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ABSTRACT 

The present investigation was carried out to identify the molecular markers 

associated with the kernel iron and zinc concentrations and to study the gene action 

involved in the inheritance of the traits under concern using generation mean analysis 

by conducting two separate experiments at ICRISAT, Patancheru. Besides that, studies 

were also made to estimate the nature and magnitude of genetic effects and to 

understand the association of kernel iron and zinc concentrations with grain yield and 

other agronomic traits. 

In the first experiment, an attempt was made to identify the molecular markers 

associated with the kernel iron and zinc concentrations using F2:3 mapping population of 

a cross between a high kernel iron and zinc containing parent, ICGV 06099 and a low 

kernel iron and zinc containing parent, ICGV 93468. Parental polymorphism survey 

was conducted with 200 SSR markers, out of which thirty three markers were found 

polymorphic between the parents. Out of 33 polymorphic SSR markers, three markers 

viz., SEQ1B09, IPAHM245 and SEQ9G05 showed significant association with the 

kernel iron concentration with a phenotypic variation of 0.23, 2.19 and 6.34 %, 

respectively, towards the trait and three markers viz., GM2638, IPAHM245 and 

SEQ9G05 showed significant association with phenotypic variation of 1.75, 2.25 and 

6.01 %, respectively towards kernel zinc concentration. Validation of these markers in 

another F2:3 population derived from the cross ICGV 06040 × ICGV 87141 also showed 

the strong association of these markers with the trait of interest.  

 Studies on genetic parameters in F2:3 population of the cross ICGV 06099 × 

ICGV 93468 revealed that PCV was moderately higher than GCV for all the traits 

including kernel iron and zinc concentrations. Heritability (broad sense) was also found 

to be higher for kernel iron (64.24 %) and zinc (62.21 %) concentrations. However, low 

genetic advance as per cent of mean was recorded for the traits understudy. Correlation 

studies revealed significant positive association between kernel iron and zinc 



concentrations. However, these micronutrient concentrations did not show any 

significant association with pod yield. 

 In the second experiment, six generations (P1, P2, F1, F2, B1 and B2) each of two 

crosses (ICGV 06040 × ICGV 87141 and ICGV 06099 × ICGV 93468) were evaluated 

in compact family block design during post-rainy season, 2013-14 at ICRISAT, 

Patancheru. Observations were recorded on important agronomic traits along with 

kernel iron and zinc concentrations which were estimated using Inductively Coupled 

Plasma Optical Emission Spectrometry (ICP-OES).  

  Analysis of variance showed significant differences among the generations of 

both the crosses for days to emergence, days to maturity, hundred kernel weight, 

shelling percentage (in the cross ICGV 06040 × ICGV 87141 only), pod yield per plant, 

kernel iron and zinc concentrations. The phenotypic coefficient of variation was 

moderately higher than genotypic coefficient of variation for all the traits under study 

including kernel iron and zinc concentrations which suggested moderate influence of 

environment on these traits. High heritability (broad sense) coupled with moderate 

genetic advance as per cent of mean was observed for kernel iron and zinc 

concentrations in the cross ICGV 06040 × ICGV 87141 indicating that these traits were 

governed by additive gene action and that selection will be effective, whereas moderate 

heritability (broad sense) was observed for the same traits in the cross ICGV 06099 × 

ICGV 93468. Significant negative heterobeltiosis and residual heterosis over better 

parent for kernel iron and zinc concentration was observed in the cross ICGV 06040 × 

ICGV 87141 suggesting outperformance of better parent over F1 and F2 whereas 

significant negative heterosis for kernel zinc concentration was observed in the cross 

ICGV 06099 × ICGV 93468. Correlation studies showed highly significant positive 

correlation between kernel iron and zinc concentrations in both the crosses, indicating 

the possibility of simultaneous improvement of both the traits. Kernel iron and zinc 

concentrations did not show any significant association with pod yield per plant 

suggesting that no penalty will be there on yield while selecting for kernel iron and zinc 

concentrations. Positive significant association between 100-kernel weight and kernel 

zinc concentration was observed indicating the chance of improvement of zinc 

concentration in bold seeded genotypes. 

Generation mean analysis revealed that at least one of the scaling tests to a 

maximum of three scaling tests viz., A, B and C were significant for the above 

mentioned traits which indicated the presence of non-allelic interactions. For kernel iron 

and zinc concentrations additive gene action and additive × additive interaction were 

positively significant in the cross ICGV 06040 × ICGV 87141 whereas only additive 

gene action was significant in positive direction in the cross ICGV 06099 × ICGV 

93468. However, the magnitude of additive gene effect was higher than the interaction 

component for the traits under concern. The signs of dominance (h) and dominance × 

dominance (l) were opposite for kernel iron and zinc concentrations along with the other 

traits indicating the presence of duplicate type of epistasis. Selection among parental 

lines and pedigree method of breeding may be profitable to exploit additive component 

of gene action for bringing about improvement for kernel iron and zinc concentrations 

in groundnut. 
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Chapter I 

INTRODUCTION 

Groundnut also called peanut is one of the principal oil as well as economic 

crops of the world. It is utilised for human consumption as a vegetable oil and food 

crop, as a green manure and as fodder for livestock. India is the fourth largest oil 

producing country in the world, next only to USA, China and Brazil. India occupies the 

place of pride as the world's second largest producer of groundnut with a total 

production of 9.47 million metric tons (FAOSTAT, 2014). Groundnut, soybean and 

mustard together contribute about 85 per cent of the country’s oil production and about 

80 per cent of total groundnut production in India is crushed for oil extraction, thus 

improvement in kernel nutrient concentration and quality is of interest to plant breeders.  

 Micronutrient deficiencies have increased over recent decades due to a 

generalized decrease in the quality of poor people’s diets both in developed and 

developing countries and even in areas where food is not a limiting factor (Welch and 

Graham, 1999 and Graham et al., 2001). Micronutrient malnutrition affects more than 

one-half of the world’s population, especially women and pre-school children (UNSCN, 

2004). Furthermore, micronutrient deficiencies are more widespread than deficiencies 

caused by inadequate consumption of energy or protein. Breeding crop plants for higher 

micronutrient concentration, an approach termed as bio-fortification has become an 

active goal of plant breeding programs in the developing world at both the international 

and national agricultural research centers (Welch, 2002 and Bouis, 2003). It aims on the 

development of micronutrient-dense staple crops using the best traditional breeding 

practices and modern biotechnology. 

Micronutrient deficiencies are predicted to affect human population, with Iron 

Deficiency Anaemia (IDA) being an especially common health concern affecting at 

least two billion people. IDA is caused by low consumption of iron especially in 

reproductive age women and developing adolescents (Welch, 1999). Zinc deficiency is 

suspected to be equally as common but has not been as well documented as IDA (Welch 

and Graham, 2002). While IDA causes losses in work productivity and developmental 

problems, zinc deficiency causes lowered disease immunity and stunting. Improving 

iron and zinc densities of staple crops by breeding offers a cost-effective and sustainable 

solution to reduce micronutrient malnutrition in resource poor communities. 



Poor consumers in developing countries acquire roughly one-half of their total 

iron intakes and a higher percentage of zinc intakes from staple foods. Bio-fortification, 

wherever possible, is a cost effective and sustainable solution for tackling the micronutrient 

deficiencies as the intake of micronutrients is on a continuing basis with no additional costs 

to the consumer in the developing countries (Kumar et al., 2011). It has the potential to 

help to alleviate the suffering, death, disability and failures to achieve human potential, 

which results from micronutrient deficiency related diseases. In comparison to other 

strategies, it provides a truly feasible means of reaching out to remote and rural areas to 

deliver naturally fortified foods to population groups with limited access to diverse 

diets, supplements and commercially fortified foods (Bouis et al., 2011).  

Results from germplasm screening suggest that the iron and zinc concentration 

of staple foods can be doubled through conventional breeding. This result, in turn, 

implies that iron and zinc intakes in poor people’s diets can be increased by 50 per cent. 

This should result in an appreciable improvement in nutrition and health even for those 

whose intakes remain below recommended daily intakes.  

Groundnut is valued as a rich source of energy contributed by oil (48-50 %) and 

protein (25-28 %) in the kernels. In addition, groundnut kernels also contain 

antioxidants, vitamins and are rich in mono-unsaturated fatty acids (Janila et al., 2013). 

They contain vitamin E, and many important B-complex group of vitamins like thiamin, 

pantothenic acid, vitamin B-6 and niacin. Of the 20 minerals necessary for normal body 

growth and maintenance, seven, including iron and zinc are present in peanut. 

Groundnut is a dietary source of biologically active polyphenols, flavonoids and 

isoflavones but lacks completely in Vitamin-A (Misra, 2006). Developing countries, 

where micronutrient deficiencies are widespread, contribute world’s maximum peanut 

area and production (FAOSTAT, 2011). Thus, peanut can contribute significantly 

towards reduction of protein-energy and micronutrient malnutrition (Janila et al., 2014). 

If there is sufficient genetic variation for the density of micronutrients in edible parts of 

the crop, bio-fortification can be achieved through plant breeding (Mayer et al., 2008). 

In groundnut genetic variability was reported for iron and zinc concentration 

(Upadhyaya et al., 2012 and Janila et al., 2014) and thus bio-fortification is possible.  

Groundnut products can be promoted as nutritional foods by mixing with some 

essential minerals to fight energy, protein, and micronutrient malnutrition among poor. 

Project peanut butter is an organisation devoted to fight against malnutrition producing 

peanut butter with all essential nutrients and energy to serve malnourished children in 



Africa. Groundnut based Plumpy’nut, a ready to use therapeutic food, has helped to 

save the lives of thousands of malnourished children in Niger (UNICEF, 2007). 

In order to realize the potential impact of the micronutrient-dense cultivars, the 

micronutrient-rich cultivars must be delivered in high-yielding backgrounds with 

farmer’s preferred traits (Kumar et al., 2010a). However, limited information is 

available on the components of genetic variance controlling iron and zinc 

concentrations which show quantitative inheritance. The term epistasis was coined by 

Bateson (1909) to describe a situation where an action of one gene masks the effect of 

other at different loci like the phenomenon of complete dominance in which one allele 

at same locus mask the effect of other. The estimation of epistasis assumes more 

significance in view of the fact that in its presence, variance component estimates are 

likely to be biased, hence, inferences drawn from such estimates are most likely to be 

misleading. Generation mean analysis is a powerful statistical procedure for detection of 

epistasis using several basic generations from a cross between two inbred lines. 

Generation mean analysis is often used to estimate components of mean 

(additive and dominance effects and interaction) of individual traits. Mather (1949) 

introduced tests for epistasis, through scaling test. Hayman (1958) described the 

procedure for partitioning of generation mean into six parameters viz., mean (m), 

additive (d), dominance (h), additive x additive (i), additive x dominance (j)  and 

dominance x dominance (l) gene effects. Gamble (1962) proposed a model for 

partitioning the estimation of additive, dominance and epistasis effects from six 

generations viz., P1, P2, F1, F2, BC1 and BC2 of a cross. This model is considered to be a 

perfect fit and is not materially different from that proposed by Hayman and Mather 

(1955). In groundnut, generation mean analysis was carried out to understand the gene 

action for yield and its contributing characters  (Shobha et al., 2010 and Venuprasad et 

al., 2011) and to study the inheritance pattern for leaf rust and late leaf spot (Janila et 

al., 2013). However, gene action studies for kernel iron and zinc concentrations in 

groundnut have not been documented till now. 

The inheritance of quantitative traits is a moving target. The expression of these 

traits is affected not only by large number of genes governing them but also by 

environmental effects. However, selection for such traits is practiced only in advanced 

breeding lines, as biochemical estimation for these traits in segregating populations is 

high resource requiring, cumbersome and time consuming. Thus it seems very complex 

and challenging to the breeder to undertake quality improvement in large scale breeding 

programmes through conventional breeding approaches. 



Molecular markers offer great scope for improving the efficiency of 

conventional plant breeding. With the advent of molecular markers, by using 

segregating populations for the trait of interest for breeders, it has now become routine 

to map genes or Quantitative Traits Loci (QTLs) and identify valuable alleles for the 

corresponding traits. The process of constructing linkage maps and conducting QTL 

analysis to identify genomic regions associated with traits is known as QTL mapping 

(McCouch and Doerge, 1995). Once the trait is mapped, the markers associated with 

them can be efficiently employed in breeding programmes through Marker-Assisted 

Selection (MAS). Markers not only eliminate the need of chemical analysis and 

phenotypic evaluation in the early generation breeding program, but also minimize the 

time required to develop new genotypes with desirable traits in the kernelling stage 

itself, instead of waiting until harvest. 

Recently some efforts have been made to locate and tag the traits associated with 

oil concentration and other yield contributing traits in groundnut based on bulk 

segregant analysis by using SSR markers (Gomez et al., 2009). However, not much 

effort has been made to locate the QTLs responsible for kernel iron and zinc 

concentrations in groundnut. 

A thorough knowledge of the genetics of characters will help the plant breeder 

to choose the best breeding scheme in attaining desired objectives. In case of groundnut, 

both continuous and discontinuous variations have been observed for agronomically 

important characters (Pattanashetti et al., 2008). Phenotypic Coefficient of Variation 

(PCV) and Genotypic Coefficient of Variation (GCV) provide an idea about the range 

of variability present in the material used for the experiment. Heritability and genetic 

advance helps a breeder to know whether the selection will be effective or not in the 

improvement of a particular character. 

In order to achieve the goal of increased production and quality the knowledge 

of direction and magnitude of association between various traits is essential for plant 

breeders. The correlation co-efficient provides a reliable measure of association among 

the characters and helps to differentiate vital associations useful in breeding from those 

of the non-vital ones (Falconer, 1981). 

Therefore, keeping all the above points in view, the present investigation was 

undertaken with the following objectives. 

 Polymorphism survey between the parents with contrasting kernel iron and zinc 

concentrations using molecular markers 



 Development of F2:3 mapping populations using parents with diversified levels 

of kernel iron and zinc concentration 

 Identification of molecular markers linked to the putative genomic regions 

(QTLs) controlling kernel iron and zinc concentration using F2:3 mapping 

population. 

 Validation of putative QTLs in an alternate mapping population 

 Studying the gene action governing kernel iron and zinc concentrations. 
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Chapter II 

REVIEW OF LITERATURE 

Groundnut (Arachis hypogaea L.), an annual leguminous oilseed crop, is valued 

as a rich source of high quality edible oil and protein. It is cultivated primarily in the 

semi-arid tropical regions of Asia and Africa, which together account for over 96 % of 

world’s groundnut area and 92 % of total global groundnut production (Janila et al., 

2013). Though groundnut is rich in oil and proteins, it contains traces of essential 

minerals and lacks vitamin-A (Misra, 2006), thus improvement in kernel mineral 

concentration and vitamin-A is essential to fight against malnutrition. 

Iron and zinc are essential micronutrients in human diet. To develop varieties 

with high concentration of these elements, it is a prerequisite to identify germplasm 

with high concentration of both these elements and understand their genetic mechanism 

(Qin et al., 2012). The choice of selection and breeding procedures for genetic 

improvement of any crop is largely dependent on the knowledge of type and relative 

amount of genetic components and the presence of non-allelic interactions for different 

traits in the plant material under investigation. Assessment of genetic effects involved in 

the expression of quantitative traits in groundnut can be accomplished by generation 

mean analysis, which is a simple but useful technique for estimating genetic effects for 

a polygenic trait. Its greatest merit lies in its ability to estimate epistatic genetic effects 

such as additive × additive, dominance × dominance and additive × dominance. The 

information so obtained would have a direct bearing on the breeding programme for 

further tangible advancement of the crop. Furthermore, micronutrient accumulation in 

groundnut kernels and its genetic mechanism have not been explored so far. 

Since their discovery molecular markers have been frequently used to identify 

genomic regions and alleles associated with the trait of interest with precision using 

QTL (Quantitative Trait Loci) mapping (McCouch and Doerge, 1995). It provides a 

powerful genetic approach in identifying novel genes affecting a certain trait (Vert et al. 

2002). Several researchers have focussed on micronutrient variation in crops like rice, 

wheat, common bean etc. But information on QTL identification for micronutrient 

concentration is very limited (Gregorio et al., 2000; Guzma´n-Maldonado et al., 2003 

and Gelin et al., 2007) and no literature is available on QTL analysis for iron and zinc 

concentration in groundnut kernel.  



A brief review of literature available on the above aspects is presented in this 

section, under the following sub-headings: 

2.1 Quantitative Trait Loci (QTL) Analysis 

2.2 Gene effects 

2.3 Variability, heritability and genetic advance 

2.4 Heterosis and inbreeding depression 

2.5 Correlation studies 

2.1 QUANTITATIVE TRAIT LOCI (QTL) 

ANALYSIS 
The cultivated species, A. hypogaea, with a large and tetraploid genome, is 

probably derived from a unique cross between the wild diploid species A. duranensis 

(A-genome) and A. ipaënsis (B-genome) resulting in a hybrid followed by spontaneous 

chromosome duplication (Kochert et al., 1996 and Seijo et al., 2004). Although 

cultivated peanut is a tetraploid, genetically it behaves as diploid (Stalker et al., 1991). 

It has been concluded that the A and B genomes contributed nearly equal amounts of 

DNA to the domesticated peanut (Singh et al., 1996). 

In case of cultivated peanut, low levels of genetic variation due to single 

hybridization event and tetraploid nature of the genome of cultivated peanut have been 

responsible for the slow progress in the area of developing genomic resources such as 

molecular markers and genetic maps. However, as a result of concerted efforts in the 

area of Arachis genomics and several molecular studies have been initiated towards 

QTL mapping and molecular breeding for resistance or tolerance to biotic and abiotic 

stresses for peanut improvement (Varshney et al., 2010) 

The regions within genomes that contain genes associated with a particular 

quantitative trait are known as Quantitative Trait Loci (QTLs). The process of 

constructing linkage maps and conducting QTL analysis to identify genomic regions 

associated with traits–is known as QTL mapping or genome’ mapping (McCouch and 

Doerge, 1995 and Mohan et al., 1997). 

Finding genes which control the accumulation of iron and zinc in kernels of 

major crops is the precondition for bio-fortified breeding program (Jin et al., 2013). 

Studies have shown that the iron and zinc metabolism, involving processes of 

mobilization, uptaking, translocation and accumulation, is a complex process regulated 

by many genes (Bashir et al., 2012 and Kobayashi and Nishizawa, 2012). QTL mapping 

is a powerful approach to study and manipulate complex traits that are important in 

agriculture, including mineral concentration (Kaiyang et al., 2008). It provides 



information on the chromosomal location of the target loci without any prior knowledge 

of the genes related to the trait and also may be applied in breeding program using 

Marker-Assisted Selection (MAS) (Collard et al., 2005 and Ghandilyan et al., 2006). 

However, reports of QTLs on kernel micronutrient concentration are limited.  

Since QTL analysis for kernel iron and zinc concentration in groundnut was not 

documented before and limited information is available in other related crops, the 

literature below covers a range of crops on which this aspect was studied. The following 

review will give an impression about the QTL analysis done on kernel iron and zinc 

concentrations in several important crops.  

The discussed literature suggests that much of the work on QTL analysis for 

kernel iron and zinc concentrations was carried out in important cereal crops like wheat, 

rice, maize and pearl millet also in legumes like common bean, clover and soybean 

which resulted in the identification of key QTLs for the above mentioned traits. The 

population selected for their study was dominated by Recombinant Inbred Lines (RILs) 

developed through Single Seed Descent (Goulden, 1941) method for 5-6 generations 

followed by Double Haploid (DH) lines. 

 Though there are different types of QTL analysis methods, Composite Interval 

Mapping (CIM) (Zeng, 1994) was used predominantly because of its high precision to 

detect the QTL. QTL cartographer v2.5 (Wang et al., 2007) software was most 

commonly used to detect the QTL and its contribution towards the phenotypic variance 

for the character studied.  

Wheat, being an important cereal crop, attempts were made to locate QTLs 

responsible for grain iron and zinc concentration. Most of the studies (Table 2.1) 

revealed that QTLs for kernel iron were located on chromosomes 2A (Tiwari et al., 

2009, Hakimeh et al., 2013 and Jayasudha et al., 2014), 3D (Genc et al., 2009 and 

Hakimeh et al., 2013) and 7A (Tiwari et al., 2009) whereas, QTLs for kernel zinc 

concentration were located on chromosomes 4A (Shi et al., 2008 and Hakimeh et al., 

2013) and 7A (Shi et al., 2008 and Tiwari et al., 2009) contributing to the maximum 

phenotypic variation for the traits in question. 

Similarly, in rice, QTLs for grain iron (Table 2.1) were identified on 

chromosome 2 (Stangoulis et al., 2007 and Oliveira et al., 2009) and 9 (Oliveira et al., 

2009 and Kaiyang et al., 2008) whereas, for grain zinc concentration QTLs were 

identified on chromosomes 5 (Oliveira et al., 2009, Kaiyang et al., 2008 and Gande et 

al., 2014) and 12 (Stangoulis et al., 2007 and Oliveira et al., 2009) contributing to the 

maximum phenotypic variation for the traits understudy. However, the earlier reports of 



Anuradha et al. (2012) revealed that QTLs for kernel iron and zinc were co-located on 

chromosomes 7 and 12. 

 Studies on QTL analysis in maize (Table 2.1) revealed the presence of QTLs for 

kernel iron concentration on chromosomes 5 (Lung’aho et al., 2011 and Jin et al., 2013) 

and 2 (Lung’aho et al. 2011 and Simic et al., 2012) whereas, for kernel zinc 

concentration QTLs were identified on chromosomes 2 and 5 (Jin et al., 2013) and 4 

(Simic et al., 2012) with higher phenotypic variation for the traits understudy. 

 Though, literature on QTL mapping for kernel iron and zinc in legumes is scanty 

few attempts were made to identify the QTLs in common bean, clover and soybean. 

Results revealed that in common bean (Table 2.1), QTLs for both grain iron and zinc 

were co-located on B6 linkage group (Cichy et al., 2009 and Blair et al., 2009) and on 

B5 (Cichy et al., 2009) with higher phenotypic expression.. In Clover, chromosome 7 

carries the QTLs for both kernel iron and zinc with moderate phenotypic variance 

(Klein and Grusak 2009). In Soybean, chromosome 20 carries QTLs for kernel iron 

concentration and chromosomes 7 and 18 carry QTLs for kernel zinc concentration with 

moderate amount of phenotypic variance (King et al., 2014). 



Table 2.1. Review on Quantitative trait Loci (QTL) for kernel iron and zinc densities in different crops 
S 

No. 

Population 

size 

Mapping 

population 

Trait No. of 

QTL 

detected 

Software and 

Method 

Chromosome 

 

Closely linked markers (LOD score) Position 

(cM) 

R2 or PV% 

 

Reference 

 

WHEAT (Triticum aestivum L.) 

1 
 

119 

Doubled 

Haploid (DH) 

population 

Zn 4 

QTL 

Cartographer 

v2.0; 

Composite 

Interval 

Mapping (CIM) 

4A, 4D, 5A 

and 7A 

P3446-205—CWM145 (2.14), 

Xgwm192—WMC331 (4.22), 

Xgwm291—Xgwm410 (3.63) and 

WMC488—P2071-180 (2.08), 

respectively. 

-- 

6.8, 11.9, 10.9 

and 5.3, 

respectively. 

Shi et al. (2008) 

2 90 

Doubled 

Haploid (DH) 

population 

Fe 1 WGIAM v 1.4; 

Whole Genome 

Average 

Interval 

Mapping 

3D gdm8-gdm136 -- 1.10 

Genc et al. (2009) 
Zn 4 

3D, 4B, 6B 

and 7A 

Gdm136-gwm3, wms149-gwm113, 

barc146a-p41/m48-76 and gwm282-

gwm63, respectively. 

-- 

43.50, 7.9, 

14.5 and 6.9, 

respectively. 

3 
 

 

93 

Recombinant 

Inbred Lines 

(RIL) 

population 

Fe 2 

QTL 

Cartographer 

v2.5; 

Composite 

Interval 

Mapping (CIM) 

2A and 7A 
Xwmc382-Xbarc124 (3.3) and 

Xgwm473-Xbarc29 (3.2), respectively. 

23.6 and 

153.8,  

respectively. 

12.6 and 11.7, 

respectively. 

Tiwari et al. (2009) 

 

Zn 

 

1 

 

7A 
Xcfd31-Xcfa2049 (4.2) 72.6 18.8 

4 

 

 

 

 

118 

 

 

 

 

RILs 

Fe 6 
QTL 

Cartographer 

v2.5; 

Composite 

Interval 

Mapping (CIM) 

2A, 3D, 4D, 

7B, and 7D 

Xgwm312-Xgwm817 (3.91), 

Xgwm817-Xgwm630 (3.71), 

Xgwm1047-Xgwm383 (2.76), 

Xgwm4670-Xgwm194 (2.54), 

Xgwm767-Xgwm3036 (2.52) and 

Xbarc184-Xgwm1055 (2.78), 

respectively. 

51.5, 53.5, 

107, 72.5, 

121 and 

23.5, 

respectively. 

29.1 

Hakimeh et al. 

(2013) 

Zn 2 1A and 4A 

Xgwm3094-Xgwm164 (2.97) and 

Xgwm4026-Xgwm1081 (2.67), 

respectively. 

39 and 48.5, 

respectively. 
45.51 

5 185 RILs 

Fe 5 
 

 

QTL 

IciMapping 

v.3.2; 

Composite 

Interval 

Mapping (CIM) 

1A, 2A and 

3B 

1046200|F|0 1228280|F|0 (0.52), 

2289695|F|0 1218555|F|0 (0.93), 

1708014|F|0 1000008|F|0 (2.08), 

1081485|F|0 1216621|F|0 (0.52) and 

1,015.23–1,022.28 3022954|F|0 (8.61), 

respectively. 

56, 227, 

346, 162 

and 1022, 

respectively. 

5.56, 7.48, 

16.55, 5.6 and 

25.95, 

respectively. 
Jayasudha et al. 

(2014) 

Zn 5 
2A, 2B, 3D, 

6A and 6B 

1126272|F|0 2255234|F|0 (2.1), 

989092|F|0 1101425|F|0 (0.6), 

1094214|F|0 1057342|F|0 (1.15), 

998265|F|0 3026160|F|0 (1.23) and 

1001916|F|0 1129916|F|0 (0.89), 

respectively. 

146, 966, 

57, 327 and 

1433, 

respectively. 

5.20, 16.46, 

4.75, 6.99 and 

9.7, 

respectively 



 

S 

No. 

Size of 

population 

Mapping 

population 
Trait 

No. of 

QTLs 

detected 

 

Software 

and 

Method 

Chromosome 

 
Closely linked markers (LOD score) 

Position 

(cM) 

R
2
 or PV% 

 

Reference 

 

RICE (Oryza sativa L.) 

6 129 

Double 

Haploid lines 

(DH) 

Fe 3 
QTL Cartographer 

v2.5; 

Composite Interval 

Mapping (CIM) 

2, 8 and 12 --  
17, 18 and 14, 

respectively. Stangoulis et al. 

(2007) 
Zn 2 1 and 12 --  

15 and 13, 

respectively. 

7 85 
Introgression 

Lines (ILs) 

Fe 1 MAP MANAGER 

QTX software. 

Model QTXb17; 

Single Point 

Analysis 

2 and 9 RM6641 and RM296, respectively. -- 5 

Oliveira et al. (2009) 
Zn 3 5,8 and 12 

RM1089, RM152 and RM3331, 

respectively. 

 

-- 

5, 19 and 9, 

respectively. 

8 
 

120 

 

DH 
Fe 

 

14 

QTL cart. 2.5;  

Composite Interval 

Mapping (CIM) 

6 and 1 
6022-6022 (4.05) and 1024-1026 

(3.24), respectively. 

 

-- 
10-21.1 Qin et al. (2012) 

9 241 RILs 

Fe 2  

 

 

QTLMapper1.0 

1 and 9 
RG236-C112 (7.66) and C472-R2638 

(4.25), respectively. 

 

-- 

25.81 and 

11.11, 

respectively. 
Kaiyang et al. (2008) 

Zn 3 5, 7 and 11 

R3166-RG360 (4.27), RM234-R1789 

(1.8) and C794-RG118 (5.65), 

respectively. 

 

-- 

12.34, 5.3 and 

18.61, 

respectively. 

 168 RILs 

Fe 7 
QTL Cartographer 

v2.5; 

Composite Interval 

Mapping (CIM) 

1, 5, 7 and 12 

RM243-RM488 (21.9), RM488- 

RM490 (21.9), RM574- RM122 (25.3), 

RM234- RM248 (27.9), RM248- 

RM8007 (27.2), RM17- RM260 (33.8) 

and RM260- RM7102 (33.4) 

 

 

-- 

69, 69.2, 69.2, 

69, 69, 71 and 

71. 
Anuradha et al. 

(2012) 

Zn 6 3, 7 and 12 

RM7-517 (3.04), RM234-RM248 (2.6), 

RM248- RM8007 (2.6), RM501- 

OsZip2 (3), RM17-RM260 (3.1) and 

RM260- RM7102 (2.9) 

 

 

-- 

31, 35, 35, 29, 

35 and 34 

10 160 RILs Zn 4 

SPSS 16.0 (SPSS 

Inc.); 

Single Marker 

Analysis (SMA) 

3, 4,5 and 7 
OsNAC, OsZIP8a, OsZIP8c and 

OsZIP4, respectively. 
 

-- 

4.5, 19.0, 5.1 

and 10.2, 

respectively. 

Gande et al. (2014) 

MAIZE (Zea mays L.) 

11 218 
F2:3 

population 

Fe 5 QTL 

Cartographer 

v2.5; 

Composite 

Interval Mapping  

5 umc1429–umc1060 (3.49) -- 16.9 

Jin et al. (2013) 
Zn 5 2, 5 and 10 

bnlg1633–bnlg1138 (3.01), 

umc1536–bnlg1633 (3.17), 

umc1429–umc1060 (5.58) and 

umc1506–umc2350 (4.23). 

 

-- 
5.9-17.6 



 

S 

No. 

Size of 

population 

Mapping 

population 
Trait No. of 

QTLs 

detected 

 

Software and 

Method 

Chromosome 

 

Closely linked markers 

(LOD score) 

Position 

(cM) 

R2 or PV% 

 

Reference 

 

12 
 

172 
F4 

Fe 4 PLABQTL; 

Composite 

Interval Mapping 

2,6 and 8 -- -- 6.8-7.5 

Simic et al. (2012)  

Zn 
 4 

-- -- 
7.8 

13 224 RILs Fe 3 

QTL 

Cartographer 

v2.5; CIM. 

2, 5 and 9 

-- -- 

9.3-12 
Lung’aho et al. 

(2011) 

BEAN (Phaseolus vulgaris L.) 

 14 73 RILs 
Zn 

 
4  3, 9 -- -- 7.1-1.3 Gelin et al. (2007) 

15 110 RILs 

Fe 5 
 

QTL 

Cartographer 

v2.5; 

Composite 

Interval Mapping 

(CIM) 

B4, B6, B7, 

B6 and B6 

BMc127 (2.74), R0405B (4.71), 

BMc248 (2.99), BM158 (5.10) and 

BM158 (5.42), respectively. 

 

-- 

10.82, 21.27, 

9.57, 19.8 and 

19.26 

Blair et al. (2009) 

Zn 8 

B6, B8, B6, 

B8, B2,B3, 

B6 and B6 

V1001B (5.24), H1201A (4.44), 

BM158 (4.07), H1201A (2.85), PV15 

(3.92), BMd1 (2.92), BM158 (5.34) 

and BM158 4.92, respectively. 

 

 

-- 

38.42, 17.83, 

14.29, 10.05, 

11.94, 10.52, 

17.36 and 

29.91 

16 77 RILs 

Fe 6 
QTL 

Cartographer 

v2.5; 

Composite 

Interval Mapping 

(CIM) 

B1, B5, B6, 

B9, B11 and 

B8 

fi n (12.65) GGAT02 (3.91) 

BM170 (6.9) 

GCTC02 (5.1) GGAG01 (5.23) and 

M12.1600A (3.39), respectively. 

 

 

-- 

8-36 

Cichy et al. (2009) 

Zn 4 
B1,B6,B11,B

5 

fin (7.05), AGAT05 (8.42), CTTA02 

(2.89) and CGTC01 (2.76), 

respectively. 

 

-- 
9-39 

CLOVER (Medicago truncatula) 

17 93 RILs 

Fe --  

QTL Cartographer 

v2.5; 

Composite Interval 

Mapping (CIM) 

7   21.2 

Klein and Grusak 

(2009) Zn -- 4, 7 and 8 -- -- 

24.2, 17.9 and 

8.9, 

respectively. 

SOYBEAN (Glycine max) 

18 92 F2:4 

Fe 1 
MapQTL6; 

Multiple-QTL 

Mapping (MQM) 

20 pa 515-1-Satt239 (4.7) 4.0 21.5 

King et al. (2014) 
Zn 2 7 and 18 

pk 417H-pk 70T (3.0) 

pa 890V-pK 493H  (2.9) 

65.9 and 

124.6, 

respectively. 

23.4 and 18.5, 

respectively. 



2.2 GENE EFFECTS 

To develop a plant genotype with desirable combination of traits comprehensive 

information regarding genetic mechanism controlling various traits is considered a pre-

requisite to launch a breeding programme (Rehman et al., 2009). 

Improving iron and zinc densities of staple crops by breeding offers a cost-

effective and sustainable solution to reduce micronutrient malnutrition in resource poor 

communities. An understanding of the genetics of these micronutrients can help to 

accelerate the breeding process (Velu et al., 2011a).  

The estimation of epistasis assumes more significance in view of the fact that in 

its presence, variance component estimates are likely to be biased hence inferences 

drawn from such estimates are more likely to be misleading. The magnitude of the bias 

depends upon the relative magnitude of epistatic effects compared to the deviations of 

additive (d) and dominance (h) type of prevailing epistasis and direction of dominance. 

The existence of large array of interactions in a polygenic system causes over-

estimation of heritability (narrow sense) thereby causing an additional bias in predicted 

gains. Generation mean analysis (GMA) is a simple but useful technique for estimating 

gene effects for a polygenic trait, its greatest merit lying in the ability to estimate 

epistatic gene effects such as additive × additive (aa), dominance × dominance (dd) and 

additive × dominance (ad) effects (Singh and Singh, 1992). 

This technique has been used to carry out gene action studies on iron and zinc 

concentration and yield contributing traits in groundnut. 

Sangha et al. (1990) using GMA, observed that dominance × dominance 

epistasis was important for pod yield in groundnut in the cross M13 X Acc.1978. 

Ali et al. (1999) conducted generation mean analysis experiment by involving 

two crosses viz., No.334 x ICGSE 4 and NC 9 x ICGSE4 to study the gene action 

governing 100 kernel weight and reported that additive gene action had a predominant 

role in governing the character mentioned.  

Gene action studies carried out by Venkateswarlu et al. (2007a) in groundnut 

involving eight parents and 28 single crosses without reciprocals in diallel mating 

design revealed the importance of both additive and non-additive gene action in 

governing the kernel yield per plant, shelling percentage, sound mature kernel weight 

and oil concentration. 

Jivani et al. (2009) conducted an experiment in diallel mating design involving 

eight parents and 28 single crosses (without reciprocals) to study the gene action 



governing 100 kernel weight and kernel yield per plant and concluded that both additive 

and non-additive gene action had equal role to govern the above mentioned traits. 

Rehman et al. (2009) evaluated 55 genotypes of mung bean in Randomized 

Complete Block Design (RBD) to study the gene action for kernel yield per plant and 

concluded that additive gene action played an important role in governing the kernel 

yield.  

Generation mean analysis experiment was conducted in groundnut by Shobha et 

al. (2010) involving three crosses viz., TMV 2 × ICGV 97150, TMV 2 × COG 0437 and 

TMV 2 × COG 0438 to study the gene action governing 100 kernel weight, kernel yield 

per plant and shelling percentage and reported that along with additive and dominance 

gene action, additive × additive and dominance × dominance components of epistasis 

played an important role in governing the above mentioned traits. 

Vekariya et al. (2011) examined the gene action in groundnut for several traits 

by evaluating 50 genotypes in Randomized Complete Block Design (RBD) and 

mentioned the predominance of additive gene action in controlling the kernel yield per 

plant. 

Venuprasad et al. (2011) carried out research in groundnut to study the gene 

action governing kernel traits viz., kernel size, kernel weight and kernel length by 

conducting generation mean analysis involving six crosses and concluded that additive 

gene action alone governed the kernel size whereas, additive and additive × additive and 

dominance and dominance × dominance gene actions played an important role in 

governing kernel weight and kernel length, respectively. 

Alam et al. (2013) conducted a 10 ×10 half diallel experiment on groundnut to 

ascertain the gene action and genetic parameters controlling days to 50 % flowering and 

100 kernel weight. The estimates of gene effects indicated that significance of both 

additive and dominance gene action in governing days to 50 % flowering and 100 

kernel weight. 

Rai et al. (2014) evaluated 15 genotypes of groundnut in Randomized Complete 

Block Design (RBD) to study the gene action of several agronomical traits and revealed 

the importance of additive gene action governing the shelling percentage. 

Since the literature on gene action studies for kernel iron and zinc 

concentrations, yield and its contributing traits in groundnut is scanty, a brief 

description about the gene action controlling the above mentioned traits in other 

important crops is furnished below:  



Literature on days to flowering (Table 2.2) suggests the predominant role of 

additive gene action in dolichos bean (Parmer et al., 2013) and pigeon pea (Santosh et 

al., 2014) in governing the trait concerned and additive and dominant gene action in 

chickpea (Deb and Khaleque, 2009). In mung bean, additive and dominance × 

dominance interaction (Khattak et al., 2004) and additive, dominance and additive × 

additive (Singh et al., 2006) type of epistatic interactions were found to be influencing 

the trait understudy. 

Santosh et al. (2014) observed the predominant role of additive gene action in 

governing branching and growth habit in pigeon pea. Whereas, in chickpea additive and 

dominant gene actions (Deb and Khaleque, 2009 and Biranvand et al., 2013) had equal 

importance in governing the trait understudy. Singh et al. (2001) observed influence of 

non-additive gene action in governing number of primary branches in garden pea (Table 

2.2). 

Role of additive gene action in governing days to pod maturity was reported by 

in dolichos bean (Parmer et al., 2013) and in pigeon pea (Santosh et al., 2014). Role of 

non-additive along with additive gene action was reported in mung bean (Khattak et al., 

2004 and Noorka et al., 2014) and lentil (Akbari et al., 2013). Importance of epistatic 

gene actions in governing days to pod maturity was also reported in mung bean by 

Singh et al. (2006). 

Based on the available literature (Table 2.2) it was observed that 100-kernel 

weight, which also gives knowledge on kernel size, was majorly governed by additive 

gene action in maize (Azizi et al., 2006), wheat (Fatehi et al., 2008), common bean 

(Mulugeta et al., 2013) and in pigeon pea (Santosh et al., 2014). Along with additive 

gene action Singh et al. (2006) observed the role of all three types of epistatic gene 

interactions (additive × additive (i), additive × dominance (j) and dominance × 

dominance (l)) in governing 100-kernel weight in mung bean. Sundari et al. (2012) 

found the involvement of additive and additive × additive gene action in controlling the 

1000-seed weight in sesame. 

 Influence of many genes and involvement of several gene actions was 

expected in controlling a complex economic trait, seed yield. In garden pea, Kalia and 

Sood (2009) observed the predominant role of additive gene action in governing the pod 

yield per plant. Along with additive gene action dominance gene action also plays an 

important role in governing kernel yield per plant in crops like maize (Azizi et al., 

2006). In wheat, Fatehi et al. (2008) observed the importance of dominance × 



dominance gene interaction along with dominance gene action in governing the grain 

yield per plant. 

