. officinarum and S. hybrid and
other S. spp. with unknown accessions (Table 3).

Phylogeny and population structure of the WCSRG

Genotypic data of 209 alleles on the 1002 accessions were used
to analyze the genetic distance between each accession. The
phylogenetic tree of the WCSRG revealed three major clusters
(Fig. 3a). All the accessions in S. spontaneum clustered in group 1,
S. hybrids clustered with S. officinarum, S. robustum, S. barberi,
S. edule and S. sinense in group 2 while the majority of accessions
of unknown speciation and the species in other genera such as
Erianthus, Miscanthus, and Sorghum (Fig. 3a) clustered in group
3. The PCoA of the WCSRG also revealed three groups and the
first three axes together explain 15.20% of cumulative variation.
In the PCoA plot, the first and second principal coordinates
account for 7.88% and 12.54% of the total variation respectively
(Fig. 3d).

The population structure of the WCSRG was analyzed by
STRUCTURE V2.2. The ad hoc quantity (AK) analysis [56]
shows a clear peak at K =3, revealing the presence of three
subpopulations in the WCSRG (Fig. 3c). Of the 1002 accessions,
the 731 were clearly assigned to three specific subpopulations with
membership probability greater than 0.8 and the remaining 271
accessions were an admixture subpopulation with membership
probability <<0.8. Subpopulation 1 comprised accessions from
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Figure 2. Comparison of frequencies of 23 alleles in S. officinarum and S. spontaneum. These alleles were selected based on the presence of
the prevalent allele in any of the major species. For instance, presence of alleles in at least 30% of the cases in S. officinarum and at least 55% of the

cases in S. spontaneum.
doi:10.1371/journal.pone.0110856.g002

S. spontaneum and subpopulation 2 consists mostly of accessions
from S. officinarum. The subpopulation 1 had 211 accessions
including two accessions (41-158,45-19) of uncertain species
name, which are likely Spontanewm spp. Subpopulation 2
consisted of 218 S. officinarum accessions, 101 §. hybrid
accessions, 66 accessions from other Saccharum species, 4
Miscanthus hybrid accessions, and 55 unknown/pending acces-
sions. Seventy-six accessions were identified in subpopulation 3
including two major non-Saccharum species existing in the
WCSRG such as Miscanthus and Erianthus, which show high
genetic divergence compared with subpopulations 1 and 2.

The distance-based AMOVA analysis revealed genetic variance
among and within the populations were highly significant (P<
0.001) and the variation within subgroups (89%) was significantly
higher than that among subgroups (11%) (Table 4). Significant
variance not only exists among three major subpopulations
inferred by the structure analysis but also among six major
Saccharum species, which were pre-defined by the germplasm
curators. However, based on the AMOVA analysis, the st (0.160)
among the three major subpopulations inferred by the structure

analysis was higher than the ¢st (0.108) among the six major
species.

Constructing a core collection

To construct a core collection representing most of the genetic
diversity in the WCSRG, the maximum length sub-tree for
disequilibrium was calculated using DARwin. From this, a core
collection of 300 accessions representing most of the genetic
diversity was identified (Fig. 3b). Genetic diversity analyses showed
that the average major allele frequency of the core collection was
0.75, which is comparable to the value of 0.77 calculated for the
WCSRG. Similarly, gene diversity was 0.337 with the range from
0 to 0.5 in the core collection, which was comparable to 0.304 in
the WCGSRG. The PIC value of the alleles was 0.269 in the core
collection and 0.245 in the WCSRG. Genotype frequency of the
core collection and the WCSRG were both 0.5 (Table 5). These
results indicated that the core collection adequately represents the
genetic diversity of the WCSRG.

Table 2. Gene diversity, Shannon’s information index, and polymorphism status of six species of Saccharum and other categories.

