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Abstract. In low-rainfall environments, a high frequency of cereal crops has been favoured for optimising productivity
and risk. However, cereals at high intensity often lead to declining water-use efficiency and increasing inputs to cope with
emergent nutritional, disease and weed problems. The value of including breaks in the cropping sequence can involve a
high level of uncertainty in low-rainfall areas where non-cereal crops are more risky and profitability is largely determined
by the subsequent benefit to cereal productivity. In this study, we aimed to improve understanding of the magnitude and
primary source of break benefits such as nutrition, water and disease management in a low-rainfall environment where a
high level of within-field soil variability can also contribute to uncertainty about the value of breaks. In on-farm field
experiments near Karoonda in the South Australian Mallee, breaks were grown in 2009 or 2010 on four distinct soil
types across a dune–swale catena. The effect of these breaks on subsequent cereal production was measured for up to
3 years. In addition, the effect of breaks on nutrition and water available, along with disease infection in subsequent cereal
crops, was explored and actual yields were compared with nitrogen and water-limited potential yields. Consistent
cumulative benefits to subsequent cereal crops of at least 1 t ha–1 after 3 years accrue from breaks grown on the
different soil types. The inclusion of breaks had beneficial effects on the cycling and supply of nutrients along with
some short-term impacts on infection by Rhizoctonia solani AG8 in subsequent cereals, whereas there were no
conclusive effects of breaks on the supply of water to subsequent crops. This study suggests that the inclusion of both
legume and brassica breaks is likely to be beneficial to subsequent cereal production where nitrogen is a factor limiting
productivity in low-rainfall, semi-arid environments.
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Introduction

Intensive cropping in semi-arid Mallee environments can increase
productivity compared with traditional cereal–volunteer pasture
based rotations (Sadras 2002; Sadras and Roget 2004). Although
cereal crops are considered the lowest risk crop choice in low-
rainfall environments (Whitbread et al. 2015), farming systems
that rely on continuous cereal cropping often present difficulties
in managing pests, diseases or nutrition. Crop or pasture breaks
can be used as an opportunistic tool in the sequence to manage
these constraints (Díaz-Ambrona and Ines Minguez 2001). For
example, the growth of Rhizoctonia solani AG8 fungus within
a crop differs between crops, and the inoculum levels at harvest
vary between cereal and non-cereal crops (Gupta et al. 2010).
As a result, non-cereal crops in the sequence are likely to alter
the impacts of disease on the following cereal crops (Rovira
1990). In addition, plant species can affect the composition and
function of different groups of biota, influencing nutrient cycling

to plants and the ability of pathogens to cause disease (Bowen
and Rovira 1999; Gupta et al. 2011).

The magnitude of the benefit of breaks to continuous cereal
cropping in Australia has been variable; however, benefits
were observed in 90% of cases reviewed by Seymour et al.
(2012), and Kirkegaard et al. (2008) found that these benefits
resulted in 17–75% increases in subsequent cereal production.
In another study largely reliant on results from higher rainfall
regions, Angus et al. (2008) suggested that the break effect is a
fixed amount of extra grain (t ha–1) rather than a proportion of
wheat yield, with benefits in the range of 0.9–1.8 t ha–1 extra yield
in the subsequent wheat crop depending on the break utilised.
Seymour et al. (2012) found the benefit to be in the order of
0.3–0.6 t ha–1 in Western Australia. Although not often
measured in field experiments, it is recognised that the
decision to incorporate breaks on farm involves consideration
of the short-term and longer term (2–3 years post-break)
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break effects (Angus et al. 2001; Kirkegaard et al. 2008; Roper
et al. 2012; Kirkegaard and Ryan 2014).

A better understanding of the factors involved and the trigger
points at which the benefits outweigh the risk of introducing
the break need to be identified to support decisions to use break
crops (Lawes and Renton 2010; Seymour et al. 2012). It is well
recognised that break crops are riskier than cereals to grow, even
in medium- and high-rainfall zones where there are more break
crop options with good climate adaption (Kirkegaard et al.
2001; Seymour et al. 2012). In the low-rainfall environment,
risk is further increased and there are fewer crop options. Sadras
and Roget (2004) showed positive break effects with the use of
canola and legumes in the Mallee environment, but profitability
compared with continuous cereal largely depended on breaks
being grown opportunistically when there was adequate early
season rainfall and reduced risk of poor yield of the break crop
(Whitbread et al. 2015).

As well as having low (and highly variable) rainfall
(<350mm annual rainfall), the Mallee environment features
dune–swale systems with soil types that vary considerably in
production potential and within relatively small distances
(Whitbread et al. 2008; Rab et al. 2009). For this reason, the
use of within-paddock zoning and soil-specific management
by farmers is common in the Mallee region (Robertson et al.
2012). Knowledge of the effect of soil type on break effects
in Mallee environments is required to identify the best
management of breaks according to the dominant soil type in a
paddock. For example, the sandy soil types of the region are
known to be nitrogen (N)-limited (Sadras 2002; Sadras and
Roget 2004; Monjardino et al. 2013), and therefore the N
contribution of any break is likely to be a key factor in
determining break-crop inclusion on these soils. This may not
be the case on heavier soils within the same paddock.

In this risky, low-rainfall environment with variable soils,
and where cereal production is the dominant driver of farm
profitability, the influence of breaks on subsequent crops is
particularly important in break-crop decisions. The aim of
this study is to improve understanding and confidence in
the evaluation of breaks by identifying: (i) the effect of
different breaks on the production of subsequent wheat
crops over a 3-year period; (ii) the components of the break
effect that cause changes in wheat production; and (iii) the
influence of soil type on break-crop productivity and break
effects.

Materials and methods
Site characteristics

The experiments were set up on three key soil types in the same
field at Lowaldie (33859.616S, 136819.915E), 20 km north-east
of Karoonda, South Australia. Depending on the location
within the toposequence, the soil types were a deep sand
(Kandosol, dune and crest), a sand over clay loam (Calcarosol,
mid-slope) and a clay loam over clay (Chromosol, swale),
classified according to the Australian Soil Classification (Isbell
1997).

Soil plant-available water (PAW) capacity and bulk density
were characterised at each site to 1m depth using the methods
of Dalgliesh and Foale (1998). The soils were analysed for a

range of chemical properties that control soil fertility. Soil pH
and electrical conductivity (EC) were measured in a 1 : 5
soil : water suspension (Rayment and Lyons 2011). Boron
concentration was determined by hot calcium chloride
extraction (Rayment and Lyons 2011). Exchangeable sodium
percentage (ESP) was calculated following measurement of
cation exchange capacity (CEC) using 0.1 M ammonium
chloride with 0.1 M barium chloride extractant (Method 15E1;
Rayment and Lyons 2011). Organic carbon (C) was measured
according to the Walkley–Black method (Walkley and Black
1934; Rayment and Lyons 2011). Topsoil samples (0–0.1m
depth) were also analysed for Colwell extractable phosphorus
(P) and potassium (K) (Colwell 1963; Rayment and Lyons
2011), extractable sulfur using 0.25 M potassium chloride at
408C (Blair et al. 1991), and water repellence using the water-
droplet test described by King (1981). In 2009 prior to
implementing the treatments, surface (0–0.1m) soils were
analysed for disease risk using the DNA-based method for
soil-borne diseases (Ophel-Keller et al. 2008).