In sesame, role of additive and dominance (Sharmila et al., 2007), additive and 

additive × additive interaction (Sundari et al., 2012) and additive ×additive and 

dominance × dominance epistatic interactions (Jawahar et al., 2013) were observed in 

governing the seed yield. In chickpea, Biranvand et al. (2013) observed the effect of 

additive and dominance gene actions in governing the seed yield per plant. Influence of 

epistatic gene actions along with additive gene action in governing kernel yield was 

reported by Singh et al. (2006) in mung bean and Akbari et al. (2013) in lentil. 

Hazem et al. (2013) in faba bean reported the predominance of additive and 

dominance gene actions in governing shelling and sound mature kernel percentages. 

 Oil content in groundnut is an important trait based on which the economic 

importance of the variety will be measured. Attempts were made by scientists to 

understand the gene action governing this trait and found the influence of both additive 

and non-additive gene action (Venkateswarlu et al., 2007a) on the trait understudy in 

groundnut. Jawahar et al. (2013) reported the influence of epistatic gene action in 

controlling oil concentration in sesame. 

Study on gene actions governing protein content (Table 2.2) revealed the 

importance of additive gene action in chickpea (Santos et al., 2012) and dolichos bean 

(Parmer et al., 2013). Role of dominant gene action along with additive gene action for 

protein concentration was reported in faba bean by Hazem et al. (2013). 

Comprehensive studies to understand the gene action governing kernel iron and 

zinc concentrations were made by several workers (Table 2.2) which revealed the 

importance of additive gene action in governing the concerned traits in different crops 

viz., maize (Arnold et al., 1977; Long et al., 2004 and Chakraborti et al., 2011), pearl 

millet (Brkic et al., 2003; Velu et al., 2011a and Rai et al., 2012) and rice (Zhang et al., 

2004). Additive and non-additive gene actions were observed in sorghum (Kumar et al., 

2013) and both additive and dominant gene actions were observed in common bean 

(Silva et al., 2013). 



Table 2.2. Review on gene action governing various agronomic traits along with kernel iron and zinc concentrations in different crops 

S. No Crop Trial information Analysis method  and 

Population size  

Trait Predominant gene action Reference 

DAYS TO FLOWERING 

1 Mung bean 
ML-5 × NM 54 Generation mean analysis 

(Six parameter model) 

 

Days to first 

flowering 

Additive and dominance × 

dominance Khattak et al. (2004) 

6601 × NM 92 Additive and non-additive 

2 Mung bean 

ML 1271 × 

MUL81 Generation mean analysis 

(Six parameter model)  P1, 

P2 and F1-5 Plants; B1, B2 

and F2- 10 Plants 

 

Days to 50 per cent 

Flowering 

 

Additive, dominance,  additive × 

additive 

Singh et al. (2006) 

VC 6370-30-65 × 

MUL 81 

ML 1271 x LM 51 

VC 6370-30-65 × 

LM 51 

3 Chickpea 

RBH-228  × ICC-

4918, RBH-228 x 

Nobin, Nobin x 

ICC-4918 

Generation Mean 

Analysis (Five parameter 

model) 

Days to first flower Additive and dominance 

 

Deb and Khaleque 

(2009) 

4 Dolichos bean 

Randomized 

Complete Block 

Design (RBD) 

30 genotypes 
Days to 50 per cent 

flowering 
Additive Parmer et al.  (2013) 

5 Pigeonpea 

Randomized 

Complete Block 

Design (RBD) 

38 genotypes 
Days to 50 per cent 

flowering 
Additive Santosh et al. (2014) 

GROWTH AND BRANCHING HABIT 

6 Garden pea 

Randomized 

Complete Block 

Design (RBD) 

Seven parents and 21 

single crosses  evaluated 

in diallel mating design 

Number of primary 

branches 
Non-additive Singh et al. (2001) 

7 Chickpea 

RBH-228 × ICC-

4918, RBH-228 × 

Nobin, Nobin × 

ICC-4918 

Generation mean analysis 

(Five parameter model) 

Number of primary 

and secondary 

branches 

Additive and dominance 

 

Deb and Khaleque 

(2009) 

8 Chickpea 

Randomized 

Complete Block 

Design (RBD) 

Six parents and 15 single 

crosses  evaluated in 

diallel mating design 

Secondary branches 

per plant 
Additive and dominance 

Biranvand et al. 

(2013) 

9 Pigeonpea 

Randomized 

Complete Block 

Design (RBD) 

 

38 genotypes 

 

 

Number of primary 

and secondary 

branches 

Additive Santosh et al. (2014) 



S. 

No 

Crop Trial information Population size and 

Analysis method 

Trait Predominant gene action Reference 

DAYS TO MAURITY 

11 

 

 

Mung bean 

 

ML-5 × NM 54 
Generation mean analysis 

(Six parameter model) 
First pod maturity 

Additive  

Khattak et al. (2004) 

6601 × NM 92 Additive and non-additive 

 

12 

 

 

 

 

 

 

Mung bean 

 

 

ML 1271 × 

MUL81 

Generation mean analysis 

(Six parameter model) 

P1,P2 and F1-5 Plants; B1, 

B2 and F2- 10 Plants 

 

 

 

 

 

 

Days to maturity 

 

 

 

 

 

 

Additive, dominance,   

dominance × dominance 

Singh et al. (2006) 

VC 6370-30-65 × 

MUL 81 

Additive, dominance, additive × 

additive and  dominance × 

dominance 

ML 1271 × LM 51 
Additive, dominance and 

Additive × additive 

VC 6370-30-65 × 

LM 51 

Additive, 

Additive × additive and  

dominance × dominance 

13 Mung bean 

MN-51, MN - 92, 

MN - 96, MN - 98 

and 00TM-12 

Five parents and 10 single 

crosses  evaluated in 

diallel mating design 

Days to first pod 

maturity 
Additive and non-additive Noorka et al. (2014) 

14 Lentil 

Randomized 

Complete Block 

Design (RBD) 

Six parents and 15 single 

crosses  evaluated in 

diallel mating design 

Days to maturity Additive and non-additive Akbari et al. (2013) 

15 Dolichos bean 

Randomized 

Complete Block 

Design (RBD) 

30 genotypes Days to maturity Additive Parmer et al. (2013) 

16 Pigeonpea 

Randomized 

Complete Block 

Design (RBD) 

38 genotypes Days to maturity Additive Santosh et al. (2014) 

100- KERNEL WEIGHT (g) 

17 Maize 
B73 × Mo17 Generation mean analysis 

(Six parameter model) 
100- kernel weight Additive Azizi et al. (2006) 

B73 × K74/1 

       



S. 

No 

Crop Trial information Population size and 

Analysis method 

Trait Predominant gene action Reference 

 

18 

 

 

Wheat 
Falat × Line 30 

(breeding line) 

 

Generation mean analysis 

(Six parameter model) 

 

 

1000-kernel weight Additive Fatehi et al. (2008) 

 

19 

 

Mung bean 

ML 1271 × 

MUL81 

Generation mean analysis 

(Six parameter model) 

P1, P2 and F1- 5 Plants 

B1, B2- 10 Plants 

F2- 10 Plants per row 

100- kernel weight 

Additive,  additive × additive  and 

dominance × dominance 

Singh et al. (2006) 

VC 6370-30-65 × 

MUL 81 

Additive, dominance,  additive × 

additive, additive x  dominance 

and dominance × dominance 

ML 1271 × LM 51 

Additive × additive, additive x  

dominance and dominance × 

dominance 

VC 6370-30-65 × 

LM 51 

Additive, dominance,  additive x  

dominance and dominance × 

dominance 

TMV 2 × COG 

0438 
Additive 

20 Sesame 

Vm, X-79-1, EC 

351187, EC 

359007 

Generation mean analysis 

(Five parameter model) 

Five parents, 10 F1s, 10 

F2s, and 10 F3 plants each. 
1000 kernel weight Additive and additive × additive Sundari et al. (2012) 

21 Common bean 
Diallel mating 

design 

Eight parents and 28 

single crosses 
1000 kernel weight Additive Mulugeta et al. (2013) 

22 Pigeonpea 

Randomized 

Complete Block 

Design (RBD) 
38 genotypes 100 kernel weight Additive Santosh et al. (2014) 

POD YIELD PER PLANT (g) 

23 Maize 

B73 × Mo17 
Generation mean analysis 

(Six parameter model) 
Kernel yield 

Additive 

Azizi et al. (2006)  

B73 × K74/1 
Dominance 

           

 

24 

 

 

Wheat 
Falat × Line 30 

(breeding line) 

Generation mean analysis 

(Six parameter model) 

Kernel yield per 

plant 

Dominance and 

dominance × dominance 
Fatehi et al. (2008) 

       



S. 

No 

Crop Trial information Population size and 

Analysis method 

Trait Predominant gene action Reference 

25 Mung bean 

ML 1271 × 

MUL81 

Generation mean analysis 

(Six parameter model) 

P1, P2 and F1 - 5 plants, 

B1, B2- 10 plants, F2- 10 

plants per row 

seed yield per plant 

Additive, additive × additive and 

dominance × dominance 

Singh et al. (2006) 

VC 6370-30-65 × 

MUL 81 

Additive, dominance  additive × 

additive, additive x  dominance 

and dominance × dominance 

 

ML 1271 × LM 51 

Additive, Dominance  Additive × 

additive, 

Additive x  Dominance and 

Dominance × dominance 

VC 6370-30-65 × 

LM 51 

Additive, dominance  additive x  

dominance and dominance × 

dominance 

26 Sesame 

VS 9510 × Co1 

Generation mean analysis 

(Six parameter model) 
Seed yield per plant Additive and dominance Sharmila et al. (2007) 

NIC 7907 × TMV 

3 

Cianno 13/10 × 

VRI 1 

Si 1115/1 × TMV 3 

27 Sesame 

Vm, X-79-1, 

EC351187, 

EC359007 and 

EZ351881 

Generation mean analysis  

(Five parameter model) 

5 parents, 10 F1s, 10 F2s, 

10 F3 plants 

 

Seed yield per plant Additive and additive × additive Sundari et al. (2012) 

28 Sesame 

KMR-108 × JCS-

507, KKS-98049 × 

IS 562 B, S 0018 × 

SI-3171, KKS-

98049 × TKG-22 

and CST 2001-5 × 

KMS 5-396 

 

Generation mean analysis  

(Six parameter model) 

P1, P2 and F1-30 plants 

F2- 400 plants 

BC1 and BC2- 200 plants 

Seed yield  per plant 
Additive × additive and 

dominance × dominance 
Jawahar et al. (2013) 

29 Garden pea 
Diallel mating 

design 

Eight parents and 28 

single crosses 
Pod yield per plant Additive 

Kalia and Sood 

(2009) 

30 Lentil 

Randomized 

Complete Block 

Design (RBD) 

Six parents and 15 crosses  

evaluated in diallel mating 

design 

Seed yield Additive and Non-additive Akbari et al. (2013) 

31 Chickpea 

Randomized 

Complete Block 

Design (RBD) 

Six parents and 15 single 

crosses  evaluated in 

diallel mating design 

Seed yield per plant Additive and dominance 
Biranvand et al. 

(2013) 



 

S. 

No 

 

Crop 

 

Trial information 

 

Population size and 

Analysis method 

 

Trait 

 

Predominant gene action 

 

Reference 

SHELLING (%) and SOUND MATURE KERNEL (%) 

32 Faba bean 

 

Evaluation for 

genetic parameters 

in RBD 

Five parents viz., Misr 2, 

Giza 429, Misr 1,Giza 

843 and Giza 40 and their 

10 single crosses 

Shelling outturn 
 

Additive and dominance 

 

Hazem et al. (2013) 

OIL CONTENT (%) 

33 Groundnut 

Evaluation for 

genetic parameters 

in RBD 

Eight parents and 28 

single crosses  evaluated 

in diallel mating design 

Oil content (%) Additive and non-additive 

 

Venkateswarlu et al. 

(2007a) 

34 Sesame 

KMR-108 × JCS-

507, KKS-98049 × 

IS 562 B, S 0018 × 

SI-3171, KKS-

98049 × TKG-22 

and CST 2001-5 × 

KMS 5-396 

Generation mean analysis  

(Six parameter model) 

P1, P2 and F1-30 plants 

F2- 400 plants 

B1 and B2- 200 plants 

Oil content (%) 
Additive × additive and 

dominance × dominance 
Jawahar et al. (2013) 

PROTEIN CONCENTRATION (%) 

35 Cowpea 

 

IT97K-1042-3 × 

BRS Tapaihum and 

IT97K-1042-3 × 

Canapu 

Generation mean analysis 

(six parameter model) 
Kernel Protein Additive Santos et al. (2012) 

36 Faba bean 

Evaluation for 

genetic parameters 

in RBD 

Five parents viz., Misr 2, 

Giza 429, Misr 1,Giza 

843 and Giza 40 and their 

10 single crosses 

Protein 

concentration 
Additive and dominance Hazem et al. (2013) 

37 Dolichos bean 

 

 

Evaluation for 

genetic parameters 

in RBD 

 

 

 

30 genotypes Kernel Protein Additive Parmer et al. (2013) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S. 

No 

 

 

Crop 

 

 

Trial information 

 

 

Population size and 

Analysis method 

 

 

Trait 

 

 

Predominant gene action 

 

 

Reference 

KERNEL IRON AND ZINC CONCENTRATION (mg kg-1) 

38 Rice Diallel mating design 7 parents and 42 F1s Grain Fe and Zn  Additive Zhang et al. (2004) 

39 Maize Diallel mating design 6 inbreds and 14 F1s Kernel Fe and Zn Additive Arnold et al. (1977) 

40 Maize Diallel mating design 14 inbreds and 91 F1s Kernel Fe and Zn Additive Long et al. (2004) 

41 Maize 
CM145 × V334 

CM128 × V340 

Generation mean 

analysis (Six parameter 

model) 

10 ears each from the P1 

and P2, 20 from F1, 

60 from F2, and 40 each 

from BC (P1) and BC 

(P2). 

Kernel Fe and Zn Additive 
Chakraborti et al. 

(2011) 

42 Pearl millet Diallel mating design 8 inbreds and 28 F1s Grain Fe and Zn Additive Brkic et al. (2003) 

43 Pearl Millet Diallel mating design 10 parents and 90 F1s Grain Fe and Zn Additive Velu et al. (2011a) 

44 Pearl Millet 

Advanced breeding 

lines (F7) and early 

generation progenies 

(S1-S3) 

F7 (lines) and 

S1-S3 (232 progenies) 
Grain Fe and Zn Additive Rai et al. (2012) 

45 Sorghum Diallel mating design 

Five inbreds lead 20 F1 s 

six inbreds lead 30 F1 s 

and four parents lead 12 

F1s 

Grain Fe Additive and non-additive 

Kumar et al. (2013) 
Grain Zn Additive 

46 Common bean Partial Diallel design -- 
Seed Fe Additive and dominance 

Silva et al. (2013) 
Seed Zn Additive 



2.3 VARIABILITY, HERITABILITY AND GENETIC 

ADVANCE 

 The genetic variability has to be looked into for planning suitable measures for 

crop improvement. This necessitates a thorough knowledge of variability owing to 

genetic factors, actual genetic variation heritable in the progeny and the genetic advance 

that can be achieved through selection (John and Reddy, 2014). The information on the 

nature and magnitude of variability of different quantitative and qualitative traits in any 

crop species plays a vital role while formulating efficient breeding programmes. 

Superior genotypes can be isolated by selection if considerable genetic variation exists 

within the population. Besides genetic variability, heritability and genetic advance also 

play a vital role in the improvement of any trait.  

Genetic variability is an essential prerequisite for crop improvement programme 

for obtaining high yielding varieties, through the estimation of different genetic 

parameters like components of variances, genotypic and phenotypic coefficients of 

variability, heritability and genetic advance (Younis et al., 2008). In genetic studies, 

characters with high genotypic coefficient of variation indicate the potential for an 

effective selection (Sadiq et al., 1986). Determining the components of variability in 

yield and its components enable us to know the extent of environmental influence on 

yield, taking into consideration of the fact that yield and its component traits are 

quantitative characters that are affected by environments (Ahmed et al., 2007). 

Heritability provides information about the extent of which a particular genetic 

character can be transmitted to the successive generations (Mangi et al., 2010). High 

heritability indicates less environmental influence in the observed variation (Mohanty, 

2003 and Eid, 2009). Genetic advance, which estimates the degree of gain in a trait 

obtained under a given selection pressure, is an important parameter that guides the 

breeder in choosing a selection programme (Hamdi et al., 2003). High heritability and 

high genetic advance for a given trait indicates that it is governed by additive gene 

action and, therefore, provides the most effective condition for selection (Tazeen et al., 

2009). 

The available literature on variability, heritability and genetic advance studies 

for yield and its contributing traits and kernel iron and zinc concentrations was 

summarised in the table 2.3. 

Upon reviewing the literature, it was observed (Jonah et al., 2012; Rai et al., 

2014 and Satyanarayan et al., 2014) that in groundnut days to field emergence had low 



to moderate broad sense heritability and low to high genetic advance  but reported lower 

GCV % compared to PCV % indicating higher level of environmental influence on the 

trait understudy. 

Days to flowering recorded higher broad sense heritability coupled with low 

genetic advance and almost same levels of GCV and PCV suggesting less influence of 

environment on flowering (Vishnuvardhan et al., 2013, John and Reddy, 2014 and 

Satish, 2014). However, John and Reddy (2014) has reported higher GCV (455.87 %) 

for the trait understudy. Alam et al. (2013) recorded low narrow sense heritability for 

this character. 

Zaman et al. (2011) recorded moderate broad sense heritability coupled with 

low genetic advance for days to maturity along with low and almost equal GCV and 

PCV for the trait understudy. But moderate to high broad sense heritability was reported 

by Vishnuvardhan et al. (2013), Rai et al. (2014) and Satyanarayan et al. (2014). 

Growth and branching habit along with number of primary branches plays an 

important role in attaining higher yield. Satish (2014) obtained higher broad sense 

heritability coupled with low genetic advance and moderate GCV and PCV for this trait. 

Almost similar type of results were obtained by Nath and Alam, (2002), Vishnuvardhan 

et al. (2013) and Satyanarayan et al. (2014). 

Parameswarappa et al. (2005) and Jonah et al. (2012) recorded higher broad 

sense heritability and low genetic advance coupled with low and equal levels of GCV 

and PCV for shelling percentage.  

Vishnuvardhan et al. (2013) and Satyanarayan et al. (2014) carried out 

experiments in groundnut to study various genetic parameters and reported moderate to 

high broad sense heritability coupled with low genetic advance, low GCV and low to 

moderate PCV for sound mature kernel percentage. 

Nath and Alam (2002) reported higher broad sense heritability, moderate genetic 

advance, GCV and PCV for 100 kernel weight in groundnut. Similar results were 

reported by Parameswarappa et al. (2005). However, Jonah et al. (2012) recorded high 

GCV and PCV for this trait. Alam et al. (2013) has reported moderate narrow sense 

heritability for this trait. Janila et al. (2014) also obtained higher broad sense heritability 

whereas Satish (2014) recorded high broad sense heritability along with moderate 

genetic advance, GCV and PCV for 100 kernel weight.  

Parameswarappa et al. (2005) observed higher broad sense heritability, low 

genetic advance and moderate GCV and PCV for pod yield per plant in groundnut. 

These results were in accordance with the findings of Jonah et al. (2012), Satish (2014) 



and Satyanarayan et al. (2014). Whereas, Jonah et al. (2012) and Gadakh et al. (2013) 

reported higher narrow sense heritability for the trait understudy. 

Parameswarappa et al. (2005) and Noubissie et al. (2012) were reported higher 

broad sense heritability coupled with low to medium levels of genetic advance and 

moderate and higher levels of GCV and PCV for oil and protein content, respectively, 

Shukla and Rai (2014) partially supported the above results by reporting higher levels of 

broad sense heritability but with higher and moderate levels of genetic advance for oil 

and protein content, respectively and higher GCV and PCV for both the traits 

understudy. 

Janila et al. (2014) reported higher levels of broad sense heritability for kernel 

iron and zinc concentrations. 

2.4 HETEROSIS AND INBREEDING DEPRESSION 

STUDIES         

The term heterosis, as is now widely used, refers to the phenomenon in which 

the F1 hybrids obtained by crossing the two genetically dissimilar gametes or 

individuals, shows increased or decreased vigour over the parents. Shull (1908) referred 

to this phenomenon as the stimulus of heterozygosis. Whereas inbreeding depression is 

the reduced biological fitness in a given population as a result of inbreeding. 

The magnitude of heterosis provides information on the extent of genetic 

diversity of parents which helps in the selection of superior parents for hybrid breeding. 

However, in a self-pollinated crop like groundnut, where commercial production of 

hybrids is not feasible owing to the inherent problem associated with it (Verma and 

Ranwah, 2012), it is desirable to identify the crosses which exhibit cross vigour 

preferably when one of the parents is of acceptable commercial quality (Isleib and 

Wynne, 1983). In addition, the heterotic crosses can also produce desirable 

transgressive segregants in their advanced generations if parents are having dispersed 

dominance.  

In groundnut, heterosis cannot be exploited for increased value through 

commercial hybrids due to cleistogamous nature of flower and poor kernel recovery 

during hybridization (Gor et al., 2012). Hence, the heterosis assumes importance in 

breeding as heterotic crosses have the potentiality to throw out superior segregants in 

subsequent generations. The estimates of heterosis and inbreeding depression provide 

information about the nature of gene action involved in the expression of yield and 

related traits.  



 The information is also essential to formulate efficient breeding programmes for 

the improvement of the crop. Though there are a number of reports on heterosis, 

information was limited in case of inbreeding depression especially for the traits like 

kernel mineral concentration, pod yield and yield components in groundnut. Study of 

heterosis together with inbreeding depression has a direct bearing on the breeding 

methodology to be followed in varietal improvement (John et al., 2014). Therefore, in 

the present investigation study on heterosis and inbreeding depression was also made to 

support the understanding of gene action involved in the control of kernel iron and zinc 

concentrations along with the identification of better cross combination between two 

crosses viz., ICGV 06040 × ICGV 87141 and ICGV 06099 × ICGV 93468 for the trait 

of interest. A brief review of heterosis and inbreeding depression studies in groundnut 

and other related crops is presented below: 

Dwivedi et al. (1989) conducted studies in groundnut to identify the heterotic 

F1s in a 8 × 8 full diallel experiment and observed significant negative heterosis for pod 

weight and kernel weight but a positive significant heterosis was observed for pod 

weight per plant. However, a negative significant heterosis was observed for shelling 

percentage in almost all the cross combinations indicating the inefficacy of hybrid 

breeding in groundnut. 

Vyas et al. (2001) studied heterosis in groundnut using six parents and their 

fifteen crosses along with check TAG-24 and results revealed that four out of fifteen 

crosses showed positive and high heterosis over mid parent and better parent for dry 

pod yield per plant and kernel yield per plant. In addition, GG-2 × GG-4 cross 

combination also showed good heterosis for early flowering. 

Venkateswarlu et al. (2007b) carried out experiments involving a set of 28 

crosses and their corresponding eight parents to get information on the extent of 

heterosis over better parent and mid parent for yield attributes in groundnut. Results 

revealed the existence of positive significant heterosis for pod yield per plant in most of 

the crosses whereas negative significant heterosis was observed for shelling percentage 

and sound mature kernel percentage. 



Table 2.3. Review on variability, heritability and genetic advance of various traits along with kernel iron and zinc concentrations in 

groundnut 

S.No. Crop Trial information GCV (%) and PCV (%) Genetic advance Heritability (%) Reference 

DAYS TO EMERGENCE 

1 Bambara groundnut 
12 accessions were 

evaluated 

Moderate GCV (13.86) and 

high PCV (21.85) 
Moderate (13.9) 

Moderate broad sense 

heritability (40.8) 
Jonah et al. (2012) 

2 Groundnut 
12 genotypes were 

evaluated in RBD 

Low GCV (8.09) and 

moderate PCV (16.77) 
low (5.22) 

Low broad sense 

heritability (26.28) 
Rai et al. (2014) 

3 
 

Groundnut 

Evaluation of 14 lines in 

RBD 

moderate GCV (15.12) and 

high PCV (27.95) 
High (40.96) 

Low broad sense 

heritability (29.28) 

Satyanarayan et al. 

(2014) 

DAYS TO FLOWERING 

4 Groundnut 
10 ×10 half- diallel 

experiment 

 

-- 

 

-- 

Low narrow sense 

heritability (38.0) 
Alam et al. (2013) 

5 Groundnut 

8 × 8 half- diallel 

experiment evaluated in 

RBD 

Low GCV (5.17) and  

low PCV (5.62) 
Low (2.28) 

High broad sense 

heritability (84.53) 

Vishnuvardhan et al. 

(2013) 

6 Groundnut 28 F2’s sown in RBD  Low (3.57) 
High broad sense 

heritability (85.36) 
John and Reddy (2014) 

7 Groundnut 
37 advanced breeding 

lines 
High GCV (455.87) Low (4.86) 

High broad sense 

heritability (91.8) 
John et al. (2014) 

8 Groundnut 
16 genotypes were 

evaluated in RBD 

Low GCV (3.40) and  

 low PCV (3.81) 
Low (2.23) 

high broad sense 

heritability (79.0) 
Satish (2014) 

DAYS TO MATURITY 

9 Groundnut 

 

34 genotypes were 

evaluated in RBD 

 

Low GCV (3.25) and  

low PCV (4.22) 
Low (1.99) 

Moderate broad sense 

heritability (31.85) 
Zaman et al. (2011) 



S.No. Crop Trial information GCV (%) and PCV (%) Genetic advance Heritability (%) Reference 

10 Groundnut 

8 × 8 half-  diallel 

experiment evaluated in 

RBD 

Low GCV (2.09) and Low 

PCV (2.20) 
Low (3.89) 

High broad sense 

heritability (89.69) 

Vishnuvardhan et al. 

(2013) 

11 Groundnut 
12 genotypes were 

evaluated in RBD 

Low GCV (0.87) and Low 

PCV (1.27) 
Low (1.46) 

Moderate broad sense 

heritability (47.01) 
Rai et al. (2014) 

12 
 

Groundnut 

Evaluation of 14 lines in 

RBD 

Low GCV (1.35) and 

Low PCV (1.48) 
Low (2.92) 

High broad sense 

heritability (82.28) 

Satyanarayan et al. 

(2014) 

GROWTH AND BRANCHING HABBIT 

13 
 

Groundnut 

15 accessions were 

evaluated in RBD 

Moderate GCV (18.59) and 

high PCV (20.09) 
Low (2.67) 

High broad sense 

heritability (85.58) 
Nath and Alam (2002) 

14 Groundnut 

8 × 8 half- diallel 

experiment evaluated in 

RBD 

Moderate GCV (14.61) and 

high PCV (21.67) 
Low (1.20) 

Moderate broad sense 

heritability (45.44) 

Vishnuvardhan et al. 

(2013) 

15 Groundnut 
16 genotypes were 

evaluated in RBD 

Moderate GCV (11.76), 

moderate PCV (12.45) 
Low (1.43) 

High broad sense 

heritability (89.0) 
Satish (2014) 

16 Groundnut 
Evaluation of 14 lines in 

RBD 

Low  GCV (7.61) and 

Moderate PCV (10.36) 
Low (1.55) 

Moderate broad sense 

heritability (54.05) 

Satyanarayan et al. 

(2014) 

SHELLING PERCENTAGE (%)  

17 
 

Groundnut 

Evaluation of 48 lines in 

RBD for shelling 

percentage 

Low GCV (6.5) and Low 

PCV (6.83) 
Low (6.97) 

High broad sense 

heritability (79.0) 

Parameswarappa et al. 

(2005) 

18 Bambara groundnut 

12 accessions were 

evaluated for shelling 

percentage 

 

 

Low GCV (5.88) and 

Low PCV (6.38) 
Low (4.2) 

High broad sense 

heritability (69.8) 

 

Jonah et al. (2012) 



S.No. Crop Trial information GCV (%) and PCV (%) Genetic advance Heritability (%) Reference 

SOUND MATURE KERNEL PERCENTAGE (%) 

19 Groundnut 

8 × 8 half- diallel 

experiment evaluated in 

RBD for sound mature 

kernel percentage 

Low GCV (6.41) and 

moderate PCV (10.46) 
Low (6.99) 

Moderate broad sense 

heritability (37.53) 

Vishnuvardhan et al. 

(2013) 

20 
 

Groundnut 

Evaluation of 14 lines in 

RBD for sound mature 

kernel percentage 

Low GCV (4.69) and 

low PCV (5.59) 
Low (7.39) 

High broad sense 

heritability (70.44) 

Satyanarayan et al. 

(2014) 

100-KERNEL WEIGHT (g) 

21 Groundnut 
15 accessions were 

evaluated in RBD 

Moderate GCV (11.67) and 

moderate PCV (13.04) 
Moderate (19.82) 

High broad sense 

heritability (97.89) 
Nath and Alam (2002) 

22 Groundnut 
Evaluation of 48 lines in 

RBD 

Moderate GCV (11.00) and 

moderate PCV (11.13) 
Moderate (10.4) 

High broad sense 

heritability (81.0) 

Parameswarappa et al. 

(2005) 

23 Bambara groundnut 
12 accessions were 

evaluated 

High GCV (24.01) and 

High PCV (25.73) 
Moderate (13.4) 

High broad sense 

heritability (94.8) 
Jonah et al. (2012) 

24 Groundnut 
10 × 10 half- diallel 

experiment 

 

-- 

 

-- 

moderate narrow sense 

heritability (35.0) 
Alam et al. (2013) 

25 
 

Groundnut 

Evaluation of 46 

genotypes in 8 × 8 Alpha 

lattice design 

 

-- 

 

-- 

High broad sense 

heritability (91.0) 
Janila et al. (2014) 

26 Groundnut 
16 genotypes were 

evaluated in RBD 

Moderate GCV (13.57),  

moderate PCV (13.64) 
Moderate (13.24) 

high broad sense 

heritability (98.0) 
Satish (2014) 

POD YIELD PER PLANT (g) 

27 

 

Groundnut 

 

 

                        

Evaluation of 48 lines in 

RBD 

 

 

Moderate GCV (16.61) and 

moderate PCV (17.80) 
Low (7.9) 

High broad sense 

heritability (87.0) 

Parameswarappa et al. 

(2005) 



S.No. Crop Trial information GCV (%) and PCV (%) Genetic advance Heritability (%) Reference 

28 Groundnut 
10 × 10 half- diallel 

experiment 

 

-- 

 

-- 

Moderate narrow sense 

heritability (41.0) 
Alam et al. (2013) 

29 Bambara groundnut 
12 accessions were 

evaluated 

Moderate GCV (19.42) and 

high PCV (29.38) 
High (22.5) 

High broad sense 

heritability (70.1) 
Jonah et al. (2012) 

30 Groundnut 
16 genotypes were 

evaluated in RBD 

High GCV (22.04) and 

 high PCV (22.42) 
High (731.42) 

high broad sense 

heritability (96.0) 
Satish (2014) 

31 
 

Groundnut 

Evaluation of 14 lines in 

RBD 

High GCV (22.43) and 

high PCV (26.05) 
Low (5.15) 

High broad sense 

heritability (74.14) 

Satyanarayan et al. 

(2014) 

OIL CONCENTRATION (%) 

32 
 

Groundnut 

Evaluation of 12 lines in 

RBD 

 

-- 
Low (3.7) 

Moderate broad sense 

heritability (52.0) 
Noubissie et al. (2012) 

33 
 

Groundnut 

Evaluation of 48 lines in 

RBD 

Low GCV (4.17) and 

 low PCV (4.61) 
Low (3.29) 

High broad sense 

heritability (82.0) 

Parameswarappa et al. 

(2005) 

34 
 

Groundnut 

Evaluation of 30 

genotypes in RBD 

Low GCV (9.43) and 

 low PCV (9.87) 
Low (9.0) 

High broad sense 

heritability (91.8) 
Shukla and Rai (2014) 

PROTEIN CONCENTRATION (%) 

35 
 

Groundnut 

Evaluation of 12 lines in 

RBD 

 

-- 
Low (4.7) 

High broad sense 

heritability (64.0) 
Noubissie et al. (2012) 

36 
 

Groundnut 

 

Evaluation of 48 lines in 

RBD 

Moderate GCV (13.21) and 

moderate PCV (13.49) 
Low (4.72) 

High broad sense 

heritability (96.0) 

Parameswarappa et al. 

(2005) 

37 
 

Groundnut 

 

Evaluation of 30 

genotypes in RBD 

 

Low GCV (6.41) and  

low PCV (8.31) 
Low (3.39) 

Moderate broad sense 

heritability (59.57) 
Shukla and Rai (2014) 



S.No. Crop Trial information GCV (%) and PCV (%) Genetic advance Heritability (%) Reference 

KERNEL IRON CONCENTRATION (mg kg-1) 

38 
 

Groundnut 

Evaluation of 46 

genotypes in 8 × 8 Alpha 

lattice design 

 

-- 

 

-- 

High broad sense 

heritability (81.0) 
Janila et al. (2014) 

KERNEL ZINC CONCENTRATION (mg kg-1) 

39 
 

Groundnut 

Evaluation of 46 

genotypes in 8 × 8 Alpha 

lattice design 

 

-- 

 

-- 

High broad sense 

heritability (92.0) 
Janila et al. (2014) 

 

 

 

 

 



Velu et al. (2011a) conducted studies to identify the heterotic hybrid 

combinations in pearl millet for kernel iron and zinc concentrations and reported the 

positive significant heterosis of F1 over mid parent for grain iron and zinc 

concentrations. These results were in agreement with the earlier findings of Aruselvi et 

al. (2006). 

 Gor et al. (2012) evaluated thirty-six crosses generated in a diallel fashion 

excluding reciprocals using nine genotypes to study the extent of heterosis and 

inbreeding depression for pod yield and yield attributing characters in groundnut and 

observed considerable heterobeltiosis for the number of mature pods per plant, harvest 

index and biological yield, while the traits like pod and kernel yield per plant showed 

low heterobeltiosis, and it was absent or in negative direction for the traits like days to 

50% flowering, days to maturity, 100-kernel weight, shelling outturn and sound mature 

kernels in all the crosses. High inbreeding depression was recorded for days to maturity 

and 100-kernel weight, while fully matured kernels and biological yield did not show 

any inbreeding depression. 

Verma and Ranwah (2012) carried out research in groundnut with fifty-three 

genotypes including twelve lines, three testers, thirty-six crosses and two checks in two 

environments and observed positive significant heterosis in only two crosses out of 

thirty-six for pod yield per plant. 

Waghmode et al. (2013) attempted a diallel cross analysis using seven parents to 

study the extent of heterosis in F1 hybrids over mid and better parent in groundnut and 

found only one hybrid to show negative significant heterosis over mid and better parent 

for days to maturity whereas almost ten out of twenty one hybrid combinations 

exhibited positive significant heterosis over mid and better parents for pod yield per 

plant. 

John et al. (2014) estimated heterosis and inbreeding depression for 28 crosses 

in groundnut and concluded that as many as twenty-two crosses showed positive 

significant heterosis along with higher inbreeding depression for pod yield per plant and 

a negative significant heterosis was observed for days to maturity coupled with low 

inbreeding depression. 

Prabhu et al. (2014) used eighteen F1 hybrids obtained by crossing six lines and 

three testers in a line × tester mating design to generate information on the extent of 

heterosis over better parent, mid-parent and standard parent in groundnut and observed 

positive significant mid and better parent heterosis in majority of the cross combinations 

for pod yield per plant and 100-kernel weight whereas negative significant heterosis was 



observed for shelling percentage and sound mature kernel percentage in most of the 

crosses understudy. 

2.5 CORRELATION STUDIES 

 The degree of association between two variables is measured by the correlation 

coefficient which indicates the relationship between these two variables. It is the 

regression coefficient which measures the change in one variable for a unit change in 

other variable. Most of the characters of breeder’s interest are complex and are the 

result of interaction of a number of components (Korat et al., 2010). Understanding the 

relationships among yield and yield components is of paramount importance for making 

the best use of these relationships in selection.  

In peanut breeding programs, the selection of productive lines based on the 

phenotypic traits of pods is difficult. Therefore, the selection of yield-related traits either 

directly or indirectly is highly useful for breeders, particularly when working with 

divergent or segregating populations. Correlation analysis is useful in this regard since 

information on the nature and magnitude of interrelationships among traits is not only 

helpful to define the selection potential of an isolated trait but also detects the effects of 

one particular trait due to the selection for another (Cruz and Regazzi, 1997). 

In the present study, an attempt was also made to study the association of the 

target traits viz., kernel iron and zinc concentrations with yield and its related traits. So 

the available literature pertaining to the present study in different crops is reviewed 

below: 

Chakraborti et al. (2009) conducted experiments in maize to understand the 

association of kernel iron and zinc concentration with yield and other yield attributing 

traits and revealed the existence of negative significant association between kernel iron 

concentration (-0.25) and kernel yield and no significant association between kernel 

zinc concentration and yield. They also reported the existence of negative significant 

association between kernel zinc concentration and days to 50 % anthesis (-0.27) and 

days to 50 % silking (-0.25).   

Govindaraj et al. (2009) observed the existence of a strong positive correlation 

among grain iron and zinc concentrations (0.87) and their significant association with 

100-grain weight (0.64) in pearl millet. They further found that these grain 

micronutrient concentrations were not associated with grain yield. 

Velu et al. (2011b) carried out research in several thousand accessions of wheat 

to understand the association and variation of grain iron and zinc concentrations and 



found a positive significant correlation between grain iron and zinc concentrations 

(0.416) and a positive association of grain iron and zinc concentrations with thousand 

kernel weight (0.332). In this study, protein content also showed positive significant 

association with grain iron and zinc concentrations. These results were in accordance 

with the findings of Ghanbari and Mameesh (1971) and Badakhshan et al. (2013) in 

wheat where a positive significance was noticed in the association between grain iron 

and zinc concentrations and their association with protein content.  

Bekele et al. (2013a) carried out experiments in rice using sixty four genotypes 

to study the correlation between grain zinc concentration and other yield parameters and 

found a positive significant association of grain yield per plant with grain zinc 

concentration and 100-kernel weight (0.268). On the contrary, Bekele et al. (2013b) 

while, working with one hundred seventy six Recombinant Inbred Lines (RILs) 

observed a negative significant correlation (-0.24) of grain zinc concentration with 

kernel yield per plant and days to flowering and a positive correlation with 100-kernel 

weight (0.15). These results were partially in accordance with the findings of Gande et 

al. (2014) while handling RIL populations of rice where significant negative correlation 

between grain zinc concentration and grain yield per plant and a positive significant 

correlation between grain zinc concentration and days to flowering and days to maturity 

was observed. However a positive significant correlation (0.487) between grain iron and 

zinc concentrations and non-significant association of grain iron and zinc concentrations 

with grain yield were noticed by Nagesh et al. (2012) while working with forty six rice 

hybrids.  

Ribeiro et al. (2013a) carried out experiments in common bean using fourteen 

advanced breeding lines to understand the association of kernel zinc concentration with 

yield and selected mineral elements and observed a significant positive correlation 

between kernel zinc concentration and kernel yield per plant (0.348).  However, non-

significant association was observed between grain zinc concentration and other mineral 

element. Similar kind of study was made by Ribeiro et al. (2013b) in common bean and 

a negative significant association between grain iron concentration and grain yield and a 

positive significant association of grain iron with grain calcium concentration. 

To improve the kernel iron and zinc concentrations in groundnut a study was 

conducted by Janila et al. (2014) to initiate breeding strategy for the same using sixty 

four genotypes for two years in eight different environments and observed that the 

association of kernel iron concentration was positively significant with the kernel zinc 

(0.535) concentration, protein concentration (0.166) and oil concentration (0.228) 



whereas negative and non-significant with pod yield and hundred kernel weight. With 

respect to kernel zinc concentration, it had positive significant association with protein 

content (0.678), pod yield (0.168) and hundred kernel weight (0.153) and non-

significant association with oil content. 