Species Gene diversity ? Polymorphic bands (%)
S. officinarum 0.2564 0.456 95.22
S. spontaneum 0.3032 0.492 99.52
S. hybrid 0.2531 0.452 93.30
S. barberi 0.2398 0.423 85.17
S. robustum 0.2670 0.427 85.65
S.sinense 0.2381 0.383 75.60
pending 0.2985 0.486 96.65
other S. sp 0.2756 0.462 91.39
other genus 0.3030 0.4470 91.39
?Shannon’s Information Index.
doi:10.1371/journal.pone.0110856.t002
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Discussion

Genotypic evaluation of the sugarcane germplasm as a potential
breeding material provides essential information so that cane
breeders can utilize more genetically diverse parents in their
breeding programs. In this study, we evaluated all 1002 accessions
available in the WCSRG using SSR markers to estimate the
genetic diversity and select accessions for the core collection. The
WCSRG is currently not widely used but is potentially a great
resource for sugarcane and energy cane breeders to improve
commercial cultivars. We report here the results of the first
extensive genetic diversity study on all accessions available in the
WCSRG maintained in USA. With this information, sugarcane
and energy cane breeders will now have information on the
WCSRG that will allow them to make long-term improvements of
commercial cultivars with important agronomic traits.

Because sugarcane is extremely heterozygous and highly
polyploid, polymorphisms are high among the accessions. Analysis
of SSR markers on the WCSRG indicated 1 to 17 robust
polymorphic alleles with an average of 5.8 alleles per locus,
comparable to other studies, where the allele number per locus
was 7.35 [57] and 8.78 per locus [58]. Perhaps the slightly lower
number of alleles per locus reported in this study was due to the
higher stringency applied in allele scoring. Of the 36 SSR loci, 14
were aligned to different chromosomes of sorghum whereas the
other 22 had no similarity to the sorghum genome (Table S2).
These 22 SSR loci are most likely located in non-coding regions of
the sugarcane genome where the sequences are highly diverged
from those of the sorghum genome. In light of the synteny between
the sorghum and sugarcane genome [48,59], these 36 SSR loci
should cover the sugarcane genome randomly, therefore, the
sugarcane genome was sampled randomly by the 36 SSR loci for
the phylogenetic study of the WCSRG. In addition to SSR
markers, Chandra et al. developed conserved-intron scanning
primers (CISP) could be a choice to evaluate the polymorphic
potential in sugarcane and related species and reveal the
relationships among sugarcane germplasm [60].

The probability of identity (/) is an individual identification
estimator which explains the probability of two different accessions
having the same genotypes at one specific locus in a population by
chance rather than through inheritance. It was calculated based on
the allele frequencies for each marker from the WCSRG. The 1
values ranged between 0.012 (UGSM667) and 0.395 (SEGM2dot)
(Fig. 1b). For most of the SSRs used in this study, the I values were
low and the combined probability for all markers was 9x10~*’
indicating that the 36 markers are capable of distinguishing all
accessions in the WCSRG. The exclusion probability (Q) indicates
the probability of excluding an accession from the possibility of
parentage if the accession was not involved in any parentage. The
Q values were moderate for most SSR primers, ranging from
0.178 (SEGM2dot) to 0.840 (UGSM667) (Table 1). The combined
power of exclusion exceeded 99.99%, which indicates that these
SSR markers were able to discriminate among all of the accessions
with nearly a 100% probability of excluding any false parentage.

The presence of 20 significantly different alleles between
S. spontaneum and S. officinarum suggests genomic differences,
which could act as gene flow barriers between them. The species-
specific alleles were also found [61] using maize SSRs, where they
identified five alleles specific to Erianthus, S. spontaneum and
S. officinarum. These alleles can be used to detect genome
components of S. spontanewm in the hybrids.

Classification of the Saccharum species has been a topic of debate
for many years. The Saccharum genus was traditionally divided into
six species: S. spontaneum, S. officinarum, S.robustum, S. edule,
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Figure 3. The clusters of the World Collection of Sugarcane and Related Grasses (WCSRG) and core collection in Miami, FL USA. (a)
Phylogenetic tree of the WCSRG using neighbor-joining analysis. (b) Representativeness of the 300 accessions (colored blue) of the core collection
selected from the WCSRG. Accessions not selected for the core collection are shaded grey. (c) The population structure of the WCSRG based on
model-based estimation of 209 alleles. The WCSRG is grouped into three subgroups. Each individual is represented by a vertical line. Each color
represents one subpopulation, and the length of the colored segment shows the proportion of membership for that accession. (d) Two-dimensional
plot of the distribution of the WCSRG through principal coordinate analysis based on genetic distance generated from 209 alleles. The different colors

represent nine pre-defined species.
doi:10.1371/journal.pone.0110856.g003

S. barberi and S. sinense, which were defined by some highly
variable characters with many uncertainties [18,19]. However,
Irvine [19] considered them as two species: S. spontaneum and
S. officinarum with the other four species and hybrids being
considered as S. officinarum based on the morphological,
cytological and genotypic analysis. In this study, phylogenetic
analysis based on genetic diversity indicated that accessions of
S. spontaneum clustered into a major group/subpopulation.
S. officinarum along with other Saccharum species such as S.
sinense, S. barberi, S. robustum, S. hybrids and other genus