Although the four soil types tested in this experiment are in
the same field, they have very different properties. The dune is
neutral pH sand, alkaline at depth with low organic C and CEC
but with adequate levels of extractable topsoil P and K
(Tables 1 and 2). This soil does not appear to be constrained by
boron (<15mgkg–1), salinity (EC <0.9 dSm–1) or exchangeable
sodium (ESP <6%) at depth, according to critical values given
in Peverill et al. (1999). Different crop types differ in their
response to soil constraints (Nuttall and Armstrong 2010), and
the thresholds used here do not include the range in tolerance of
the crop types to constraints. The crest has very similar properties
to the dune but has heavier texture below 0.4–0.6m depth and a
much smaller PAW capacity (Tables 1 and 2). The dune and crest
have markedly higher surface water repellency than the mid-
slope and swale (Table 1). The mid-slope has a neutral surface
and is alkaline at depth, with ESP likely to constrain crop
productivity from 0.4m, and boron and pH from 0.8m
(Table 2). The swale also has a neutral surface and is alkaline
at depth with exchangeable sodium and boron constraints from
0.4m, and possibly salinity constraints from 0.8m (Table 2).
Results from the analysis of the surface (0–0.1m) soils from
the experimental site at the start of the experiment, in 2009,
indicated disease risk for rhizoctonia root rot only, with
R. solani AG8 inoculum levels in the medium–high disease-risk
category (Ophel-Keller et al. 2008).

The climate at this site is Mediterranean with winter-
dominant rainfall; annual average rainfall is 337mm and

Table 1. Soil surface (0–0.1m) characteristics� standard deviation of
the dune, crest, mid-slope and swale measured before sowing of crops

in 2009
CEC, Cation exchange capacity

Soil Water
repellency (s)

Colwell P
(mg kg–1)

Colwell K
(mg kg–1)

Sulfur
KCl-40
(mg kg–1)

CEC
(cmol kg–1)

Dune 353 ± 137 26 ± 6 111 ± 23 1.7 ± 0.4 2.4 ± 0.6
Crest 123 ± 71 23 ± 4 114 ± 9 2.2 ± 0.7 2.8 ± 0.2
Mid-slope 16 ± 5 30 ± 3 149 ± 26 3.0 ± 0.8 3.2 ± 0.2
Swale 4 ± 4 46 ± 12 457 ± 50 3.9 ± 0.6 14.7 ± 3.3

Break crop effects in a semi-arid environment Crop & Pasture Science 567



average April–October growing season rainfall 237mm. The
2009 growing season had average rainfall (224mm), 2010 had
above-average growing season rainfall (342mm), 2011 had
below-average growing season rainfall (203mm) but above-
average annual rainfall (505mm) due to record summer
rainfall events, and 2012 was an average growing season
(258mm) with a dry finish.

Before the experimental treatments were implemented in
2009, the paddock was sown to wheat (Triticum aestivum) in

2008, triticale (� Triticosecale) in 2007, barley (Hordeum
vulgare) in 2006, volunteer medic-based pasture in 2005,
wheat in 2004 and volunteer medic-based pasture in 2003 and
2002.

Experimental design

Awinter cropwas sown inMay of each season from2009 to 2012
following opening rains of at least 20mm (Table 3). All crops
were sown with a 7-row conventional plot seeder with narrow

Table 2. Soil profile chemical and physical characteristics� standard deviation of the dune, crest, mid-slope and swale measured
before sowing of crops in 2009

BD, Bulk density; CLL, crop lower limit; DUL, drained upper limit; ESP, exchangeable sodium percentage; EC, electrical conductivity (EC and
pH determined in 1 : 5 soil : water); OC, organic carbon; b.d., below detection

Depth BD CLL DUL ESP Boron EC pH OC
(m) (g cm–3) (v/v) (%) (mg kg–1) (dSm–1) (H2O) (%)

Dune
0–0.1 1.57 0.01 0.09 0.8 ± 0.1 0.3 ± 0.01 0.03 ± 0.005 6.5 ± 0.3 0.80
0.1–0.2 1.70 0.04 0.12 0.8 ± 0.5 0.3 ± 0.06 0.02 ± 0.005 6.6 ± 0.3 0.46
0.2–0.4 1.74 0.08 0.13 0.9 ± 0.5 0.4 ± 0.09 0.02 ± 0.004 6.9 ± 0.2 0.22
0.4–0.6 1.83 0.08 0.10 1.9 ± 1.9 0.8 ± 0.4 0.06 ± 0.03 8.7 ± 0.2 0.60
0.6–0.8 1.47 0.09 0.14 5.6 ± 3.6 2.4 ± 0.7 0.09 ± 0.03 9.2 ± 0.2
0.8–1.0 1.47 0.12 0.12 5.6 ± 3.6 2.4 ± 0.7 0.09 ± 0.03 9.2 ± 0.2

Crest
0–0.1 1.58 0.01 0.07 0.9 ± 0.2 0.4 ± 0.09 0.03 ± 0.01 6.8 ± 0.5 0.42
0.1–0.2 1.58 0.03 0.08 1.2 ± 0.3 0.3 ± 0.07 0.03 ± 0.009 6.8 ± 0.5 0.20
0.2–0.4 1.62 0.05 0.06 1.8 ± 0.8 0.4 ± 0.3 0.03 ± 0.01 7.3 ± 0.3 b.d.
0.4–0.6 1.80 0.16 0.21 5.4 ± 4.9 2.5 ± 1.5 0.11 ± 0.05 8.8 ± 0.6 0.90
0.6–0.8 1.54 0.18 0.29 10.1 ± 6.8 6.8 ± 3.9 0.19 ± 0.08 9.4 ± 0.3
0.8–1.0 1.73 0.25 0.33 10.1 ± 6.8 6.8 ± 3.9 0.19 ± 0.08 9.4 ± 0.3

Mid-slope
0–0.1 1.70 0.03 0.10 1.3 ± 0.3 0.5 ± 0.09 0.04 ± 0.008 6.7 ± 0.4 0.64
0.1–0.2 1.81 0.09 0.20 2.7 ± 2.9 0.6 ± 0.4 0.04 ± 0.02 7.0 ± 0.6 0.21
0.2–0.4 1.82 0.17 0.30 3.3 ± 2.0 1.8 ± 0.8 0.12 ± 0.04 8.6 ± 0.3 0.07
0.4–0.6 1.63 0.15 0.34 6.7 ± 5.7 5.9 ± 4.6 0.19 ± 0.08 9.1 ± 0.4 b.d.
0.6–0.8 1.71 0.24 0.34 20.6 ± 6.7 14.0 ± 4.8 0.42 ± 0.09 9.6 ± 0.2
0.8–1.0 1.81 0.29 0.34 20.6 ± 6.7 14.0 ± 4.8 0.42 ± 0.09 9.6 ± 0.2

Swale
0–0.1 1.38 0.04 0.20 6.0 ± 7.0 1.7 ± 1.9 0.05 ± 0.008 6.4 ± 0.2 1.71
0.1–0.2 1.47 0.14 0.20 9.6 ± 6.6 4.7 ± 6.0 0.16 ± 0.03 8.1 ± 0.2 0.78
0.2–0.4 1.46 0.18 0.34 17.6 ± 9.0 11.1 ± 8.0 0.34 ± 0.09 9.4 ± 0.2 0.39
0.4–0.6 1.65 0.21 0.38 31.3 ± 11.7 18.2 ± 6.7 0.59 ± 0.2 9.6 ± 0.1 0.08
0.6–0.8 1.70 0.24 0.39 30.2 ± 19.8 9.2 ± 6.0 0.98 ± 0.5 8.4 ± 0.8
0.8–1.0 1.70 0.26 0.41 30.2 ± 19.8 9.2 ± 6.0 0.98 ± 0.5 8.4 ± 0.8

Table 3. Break-crop treatments imposed in 2009–12
DP, Dual-purpose for hay and grain