Kanatti et al. (2014) studied character associations in pearl millet and revealed 

the existence of significant positive correlation of grain iron and zinc concentrations 

with 1000-grain weight (0.42 and 0.43, respectively) and a significant negative 

association with grain yield (-0.29 and -0.26, respectively) and a strong correlation 

between grain iron and zinc concentrations (0.88).  

Ravikiran et al. (2014) reported the existence of a strong positive correlation 

(0.538) between grain iron and zinc concentrations in sorghum. Susmita and Selvi 

(2014) also recorded strong positive association between kernel iron and zinc 

concentrations (0.853) along with a positive significant association between grain yield 

and kernel iron (0.374) and zinc (0.27) concentrations in sorghum.  
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Chapter III 

MATERIAL AND METHODS 

The present investigation is divided into two major experiments and was carried 

out at ICRISAT, Patancheru, Hyderabad, located at an altitude of 545 m above mean 

sea level and at 17.53° N latitude and 78.27° E longitude, with an objective to identify 

the markers associated with the trait of interest and to understand the gene action 

involved in the inheritance of kernel iron and zinc concentrations in groundnut.  

EXPERIMENT-I:  

3.1 QTL ANALYSIS FOR KERNEL IRON AND 

ZINC CONCENTRATION: 

The present investigation was carried out in M. S. Swaminathan Applied 

Genomics Laboratory at the International Crops Research Institute for the Semi-Arid 

Tropics (ICRISAT), Patancheru, Telangana, India. The details of the experiments 

conducted in the laboratory are given below. 

3.1.1. Mapping Population 

One hundred and eighty four F2:3 mapping population derived from a cross 

ICGV 06099 × ICGV 93468, along with respective parents were used in the present 

investigation. 

3.1.2 Phenotyping   

The F2:3 phenotyping population along with parental lines were sown in Alfisols 

(Alfisol-Patancheru Soil Series); fields at ICRISAT, Patancheru, India during rainy 

season, 2013. The experiment was laid out in alpha lattice design with two replications. 

The plot size consisted of twenty six blocks each having ten 1 m rows which are 60 cm 

apart in every broad bed. Seeds were planted on ridges of those 1 m rows. The plant to 

plant distance within a row was 10 cm. Standard agronomic management practices were 

followed in each season viz., 60 kg phosphorus pentoxide (P2O5) as a basal application, 

seed treatment with mancozeb (2 g per kg seed), pre emergence application of 

pendimethalin (1 kg active ingradient per ha.), irrigation soon after planting, 



subsequently as and when needed or as per the requirement of the treatment, gypsum 

(400 kg ha
-1

) at peak flowering and protection against insect pests and diseases. 

Soil analysis to estimate the iron and zinc status of the experimental block was 

conducted in both the replications. Samples were collected from a depth of 15 cm using 

an auger at multiple locations in a replication which were further bulked; thoroughly 

mixed and foreign material such as roots, stones, pebbles and gravel were removed. 

After this, soil sample of 100-150 g was prepared by using quartering method which 

was used to estimate the micronutrient status of the soil. The samples were analysed at 

the Charles Renard Analytical laboratory (CRAL) at ICRISAT. 

Protocol for estimation of iron and zinc concentration in groundnut kernels using 

Inductively Coupled Plasma- Optical Emission Spectrometry (ICP-OES) method was 

explained under sub-heading 3.1.2.1.11 in experiment I. 

3.1.2.1 Observations Recorded 

Observations on the following quantitative traits were recorded as per the 

procedure explained below: 

3.1.2.1.1 Days to emergence: Number of days counted from the date of sowing 

(irrigation) to the date when seedling emergence was observed. 

3.1.2.1.2 Days to 75 % flowering: Number of days counted from the date of sowing 

(irrigation) to the date when flowering observed in 75 % of the plants in a plot. 

3.1.2.1.3 Days to maturity: This was determined by examining the foliage, internal 

pericarp colour and colour of pods. The pods of the groundnut from several plants in the 

field were picked randomly and cracked or cut open to determine maturity. The 

percentage of pods with tan to brown colour inside the hull and pink to dark pink seed 

coats was worked out. Harvesting was done when mature pods range from 75 to 85 %, 

depending on the variety and environmental factors. 

3.1.2.1.4 100-kernel weight (g): A random sample of 100 kernels was taken from each 

genotype and weighed. 

3.1.2.1.5 Single plant yield (g):  From the plant, mature pods were stripped, dried, 

cleaned and shelled then kernel yield was recorded in grams. 

 

 



3.1.2.1.6 Pod yield (g plot
-1

): It was calculated by multiplying single plant yield with 

total number of plants in a given plot. 

3.1.2.1.7 Kernel yield (g plot
-1

): It was calculated by multiplying kernel yield per plant 

with total number of plants in a given plot. 

3.1.2.1.8 Sound mature kernel percentage (%): Sound mature kernel percentage was 

computed by the ratio of weight of the perfectly filled kernels to the total weight of the 

kernels after shelling expressed in percentage. 

                           

                                 Weight of the perfectly filled kernels (g) 

 Sound mature kernel percentage =                                                                      × 100                                    

                           Total kernel weight (g) 

3.1.2.1.9 Shelling percentage (%): After shelling known weight of pods and weighing 

the kernels obtained, shelling percentage was calculated as per the formula given below:  

                                 Kernel yield after shelling (g) 

                          Shelling percentage =                                                      × 100                                    

                            Pod weight (g) 

 

3.1.2.1.10 Oil, Protein, Oleic acid, Linoleic acid, Palmitic acid and Stearic acid 

content (%): The data pertaining to all these parameters were estimated by scanning 

the samples using Near Infra-Red Spectroscopy (NIRS) system. 

3.1.2.1.11 Kernel iron (Fe) and zinc (Zn) concentration (mg kg
-1

): After harvesting 

and shelling kernels were cleaned without any metal contamination. The cleaned kernels 

were collected in packets and the defatted kernel iron and zinc concentrations in them 

were measured with Inductively Coupled Plasma Optical Emission Spectrometry (ICP-

OES), the details of which are briefly given below:  

Principle of ICP-OES:  

ICP, abbreviation for Inductively Coupled Plasma, is one method of optical 

emission spectrometry. When plasma energy is given to an analysis sample from 

outside, the component elements (atoms) are excited. When the excited atoms return to 

low energy position, emission rays (spectrum rays) are released and the emission rays 

that correspond to the photon wavelength are measured. The element type is determined 

based on the position of the photon rays and the concentration of each element is 

determined based on the rays' intensity. To generate plasma, first, argon gas is supplied 

to torch coil, and high frequency electric current is applied to the work coil at the tip of 

the torch tube. Using the electromagnetic field created in the torch tube by the high 



frequency current, argon gas is ionized and plasma is generated. This plasma has high 

electron density and temperature (10000 K) and this energy is used in the excitation-

emission of the sample. Solution samples are introduced into the plasma in an atomized 

state through the narrow tube in the centre of the torch tube.  

ICP-OES determination:  

Determinations were carried out using a Prodigy High Dispersion Inductively 

Coupled Plasma (ICP) Spectrometer equipped with a dual view torch and 60 position 

auto sampler. The Prodigy is a compact bench-top simultaneous ICP-OES featuring an 

800 mm focal length echelle optical system coupled with a mega-pixel Large Format 

Programmable Array Detector (L-PAD). At 28 × 28 mm, the active area of the L-PAD 

is significantly larger than any other solid-state detector currently used for ICP-OES. 

This combination allows Prodigy to achieve significantly higher optical resolution than 

other solid-state detector based ICP systems. The detector also provides continuous 

wavelength coverage from 165 to 1100 nm permitting measurement over the entire ICP 

spectrum in a single reading without sacrificing wavelength range or resolution. This 

detector design is inherently anti-blooming and is capable of random access, non–

destructive readout that results in a dynamic range of more than 6 orders of magnitude. 

3.1.3 Genotyping of Parents and Mapping Population  

Although several procedures for genomic DNA isolation were available 

(Dellaporta et al., 1983; Murray and Thompson, 1984 and Tai and Tanksley, 1990), 

genomic DNA isolation was done by Cityl Tri methyl Ammonium Bromide (CTAB) 

method (Mace et al., 2003) with slight modifications. 

DNA was obtained from approximately 30 mg sample of each F2 progeny and 

parental lines by using CTAB method (Mace et al., 2003) with slight modifications. 

DNA was further purified by RNase digestion followed by extraction with phenol : 

chloroform : Iso-amyl alcohol (25 : 24 : 1) and ethanol precipitation as described by 

Mace et al. (2003). The reagents required for DNA extraction are listed in Appendix I 

and the adopted procedure of 96-well plate mini DNA extraction is described here 

under. 

3.1.3.1 DNA Extraction Procedure 

A) Preparation: Two chrome-plated grinding balls (4 mm in diameter), pre-chilled at –

20°C for about 30 minutes, were dispensed by an automatic ball dispenser to 12 × 8 

well polypropylene strip extraction tubes with strip caps that were kept on ice. 3% 



CTAB buffer was pre-heated at 65°C in water bath (Precision Scientific Model: 

Shaking Water Bath 50) before starting DNA extraction.  

Leaves were collected from one week-old seedlings of parents and F2 progeny 

and cut into small pieces (approximately 30 mg), which were then transferred to an 

extraction tube fitted in a box. This was repeated for all 184 F2 progenies and parental 

lines. 

B) Grinding and extraction: 450 μl of pre-heated 3 % CTAB buffer was added to each 

extraction tube containing leaf sample and tightly capped with polyethylene strip caps. 

Grinding was carried out using a Sigma Geno-Grinder (Spex Certiprep, USA) at 500 

strokes per minute for 2 minutes. Grinding was repeated until the colour of the solution 

became pale green and leaf strip pieces were sufficiently macerated. After the first 

round of grinding, the boxes were checked for leakage by taking them out from the 

Geno-Grinder and were shaken for proper mixing of leaf tissues with buffer. 

After grinding, the box with the tubes was fixed in a locking device and 

incubated at 65°C in a water bath for 10 minutes with occasional manual shaking. 

C) Solvent extraction: 450 μl of chloroform : Iso-amyl alcohol (24 : 1) mixture was 

added to each tube, tubes were inverted twice for proper mixing and the samples were 

centrifuged at 6200 rpm for 10 minutes. After centrifugation, the aqueous layer 

(approximately 300 μl) was transferred to a fresh tube (Marsh Biomarket). 

D) Initial DNA precipitation: To each tube containing the aqueous layer, 7/10
th

 

volume (approximately 210 μl) of cold Isopropanol (kept at –20°C) was added. The 

solution was carefully mixed and the tubes were kept at -20°C for 10 minutes. The 

samples were centrifuged at 6200 rpm for 15 minutes. The supernatant was decanted 

under the fume hood and pellets were allowed to air dry for about 30 minutes. 

E) RNase A treatment: In order to remove co-isolated RNA, pellets were dissolved 

into 200 μl of TE buffer (T1 E0.1) and 3 μl of RNase A. The solution was incubated at 

37°C for 30 minutes or overnight at room temperature. 

F) Solvent extraction: After incubation, 200 μl of phenol : chloroform : Iso-amyl 

alcohol (25 : 24 : 1) was added to each tube, mixed and centrifuged at 5000 rpm for 10 

minutes.The aqueous layer in each tube was transferred to a fresh tube (Marsh 

Biomarket) and 200 μl of chloroform : Iso-amyl alcohol (24 : 1) was added to each tube, 

mixed and centrifuged at 5000 rpm for 10 minutes. The aqueous layer was transferred to 

fresh tube (Marsh Biomarket). 

G) DNA precipitation: 15 μl (approximately 1/10
th

 volume) of 3 M sodium acetate (pH 

5.2) and 300 μl (2 volumes) of absolute ethanol (kept at –20°C) were added to each of 



the tubes and the mixture was subsequently incubated in a freezer (–20°C) for 5 

minutes. Following the incubation at –20°C, the tubes were centrifuged at 6200 rpm for 

15 minutes. 

H) Ethanol wash: After centrifugation, the supernatant was carefully decanted from 

each tube in order to ensure that, the pellet remained inside the tube. Subsequently, 200 

μl of 70% ethanol was added to each of the tubes and it was followed by centrifugation 

at 5000 rpm for 5 minutes. 

I) Final re-suspension: The supernatant was carefully decanted and the pellet was 

allowed to air dry for one hour. Dried pellets were re-suspended in 100 μl of T10E1 

buffer and kept overnight at room temperature to dissolve completely. The re-suspended 

DNA samples were stored at 4°C. 

3.1.3.2 Quantification of DNA Concentration and Quality Check 

To determine the quantity and quality of genomic DNA using agarose gel, an 

aliquot of 1 μl of DNA from each sample along with 5 ng of molecular weight marker  

(λ DNA, Amersham Biosciences) were initially analyzed by electrophoresis on 0.8 % 

agarose gels containing ethidium bromide (0.5 µl per 10 ml of gel) and run in 0.5X TBE 

(Tris Borate EDTA) buffer at a constant voltage (100 V) for one hour. The gel was 

viewed under UV illumination and recorded using an UVi Tech gel documentation 

system (DOL-008.XD, England). A smear of DNA indicated poor quality whereas a 

clear band indicated good quality DNA. In the present study, the quality of genomic 

DNA was examined by using agarose (0.8 %) gel electrophoresis and quantity was 

accurately quantified by using Nanodrop (Nanodrop 8000 Spectrophotometer). After 

quantification of DNA, working stock of DNA with 5 ng/μl concentration was made by 

diluting with sterile double distilled water. 

3.1.3.3 Parental Polymorphism and Genotyping the F2 Population 

According to Caetano-Anolles et al. (1997), the parameters of DNA 

amplification viz., specificity, efficiency and fidelity are strongly influenced by the 

different components of the reaction and by thermal cycling. Therefore careful 

optimization of these parameters will ultimately result in reproducible and efficient 

amplification. 

To identify SSR primer pairs detecting polymorphism between parents, initial 

screening of parental lines was conducted. For this, DNA was extracted from ICGV 

06099 (taken as first parent i.e. P1) and ICGV 93468 (taken as second parent i.e. P2). A 

total of 200 SSR primers were used to screen the parents. From this screening, 33 SSR 

primers detecting scorable polymorphism between the parents were noted and out of 



which twenty eight markers shown clear amplification in the mapping population and 

were used for genotyping of the F2:3 mapping population of these parents. The sequence 

information of forward and reverse primers used for genotyping is presented in 

Table.3.1. 

3.1.3.4 Polymerase Chain Reaction (PCR) 

PCR was carried out in 96 and 384-well plates in a GeneAmp PCR system PE 

9700 (Applied Biosystem, USA) DNA thermal cycler in volumes of 5 μl. A touchdown 

PCR program was used to amplify the DNA fragments. Reaction conditions were as 

follows: 

Initial denaturation for 5 minutes at 94°C (to minimize primer - dimer formation 

and to activate the Taq polymerase), subsequently 10 cycles of denaturation for 15 

seconds at 94°C, annealing at 61°C to 52°C for 20 seconds, the annealing temperature 

for each cycle was reduced by 1°C and extension at 72°C for 30 seconds followed by 40 

cycles of denaturation at 94°C for 10 seconds, annealing at 54°C for 30 seconds and 

extension at 72°C for 30 seconds followed by final extension at 72°C for 20 min. PCR 

amplification was checked on 1.2 % agarose gels and PCR products of direct labelled 

primers and M13 tailed primers were separated by capillary electrophoresis on an 

ABI3730xl sequencer and their sizes were determined using GeneMapper
®

 Version 4.0 

software (Applied Biosystems, USA) and PCR products of unlabelled primers were 

separated on Agarose gel. 

 

3.1.3.5 Genotyping Using Capillary Electrophoresis 

The PCR products amplified using fluorescence-labeled primers were separated 

by capillary electrophoresis using an ABI Prism 3700 automatic DNA sequencer 

(Applied Biosystems Inc.). This has the ability to detect size differences of 1 bp using a 

fluorescence-based detection system, thus dispensing with the need for radioactivity or 

laborious manual Polyacrylamide gel techniques. 

For this purpose, forward primers were labelled with 6-FAM™ (Blue), VIC™ 

(Green), NED™ (Yellow) or PET™ (Red) fluorophores (Applied Biosystems). PCR 

products of primers labelled with different dyes or same flourophore-labelled primers 

with non-overlapping amplicons (in terms of size) were pooled. 

The products of different flourophore–labelled primers were pooled in different 

proportion (1.0 μl of 6-FAM–labeled product, 0.8 μl of VIC-labeled product, 1.4 μl of 

NED–labeled product, and 1.0 μl of PET-labeled product). The pooled PCR products 

were then mixed with 0.2 μl of GeneScan 500™ LIZ® internal size standard (Applied 



Biosystems) and 7.0 μl of Hi-Di™ Formamide (Applied Biosystems). The final volume 

was made up to 15 μl with sterile double-distilled water. DNA fragments were 

denatured for 5 minutes at 95ºC (Perkin Elmer 9700, Applied Biosystem) and cooled 

immediately on ice. 

3.1.3.5.1 Fragment size fractionation: The PCR products with denatured DNA were 

electrophoresed and the capillary run was performed using the “Genscan2 POP6 

Default” run module and “G5” filter-set. The analysis module used was “GS500 

analysis”. The fragments were separated in a   50 cm capillary array using POP6 

(Performance Optimized Polymer, Applied Biosystems) as separation matrix. 

3.1.3.5.2 Data processing: GeneMapper® version 4.0 software (Applied Biosystems, 

USA) was used to size the peak pattern in relation to the internal size standard, 

GeneScan 500™ LIZ®. The principle behind this is that standards are run in the same 

lane or capillary injection as the samples, which contain fragment of unknown sizes 

labelled with different flourophores. GeneMapper® version 4.0 software automatically 

calculates the size of unknown DNA fragments by generating a calibration sizing curve 

based upon the migration times of the known fragments in the standard. The unknown 

fragments are mapped on to the curve and the sample data is converted from migration 

times to fragments size. The peaks are displayed with base pair values and height 

(amplitude) in a chromatogram. The height of the chromatogram peaks (representing the 

alleles) obtained through capillary electrophoresis is directionally proportionate to the 

signal strength, which in turn is determined by the amount of amplified product in the 

sample. 

3.1.3.6 Scoring of Amplified Bands 

The banding pattern of each of amplified PCR products of various marker 

systems were scored as follows: 

 A = Homozygote for the allele for high iron and zinc parent at a locus. 

 B = Homozygote for the allele for low iron and zinc parent at a locus. 

 H = Heterozygote carrying the alleles from both parents. 

  - = Missing data for the individual at a locus. 

After scoring individual progenies, the data set was assembled in Microsoft 

Excel spreadsheet in a format suitable for linkage analysis by JoinMap and Mapmaker 

(i.e. rows = genotype score at a given locus; columns = individual F2:3 progenies). 

 In this experiment, construction of Linkage map was exempted due to lack of 

sufficient number of markers for twenty linkage groups in groundnut. 



3.1.4 Quantitative Trait Loci (QTL) Analysis 

 The phenotypic data sets of 184 F2 individuals and their genotyping data from 33 

SSR markers were used to identify genomic regions associated with the traits using 

Single Marker Analysis (SMA). 

3.1.4.1 Analysis of Variance 

In trials with high treatment numbers, e.g. variety trials, complete blocks are too 

large to give a good control of the experimental error due to soil heterogeneity. In these 

cases designs with incomplete blocks are useful. Every block only contains a fraction of 

the total number of treatments and is therefore incomplete. Several incomplete blocks 

form one complete replication. One type of such designs is the lattice design. The 

blocks of an incomplete block design can be arranged in any way that is useful for 

controlling soil heterogeneity (Büchse et al., 2007). Though there are different kinds of 

lattice designs, in the present study alpha-lattice design was used because of its 

flexibility in grouping the number of genotypes in to different blocks (Patterson and 

Williams 1976, Patterson et al., 1978). 

 

 



Table 3.1. List of SSR markers found polymorphic between the parents, ICGV 06099 and ICGV 93468 in the study along with their sequence 

information 
S. 

No. 
Marker 

Sequence Linkage Group Position 

(cM) 
Size (bp) Reference 

Forward Reverse 

1 GM1954 GAGGAGTGTGAGGTTCTGACG TGGTTCATTGCATTTGCATAC A03 114.43 115  

 

Nagy et al. (2010) 

 

2 GM1991 GAAAATGATGCCGAGAAATGT GGGGAGAGATGCAGAAAGAGA B06 92.89 122 

3 GM1742 GCCTTGTTGCAATCATCACA ACCTCCAACAGGAACATTGC B10 38.69 270 

4 GM2536 AGCCTCCACCTTCTCCTATTG GATGCAGTGGAGGGATAACAA A06 115.72 336 

5 GM1577 GCGGTGTTGAAGTTGAAGAAG TAACGCATTAACCACACACCA A05 53.75 278 

6 GM2032 GCCGATGATGTACGTTTCTTC GAGACGGCATGTCAAAAGAAT B10 24.30 149 

7 TC3B05 GGAGAAAACGCATTGGAACT TTTGTCCCGTTGGGAATAGT A08 23.09 248-270 Moretzsohn et al. (2005) 

8 GM2053 ACAAGGAAAACCCATCCAATC ACGTGATGGATTCTTGTGGAG B03 74.42 405 
Guo et al. (2012) 

9 GM2301 GTAACCACAGCTGGCATGAAC TCTTCAAGAACCCACCAACAC B03 113.75 137 

10 GM2120 TCCACTGCCACCTCTATCATC TCCACCCACATAGACAGAAGC B09 90.39 139 Nagy et al. (2010) 

11 TC9F10 ATCACAATCACAGCTCCAACAA GGCAAGTCTAATCTCCTTTCCA A08 73.94 286-320 Moretzsohn et al. (2005) 

12 GM2638 ATGCTCTCAGTTCTTGCCTGA CAGACATAACAGTCAGTTTCACC A04 86.55 107 Nagy et al. (2010) 

13 IPAHM245 CCCAAGGACCTAGTGACCAA GGACCCTTAGCACATTCCAA A06 55.16 290 Cuc et al. (2008) 

14 GM2746 TCAACCTCAAGGGTGATTGTC ACACAAACCCGCTCACTCTAA B08 60.30 120 Nagy et al. (2010) 

15 IPAHM103 GCATTCACCACCATAGTCCA TCCTCTGACTTTCCTCCATCA A03 133.84 160 
Cuc et al. (2008) 

16 IPAHM524 GCCATGGATAAGAACCTGAAA CAGTAAGCTGAGCTGGCAGA B02 46.11 300 

17 PM36 ACTCGCCATAGCCAACAAAC CATTCCCACAACTCCCACAT A05 54.89 190-240 He et al. (2003) 

18 SEQ19B01 TTGGTGATGGTGTTGGAGAA TTAAACCAGGCCAAAAGTGG A09 54.44 198 Ferguson et al. (2004) 

19 TC7E04 GAAGGACCCCATCTATTCAAA TCCGATTTCTCTCTCTCTCTCTC A03 127.20 300 Moretzsohn et al. (2005) 

20 S109 AAGGGAGCACAATCATA GAGCACGAGTTCATACAC A04 55.62 370-430 Wang et al. (2007) 

21 SEQ2B09 GCAACATGCTCTGAATTTTGAC TGTGCAACCCAATTCAATAACTT B09 82.55 259  

 

 

Ferguson et al. (2004) 

 

22 SEQ5D01 TGGCCAAAACAACTGATTGA TCCCAACTTTTCCGTTCTTG A01 65.76 264 

23 SEQ17E03 TTTCCTTTCAACCCTTCGTG AATGAGACCAGCCAAAATGC A09 85.93 193 

24 SEQ19G07 ATTCAATTCCTCTCTCCCCC TCAATCAATCAATCGCAGGA A03 106.08 149 

25 SEQ1B09 CGTTCTTTGCCGTTGATTCT AGCACGCTCGTTCTCTCATT A02 38.49 282 

26 SEQ3A08 ATACGTGACTTGGGCCAGAC AGTGAAAAATACACCCAACGAA A08 53.56 152 

27 SEQ9G05 CAAATTGTGCAGCCAAGAGA CATATGCCCAGGAAGAGGAA B05 32.05 273 

28 GM2079 GGCCAAGGAGAAGAAGAAAGA GAAGGAGTAGTGGTGCTGCTG B03 115.71 418 Guo et al. (2012) 

29 TC1B02 AACATGCATGCAAATGGAAA GCCAAAGTCACTTGTTTGCTT B02 55.56 220-270 

Moretzsohn et al. (2005) 30 TC4G02 GATCCAACTGTGAATTGGGC CACACCAGCAACAAGGAATC B03 88.70 130-166 

31 TC4F12 GATCTTTCCGCCATTTTCTC GGTGAATGACAGATGCTCCA A02 34.51 230 

32 IPAHM689 GATGACAATAGCGACGAGCA GTAAGCCTGCAGCAACAACA A06 52.22 240 Cuc et al. (2008) 

33 TC1E05 GAAGGATAAGCAATCGTCCA GGATGGGATTGAACATTTGG A08 60.27 215-260 Moretzsohn et al. (2005) 



The analysis of variance was usually presented in the following format (Table 3.2). 

Table 3.2. Analysis of variance of phenotyping material using alpha-lattice design 

Source of variation Degrees of 

freedom 

Sums of 

squares 

Mean squares F-value 

Replicates r-1 SSr MSr  

Blocks (within replicates, 

ignoring treatments) 

rs-r SSb MSb  

Treatments 

(adjusted for blocks) 

t-1 SSt MSt Fcal 

Error rt-rs-t+1 SSe MSe  

Total n-1 SSc - - 

 

Where, 

r        = number of replications 

s        = number of blocks 

t        = number of treatments / genotypes 

n        = number of entries 

SSr        = sum of squares due to replications 

MSr        = Mean sum of squares due to replications 

SSb        = sum of squares due to blocks 

MSb        = Mean sum of squares due to blocks 

SSt        = sum of squares due to treatments 

MSt        = Mean sum of squares due to treatments 

SSe        = sum of squares due to error 

MSe        = Mean sum of squares due to error 

SSc        = Total sum of squares 

Fcal           = calculated F value 

3.1.4.2 Single Marker Analysis (SMA) 

Single marker analysis can be conducted using a variety of statistical analyses, 

including t-tests, ANOVA, regression, maximum likelihood estimation and log 

likelihood ratios. The fact that molecular markers classifies the genotypes into groups, 

means that marker genotypes can be used as classifying variables for a t-test or 

ANOVA, or as variables for regression analysis. The null hypothesis tested is that 

genotypic classes do not differ in phenotype for a given molecular marker. Single 



marker analysis calculates whether phenotype values differ among genotypes for a 

given molecular marker. 

Y = µ + f (marker) + error      

 Where, 

Y              = Trait value 

µ               = Population mean 

f (marker) = Function of the molecular marker 

 

Analysis of R
2
 value was calculated by STATISTICA 4.5 software.  

3.1.5 Principal Component Analysis (PCA) 

Associations among the traits were also determined by Principal Component 

Analyses (PCA) (Hatcher, 1994) using R version 3.0.2 (R Project for Statistical 

Computing, http://www.r-project.org/). 

EXPERIMENT-II:  

3.2 ESTIMATION OF GENE EFFECTS BY 

GENERATION MEAN ANALYSIS: 

The technique adopted in carrying out the present investigation to generate data 

and the statistical procedures adopted for analyzing the data are described in the 

following sub-heads:  

1. Generation of breeding material  

2. Evaluation of experimental material  

3. Statistical analysis  

3.2.1 Generation of Breeding Material  

The material comprised of six basic generations viz., P1, P2, F1, F2, B1 and B2 

generated during rainy season, 2013 derived from two crosses (ICGV 06040 × ICGV 

87141 and ICGV 06099 × ICGV 93468) involving four genotypes of groundnut with 

variation in kernel characteristics (Fig 3.1) including the kernel iron and zinc 

concentration. The above six generations were evaluated during post-rainy season, 

2013-14 to understand the gene action involved in the inheritance of the traits of 

interest. The details of the parental lines used in this experiment are furnished in Table 

3.3. 



3.2.2 Evaluation of Experimental Material 

3.2.2.1 Development of F2 and Back Cross (B1 and B2) Generations 

Four parental lines, viz., ICGV 06040, ICGV 87141, ICGV 06099 and ICGV 

93468 and two resultant F1 hybrids (ICGV 06040 × ICGV 87141 and ICGV 06099 × 

ICGV 93468), which were already developed, were planted in the field during rainy 

season, 2013 to produce F1, F2, B1 and B2 generations. F2 generation of each cross was 

produced by selfing the F1 plants, while B1 and B2 generations were developed by 

crossing back each F1 hybrids with their female (ICGV 06040 and ICGV 06099) and 

male (ICGV 87141 and ICGV 93468) parents, respectively. 

3.2.2.2 Field Evaluation 

The six basic generations viz., parents, (P1 and P2), first and second filial 

generations (F1 and F2), first and second backcrosses (B1 and B2) of each combination 

of crosses were evaluated in a compact family block design (Fig 3.2) with three 

replications at ICRISAT, Patancheru during post-rainy season, 2013-14 for yield, its 

contributing characters, kernel iron and zinc concentrations. Each block comprised of 

one row each of P1, P2 and F1, two rows each of B1 and B2 and eight rows of F2. Each 

row was of 2 m length with a spacing of 30 cm between rows and 10 cm between the 

plants. Sowing was done on red precision soils at ICRISAT in broad-bed and furrow 

system and recommended package of practices were adopted for optimum crop growth 

and protective measures were applied to control insects and diseases.  

3.2.2.3 Observations Recorded 

Data on days to emergence, days to flowering, days to maturity, 100-kernel 

weight, pod yield per plant, shelling percentage, sound mature kernel percentage and 

kernel iron and zinc concentrations (fatted) were recorded on individual plant basis in 

all the generations in each replication as per the procedure explained under the sub head 

of 3.1.2.1 in experiment I.  

 

3.2.3 Statistical Analysis  

The data recorded on different traits were subjected to the following statistical 

analyses.  



 Analysis of variance 

 Estimation of genetic parameters like genotypic and phenotypic coefficients of 

variation, heritability in narrow sense and broad sense and genetic advance 

under selection, genetic advance as per cent of mean, degree of dominance, 

heterosis and inbreeding depression. 

 Estimation of gene effects by Generation Mean Analysis  

 Scaling tests of Mather (1949) 

 Six parameter model of Hayman (1958) 

 Correlation co-efficient analysis 

3.2.3.1 Analysis of Variance  

 The data were subjected to analysis of variance for compact family block design 

as described by Panse and Sukhatme (1985). Here, crosses and generations within each 

cross were taken as families and progenies, respectively. The analysis was carried out in 

two stages.  

(a) First from the data of main plots, the variance between crosses and the 

corresponding error was calculated by treating the experiment as one in simple 

randomized blocks. The structure of ANOVA between families is given below 

in Table 3.4a:  

(b) The analysis for progenies under each family was done separately for each 

character using the data of sub plots to give the variance between different 

generations and the corresponding error. The structure of ANOVA for progenies 

within a family is given below in Table 3.4b:  

  



 

Table 3.4a. Analysis of variance between crosses 

Sources of   

variation 

Degrees of 

freedom 

Mean sum of 

squares 

Expected mean 

square 

Replications (r–1) Mr σ
2

e1 + fσ
2

r 

Families (crosses) (f–1) Mf σ
2

e1 + rσ
2

f 

Error (r–1) (f–1) Me1 σ
2

e1  

Table: 3.4b. Analysis of variance among generations within a cross 

Sources of     

variation 

Degrees of  

freedom 

Mean sum of 

squares 

Expected mean 

square 

Replications (r–1) Mr σ
2

e2 + pσ
2

r 

Progenies within 

family (generations) 

(p–1) Mp σ
2

e2 + rσ
2
p 

Error (r–1) (p–1) Me2 σ
2

e2  

 

Where, 

r  = Number of replications  

f  = Number of families (crosses)  

p  = Number of progenies within each family (generations)  

Mr = Mean square due to replications  

Mf = Mean square due to families  

Mp = Mean square due to progenies within each family  

Me1 = Error mean square for families  

Me2 = Error mean square for progenies within each family 

3.2.3.2 Estimation of Components of Variances and Genetic Parameters 

3.2.3.2.1. Phenotypic and genotypic co-efficient of variation: The components of 

variances were used to estimate genetic parameters like phenotypic and genotypic co-

efficients of variation (PCV and GCV) as per the formulae given by Falconer (1981).          

Phenotypic standard deviation, (σp) = √σ
2
p 

                                                          = √ σ
2
g + σ

2
e                  

 



Phenotypic standard deviation (σp)       

                 PCV (%) =                                                                            × 100 

                                                        Grand mean (X) 

                    

     Genotypic standard deviation (σg) = √σ2g 

                                      Genotypic standard deviation (σg) 

                 GCV (%) =                                                            × 100 

                                                   Grand mean (X) 

Categorization of the range of variation was followed as reported by 

Subramanian and Menon (1973).  

         Low      : Less than 10 % 

  Moderate: 10 to 20 % 

          High      : More than 20 % 

3.2.3.2.2. Degree of dominance: The magnitude of variance due to dominance 

deviations, relative to that of additive genetic variance (Robinson et al. 1949) expressed 

as a square root of ratio of additive variance to dominance variance is known as degree 

of dominance. It is calculated as follows:  

                                        Degree of dominance = √H/D 

Where,  

 H = Dominance variance 

             D = Additive variance 

3.2.3.2.3. Heritability in broad sense [h2 (b)]: It is the ratio of genotypic variance to the 

phenotypic variance. It is the heritable portion of phenotypic variance which responds to 

selection. It can be calculated using the formula (Hanson et al., 1956):  

             Genotypic variance (σ
2
g)  

                                              h
2
 (b) =                                                × 100 

              Phenotypic variance (σ
2
p) 

3.2.3.2.4. Heritability in narrow sense [h2 (n)]: Heritability in the narrow sense refers to 

the proportion of additive variance to the total observed variance in the total population. 

Heritability in narrow sense [h2 (n)] was calculated according to the formula given by Allard 

(1960):      

 

 



Table 3.3. Pedigree and characteristics of the groundnut genotypes used as parents in the present investigation. 

Parental line Pedigree Characteristics 

ICGV 06040 [{(ICGS 35 x NC Ac 1705) x CS 16-B2-B2} x {(NC Ac 

343 x (Dh. 3-20 x Robut 33-1)} x {(NC Ac 343 x (Dh. 3-20 

x Robut 33-1)}] 

Confectionary type, virginia bunch, medium duration, smooth 

pod, tan colour and medium size seed. Rich in iron (56.1 mg 

kg
-1

) and zinc (80.1 mg kg
-1

). 

ICGV 87141 
(TMV 10 x Chico) 

Confectionary type, virginia bunch, medium duration, smooth 

pod, tan colour and medium size seed. Low in iron (44.1 mg 

kg
-1

) and zinc (55.7 mg kg
-1

). 

ICGV 06090 [{(ICGS 35 x NC Ac 1705) x CS 16-B2-B2} x {(NC Ac 

343 x (Dh. 3-20 x Robut 33-1)} x {(NC Ac 343 x (Dh. 3-20 

x Robut 33-1)}] 

Confectionary type, virginia bunch, medium duration, smooth 

pod, tan colour and medium size seed. Rich in iron (57.3 mg 

kg
-1

) and zinc (81.0 mg kg
-1

). 

ICGV 93468 
[(ICGS 44 x TG 2E) x {ICGS 30 x (TMV 10 x Chico)}] 

Confectionary type, spanish bunch, medium duration, smooth 

pod, tan colour and medium size seed. Low in iron (45.2 mg 

kg
-1

) and zinc (60.7 mg kg
-1

). 



                     

            Additive variance (σ
2
a)  

                                               h
2
 (n) =                                                × 100 

            Phenotypic variance (σ
2
p) 

The range of heritability estimates were categorized as follows as suggested by Johnson et al. 

(1955):  

Low            : 0-30% 

     Medium      : > 30-60% 

 High           : > 60% 

3.2.3.2.5 Genetic advance (GA): Genetic advance refers to the expected genetic gain or 

improvement in the next generation by selecting superior individuals under certain amount of 

selection pressure. From the heritability estimates, the genetic advance was estimated by the 

following formula given by Burton (1952):  

GA = K. h² (b). σp 

Where,  

GA   = Expected genetic advance  

K      = Selection differential, the value of which is 2.06 at 5% selection intensity  

σp     = Phenotypic standard deviation 

h² (b) = Heritability in broad sense     

3.2.3.2.6 Genetic advance as percent of mean (GAM): In order to visualize the relative utility 

of genetic advance among the traits, genetic advance as percent for mean (GAM) was computed 

as described by Johnson et al. (1955) 

 

GA  

GAM =                                        × 100 

   Grand mean (X) 

The range of genetic advance as percent of mean was classified as suggested by Johnson et 

al. (1955). 

Low         : < 10 % 

Moderate    : 10-20 % 



High         : > 20 % 

3.2.3.2.7 Heterosis and Inbreeding Depression Studies 

3.2.3.2.7.1 Heterosis: Heterosis was estimated for two hybrids for eight traits using the following 

formulae. Estimates of heterosis were calculated according to Fonseca and Patterson (1968). 

3.2.3.2.7.1.1 Heterosis over mid-parent (Relative heterosis): Heterosis was expressed as per cent 

increase or decrease observed in the F1 over the mid-parent as per the following formula. 

F1 - MP 

                 Relative heterosis (%) (H1)=                              × 100 

 MP 

3.2.3.2.7.1.2 Residual heterosis over mid-parent: The heterosis over mid-parent or average / 

relative heterosis present in F2 generation is calculated as residual heterosis over mid-parent. It is 

calculated as follows (Rao, 1980): 

 

 

F2 - MP 

                 Residual heterosis (% ) =                                 × 100 

 MP 

3.2.3.2.7.1.3 Heterosis over better parent (Heterobeltiosis): It was expressed as per cent increase 

or decrease observed in F1 over the better parent as per the formula of Liang et al. (1971). 

 

                            F1 - BP 

                                  Heterobeltiosis (%) (H2)  =                             × 100 

                            BP 

 (For the traits like days to flowering, earliness is desirable so the early parents are taken as better 

parents). 

3.2.3.2.7.1.4 Residual heterosis over better parent: The heterosis over better parent or 

heterobeltiosis present in F2 generation is calculated as residual heterosis over better parent. It is 

calculated as follows (Rao, 1980): 

                                                          F2 - MP 

               Residual heterosis over better parent (%)       =                              × 100 

                                                          MP 



The significance of heterosis, was tested by using ‘t’ test as suggested by Snedecor and 

Cochran (1989) and Paschal and Wilcox (1975).  

                                                       F1 - MP          

                            Heterosis t =    

                                     √1.5EMS/r 

                                                   

                                                        F1 - BP         

                  Heterobeltiosis t =    

                                       √1.5EMS/r 

Where, 

EMS = Error Mean Sum of Square 

                   r = Number of replications  

               BP = Mean of better parent 

               MP = Mean of mid parent 

                 F1= Mean of F1 generation 

                 F2= Mean of F2 generation 

 The calculated ‘t’ value was compared with table ‘t’ value at error degrees of freedom. 

3.2.3.2.7.2 Inbreeding depression: The loss of fitness in the progenies or decline in trait 

expression with decreased heterozygosity arising from consanguineous mating is known as 

inbreeding depression or inbreeding decline. It can be calculated using the following formula 

given by Kempthrone (1957):                                   

 

                            F1 - F2 

Inbreeding depression =                      × 100 

                            F1 

Where,  

  F2 = mean of F2 population  

       F1 = mean of F1 

 

 

 



3.2.3.3 Generation Mean Analysis  

The concept of Generation Mean Analysis (GMA) was developed by Hayman (1958) and 

Jinks and Jones (1958) for the estimation of genetic components of variation. This technique 

involves six different generations viz., parents (P1 and P2), their F1, F2 and back crosses (B1 and 

B2). Accordingly, the means were computed for each generation of P1, P2, F1, F2, B1 and B2 for 

each cross. The variance and corresponding standard errors of the means were computed from 

the deviations of the individual values obtained from individual plants for each of the generation 

in each cross and were analyzed to estimate various genetic parameters and the type of gene 

action involved in the inheritance of various traits.  