PLOS ONE | www.plosone.org

Narenga were clustered into another distinctive group/subpopula-
tion (Fig. 2a, 2c, Table S3), indicating the close relationship among
these species, which should be considered as one species specifically
given the non-barrier intercrossing nature among them. The third
group comprised of the genotypes from other genus like Coix,
Miscanthus and some Saccharum species as named by the curators
such as S. bengalense, S. arundinaceum, S. ravannae, S. procerum,
S. brevibarbe and S. rufipilum. Based on phylogenetic analysis, S.
bengalense, S. arundinacewm, S. ravannae and S. procerum should
be named as Erianthus species such as E. bengalense, E.

October 2014 | Volume 9 | Issue 10 | e110856



Genetic Analysis and Core Collection Construction for Saccharum spp.

arundinaceum, E. ravannae and E. procerum respectively (Table
S1). This concurred with predecessor research results [62].
Saccharum brevibarbe and S. rufipilum should be considered as
non-Saccharum species since they were distinctively clustered in the
non-Saccharum group. Interestingly, several designated Erianthus
unknown clones were found in group 2 clustered with the S.
officinarum, which might be Saccharum spp. and need to be further
validated.

The classification of the WCSRG through phylogenetic analysis
revealed three groups (Fig. 3a), which corresponds with three
subpopulations  identified by population analysis
(Fig. 3c). The subpopulation 1 contained the majority of S.
spontaneum with the membership probabilities of >0.80, almost
all the S. officinarum and hybrids assigned to subpopulation 2,
and within subpopulation 3, non-Saccharum species, including
Erianthus and Miscanthus along with some unknown species,
share membership with a few S. spontaneum accessions (Table S3).
These results indicate that the Saccharum species should be
classified into two major species: S. sponlaneum and S.
officinarum and this supports the findings of Irvine [19]. The
higher ¢st value of 0.160 among the three major subpopulations
inferred by the STRUCTURE analysis compared with the ést
value of 0.108 among the six pre-defined major species along with
three other categories also supports the conclusion that there are
only two major Saccharum species (Table 4). Hodkinson et al.
[63] used three DNA sequences to study the inter-relation between
Miscanthus, Saccharum and other related genera and found that
there was polyphyletic relationship between Saccharum spp. and
Miscanthus spp. Most interestingly, the species known to be
Saccharum complex (S. ripidium) did not group closely with any of

structure

collection of sugarcane and related species.

Table 4. Analysis of molecular variance (AMOVA) among 9 pre-defined populations and three structure detected populations
within World Collection of Sugarcane and Related Grasses (WCSRG).

Source of Degrees of Sum of Mean sum of Estimated Percentage of
Population variation freedom (df) squares squares variance variation (%)
9 pre-defined populations Among Pops 8 3432.803 429.1 3.935 11

Within Pops 993 32121.42 32348 32348 89

Total 1001 35554.22 36.283 100

Fixation Index Dst=0.108
3 Structure detected populations Among Pops 2 3476.653 1738.326 6.11 16

Within Pops 999 32077.78 32.11 32.11 84

Total 1001 35554.44 38.22 100

Fixation Index dst=0.160
doi:10.1371/journal.pone.0110856.t004

the Saccharum species and there was no evidence of division of
Saccharum into Erianthus and Narenga [63]. Cai et al. [21]
investigated the genetic diversity within the “Saccharum complex”
and indicated Saccharum spp. are grouped together and are apart
from non-Saccharum spp. Similar results were observed in
WCSRG in this study (Fig. 3a and 3c). The species name of each
accession in the WCSRG was defined based on the curator’s
records or geography and the species identities of some accessions
were unknown. The genetic diversity analysis and genetic structure
of the WCSRG will not only assist us in efficient utilization of
germplasm but also in identifying the species of some of these
unknown accessions in the collection. The study also provides the
genetic information about the mis-designated species, which can
be used to correct the taxonomic classification after proper
validation.