Treatment 15 May 2009 27 May 2010 24 May 2011 30 May 2012

1 Legume (peas) Correll wheat Mace wheat Kord CL Plus® wheat
2 Cereal rye Correll wheat Mace wheat Kord CL Plus® wheat
3 DP cereal rye Correll wheat Mace wheat Kord CL Plus® wheat
4 Volunteer pasture Correll wheat Mace wheat Kord CL Plus® wheat
5 Correll wheat (control) Correll wheat Mace wheat Kord CL Plus® wheat
6 Correll wheat Brassica (canola) Mace wheat Kord CL Plus® wheat
7 Correll wheat Cereal rye Mace wheat Kord CL Plus® wheat
8 Correll wheat DP cereal rye Mace wheat Kord CL Plus® wheat
9 Correll wheat Volunteer pasture Mace wheat Kord CL Plus® wheat
10 Correll wheat Legume (lupins) Mace wheat Kord CL Plus® wheat
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points (50-mm wings) and press-wheels spaced 0.23m apart,
with each plot 1.6m wide and 40m long. The mid-slope and
crest plots were treated as a single plot in 2009. After harvest in
2009, the plots were split in half (20m each) because differences
in soil type andproductive potential became apparent. Treatments
1–4 were sown to breaks in 2009 and followed by wheat crops
sown in the 2010–12 growing seasons. Treatment 5 was sown to
wheat in every growing season. Treatments 6–10 were sown to
breaks in 2010, with wheat sown in 2009 and 2011–12. The
brassica break was canola (Brassica napus cv. Hyola) in 2010.
Field peas (Pisum sativum cv, Kaspa) were sown as the grain
legume break in 2009 but owing to concerns about low biomass
resulting in increased potential for soil erosion, the grain legume
break was lupins (Lupinus angustifolius cv. Mandelup) in 2010.
The experiments were laid out in a completely randomised
block design with four replicates, and the design was applied
four times to the dune, crest, mid-slope and swale soil types.

Crop management

All crop types were managed according to district practice for
that crop; hence, there were some differences in the inputs of
seed and N for different crops but all wheat crops received the
same level of sowing inputs to allow comparison of break
effects (Table 4). The wheat cultivar selected in each growing
season was rotated to minimise pressure on weed and disease
management. Wheat cv. Correll was grown in 2009 and 2010
and rotated to cv. Mace in 2011 after yellow leaf spot build-up in
2010, and rotated from cv. Mace to cv. Kord CL Plus® in 2012 to
enable weed pressure and stripe rust to remain at low levels. The
volunteer pasture was not sown or fertilised in May as per the
other treatments. The pasture composition changed with soil
type, with a composition of ~85% medic (Medicago spp.) on
the dune, 50% on the mid-slope and 40% on the swale. The
remainder of the pasture composition was annual winter grasses
with a dominance of annual ryegrass (Lolium rigidum Gaudin.)
in the swale and brome grass (Bromus diandrus) in the dune,

and broadleaf weeds including capeweed (Arctotheca calendula)
and wild turnip (Rapistrum rugosum) predominantly in the
dune. The volunteer pasture was spray-topped with Spraytop
200® (Farmoz, St Leonards, NSW) applied at 400mLha–1 on
9 October 2009 and 7 October 2010. All plots were managed
with low weed pressure over the summer fallow with up to four
applications of herbicide during this period.

All plots received trace element fertilisers to ensure that
nutrients other than N were not limiting. Crop plots were
maintained in-season with the aim of minimising weed impact.
This was successfully achieved through use of a wide range
of herbicides applied equally across all soil types.

In-season measurements

Segmented soil cores to 1m depth were taken in each plot before
sowing in each year of the experiment. The cores were divided
into depths of 0–0.1, 0.1–0.2, 0.2–0.4, 0.4–0.6 and 0.8–1.0m.
The subsamples were analysed for pre-sowing gravimetric
water content in order to calculate PAW. The pre-sowing
samples were immediately dried at 408C for 10 days. Samples
were bulked at increments of 0–0.1, 0.1–0.6 and 0.6–1.0m and
then ground (mortar and pestle) and sieved (<2mm) for nitrate-N
and ammonium-N analysis. Soil nitrate-N and ammonium-N
were analysed according to Method 7C2b of Rayment and
Lyons (2011).

In each year, surface soil samples (0–0.1m) were collected
1–2 days before sowing and analysed for the N supply potential
(NSP). Field-moist soil samples were sieved through a 2-mm
sieve to remove undecomposed plant residues and stones and
incubated for 48 h to stabilise before analysis. The amount of
microbial biomass N (MBN) was determined by measuring
colourimetric ninhydrin-reactive N levels in 0.5 M K2SO4

extractions before and after a 10-day chloroform fumigation;
the MBN was derived from kEN value of 3.8 (Sparling et al.
1993). To quantify potentially mineralisable N (PMN), 100 g
of soil for each sample was incubated (aerobic) for 21 days at
258C and PMN was calculated from the difference in mineral N
(ammonium and nitrate) extracted by 2M KCl at the start and
after 21 days (Rayment and Lyons 2011). To calculate NSP,
we assumed that 50% of MBN would be released for plant
uptake from microbial turnover and predation by fauna and all
of the PMN.

In each year, at 7 weeks after sowing, 20 plants were collected
from each plot for selected treatments; roots were washed and
rated for disease on a 0–5 scale: 0, no disease; 5, all primary
roots infected and severely truncated (McDonald and Rovira
1985). In addition, the number of total and infected seminal
and crown roots and the length of the internode were also
recorded.

Winter biomass was measured at 10 weeks after sowing in
2009 and 8 weeks after sowing in 2010 by cutting and removing
all aboveground plant material from four replicates of 0.5m by
0.5m quadrats within each plot.

Plots were machine-harvested at maturity to measure grain
yield. Dried wheat-grain samples (~12% w/w moisture) were
analysed for protein using a FOSS® NIR analyser. The wheat
grain N yield (kg ha–1) was calculated as: wheat grain yield
(kg ha–1)� grain N (kg kg–1).

Table 4. Sowing inputs applied to each crop type in 2009–12
DP, Dual-purpose for hay and grain. All phosphorus (P) supplied as
diammonium phosphate (DAP); nitrogen (N) supplied as urea
(16 kgN ha–1) and DAP (9 kgNha–1); sulfur (S) supplied as gypsum

(Meningie Gypsum, ~17 kg S ha–1) and DAP (1 kg S ha–1)

Treatments Crop and cultivar Seed
(kg ha–1)

Nutrients
(N : P : S kg ha–1)

Legume Field peas (Pisum sativum)
cv. Kaspa (2009)
Lupin (Lupinus angustifolius)
cv. Mandelup (2010)

100
90

9 : 10 : 18
9 : 10 : 18

Brassica Canola (Brassica napus)
cv. Hyola 50 (2010)

5 25 : 10 : 18

Cereal rye Cereal rye (Secale cereale)
cv. Bevy

80 25 : 10 : 18

DP cereal rye Cereal rye cv. Bevy 80 25 : 10 : 18
Volunteer

pasture
Volunteer pasture 0 0 : 0 : 17

Wheat Wheat (Triticum aestivum)
cv. Correll (2009 and 2010),
Mace (2011), Kord CL
Plus® (2012))

70 25 : 10 : 18

Break crop effects in a semi-arid environment Crop & Pasture Science 569



Water-use efficiency (WUE, kg ha–1mm–1) was calculated
as: grain yield (kg ha–1) � water use (mm), where water
use = growing-season rainfall (mm) + PAW at sowing (mm).
The water-use value did not include subtraction of the amount
of soil water at harvest.