The biometrical analysis consists of two main steps, viz., (i) testing for epistasis and (ii) 

estimation of gene effects and variances. 

3.2.3.3.1 Scaling test: The test which provides information regarding presence / absence of gene 

interaction is termed as scaling test. The test of adequacy of scales is important because in most 

of the cases the estimation of additive and dominance components of variances were made 

assuming the absence of gene interactions. Mather (1949) and Hayman and Mather (1955) gave 

four scaling tests to test the adequacy of additive-dominance model. The different scales, 

variances and standard errors are computed by using the following formulae:  

Scale A = 2 B1 – P1 – F1 = 0 

Scale B = 2 B2 – P2 – F1 = 0 

         Scale C = 4 F2 – 2F1 – P1 – P2 = 0 

Where,  

P1, P2, F1, F2, B1 and B2 are means of different generations over the replications.  

The variances of the quantities A, B, C and D were calculated from respective variances 

of different generations as follows 

VA = 4V (B1) + V (P1) + V (F1) = 0 

 VB = 4V (B2) + V (P2) + V (F1) = 0 

               VC = 16V (F2) + 4V (F1) +V (P1) + V (P2) = 0 

                 VD = 16 V (F3) + 4V (F2) + V (P1) + V (P2) = 0 



Where,  

VA, VB, VC and VD are the variances of the scale A, B, C and D;  

VP1, VP2, VF1, VF2, VB1 and VB2 are the variances of means of P1, P2, F1, F2, B1 and B2 

generations, respectively.  

The variance of mean for each generation was calculated by dividing variance obtained 

from ANOVA table by the number of observations taken. The standard error of the scale A, B, C 

and D were worked out by taking the square root of respective variances. 

S.E. A = √VA 

S.E. B = √VB 

S.E. C = √VC 

S.E. D = √VD 

The ‘t’ values were calculated by dividing the scale effects of A, B, C and D by their 

respective standard error. 

t cal for A-test = Scale A / S.E. A 

t cal for B-test = Scale B / S.E. B 

t cal for C-test = Scale C / S.E. C 

                                       t cal for D-test = Scale D / S.E. D 

The calculated values of  ‘t’ were compared with ‘t’ table values at 5% and 1% level of 

significance at their respective degrees of freedom. In each test, the degrees of freedom was 

taken as the sum of the degrees of freedom of various generations involved in that scaling test 

and the degrees of freedom for any generation was calculated as total number of observations 

minus number of replications. However, in case of un-replicated data the degrees of freedom will 

be the number of observations per generation minus one.  

If the calculated value of these scales is higher than ‘t’ table values (when d.f. = > 30, 

then ‘t’ table values are 1.96 and 2.58 at 0.05 and 0.01 level of probability, respectively), it is 

considered significant and vice versa. The significance of any one of these scaling tests indicates 

the presence of epistasis. It is to be noted that, 



 

(a)  D provides a test largely of ‘i’ type of interaction (additive × additive).  

(b)  C indicates ‘l’ (dominance × dominance) type of gene interaction.  

(c) Significance of C + D relates to ‘i’ (additive × additive) and ‘l’ (dominance ×                           

dominance) type of interaction.  

(d) ‘j’ (additive × dominance) type of interaction has no effect on C and D but it affects  A   and 

B. A and B tests provide an evidence on i, j and l type of gene interactions (Singh and 

Chaudhary, 1977).  

3.2.3.3.2 Components of generation means: When the scales were significant, the mean values 

over replications were used for the estimation of the gene effects. Owing to the presence of six 

generations (P1, P2, F1, F2, B1 and B2) in each cross, six parameter model proposed by Hayman 

(1958) and Jinks and Jones (1958) was followed to estimate the genetic parameters viz., mean 

(m), additive gene effects (d), dominance gene effects (h) and three types of non-allelic gene 

interactions viz., additive × additive (i), additive × dominance (j) and dominance × dominance 

(l). 

m = Mean = F2 

d = Additive effect = B1 – B2  

h = Dominance effect = F1 – 4F2 – (1/2) P1 – (1/2) P2 + 2B1 + 2B2  

i = Additive × Additive effect = 2B1 + 2B2 – 4F2  

j = Additive × Dominance effect = B1 – (1/2) P1 – B2 + (1/2) P2  

l = Dominance × Dominance effect = P1 + P2 + 2F1 + 4F2 – 4B1 -4B2 

Where,  

P1, P2, F1, F2, B1 and B2 are the mean values of P1, P2, F1, F2, B1 and B2 generations, 

respectively.  

3.2.3.3.3 Test of significance of various gene effects: The test of significance of the gene 

effects was done by ‘t’ test for which variance and standard error of each estimates were 

calculated using following equations. 

 



Calculation of variances: 

Vm = V (F2) 

Vd = V (B1) + V (B2) 

Vh = V(F1) + 16V(F2) + (1/4)V(P1) + (1/4)V(P2) + 4V(B1) + 4V(B2)  

Vi = 4V(B1) + 4V(B2) + 16V(F2) 

Vj = V (B1) + 1/4V (P1) + V (B2) + 1/4 V (P2) 

Vl = V (P1) + V (P2) + 4V (F1) + 16V (F2) + 16V (B1) + 16V (B2) 

Where, 

V (P1), V (P2), V (F1), V (F2), V (B1) and V (B2) were the variances of P1, P2, F1, F2, B1 and 

B2 generations, respectively. 

 

Calculation of standard error:  

The standard error of each of the gene effects was estimated as follows  

S.E. (m) = √Vm 

S.E. (d) = √Vd 

S.E. (h) = √Vh 

S.E. (i) = √Vi 

S.E. (j) = √Vj 

S.E. (l) = √Vl 

The ‘t’ values were worked out using following formulae  

  t (m) = m / S.E. (m) 

  t (d)  = d / S.E. (d) 

  t ( h ) = h / S.E. (h) 

t ( i ) = i / S.E. (i) 

t ( j ) = j / S.E. (j) 

t ( l ) = l / S.E. (l) 



The significance for the above genetic parameters were tested with the help of ‘t’ test. 

First standard error (S.E.) is worked out for each component separately by taking the square root 

of the variance of the respective component. Significance of the genetic effects is tested using ‘t’ 

test in a similar manner as in the case of scaling test. If the calculated value is greater than ‘t’ 

table value, it is considered significant and vice versa (Singh and Chaudhary, 2001). 

3.2.3.4 Correlation Co-Efficient Analysis 

Trait association refers to a change in one trait accompanied by a change in the other 

trait. The data recorded on various traits were utilized for the computation of correlation 

coefficients to understand the association between them. The formulae suggested by Snedecor 

and Cochran (1967) were utilized for the computation of correlation coefficients.                                             

                                                            Cov (xy) 

                                    r(xy) =  

                                                     (Var x) (Var y) 

                                               

Cov (xy)    = 1/n (∑xy-∑x∑y/n) 

 

   Var (x) = 1/n (∑x
2
-(∑x)

2
/n)  

Where,  

r(xy)      = Correlation between x and y 

Cov(xy) = Covariance for traits x and y  

Var(x)   = Variance for x  

Var(y)   = Variance for y  

r             = Correlation coefficient  

xy          = Two independent variables 

To test the significance of correlation coefficients, the estimated values were compared 

with the table values of correlation coefficients (Fisher and Yates, 1967) at  5 % and 1 % levels 

of significance with (n-2) degrees of freedom, where ‘n’ is the total number of observations used. 
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Chapter IV 

RESULTS AND DISCUSSION 

The World Health Organization (WHO) recognized iron, zinc and vitamin A as the 

critical micronutrients that are most limiting in diet. Iron and zinc are receiving global attention 

as their deficiencies are widespread, particularly in developing countries. If there is sufficient 

genetic variation for the density of micronutrients in edible parts of the crop, bio-fortification can 

be achieved through plant breeding (Mayer et al., 2008). Bio-fortification offers a cost effective 

and sustainable approach and has become an active goal of plant breeding programs in the 

developing world (Welch, 2002). In groundnut genetic variability is reported for Fe and Zn 

concentration (Upadhyaya et al., 2012 and Janila et al., 2014) and thus bio-fortification is 

possible. Knowledge on genetics of kernel iron and zinc and association of these micronutrient 

concentrations with other important traits is essential to develop varieties with improved yield 

and nutritional quality. Besides, if markers linked to the traits of interest are available, they may 

be used for selection in the breeding program to accelerate the genetic gains for kernel iron and 

zinc concentrations. Hence the present study was carried out in two separate experiments. 

4.1 Quantitative Trait Loci (QTL) analysis for kernel iron and zinc concentrations 

4.2 Generation Mean Analysis 

4.1 QUANTITATITVE TRAIT LOCI (QTL) ANALYSIS 

FOR KERNEL IRON AND ZINC 

CONCENTRATIONS 

As compared to cereals, legume kernels contain higher iron and zinc concentrations 

which is retained during processing, unlike for milled cereal seeds (Beebe et al., 2000 and Wang 

et al., 2003). Plant roots take up iron and zinc from the soil which is then translocated to the 

kernels and other tissues of the plant through vascular transport and partitioning mechanisms. 

The process of uptake and translocation within the plant and subsequent accumulation in the 

kernel is influenced by transporters and storage reserves (Frossard et al., 2000 and Grusak, 

2002). Groundnut plant uses rhizosphere acidification process for uptake of the iron and zinc by 



root hairs (Marschner and Römheld 1994 and Briat and Lobreaux 1997). Once iron and zinc are 

taken up into the plant root’s epidermal cells, various metal transporters are involved in 

translocation throughout the plant (Grotz and Guerinot 2006). The minerals are then used for 

vegetative growth, where iron homeostasis is mediated by ferritin, an iron storage protein (Briat 

and Lobreaux 1997) and during reproductive phases minerals are remobilized to kernels 

(Frossard et al., 2000). The inheritance of iron and zinc concentration in groundnut is reported to 

be mostly quantitative and influenced by the environment, but can also vary depending on the 

source genotype (Guzman-Maldonado et al., 2003; Blair et al., 2009 and Cichy et al., 2009). 

As compared to other traits, very little progress has been made to understand the genetic 

basis of iron and zinc concentration in groundnut due to difficulties involved in carrying out 

phenotypic studies for these traits. The Information on the genetic basis of accumulation of 

micro-nutrients in the kernels and mapping of the quantitative trait loci (QTL) will provide the 

basis for preparing strategies to improve kernel micronutrient concentration through marker 

assisted selection. QTL mapping employs genetic variation which exists between different 

accessions or segregating populations to identify polymorphic markers, which are then used to 

develop a linkage map and carry out QTL analysis. QTL analysis provides information on the 

chromosomal locations of the important loci without any prior knowledge on the genes involved 

and reveals their possible genetic effects leading to phenotypes of interest. DNA markers which 

are closely linked to the QTL region that governs desired traits allow the selection of plants 

possessing those traits prior to trait expression. 

In the present study, the experimental material involving an F2 population, consisting of 

184 individual plants derived from the cross between ICGV 06099 and ICGV 93468, was used 

for QTL analysis using SSR markers. The results obtained are discussed under the following 

headings:  

4.1.1 Parental polymorphism studies 

4.1.2 Phenotyping of experimental material 

4.1.3 Genotyping for identification of genomic regions associated with kernel iron and zinc 

concentrations 

4.1.4 QTL (single marker) analysis 

4.1.5 Principal Component Analysis 



4.1.1 Parental Polymorphism Studies 

Parental polymorphism survey between two parents, viz., ICGV 06099, parent with high 

kernel iron and zinc and ICGV 93468, parent with low kernel iron and zinc using 200 SSR 

markers revealed that 33 SSR markers that amounts to about 16.5 % of tested markers were 

polymorphic (Fig. 4.1), 143 markers (71.5 %) were monomorphic (Fig. 4.2) and remaining 24 

markers (12 %) were not amplified. Allo-polyploidy nature, with AABB genomes (2n = 4x = 40) 

and evolution from single hybridization event followed by chromosome doubling along with 

cross incompatibility of cultivars with wild species due to ploidy differences made groundnut 

cultivars less polymorphic compared to other crops. Polymorphism in the present study was 

checked using agarose gels and Genemapper version 4.0 software. 

4.1.2 Phenotyping of Experimental Material 

 Phenotyping is the primary data that is required for QTL analysis and should be precise 

enough. The precision is extremely important and recorded with utmost care, as quantitative 

traits are often affected adversely by experimental errors which are further worsened by 

environmental effects. In the present study F2:3 phenotyping population was developed by 

crossing ICGV 06099 and ICGV 93468 which were contrasting for kernel iron and zinc 

concentrations. Single plant progenies harvested from F2 individual plants constituted the F2:3 

population that was phenotyped with two replications. 

Initial soil analysis to estimate the iron and zinc status of the experimental block in both 

the replications at different sites, revealed that the iron and zinc concentrations were above 

critical limits in the soil. 

4.1.2.1 Phenotyping 

Plant phenotyping is the comprehensive assessment of complex plant traits. Valid and 

authentic phenotypic data is essential for successful identification of QTLs for a given trait. In 

the present study, phenotyping of F2:3 population from the cross ICGV 06099 × ICGV 93468 

was carried out during rainy season, 2013 at ICRISAT, Patancheru, India in alpha lattice design 

with two replications. 

 

 

 

 



Fig.4.1. GeneMapper profile for an amplified SSR marker showing polymorphism  

between the parents, ICGV 06099 and ICGV 93468 

                 

 Fig.4.2. Agarose gel picture showing monomorphism between the parents, ICGV 06099 

and ICGV 93468 

                 



Data were recorded on viz., days to emergence, days to flowering, days to maturity, 100-

kernel weight (g), single plant yield (g), pod yield (g plot
-1

), kernel yield (g plot
-1

), sound mature 

kernel percentage (%), shelling percentage (%), oil content (%), protein content (%), kernel iron 

and zinc concentrations (mg kg
-1

), linoleic acid (%), oleic acid (%), palmitic acid (%) and stearic 

acid (%) content, and subjected to statistical analysis.  

The analysis of variance (Table 4.1) revealed the existence of significant variation for all 

the traits except for days to emergence, days to maturity, protein content and palmitic acid 

content. Significant variability for kernel iron and zinc concentrations was found in the mapping 

population suggesting that QTL analysis for these traits can be carried out with the present 

population. 

For kernel iron and zinc concentration, among the parents, ICGV 06099 recorded mean 

values of 52.5 mg kg
-1 

and 79.5 mg kg
-1

, respectively whereas ICGV 93468 recorded mean 

values of 37.3 mg kg
-1 

and 64.6 mg kg
-1

,
 
respectively (Table 4.2) for the same. In the F2:3 

population, mean values of 45.4 mg kg
-1 

and 76.7 mg kg
-1

,
 
were observed for kernel iron and zinc 

concentration, respectively. Though the mean values were low compared to that of higher parent 

i.e., ICGV 06099, presence of entries with high values for iron (>52.5 mg kg
-1

) and zinc (>79.5 

mg kg
-1

) concentrations suggested the presence of transgressive segregants in the F2:3 mapping 

population.  

Table 4.2 Mean and standard deviation of the kernel iron zinc concentrations among 

parents and F2:3 mapping population of the cross ICGV 06099 × ICGV 93468 in 

groundnut 

Characters 

Parents 

F2:3 Population 

(n = 184) 
ICGV 06099 

(n = 4) 

ICGV 93468 

(n = 4) 

Mean SD (±)
 

Mean SD (±) Mean Range SD 

Kernel iron 

concentration  

(mg kg
-1

) 

 

52.5 

 

5.93 

 

37.3 

 

3.30 

 

45.4 

 

31.8 - 61.4 

 

6.10 

Kernel zinc 

concentration  

(mg kg
-1

) 

79.5 4.67 65.0 4.14 

 

76.7 

 

59.6 - 90.4 5.60 



Where, 

         n = No. of individuals; SD = Standard Deviation 

4.1.2.1.1 Descriptive statistics of phenotyping population 

The population was phenotyped for seventeen different traits which are described below. 

The details of the descriptive statistics of the population were presented in the Table 4.3 and their 

respective histograms showing normal distribution were depicted in Figure 4.3.  

A histogram is a graphical representation of the distribution of numerical data. It is an 

estimate of the probability distribution of a continuous variable (quantitative variable) which 

gives a rough sense of the density of the data and was first introduced by Pearson (1895) whereas 

skewness is the measure of asymmetry of the probability distribution of a real-valued random 

variable. Direction of variation of the data can be known using skewness value. Histogram is a 

useful representation to understand that the data was skewed or normally distributed.  

4.1.2.1.1.1 Days to emergence: It is the number of days taken from date of sowing to date when 

seedling emerges. This trait has direct influence on days to flowering, maturity duration and 

ultimately yield. The phenotyping population showed a range of 5 to 10 days for emergence with 

a mean of 7 days. Normal distribution was observed for the trait with a low skewness value of 

0.385 (Fig 4.3a). Both the parental lines viz., ICGV 06099 (P1) and ICGV 93468 (P2) were 

within the range of the population though P2 was earlier (6 days) compared to P1 (7 days). 

4.1.2.1.1.2 Days to 75 % flowering: It is the number of days taken from the date of sowing to 

emergence of flower in 75 % of total plants in a line. Among the mapping population this trait 

ranged from 30 to 39 days with a mean of 34 days. P1 (34 days) and P2 (33 days) recorded almost 

same number of days to flower and both the parental lines were within the range of population. 

Normal distribution was observed with a low skewness value of -0.110 (Fig 4.3a). 

4.1.2.1.1.3 Days to maturity: It is the number of days taken from date of sowing to final harvest 

which is determined by examining the foliage, internal pericarp colour and colour of pods for 

maturity indices. In groundnut, based on maturity duration, the genotypes are generally grouped 

in to very early (<90 days), early (90-100 days), medium (101-110 days) and late (111-120 days) 

maturing types (PPVFRA, 2009). Uniform maturity of the plants in the field will result in greater 

pod yield. The maturity duration of the population ranged from 103 to 114 days with a mean of 

111 days. Since the entire population in the present study was grouped into only medium and late 

maturity types it exhibited skewed distribution with a skewness value of -1.158 (Fig 4.3a). 

http://en.wikipedia.org/wiki/Frequency_distribution
http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Continuous_variable
http://en.wikipedia.org/wiki/Karl_Pearson
http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Real_number
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Random_variable


Among the parental lines, P2 matured in 104 days (medium) while P1 took 114 days to mature 

(late). 

4.1.2.1.1.4 100-kernel weight (g):  It is an important yield related parameter for estimating seed 

dry mass. Based on 100-kernel weight, the groundnut genotypes are generally categorized in to 

low (<36 g), medium (36-50 g), high (51-65 g) and very high (>65 g) seed mass (PPVFRA, 

2009). For the population the 100-kernel weight varied from 19.20 to 43.00 g with a mean of 

31.65 g, thus the entire population was grouped in to low to medium 100-kernel weight. Both the 

parental lines viz., P1 and P2 had 100-kernel weights of 33.01 g and 31.36 g, respectively and 

were within the range of population. The trait showed normal distribution with a skewness value 

of -0.062 (Fig 4.3a). 

4.1.2.1.1.5 Single plant yield (g): Data on single plant yield is useful in estimating the 

performance of individual plant so that transgressive segregants which were outperforming the 

parents can be isolated from the population. The population recorded a range of 4.08 to 78.60 g 

of single plant yield with a mean of 18.24 g. P1 (23.67 g) recorded higher single plant yield than 

to P2 (11.43 g) and both the parents were within the range of the population. The trait exhibited 

higher skewness value of 1.880 (Fig 4.3a). 

4.1.2.1.1.6 Pod yield per plot (g plot
-1

): Breeding objectives in groundnut must consider higher 

pod yield as prime objective. The mapping population recorded a range of 25.6 to 244.0 g plot
-1 

pod yield with a mean of 104.2 g plot
-1

. Both the parental lines were within the range of mapping 

population though P1 (133.58 g plot
-1

) recorded higher pod yield per plant compared to P2 (96.21 

g plot
-1

). Normal distribution was observed with a moderate skewness value of 0.614 for this trait 

(Fig 4.3b). 

4.1.2.1.1.7 Kernel yield per plot (g plot
-1

): Kernel yield per plot gives the actual yield of 

kernels after shelling in a given area. Kernel yield per plot in the population ranged from 13.9 to 

158.5 g plot
-1 

for the trait with a mean of 59.67 g plot
-1

. P1 (74.87 g plot
-1

) obtained higher kernel 

yield per plot compared to P2 (51.91 g plot
-1

) and both the parents were within the range of the 

mapping population. The trait distributed normally by recording a moderate skewness value of 

0.802 (Fig 4.3b). 

4.1.2.1.1.8 Sound mature kernel percentage (%): It is the percentage of perfectly filled kernels 

without any wrinkles out of a given volume of kernels. Sound mature kernel percentage varied 

from 28.81 to 95.72 % in the mapping population understudy with a mean of 69.47 %. Both the 



parental lines were within the range of the population though P1 (70.37 %) recorded higher sound 

mature kernel percentage compared to P2 (62.64 %). The trait showed normal distribution by 

recording a low skewness value of -0.270 (Fig 4.3b). 

4.1.2.1.1.9 Shelling percentage (%): It is measured by shelling known weight of pods and 

weighing the kernels obtained after shelling. Based on this trait, groundnut genotypes are 

categorized in to low (<66 %), medium (66-75 %) and high (>75 %) (PPVFRA, 2009). In the 

present population, this trait had a range of 30.49 to 84.80 % shelling percentage covering all 

categories of this trait with a mean of 58.06 %. Both the parental lines had low shelling 

percentage which was 55.22 % 53.22 % in P1 and P2, respectively. Normal distribution was 

observed for the trait by recording a low skewness value -0.278 (Fig 4.3b). 

4.1.2.1.1.10 Oil content (%): Groundnut, being an important oilseed crop the percentage of oil 

in their kernels determines the oil yield per unit area. Both oil content and pod yield determine 

oil yield of a variety. Based on this trait groundnut genotypes are categorized in to low (<45 %), 

medium (45-48 %), high (49-52 %) and very high (>52 %) (PPVFRA, 2009). The present 

mapping population ranged from 43.49 to 59.61 % of oil content with a mean of 48.53 %. P1 

recorded high oil content (49.23 %) whereas medium oil content was observed in P2 (46.09 %) 

but both the parents were within the range of the mapping population. This trait exhibited normal 

distribution by recording a moderate skewness value of 0.714 (Fig 4.3b). 

4.1.2.1.1.11 Protein content (%): Being leguminous crop groundnut kernels are rich in protein. 

The protein content in the mapping population ranged from 24.89 to 29.75 % with a mean of 

27.22 %. P1 (27.08 %) and P2 (27.36 %) recorded almost similar protein content and were within 

the range of mapping population. The population distributed normally for the trait under concern 

by recording a low skewness value of -0.221 (Fig 4.3b). 

4.1.2.1.1.12 Kernel iron concentration (mg kg
-1

): The mean kernel iron concentration among 

the mapping population was 45.29 mg kg
-1

 with a range of 31.77 to 61.41       mg kg
-1

. Among 

the parental lines, P1 (52.50 mg kg
-1

) recorded higher kernel iron concentration than P2 (37.30 

mg kg
-1

) and both the parents were within the range of mapping population. Normal distribution 

was observed for this trait with a moderate skewness value of 0.516 (Fig 4.3c). 

4.1.2.1.1.13 Kernel zinc concentration (mg kg
-1

): The population had a kernel zinc 

concentration ranged from 59.64 to 90.40 mg kg
-1

 with a mean of 76.74 mg kg
-1

. Both the 

parents were within the range of the population though P1 (79.5 mg kg
-1

) recorded higher kernel 



zinc concentration than P2 (65.00 mg kg
-1

). The population exhibited normal distribution with a 

low skewness value of -0.115 for this trait (Fig 4.3c). 

4.1.2.1.1.14 Oleic acid content (%): Oleic acid content in the oil has got an important role in 

human diet as well as in industrial uses. Ratio of oleic to linoleic acid is important in determining 

the quality of groundnut oil. Oleic acid contributes nearly 46.8 % of total fatty acid composition 

of groundnut oil. The trait ranged from 31.66 to 53.93 % in the population understudy with a 

mean of 41.31 %. P2 (44.75 %) recorded higher oleic acid content than P1 (40.04 %) and both the 

parental lines were within the range of the mapping population. Normal distribution was noticed 

for the trait with a low skewness value of 0.377 (Fig 4.3c). 

4.1.2.1.1.15 Linoleic acid content (%): Linoleic acid contributes nearly 34 % of total fatty acid 

composition of groundnut oil. The population showed a range of 24.04 to 42.17 % for linoleic 

acid content with a mean of 34.08 %. Both the parental lines were within the range of the 

mapping population though P1 (35.50 %) recorded higher linoleic acid content than P2 (30.67 %). 

A skewness value of -0.495 was obtained indicating normal distribution for this trait (Fig 4.3c). 

4.1.2.1.1.16 Palmitic acid content (%): Palmitic acid content varied from 11.01 to 14.38 % in 

the population with a mean of 12.73 %. Both the parents were within the range of the population 

and recorded almost similar values for palmitic acid content though P1 (12.63 %) recorded a little 

higher value than P2 (12.55 %). Normal distribution was recorded for the trait with a low 

skewness value of -0.042 (Fig 4.3c).  

4.1.2.1.1.17 Stearic acid content (%): In the mapping population stearic acid content varied 

from 1.54 to 3.65 % with a mean of 2.22 %. Almost same stearic acid content was observed in 

both the parents though P1 (2.24 %) recorded slightly higher value compared to P2 (2.13 %) and 

both of them were within the range of the mapping population. Normal distribution was observed 

for the trait though it has recorded a moderate skewness value of 0.912 (Fig 4.3c). 

 Overall perusal of descriptive statistics revealed that normal distribution was observed for 

almost all the traits except days to maturity and protein content. Transgressive segregants which 

were outperforming either of the parents for all the traits including kernel iron and zinc 

concentrations (except for days to maturity) were present in the population. This suggests that 

the present mapping population is perfect for QTL mapping for kernel iron and zinc 

concentrations. 

 



4.1.2.2 Estimation of Genetic Parameters 

Genetic variability is essential for initiating an effective and successful breeding 

programme and it becomes imperative to study the level of genetic variability available in the 

existing genotypes. Genetic improvement of a crop through breeding relies solely on the 

utilization of available or created genetic variability. Depending on the trait, variability in a 

population can arise from genotype or environment or genotype × environment interaction 

effects. If the variability in the population is largely due to genetic cause with least 

environmental effect, the probability of isolating superior genotypes through selection will be 

more (Nath and Alam, 2002). Breeding in such population is primarily conditioned by the 

magnitude and nature of genotype × environment interactions on plant characters. Thus, to 

improve selection efficiency it becomes necessary to have an understanding of parameters such 

as genotypic and phenotypic co-efficient of variation, genetic advance and heritability which 

helps to further clarify the nature of character. Heritability and genetic advance is a useful tool 

for breeders in determining the direction and magnitude of selection. Therefore, the present 

investigation was undertaken to study variability, heritability and genetic advance (Table 4.4) for 

various characters in F2:3 population of the cross ICGV 06099 × ICGV 93468 in groundnut. 

4.1.2.2.1 Phenotypic and genotypic coefficient of variation (%) 

In the present population, phenotypic co-efficient of variation (PCV) varied from 2.30 % 

for protein content to 34.45 % for single plant yield (Table 4.4), whereas genotypic co-efficient 

of variation (GCV) varied from 1.68 % for days to flowering to 32.04 % for single plant yield. 

For almost all the traits the difference between PCV and GCV was moderate suggesting 

influence of environment on the expression of these traits. Vishnuvardhan et al. (2013) and 

Satish (2014) also reported influence of environment on several traits in groundnut. 

For kernel iron and zinc concentrations, a moderate difference between PCV and GCV 

was observed suggesting moderate influence of environment. The estimates and the difference 

between PCV and GCV were higher for kernel iron concentration than that for kernel zinc 

concentration indicating that kernel iron concentration was more influenced by the environment 

than kernel zinc concentration in groundnut. In contrast to the present findings, Ravikiran et al. 

(2014) reported higher influence of environment on grain zinc concentration in sorghum. 

 Low PCV estimates were recorded for protein content (2.30 %), days to emergence (2.38 

%), days to maturity (3.93 %), days to flowering (4.69 %), palmitic acid (5.05 %), kernel zinc 



concentration (6.84 %), oleic acid (8.59 %) and linoleic acid content (9.06 %) whereas moderate 

PCV recorded for oil content (10.72 %), kernel iron concentration (12.60 %), stearic acid content 

(12.91 %), 100-kernel weight (13.22 %), shelling percentage (14.14 %) and sound mature kernel 

percentage (18.23 %). Higher PCV was recorded for pod yield per plot (28.40 %), kernel yield 

per plot (30.35 %) and single plant yield (34.45 %). Similarly, low GCV recorded for most of the 

characters except pod yield per plot (27.10 %), kernel yield per plot (26.10 %) and single plant 

yield (32.04 %) which had high GCV (Fig 4.4). The results pertaining to 100-kernel weight were 

partly in accordance with the findings of Nath and Alam (2002), Parameswarappa et al. (2005), 

Jonah et al. (2012) and Satish (2014) with respect to higher estimates of PCV but in contrast the 

difference between the estimates of PCV and GCV, which was very low in their findings. 

Contrasting results to the present study were reported by Parameswarappa et al. (2005) and 

Jonah et al. (2012) for shelling percentage and Vishnuvardhan et al. (2013) and Satyanarayan et 

al. (2014) for sound mature kernel percentage. 

For oil content moderate PCV and low GCV were observed in the present study. Low 

GCV for oil content was also reported by Parameswarappa et al. (2005) and Shukla and Rai, 

(2014). In the present study, low PCV and GCV recorded for protein content which is in 

agreement with the findings of Channayya et al. (2011), but in contrast to the findings of 

Parameswarappa et al. (2005) where moderate estimates were observed. 

Shukla and Rai (2014) reported higher estimates of PCV and GCV for oleic acid content 

which was in contrast with the present study where low PCV and GCV were recorded for this 

trait. 

Satish (2014) reported narrow difference between PCV and GCV for pod yield, while 

Parameswarappa et al. (2005), Jonah et al. (2012) and Satyanarayan et al. (2014) reported 

moderate difference between these estimates for the same trait. However, in the present study 

large difference between PCV and GCV was observed for pod yield per plot.  

4.1.2.2.2 Broad sense heritability and genetic advance  

Heritability provides information about the extent of which a particular genetic character 

can be transmitted to the successive generations (Mangi et al., 2010). High heritability indicates 

less environmental influence in the observed variation (Mohanty, 2003 and Eid, 2009). However, 

heritability value alone cannot provide information on the amount of genetic progress that would 

result from selection of best individuals. Johnson et al. (1955) reported that heritability estimates 



along with genetic advance would be more successful in predicting the effectiveness of selecting 

the best individuals. Genetic advance, which estimates the degree of gain in a trait obtained 

under a given selection pressure, is an important parameter that guides the breeder in choosing a 

selection programme (Hamdi et al., 2003). High heritability and high genetic advance for a given 

trait indicates that it is governed by additive gene action and, therefore, provides the most 

effective condition for selection (Tazeen et al., 2009). 

In F2:3 population of the cross, ICGV 06099 × ICGV 93468, estimates of broad sense 

heritability varied from 27.66 % for sound mature kernel percentage to 91.00 % for pod yield per 

plot (Table 4.4). The genetic advance varied from 0.09 % for stearic acid content to 55.50 % for 

pod yield per plot, whereas genetic advance as per cent of mean (GAM) ranged from 1.24 % for 

days to flowering to 61.37 % for single plant yield. Higher broad sense heritability coupled with 

higher GAM observed for pod yield per plot, single plant yield and kernel yield per plot 

indicating the easy transferability of the characters to the succeeding generations. Though higher 

heritability (broad sense) recorded for kernel iron (64.24 %) and zinc (62.21 %) concentrations, 

their genetic advance and GAM values were low. Moderate broad sense heritability (44.59 %) 

coupled with low GAM (3.22 %) observed for oil content whereas for protein content higher 

broad sense heritability (70.40 %) and low GAM (3.34 %) were recorded. 

Overall, higher broad sense heritability (>60 %) was noticed for pod yield per plot (91.00 

%), single plant yield (86.45 %), kernel yield per plot (73.91 %), protein content (70.40 %), days 

to maturity (64.44 %), kernel iron concentration (64.24 %), days to emergence (62.36 %) and 

kernel zinc concentration (62.21 %) indicating that these traits can be easily transferred to the 

succeeding generations. These results are in support with the findings of Nath and Alam (2002), 

Parameswarappa et al. (2005), Jonah et al. (2012), Satish (2014), Satyanarayan et al. (2014), 

Vishnuvardhan et al. (2013) and Janila et al. (2014). Moderate heritability (30-60 %) was 

observed for palmitic acid content (48.73 %), shelling percentage (47.98 %), oil content (44.59 

%), linoleic acid content (39.42 %), stearic acid (37.74 %), 100-kernel weight (37.00 %), oleic 

acid content (31.81 %) and days to flowering (30.60 %) making these traits to be transferred to 

their progeny with little difficulty. These results are in agreement with the findings of Noubissie 

et al. (2012) for oil content, Alam et al. (2013) for 100-kernel weight, but in contrast to the 

findings of Jonah et al. (2012) for days to emergence, Vishnuvardhan et al. (2013), John et al. 

(2014) and Satish (2014) for days to flowering, Parameswarappa et al. (2005) and Jonah et al. 



(2012) for shelling percentage,  Nath and Alam (2002), Alam et al. (2013) and Janila et al. 

(2014) for 100-kernel weight and Shukla and Rai (2014) for oil content. Low broad sense 

heritability was recorded for sound mature kernel percentage (27.66 %) indicating difficulty in 

transfer of this trait to the progeny. However, these results are in contrast to the findings of 

Satyanarayan et al. (2014) in groundnut. 

Higher genetic advance was obtained for pod yield per plot (55.50), while moderate level 

of genetic advance was recorded for kernel yield per plot (27.58) and single plant yield (11.19) 

suggesting that genetic gain can be expected for these characters in the succeeding generations 

(Table 4.4). These results were in support with the findings of Jonah et al. (2012) and Satish 

(2014) but in contrast to those reported by Parameswarappa et al. (2005) and Satyanarayan et al. 

(2014) where a higher genetic advance value was obtained. The remaining characters viz., stearic 

acid content (0.09), days to flowering (0.41), oil content (0.58), palmitic acid content (0.64), days 

to emergence (0.83), protein content (0.91), oleic acid content (0.98), linoleic acid content (1.13), 

100-kernel weight (1.41), kernel zinc concentration (3.83), kernel iron concentration (4.40), 

sound mature kernel percentage (7.21) and shelling percentage (8.11) recorded low genetic 

advance suggesting low increase in performance value up on selection in the next generation 

progeny. Similar results are obtained earlier by Vishnuvardhan et al. (2013), John et al. (2014), 

John and Reddy (2014) and Satish (2014) for days to 75 % flowering; Parameswarappa et al. 

(2005) and Jonah et al. (2012) for shelling percentage; Vishnuvardhan et al. (2013) and 

Satyanarayan et al. (2014) for sound mature kernel percentage; Parameswarappa et al. (2005), 

Noubissie et al. (2012) and Shukla and Rai (2014) for oil content, but contradictory results were 

recorded by Nath and Alam (2002), Parameswarappa et al. (2005), Jonah et al. (2012) and Satish 

(2014) for 100-kernel weight. 

Genetic advance as per cent of mean (GAM) for the studied traits ranged from 1.24 % for 

days to flowering to 61.37 % for single plant yield (Table 4.4). Higher GAM was recorded for 

single plant yield (61.37 %) followed by pod yield per plot (53.26 %) and kernel yield per plot 

(46.22 %) whereas moderate levels of GAM was observed for shelling percentage (13.98 %), 

and sound mature kernel percentage (10.39 %). The remaining traits viz., days to 75 % flowering 

(1.24 %), oleic acid content (2.38 %), days to emergence (3.06 %), oil content (3.22 %), linoleic 

acid content (3.32 %), protein content (3.34 %), stearic acid content (4.46 %), 100-kernel weight 

(4.46 %), kernel zinc concentration (4.99 %), palmitic acid content (5.07 %), days to maturity 



(5.22 %) and kernel iron concentration (9.72 %) recorded low GAM indicating low improvement 

of these traits in the succeeding generations upon selection.  

4.1.2.2.3 Correlation studies 

 An understanding of the characters associated with kernel yield and kernel mineral 

concentration is desirable for effective selection in the segregating populations. Correlation 

studies provide information on the nature and magnitude of association between pairs of traits, 

which is useful for the breeder in carrying out multiple trait improvements. Hence an attempt 

was made in the present investigation to explore correlation of kernel iron and zinc 

concentrations with agronomic traits and kernel nutrient parameters (Table 4.5). 

Kernel iron concentration showed highly significant positive association with kernel zinc 

concentration (0.302) (Fig 4.5). In an earlier study by Janila et al. (2014) involving 64 diverse 

advance breeding lines of groundnut also showed positive association between iron and zinc 

concentration. Similar results were recorded by Govindaraj et al. (2009) and Kanatti et al. (2014) 

in pearl millet, Ravikiran et al. (2014) and Susmitha and Selvi (2014) in sorghum, Ghanbari and 

Mameesh (1971), Velu et al. (2011b) and Badakhshan et al. (2013) in wheat and Bekele et al. 

(2013a) in rice. However, Ribeiro et al. (2013a) reported non-significant association between 

kernel iron and zinc concentrations in common bean. Kernel iron concentration had highly 

significant positive association with sound mature kernel percentage (0.132). Kernel zinc 

concentration exhibited significant positive association with days to flowering (0.149). No 

significant association was found between kernel iron and zinc concentration for pod yield. 

These results are in support with the findings of Govindaraj et al. (2009) in pearl millet, Nagesh 

et al. (2012) in rice and Janila et al. (2014) in groundnut. However, Kanatti et al. (2014) 

observed negative significant association between kernel iron concentration and kernel yield per 

plant in pearl millet whereas, Ravikiran et al. (2014) and Susmitha and Selvi (2014) reported 

significant positive association of grain iron and zinc concentrations with yield per plant in 

sorghum. Absence of association between pod yield and kernel iron and zinc concentrations in 

groundnut suggests the feasibility of kernel improving iron and zinc without jeopardizing the pod 

yield. 

Pod yield per plot recorded highly significant positive association with kernel yield per 

plot (0.915), 100-kernel weight (0.340), single plant yield (0.323) and sound mature kernel 

percentage (0.224) and linoleic acid content (0.239) whereas negative significant association was 



observed for pod yield per plot with shelling percentage (-0.278), oleic acid content (-0.245) and 

oil content (-0.127). Kernel yield per plot also showed significant positive correlation with 100-

kernel weight (0.352), single plant yield (0.298), linoleic acid content (0.266), sound mature 

kernel percentage (0.192) and shelling percentage (0.097) and negative significant association 

with oleic acid content (-0.267) and oil content (-0.132). Significant positive correlation of kernel 

yield per plot with 100-kernel weight, sound mature kernel percentage and shelling percentage 

was also reported earlier by Mahalakshmi et al. (2005), Kotzamanidis et al. (2006), Patil et al. 

(2006), Korat et al. (2010), Channayya et al. (2011) and Parmer et al. (2013) in groundnut. 