Saccharum spontaneum having high genetic variability is used
extensively in sugarcane and energy cane breeding programs to
provide tolerance and resistance to a wide range of biotic and
abiotic stresses. Among Saccharum species, S. spontaneum is
thought to have the widest ecogeographical distribution and the
highest variation for chromosome number 2n=40-128 [11].
Saccharum officinarum is the closest relative with modern
sugarcane cultivars which contain approximately 80-85% of the
genetic background of S. officinarum [14,64]. Hence, hybrids in
the germplasm collection have a closer relationship with S.
officinarum than with S. spontaneum. The phenotypic characters
of the same populations showed the similar clustering with S.
spontaneum grouping separately from most of other Saccharum
spp [65]. This corroborates with our genotypic data on the
division of the populations indicating that this genotypic diversity

Table 5. Diversity parameters of the World Collection of Sugarcane and Related Grasses (WCSRG) in Miami, FL and the core

Diversity parameters WCSRG (1002 accessions)

Core collection (300 accessions)

Max Min Mean Max Min Mean
Major allele frequency 0.9990 0.5060 0.7747 0.9990 0.5050 0.7488
Gene Diversity 0.4999 0.0020 0.3041 0.4999 0.0067 0.3371
PIC of alleles 0.3750 0.0020 0.2450 0.3750 0.0067 0.2690
Genotype frequency 0.9990 0.0010 0.5000 0.9997 0.0034 0.5000
Co-variance 0.0003 0.0000 0.0002 0.0009 0.0000 0.0006

doi:10.1371/journal.pone.0110856.t005
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does correlate with physical traits and phenotypic diversity and
could be useful to breeders [65].

A core collection selected from the entire germplasm collection
is of the utmost importance for breeders and geneticists working to
improve sugarcane and energy cane. A number of studies have
been carried out to construct a representative core collection in
many crop plants because of the availability of a large germplasm
collection, such as in Oryza sativa [36], Sorghwm bicolor [66], and
Zea mays [67,68]. Several efforts have been invested in construct-
ing core collections from S. officinarum [69] and S. spontaneum
[70] separately based on the phenotypic evaluations. For instance,
716 accessions of S. officinarum maintained in India [69] were
evaluated for 37 phenotypic and morphological descriptors like
leaf length, leaf shape, internode angle, ligule shape, Brix content,
etc. A core collection of 185 accessions was derived in accordance
with the diversity in the 716 accessions based on principal
component scores and the Shannon-Weaver Diversity Index [69].
Tai and Miller evaluated 342 S. spontaneum accessions main-
tained at the USDA-ARS, SHRS in Miami, FL for 11 phenotypic
traits stalk diameter, time of flowering, leaf length, fiber content,
Brix and six other traits with 11 different sampling methods. As a
result, a core collection comprising of 75 clones was selected based
on stratified random sampling and principle component analysis
[70]. The WCSRG was phenotypically evaluated to form the core
collection and there was only a portion of accessions shared
between the core collections based on phenotypic data and based
on genotypic data [65]. Further comprehensive analysis of both
phenotypic and genotypic data by weighing the different
parameters is expected to refine the core collection for Saccharum
Spp.

The core collection identified in this study consisted of 300
genotypes (29.7% of the WCSRG) including major Saccharum
species, unknown/pending and most non-Saccharum spp. It will
be a much more reasonable task to thoroughly characterize the
reduced number of accessions and then effectively utilize them in
breeding programs to broaden the genetic base of commercial
cultivars. In addition, the core collection can serve as a diversity
panel for marker-trait association analysis to identify alleles for
important agronomic traits. The core collection has been
successfully used as a panel to study association mapping for yield
and grain quality traits in rice [71] and maturity and plant height
in the sorghum mini-core collection [72]. In another study, eight
subpopulations were identified from a panel of 154 clone using
AFLP and SSR marker systems [73]. Association mapping was
carried out on a set of 480 clones of sugarcane using the DArT
platform and a large number of markers were found to be
associated with cane yield and sucrose content [74]. Inevitably,
variable structure and size could be existing in different types of
core collections. The core collection generated in our study will be
further refined according to phenotypic evaluation and structure
effect correction to form a balanced diverse panel for the future
association mapping studies.
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