Agricultural Production Systems Simulator
(APSIM)-derived yield potential

Water-limited wheat yield potential (with no N limitation) and
yield potential at sowing N and water levels measured in wheat
following a 2010 lupin crop were modelled for each of the four
soil types in the 2011 and 2012 growing seasons using APSIM
version 7.3 (Keating et al. 2003). These modelled yields were
compared with the yield achieved with wheat grown following
a 2010 lupin crop (generally the best performing break) and
continuous wheat. The APSIM modules utilised in the analysis
were Wheat (wheat crop growth and development), SoilWat
(soil water balance), SoilN (soil N dynamics), SurfaceOM
(surface residue dynamics) and Manager (management rules),
as described by Hunt and Kirkegaard (2011). The use of APSIM
for the simulation of wheat response to soil water and N has
been widely tested and validated in Australian cropping systems
(Asseng et al. 1998a; Probert et al. 1998; Carberry et al. 2002;
Hayman et al. 2010; Sadras and Rodriguez 2010; Hunt and
Kirkegaard 2011; Verburg et al. 2012). The fit of modelled v.
actual data for wheat yield at Karoonda and on the same soil
types (R2 = 0.84, RMSE= 0.3 t ha–1) has been previously
demonstrated in Monjardino et al. (2013). Weather data were
obtained from an onsite weather station, and missing data points
were patched with data from the SILO Patched Point Dataset
for the nearby Australian Bureau of Meteorology at Karoonda
(station 025006).

The APSIM-Manager rules used were based on a sowing on
the same day that the field experiment was sown in 2011 and
2012. Nitrogen was applied as urea at 25 kgNha–1. Soil inputs
of crop lower limit, drained upper limit, bulk density, organic C
and EC were all derived from the properties measured in
Table 2. Soil water and N were reset to soil test values on the
date that the soil test was taken. The surface organic matter was
reset to 1.5 t ha–1 with a C :N ratio of 80 at the same time.

Statistical analyses

All datawas analysedwithGENSTAT13thEdn (VSNInternational:
Hemel Hempstead, UK) using a restricted maximum likelihood
(REML) multiple experiments analysis of the design: fixed
model = treatment.soil + treatment + soil, random model = soil.
replicate, and experiments = soil. Each year was analysed
independently because the treatments were not the same
every year. Assumptions of normality of data distribution and
additivity of treatment and replicate effects were tested for each
analysis. For significant effects, least significant difference
(l.s.d.) was used for comparison between treatment means.

Results

Yields

Yield by crop type, 2009–12

The best yielding season for all crop types during the trial
was 2010, with yields on the swale exceeding the other soil

types. The most productive soil type in the drier season of 2009
was the sandy topsoils of the dune and mid-slope. Using a multi-
site REML analysis, the level of variance was found to differ
between soil types, so the relative yield differences between crop
types differed on each soil. Winter biomass data indicated
relatively small differences between soil types within a crop
type except for canola, which had substantially lower biomass
on the sandy topsoils of the dune and crest in 2010 (Table 5).
Cereal rye (Secale cereale cv. Bevy) produced substantial
amounts of biomass compared with the other crop types,
whereas the grain legumes tended to produce lower levels of
biomass than the cereals (Table 5). In 2009, rye and wheat
produced similar levels of grain on the dune and mid-slope,
while on the swale, rye and field peas produced similar
amounts of grain, both less than wheat (Table 5). In 2010,
wheat was the best yielding crop on the mid-slope and swale,
while lupins yielded the best on the dune and crest. Canola was
the lowest yielding crop on all soils (Table 5).

Harvest residue samples from each crop type at this site
were analysed in duplicate for C : N ratio in 2010, with
resultant ratios of 154 for wheat, 161 for rye, 130 for canola
and 81 for lupin (Noack et al. 2012).

Wheat yields following breaks, 2010–12

Amulti-site REML analysis showed that the level of variance
did not differ between soil types, suggesting that wheat yield
differences caused by crop sequence did not differ between soil
types. In 2010, the predicted mean indicated that the best break
for increasing wheat yield over continuous wheat was field
peas, which gave a benefit equal to pasture and better than rye
(Table 6). In 2011, the ranking of first-year break effects was
similar to 2010, with legume-based breaks (lupins and pasture)
having the greatest effect. The break effect of canola was
similar to pasture but not as great as lupins, whereas rye did
not have a significant break effect. Field peas and pasture both
had significant second-year break effects in 2011. In 2012, the
second wheat crop after lupins yielded significantly more than
continuous wheat or wheat grown after cereal rye, but was
similar in yield to wheat grown after other break treatments
(Table 6).

Analysis of the regression between yields of continuous
wheat and wheat following break (Fig. 1) suggested that
the most appropriate model was three parallel lines with a
common slope of 0.97 continuous wheat yield (P < 0.001,
R2 = 0.93). The slope was not significantly different from
1 (standard error 0.03); therefore, the break effect was
equivalent to the intercept, which was 0.70 t (s.e. 0.11 t) in
the first year following the break (Fig. 1a), 0.35 t (s.e. 0.09 t)
in the second year (Fig. 1b) and 0.15 t (s.e. 0.07 t) in the
third year (all P < 0.05). Although all three lines show a
significant difference between yields of continuous wheat
and wheat following break, in agronomic terms, the third-
year break effect was minor and the line for this regression is
not presented.

Nitrogen yields in grain following breaks, 2010–12

The wheat grain N yield was calculated to integrate the
effect of treatment on grain protein and yield. The N yield was
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strongly affected by soil type, with the swale having the highest
N yield in all seasons, followed by the dune and mid-slope
with equivalent N yield, and the crest having the lowest N
yield in all seasons (Table 7). The break effects on N yield
were consistent with those for grain yield. In 2010, plots with
legume breaks in 2009 (field peas and pasture) had in the
highest N yield. In 2011, plots with breaks in 2010 (lupins,
pasture and canola) had the highest wheat N yield. In 2012,
there was an effect of 2010 legume breaks (lupins and pasture)
(Table 7).

Soil mineral N

Most of the differences in soil mineral N were between soil
types, with the heavy swale and mid-bottom having higher
levels of soil mineral N than the crest and dune (Table 8). In
2010, the 2009 legume breaks (field peas and pasture) resulted
in higher levels of soil mineral N than the other treatments,
suggesting that mineral N was a likely component of the break
effect in these treatments, which had the highest wheat yields
(Table 8). Soil mineral N levels were trending upwards with
time for all soil types, suggesting that sowing fertiliser-N inputs
of 25 kg ha–1 combined with soil available resources were
greater than the level of N removal.

In 2010, NSP measurements were made only in continuous
wheat plots. The NSP ranged from 22 to 32 kgN ha–1 season–1

(Table 9), with levels significantly higher in the swale than in
the sandy mid-slope and dune. In 2011, NSP was significantly
higher (>60%) than that observed in 2010 across all the
treatments and soil zones. During 2011, the NSP was higher
following legumes and canola than after cereal rye or in
continuous wheat, except on the dune. In the dune, canola

resulted in an increase in NSP compared with continuous
wheat. In 2012, a pasture caused the greatest second-year
carryover benefit in NSP (40–53% over continuous wheat).
In general, the canola effect decreased in the second year
(2012) in both the dune and swale soils.

Soil-borne disease

There was a significant soil type effect on the level of disease in
all 3 years and it varied between seasons (Table 10). In general,
incidence of rhizoctonia disease was highest in the 2010
growing season, followed by 2012, with the lowest levels in
2011 (Table 10) after record summer rains in the fallow period
before the 2011 crop. During 2011 and 2012, disease incidence
was higher in the crop on the swale, whereas in 2010, disease
incidence was significantly lower on the swale than on the mid-
slope. These trends were seen for both the overall root rating
score and the crown root infection. The internode length was
generally shorter on the swale than the mid-slope and dune
experiments, whereas the total number of crown roots at the
time of sampling (7 weeks after sowing) was generally higher
on the swale.