Oil content had positive significant association with days to maturity (0.286) and single 

plant yield (0.263) and negative significant association with palmitic acid content (-0.226), pod 

yield per plot (-0.127) and kernel yield per plot (-0.132). No significant association was observed 

between oil content and kernel iron and zinc concentrations in the present study. Mahalakshmi et 

al. (2005) and Korat et al. (2010) found non-significant association of pod or kernel yield with 

oil content. Protein content showed negative significant association with palmitic acid content (-

0.245) and oleic acid content (-0.176) (Fig 4.6). Parmer et al. (2013) observed that protein 

content have positive significant correlation with pod yield per plant and negative significant 

association with days to maturity. 

Considering the other important traits 100-kernel weight showed strong positive 

association with single plant yield (0.158), sound mature kernel percentage (0.245), pod yield per 

plot (0.340) and kernel yield per plot (0.352). These results are in accordance with the findings 

of Korat et al. (2010), Channayya et al. (2011) and Thirumala Rao et al. (2014) in groundnut. 

Oleic acid content recorded negative significant association with linoleic acid (-0.970), pod yield 

per plot (-0.245), oil content (-0.176) and kernel yield per plot (-0.267). Negative association 

between oleic and linoleic acid can be explained by fatty acid biosynthetic pathway wherein, 

enzymatic activity of delta-12-desaturase enzyme catalyses the addition of double bond onto 

oleic acid to produce linoleic acid. Linoleic acid content exhibited positive significant 

association with palmitic acid content (0.622). Thus in breeding high oleate lines with high oleic 

and low linoleic acid content, it is possible to even achieve reduced palmitic acid content of the 

oil which is desirable for consumer health. Among earliness traits, days to emergence showed 

significant positive association with days to flowering (0.241) and days to maturity (0.132) 

which is similar to the findings of Makinde and Ariyo (2013), Parmer et al. (2013) and 



Thirumala Rao et al. (2014). Days to maturity showed positive significant association with 100-

kernel weight (0.202), single plant yield (0.307), pod yield per plot (0.164), kernel yield per plot 

(0.158), sound mature kernel percentage (0.157) and oil content (0.286). Channayya et al. (2011) 

earlier reported similar association of days to maturity with sound mature kernel percentage. 

Because of positive association of days to maturity and several yield related parameters, breeding 

for early maturity may possibly have penalty on pod yield in groundnut.  

4.1.3 Genotyping for Identification of Genomic Regions Associated with 

Kernel Iron and Zinc Concentrations 

Genotyping of 184 F2 individuals was carried out using 33 SSR markers which were 

found polymorphic between the parents understudy. However, out of 33 markers, 28 SSR 

markers were clearly amplified in the mapping population.  

Genotyping was performed using GeneMapper ver. 4.0 software in which scoring was 

given for each marker on every individual entry based on the base pair size difference viz., score 

‘A’ for parent A type i.e., ICGV 06099, ‘B’ for parent B type i.e., ICGV 93468 and ‘H’ for 

heterozygous individuals. Like this, all the 28 markers were scored on all 184 individuals of the 

F2 population. 

4.1.4 QTL (single marker) Analysis 

QTL analysis was performed using both genotypic and phenotypic data of all the 

individuals of the population. In general, linkage map data is required for QTL analysis for any 

given trait, but it is not possible to construct a linkage map using 28 markers. Therefore, we 

proceeded to Single Marker Analysis (SMA) as it doesn’t require prior linkage map information. 

Markers identified through marker-trait association studies using one single mapping 

population has to be validated in different genetic backgrounds to determine the consistency of 

results (Miklas, 2007). Markers showing greater association and tighter linkage with the trait of 

interest can be used for marker assisted selection. The objective of this experiment was to 

identify the linked markers associated with the kernel iron and zinc concentrations in F2:3 

mapping population of the cross ICGV 06099 × ICGV 93468 and to validate the identified 

linked markers in alternate F2:3 mapping population of cross ICGV 06040 × ICGV 87141 for 

their efficiency in contributing phenotypic variation to the kernel iron and zinc concentration. 

 

 



4.1.4.1 Single Marker Analysis and Validation 

 The information on genetic basis of accumulation of micro-nutrients in the kernels and 

mapping of the QTLs will provide the means to devise strategies for improving kernel 

micronutrient concentration through marker assisted selection. DNA markers which are closely 

linked with desired traits allow the selection of plants possessing those traits prior to trait 

expression. Hence the present study was carried out to identify the molecular markers associated 

with the kernel iron and zinc concentrations using single marker analysis. 

 The most basic way of determining whether an association exists between a molecular 

marker and a trait is to do single marker analysis. It will help in identifying significant 

association between markers and trait of interest on individual marker basis by providing 

information on the amount of phenotypic variation contributed by a particular marker towards 

the traits of interest. More the contribution of marker to phenotypic variation, stronger will be the 

association between marker and trait. 

 In the present study, twenty eight out of 33 polymorphic SSR markers which were clearly 

amplified in the mapping population were used for single marker analysis to identify markers 

that are closely associated with kernel iron and zinc concentrations in groundnut. Results 

revealed that, three markers viz., IPAHM245, SEQ1B09 and SEQ9G05 showed significant 

association with a phenotypic variation of 2.19, 0.23 and 6.24 % (Table 4.6), respectively for 

kernel iron concentration, while three other markers viz., GM2638, IPAHM245 and SEQ9G05 

showed significant association with a phenotypic variation of 1.75, 2.25 and 6.01 %, respectively 

for kernel zinc concentration. Among these, two markers viz., IPAHM245 and SEQ9G05 were 

contributing for both kernel iron and zinc concentration suggesting the presence of QTLs 

governing kernel iron and zinc concentrations on the same location of the chromosome. This 

indicated that kernel iron and zinc concentrations were co-segregating with each other. These 

results are in agreement with the findings of Anuradha et al., (2012) in rice, Shi et al., (2008) and 

Tiwari et al., (2009) in wheat, Jin et al., (2013) in maize, Cichy et al., (2009) and Blair et al., 

(2009) in common bean and Klein and Grusak (2009) in clover. Therefore, these two markers 

can be used for further studies to identify the exact genomic regions (QTLs) associated with 

kernel iron and zinc concentrations in groundnut.  

 The correlation studies on kernel iron and zinc concentrations in F2:3 population also 

revealed the existence of highly significant positive association between these two micronutrient 



concentrations (Velu et al., 2011b in wheat; Govindaraj et al., 2009 and Kanatti et al., 2014 in 

pearl millet and Ravikiran et al., 2014 and Susmita and Selvi, 2014 in sorghum) as that observed 

during single marker analysis. Thus identifying genomic regions (QTLs) associated with either 

of the micronutrient concentration may be useful in simultaneous improvement of both the 

micronutrients in groundnut kernels.  

Validation of putative markers is required to confirm the reproducibility of results by 

selected markers for marker aided breeding program (Miklas, 2007). So the markers which were 

found significant on F2:3 population of the cross ICGV 06099 × ICGV 93468 were validated on 

alternate F2:3 population derived from the cross ICGV 06040 × ICGV 87141. The kernel iron and 

zinc concentrations of the entries which scored similar to the entries of genotyping population 

having high iron and zinc parent type were biochemically analysed. The results revealed that 

most of the entries identified by the above mentioned markers were having higher iron and zinc 

concentrations in their kernels (Table 4.7) suggesting that all the four markers which were found 

significant in the genotyping population were actually linked to the traits of interest. Hence these 

markers can be efficiently utilised in marker aided breeding programmes aimed at the 

improvement of these two micronutrient concentrations in groundnut kernels.  

Table 4.6.  Results of Single Marker Analysis (SMA) for kernel iron and zinc 

concentrations using three significant markers each in F2:3 mapping population 

of the cross ICGV 06099 × ICGV 93468 in groundnut 

Marker No. Marker  Probability R
2
 (%) 

For kernel iron concentration 

11 IPAHM245 0.009 ** 2.19 

21 SEQ1B09 0.049 * 0.23 

23 SEQ9G05 0.002 ** 6.24 

For kernel zinc concentration 

10 GM2638 0.038 * 1.75 

11 IPAHM245 0.012 * 2.25 

23 SEQ9G05 0.001 ** 6.01 

 

Where,  

            R
2
 (%) = Phenotypic variation explained (%);  

4.1.5 Principal Component Analysis (PCA) 

 Based on the phenotypic data of mapping population Principal Component Analysis 

(PCA) was performed for important traits viz., kernel iron and zinc concentrations, pod yield per 

plot, kernel yield per plot, oil content, protein content, oleic acid content and linoleic acid 



content to understand the variation contributed by these traits (Fig 4.7) and to find out the 

association between them. Results revealed that first two principal components contributed to 49 

% of total variance (Rao, 1964). Among which PC1 contributed 28.8 % and PC2 contributed 

20.2 % of phenotypic variation (Kumar et al., 2010b). The kernel iron and zinc concentrations 

formed one group (G1), oil and protein content formed second group (G2) and pod yield per plot 

and seed yield per plot formed another group (G3). However oleic acid and linoleic acid contents 

were located away from all the observations and were 180° apart from each other.  

The association between various traits using PCA is determined using the degree of angle 

between two variables. If the angle between two variables is less than 90° then they are 

positively correlated, if the angle is equal to 90° there is no correlation between variables and if 

the angle is more than 90° then the two variables in question are negatively correlated (Rad et 

al., 2013). In the present study, positive correlation was observed between kernel iron and zinc 

concentrations, pod yield per plot, kernel yield per plot, and oil and protein contents. But a strong 

negative relation was observed between oleic and linoleic acid contents since the degree of angle 

was nearly 180°. This can be attributed to their biochemical pathway of conversion of oleic to 

linoleic acid. However no association of kernel iron and zinc concentrations with yield was 

observed as the angle between these traits was nearly 90°.  

The present study was based on only two mapping populations (one population is for the 

genotyping and the other population is for validation) evaluated for only one season. Thus 

evaluating populations of more number of crosses at multiple locations may be done to test the 

validity and reproducibility of the present findings. 

4.2 GENERATION MEAN ANALYSIS 

Generation mean analysis (Mather and Jinks, 1982) is a simple but useful technique for 

estimating gene effects for polygenic traits. It provides information on the relative importance of 

average effects of the genes (additive effects), dominance deviations and effects due to non-

allelic genetic interactions in determining genotypic values of the individuals and consequently, 

mean genotypic values of families and generations. In the present experiment generation mean 

analysis was conducted on six generations of two crosses viz. ICGV 06040 × ICGV 87141 and 

ICGV 06099 × ICGV 93468. The parents in each cross had contrasting kernel iron and zinc 

concentrations (Table 3.3). The results obtained are discussed under the following headings:  



4.2.1 Analysis of variance  

4.2.2 Mean performance  

4.2.3 Genetic parameters 

4.2.4 Heterosis and inbreeding depression 

4.2.5 Gene effects using generation mean analysis 

4.2.6 Correlation studies 

4.2.1 Analysis of Variance 

Analysis of variance was performed for nine characters as per the design of experiment 

for comparison of crosses as well as generations of each cross according to Panse and Sukhatme 

(1985). The mean squares from ANOVA, presented in Table 4.8 revealed significant differences 

among the crosses for five traits viz., days to maturity, 100-kernel weight, pod yield per plant, 

kernel iron and kernel zinc concentrations which indicated that considerable amount of 

variability was present between the crosses for these traits. Likewise the mean sum of squares 

among the progenies (generations) for the nine characters studied in both the crosses revealed the 

existence of significant differences among the six generations for seven traits viz., days to 

emergence, days to maturity, 100-kernel weight, shelling percentage, pod yield per plant, kernel 

iron and zinc concentrations in the first cross i.e. ICGV 06040 × ICGV 87141 and for six traits 

viz., days to emergence, days to maturity, 100-kernel weight, pod yield per plant, kernel iron and 

zinc concentrations in the second cross i.e. ICGV 06099 × ICGV 93468. So, further genetic 

analyses of generation means was carried out for seven traits in the cross ICGV 06040 × ICGV 

87141 and for six traits in the cross ICGV 06099 × ICGV 93468.  

4.2.2 Mean Performance 

 The mean performance of six generations (P1, P2, F1, F2, B1 and B2) of two crosses for 

nine different characters including kernel iron and zinc concentrations was furnished in Table 

4.9. The female and male parents were indicated as P1 and P2, respectively. The results obtained 

are discussed trait-wise for each cross below: 

4.2.2.1 Days to Emergence 

In the cross ICGV 06040 × ICGV 87141, among all generations, the female parent (P1) 

had taken less number of days to emerge (11 days) compared to the male parent (P2) which 



recorded 15 days to emergence. The hybrid (F1) had taken 12 days to emerge which was nearer 

to the mid parental value. Whereas, F2, B1 and B2 generations recorded mean values of 14, 15 and 

16 days, respectively to emerge. P1 was statistically at par with F1 and F2 whereas P2, F2, B1 and 

B2 were on par with each other. 

 Among all the generations in the cross ICGV 06099 × ICGV 93468, P1, P2, F1 and F2 

generations took 11 days to emerge whereas B1 and B2 generations recorded 14 and 12 days, 

respectively to emerge. All the generations, except B1 were statistically at par with each other. 

4.2.2.2 Days to Flowering 

In the cross ICGV 06040 × ICGV 87141, the parent P1 took 48 days to flower which was 

earlier compared to P2 which recorded 50 days to flower. The hybrid (F1) and B2 generations 

recorded 49 and 48 days to flower, respectively whereas F2 and B1 generations have recorded 50 

and 49 days, respectively to flower. As all the generations were at par with each other significant 

difference was not observed for this trait. 

In the cross ICGV 06099 × ICGV 93468, both the parents, F1, F2, B1 and B2  recorded 

nearly same mean number of days (~47 days) to flower which indicated that there was no 

significant variation for this trait among the generations.   

4.2.2.3 Days to Maturity  

In the cross ICGV 06040 × ICGV 87141, P1 and P2 took 159 and 142 days to mature, 

respectively. Among generations B2 matured in 156 days, B1 and F2 took 158 days to mature and 

F1 required 159 days to attain maturity (Fig 4.8). All the generations with the exception of P2 

were statistically at par with each other.  

In the cross ICGV 06099 × ICGV 93468, P2 took less number of days (133 days) to 

mature followed by B2 (137 days), F1 (148 days), B1 (156 days), F2 (156 days) and P1 (159 days) 

(Fig 4.8). P2 and B2 generations were observed to be on par with each other and were 

significantly different from rest of the generations which were at par among themselves. 

 

 



4.2.2.4 100-kernel Weight (g)  

In the cross ICGV 06040 × ICGV 87141, among generations, B1 recorded highest 100-

kernel weight (44.54 g) followed by P1 (44.53 g), F1 (43.94 g), F2 (43.00 g), B2 (36.49 g) and P2 

(34.82 g) generations (Fig 4.8). B2 and P2 generations were at par with each other and were 

significantly different from rest of the generations. 

 In the cross ICGV 06099 × ICGV 93468, the F1 generation recorded highest 100-kernel 

weight of 46.37 g followed by P1 (46.32 g), B1 (45.03 g), P2 (44.78 g), B2 (44.33 g), and F2 

generations (36.43 g) (Fig 4.8).  With the exception of F2, no significant difference was observed 

among the other generations.  

4.2.2.5 Shelling Percentage 

In the cross ICGV 06040 × ICGV 87141, highest shelling percentage (75.4 %) was 

observed in F1 generation followed by P1 (72.54 %), F2 (66.07 %), B2 (65.51 %), B1 (61.05 %) 

and P2 (57.74 %) generations. P1 and F1 were at par with each other and were significantly 

different from rest of the generations, whereas F2, B1 and B2 were at par with each other and P2 

generation was found significantly different from all the remaining generations. 

 In the cross ICGV 06099 × ICGV 93468, among all the generations F2 recorded highest 

shelling percentage (65.32 %) followed by B2 (62.77 %), B1 (62.29), P2 (61.26 %), P1 (60.17 %) 

and F1 (58.98 %) generation.  There was no significant variation for this trait among the 

generations.  

4.2.2.6 Sound Mature Kernel Percentage (%)  

In the cross ICGV 06040 × ICGV 87141, among the generations, B2 had highest sound 

mature kernel percentage (68.88 %) followed by F2 (67.50 %), P1 (64.70 %), F1 (60.85 %), P2 

(55.24 %) and B1 (54.38 %) generations.  

Among all the generations in the cross ICGV 06099 × ICGV 93468, highest sound 

mature kernel percentage (71.79 %) was obtained in F2 generation, followed by F1 (67.88 %), B1 

(67.34 %), P1 (65.18 %), B2 (58.28 %) and P2 (57.86 %) generations. 

4.2.2.7 Pod Yield per Plant (g plant
-1

)  

In the cross ICGV 06040 × ICGV 87141, significant variation was observed among the 

parents for pod yield per plant. The mean pod yield per plant for P2 was 31.09 g in comparison to 

24.82 g for P1. Among generations, B1 recorded highest pod yield per plant (39.99 g) followed 



by B2 (34.12 g) whereas, F1 (31.67 g) and F2 (31.40 g) generations recorded almost same pod 

yield per plant (Fig 4.9). P1 was significantly different from B2 and B1 which were at par with 

each other and P1 was at par with F1, F2 and P2 for this trait. 

 In the cross ICGV 06099 × ICGV 93468, significant variation was observed among the 

parents with P1 (30.71 g) recording higher yield than P2 (26.77 g). Among the generations, 

highest pod yield per plant was recorded by F1 (37.51 g), followed by B2 (35.90 g), B1 (33.50 g) 

and F2 (30.82 g) generations (Fig 4.9). P1, P2 and F2 were statistically at par with each other and 

were significantly different from F1. 

4.2.2.8 Kernel Iron Concentration (mg kg
-1

)  

In the cross ICGV 06040 × ICGV 87141, this trait showed significant difference between 

the parents with P1 recording higher kernel iron concentration (33.32 mg kg
-1

) compared to the 

parent P2 (25.54 mg kg
-1

). Among the generations, F1 (28.49 mg kg
-1

) and F2 (28.38 mg kg
-1

) 

recorded almost similar concentration, whereas B2 recorded higher concentration (31.49 mg kg
-1

) 

than B1 (29.42 mg kg
-1

) (Fig 4.9). F1, F2 and B1 were statistically at par with each other and were 

significantly different from P1 whereas P2 was significantly different from P1 and B2. 

 In the cross ICGV 06099 × ICGV 93468, significant difference was observed for kernel 

iron concentration between the parents with P1 (25.49 mg kg
-1

) recording higher concentration 

than P2 (20.83 mg kg
-1

). Among the generations, B1 had higher concentration (26.25 mg kg
-1

) 

followed by F2 (25.19 mg kg
-1

), B2 (24.07 mg kg
-1

) and F1 (21.95 mg kg
-1

) (Fig 4.9). P1 was 

statistically on par with F2, B1 and B2 and was significantly different from P2 and F1. 

4.2.2.9 Kernel Zinc Concentration (mg kg
-1

) 

In the cross ICGV 06040 × ICGV 87141, kernel zinc concentration varied significantly 

between the parents with P1 (50.91 mg kg
-1

) recording more concentration than P2 (36.05 mg kg
-

1
). Among the generations, B1 (42.46 mg kg

-1
) recorded higher concentration than B2 (41.98 mg 

kg
-1

), whereas F1 (40.27 mg kg
-1

) and F2                      (39.80 mg kg
-1

) generations had almost same 

concentration (Fig 4.9). F1, F2, B1 and B2 were statistically at par with each other and were 

significantly different from P1 and P2 which themselves were found to be significant. 

 In the cross ICGV 06099 × ICGV 93468, the trait showed significant difference between 

the parental generations with P1 (36.58 mg kg
-1

) having more concentration than P2 (30.39 mg 

kg
-1

). Among the generations, B1 (37.27 mg kg
-1

) recorded higher concentration than B2 (32.91 

mg kg
-1

) and F2 (35.80 mg kg
-1

) recorded higher concentration than F1 (32.01 mg kg
-1

) (Fig 4.9). 



The generations P2, F1, F2 and B2 were statistically at par with each other but were significantly 

different from P1 and B1 generations. 

4.2.3 Genetic Parameters 

The various genetic parameters viz., phenotypic coefficient of variation (PCV %), 

genotypic coefficient of variation (GCV %), heritability (broad and narrow sense), genetic 

advance, genetic advance as per cent of mean and degree of dominance for nine characters 

(Table 4.10) were computed and the results are discussed below: 

4.2.3.1 Phenotypic and Genotypic Coefficient of Variation 

Genetic variability is an essential prerequisite for any crop improvement programme for 

developing high yielding varieties. The improvement in any trait requires a thorough knowledge 

of the existing genetic variation among cultivars which can be obtained through the estimation of 

different genetic parameters like genotypic and phenotypic coefficients of variability, heritability 

and genetic advance (Younis et al., 2008). The observed variability is a combined estimate of 

genetic and environmental causes, of which only the former one is heritable (Noubissié et al., 

2012). In genetic studies, characters with high genotypic coefficient of variation indicate the 

potential for an effective selection (Sadiq et al., 1986). 

In the present study, PCV for the cross ICGV 06040 × ICGV 87141 varied from 1.39 % 

for days to maturity to 52.23 % for days to emergence (Table 4.10) and genotypic coefficient of 

variation (GCV) ranged from 1.01 % for days to flowering to 32.52 % for days to emergence. In 

the cross ICGV 06099 × ICGV 93468, PCV ranged from 1.86 % for days to flowering to 16.70 

% for pod yield per plant and GCV ranged from 0.86 % for days to flowering  to 13.90 % for 

pod yield per plant. In general, the PCV was found to be higher than GCV in both the crosses for 

all the traits suggesting profound influence of environment on the expression of the traits. 

For kernel iron and zinc concentrations, PCV values were moderately higher than GCV 

estimates in both the crosses suggesting moderate influence of environment on the expression of 

these traits. In both the crosses the difference between PCV and GCV values was higher for 

kernel iron concentration than that for kernel zinc concentration suggesting more influence of 

environment on kernel iron accumulation than that of kernel zinc. However, Ravikiran et al. 

(2014) reported more influence of environment on kernel zinc concentration in sorghum. The 



difference between PCV and GCV was found to be higher for days to emergence in the cross 

ICGV 06040 × ICGV 87141, indicating considerable influence of environment on the trait. For 

the cross ICGV 06099 × ICGV 93468, though the difference between PCV and GCV was less, 

higher estimates of PCV indicated the existence of considerable environmental influence on the 

expression of this trait. Similar kinds of results were obtained earlier in groundnut by Jonah et al. 

(2012), Rai et al. (2014) and Satyanarayan et al. (2014). 

For days to flowering and days to maturity, higher values of PCV over GCV was 

observed in both the crosses, which is in agreement with the reports of Zaman et al. (2011), 

Vishnuvardhan et al. (2013), Rai et al. (2014) and Satyanarayan et al. (2014) in groundnut. . 

For 100-kernel weight, moderate PCV and low GCV estimates were recorded in both the 

crosses. Similar findings with respect to PCV were reported by Nath and Alam (2002), 

Parameswarappa et al. (2005), Jonah et al. (2012) and Satish (2014) in groundnut. However, in 

their studies the difference between PCV and GCV was low while it was moderate in the present 

study. For shelling percentage, moderate PCV and GCV values were observed in both the 

crosses, however the difference between PCV and GCV was low for the cross ICGV 06040 × 

ICGV 87141 and moderate for the cross ICGV 06099 × ICGV 93468. Similar findings with 

respect to the cross ICGV 06040 × ICGV 87141 were reported by Parameswarappa et al. (2005) 

and Jonah et al. (2012) in groundnut. For sound mature kernel percentage also, the PCV was 

higher than GCV suggesting profound influence of environment on the expression of this trait. 

Moderate PCV and low GCV estimates were observed which are in agreement with the findings 

of Vishnuvardhan et al. (2013). But Satyanarayan et al. (2014) reported less difference between 

PCV and GCV for this trait. For pod yield per plant, in both the crosses moderate estimates of 

PCV and GCV were obtained and the difference between PCV and GCV was moderate with 

higher value of phenotypic coefficient of variation suggesting a notable influence of environment 

on the expression of the this character. Similar kind of results were reported earlier by 

Parameswarappa et al. (2005), Jonah et al. (2012) and Satyanarayan et al. (2014).  

4.2.3.2 Heritability (Broad Sense and Narrow Sense), Genetic Advance and Degree of 

Dominance 

In the cross, ICGV 06040 × ICGV 87141, lowest and highest estimates of heritability 

(broad sense and narrow sense) were recorded for sound mature kernel percentage (20.18 % and 

0.02 %) and days to maturity (88.88 % and 2.87 %), respectively. Genetic advance ranged from 



0.51 for days to flowering to 12.71 for days to maturity, while genetic advance as per cent of 

mean (GAM) varied from 1.04 % for days to flowering to 23.01 % for pod yield per plant. 

Shelling percentage and kernel zinc concentration recorded lowest (0.45) and highest (3.67) 

degree of dominance, respectively in this cross (Table 4.10). High heritability coupled with 

moderate GAM was observed for shelling percentage, kernel iron and zinc concentrations and 

100-kernel weight indicating easy transferability and genetic improvement of these traits is 

possible in the succeeding generations. Pod yield per plant recorded higher GAM (23.01 %) with 

moderate broad sense heritability (53.96 %) and kernel zinc concentration exhibited higher 

degree of dominance (3.67) along with higher broad sense heritability (71.15 %). Higher broad 

sense heritability was also reported by Janila et al. (2014) in groundnut suggesting that this trait 

can be easily transferred to succeeding generations upon selecting parental lines having higher 

zinc concentration in their kernels. 

Low narrow sense heritability was recorded for all the traits indicating less contribution 

of additive gene action in governing these traits. In the cross ICGV 06040 × ICGV 87141, days 

to maturity (88.88 %), shelling percentage (82.56 %), kernel iron (72.43 %) and zinc (71.15 %) 

concentrations and 100-kernel weight (61.36 %) recorded higher heritability (broad sense), 

which indicates less influence of environment and easy transferability of above mentioned 

characters to the progeny (Table 4.10). These results were supported by Nath and Alam (2002), 

Parameswarappa et al. (2005), Jonah et al. (2012), Vishnuvardhan et al. (2013), Janila et al. 

(2014) and Satyanarayan et al. (2014) for the above traits. Moderate heritability (broad sense) 

was observed for pod yield per plant (53.96 %) and days to emergence (49.79 %) indicating a 

little difficulty in transfer of these traits to the succeeding progeny. Similar findings were also 

made by Jonah et al. (2012) and Rai et al. (2014) for days to emergence in groundnut but these 

results are in contrast with the findings of Jonah et al. (2012), Alam et al. (2013) Satish (2014) 

and Satyanarayan et al. (2014) for pod yield per plant in groundnut. Low heritability (broad 

sense) was recorded for days to flowering (24.94 %) and sound mature kernel percentage (20.18 

%) indicating difficulty in improvement of these traits up on selection. In contrast high 

heritability (broad sense) for these two traits was reported by Vishnuvardhan et al. (2013) John 

and Reddy (2014), John et al. (2014), Satish (2014) and Satyanarayan et al. (2014) in groundnut. 

Moderate genetic advance values were obtained for days to maturity (12.71) and shelling 

percentage (12.57) so that genetic gains can be expected for these characters in the succeeding 



generations (Table 4.10). But these results were in contrast with the findings of Parameswarappa 

et al. (2005), Zaman et al. (2011), Jonah et al. (2012), Rai et al. (2014) and Satyanarayan et al. 

(2014). The remaining characters viz., days to flowering (0.51), day to emergence (2.52), sound 

mature kernel percentage (3.66), kernel iron concentration (4.39), 100-kernel weight (6.43), pod 

yield per plant (7.45) and kernel zinc concentration (8.03) recorded low estimates of genetic 

advance suggesting low efficiency of selection for these traits in the next generation progeny. 

Similar results were also recorded earlier by Noubissie et al. (2012), Vishnuvardhan et al. 

(2013), Satyanarayan et al. (2014) and Shukla and Rai (2014). But these results are in contrast to 

the findings of Nath and Alam (2002), Parameswarappa et al. (2005), Jonah et al. (2012) and 

Satish (2014) for 100-kernel weight and pod yield per plant in groundnut. 

GAM was high for pod yield per plant (23.01 %) and thus genetic gain can be expected 

through selection in the later generations. Moderate values of GAM was recorded for kernel zinc 

concentration (19.21 %), shelling percentage (18.95 %), days to emergence (17.86 %), 100-

kernel weight (15.59 %) and kernel iron concentration (14.93 %) suggesting moderate 

transferability of these characters to the progeny (Table 4.10). The remaining traits including 

days to flowering (1.04 %), sound mature kernel percentage (5.89 %) and days to maturity (8.17 

%) had low GAM indicating that selection might be ineffective in getting genetic gain in 

succeeding generations for these traits.  

Degree of dominance indicates the magnitude of dominance deviation relative to the 

additive variance. Higher the degree of dominance value more will be the trait expressibility of 

the hybrid progeny.  In the present cross, degree of dominance value was observed to be more 

than unity for most of the characters (Table 4.10) indicating over-dominance expression of these 

traits except for shelling percentage (0.45) and 100-kernel weight (0.86).  

In the cross ICGV 06099 × ICGV 93468, the highest and lowest estimates of heritability 

(broad sense) were recorded for days to maturity (84.04 %) and sound mature kernel percentage 

(25.62 %), respectively. Narrow sense heritability ranged from 0.19 % for kernel zinc 

concentration to 24.68 % for days to maturity and genetic advance varied from 0.58 for days to 

flowering to 19.06 for days to maturity whereas GAM ranged from 1.22 % for days to flowering 

to 23.85 % for pod yield per plant. Degree of dominance ranged from 0.49 for 100-kernel weight 

to 5.19 for shelling percentage (Table 4.10). Higher heritability (broad sense) coupled with 

moderate genetic advance as per cent of mean was observed for days to maturity, days to 



emergence and pod yield per plant indicating improvement of these traits in the succeeding 

progeny. Whereas days to maturity recorded higher genetic advance and shelling percentage 

showed higher degree of dominance along with higher heritability. 

Days to maturity (84.04 %), days to emergence (74.83 %) and pod yield per plant (69.36 

%) recorded high heritability (broad sense) which indicates easy transfer of above mentioned 

characters to the progeny (Table 4.10). Similar results with respect to days to emergence and pod 

yield per plant were reported by Jonah et al. (2012),      Alam et al. (2013), Vishnuvardhan et al. 

(2013), Satish (2014) and Satyanarayan et al. (2014) in groundnut. But for days to emergence 

these results are in contrast with the findings of Rai et al. (2014) and Satyanarayan et al. (2014) 

in groundnut. Moderate heritability was observed for 100-kernel weight (51.52 %), kernel iron 

(49.85 %) and zinc (45.12 %) concentrations and days to flowering (36.68 %) which was in 

contrast with the findings of Parameswarappa et al. (2005), Jonah et al. (2012), Vishnuvardhan 

et al. (2013), Janila et al. (2014), John et al. (2014) and Satish (2014) in groundnut. Low broad 

sense heritability was recorded for shelling percentage (29.16%) and sound mature kernel 

percentage (25.62 %) making these traits difficult to improve in succeeding generations due to 

less transferability to the progeny. These results are similar with the findings of Vishnuvardhan 

et al. (2013) but are in contrast with the findings of Parameswarappa et al. (2005), Jonah et al. 

(2012) and Satyanarayan et al. (2014) in groundnut. 

Maximum but moderate genetic advance estimate was obtained for days to maturity 

(19.06) so that genetic gain can be expected for this character in the succeeding generations of 

this cross (Table 4.10). But these results were in contrast with the findings of Parameswarappa et 

al. (2005), Zaman et al. (2011), Vishnuvardhan et al. (2013), Rai et al. (2014) and Satyanarayan 

et al. (2014) in groundnut. The remaining characters viz., days to flowering (0.58), day to 

emergence (1.76), sound mature kernel percentage (2.83), kernel iron concentration (2.98), 

shelling percentage (3.82), kernel zinc concentration (4.05), 100-kernel weight (4.83) and pod 

yield per plant (8.08) recorded low genetic advance estimates suggesting low increase in 

performance in the next generation progeny upon selection. These results are supported by the 

earlier findings of Parameswarappa et al. (2005), Noubissie et al. (2012), Vishnuvardhan et al. 

(2013), Satyanarayan et al. (2014) and Shukla and Rai, (2014). But contradictory results were 

obtained by Nath and Alam (2002), Parameswarappa et al. (2005), Jonah et al. (2012) and Satish 

(2014) for 100-kernel weight and pod yield per plant in groundnut. 



GAM was moderate for pod yield per plant (23.85 %) followed by days to emergence 

(14.94 %), days to maturity (12.84 %), kernel iron concentration (12.34 %), kernel zinc 

concentration (11.86 %), and 100-kernel weight (10.91 %) (Table 4.10), suggesting moderate 

improvement of these traits up on selection. Low GAM estimates were recorded for shelling 

percentage (6.05 %), sound mature kernel percentage (4.66 %) and days to flowering (1.22%) 

indicating low transferability of the characters and difficulties in selection.  

Degree of dominance was more than unity for most of the studied characters indicating 

over dominance expression of these traits, except 100-kernel weight (0.49), kernel iron (0.78) 

and zinc (0.99) concentrations which had a value of less than unity suggesting partial dominance 

expression (Table 4.10). However, in self-pollinated crops like groundnut, over dominance 

expression of all the traits may not be supportive, thus further study is required to draw 

conclusions on the degree of dominance of various traits using more number of crosses. 

4.2.4 Heterosis and Inbreeding Depression 

The superiority of F1 hybrid over the parents is termed as heterosis. Heterosis serves as a 

basic tool for improved production of crops in the form of F1 hybrids. The phenomenon of 

heterosis of F1 hybrids can reflect their own specific combining ability (SCA) and the general 

combining ability (GCA) of parental lines. The estimates of heterosis and inbreeding depression 

provide information about the nature of gene action involved in the expression of yield and 

related traits, which helps to formulate breeding programmes for the improvement of target 

traits.  

In the cross ICGV 06040 × ICGV 87141, average heterosis ranged from -12.20 % for 

days to emergence to 44.44 % for pod yield per plant. Significant positive average heterosis was 

observed for days to maturity (5.64), shelling percentage (15.92) and pod yield per plant (44.44) 

revealing that the F1 of this cross out performed mid-parental value significantly for the above 

mentioned traits (Table 4.11). However, for some traits such as days to maturity, days to 

flowering etc., negative significant heterosis is more preferred over positive significant heterosis. 

Residual heterosis over mid-parent varied from -7.90 % for kernel zinc concentration to 13.90 % 

for sound mature kernel percentage (Table 4.11). Positive significant residual heterosis over mid-

parent was observed for days to maturity (5.21) which was not desirable as earliness was 

advantageous in most of the breeding experiments (Table 4.11).  



Heterobeltiosis in the cross ICGV 06040 × ICGV 87141, varied from -18.57 % for kernel 

zinc concentration to 32.48 % for shelling percentage. Significant negative heterobeltiosis was 

observed for kernel iron (-14.14 %) and zinc (-18.57 %) concentrations indicating poor 

performance of hybrid over better parent, whereas pod yield per plant (27.50 %) and days to 

maturity (11.97 %) recorded significant positive heterobeltiosis suggesting better performance of 

F1 over better parent for both these traits. However, positive significant heterobeltiosis was not 

desirable with respect to days to maturity as early maturity is an important breeding objective in 

groundnut. Residual heterobeltiosis over better parent ranged from -21.53 % for kernel zinc 

concentration to 26.59 % for days to emergence. Significant positive residual heterobeltiosis over 

better parent was observed for days to flowering (3.94 %) and days to maturity (11.50 %) which 

was not desirable as F2 plants were taking more number of days than better parent to flower and 

to mature, respectively. Similar to heterobeltiosis values, significant negative residual heterosis 

over better parent was observed for kernel iron (-14.97) and zinc (-21.53) concentrations 

suggesting poor F2 progeny performance over better parent (Table 4.11). 

In the cross ICGV 06099 × ICGV 93468, average heterosis ranged from -9.88 % for 

shelling percentage to 32.63 % for pod yield per plant. Significant positive average heterosis was 

observed for pod yield per plant (32.63 %) suggesting superior performance of F1 over mid-

parent value for the trait concerned. Residual heterosis over mid-parent value varied from -20.02 

% for 100-kernel weight to 20.47 % for sound mature kernel percentage.  Significant positive 

residual heterosis was observed for days to maturity (6.90 %) which indicates delayed maturity 

of F2 than the mid-parent value. Similarly sound mature kernel percentage (20.47 %) also 

recorded significant positive residual heterosis suggesting more amount of sound mature kernels 

in F2 than the mid-parent value. Significant negative residual heterosis was observed for 100-

kernel weight (-20.02 %) indicating smaller kernel size of F2 individuals than mid-parent value. 

Heterobeltiosis in the cross ICGV 06099 × ICGV 93468, varied from -16.75% for kernel 

zinc concentration to 14.86 % for pod yield per plant. Positive significant heterobeltiosis was 

observed for days to maturity (11.02 %), though negative significant heterosis was desirable for 

this trait (Table 4.11). Negative significant heterobeltiosis was observed for kernel zinc 

concentration (-16.75 %) indicating poor performance of F1 individuals over better parent. 

Residual heterobeltiosis over better parent varied from -18.64 % for 100-kernel weight to 17.34 

% for days to maturity. Significant positive residual heterobelteosis was observed for days to 



maturity (17.34 %) and sound mature kernel percentage (13.31 %) suggesting delayed maturity 

and more number of good kernels of F2 individuals than better parent in this cross (Table 4.11). 

However, 100-kernel weight recorded negative significant residual heterobeltiosis (-18.64 %) 

suggesting poor performance of F2 individuals over better parent for this trait. 

Groundnut being a self-pollinated crop, the role of inbreeding depression is very less. 

However, an attempt was made to understand the role of inbreeding depression in the present 

study. In the cross ICGV 06040 × ICGV 87141, inbreeding depression was ranged from -19.56 

% for days to emergence to 24.51% for pod yield per plant (Table 4.11). Higher value of 

inbreeding depression was observed for pod yield per plant (24.51 %) and shelling percentage 

(12.26 %) which is not desirable since there was a reduction in yield and shelling percentage 

upon selfing. This can be attributed to the presence of considerable amount of heterosis in the 

hybrid progeny for the above mentioned traits which was removed up on selfing. 

In the cross ICGV 06099 × ICGV 93468, inbreeding depression was ranged from -12.32 

% for kernel iron concentration to 23.35 % for pod yield per plant. Higher quantum of inbreeding 

depression was observed for pod yield per plant (23.35 %) and 100-kernel weight (21.42 %) 

suggesting decrease in pod yield and kernel size upon selfing (Table 4.11). These results are in 

accordance with the findings of Gor et al. (2012) for 100-kernel weight and John et al. (2014) for 

pod yield per plant. Low and negative inbreeding depression was observed for days to maturity 

indicating earliness of the plants upon selfing which is desirable from a breeder’s perspective.  

Significant heterosis (either average heterosis or heterobeltiosis) coupled with higher 

inbreeding depression signifies non-additive gene action, whereas non-significant heterosis 

coupled with lower value of inbreeding depression implies additive gene action. For pod yield 

per plant in both the crosses and shelling percentage in the cross ICGV 06040 × ICGV 87141, 

the first situation was observed, which reveals the importance of non-additive gene action in 

their inheritance. But days to maturity showed significant positive heterosis along with lower 

value of inbreeding depression. However, it is highly unrealistic to come to a conclusion based 

on few parameters with only two crosses. Hence further study is required for making valid 

conclusions. 

In all the cases of heterosis, days to maturity showed positive significance which is not 

desirable as it prolongs the duration of the crop and these results are in contrast with the findings 

of Gor et al. (2012), Waghmode et al. (2013) and John et al. (2014) who reported negative 



significant heterosis for days to maturity in groundnut. Positive significant heterosis for pod yield 

per plant observed in the present study was also supported by the findings of Dwivedi et al. 

(1989), Vyas et al. (2001), Gor et al. (2012), Verma and Ranwah (2012), John et al. (2014) and 

Prabhu et al. (2014) in groundnut. 

Negative significant heterosis estimates recorded by Gor et al. (2012) for 100-kernel 

weight and Venkateswarlu et al. (2007b), Gor et al. (2012) and Prabhu et al. (2014) for shelling 

percentage are in support with the findings in the present study suggesting that there would be 

reduction in kernel weight along with reduction in shelling percentage upon selfing. 

In the present study, a negative significant heterobeltiosis was obtained for kernel iron 

and zinc concentrations which is in contrast with the findings of Aruselvi et al. (2006), Velu et 

al. (2011a) and Govindaraj et al. (2013) in pearl millet and Kumar et al. (2013) in sorghum 

where a significant positive heterosis and heterobelteosis were reported for these traits. 

4.2.5 Gene Effects Using Generation Mean Analysis 

To begin a breeding program aiming to obtain cultivars with improved yield, nutritional 

quality and other target traits, it is important to have information on the genetic control of the 

traits targeted for improvement (Silva et al., 2013) as it has got direct bearing upon the choice of 

breeding procedures to be followed. Many traits of economic importance in groundnut are 

quantitatively inherited. The exploitation of genetic variability of these traits through 

hybridization and selection is the primary focus of most of the groundnut improvement 

programmes (Shobha et al., 2010).  In addition to additive and dominance variation, it has been 

suggested that epistasis may also be involved in the inheritance of many quantitative characters 

in groundnut (Hammons, 1973 and Wynne, 1976). The information on non-allelic interaction 

such as additive × additive epistatic variation is potentially useful, as it can be fixed in 

homozygous cultivars. But such information for quantitative traits in groundnut is very limited. 

In the present study, the generation mean analysis was employed to separate the genetic 

variance into additive, dominance and epistatic components, which helps in formulating an 

effective and sound breeding programme. There is no published report till date on the detailed 

genetic dissection on the kinds and magnitude of epistatic gene action controlling the kernel iron 

and zinc concentrations in groundnut. Therefore, the present study was aimed at understanding 

the genetic components influencing kernel micronutrient concentrations through generation 

mean analysis in groundnut. 



The mean data obtained from six generations of the two cross combinations viz., ICGV 

06040 × ICGV 87141 and ICGV 06099 × ICGV 93468 for seven characters in the first cross and 

six characters in the second cross including kernel iron and zinc concentrations were subjected to 

generation mean analyses using scaling tests to test the fitness of additive-dominance model and 

Hayman’s six parameter model to find the significant inter-allelic interactions. The data on gene 

effects are presented in Tables 4.12 and 4.13 and described only for those traits which were 

having significant mean sum of square values (Table 4.8) among the generations within the 

family. 

4.2.5.1 Days to Emergence 

 The scaling tests viz., A, B and C were found significant in the cross ICGV 06040 × 

ICGV 87141 (Table 4.12), while A and B scaling tests were found significant in the cross ICGV 

06099 × ICGV 93468 (Table 4.13), indicating that simple additive-dominance model was 

inadequate to explain the observed variation and epistatic interactions were present. Hence a six 

parameter model was adopted to test the presence of non-allelic interactions in both the crosses 

understudy. 

 In the cross ICGV 06040 × ICGV 87141, dominance effect was found positively 

significant whereas in the cross ICGV 06099 × ICGV 93468, both additive and dominance 

effects were positively significant. Among the interactions, in both the crosses additive × 

additive interaction was found positively significant, while dominance × dominance interaction 

was observed to be negatively significant. 

4.2.5.2 Days to Maturity 

 The three scaling tests viz., A, B and C were significant in the cross ICGV 06040 × ICGV 

87141, while A and C were significant in the cross ICGV 06099 × ICGV 93468, indicating the 

inadequacy of simple additive-dominance model and the presence of epistatic interactions. 

Hence a six parameter model was adopted to test the presence of non-allelic interactions. 

 In both the crosses viz., ICGV 06040 × ICGV 87141 and ICGV 06099 × ICGV 93468, 

additive effect and dominance × dominance component of epistasis were significant in positive 

direction in which dominance × dominance component recorded higher magnitude than additive 

effect, whereas dominance effect and additive × additive component of epistasis were negatively 

significant for the trait understudy. So besides additive gene action, dominance × dominance 

component of epistasis was found to be influencing the trait in both the crosses. 



 The results in both the crosses for days to maturity were similar indicating the significant 

influence of additive gene action and dominance × dominance component of epistasis in 

governing the trait understudy. The results are very much in line with the findings of Singh et al. 

(2001), Khattak et al. (2004), Singh et al. (2006), Akbari et al. (2013), Parmer et al. (2013) and 

Noorka et al. (2014) for this character in groundnut. 

4.2.5.3 100-Kernel Weight (g) 

Only one scaling test i.e., B was significant in the cross ICGV 06040 × ICGV 87141, 

while scaling test C was significant in the cross ICGV 06099 × ICGV 93468, which indicated the 

failure of additive-dominance model to explain the inheritance of 100-kernel weight in both the 

crosses. 

In both the crosses, only dominance × dominance component of epistasis was found 

positively significant whereas dominance effect and additive × additive component of epistasis 

were found negatively significant. So in the present study, dominance × dominance component 

was found to control the expression of 100-kernel weight in positive direction in both the 

crosses. 

These results are in accordance with the findings of Singh et al. (2006), but in contrary, 

Azizi et al. (2006), Fatehi et al. (2008), Sundari et al. (2012), Mulugeta et al. (2013) and Santosh 

et al. (2014) reported an important role of additive gene action in governing the 100-kernel 

weight in groundnut. Hence further studies using more number of crosses are required for 

accurate prediction of nature of gene action in governing the 100-kernel weight in groundnut. 

4.2.5.4 Shelling Percentage 

 Generation mean analysis for shelling percentage was carried out only in the cross ICGV 

06040 × ICGV 87141, as it was found to be significant in analysis of variance. Scaling tests A 

and C were found significant for the trait thus indicating the presence of non-allelic interactions 

in governing this trait in this cross. 

 Positive significance was observed only for dominance × dominance component of 

interaction suggesting its influence in governing this trait. Additive effect and additive × additive 

epistatic component were negatively significant for the trait understudy. 

 

 

 



4.2.5.5 Pod Yield per Plant (g) 

 In the cross ICGV 06040 × ICGV 87141, only scale A was found significant whereas 

only scale C was significant in the cross ICGV 06099 × ICGV 93468. This indicates the 

inadequacy of simple additive-dominance model to explain the inheritance of this character. 

 In both the crosses viz., ICGV 06040 × ICGV 87141 and ICGV 06099 × ICGV 93468, 

positive significance was recorded by dominance and additive × additive component of epistasis 

but the magnitude was higher for the dominance parameter suggesting its pronounced 

contribution to the trait expression. Negative significant influence of dominance × dominance 

component of epistasis was observed only in the cross ICGV 06040 × ICGV 87141. These 

results are in support with the findings of Azizi et al. (2006) in maize, Sharmila et al. (2007) in 

sesame, Fatehi et al. (2008) in wheat, Sundari et al. (2012) in sesame, Biranvand et al. (2013) in 

chickpea and Jawahar et al. (2013) in sesame but in contrast to the findings of Kalia and Sood 

(2009) in pea and Akbari et al. (2013) in lentil suggesting the involvement of additive gene 

action in governing the concerned trait. 

4.2.5.6 Kernel Iron Concentration (mg kg
-1

) 

 Only scaling test B was found significant in cross ICGV 06040 × ICGV 87141, while all 

three scales viz., A, B and C were significant in the cross ICGV 06099 × ICGV 93468 suggesting 

the inadequacy of simple additive-dominance model and the presence of epistatic interactions. 

So a six parameter model was adopted to test the presence of non-allelic interactions. 

In the cross ICGV 06040 × ICGV 87141, positive significant values were recorded by 

additive effect, dominance effect and additive × additive epistasis whereas negative significant 

value was recorded by dominance × dominance component of epistasis. With regard to the 

magnitude, dominance gene action was higher followed by additive × additive component of 

epistasis. 

 In the cross ICGV 06099 × ICGV 93468, positive significant estimate was obtained only 

for additive component of variance suggesting maximum contribution of the same to the trait 

expression whereas negative significant value was recorded by dominance × dominance 

component of epistasis. 

 Up on observing the impact of various parameters additive component of variance was 

found to be common in both the crosses suggesting its role in governing the expression of kernel 



iron concentration. The impact of additive gene action in controlling kernel iron concentration 

was found earlier in maize (Arnold et al., 1977, Long et al., 2004 and Chakraborti et al., 2011), 

rice (Zhang et al., 2004), pearl millet (Rai et al., 2012),  sorghum (Kumar et al., 2013) and 

common bean (Silva et al., 2013). 

4.2.5.7 Kernel Zinc Concentration (mg kg
-1

) 

 The three scaling tests viz., A, B and C were significant in the cross ICGV 06040 × ICGV 

87141, while A and C were significant in the cross ICGV 06099 × ICGV 93468, indicating the 

inadequacy of simple additive-dominance model and the presence of epistatic interactions. 

Hence a six parameter model was adopted to test the presence of epistatic interactions. 

 In the cross ICGV 06040 × ICGV 87141, additive effect and additive × additive 

component of epistasis were found positively significant for kernel zinc concentration suggesting 

strong influence of these components for trait expression which indicates that the trait can be 

fixed in the succeeding generations by selection. 

 In the cross, ICGV 06099 × ICGV 93468, only additive component was found positively 

significant emphasizing the influence of additive gene action in governing kernel zinc 

concentration. 

 The higher influence of additive gene action observed for kernel iron and zinc 

concentrations in the present study indicated that the lines or progenies with higher micronutrient 

concentrations can be developed by selecting parents with high concentration of these 

micronutrients and using them in crossing programs. 

Comparison of Gene Effects over Traits in Two Crosses 

The comparison of gene effects over traits in both the crosses (Table 4.14) revealed that, 

mean values were highly significant for all the traits studied except pod yield per plant 

suggesting the presence of variability among the generations for these traits.  

In the cross ICGV 06040 × ICGV 87141, additive component was found to be positively 

significant for days to maturity and kernel iron and zinc concentrations and negatively significant 

for shelling percentage whereas, dominant component was positively significant for days to 

emergence, pod yield per plant and kernel iron concentration and negatively significant for days 

to maturity and 100-kernel weight. Among the interactions, additive × additive component was 

significant for all the characters among which days to emergence, pod yield per plant and kernel 

iron and zinc concentrations had recorded positive significance, whereas days to maturity, 100-



kernel weight and shelling percentage showed negative significance. Additive × dominance 

component of epistasis was non-significant for all the characters understudy. Dominance × 

dominance component was positively significant for days to maturity, 100-kernel weight and 

shelling percentage and negatively significant for days to emergence, pod yield per plant and 

kernel iron concentration. 

Additive gene effect was found to be positively significant for days to emergence, days to 

maturity, kernel iron and zinc concentrations in the cross ICGV 06099 × ICGV 93468. 

Dominance component was significant for days to emergence and pod yield per plant in positive 

direction and days to maturity and 100-kernel weight in negative direction. Among the epistatic 

interactions, additive × additive component was positively significant for days to emergence and 

pod yield per plant and negatively significant for days to maturity and 100-kernel weight. 

Additive × dominance component had non-significant impact on the expression of all the traits. 

Dominance × dominance component was significant positively for days to maturity and 100-

kernel weight and negatively significant for days to emergence and kernel iron concentration. 

For all the traits in both the crosses viz., ICGV 06040 × ICGV 87141 and ICGV 06099 × 

ICGV 93468, the gene interaction was considered to be of duplicate type, since the estimates of 

dominance (h) and dominance × dominance (l) had opposite signs. For days to maturity and 100-

kernel weight in both the crosses and shelling percentage in the cross ICGV 06040 × ICGV 

87141, the dominance (h) component had negative sign and dominance × dominance (l) had 

positive sign which showed duplicate interaction between decreasing genes (Hayman and 

Mather, 1955). Whereas for days to emergence, pod yield per plant and kernel iron and zinc 

concentrations in both the crosses dominance (h) component had positive sign and dominance × 

dominance (l) had negative sign which showed duplicate interaction between increasing genes. 

This duplicate epistasis caused a higher degree of reduction of the positive effects of 

dominant genes, leading to low yield. Thus, for improving such traits it is better to defer 

selection till later generations until a high level of gene fixation is attained. Subsequent 

intermatings between promising lines may be important in accumulating favourable genes. 

Comparison of gene actions revealed that both additive and dominance components are 

equally important for the studied traits. However, for the target traits viz., kernel iron and zinc 

concentrations, the additive gene effects were prominent in both the crosses, though dominant 

component was also positively significant for kernel iron concentration in the cross ICGV 06040 



× ICGV 87141. Importance of additive gene action in governing kernel iron and zinc 

concentrations was also reported by Zhang et al. (2004) in rice, Long et al. (2004) and 

Chakraborti et al. (2011) in maize, Velu et al. (2011a) and Rai et al. (2012) in pearl millet, Silva 

et al. (2013) in common bean and Kumar et al. (2013) in sorghum. So to improve the kernel iron 

and zinc concentrations, in groundnut it is suggested to use pedigree method of breeding and 

pureline selection to exploit both additive and non-additive components in breeding program. 

Such a strategy will help in increasing the frequency of favourable alleles while maintaining the 

genetic variation in the breeding population (Doerksen et al., 2003).  

For reliable estimates of genetic effects using generation mean analysis, genes of like 

effects must be completely associated with the parents. Therefore, selection of parents 

contrasting for the trait being measured is crucial for this type of investigation. Any dispersal of 

like genes among the two parents may cause cancelling of genes of like effects resulting in the 

underestimation of additive (d), additive × additive (i) and additive × dominance (j) effects. 

Since the study was undertaken using parents contrasting mainly for kernel iron and zinc 

concentrations, estimates of additivity for other traits might be underestimated. The positive 

values of dominance (h) observed for pod yield per plant in both the crosses and kernel iron and 

zinc concentrations in cross ICGV 06040 × ICGV 87141 indicated that the alleles responsible for 

high value of the trait were dominant over the alleles controlling low value. 

The results also indicated the important role of digenic non-allelic interactions (epistasis), 

among which additive × additive component was found to be influencing more number of traits 

especially kernel iron and zinc concentrations in the cross ICGV 06040 × ICGV 87141 compared 

to dominance × dominance component of epistasis. However, for 100-kernel weight the 

dominance × dominance component was significantly positive in both the crosses. For such 

traits, reciprocal recurrent selection might be useful to improve kernel size in groundnut. 

From the results obtained in the present investigation it can be concluded that there was 

significant influence of additive gene action on the expression of kernel iron and zinc 

concentrations along with the contribution of dominance component for the control of pod yield 

per plant. The present study used a digenic interaction model to partition the genetic and epistatic 

effects into its different components and estimate the magnitude for each component for different 

traits in both the crosses. For better reliable information on such effects and interactions it is 

suggested to include more number of crosses involving contrasting parents to fit a trigenic 



interaction and linkage model. This could also be useful in understanding the association levels 

between target traits with other important agronomic traits so that improvement of multiple traits 

could be achieved simultaneously to develop desirable genotypes.  

4.2.6 Correlation Studies 

Correlation analysis describes the mutual relationship between different pairs of 

characters. Most of the characters of breeder’s interest are complex and are the result of 

interactions between several components. Understanding the relationships among various traits is 

of paramount importance for making the best use of these relationships in selection (Korat et al., 

2010). Therefore information derived from the correlation studies between two desirable traits 

will be useful for plant breeder in improving both the traits simultaneously. Pod yield and quality 

traits like kernel iron and zinc concentrations are end products of numerous genetically 

controlled traits which singly or jointly influence those traits (Khan et al., 2000). Based on the 

information obtained from correlation studies it might be possible to devise a suitable strategy 

for improving both pod yield and mineral concentrations in groundnut kernels. 

In the present study correlation coefficients were calculated for both the crosses viz., 

ICGV 06040 × ICGV 87141 (Table 4.15) and ICGV 06099 × ICGV 93468 (Table 4.16) 

separately to understand the association of kernel iron and zinc concentrations with other traits 

under study. 

In the cross ICGV 06040 × ICGV 87141, days to emergence had shown negative 

significant association with days to maturity (-0.226) whereas positive significant association 

with sound mature kernel percentage (0.172). Days to flowering exhibited positive significant 

association with days to maturity (0.277) and negative significant association with kernel iron 

concentration (-0.163) (Fig 4.10). These results were in agreement with the findings of John et 

al. (2007), Korat et al. (2010), Channayya et al. (2011), Makinde and Ariyo (2013) and 

Thirumala Rao et al. (2014) with respect to days to maturity in groundnut. 

Days to maturity registered positive significant association with 100-kernel weight 

(0.158) and negative significant association with sound mature kernel percentage (-0.176). 

Karikari (1972) and Makinde and Ariyo (2013) also reported positive significant association 

between days to maturity and 100-kernel weight in groundnut. 

The trait 100-kernel weight exhibited significant positive correlation with pod yield per 

plant (0.196), shelling percentage (0.142), sound mature kernel percentage (0.197) and kernel 



zinc concentration (0.134) whereas negative significant association   (-0.225) was observed 

between 100-kernel weight and kernel iron concentration. These results are in agreement with 

the findings of Mahalakshmi et al. (2005) and Patil et al. (2006) for sound mature kernel 

percentage, Zaman et al. (2011) for yield and shelling percentage, Kotzamanidis et al. (2006) 

and Korat et al. (2010) for yield per plant in groundnut and Govindaraj et al. (2009) for kernel 

zinc concentration in pearl millet. 

Present study revealed significant positive association of pod yield per plant with 100-

kernel weight (0.196). These results are in agreement with the findings of Kotzamanidis et al. 

(2006), Korat et al. (2010), Zaman et al. (2011), Sadeghi and Niyaki (2012) and Satish (2014) in 

groundnut. 

Significant positive association was observed between kernel iron and zinc 

concentrations in both the crosses viz., ICGV 06040 × ICGV 87141 and ICGV 06099 × ICGV 

93468 (0.590 and 0.549, respectively). Similar kind of results were obtained by Kanatti et al. 

(2014) and Govindraj et al. (2009) in pearl millet, Ravikiran et al. (2014) and Susmitha and Selvi 

(2014) in sorghum, Ghanbari and Mameesh (1971), Badakhshan et al. (2013) and Velu et al. 

(2011) in wheat, Bekele et al. (2013a) in rice but in contrary, Ribeiro et al. (2013a) reported non-

significant association between kernel iron and zinc concentrations in common bean.  

In the cross ICGV 06040 × ICGV 87141, kernel iron concentration showed negative 

significant association with days to flowering (-0.163), 100-kernel weight       (-0.225) and 

shelling percentage (-0.180). While in both the crosses, negative non-significant association was 

observed between kernel iron concentration and pod yield per plant. The results are in support 

with the findings of Janila et al., (2014) in groundnut, Govindaraj et al. (2009) in pearl millet and 

Nagesh et al. (2012) in rice but in contrast Kanatti et al. (2014) reported negative significant 

association between grain iron concentration and grain yield per plant in pearl millet. Ravikiran 

et al. (2014) and Susmitha and Selvi (2014) recorded significant positive association of grain 

iron and zinc concentration with yield per plant in sorghum. 

Kernel zinc concentration registered significant positive association with 100- kernel 

weight (0.134). Similar kind of association was reported in wheat by Velu et al. (2011). The 

association of kernel zinc concentration with pod yield was non-significant and similar to the 

findings of Chakraborti et al. (2009) in maize. But in rice (Bekele et al., 2013a), common bean 



(Ribeiro et al., 2013a) and groundnut (Janila et al., 2014) positive significant association 

between yield and kernel zinc concentration was observed.  

In the cross ICGV 06099 × ICGV 93468, days to emergence showed positive significant 

association with days to maturity (0.153) and kernel iron concentration (0.104) and negative 

significant association with 100-kernel weight (-0.122).  

For days to flowering, positive significant association was recorded with days to maturity 

(0.151) and shelling percentage (0.118). These results are in agreement with the findings of John 

et al. (2007), Makinde and Ariyo (2013) and Thirumala Rao et al. (2014) with respect to days to 

maturity in groundnut. However, no significant association was reported by John et al. (2007) 

and Korat et al. (2010) between days to flowering and shelling percentage.  

Days to maturity was significantly and positively associated with 100-kernel weight 

(0.190), shelling percentage (0.112), kernel iron (0.158) and kernel zinc concentrations (0.220). 

Karikari (1972) and Makindo and Ariyo (2013) also reported positive association of days to 

maturity with 100-kernel weight in groundnut. Significant positive association between days to 

maturity and kernel zinc concentration was also observed by Gande et al. (2014) in rice. 

However, Govindaraj et al. (2009) and Sushmitha and Selvi (2014) observed non-significant 

association between days to maturity and kernel iron and zinc concentration. For 100-kernel 

weight, significant positive association was reported with shelling percentage (0.299), sound 

mature kernel percentage (0.286) and kernel zinc concentration (0.175). These results are in 

agreement with the findings of Mahalakshmi et al. (2005) and Patil et al. (2006) for sound 

mature kernel percentage, Zaman et al. (2011) for yield and shelling percentage in groundnut and 

Govindaraj et al. (2009) for kernel zinc concentration in pearl millet. But Susmitha and Selvi 

(2014) observed non-significant association between 100-seed weight and grain zinc 

concentration in sorghum.  

Pod yield per plant was found to be significantly and negatively associated with shelling 

percentage (-0.207) which was in contrast with the findings of John et al. (2007) and Korat et al. 

(2010) where non-significant association was observed between pod yield per plant and shelling 

percentage. 

Highly significant positive correlation between kernel iron and zinc concentrations in 

both the crosses of groundnut indicated the possibility of simultaneous improvement of both the 

traits. This might be due to co-segregation of tightly linked genetic elements governing the 



physiology of these micronutrients or might be due to the pleotropic effect of genes. Days to 

maturity showed significant positive association with kernel iron and zinc concentrations in one 

cross but not in other cross thus there is a need to confirm the results of present study in this 

aspect using more number of crosses. 

In the present study, pod yield per plant did not show any significant association with 

kernel iron and zinc concentrations indicating that breeding for improved kernel iron and zinc 

concentrations will not affect the yield. Similar results were earlier obtained in pearl millet 

(Govindaraj et al., 2009) and groundnut (Janila et al., 2014). 100-kernel weight recorded positive 

significant association with kernel zinc concentration suggesting that increased kernel size may 

also contribute to increased kernel zinc concentration. However, kernel iron concentration and 

100-kernel weight had negative significant association in one cross and non-significant negative 

association in another cross which indicates that further confirmation might be required to 

understand the association between these two traits.    
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Chapter V 

SUMMARY AND CONCLUSIONS 

Groundnut is an important oil, food and fodder legume crop grown mainly in arid and 

semi-arid regions of the world. Groundnut kernels are highly nutritious with about 25 % protein, 

several minerals, micronutrients and high-energy contributed by 45-50 % oil. Of the 20 minerals 

necessary for normal body growth and maintenance, seven, including iron and zinc are present in 

groundnut. Bio-fortification, a process of enhancing the micronutrient concentrations by genetic 

means, is an effective approach to combat micronutrient malnutrition prevailing in the world. 

Most of the countries which are suffering from micronutrient malnutrition are cultivating 

groundnut crop. Thus, groundnut can contribute significantly towards reduction of protein-

energy and micronutrient malnutrition. Bio-fortified groundnut will be of immediate use to make 

ready to use therapeutic food products. Besides, confections and other food products made from 

bio-fortified groundnut will contribute to enhanced nutrition of consumers. 

Knowledge on genetics of kernel iron and zinc is necessary to begin a breeding program 

for the improvement of kernel iron and zinc. Besides, if markers linked to the traits of interest are 

available, they may be used for selection in the breeding program to accelerate the genetic gains 

for kernel iron and zinc. Association of kernel iron and zinc concentrations with other important 

traits is also essential to develop varieties with improved yield and nutritional quality. Hence, 

keeping all these points in view, the present investigation was carried out to identify the 

molecular markers associated with the kernel iron and zinc concentrations and to study the gene 

action involved in the inheritance of the traits under concern using generation mean analysis by 

conducting two separate experiments at ICRISAT, Patancheru. 

 In the first experiment, an attempt was made to identify the molecular markers associated 

with the kernel iron and zinc concentrations in groundnut using F2:3 mapping population. The 

F2:3mapping population was derived by crossing a high iron and zinc containing parent, ICGV 

06099, with a low iron and zinc containing parent, ICGV 93468.Phenotyping of F2:3population 

was carried out during rainy season, 2013 using alpha lattice design with two replications. 

 



 The analysis of variance revealed the existence of significant variation for all the traits 

except for days to emergence, days to maturity, protein content and palmitic acid content. 

Overall perusal of descriptive statistics revealed that normal distribution was observed for almost 

all the traits except days to maturity and protein content. Transgressive segregants which were 

outperforming either of the parents for all the traits including kernel iron and zinc concentrations 

(except for days to maturity) were present in the population. 

 Estimation of genetic parameters in the phenotyping material i.e., F2:3 population of the 

cross ICGV 06099 × ICGV 93468 revealed that the phenotypic coefficient of variation was 

moderately higher than the genotypic coefficient of variation for all the traits including kernel 

iron and zinc concentrations suggesting the influence of environment on the expression of these 

traits. Heritability estimates were moderate to higher for all the traits in the population. Pod yield 

per plot (91.00 %) along with kernel iron (64.24 %) and zinc concentrations (62.21 %) recorded 

higher heritability (broad sense) compared to all the other traits. Higher genetic advance as a per 

cent of mean (GAM) was observed for single plant yield (61.37 %), pod yield per plot (53.26 %) 

and kernel yield per plot (46.22 %), whereas kernel iron (9.72 %) and zinc (4.99 %) 

concentrations had low GAM values. High heritability along with high GAM was recorded by 

single plant yield, pod yield per plot and kernel yield per plot which indicated the easy 

transferability and genetic improvement of these traits in the succeeding generations. 

 Correlation studies revealed the presence of significant positive association between 

kernel iron and zinc concentrations. Sound mature kernel percentage and kernel zinc 

concentration exhibited positive association suggesting possible higher accumulation of zinc in 

fully matured kernels. However, kernel iron and zinc concentrations did not show any significant 

association with pod yield. The results indicated that it is feasible to select simultaneously for 

kernel iron and zinc concentrations in groundnut without any penalty on pod yield. Kernel iron 

and zinc were not associated with protein and oil contents suggesting the possible improvement 

of these quality parameters without concomitant change in other characters. Among yield 

parameters, significant positive association of pod yield with seed yield per plant and sound 

mature kernel percentage was observed and therefore seed yield per plant and sound mature 

kernel percentage can be targeted to improve pod yield. Shelling percentage and oil content 

showed significant negative association with pod yield. Both pod yield and shelling outturn are 

economically important traits and hence need to be considered together for selection.  



  Parental polymorphism survey between these two parents using 200 SSR markers 

revealed that 33 SSR markers (16.5 %) were polymorphic. Out of 33 polymorphic SSR markers, 

three markers viz., SEQ1B09, IPAHM245 and SEQ9G05 showed significant association with the 

kernel iron concentration and explained a phenotypic variation of 0.23, 2.19 and 6.34 %, 

respectively towards the trait and three markers viz., GM2638, IPAHM245 and SEQ9G05 

showed significant association with phenotypic variation of 1.75, 2.25 and 6.01 %, respectively 

towards kernel zinc concentration. Validation of these markers in another F2:3population derived 

from a cross between ICGV 06040 (high kernel iron and zinc containing parent) and ICGV 

87141 (low kernel iron and zinc containing parent)also showed their strong association with the 

traits of interest. 

 Principal Component Analysis (PCA) results revealed that first two principal components 

contributed to 49 % of total variance. Among which PC1 contributed  

28.8 % and PC2 contributed 20.2 % of phenotypic variation. A positive correlation was observed 

between kernel iron and zinc concentrations (G1), pod yield and kernel yield per plot (G2) and 

oil and protein contents (G3). But a strong negative association was observed between oleic and 

linoleic acid contents. This can be attributed to the biochemical pathway of conversion of oleic 

and linoleic acid. However no association of kernel iron and zinc concentrations with yield was 

observed. 

 In the second experiment, generation mean analysis was carried out in two crosses (ICGV 

06040 × ICGV 87141 and ICGV 06099 × ICGV 93468) using parents having contrasting kernel 

iron and zinc concentrations with the aim of obtaining information on gene action governing 

kernel iron and zinc concentrations, estimating the genetic parameters, determining the 

correlation of kernel iron and zinc concentrations with kernel yield and other important traits in 

groundnut. From each cross six generations viz., P1, P2, F1, F2, B1 and B2 were generated during 

rainy season, 2013, which were evaluated in compact family block design during post-rainy 

season, 2013-14 with three replications. Data were recorded on days to emergence, days to 

flowering, days to maturity, 100-kernel weight, shelling percentage, sound mature kernel 

percentage, pod yield per plant and kernel iron and zinc concentrations. 

 Genetic parameters like phenotypic coefficient of variation, genotypic coefficient of 

variation, heterosis, residual heterosis, inbreeding depression, heritability in broad sense and 

narrow sense, genetic advance as a percentage of mean and degree of dominance were estimated. 



Generation mean analysis was carried out using the scaling tests given by Mather (1949) and 

Hayman and Mather (1955) and six parameter model given by Hayman (1958). Correlation 

coefficients were also calculated using the formulae suggested by Falconer (1981). 

The analysis of variance showed significant differences between the crosses for five traits 

viz., days to maturity, 100-kernel weight, pod yield per plant, kernel iron and zinc concentrations, 

whereas within crosses among the generations significance of difference was observed for days 

to emergence, days to maturity, 100-kernel weight, shelling percentage (only in ICGV 06040 × 

ICGV 87141), pod yield per plant, kernel iron and zinc concentrations for which generation 

mean analysis was carried out.  

In both the crosses phenotypic coefficient of variation was moderately higher than 

genotypic coefficient of variation for all the traits. In both the crosses, kernel iron and zinc 

concentrations recorded moderate PCV % values and low GCV % values which emphasized the 

influence of environment on the accumulation of these micronutrients. 

In the cross, ICGV 06040 × ICGV 87141, higher broad sense heritability coupled with 

moderate genetic advance as per cent of mean was obtained for100-kernel weight (61.36 % and 

15.59), shelling percentage(82.56 % and 18.95) and grain iron (72.43 % and 14.93) and zinc 

(71.15 % and 19.21) concentrations. Whereas pod yield per plant recorded moderate broad sense 

heritability (53.96 %) and high genetic advance as per cent of mean (23.01). Since the 

heritability for most of the traits was high, selection in early generations can be carried out for 

the improvement of such traits. In the cross ICGV 06099 × ICGV 93468, higher broad sense 

heritability coupled with moderate genetic advance as per cent of mean was recorded for days to 

emergence (74.83 % and 14.94), days to maturity (84.04 % and 12.84) and pod yield per plant 

(69.36 % and 23.85) indicating the preponderance of additive gene action and effectiveness of 

selection. However, kernel iron and zinc concentrations recorded moderate heritability (broad 

sense) and GAM values. Moderate to high broad sense heritability and moderate genetic advance 

as per cent of mean were observed for kernel iron and zinc concentrations in both the crosses. 

Thus it can be concluded that genetic improvement for these traits can be possible through 

selection in early generations. 

In both the crosses, kernel iron and zinc concentrations recorded negative, non-significant 

values for average heterosis and heterobelteosis (except for kernel zinc concentration in the cross 

ICGV 06099 × ICGV 93468)suggesting poor performance of F1 over mid-parent and better 



parent, respectively. In the cross ICGV 06040 × ICGV 87141, residual heterosis over mid parent 

was also negative and non-significant whereas significant negative residual heterosis over better 

parent was observed for kernel iron and zinc concentrations. In the cross ICGV 06099 × ICGV 

93468, residual heterosis estimates over mid and better parents for kernel iron and zinc 

concentrations were non-significant in either directions indicating the lack of inherent heterotic 

substance in F2 progeny over mid and better parents in both the crosses. 

In both the crosses higher value of inbreeding depression was observed for pod yield per 

plant which indicates a reduction in yield up on selfing which is not desirable in case of self-

pollinated crops like groundnut. In the cross ICGV 06040 × ICGV 87141, low inbreeding 

depression was observed for kernel iron (0.95) and zinc (3.63) concentrations, while in the cross 

ICGV 06099 × ICGV 93468, low (-12.32) and high (32.84) estimates of inbreeding depression 

were observed for kernel iron and zinc concentrations, respectively. Thus further studies are 

required to have better understanding of inbreeding depression for kernel micronutrient 

concentration in groundnut. 

Degree of dominance was more than unity for most of the characters indicating over 

dominance expression of these traits. However, kernel iron and zinc concentrations recorded 

degree of dominance, which was more than unity in the cross ICGV 06040 × ICGV 87141 and 

less than unity in the cross ICGV 06099 × ICGV 93468 suggesting that further confirmation is 

required for degree of dominance for these traits understudy. 

Correlation analysis involving six generations each of two crosses revealed the strong 

positive significant association between kernel iron and zinc concentrations and their non- 

significant association with pod yield per plant indicating that no penalty would be there on yield 

while selecting for kernel iron and zinc concentrations. Positive significant association between 

100-kernel weight and kernel zinc concentration was observed indicating the chance that 

increase in seed size may improve zinc concentration in groundnut kernel. Though significant 

association was observed between kernel iron and zinc concentrations and days to maturity in the 

cross ICGV 06099 × ICGV 93468 further confirmation needs to be done by analyzing more 

number of crosses to understand the real association between these traits. 

Generation mean analysis revealed that at least one of the scaling tests to a maximum of 

three scaling tests viz., A, B and C were significant for the traits viz.,days to emergence, days to 

maturity, 100-kernel weight, shelling percentage (only in ICGV 06040 X ICGV 87141), pod 



yield per plant, kernel iron and zinc concentrations which indicated the presence of non-allelic 

interactions. Hayman’s six parameter model showed high significance of the mean effects (m) 

except for pod yield per plant indicating that all the studied traits in both the crosses were 

quantitatively inherited. Additive component was positively significant for days to maturity, 

kernel iron and zinc concentrations in both the crosses and for days to emergence in the cross 

ICGV 06099 × ICGV 93468 and negatively significant for shelling percentage in the cross ICGV 

06040 × ICGV 87141. Dominance effect was found to be negatively significant for days to 

maturity and 100-kernel weight in both the crosses and positively significant for days to 

emergence and pod yield per plant in both the crosses and for kernel iron concentration only in 

the cross ICGV 06040 × ICGV 87141. Among the interactions, additive × additive component 

was significant in negative direction for days to maturity and 100-kernel weight in both the 

crosses and for shelling percentage in the cross ICGV 06040 × ICGV 87141 and positively 

significant for days to emergence and pod yield per plant in both the crosses and for kernel iron 

and zinc concentrations in the cross ICGV 06040 × ICGV 87141. Dominance × dominance 

component was found positively significant for days to maturity and 100-kernel weight in both 

the crosses and for shelling percentage in the cross ICGV 06040 × ICGV 87141 and negatively 

significant for days to emergence and kernel iron concentration in both the crosses and for pod 

yield per plant only in the cross ICGV 06040 × ICGV 87141.However, additive × dominance 

interaction was found non-significant for all the traits in both the crosses. Both direct effects and 

interaction effects were almost of equal magnitude in both the crosses whereas for kernel iron 

and zinc concentrations additive effect along with additive × additive interaction was found 

responsible for trait expression. The signs of dominance (h) and dominance × dominance (l) 

were opposite in all the cases indicating duplicate type of epistasis. 

Conclusion and future strategy: 

 In the first experiment, due to lack of sufficient number of polymorphic markers single 

marker analysis was followed to identify the genomic regions associated with kernel iron and 

zinc concentrations. Though it is difficult to get large number of polymorphic markers, it 

facilitates the construction of good quality linkage map by covering all twenty linkage groups 

and it is useful in identifying QTLs responsible for the traits in question in groundnut. Hence 

further study is required with large number of molecular markers to exactly identify the QTL 

responsible for the kernel iron and zinc concentrations. 



The PCV% and GCV% differed by moderate values for almost all the traits including 

kernel iron and zinc concentrations which depict the moderate role of environment in trait 

expression. High heritability was observed for kernel iron and zinc concentrations indicating the 

predominant role of additive gene action. Highly significant positive correlation was observed 

between kernel iron and zinc concentration suggesting that improvement in one micronutrient 

concentration will lead to simultaneous improvement in other micronutrient as well. However, 

no association of kernel micronutrient concentrations with pod yield was observed suggesting the 

possibility of improvement in kernel micronutrient concentrations without yield penalty. 

In general, both additive and non-additive gene effects appear to be effective for all the 

traits studied. However, for kernel iron and zinc concentration, the involvement of additive effect 

in both the crosses and additive × additive interaction along with additive effect in one cross was 

observed. Thus, superior lines with higher kernel mineral concentrations can be developed by 

applying simple selection in early generations. 