The effect of crop type on rhizoctonia disease incidence in
the following wheat crop was variable and influenced by crop
season (Table 10). During 2011 when the rhizoctonia disease
incidence was generally low, the effect of the 2010 break (first-
year effect) was not significant.

In 2012, the second-year effect of all 2010 breaks except
lupins was significant in lowering rhizoctonia root rating score
compared with continuous on the swale; however, there was no
significant effect on the dune crop (Fig. 2).

Table 5. Winter biomass (dry weight, t ha–1) at 10 weeks after sowing in 2009 and 8 weeks after sowing in 2010, and grain yields (t ha–1) in 2009 and
2010 of the different crop types on each soil type

DPR, Dual-purpose hay and grain rye; CW, continuous wheat. Note that the mid-slope and crest plots were treated as a single plot in 2009; after harvest in 2009,
the plots were split in half as differences when soil type and productive potential became apparent. Medic biomass calculated from estimated composition of
85% medic in dune, 50% medic in mid-slope and 40% medic in swale Within a season, grain yields for soil� crop type combinations followed by the same

letter are not significantly different at P= 0.05

Winter biomass Grain yield
Dune Crest Mid-slope Swale Dune Crest Mid-slope Swale

2009
Rye 1.58a 1.72a 1.58a 1.78ab 1.86a 0.81de
DPR 0.90de 1.06cd 0.53e
Field peas 0.44e 0.48e 0.58de 0.59de 0.69de 0.69de
CW 0.74cd 0.67cde 0.90c 1.77ab 1.94a 1.40bc
Pasture 0.62de 1.21b 2.28a
(Medic) (0.53) (0.60) (0.91)

Soil� treat. l.s.d. 0.25 Soil� treat. l.s.d. 0.48

2010
Canola 0.75ghi 0.88fgh 1.46c 1.44c 1.87i 1.14j 1.35j 2.04hi
Rye 1.17cdef 1.01defg 1.33cde 1.36cd 3.10de 2.88ef 3.43cd 3.36cde
DPR 2.39gh 1.92hi 2.39gh 2.32ghi
Lupins 0.48ij 0.42ij 0.60hij 0.40ij 3.80bc 4.00b 3.27de 2.55fg
CW 0.50ij 0.35j 0.56hij 0.68ghij 2.99def 2.24ghi 4.03b 5.17a
Pasture 0.59hij 0.99efg 1.99a 3.29a
(Medic) (0.50) (0.50) (1.00) (1.32)

Soil� treat l.s.d. 0.38 Soil� treat. l.s.d. 0.48
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Plant-available water and water-use efficiency

Pre-sowing PAW was analysed in the first and second wheat
crop following a break. The results showed a strong seasonal
effect with highest values in 2011 and lowest in 2009
(Table 11). PAW showed high variance in all seasons, with
some minor treatment effects observed in 2010 where a
pasture break on the swale consumed more PAW than
continuous wheat (Table 11). The summer of 2010–11 was
very wet, and as a result, the only observed differences in

PAW were between soils with very high levels of PAW in the
dune and crest at sowing (Table 11). Two years after a break, in
2012, there were some small treatment effects on subsequent
PAW,with a 2010 pasture break in the swale havingmore sowing
PAW than a 2010 rye break.

The WUE was used to integrate the effect of treatment on
yield and crop water supply. WUE was affected by soil type
and by season conditions, with 2010 showing highest WUE for
the dune followed by the swale then the mid-slope and crest,
whereas in 2011 and 2012, the heavier swale had the highest
WUE followed by the mid-slope then dune and crest (Table 11).
Treatment effects on WUE were strongly related to significant
yield effects, with 2009 legume breaks (field peas and pasture)
resulting in the highest 2010 wheat WUE, 2010 legume breaks
(lupins and pasture) resulting in the highest 2011 wheat WUE,
with no carryover second- or third-year effects measured in
2012 (Table 11).

The role of the break crop in filling the yield gap

To examine whether a break crop in a sequence can close the
gap between attained yield and water-limited yield potential, we
used a modelling analysis to estimate the yield potential in
2011 and 2012 when soil N supply was unlimited, and the
yield potential arising from the soil water and N resources
measured after inclusion of a break in the sequence. The
analysis demonstrated that the 2011 yield of wheat following
a 2010 lupin crop was equivalent to the modelled water- and

Table 6. Wheat yields (t ha–1) in 2010–12 following breaks in 2009
and 2010, with the crop sequence for 2009–12 shown on the left and

the crop for which yield is presented shown in bold
W, Wheat; FP, field pea; R, rye; DPR, dual purpose hay and grain rye; Pa,
pasture; C, canola; L, lupin. Within a season, predicted treatment means, or
soil means, followed by the same letter are not significantly different at

P= 0.05. Interaction between soil and treatment was not significant

Crop sequence Dune Crest Mid-slope Swale Treatment
mean

2010
W–W–W–W 2.99 2.24 4.03 5.17 3.61d

First-year effects
FP–W–W–W 3.95 3.10 5.00 6.11 4.54a
R–W–W–W 3.27 2.36 4.39 5.87 3.97c
DPR–W–W–W 3.19 2.94 4.52 6.08 4.18bc
Pa–W–W–W 4.11 3.10 4.66 5.89 4.44ab

Treat. l.s.d. 0.33
Soil mean 3.52c 2.75d 4.52b 5.83a Soil l.s.d. 0.31

2011
W–W–W–W 3.60 2.17 3.48 3.75 3.25e

First-year effects
W–C–W–W 3.91 2.45 3.78 4.46 3.65bc
W–R–W–W 4.24 2.66 3.39 3.72 3.51cd
W–DPR–W–W 3.86 2.47 3.71 3.71 3.44cde
W–Pa–W–W 3.77 3.16 4.20 4.27 3.85ab
W–L–W–W 4.30 3.01 4.08 4.67 4.02a

Second-year effects
FP–W–W–W 3.68 2.41 3.78 4.38 3.56cd
R–W–W–W 3.65 2.43 3.65 3.89 3.41cde
DPR–W–W–W 3.32 2.27 3.38 4.40 3.34de
Pa–W–W–W 3.71 2.73 3.77 4.22 3.61bc

Treat. l.s.d. 0.26
Soil mean 3.81b 2.58c 3.71b 4.15a Soil l.s.d. 0.22

2012
W–W–W–W 2.09 1.30 2.56 3.43 2.36bc

Second-year effects
W–C–W–W 2.53 1.61 2.70 3.79 2.64ab
W–R–W–W 2.15 1.56 2.40 3.49 2.48abc
W–DPR–W–W 2.02 1.48 2.20 3.49 2.33c
W–Pa–W–W 2.47 1.89 3.01 3.56 2.62abc
W–L–W–W 2.41 1.88 3.04 3.54 2.73a

Third-year effects
FP–W–W–W 2.34 1.51 2.83 3.50 2.54abc
R–W–W–W 2.15 1.56 2.40 3.49 2.48abc
DPR–W–W–W 2.02 1.48 2.20 3.49 2.33c
Pa–W–W–W 2.47 1.89 3.01 3.56 2.62abc

Treat. l.s.d. 0.30
Soil mean 2.28c 1.58d 2.67b 3.57a Soil l.s.d. 0.14
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Fig. 1. Regression between yields of wheat following break and
continuous wheat (CW). Equations are: for (a) wheat yield first year after
a break = 0.70 + 0.97 CW yield; for (b) wheat yield second year after a
break = 0.31 + 0.97 CW yield (P< 0.001, R2 = 0.93). The dashed line
represents the 1 : 1 relationship.
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N-limited yield on all four soil types. Where the wheat yield
potential was modelled using actual starting water with no
limitation of N, a yield gap of 0.6 t ha–1 remained on the mid-
top soil type and 0.1 t ha–1 on the swale (Fig. 3). In 2012, there
were yield gaps in the order of 0.3–0.5 t ha–1 between wheat
following 2010 lupin and the potential yield based on the starting
water and N conditions of these treatments in all soils except the
mid-bottom, which aligns with the loss of disease break effects in
the second year after growing lupin. Therewas a further yield gap
of 0.1–0.3 t ha–1 in these three soils when N was not limited.