However, in the present study the conclusions drawn from the gene effects for different 

traits are based on digenic interaction model with the use of two crosses only. But, possibilities 

of trigenic or higher order interaction and/or linkages among the interacting genes cannot be 

ruled out. Hence, there is a need for further study with more number of generations to fit a 

trigenic interaction and linkage model using crosses involving parents contrasting for the 

respective traits. 
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Appendix B. Mean values of various traits in the F2:3 mapping population of the cross ICGV 06099 × ICGV 93468 in groundnut 

ENTRY DE DFL DMt HKW SPYD PY SEED Y SMK SH OIL PRO Fe  Zn Linoleic Oleic Palmitic Stearic 

1 6.50 33.00 114.00 33.45 15.15 146.20 65.90 74.98 45.09 49.18 26.40 45.83 76.95 35.50 40.27 12.54 2.30 

2 7.50 32.50 108.50 30.85 11.30 92.60 60.45 65.41 65.24 46.31 25.95 43.99 71.08 34.55 42.05 12.95 1.76 

3 5.50 33.50 114.00 34.95 18.80 137.75 71.60 83.82 52.00 48.52 27.85 50.01 74.66 33.15 42.26 12.16 2.35 

4 7.00 33.00 103.00 27.95 12.45 118.85 64.45 60.15 54.15 48.58 27.04 35.84 69.84 34.18 40.90 12.47 2.14 

5 7.00 34.50 114.00 29.15 10.55 89.70 53.45 52.66 59.58 47.36 25.99 39.38 79.05 34.66 41.35 13.13 1.89 

6 6.50 34.50 114.00 28.40 17.30 88.00 51.00 61.50 57.94 50.83 27.30 39.44 68.24 31.13 43.24 12.49 2.59 

7 7.00 34.00 114.00 33.55 19.55 138.70 80.90 49.81 58.33 48.97 27.32 48.33 83.56 36.76 38.83 12.82 2.26 

8 6.00 32.00 114.00 25.70 22.35 92.30 58.95 44.49 63.81 50.16 27.99 38.66 71.47 35.35 39.67 13.19 2.36 

9 7.50 34.50 114.00 30.50 22.45 115.75 71.95 69.63 62.22 47.19 27.37 41.14 83.08 38.19 36.16 13.21 2.18 

10 6.00 31.50 108.50 30.50 17.55 112.00 65.40 73.20 58.34 48.61 25.64 50.70 73.16 37.57 38.20 13.55 2.04 

11 8.00 34.00 114.00 31.90 18.40 98.80 60.50 69.12 61.27 47.69 25.31 59.09 80.80 34.79 41.42 12.99 1.95 

12 6.50 34.50 114.00 31.05 29.05 105.95 67.10 46.41 63.34 50.76 27.57 36.11 63.99 35.19 39.28 12.83 2.43 

13 7.00 35.50 114.00 32.65 17.10 85.25 52.00 79.50 61.00 47.35 27.46 42.64 81.86 36.29 38.64 13.12 2.15 

14 6.00 34.00 114.00 32.65 21.10 143.40 89.55 69.12 62.41 47.47 26.26 51.71 84.78 34.57 41.56 12.94 1.96 

15 8.00 34.00 114.00 30.35 16.80 71.35 46.40 81.04 64.99 47.70 28.47 41.86 84.32 33.01 41.99 12.35 2.41 

16 6.50 35.00 114.00 33.05 23.25 186.35 108.95 85.98 58.34 48.91 27.62 42.11 86.45 37.08 37.09 12.75 2.52 

17 7.00 32.50 114.00 36.50 19.05 127.30 69.85 83.30 54.82 49.86 27.00 39.52 71.07 35.19 40.23 12.85 2.37 

18 7.00 34.00 108.50 32.65 17.80 138.30 86.90 74.41 62.79 45.41 26.78 44.82 80.86 36.41 38.29 13.29 1.98 

19 7.00 36.00 103.00 24.50 18.10 72.40 42.00 45.95 58.01 47.44 24.50 53.41 81.91 38.25 38.68 14.22 1.69 

20 6.00 34.00 108.50 33.50 16.00 82.00 52.15 43.41 63.54 49.18 28.37 38.02 75.57 34.38 40.29 12.50 2.42 

21 8.00 35.50 114.00 34.50 17.40 130.00 63.65 74.07 48.99 50.23 26.60 52.13 85.03 34.72 40.47 12.55 2.27 

22 6.50 34.50 114.00 37.15 27.80 96.50 65.85 89.97 68.14 49.03 28.14 41.62 75.79 32.02 43.54 12.02 2.48 

23 8.00 36.00 114.00 28.10 22.80 78.60 51.20 31.25 65.14 50.37 28.65 42.99 71.71 31.12 44.79 11.79 2.44 

24 6.00 36.00 114.00 36.60 14.00 111.50 69.20 81.50 62.06 50.31 26.09 41.82 77.23 32.94 42.66 12.27 2.32 

25 8.00 35.50 114.00 30.15 31.35 90.70 51.20 69.91 56.25 52.78 25.89 48.23 79.38 30.82 43.88 12.62 2.82 

26 7.00 35.00 114.00 33.35 28.50 121.10 67.40 86.68 55.62 50.59 27.39 50.62 80.30 36.55 38.00 12.38 2.52 
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27 6.50 35.50 114.00 35.40 19.05 86.45 45.30 69.93 52.29 49.81 28.00 47.41 81.62 36.87 38.93 13.21 2.41 

28 6.50 36.00 108.50 34.20 16.90 108.30 49.45 68.56 45.47 48.24 27.29 47.39 88.42 32.42 43.61 12.37 2.18 

29 6.00 31.50 114.00 31.80 11.30 123.25 52.35 80.35 42.44 48.90 27.82 41.12 78.12 36.86 37.21 13.31 2.44 

30 8.00 35.00 114.00 29.10 9.50 86.10 53.10 77.02 61.67 51.83 25.97 50.30 83.70 38.96 37.00 13.11 2.25 

31 6.00 33.50 114.00 31.55 14.40 137.50 76.60 56.92 55.04 48.10 27.57 39.11 70.44 37.94 35.63 13.14 2.40 

32 6.50 34.50 108.50 32.25 13.85 137.70 61.50 72.26 44.42 49.47 27.60 57.16 75.28 35.75 38.84 12.62 2.35 

33 7.50 35.50 114.00 34.55 31.75 89.55 58.10 73.74 64.85 49.19 28.93 56.15 82.82 35.57 38.63 12.87 2.45 

34 7.50 34.00 108.50 31.30 14.10 120.75 55.40 68.25 45.62 48.32 27.20 41.48 72.71 32.65 42.54 12.31 2.10 

35 8.00 34.00 114.00 30.35 18.15 109.25 61.95 66.77 56.31 48.96 26.76 44.01 77.38 36.20 39.55 12.87 2.20 

36 7.00 32.00 108.50 30.80 20.00 112.65 54.65 75.93 48.26 48.90 27.53 58.26 84.85 34.23 41.47 12.66 2.12 

37 8.00 36.00 114.00 30.05 24.15 107.00 60.25 79.34 56.58 49.95 26.08 40.96 70.06 35.14 40.30 12.76 2.28 

38 7.00 33.00 103.00 33.95 15.70 99.00 50.85 82.35 51.20 49.17 26.61 43.05 75.19 33.27 42.68 12.61 2.08 

39 8.00 35.00 114.00 36.70 15.15 89.85 45.65 70.85 50.73 46.95 28.28 42.39 75.17 34.69 39.93 12.79 2.18 

40 7.00 36.00 114.00 30.70 17.30 69.20 42.60 83.10 61.56 50.30 26.33 47.42 80.92 34.54 39.85 12.56 2.46 

41 6.50 35.50 114.00 33.50 27.80 91.20 43.30 65.99 46.86 49.61 27.46 49.54 76.95 30.07 46.46 12.32 2.13 

42 6.50 35.00 114.00 29.70 16.95 66.65 32.15 66.26 48.17 52.78 27.15 48.90 74.50 26.78 49.15 11.90 2.64 

43 6.50 33.50 114.00 29.40 23.60 124.50 64.40 77.89 51.77 48.18 26.10 48.09 82.99 29.71 45.91 12.32 2.07 

44 6.50 34.50 114.00 32.70 34.95 165.05 92.55 82.59 56.71 47.58 26.94 52.28 81.08 33.92 41.43 12.60 2.19 

45 7.00 34.00 114.00 26.80 10.20 83.30 51.15 53.10 61.14 47.94 25.20 44.46 79.52 30.81 46.12 12.63 1.84 

46 6.00 34.50 103.00 27.35 12.35 133.90 77.15 65.15 57.57 45.82 25.94 42.60 74.20 30.77 45.01 12.78 1.80 

47 7.00 34.00 108.50 26.25 20.25 92.30 57.15 54.51 61.82 48.66 25.39 41.47 74.76 31.38 45.57 12.92 1.89 

48 7.00 34.50 114.00 34.05 15.05 105.60 60.20 77.67 57.10 48.54 27.91 46.66 76.37 38.10 35.58 12.92 2.55 

49 7.00 33.00 108.50 32.45 14.30 101.80 59.05 61.96 58.02 48.33 26.34 40.93 74.95 31.99 43.36 12.15 2.18 

50 6.50 34.00 114.00 32.00 15.35 92.10 47.90 84.07 51.86 47.07 27.08 48.62 80.01 34.84 39.84 13.41 2.22 

51 7.00 32.50 114.00 39.65 27.50 132.65 81.20 69.03 61.10 48.36 26.53 44.91 83.38 35.98 39.83 12.79 2.21 

52  7.00 31.50 103.00 31.30 12.20 89.40 59.00 72.61 65.94 48.67 27.23 41.67 88.86 36.56 38.59 12.79 2.27 
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53 7.50 35.00 108.50 33.30 19.90 156.90 80.80 82.49 51.48 46.39 26.76 38.04 74.92 37.83 36.61 12.85 2.08 

54 7.00 34.00 114.00 33.40 22.60 113.40 55.70 58.71 49.12 49.31 27.16 43.76 68.15 26.22 50.23 11.61 2.20 

55 7.50 33.00 114.00 32.85 21.25 80.15 57.75 59.53 71.97 49.43 27.84 50.94 80.88 28.81 46.69 12.17 2.54 

56 8.00 33.00 114.00 31.70 11.00 94.80 55.25 51.35 58.47 47.86 26.29 49.02 68.62 35.81 39.97 13.37 2.03 

57 7.50 33.00 108.50 30.25 13.05 159.30 89.35 61.63 56.16 48.73 28.07 46.24 78.78 34.44 40.09 12.67 2.28 

58 7.50 35.00 114.00 32.20 23.75 142.65 64.40 76.57 45.07 48.67 28.66 47.51 80.20 36.04 38.29 12.43 2.25 

59 7.00 33.50 108.50 33.20 13.80 134.05 78.75 82.59 58.74 48.27 27.41 53.58 79.66 37.15 38.03 12.44 2.12 

60 6.00 32.00 108.50 34.00 13.85 60.70 30.85 81.58 51.09 47.32 26.33 52.68 73.62 35.64 39.87 13.23 2.04 

61 7.50 33.00 114.00 37.25 20.70 196.70 116.30 84.61 59.02 47.63 26.55 38.22 73.29 36.18 39.61 12.78 2.13 

62 7.50 36.00 108.50 27.25 10.55 75.10 44.05 51.51 58.15 49.31 26.73 44.41 75.73 34.43 41.83 13.00 2.03 

63 7.00 35.50 114.00 33.65 19.70 174.35 76.45 64.91 44.74 48.65 27.44 38.34 71.49 35.08 39.23 12.64 2.29 

64 8.00 36.00 114.00 32.10 18.40 110.80 64.80 82.72 58.48 49.53 26.79 57.67 76.95 34.90 40.16 13.03 2.21 

65 7.00 32.00 108.50 33.95 17.00 148.65 95.20 77.02 63.98 50.14 27.92 53.96 78.38 36.22 38.51 12.71 2.43 

66 8.00 32.00 114.00 36.95 15.90 124.85 75.90 72.47 60.72 47.20 26.80 42.78 82.30 31.58 44.07 12.59 2.18 

67 7.00 33.00 114.00 35.00 13.95 107.65 66.80 70.89 61.38 46.15 26.38 42.46 74.49 34.87 41.21 13.03 1.87 

68 7.00 32.00 114.00 31.20 23.75 153.30 87.05 80.52 56.75 48.51 26.10 41.30 68.75 34.80 40.51 12.68 2.33 

69 7.00 33.50 108.50 32.70 27.00 105.45 67.75 82.12 64.17 47.63 25.73 49.52 72.25 31.45 45.47 12.95 1.99 

70 8.00 37.00 108.50 33.45 9.55 84.35 46.25 76.87 54.91 47.04 26.61 40.36 80.60 33.29 42.70 12.93 1.95 

71 7.00 34.00 108.50 32.65 16.50 83.20 58.15 66.82 69.53 49.25 27.58 45.30 76.28 36.07 39.14 12.58 2.35 

72 7.00 32.00 108.50 34.45 16.20 129.85 73.00 61.86 56.24 48.52 26.44 50.31 71.35 33.87 41.70 12.30 2.21 

73 8.00 34.00 114.00 30.90 13.50 135.00 78.20 75.58 57.93 48.79 26.44 48.84 81.07 35.45 40.18 12.58 2.35 

74 8.00 34.00 103.00 31.20 14.20 79.70 49.60 52.62 62.23 49.25 29.75 43.84 78.34 33.25 42.05 12.27 2.54 

75 6.50 32.50 114.00 34.80 20.75 113.15 60.30 69.38 53.33 48.01 27.35 35.42 68.99 34.56 41.53 12.54 2.13 

76 7.00 32.00 108.50 34.85 22.75 150.40 71.45 74.40 46.11 49.10 26.55 44.08 77.70 34.98 40.99 12.79 2.15 

77 7.00 34.50 114.00 35.25 22.55 83.90 41.05 64.04 48.77 50.00 26.65 40.90 74.38 35.80 39.42 12.64 2.41 

78 7.00 33.50 114.00 32.40 16.25 148.00 69.65 83.61 47.07 55.08 26.24 49.65 80.80 34.42 41.91 12.16 3.09 

79 7.00 33.50 108.50 28.05 11.15 92.35 51.25 61.98 55.34 47.80 27.66 42.31 71.09 39.24 35.44 13.32 1.98 
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80 7.00 33.00 114.00 27.95 18.65 124.20 73.30 59.72 59.01 47.50 26.39 45.20 75.55 37.84 38.19 13.35 1.82 

81 7.50 33.50 108.50 25.25 24.10 70.05 35.90 67.05 51.41 48.29 27.07 37.96 83.42 37.86 37.64 13.40 2.01 

82 6.50 32.00 108.50 25.35 21.75 103.40 61.15 70.17 59.31 46.55 28.39 43.14 77.42 34.90 39.89 12.79 2.03 

83 7.00 32.00 103.00 29.80 12.80 64.00 44.10 61.90 68.91 45.80 25.68 61.06 81.74 31.72 45.15 13.57 1.70 

84 8.00 36.00 108.50 32.70 9.90 79.95 46.30 83.84 57.98 45.07 26.58 41.82 74.67 30.25 46.21 12.51 1.87 

85 7.50 34.00 114.00 36.85 23.55 99.40 51.90 71.92 52.18 47.23 27.33 41.72 75.80 30.81 45.00 12.24 2.12 

86 7.00 31.50 108.50 37.15 22.00 140.85 81.90 86.07 58.11 45.67 27.68 39.06 77.62 30.71 45.65 12.31 2.03 

87 6.00 32.00 114.00 39.30 20.30 203.00 122.10 93.28 60.15 46.57 26.60 53.14 79.59 31.79 44.60 12.48 2.10 

88 7.50 34.00 114.00 29.60 19.15 96.05 48.65 67.42 50.77 50.71 25.99 46.27 69.85 30.72 45.26 12.05 2.54 

89 8.50 35.00 114.00 30.40 15.50 131.70 78.50 65.38 59.52 51.18 26.01 50.17 77.56 36.45 38.72 12.90 2.34 

90 8.00 35.50 114.00 31.85 22.65 157.35 81.35 77.89 51.67 48.22 26.97 54.82 70.90 34.54 40.95 12.74 2.26 

91 7.00 31.50 108.50 30.55 12.60 94.65 51.45 53.18 54.36 48.45 27.94 48.07 73.34 33.21 42.03 12.59 2.22 

92 6.50 32.00 114.00 35.75 15.30 131.30 71.80 79.86 54.59 48.22 27.09 51.79 74.74 32.12 42.77 12.72 2.32 

93 6.50 33.00 108.50 26.45 12.65 51.40 29.65 65.40 58.07 47.90 26.50 47.04 68.44 33.80 42.18 12.90 2.11 

94 6.50 34.00 114.00 28.20 12.95 57.65 28.15 70.25 48.83 49.85 27.28 49.73 79.52 32.64 42.87 12.54 2.37 

95 6.50 33.00 103.00 33.95 13.70 101.30 72.50 56.49 71.52 48.71 28.02 41.46 81.20 28.50 46.58 12.19 2.32 

96 7.00 34.50 114.00 36.80 25.65 131.30 90.55 65.24 69.01 49.16 26.23 41.28 78.05 35.58 38.98 12.64 2.39 

97 8.00 35.00 108.50 35.15 15.20 84.50 51.65 61.56 61.16 47.23 27.73 42.90 65.78 33.58 41.50 12.74 2.04 

98 7.50 33.50 114.00 30.50 19.85 108.05 56.70 74.35 52.47 48.88 27.20 50.82 79.14 32.85 41.71 12.54 2.28 

99 8.00 35.00 114.00 28.25 21.85 139.15 68.85 65.94 49.45 48.99 27.38 39.85 85.83 37.37 37.73 12.84 2.26 

100 6.50 32.50 108.50 30.50 18.10 100.90 58.70 64.49 58.20 47.51 25.32 44.96 68.63 36.71 38.35 12.87 2.16 

101 7.50 33.00 108.50 29.45 16.00 138.55 69.35 69.34 49.96 46.57 24.94 44.57 80.48 32.60 43.31 12.74 1.99 

102 7.50 33.00 114.00 35.00 27.75 119.50 65.00 83.18 54.40 50.20 26.11 39.19 71.26 32.91 42.09 12.46 2.32 

103 8.00 31.50 114.00 34.85 15.05 141.65 67.30 64.44 47.46 49.82 25.89 56.81 78.38 33.70 42.02 12.89 2.21 

104 7.00 33.50 114.00 30.85 13.90 116.95 48.80 76.97 41.65 47.66 27.70 41.01 71.68 31.93 43.64 12.67 2.11 

105 7.00 33.00 114.00 27.70 22.95 109.75 70.30 65.47 64.08 47.13 27.99 53.71 78.17 32.81 41.69 12.36 2.21 

106 7.00 34.00 114.00 33.10 15.75 133.90 72.45 80.43 54.06 49.39 28.08 48.11 79.18 37.28 36.95 12.81 2.47 
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107 6.00 33.50 108.50 40.70 18.50 76.00 43.10 49.92 52.38 48.69 26.86 36.33 79.83 33.90 41.44 12.64 2.39 

108 6.50 34.50 114.00 36.50 15.05 88.55 44.95 68.01 50.83 46.47 27.27 41.24 82.98 32.49 42.49 13.31 1.97 

109 7.00 31.50 114.00 32.95 10.40 104.25 60.10 85.15 57.59 48.10 26.95 47.93 77.61 32.91 42.60 12.66 2.08 

110 6.00 35.00 103.00 31.60 12.50 112.60 71.10 70.89 63.14 46.55 26.21 53.91 72.95 32.98 42.52 12.98 1.86 

111 7.00 33.00 114.00 37.80 23.50 94.00 51.20 58.01 54.47 46.16 27.29 47.62 78.27 36.93 36.04 13.48 2.17 

112 7.00 34.50 114.00 31.25 21.00 144.70 79.40 55.92 54.85 48.66 27.33 38.58 77.94 34.42 40.56 12.73 2.24 

113 6.00 32.00 114.00 36.05 17.90 97.80 52.00 78.46 53.06 48.60 26.84 39.26 73.15 36.83 37.46 13.11 2.37 

114 6.50 33.50 103.00 35.30 16.90 154.25 75.65 68.97 48.96 47.68 27.30 43.82 79.25 32.51 42.72 12.79 2.27 

115 7.50 34.00 108.50 34.95 15.35 140.60 74.35 67.82 52.88 47.88 28.03 47.61 77.68 32.09 42.19 12.26 2.34 

116 7.50 33.50 114.00 35.90 19.70 176.90 90.30 88.43 51.06 49.32 27.19 43.93 73.42 35.38 39.63 12.59 2.36 

117 7.00 32.00 108.50 33.50 14.65 45.55 27.00 68.61 59.32 50.46 26.38 43.83 82.52 30.44 44.90 12.60 2.71 

118 7.00 33.00 108.50 28.55 15.80 78.25 51.15 83.30 65.32 52.35 26.75 42.90 80.56 31.81 42.78 12.26 2.86 

119 8.00 36.00 108.50 28.65 16.30 83.05 44.55 89.09 53.52 49.24 25.78 48.23 72.37 34.89 41.09 12.90 2.20 

120 8.50 34.00 114.00 29.85 18.40 173.85 78.45 85.14 45.10 48.97 27.19 51.77 73.90 34.14 40.80 12.99 2.19 

121 8.00 35.50 114.00 30.25 15.55 129.10 82.80 74.34 64.09 52.00 27.14 43.58 80.84 32.68 42.61 12.32 2.59 

122 7.00 34.00 103.00 28.20 13.00 77.50 45.80 65.28 59.10 46.16 26.04 38.32 75.75 32.51 44.47 12.66 1.91 

123 7.50 34.00 114.00 30.60 18.10 132.85 70.75 76.52 54.09 49.56 26.05 44.05 75.23 33.45 43.07 12.68 2.15 

124 7.00 31.00 103.00 28.35 14.60 86.20 50.20 65.12 58.06 48.73 26.53 52.83 75.49 33.31 42.27 12.85 2.14 

125 6.50 33.00 114.00 29.40 9.95 84.50 53.25 65.23 62.64 47.28 27.48 42.53 74.64 37.03 38.12 13.10 2.13 

126 7.50 33.00 103.00 32.35 14.40 125.10 78.60 63.88 62.81 46.10 25.67 49.49 79.40 35.40 40.60 13.36 1.88 

127 7.50 34.50 114.00 32.10 28.05 124.20 73.85 74.70 59.57 49.27 27.32 41.62 75.16 33.76 41.74 12.45 2.35 

128 7.00 32.50 114.00 30.35 14.50 120.90 68.85 64.87 56.93 50.08 28.04 45.11 72.06 33.78 41.49 12.67 2.29 

129 5.50 35.50 114.00 28.45 15.20 154.85 76.20 90.38 49.14 51.04 27.24 50.65 80.59 31.92 43.05 12.57 2.63 

130 7.00 33.00 108.50 32.90 14.20 106.50 65.35 66.10 61.25 48.57 27.72 31.77 64.66 30.22 45.50 12.12 2.29 

131 6.50 34.00 114.00 35.35 25.30 95.40 59.25 75.86 62.08 48.77 28.15 38.34 71.26 35.65 38.66 12.67 2.47 

132 6.50 35.00 103.00 32.70 12.00 119.30 65.80 58.67 55.02 48.47 26.70 60.86 84.12 33.08 43.13 12.29 
2.16 
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133 6.00 36.00 114.00 43.00 17.80 89.10 47.60 89.92 53.42 46.46 26.71 48.24 82.45 35.20 40.62 13.04 2.17 

134 7.50 34.50 114.00 32.50 14.55 134.70 90.55 76.99 67.17 51.22 26.25 49.97 66.45 35.34 40.84 12.72 2.36 

135 9.00 37.00 114.00 32.20 18.00 143.40 81.20 92.12 56.62 49.78 25.81 44.38 77.65 31.94 42.71 12.74 2.31 

136 7.50 34.00 114.00 30.45 11.10 83.10 59.45 70.68 71.36 48.19 26.23 57.08 81.43 31.08 44.67 12.38 2.10 

137 7.00 34.00 114.00 33.40 24.00 144.00 77.10 52.79 53.54 46.78 26.55 44.50 75.50 29.21 46.07 12.57 1.98 

138 7.00 34.50 108.50 25.25 8.90 66.95 38.20 67.86 57.14 47.33 26.45 49.14 87.20 32.61 44.79 12.85 1.89 

139 6.50 33.00 114.00 33.20 15.05 99.15 60.50 78.27 60.76 46.80 27.11 39.54 84.90 34.32 40.25 13.14 2.07 

140 6.50 32.50 108.50 34.15 11.35 94.95 45.70 76.16 47.95 47.50 27.69 42.67 71.39 30.92 44.51 12.48 2.14 

141 7.00 34.00 114.00 30.75 14.85 97.45 55.70 72.93 57.08 47.91 26.66 46.01 78.43 33.35 41.72 12.94 2.20 

142 7.00 31.00 114.00 39.60 19.40 175.00 103.10 70.51 58.91 49.38 27.11 45.98 70.95 36.95 37.81 13.43 2.37 

143 7.00 32.00 108.50 37.55 17.03 148.65 71.80 42.29 48.22 48.31 26.42 44.44 67.92 34.48 40.74 13.11 2.31 

144 10.00 35.00 114.00 37.20 6.30 31.50 24.40 49.59 77.46 50.67 27.76 41.29 70.12 29.62 45.79 12.38 2.44 

145 7.00 32.50 108.50 36.45 14.90 129.80 40.30 77.79 31.07 50.51 27.32 48.93 71.21 32.04 43.64 12.54 2.35 

146 7.00 35.50 114.00 31.80 17.00 172.70 66.80 79.74 38.64 48.06 26.71 46.27 84.54 36.18 38.43 13.30 2.08 

147 7.00 34.50 114.00 30.30 10.60 150.60 54.00 73.69 35.97 47.64 26.61 46.16 75.50 33.85 40.47 12.78 2.21 

148 6.50 36.00 114.00 29.50 20.30 97.65 58.80 60.80 60.23 48.79 27.18 50.20 71.41 37.14 37.83 12.96 2.33 

149 7.00 34.50 114.00 28.85 14.45 151.90 83.10 54.30 54.71 47.34 26.19 43.59 81.77 33.37 42.52 12.92 1.97 

150 8.00 34.00 114.00 30.30 20.15 128.10 76.35 81.60 59.55 49.61 26.53 51.14 85.07 36.37 38.28 12.90 2.41 

151 7.00 33.00 114.00 29.00 17.70 69.75 36.25 66.61 52.10 46.80 27.25 46.90 79.39 31.40 44.73 12.27 2.10 

152 7.00 32.50 108.50 30.35 17.50 94.85 52.00 85.11 54.66 46.95 26.92 49.59 75.25 33.23 42.87 12.80 2.13 

153 8.00 35.00 103.00 20.10 5.40 54.60 35.80 58.10 65.57 44.84 27.71 41.16 71.20 33.43 42.88 13.12 1.73 

154 7.00 36.00 114.00 29.20 12.00 83.60 45.50 54.51 54.43 46.81 27.20 42.91 79.48 31.32 44.24 12.86 2.16 

155 7.00 33.50 114.00 34.40 14.40 76.50 48.55 83.29 63.41 49.34 27.31 35.87 72.69 34.88 39.71 13.09 2.45 

156 6.50 32.00 108.50 34.20 16.80 114.60 65.85 67.27 57.41 47.05 26.74 42.69 75.63 33.21 43.01 12.57 2.08 

157 6.00 32.50 108.50 29.15 14.30 111.45 57.50 60.26 51.45 46.44 25.98 40.58 77.92 32.92 43.22 12.62 1.89 

158 6.50 33.50 108.50 27.60 13.60 87.75 46.15 66.79 52.42 47.85 26.32 48.33 84.01 33.83 41.86 13.17 2.03 

159 7.50 34.00 108.50 30.45 13.00 89.10 44.05 77.71 49.47 48.28 27.70 42.22 75.71 33.61 41.58 12.87 2.12 
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160 8.00 33.00 114.00 33.60 11.10 89.00 55.00 89.09 61.80 50.80 29.45 41.44 78.41 33.26 40.59 12.21 2.83 

161 7.50 33.00 114.00 29.85 15.80 91.00 45.00 77.93 49.36 48.62 26.88 53.22 81.91 32.47 43.71 12.74 2.00 

162 7.00 36.50 114.00 32.05 17.10 131.65 70.20 69.33 53.86 48.58 26.91 41.61 78.14 34.44 41.25 12.50 2.26 

163 7.50 34.00 114.00 29.40 23.25 148.50 59.40 74.04 40.11 48.93 27.84 43.13 78.73 37.22 37.38 12.91 2.33 

164 6.00 34.00 114.00 31.20 6.80 61.50 41.70 86.33 67.80 46.95 26.94 54.89 59.64 37.38 37.80 12.71 2.36 

165 7.50 35.00 108.50 31.20 17.20 69.55 45.05 45.21 64.75 53.75 27.66 41.12 71.12 38.82 35.35 12.73 2.78 

166 6.50 35.00 114.00 34.10 21.95 133.50 77.30 72.09 58.09 48.69 27.29 54.57 83.74 39.11 34.81 13.04 2.50 

167 8.00 32.50 114.00 37.05 13.35 116.85 62.15 76.57 53.20 46.90 25.45 42.93 74.71 32.37 44.34 13.01 1.94 

168 7.00 34.00 108.50 26.15 8.90 62.35 28.25 66.48 46.49 46.64 26.10 41.73 75.67 31.01 45.31 12.52 1.99 

169 7.50 31.50 103.00 34.85 16.70 136.60 80.55 63.74 59.15 48.14 26.57 35.18 66.54 28.72 47.04 12.17 2.25 

170 6.00 32.50 114.00 37.30 25.10 159.10 104.00 74.14 65.32 49.22 28.29 39.44 72.34 38.29 36.07 12.83 2.48 

171 8.00 34.50 114.00 32.60 18.35 116.90 56.10 75.68 48.07 47.68 27.54 54.03 76.00 34.32 40.97 12.40 2.33 

172 7.00 33.00 114.00 35.45 18.70 109.80 70.95 73.50 64.46 49.48 26.61 47.05 78.37 32.82 42.60 12.18 2.41 

173 6.50 33.00 114.00 28.50 18.00 141.60 75.50 73.76 53.32 48.43 26.37 41.86 77.65 33.70 42.50 13.20 2.19 

174 7.00 35.50 114.00 34.95 14.50 125.30 83.25 90.72 66.40 51.10 26.86 42.23 73.82 33.86 41.58 12.31 2.34 

175 7.50 34.00 114.00 35.25 15.75 110.50 66.85 68.68 60.49 49.47 27.64 40.50 82.05 35.98 38.97 12.47 2.41 

176 6.50 32.50 108.50 31.60 17.75 126.95 50.65 56.57 39.89 47.98 28.09 39.53 79.58 36.35 38.77 12.49 2.31 

177 7.00 32.00 108.50 33.75 19.80 129.50 67.95 68.25 52.36 46.47 26.31 41.42 73.50 35.84 40.19 13.10 1.89 

178 6.50 31.00 114.00 32.05 17.80 140.35 86.35 60.95 61.51 47.42 27.22 42.97 66.97 35.48 39.79 13.07 2.11 

179 6.00 34.50 114.00 31.40 22.95 151.45 91.65 57.30 60.50 48.28 26.43 48.38 74.85 32.06 43.56 12.86 2.08 

180 7.00 34.00 103.00 30.70 11.50 80.80 46.90 89.13 58.04 45.78 27.35 51.79 75.38 33.54 41.74 13.03 2.06 

181 6.00 33.50 103.00 29.90 12.70 81.75 50.00 63.59 59.73 46.25 27.43 42.50 82.22 32.58 42.54 13.04 2.02 

182 6.50 34.50 108.50 33.10 17.00 93.10 59.25 61.94 63.79 45.47 26.30 34.81 66.43 30.38 45.57 12.34 1.98 

183 7.00 32.50 114.00 32.10 28.50 162.00 75.65 60.21 46.80 49.11 27.89 48.35 81.28 32.28 43.01 11.69 2.45 

184 7.00 35.00 114.00 34.10 11.15 60.30 38.30 64.41 63.15 51.03 27.25 50.20 82.65 35.92 38.86 12.89 2.47 

185 6.50 34.00 108.50 31.40 19.70 127.90 81.90 72.20 64.22 50.08 27.18 41.34 80.08 35.89 40.20 12.44 2.21 

186 8.00 34.00 114.00 32.35 17.80 84.30 53.25 69.29 63.19 49.72 27.36 43.81 73.44 38.52 36.72 12.46 2.36 
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187 6.50 33.00 114.00 31.65 26.15 89.45 48.00 71.70 52.92 48.82 26.76 45.74 69.41 34.82 40.26 12.77 2.31 

188 6.00 35.00 108.50 29.50 16.85 145.70 66.10 91.55 45.40 47.35 27.46 49.46 75.67 32.58 42.34 12.39 2.15 

189 6.00 33.00 103.00 33.80 10.00 80.70 48.90 63.80 60.59 48.12 26.90 45.51 78.90 35.17 40.58 12.63 2.13 

190 7.50 34.50 114.00 35.65 23.35 113.05 69.90 60.30 61.82 48.63 26.11 48.72 76.07 36.37 38.25 13.68 2.38 

191 7.50 33.00 108.50 27.85 16.80 67.95 46.60 52.43 68.72 51.41 27.59 40.88 77.66 29.37 45.79 12.61 2.84 

192 8.00 32.00 114.00 28.30 15.30 61.20 47.10 51.59 76.96 51.96 27.38 49.21 80.31 35.40 39.97 12.55 2.56 

193 6.50 34.00 114.00 34.75 17.30 113.40 74.90 80.63 66.04 46.86 27.29 48.87 87.47 31.14 44.55 12.77 2.01 

194 6.50 32.00 114.00 31.85 22.65 73.65 42.65 68.88 57.79 48.95 27.14 41.12 76.32 28.62 46.92 11.91 2.44 

195 7.50 34.50 114.00 29.65 24.30 150.90 91.50 70.25 60.75 49.26 27.62 39.85 82.85 37.00 38.78 13.00 2.09 

196 5.50 33.50 103.00 25.55 15.50 148.80 90.25 67.76 60.71 49.90 27.61 39.57 80.67 34.16 41.15 12.58 2.28 

197 7.50 35.00 114.00 34.60 17.70 186.80 109.25 70.02 58.45 48.02 26.93 44.64 71.18 31.30 44.80 12.52 2.23 

198 7.50 37.00 114.00 33.95 21.20 99.45 47.60 83.40 48.05 50.39 27.32 45.24 75.33 37.53 38.07 12.95 2.33 

199 7.50 35.50 114.00 28.05 9.15 51.15 29.40 70.90 59.22 50.54 26.46 43.76 80.93 38.80 37.80 13.34 2.09 

200 6.50 34.50 114.00 29.55 16.75 113.20 80.75 90.83 70.78 47.73 26.37 38.66 66.48 39.14 36.34 13.49 2.07 

201 7.00 33.50 114.00 35.50 27.70 108.50 66.90 67.19 61.59 50.47 27.50 42.98 69.26 33.35 42.66 12.83 2.27 

202 6.50 33.50 108.50 35.75 18.45 112.25 71.15 75.72 63.32 49.19 27.48 57.24 81.55 34.84 40.92 12.74 2.35 

203 8.00 36.50 114.00 26.35 16.55 108.10 46.35 63.48 42.78 48.53 26.23 40.56 78.35 36.06 39.46 13.06 2.07 

204 7.00 35.00 108.50 27.55 18.55 150.65 93.00 52.86 61.74 46.73 26.13 40.56 69.04 32.60 42.28 12.66 2.12 

205 7.50 33.50 108.50 32.15 24.50 153.50 78.50 73.62 51.53 48.66 26.82 48.25 79.26 33.60 42.52 12.55 2.18 

206 7.00 32.00 114.00 39.55 20.80 144.95 86.70 89.23 59.76 49.66 27.95 36.53 68.45 31.67 44.08 11.96 2.39 

207 6.50 31.50 114.00 31.65 23.40 145.00 87.30 78.76 59.92 48.16 27.32 39.75 79.07 32.94 42.53 12.58 2.17 

208 7.50 33.50 108.50 30.55 19.00 92.80 62.30 65.96 67.17 47.11 26.92 51.53 77.50 36.97 37.99 12.91 2.15 

209 6.00 36.00 114.00 27.45 12.35 77.15 44.60 78.71 58.07 47.59 26.84 42.86 83.32 34.09 41.26 12.72 2.09 

210 7.00 32.00 114.00 22.70 18.70 56.10 39.60 48.23 70.59 50.33 26.99 48.63 75.25 37.79 37.22 12.91 2.19 

211 7.50 33.00 108.50 29.90 29.65 105.35 62.10 75.42 59.14 49.45 27.57 38.49 80.77 31.45 44.50 12.76 2.07 

212 8.00 34.00 114.00 38.00 14.10 98.70 51.80 93.82 52.48 47.52 28.55 38.78 72.63 28.39 47.08 11.39 2.28 

213 7.00 33.00 114.00 23.20 20.10 100.80 62.80 73.25 62.30 48.63 27.93 48.63 82.38 36.67 37.85 13.17 2.19 
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214 7.00 35.00 114.00 34.80 26.00 103.60 50.10 73.45 48.36 49.24 26.85 48.88 76.36 35.40 40.06 13.04 2.27 

215 6.50 33.50 114.00 32.00 17.75 145.25 87.45 90.84 60.19 47.88 26.32 43.40 79.14 32.37 43.22 12.64 2.05 

216 7.00 35.00 114.00 31.15 18.75 146.85 77.20 81.57 52.54 51.56 26.77 45.18 70.54 35.86 40.41 12.41 2.29 

217 7.00 32.00 114.00 28.30 42.00 167.80 102.80 68.97 61.26 49.42 27.53 39.22 70.94 35.72 39.66 12.35 2.44 

218 8.00 34.00 114.00 26.70 17.00 68.30 37.90 57.52 55.49 49.25 27.26 44.69 76.02 35.73 39.30 12.64 2.39 

219 7.50 34.00 114.00 23.95 14.25 54.60 30.35 64.38 55.96 49.03 27.00 46.52 80.14 31.63 44.15 13.02 2.10 

220 7.50 32.50 108.50 26.85 21.25 55.75 23.65 69.81 42.32 49.45 26.92 39.56 75.05 30.30 45.70 12.75 2.33 

221 7.00 36.00 114.00 29.40 17.70 81.95 44.95 58.73 54.76 49.87 26.63 43.46 69.62 28.01 48.16 11.99 2.31 

222 7.50 36.00 108.50 27.80 18.30 125.80 74.00 58.02 58.75 49.09 27.34 42.84 79.15 31.94 43.93 12.55 2.34 

223 8.00 34.00 114.00 30.55 17.05 146.35 94.90 86.36 64.82 48.83 27.22 55.30 80.45 35.87 38.93 12.85 2.32 

224 7.00 33.00 108.50 29.80 22.05 83.05 49.95 77.79 60.10 48.71 27.54 44.55 78.45 35.20 39.80 13.19 2.14 

225 6.50 34.00 108.50 27.70 26.50 131.70 72.35 74.19 54.91 48.57 27.54 47.52 73.36 35.95 39.62 12.80 2.11 

226 8.50 36.00 114.00 28.95 17.10 127.60 78.20 69.31 61.38 47.52 26.89 47.33 81.80 35.80 39.32 12.81 2.21 

227 6.00 30.00 114.00 33.70 9.30 74.70 42.40 84.20 56.76 48.58 26.54 42.57 73.45 33.51 42.13 12.72 2.21 

228 6.50 33.00 114.00 29.50 12.75 93.75 43.75 95.32 46.67 49.52 27.00 52.42 73.06 31.81 43.46 12.39 2.23 

229 7.50 33.50 108.50 26.55 11.90 79.60 47.65 52.63 59.85 47.63 26.73 36.07 71.94 34.90 39.60 12.78 1.97 

230 7.50 34.50 103.00 29.80 17.55 129.90 84.25 54.63 64.88 46.93 26.43 38.22 72.85 36.29 39.08 12.97 1.94 

231 8.00 34.00 114.00 26.40 7.20 50.80 34.30 87.76 67.52 50.26 27.05 43.50 76.53 29.79 46.08 12.48 2.14 

232 8.00 33.00 114.00 29.00 11.30 45.50 30.20 60.60 66.37 51.34 28.20 42.92 79.55 28.43 46.05 11.67 3.46 

233 7.00 33.00 103.00 23.80 13.30 66.60 45.90 56.86 68.92 47.72 26.47 50.69 78.91 40.21 35.53 13.93 1.87 

234 7.00 35.00 108.50 23.20 11.65 75.25 40.30 67.43 52.87 44.96 27.77 40.88 77.50 35.64 39.84 13.13 1.92 

235 7.00 33.50 108.50 26.75 12.65 92.70 48.70 87.71 52.45 48.15 27.83 53.03 80.64 32.49 42.80 12.48 2.30 

236 8.00 33.50 108.50 31.05 12.90 116.15 75.65 69.47 65.08 51.92 28.39 48.67 83.01 36.28 39.34 12.86 2.51 

237 6.00 33.00 108.50 31.70 15.30 106.90 65.35 69.80 61.39 48.27 27.05 39.76 72.60 37.42 37.18 12.99 2.31 

238 7.00 33.00 114.00 27.55 18.60 94.45 65.75 61.95 69.57 47.05 27.05 39.52 73.46 36.22 38.89 13.30 2.05 

239 7.00 32.50 108.50 31.00 11.90 106.85 72.30 69.75 67.69 45.93 25.51 40.57 75.75 37.26 38.80 13.09 1.79 

240 6.50 35.00 103.00 33.05 11.60 106.15 67.55 70.11 63.53 47.72 27.00 56.41 71.36 35.67 39.57 12.76 2.12 
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ENTRY DE DFL DMt HKW SPYD PY SEED Y SMK SH OIL PRO Fe  Zn Linoleic Oleic Palmitic Stearic 

241 7.00 35.00 114.00 36.90 25.75 166.65 106.45 80.18 64.10 48.79 27.02 41.45 74.04 35.38 40.06 12.76 2.22 

242 7.00 33.50 114.00 30.60 17.95 184.65 131.50 75.26 71.50 50.46 26.54 58.93 79.07 31.96 43.64 12.50 2.26 

243 7.50 35.00 114.00 31.55 18.35 158.90 87.40 87.46 55.03 48.42 27.41 43.93 81.78 35.93 39.03 12.72 2.36 

244 7.50 36.00 108.50 26.75 12.40 67.30 28.35 60.11 42.65 47.12 26.91 57.49 86.93 33.48 42.65 13.47 1.80 

245 7.50 34.00 114.00 34.70 23.60 165.15 82.60 64.33 47.93 48.65 27.52 51.40 81.41 36.33 38.67 12.75 2.35 

246 7.00 31.50 108.50 32.55 14.05 111.70 71.00 69.46 64.08 48.67 26.44 39.58 73.43 35.55 40.33 12.86 2.05 

247 8.00 36.00 103.00 21.00 5.80 55.40 37.20 73.66 67.15 45.33 27.88 52.54 75.00 34.85 39.54 13.04 1.96 

248 8.00 34.00 114.00 23.60 9.00 63.10 41.20 81.31 65.29 48.86 26.73 45.40 72.51 34.70 40.41 12.81 2.14 

249 6.00 33.00 103.00 30.80 13.60 89.30 40.40 54.21 45.24 46.64 25.87 37.16 75.30 33.83 42.18 13.15 1.92 

250 6.50 32.50 103.00 36.45 9.00 91.15 56.80 74.54 62.22 45.32 27.76 40.68 76.67 29.37 45.90 12.37 2.10 

251 6.50 33.00 103.00 33.75 12.70 115.45 67.25 53.30 58.22 44.91 26.41 40.62 78.62 32.27 43.92 12.68 1.85 

252 5.50 32.00 108.50 27.70 9.00 84.40 32.50 64.88 38.43 48.05 28.23 34.46 64.50 27.65 46.98 12.30 2.61 

253 7.00 33.43 114.00 31.69 22.54 130.04 69.43 74.51 52.56 49.37 27.07 47.22 79.97 35.44 40.07 12.61 2.24 

254 6.25 32.50 104.38 31.36 11.43 96.21 51.91 62.64 53.22 46.09 27.36 38.90 74.05 30.67 44.75 12.55 2.13 

DE : Days to Emergence 

   
Fe : Kernel iron concentration 

DF : Days to Flowering 

    
Zn : Kernel zinc concentration 

DMt : Days to Maturity 

    
Linoleic : Linoleic acid content 

HKW : Hundred Kernel Weight 

   
Oleic : Oleic acid content 

 
SPYD : Single Plant Yield 

    
Palmitic : Palmitic acid content 

PY : Pod Yield per plot 

    
Stearic : Stearic acid content 

SEED Y : Seed Yield per plot 

          
SMK : Sound Mature Kernel Percentage 

        
SH : Shelling Percentage 

          
OIL : Oil Content 

           
PRO : Protein Content 

          



Appendix A. Reagents required for DNA extraction 

S.No. Chemicals/Reagents Chemical composition / Remark 

1 
3% CTAB (Cetyl Trimethyl 

Ammonium Bromide) buffer 

10 mM Tris                 1.21 g 

1.4 M NaCl                 8.18 g 

20 mM EDTA             0.745 g 

3% CTAB                   3.0 g 

Distilled water            100 ml 

Adjust to pH 8.0 using HCl. Add 0.17 ml mercapto ethanol only at the time of 

keeping the buffer in boiling water. 