Discussion

Quantifying the break effect on continuous
cereal production

Supporting the outcomes of the regression analysis of the
relationship between yields of continuous wheat and wheat
following break crop (Fig. 1), Angus et al. (2008) suggested
that the break effect should be expressed as a quantity rather
than a percentage because the yield increase is not generally
proportional to yield with benefits in the range of 0.9–1.8 t ha–1

extra yield. In our case, the benefit was ~0.7 t ha–1 in the first year
and at least 1 t ha–1 over a 3-year period. The data from this
experiment were included in a combined analysis with
experimental data from Hopetoun in the Victorian Mallee, and
with the larger dataset we were able to demonstrate that the first-
year after-break benefit of a brassica was in the order of 0.5 + 0.9
continuous wheat yield (t ha–1) and for legume 1.1 + 0.9
continuous wheat yield (t ha–1) (Kirkegaard et al. 2014). The
level of first-year benefit observed in the Mallee environment
at Karoonda was more closely aligned with the 0.3–0.6 t ha–1 of

Table 7. Nitrogen yield from grain (kg ha–1) in 2010–12 following
breaks in 2009 and 2010 with the crop sequence for 2009–12 shown on
the left, and the crop for which protein is presented shown in bold

W, Wheat; FP, field pea; R, rye; DPR, dual purpose hay and grain rye; Pa,
pasture; C, canola; L, lupin. Within a season, predicted treatment means, or
soil means, followed by the same letter are not significantly different at

P= 0.05

Crop sequence Dune Crest Mid-slope Swale Treatment mean

2010
W–W–W–W 59 40 66 94 65b

First-year effects
FP–W–W–W 69 53 81 120 81a
R–W–W–W 57 40 69 113 70b
DPR–W–W–W 38 48 70 110 66b
Pa–W–W–W 74 54 79 108 79a

Treat. l.s.d. 8
Soil mean 59c 47d 73b 109a Soil l.s.d. 8

2011
W–W–W–W 60 38 58 78 58d

First-year effects
W–C–W–W 88 42 64 88 65bc
W–R–W–W 72 44 56 72 60cd
W–DPR–W–W 74 41 64 74 62cd
W–Pa–W–W 88 53 72 88 70ab
W–L–W–W 103 52 69 103 75a

Second-year effects
FP–W–W–W 87 39 63 87 63cd
R–W–W–W 80 42 59 80 61cd
DPR–W–W–W 91 37 56 91 61cd
Pa–W–W–W 87 46 61 87 64cd

Treat. l.s.d. 6
Soil mean 65b 43c 62b 85a Soil l.s.d. 5

2012
W–W–W–W 37 23 40 67 42cd

Second-year effects
W–C–W–W 41 28 45 70 46abc
W–R–W–W 43 28 39 67 44bcd
W–DPR–W–W 38 27 36 65 41d
W–Pa–W–W 36 33 49 75 48ab
W–L–W–W 44 34 49 69 49a

Third-year effects
FP–W–W–W 41 27 45 62 44bcd
R–W–W–W 39 29 39 64 43cd
DPR–W–W–W 35 25 38 67 41d
Pa–W–W–W 42 31 46 64 46abc

Treat. l.s.d. 5
Soil mean 40c 28d 43b 67a Soil l.s.d. 3

Table 8. Pre-sowing soil mineral nitrogen (kgNha–1m–1 depth) in
2010–12 following breaks in 2009 and 2010 with the crop sequence
for 2009–12 shown on the left and the crop for which mineral N is

presented shown in bold
W, Wheat; FP, field pea; R, rye; DPR, dual purpose hay and grain rye; Pa,
pasture; C, canola; L, lupin. Within a season, predicted treatment means, or
soil means, followed by the same letter are not significantly different at

P= 0.05

Crop sequence Dune Crest Mid-slope Swale Treatment mean

2009
W–W–W–W 38 32 82

2010
W–W–W–w 57 47 69 95 67bc

First-year effects
FP–W–W–W 65 59 67 101 73ab
R–W–W–W 42 23 69 91 56c
Pa–W–W–W 69 64 94 111 84a

Treat. l.s.d. 12
Soil mean 58c 48c 75b 100a Soil l.s.d. 11

2011
W–W–W–W 73 83 82 122 90b

First-year effects
W–C–W–W 92 74 129 104 100b
W–R–W–W 107 63 127 104 100b
W–Pa–W–W 133 81 119 130 116ab
W–L–W–W 117 112 142 150 130a

Second-year effects
FP–W–W–W 90 78 108 102 94b
R–W–W–W 102 68 109 104 97b
Pa–W–W–W 91 139 114 112 114ab

Treat. l.s.d. 27
Soil mean 101ab 87b 117a 116ab Soil l.s.d. 30

2012
W–W–W–W 127 136 161 135

Second-year effects
W–C–W–W 127 121 153 133
W–R–W–W 125 138 167 113
W–Pa–W–W 122 137 154 132
W–L–W–W 122 138 142 138
Soil mean 125c 134b 155a 130bc Soil l.s.d. 9
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benefit reviewed by Seymour et al. (2012) in the Western
Australian environment. Seymour et al. (2012) suggested that
leguminous breaks provide more consistent break effects of
a greater magnitude, which is supported by our results; in
particular, the break effect of legumes had greater longevity.
However, brassica breaks were evaluated in only one instance,
and in the first season after the break, the magnitude of the
break effect from canola was similar to that of legumes.

Given the potential to generate an extra tonne of wheat
production in a semi-arid environment, the inclusion of breaks
is likely to play an important role in closing the gap between
yield attained and yield potential. Our analysis of the wheat yield
potential on these soil types under the conditions of continuous
wheat v. a lupin break showed that the inclusion of the legume
break played a significant role in closing the gap between actual
and potential yields in the first season after the break (Fig. 3).
An N-limited gap in yield in two of the soil types remained,
demonstrating the importance of N to productivity in this
environment. In the second year after the break, plots sown to
wheat for the second year after a lupin break did not reach the
yield potential modelled according to the starting N and water
conditions. This coincided with a loss of disease break effect
(Table 10), which prevented full utilisation of the soil water
and N resources by the wheat crop. A small yield gap also
remained, which model analysis suggested would be closed
through access to further N resources (Fig. 3).

Mechanisms controlling the break effect

In semi-arid environments, increased N inputs have an important
role in closing the gap between actual and potential yield
(Sadras 2002). In a crop sequence, the nature of the crop
residue affects nutrient decomposition and mineralisation
processes because of changes in the quality and quantity of

organic inputs, modifying the associated microbiology (Gupta
et al. 2011). There are several examples of the contribution of
legume crops to increased levels of N supply in subsequent
crops, with an average of 37–47 kg ha–1 of additional nitrate-N
(Angus et al. 2006; Kirkegaard et al. 2008). Angus et al. (2008)
suggest that the N benefit supplied by legumes provides
0.5 t ha–1 of the 0.9–1.8 t ha–1 break effect.

In most of the rainfed cropping regions of southern Australia,
soil moisture and availability of C are the major factors
influencing microbial activity and biological processes
involved in nutrient mineralisation (Gupta et al. 2011). Larger
amounts of crop residues (C inputs) produced from the 2010
crops, combined with regular rainfall during summer, would
have also facilitated higher microbial activities and nutrient
mineralisation, improving overall plant nutrition. This is
supported by the higher NSP values at sowing in 2011 than

Table 9. Surface (0–10 cm) pre-sowing N supply potential (kg ha–1

season–1) in 2010–12 following breaks in 2010 with the crop sequence
for 2009–12 shownon the left and the crop forwhichN supply potential is

presented shown in bold
W,Wheat; C, canola; R, rye; Pa, pasture; L, lupin. Within a season, predicted
means followed by the same letter are not significantly different at P= 0.05

Crop sequence Dune Mid-slope Swale Treatment mean

2010
W–W–W–W 22b 22b 33a

Soil l.s.d. 7
2011 first-year effects

W–W–W–W 27j 29ij 46de
W–C–W–W 41efg 43defg 75a
W–R–W–W 33hij 33hij 54c
W–Pa–W–W 36ghi 50cd 74a
W–L–W–W 38fgh 44def 65b

Soil� treat. l.s.d. 8
2012 second-year effects

W–W–W–W 30 58 44c
W–C–W–W 39 67 53b
W–R–W–W 36 70 53b
W–Pa–W–W 46 81 63a
W–L–W–W 50 71 56ab

Treat. l.s.d. 8
Soil mean 38b 69a Soil l.s.d. 5

Table 10. Effects of soil-bornediseasemeasuredusing root rating score,
infected crowns, number of crowns and internode length with the crop
sequence for 2009–12 shown on the left and the crop for which disease

effects are presented shown in bold
W, Wheat; R, rye; Pa, pasture; C, canola; L, lupin. Within a season and
parameter, predicted means followed by the same letter are not significantly

different at P= 0.05; n.s., not significant

Crop sequence Root
rating
score
(1–5)

Infected
crowns
(% of 20
plants)

Total no.
of crowns
(per 20
plants)

Internode
length
(cm)

2010 first-year effects
W–W–W–W 2.98 65 5.4b 8.3
R–W–W–W 2.99 60 5.5b 10.2
Pa–W–W–W 2.72 58 6.1a 6.7
Treatment l.s.d. n.s. n.s. 0.5 n.s.
Dune – – – –

Mid-slope 3.13a 60 5.3 15.8a
Swale 2.33b 54 6.0 0.8b
Soil l.s.d. 0.27 n.s. n.s. 4.5

2011 first-year effects
W–W–W–W 1.04 22c 5.5 1.6ab
W–C–W–W 1.02 23b 5.5 1.6ab
W–R–W–W 1.14 26a 5.3 1.7a
W–Pa–W–W 0.98 22c 5.7 1.2b
W–L–W–W 0.84 19d 5.6 1.6ab
Treatment l.s.d. n.s. 0.2 n.s. 0.4
Dune 0.73b 15c 5.3b 1.7a
Mid-slope 0.89b 20b 5.4b 1.9a
Swale 1.40a 31a 5.9a 1.1b
Soil l.s.d. 0.2 5 0.3 0.3

2012 second-year effects
W–W–W–W *A 32 2.6 2.1
W–C–W–W 26 2.5 1.8
W–R–W–W 34 2.7 1.8
W–P–W–W 36 1.9 1.8
W–L–W–W 32 2.6 2.0
Treatment l.s.d. n.s. n.s. n.s.
Dune 27b 2.1b 2.5a
Mid-slope – – –

Swale 39a 2.9a 1.3b
Soil l.s.d. 6 0.4 0.4

ASee Fig. 2 for significant interaction between treatment and soil type.
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2010 (Table 9). Our estimation of NSP (Table 9) at the beginning
of a crop season included both the N in microbial biomass and
the potential of that microbial population for mineralisation,
which depends on the quantity and quality of crop residues
and the quality of soil organic matter (Gupta et al. 1994). Our
observation of higher NSP following legume crops could mostly
be attributed to the quality of crop residues, although changes in
the microbial communities following legume crops would also
have contributed to the shift in balance between mineralisation
and immobilisation. Legume residues tend to have a higher N
content (lower C :N ratio) than cereal residues, resulting in
higher levels of net N mineralisation after both grain and
pasture legumes (Crews and Peoples 2005).

Peoples et al. (2009) indicated that <30% of the legume N is
taken up by the subsequent cereal crop, and the longevity of the
effect will depend upon the amount of dry matter production
and the contribution of N from legumes v. soil origin. Our
findings clearly show that the N-derived benefits of legumes in
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Table 11. Pre-sowing plant available water (PAW, mmm–1) and water use efficiency (WUE, kg ha–1mm–1) in 2010–12 following breaks in 2009
and 2010 with the crop sequence for 2009–12 shown on the left and the crop for which PAW and WUE are presented shown in bold

W, Wheat; FP, field pea; R, rye; Pa, pasture; C, canola; L, lupin. Within a season, predicted means followed by the same letter are not significantly different
at P= 0.05

Crop sequence PAW WUE
Dune Crest Mid-slope Swale Dune Crest Mid-slope Swale Treatment mean

2009
W–W–W–W 28 16 25

2010
W–W–W–W 41 20 111 102 14 6 7 9 9c

First-year effects
FP–W–W–W 41 25 133 61 16 8 8 12 11a
R–W–W–W 50 28 101 63 15 8 9 12 10b
Pa–W–W–W 61 54 107 51 15 8 9 12 11a
Soil mean 48bc 32c 113a 69b 15a 7d 8c 11b

Soil l.s.d. 23 Soil l.s.d. 1 Treat. l.s.d. 1

2011
W–W–W–W 147 84 81 35 10 7 12 17 12c

First-year effects
W–C–W–W 131 77 81 29 12 9 13 20 13bc
W–R–W–W 170 72 70 78 12 10 12 13 12c
W–Pa–W–W 136 106 61 65 12 10 16 16 14ab
W–L–W–W 117 70 66 8 13 11 16 23 15a

Second-year effects
FP–W–W–W 143 78 84 39 11 8 13 19 13bc
R–W–W–W 130 76 82 71 11 9 12 14 12c
Pa–W–W–W 156 96 69 47 10 9 14 17 13bcd
Soil mean 141a 82b 74b 50c 11c 9d 14b 17a

Soil l.s.d. 22 Soil l.s.d. 1 Treat. l.s.d. 2

2012
W–W–W–W 59abc 41bc 48bc 75abc 7 4 8 10

Second-year effects
W–C–W–W 74abc 59abc 30c 53abc 7 5 10 12
W–R–W–W 81abc 71abc 34bc 32c 7 5 8 12
W–Pa–W–W 53abc 58abc 38bc 101a 6 6 10 10
W–L–W–W 62abc 47bc 58abc 86ab 8 6 10 10
Soil mean 7c 5d 9b 11a

Soil� treat. l.s.d. 53 Soil l.s.d. 1
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the sequence persisted into the second year. When legume crop
residues decompose, they become part of the soil organic matter
pools (e.g. particulate organic matter) and their contribution to
N supply is likely to persist for more than one season (Ladd et al.
1986). The build-up of N in soil organic matter (i.e. decrease in
C :N ratio) from legumes in the rotation is especially important in
sandy and sandy-loam areas in lower organic matter, semi-arid
soils (Gupta et al. 2011).