2 
Chloroform:Isoamyl Alcohol 

(24:1) 

Chloroform 96 ml 

Isoamyl alcohol (IAA) 4 ml 

Store in dark at room temperature. 

3 Isopropanol Keep Isopropanol at –20°C. Use only ice cold Isopropanol. 

4 RNase A (10 mg/ml) 

Dissolve 100 mg of pancreatic RNase A in 100 ml of 10 mM Tris (pH 7.5) and 15 

mM NaCl. Heat in boiling water bath for 15 minutes and allow cooling slowly to 

room temperature. Dispense into aliquots and store at –20°C. Working stocks may 

be stored at 4°C. 

5 

Phenol:Chloroform: Isoamyl 

Alcohol (25:24:1) 
Phenol (equilibrated) 50 ml Chloroform: IAA (24:1) 50 ml, Store at 4°C. 

6 Sodium Acetate (3 M, pH 5.2) 

Dissolve 40.824 g of sodium acetate in 60 ml distilled water and adjust to pH 5.2 

using glacial acetic acid. Make the volume up to 100 ml with distilled water and 

autoclave. 

7 Absolute Ethanol Store at –20°C 

8 70% Ethanol 
Absolute ethanol  70 ml 

Distilled water      30 ml 

9 T1E0.1 Buffer 
10 mM Tris         121 g 

1 mM EDTA        0.0372 g 



 

 
 

 
  
 
 
 
 

Distilled water    100 ml 

10 T10E1 Buffer 

0.5 M Tris              6.050 g 

0.5 M EDTA          9.306 g 

2 M NaCl               11.688 g 

Distilled water       100 ml 
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Table 4.1. Analysis of variance for different characters using alpha lattice design in F2:3 mapping population of the cross ICGV 06099 

× ICGV 93468 in groundnut during rainy season, 2013 

Sources of variation  Replication Replication/Block Genotypes Error 

df 1 50 259 209 

Days to emergence 8.11** 1.19** 0.68 0.71 

Days to 75 % flowering 7.23 5.73** 2.84** 2.19 

Days to maturity 32.39 33.89** 23.09 18.73 

100-kernel weight (g) 1.45 21.54* 20.40* 14.66 

Single plant yield (g) 1980.80** 93.28** 73.66** 55.35 

Pod yield (g plot
-1

) 443.75* 1042.38** 1673.52** 78.53 

Kernel yield (g plot
-1

) 43.12 377.27** 570.75** 85.61 

Sound mature kernel percentage (%) 10582.90** 162.10 204.90** 146.10 

Shelling Percentage (%) 102.36 56.32* 99.84** 35.09 

Oil content (%) 12.90* 4.55* 4.38* 3.27 

Protein content (%) 0.40 1.99 0.93 1.03 

Kernel iron concentration(mg kg
-1

) 11.4 50.37** 44.81** 20.39 

Kernel zinc concentration(mg kg
-1

) 0.79 42.11** 37.42** 17.84 

Oleic acid (%) 8.42 14.35 14.29* 10.90 

Linoleic acid (%) 7.30 10.26 11.24** 7.84 

Palmitic acid (%) 0.12 0.27 0.25 0.21 

Stearic acid (%) 0.15 0.05 0.09** 0.06 

 

Where, df – Degrees of freedom 

  



Table 4.3. Descriptive statistics of the parents and F2:3 mapping population of the cross ICGV 06099 × ICGV 93468 in groundnut 

Character Mean of the parental 

lines 

F2:3 mapping population 

P1 P2 Mean Range CV (%) S.Em Skewness 

Days to emergence 7.00 6.00 7.00 5.00-10.00 12.42 0.04 0.385 

Days to 75 % flowering 34.00 33.00 34.00 30.00-39.00 5.06 0.07 -0.110 

Days to maturity 114.00 104.00 111.00 103.00 -114.00 4.28 0.22 -1.158 

100-kernel weight 33.01 31.36 31.65 19.20 -43.00 13.57 0.19 -0.062 

Single plant yield (g) 23.67 11.43 18.24 4.08-78.60 46.91 0.39 1.880 

Pod yield per plot (g plot
-1

) 133.58 96.21 104.20 25.60 -244.00 37.44 1.79 0.614 

Kernel yield per plot (g plot
-1

) 74.87 51.91 59.67 13.94 -158.50 37.62 1.03 0.802 

Sound mature kernel percentage (%) 70.37 62.64 69.47 28.81-95.72 21.66 0.69 -0.270 

Shelling percentage (%) 55.55 53.22 58.06 30.49-84.80 5.50 0.39 -0.278 

Oil content (%) 49.23 46.09 48.53 43.49-59.61 4.13 0.09 0.714 

Protein Content (%) 27.08 27.36 27.22 24.89-29.75 3.84 0.04 -0.221 

Kernel iron concentration (mg kg
-1

) 52.50 37.30 45.42 31.77-61.41 13.49 0.28 0.516 

Kernel zinc concentration (mg kg
-1

) 79.50 65.00 76.74 59.64-90.40 7.30 0.26 -0.115 

Oleic acid (%) 40.04 44.75 41.31 31.66-53.93 8.75 0.17 0.377 

Linoleic acid (%) 35.50 30.67 34.08 24.04-42.17 9.24 0.67 -0.495 

Palmitic acid (%) 12.63 12.55 12.73 11.01-14.38 3.86 0.02 -0.042 

Stearic acid (%) 2.24 2.13 2.22 1.54-3.65 12.93 0.01 0.912 

 

Note: CV–Coefficient of Variation; S.Em–Standard Error of mean; P1– ICGV 06099; P2– ICGV 93468 

 

 

  



Table 4.4. Estimates of various genetic parameters for different traits and kernel nutrient parameters in F2:3 population of the cross 

ICGV 06099 × ICGV 93468 in groundnut 

Character PCV % GCV % h
2
b GA GAM 

Days to emergence 2.38 1.88 62.36 0.83 3.06 

Days to 75 % flowering 4.69 1.68 30.60 0.41 1.24 

Days to maturity 3.93 3.15 64.44 5.81 5.22 

100-kernel weight (g) 13.22 5.35 37.00 1.41 4.46 

Single plant yield (g) 34.45 32.04 86.45 11.19 61.37 

Pod yield (g plot
-1

) 28.40 27.10 91.00 55.50 53.26 

Kernel yield (g plot
-1

) 30.35 26.10 73.91 27.58 46.22 

Sound mature kernel weight percentage 

(%) 

18.23 9.59 27.66 7.21 10.39 

Shelling Percentage (%) 14.14 9.80 47.98 8.11 13.98 

Oil content (%) 10.72 4.09 44.59 0.58 3.22 

Protein content (%) 2.30 1.93 70.40 0.91 3.34 

Kernel iron concentration(mg kg
-1

) 12.60 7.71 64.24 4.40 9.72 

Kernel zinc concentration(mg kg
-1

) 6.84 4.07 62.21 3.83 4.99 

Oleic acid (%) 8.59 3.15 31.81 0.98 2.38 

Linoleic acid (%) 9.06 3.82 39.42 1.13 3.32 

Palmitic acid (%) 5.05 3.52 48.73 0.64 5.07 

Stearic acid (%) 12.91 5.29 37.74 0.09 4.46 

 

Note: PCV – Phenotypic Coefficient of Variation; GCV – Genotypic Coefficient of Variation; h
2
b–Heritability (broad sense); GA– Genetic 

Advance; GAM– Genetic Advance as per cent of Mean. 



Table 4.5. Simple correlations among various characters in F2:3 mapping population of the cross ICGV 06099 × ICGV 93468 in   

groundnut 

 

Note: DE:Days to EmergenceDF:  Days to Flowering;DMT: Days to Maturity; HSW: Hundred Seed Weight (g); SPYD: Single Plant Yield 

(g); PY: Pod Yield per plot (g); KY:KernelYield per plot (g); SMK %: Sound Mature Kernel Percentage; SH %: Shelling Percentage; OC: Oil 

Content (%); PC: Protein Content (%); Fe: Kernel iron concentration (mg kg
-1

); Zn: Kernel zinc concentration (mg kg
-1

); OAC: Oleic Acid 

Content (%); LAC: Linoleic Acid Content (%); PALM:Palmitic acid content (%); SAC: Stearic acid Content (%). 

* – Significance at 5 % level (0.0962); **- Significance at 1 % level (0.1262) 

 

 
DE DF DMT HSW SPYD PY KY SMK % SH % OC PC Fe Zn OAC LAC PALM SAC 

DE - 0.241** 0.132** -0.060 -0.011 -0.016 -0.018 0.036 0.049 0.095 0.021 0.074 0.060 -0.093 0.092 -0.003 0.069 

DF  - 0.167** -0.084 0.054 0.033 -0.030 -0.019 -0.164** 0.071 0.022 0.093 0.149** -0.111 0.109* 0.050 0.013 

DMT  

 

- 
0.202** 0.307** 0.164** 0.158** 0.157** -0.001 0.286** 0.008 0.057 0.058 -0.175** 0.143** 0.020 0.286** 

HSW  
  

 
 - 0.158** 0.340** 0.352** 0.245** 0.014 0.002 0.032 -0.028 0.008 -0.020 0.001 

-0.173** 
0.152** 

SPYD  
  

 
   - 0.323** 0.298** -0.169** -0.063 0.263** 0.055 -0.001 -0.067 0.004 -0.009 

-0.122* 
0.202** 

PY  
  

 
     - 0.915** 0.224** -0.278** -0.127** -0.041 -0.060 -0.045 -0.245** 0.239** 

-0.044 
-0.039 

KY  
  

 
       - 0.192** 0.097* -0.132** -0.067 -0.068 -0.049 -0.267** 0.266** 

-0.014 
-0.030 

SMK %  
  

 
         - -0.094 -0.078 -0.082 0.132** 0.093 -0.029 0.041 

-0.071 
-0.005 

SH %  
  

 
           - 0.060 -0.047 -0.001 -0.021 -0.017 0.027 

0.050 
0.098* 

OC  
  

 
             - 0.094 0.082 -0.006 -0.066 0.031 

-0.226** 
0.765** 

PC  
  

 
               - -0.08 0.074 -0.176** 0.053 

-0.245** 
0.373** 

Fe  
  

 
                 - 0.302** -0.022 0.043 

0.049 
0.019 

Zn  
  

 
                   - -0.049 0.041 

0.039 
0.038 

OAC  
  

 
                     - -0.970** 

-0.576** 
-0.101* 

LAC  
  

 
                       - 

0.622** 
-0.026 

PALM  

 

 

            

- 
-0.384 

SAC  
  

 
                        

 
 - 



Table 4.8. Analysis of variance for different characters of six generations of two crosses in groundnut 

sources 

of 

variation  

df 
Days to 

emergence 

Days to 

flowering 

Days to 

maturity 

100-

kernel 

weight 

(g) 

Shelling  

Percentage 

(%) 

Sound 

mature 

kernel 

percentage 

(%) 

Pod yield 

per plant 

(g) 

Kernel iron 

concentration 

(mg kg
-1

) 

Kernel zinc 

concentration

(mg kg
-1

) 

Analysis of variance between crosses 

Rep  2 0.10 0.12 1.99 0.53 1.03 1.64 0.40 0.07 1.45 

Cross  1 1.372803 ns 0.7744 ns 24.2720* 3.3856* 4.80340 ns 0.5041 ns 2.783336* 6.881878* 14.65614* 

Error  2 0.07 0.10 0.68 0.18 0.43 1.76 0.06 0.12 0.54 

Analysis of variance between generations within crosses 

ICGV 06040 × ICGV 87141 

Rep  2 6.00 3.84* 6.33 7.99 48.50* 0.30 -27.24 6.23 52.95* 

Gen  5 12.06* 1.47 ns 133.75** 57.56** 144.89** 108.82 ns 93.47* 21.17** 72.76** 

Error  10 3.03 0.73 5.36 9.99 9.53 61.89 20.69 2.38 8.66 

ICGV 06099 × ICGV 93468 

Rep  2 0.34 2.20* 88.98* 11.04 36.16 14.85 -23.42 0.39 18.61 

Gen  5 3.25** 1.01 ns 325.11** 42.10* 64.09 ns 43.42 ns 76.35** 16.80* 36.09* 

Error  10 0.33 0.37 19.36 10.05 28.67 21.35 9.80 4.22 10.41 

Note:Rep – Replication Mean Sum of Squares; Cross – Crosses Mean Sum of Squares; Gen – Genotypic Mean Sum of Squares; Error – Error 

Mean Sum of Squares. 

* – Significance at 5 % level 

**  –Significance at 1 % level 

NS –  Non-Significant



Table 4.9. Mean performance of six generations each of two crosses of groundnut for different characters 

 

Character 

ICGV 06040 × ICGV 87141 

P1 P2 F1 F2 B1 B2 
S.Em. 

± 

C.D. 

(p=0.05) 

 Mean Range Mean Range Mean Range Mean Range Mean Range Mean Range   

DE 11.27 11.0-12.0 15.38 13.0-18.0 12.20 10.00 14.34 11.0-17.0 15.25 12.0-17.0 15.80 11.0-17.0 1.01 3.17 

DF 47.94 47.0-51.0 49.61 48.0-53.0 48.80 46.0-51.0 49.83 43.0-56.0 49.46 46.0-55.0 48.37 45.0-56.0 0.49 NS 

DM 159.00 159.0 142.00 142.00 159.00 159.00 158.34 142.0-159.0 158.33 157.0-159.0 155.81 142.0-159.0 1.34 4.21 

HKW (g) 44.53 31.4-52.3 34.82 30.2-51.5 43.94 31.0-54.5 43.00 22.7-73.9 44.54 22.2-68.8 36.49 23.1-57.1 1.82 5.75 

SH (%) 72.54 64.0-85.4 57.74 46.9-65.4 75.40 57.0-87.9 66.07 34.9-86.2 61.05 44.5-76.6 65.51 45.6-85.9 1.78 5.62 

SMK (%) 64.70 39.2-82.1 55.24 27.6-70.9 60.85 34.2-77.9 67.50 16.4-95.7 54.38 19.6-86.7 68.88 36.8-84.8 4.54 NS 

PY(g) 24.82 15.2-45.7 31.09 16.5-53.8 31.67 14.5-53.0 31.40 7.6-86.3 39.99 15.4-100.3 34.12 11.0-105.7 2.63 8.28 

KIC  

(mg kg-1)  
33.32 29.2-38.6 25.54 21.7-27.7 28.49 23.7-32.2 28.38 20.1-39.1 29.42 20.4-41.4 31.49 21.0-42.2 0.89 2.81 

KZC 

(mg kg-1)  
50.91 45.9-57.4 36.05 27.7-41.9 40.27 28.2-55.2 39.80 22.7-57.9 42.46 27.6-54.2 41.98 27.1-60.3 1.70 5.35 

Character ICGV 06099 × ICGV 93468 

DE 11.47 11.0-12.0 10.58 10.0-11.0 11.25 11.0-12.0 11.26 10.0-14.0 13.70 12.0-17.0 11.80 11.0-13.0 0.33 1.04 

DF 47.42 46.0-48.0 46.91 46.0-49.0 46.95 46.0-49.0 47.74 43.0-53.0 47.17 46.0-51.0 47.44 42.0-52.0 0.35 NS 

DM 159.00 159.00 133.00 133.00 147.67 142.0-159.0 156.08 142.0-159.0 155.76 142.0-159.0 136.53 133.0-159.0 2.54 8.00 

HKW (g) 46.32 26.0-60.5 44.78 39.5-54.5 46.37 30.0-67.4 36.43 26.0-77.7 45.03 28.6-58.7 44.33 23.2-63.6 1.83 5.77 

SH (%) 60.17 45.3-64.3 61.26 47.3-77.5 58.98 41.7-73.3 65.32 38.9-90.1 62.29 35.3-78.7 62.77 28.8-89.7 3.09 NS 

SMK(%) 65.18 43.7-75.9 57.86 53.4-65.4 67.88 48.4-76.2 71.79 32.4-90.9 67.34 41.3-86.4 58.28 19.6-91.4 2.67 NS 

PY(g) 30.71 20.1-66.9 26.77 16.1-46.7 37.51 18.5-68.6 30.82 4.7-91.3 33.50 9.4-66.7 35.90 9.1-71.7 1.81 5.70 

KIC  

(mg kg-1)  
25.49 20.9-31.1 20.83 15.8-22.6 21.95 18.7-31.1 25.19 17.3-48.9 26.25 16.2-41.2 24.07 17.6-35.2 1.19 3.74 

KZC 

(mg kg-1)  
36.58 35.0-54.6 30.39 24.5-35.9 32.01 21.9-41.2 35.08 23.4-60.8 37.27 23.7-50.6 32.91 25.0-42.1 1.86 5.87 

Note: DE– Days to Emergence; DF– Days to Flowering; DM– Days to Maturity; HKW –100-Kernel Weight; SH %– Shelling percentage; SMK % – 

Sound Mature Kernel percentage; PY– Pod yield per plant; KIC– Kernel iron concentration; KZC – Kernel Zinc Concentration; NS – Non-Significant 



 

Table 4.10. Estimates of various genetic parameters for different traits including kernel iron and zinc concentrations for two crosses 

viz., ICGV 06040 × ICGV 87141 and ICGV 06099 × ICGV 93468 of groundnut during post-rainy season, 2013-14 

Character PCV % GCV % h
2

(b) GA GAM h
2

(n) Degree of 

dominance 

ICGV 06040 × ICGV 87141 

Days to emergence 52.23 32.52 49.79 2.52 17.86 1.19 2.57 

Days to flowering 2.02 1.01 24.94 0.51 1.04 0.29 1.82 

Days to maturity 1.39 -- 88.88 12.71 8.17 2.87 1.14 

100- kernel weight (g) 12.33 9.66 61.36 6.43 15.59 0.15 0.86 

Shelling percentage (%) 11.14 10.12 82.56 12.57 18.95 0.59 0.45 

Sound mature kernel percentage (%) 14.17 6.36 20.18 3.66 5.89 0.02 1.24 

Pod yield per plant (g) 20.7 15.21 53.96 7.45 23.01 1.56 2.11 

Kernel iron concentration (mg kg
-1

) 10.01 8.52 72.43 4.39 14.93 0.66 1.88 

Kernel zinc concentration (mg kg
-1

) 13.11 11.06 71.15 8.03 19.21 0.51 3.67 

ICGV 06099 × ICGV 93468 

Days to emergence 9.69 8.38 74.83 1.76 14.94 7.73 1.8 

Days to Flowering 1.86 0.86 36.68 0.58 1.22 2.20 1.4 

Days to maturity 7.42 6.8 84.04 19.06 12.84 24.68 1.39 

100- kernel weight (g) 10.39 7.42 51.52 4.83 10.91 0.60 0.49 

Shelling percentage (%) 11.25 6.04 29.16 3.82 6.05 1.09 5.19 

Sound mature kernel percentage (%) 10.88 5.34 25.62 2.83 4.66 0.51 1.8 

Pod yield per plant (g) 16.7 13.9 69.36 8.08 23.85 0.32 3.18 

Kernel iron concentration (mg kg
-1

) 12.01 8.48 49.85 2.98 12.34 0.23 0.78 

Kernel zinc concentration (mg kg
-1

) 12.75 8.57 45.12 4.05 11.86 0.19 0.99 

Note: PCV – Phenotypic Coefficient of Variation; GCV – Genotypic Coefficient of Variation; h
2

(b)–Heritability (broad sense); GA– Genetic 

Advance; GAM– Genetic Advance as per cent of Mean; h
2

(n)–Heritability (narrow sense). 

 

 

 

 



Table 4.11. Estimates of heterosis and inbreeding depression for various traits including kernel iron and zinc concentrations for two 

crosses viz., ICGV 06040 × ICGV 87141 and ICGV 06099 × ICGV 93468 of groundnut 

Character Average Heterosis RHM Heterobeltiosis RHB ID 

ICGV 06040 × ICGV 87141 

Days to emergence -12.20 4.98 5.88 26.59 -19.56 

Days to flowering -0.049 2.24 1.61 3.94* -2.29 

Days to maturity 5.64** 5.21** 11.97** 11.50** 0.41 

100- kernel weight (g) 4.43 2.88 5.43 3.87 1.48 

Shelling percentage (%) 15.92** 1.70 32.48 -9.60* 12.26 

Sound mature kernel percentage (%) 5.81 13.90 -0.34 7.27 -7.63 

Pod yield per plant (g) 44.44** 9.02 27.50* -3.75 24.51 

Kernel iron concentration (mg kg-1) -2.72 -3.65 -14.14** -14.97** 0.95 

Kernel zinc concentration (mg kg-1) -4.43 -7.90 -18.57** -21.53** 3.63 

ICGV 06099 × ICGV 93468 

Days to emergence 1.49 0.93 6.25 5.66 0.55 

Days to Flowering -0.14 1.22 -0.94 0.41 -1.37 

Days to maturity 1.14 6.90** 11.02** 17.34** -5.69 

100- kernel weight (g) 1.78 -20.02** 3.53 -18.64** 21.42 

Shelling percentage (%) -9.88 2.49 -6.56 6.27 -13.74 

Sound mature kernel percentage (%) 11.28 20.47** 4.67 13.31* -8.24 

Pod yield per plant (g) 32.63** 1.65 14.86 -11.96 23.35 

Kernel iron concentration (mg kg-1) -3.66 8.20 -14.14 -3.56 -12.32 

Kernel zinc concentration (mg kg-1) -6.33 6.49 -16.75* -5.35 32.84 

 

Note: RHM – Residual Heterosis over Mid parent; RHB – Residual Heterosis over Better parent; ID – Inbreeding Depression 

 

 

 

 



Table 4.12. Results of scaling tests and genetic components for various traits including kernel iron and zinc concentrations in the cross 

ICGV 06040 × ICGV 87141 of groundnut 

 

Scaling 

test 

Days to 

emergence 

Days to 

maturity 

100-Kernel 

weight (g) 

Shelling 

percentage (%) 

Pod yield per 

plant (g) 

Kernel iron 

concentration 

(mg kg-1) 

Kernel zinc  

concentration 

(mg kg-1) 

A 7.034±0.76** -1.302± 0.28** 4.336±3.90 -25.828±3.81** 23.489±6.96** -2.976±1.57 -6.271±2.82* 

B 4.015±1.08** -7.650±2.27** -15.835±3.17** -2.126±4.05 5.478±7.79 8.949±1.80** 7.636±3.25* 

C 6.310±1.15** -2.628±0.91** -0.792±4.42 -16.781±5.60** 6.346±8.62 -2.335±1.71 -8.305±4.09* 

 

Genetic 

component 

Days to 

emergence 

Days to maturity 100-Kernel 

weight (g) 

Shelling 

percentage (%) 

Pod yield per 

plant (g) 

Kernel iron  

concentration   

(mg kg-1) 

Kernel zinc  

concentration  

(mg kg-1) 

m 14.343±0.12** 164.022±2.45** 53.599±4.96** 66.077±0.80** 5.336±9.63 21.129±2.47** 33.815±3.84** 

d -0.544±0.50 3.825±1.13** 0.508±1.23 -4.452±2.12* -3.135±1.93 3.891±0.42**         7.431±0.73** 

h 3.608±1.23** -17.694±7.06* -30.219±13.71* -0.918±5.79 77.922±27.64** 21.647±6.97** 17.496±10.88 

i 4.740±1.12** -5.022±2.45* -10.706±4.81* -11.173±5.32* 22.621±9.43* 8.308±2.44** 9.671±3.77** 

j 1.509±0.59 3.825±1.13 10.085±2.35 -11.851±2.38 9.006±4.682 -5.963±1.15        -6.953±1.80 

l -15.789±2.31** 12.672±4.63** 22.205±9.15* 39.127±10.17** -51.588±19.11** -14.281±4.61**        -11.036±7.74 

 

*– Significant at 5% level of probability  

**– Significant at 1% level of probability  

m – mean             i – additive × additive  

d – additive         j – additive × dominance  

h – dominance    l – dominance × dominance 

 

 



Table 4.13. Results of scaling tests and genetic components for various traits including kernel iron and zinc concentrations in the cross ICGV 

06099 × ICGV 93468 of groundnut. 

 

 

Scaling test 

Days to 

emergence 

Days to 

maturity 

100-Kernel 

weight (g) 

Pod yield per 

plant (g) 

Kernel iron  

concentration 

(mg kg-1) 

Kernel zinc 

concentration 

(mg kg-1) 

A 4.107±0.76** 6.401±2.91* -0.795±3.75 -7.855±5.16 5.051±1.67** 5.943±2.46* 

B 1.752±0.53** -9.417±6.48 -3.40±3.39 5.664±5.53 5.371±1.77** 3.421±2.04 

C 0.518±0.41 37.528±4.08** 11.891±2.25* -19.70±7.32* 10.550±2.30** 12.197±3.16** 

 

Genetic 

component  

Days to emergence Days to 

maturity 

100-Kernel  

weight (g) 

Pod yield per 

plant (g)  

Kernel iron  

concentration 

(mg kg-1) 

Kernel zinc 

concentration 

(mg kg-1) 

m 11.269±0.07** 186.299±6.84** 59.984±4.67** 13.210±7.60 23.294±0.36** 36.324±2.93** 

d 1.624±0.45** 12.006±0.72** -1.193±1.20 1.972±1.90 2.334±0.703** 3.096±0.88** 

h 5.561±0.95** -82.191±20.17** -32.293±12.61* 46.154±21.03* 8.957±6.56 2.220±8.03 

i 5.341±0.94** -40.543±6.80** -16.085±4.51** 15.537±7.36* -0.128±2.32 -2.834±2.79 

j 1.178±0.46 7.909±3.35 1.303±2.11 -4.371±3.58 -0.160±1.15 1.261±1.43 

l -11.199±1.84** 43.559±13.71** 20.280±8.83* -21.851±14.66 -10.295±4.32* -6.529±5.49 

 

*– Significant at 5% level of probability  

**– Significant at 1% level of probability  

m – mean             i – additive × additive  

d – additive         j – additive × dominance  

h – dominance    l – dominance × dominance



 

Table 4.14. Comparison of gene actions for various traits in two crosses of groundnut 

 
ICGV 06099 × ICGV 93468  

Days to emergence 11.269±0.07** 1.624±0.45** 5.561±0.95** 5.341±0.94** 1.178±0.46 -11.199±1.84** Duplicate 

Days to maturity 186.299±6.84** 12.006±0.72** -82.191±20.17** -40.543±6.80** 7.909±3.35 43.559±13.71** Duplicate 

100-Kernel weight (g) 59.984±4.67** -1.193±1.20 -32.293±12.61* -16.085±4.51** 1.303±2.11 20.280±8.83* Duplicate 

Pod yield per plant (g) 13.210±7.60 1.972±1.90 46.154±21.03* 15.537±7.36* -4.371±3.58 -21.851±14.66 Duplicate 

Kernel iron concentration 

(mg kg
-1

) 

23.294±0.36** 2.334±0.703** 8.957±6.56 -0.128±2.32 -0.160±1.15 -10.295±4.32* Duplicate 

Kernel zincconcentration 

(mg kg
-1

) 

36.324±2.93** 3.096±0.88** 2.220±8.03 -2.834±2.79 1.261±1.43 -6.529±5.49 Duplicate 

*– Significant at 5% level of probability  

**– Significant at 1% level of probability  

m – mean             i – additive × additive  

d – additive         j – additive × dominance  

h – dominance    l – dominance × dominance 

Character 

Genetic component 

Epistasis ICGV 06040 × ICGV 87141 

m d h i j l 

Days to emergence 14.343±0.12** -0.544±0.50 3.608±1.23** 4.740±1.12** 1.509±0.59 -15.789±2.31** Duplicate 

Days to maturity 164.022±2.45** 3.825±1.13** -17.694±7.06* -5.022±2.45* 3.825±1.13 12.672±4.63** Duplicate 

100-Kernel weight (g) 53.599±4.96** 0.508±1.23 -30.219±13.71* -10.706±4.81* 10.085±2.35 22.205±9.15* Duplicate 

Shelling percentage (%) 66.077±0.80** -4.452±2.12* -0.918±5.79 -11.173±5.32* -11.851±2.38 39.127±10.17** Duplicate 

Pod yield per plant (g) 5.336±9.63 -3.135±1.93 77.922±27.64** 22.621±9.43* 9.006±4.682 -51.588±19.11** Duplicate 

Kernel ironconcentration(mg kg
-1

) 21.129±2.47** 3.891±0.42** 21.647±6.97** 8.308±2.44** -5.963±1.15 -14.281±4.61** Duplicate 

Kernel zinc concentration(mg kg
-1

) 33.815±3.84** 7.431±0.73** 17.496±10.88 9.671±3.77** -6.953±1.80 -11.036±7.74 Duplicate 



 

 

Table 4.15. Simple correlation among various characters in the cross ICGV 06040 × ICGV 87141 of groundnut 

Character  

Days to 

emergence 

Days to 

flowering 

Days to 

maturity 

100-kernel 

weight  

(g) 

Pod yield 

per plant 

(g) 

Shelling 

percentage 

(%) 

Sound mature 

kernel weight 

percentage (%) 

Kerneliron  

concentration  

(mg kg
-1

) 

Kernelzinc  

concentration  

( mg kg
-1

) 

Days to emergence - 0.033 -0.226** -0.086 0.033 -0.208** 0.172** 0.044 -0.083 

Days to flowering 

 

- 0.277** 0.071 -0.048 -0.069 0.017 -0.163** -0.074 

Days to maturity 

  

- 0.158** -0.006 0.081 -0.176** -0.26 -0.049 

100-Kernel weight (g) 

   

- 0.196** 0.142** 0.197** -0.225** 0.134* 

Pod yield per plant (g) 

    

- -0.064 -0.062 -0.082 -0.077 

Shelling percentage (%) 

     

- -0.087 -0.180** -0.023 

Sound mature kernel 

weight percentage (%) 

      

- 0.034 0.018 

Kernel iron concentration  

(mg kg
-1

) 

       

- 0.590** 

Kernel zinc concentration  

( mg kg
-1

) 

        

- 

 

* – Significant at 5% level of probability i.e., r = 0.1062 

** – Significant at 1% level of probability i.e., r = 0.1393 

 

 

 

 

 

 

 

 



Table 4.16. Simple correlation among various characters in the cross ICGV 06099 × ICGV 93468 of groundnut 

Character   

Days to 

emergence 

Days to 

flowering 

Days to 

maturity 

100-

kernel 

weight 

(g) 

Pod 

yield per 

plant (g) 

Shelling 

percentage 

(%) 

Sound mature 

kernel weight 

percentage 

(%) 

Kernel iron 

concentration 

(mg kg
-1

) 

Kernel zinc 

concentration 

( mg kg
-1

) 

Days to emergence - 0.002 0.153** -0.122* 0.003 -0.048 -0.001 0.104* -0.021 

Days to flowering 

 

- 0.151** -0.010 -0.026 0.118* -0.053 -0.040 -0.053 

Days to maturity 

  

- 0.190** -0.071 0.112* 0.094 0.158** 0.220** 

100-Kernel weight (g) 

   

- -0.018 0.299** 0.286** -0.100 0.175** 

Pod yield per plant (g) 

    

- -0.207** -0.015 -0.103 0.002 

Shelling percentage (%) 

     

- 0.025 -0.055 0.024 

Sound mature kernel weight 

percentage (%) 

      

- -0.061 0.084 

Kernel iron concentration  

(mg kg
-1

) 

       

- 0.549** 

Kernel zinc concentration  

( mg kg
-1

) 

        

- 

* – Significant at 5% level of probability i.e., r = 0.1047 

** – Significant at 1% level of probability i.e., r = 0.1373 

 

 

 



Table 4.7 Kernel iron and zinc concentrations of entries in the cross ICGV 06040 × 

ICGV 87141 which showed similar scoringas that of entries of genotyping 

population using three SSR markers each associated with kernel iron and 

zinc concentrations of the cross ICGV 06099 × ICGV 93468 

 

 

 
Sample No. 

Iron concentration 

(mg kg
-1

) 

Zinc concentration  

(mg kg
-1

) 

1 25.42 43.29 

2 24.16 43.39 

3 25.48 41.18 

4 21.74 40.38 

5 23.69 36.82 

6 23.54 38.55 

7 21.65 35.38 

8 21.94 43.58 

9 19.39 34.97 

10 22.58 38.87 

11 23.59 42.62 

12 27.22 43.83 

13 24.18 43.40 

14 21.12 39.44 

15 20.80 36.69 

16 19.89 39.65 

17 20.22 35.06 

18 26.12 39.60 

19 25.60 40.44 

20 23.04 43.59 

21 20.33 41.43 

22 19.59 41.08 

23 24.31 45.90 

24 19.38 36.30 

25 21.27 41.32 

26 23.92 40.13 

27 19.03 34.49 

28 20.69 37.55 

29 23.00 42.36 

30 20.13 40.95 

31 21.83 40.17 

32 21.96 43.08 

33 20.03 43.12 

34 12.84 26.51 
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Fig 4.3a Frequency distribution of the mapping population for days to emergence (DE), days to 

75 % flowering (DFL), final plant stand (FPS), days to maturity (DMt), 100-kernel 

weight (HSW) and single plant yield (SPYD) in the mapping population. (  indicates 

parental lines viz., P1 - ICGV 06099 and P2 - ICGV 93468 values for respective traits) 
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Fig 4.3b Frequency distribution of the mapping population for pod yield per plot (PY), 

seed yield per plot (SEED_Y), sound mature kernel percentage (SMK%), 

shelling percentage (SH%), oil content (OIL) and protein content (PRO) in 

the mapping population.  (  indicates parental lines viz., P1 - ICGV 06099 and 

P2 - ICGV 93468 values for respective traits)  
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Fig 4.3c Frequency distribution of the mapping population for kernel iron 

concentration (D_Fe), kernel zinc concentration (D_Zn), oleic acid content 

(Oleic), linoleic acid content (Linoleic), palmitic acid content (Palmitic) and 

stearic acid content (Stearic) in the mapping population.  (  indicates 

parental lines viz., P1 - ICGV 06099 and P2 - ICGV 93468 values for 

respective traits)  
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    Fig 4.5 Relationship between kernel iron and zinc concentrations in F2:3 mapping 

population of a cross ICGV 06099 × ICGV 93468 
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Fig 4.6 Pictorial representation of correlations among various agronomic characters in 

the mapping population of the cross ICGV 06099 × ICGV 93468 

 

 
Note: DE - Days to Emergence; DFL - Days to Flowering; DMt - Days to Maturity; D_Fe - 

Kernel iron concentration; D_Zn - Kernel zinc concentration; FPS - Final Plant Stand; HSW 

- 100-Kernel weight; Linoleic -Linoleic acid content; OIL - Oil content; Oleic - Oleic acid 

content; PRO - Protein content; PY - Pod Yield per plot; Palmitic - Palmitic acid content; 

SEED_Y - Seed yield per plot; SH % - Shelling percentage; SMK % - Sound Mature Kernel 

percentage; SPYD - Single Plant Yield; Stearic - Stearic acid content. 

 

 

 



Fig 4.10 Pictorial representation of correlations among various agronomic characters in 

six generations of crosses ICGV 06040 × ICGV 87141 and ICGV 06099 × ICGV 

93468 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

  

 

 

 

Note: DE - Days to Emergence; DFL - Days to Flowering; DMt - Days to Maturity; HSW - 

Hundred Kernel weight; Pod_wt - Pod yield per plant; SH % - Shelling percentage; SMK % 

- Sound Mature Kernel percentage; Fe - Kernel iron concentration; Zn - Kernel zinc 

concentration; 
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Fig 3.2 Field layout overview of generation mean analysis plot consisting six generations 

of crosses ICGV 06040  × ICGV 87141 and ICGV 06099 × ICGV 93468 

 
 

 



 

 

Fig 3.1 Variation in kernel characteristics of four parental lines viz., ICGV 06040, ICGV 

87141, ICGV 06099 and ICGV 93468 
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Fig 4.4 Variation in kernel characteristics of F2:3 mapping populations of crosses ICGV 

06040 × ICGV 87141 and ICGV 06099 × ICGV 93468 
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Fig 4.8. Comparison of mean performance of different generations of two crosses of groundnut for days to maturity and  

       100- kernel weight 
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                                              ICGV 06040 × ICGV 87141                           ICGV 06099 × ICGV 93468 
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Fig 4.9. Comparison of mean performance of different generations of two crosses of groundnut for pod yield per plant and  

              kernel iron and zinc concentration 
     

    
POD YIELD PER PLANT 

  ICGV 06040 × ICGV 87141 ICGV 06099 × ICGV 93468 
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Fig 4.7 Principal Component Analysis (PCA) of various traits including kernel iron and 

zinc concentrations in F2:3 mapping population of the cross ICGV 06099 × ICGV 

93468 

 
Where,  

PY : Pod yield per plot 

SEED Y : Seed yield per plot 

OIL : Oil content 

PRO : Protein content 

Fe : Kernel iron concentration 

Zn : Kernel zinc concentration 

Oleic : Oleic acid content 

Linoleic : Linoleic acid content 

PC1 : Principal component 1 

PC2 : Principal component 2 

 
 

 