Because of the low levels of biologically available C in these
soils, crops that add large amounts of plant biomass such as cereal
rye can improve microbial populations (biomass) and activity,
which in turn support greater N mineralisation in subsequent

seasons. At Karoonda, in all of the soils, cereal rye produced high
levels of plant biomass (Table 5) and thus provided a large
amount of C inputs. However, a lower N concentration (wider
C :N ratio) in the cereal rye residues means that the N required
for microbial assimilation and subsequent release would have
come from soil organic matter, and hence NSP benefits would
have been lower than with N-rich legumes. Although the first-
year NSP benefits from cereal rye (4–8 kgN ha–1 season–1) were
of smaller magnitude than from a legume (11–20 kgN ha–1

season–1) (Table 9), the addition of higher total C inputs can
have beneficial effects through an increase in overall biological
activity, in particular in the lower organic matter soils in the
Mallee where C inputs from crops are a key source of C for soil
biota (Gupta and Roget 2004).

Canola has been shown to modify the composition of the
general microbial community, resulting in changes in biological
functions such as nitrification and in acceleratedNmineralisation
(Ryan et al. 2006; Kirkegaard et al. 2008; Gupta et al. 2011).
The effect of canola onNSPwas greater in 2011 (first-year effect)
than in 2012 (second-year effect) (Table 9). Canola residues
have a wider C :N ratio, similar to cereal residues; hence, soil
organicmatter would be themajor source of N formineralisation.
Therefore, we hypothesise that because the soils in these
experiments are low in soil organic matter (Table 2), they
probably are capable of supporting canola-derived extra N
mineralisation for only one season.

Canola has been reported to reduce the populations of soil-
borne necrotrophic pathogens such as R. solani AG8 and
Gaeumannomyces graminis var. tritici, thereby decreasing the
impacts of disease in following cereal crops (Kirkegaard et al.
2008; Gupta et al. 2010). The incidence and severity of
rhizoctonia bare patch (caused by R. solani AG8) depends on
the amount of inoculum, composition and activity of the soil
biology community (inherent suppressive activity), and available
soil N over the non-crop period. In experiments across southern
Australia,Gupta et al. (2012a) found thatR. solaniAG8 inoculum
levels generally increased within cereal crops, whereas non-
cereal crops with good control of grass weeds either reduced,
or caused no change in, DNA levels of R. solani AG8. In the
experiments at Karoonda, inoculum build-up was consistently
lowest in the brassica crop, canola (Gupta et al. 2012b). Lower
levels of rhizoctonia disease in the wheat crop following non-
cereal crops, in particular brassica crops, can bemostly attributed
to the reduced inoculum levels of the pathogen. Although DNA
levels of R. solani AG8 generally increase within cereal crops,
multiple rainfall events during summer can reduce inoculum
levels from high to low disease risk (Gupta et al. 2012a). At
Karoonda, regular rainfall events during the summer of 2010–11
would have reduced the inoculum loads by the time of sowing,
resulting in lower levels of disease incidence in the 2011 wheat
crop, and there were no significant differences in the disease
incidence after different crops. The effect of environment, e.g.
rainfall, on inoculum levels at sowing and subsequent disease
incidence is clear from the difference in percentage crown root
infection in the 2010 wheat crop (average 57%) compared with
the 2011 crop (average 22%).

The effect of lower disease incidence after canola than after
cereal rye (on swale and mid-slope) highlights the importance of
cereal disease control from breaks in the Mallee soils. Although
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the root and stubble C from the cereal rye crop may increase
microbial biomass and microbial activity (Gupta et al. 2012b),
cereal rye did not reduce rhizoctonia disease in the following
wheat crop (Table 10). Rhizoctonia disease reduces effective
root volume; therefore, even low levels of disease can have
negative impact on the ability of plants to access water and
nutrients. In our experiments, N availability was generally
better after legumes (pasture and grain legumes), as indicated
by higher soil mineral N levels and N mineralisation potentials,
which would have provided a compensatory effect from the
reduced root volume due to rhizoctonia disease (Rovira 1990).
This improved ability of plants to tolerate root damage would
also reduce the crop area lost to patches of poor growth and
thus lower yield loss. In our experiments, the beneficial effect of
legume crops on N supply potential was also seen in the second
crop season, although itwas lower than that in thefirst season after
breaks. Gupta et al. (2012a) reported that the effect of non-cereal
crops on inoculum levels R. solani lasted for one crop season
only and inoculum levels would increase after a cereal crop.

The effects of breaks in the sequences on subsequent PAW
and resulting cereal WUE are variable and strongly dependent
on prevailing seasonal conditions during the fallow. In our
experiment, there were no significant effects of growing a
break on PAW for sowing the subsequent crop. There are
instances in the literature where brassica breaks have drawn
down extra water and decrease yield compared with
continuous wheat, and instances of legumes having a lower
water use and therefore providing a water benefit (Kirkegaard
et al. 2008; Garofalo et al. 2009; Anderson 2011; Seymour
et al. 2012).

Anderson (2011) suggested that some break effects increase
WUE because the crop produces more yield with the same
water (e.g. legume effect supplying extra N), and these are
called synergistic effects, whereas other break effects increase
yield capacity (e.g. where canola has resulted in increased root
exploration as a result of disease break) but also require more
resources to produce the break effect. Given the lack of effect on
sowing PAW and the strong evidence for increased supply of N
via different mechanisms for all break types, a large component
of the increase in WUE through the use of breaks in the
sequence is likely derive from synergistic effects. For legume
breaks, this synergistic effect is likely to be in part driven by the
timing of legume-derived N supply, which has the potential to
shift the distribution of water use in subsequent crops (Asseng
et al. 1998b).

Management of breaks in low-rainfall environments

We have demonstrated that the inclusion of breaks to continuous
cereal in the sequence can provide a substantial benefit to the
production of wheat grain and that in the short term the three
break types (legume, brassica and cereal) all provided increased
NSP, whereas legume breaks were able to confer this advantage
for a longer duration. Although the yields of the break options
differ substantially across soil types and some are likely to be
better a choice than others on a particular soil, the effect of
different breaks on subsequent wheat yields did not differ
reliably across soil types. In a low-rainfall environment where
the growth of breaks is considered risky, the break advantage

conferred by volunteer pasture with minimal management is
of particular interest. Several relatively low-risk, low-cost
management options (e.g. selective grass weed control,
grazing management and fertilisation with phosphorus) are
likely to increase the productivity of the legume component
and potentially confer a greater break effect. This warrants
further investigation.

Break effects in terms of cumulative extra wheat yield
(t ha–1) over 2–3 years were less variable across soil types and
seasons than break yields. In particular, the provision of second-
year break-effect benefits from legume breaks would appear
to make the inclusion of a legume-based break an attractive
proposition. Together with any weed control benefits, the
economic decision to incorporate a break in the sequence
should be driven by the ability of the cumulative extra tonne
of wheat that is produced in the 2 years after the break to
compensate for any loss in income in the year that the break
crop is grown. As continuous cereal crops become more difficult
and expensive to manage, the use of breaks from continuous
cereals will likely become amore economically attractive option.

Conclusions

Break crops can provide benefits to the production of wheat
in semi-arid Mallee environments. The magnitude of the
cumulative break effect on three subsequent wheat crops is in
the order of 1 t ha–1 of extra wheat production. Based on this
study, growers can be more certain about the economic gains
from the break effect on wheat yield across seasons and soil
types than about the economic returns of the break crop in the year
that it is grown. In a system where weeds were still manageable
in the cereal phase, the source of the break effect was largely
N-derived but the process by which the N benefit was derived
depended on the break type (legume v. brassica v. grass).
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