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Abstract To enhance the marker density in the “QTL-
hotspot” region, harboring several QTLs for drought
tolerance-related traits identified on linkage group 04
(CaLG04) in chickpea recombinant inbred line (RIL) map-
ping population ICC 4958 x ICC 1882, a genotyping-by-
sequencing approach was adopted. In total, 6.24 Gb data
from ICC 4958, 5.65 Gb data from ICC 1882 and 59.03 Gb
data from RILs were generated, which identified 828 novel
single-nucleotide polymorphisms (SNPs) for genetic map-
ping. Together with these new markers, a high-density
intra-specific genetic map was developed that comprised
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1,007 marker loci spanning a distance of 727.29 cM. QTL
analysis using the extended genetic map along with pre-
cise phenotyping data for 20 traits collected over one to
seven seasons identified 49 SNP markers in the “QTL-hot-
spot” region. These efforts have refined the “QTL-hotspot”
region to 14 cM. In total, 164 main-effect QTLs includ-
ing 24 novel QTLs were identified. In addition, 49 SNPs
integrated in the “QTL-hotspot’ region were converted
into cleaved amplified polymorphic sequence (CAPS) and
derived CAPS (dCAPS) markers which can be used in
marker-assisted breeding.

Keywords Chickpea - Drought tolerance - Genotyping-
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Introduction

Chickpea (Cicer arietinum L.) is the world’s second most
important food legume crop, cultivated primarily on mar-
ginal lands in the arid and semi-arid regions of South
Asia and sub-Saharan Africa. It is a self-pollinated spe-
cies with basic chromosome number eight and genome
size of 738 Mb (Varshney et al. 2013a). Globally, chick-
pea is cultivated on 13.5 Mha with an annual production of
13.1 Mt (FAO 2013) and is a rich source of protein espe-
cially in vegetarian diets. However, chickpea production is
affected by various biotic stresses including Fusarium wilt,
Ascochyta blight, Helicoverpa and abiotic stresses such as
drought, heat and salinity. As chickpea is predominantly
cultivated on residual soil moisture, terminal drought is a
serious problem and will become more prevalent due to cli-
mate change and global warming (Tuberosa 2012; Dodig
et al. 2012).
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During the past three decades, there has been a shift
in cultivation of chickpea from cooler to warmer regions
both in Asia and Africa (Kimurto et al. 2014; Krishna-
murthy et al. 2013) which has also increased the impact
of drought on productivity. Therefore, enhancing the
drought tolerance in chickpea would help to stabilize and
increase production. Marker-assisted selection (MAS) has
already proved its importance in accelerating the process
of variety development (Varshney et al. 2005). However,
breeding efforts towards developing drought-tolerant
chickpea varieties have remained slow, mainly because of
precision issues in phenotyping for drought tolerance, nar-
row genetic base and the limited availability of genomic
resources. Nevertheless, in recent years, the availability
of large-scale genomic resources (Varshney et al. 2009;
Nayak et al. 2010; Gujaria et al. 2011; Thudi et al. 2011;
Hiremath et al. 2012) and high throughput phenotyping
(Kashiwagi et al. 2013) have facilitated progress towards
the genetic analysis of drought tolerance in chickpea. With
the increasing efforts, QTLs for drought-related traits have
been identified in several studies (Rehman et al. 2011;
Hamwieh et al. 2013; Jamalabadi et al. 2013), though
their validation has not yet been reported. Recently, Var-
shney et al. (2014a) reported 45 robust main-effect QTLs
(M-QTLs; QTLs which explain >10 % phenotypic varia-
tion (PVE) and 973 epistatic QTLs (E-QTLs; explaining
58.2 and 92.19 % PVE), respectively, using two intra-
specific RIL mapping populations (ICC 4958 x ICC 1882
and ICC 283 x ICC 8261). In addition, the study also
revealed nine QTL clusters including a genomic region on
CalLG04 referred to as “QTL-hotspot”, harboring several
QTLs for drought tolerance-related traits. Introgression of
this “QTL-hotspot” in one elite variety, JG 11, has shown
improvement of drought tolerance-related traits (Varshney
et al. 2013b). However, the “QTL-hotspot” was geneti-
cally large (~29 cM on the genetic map and 7.74 Mb on
the physical map; Varshney et al. 2014b) and was associ-
ated with relatively few SSR markers making it difficult
to identify polymorphism between the recurrent and donor
genotypes in a backcrossing strategy and also to identify
genes associated with drought tolerance in this region
(Thudi et al. 2014). Enriching this region with additional
markers will facilitate fine mapping and precision breeding
for drought tolerance.

Single-nucleotide polymorphism (SNP) markers have
become the markers of choice due to their high abundance
and cost efficiency, primarily due to advances in sequenc-
ing technologies and their application to genotyping crop
species (Silvar et al. 2011). For instance, the genotyping-
by-sequencing (GBS) approach proposed by Elshire et al.
(2011) has increased the efficiency of SNP discovery and
genotyping by enabling high multiplexing of samples
and simple library preparation procedures. This approach
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is now being used in several crops for diversity assess-
ment, trait mapping, genome-wide association studies and
genomic selection (Deschamps et al. 2012; Poland and Rife
2012).

In this study, the GBS approach was used to identify
and genotype SNPs in an intra-specific mapping population
ICC 4958 x ICC 1882 in which the “QTL-hotspot” region
was identified. As a result, several novel SNPs were inte-
grated into “QTL-hotspot” region and converted to cleaved
amplified polymorphic sequences (CAPS) and derived
CAPS (dCAPS) markers that can be used cost effectively
for molecular breeding to improve drought tolerance in
chickpea.

Materials and methods
Plant material

One intra-specific recombinant inbred line (RIL) map-
ping population derived from ICC 4958 x ICC 1882
(ICCRILO03) comprising of 264 individuals was used in the
present study. Detailed account on parental lines and map-
ping population are provided in Varshney et al. (2014a).
DNA was isolated from 232 RILs and parental genotypes
using high throughput mini-DNA extraction method as
described by Cuc et al. (2008). The quality and quantity of
DNA were checked using spectrophotometer (Shimadzu
UVI160A, Japan). Two hundred and eight RILs with high-
quality DNA were selected for sequencing.

Genotyping-by-sequencing (GBS)

A GBS approach was used for SNP calling between the
parents and genotyping the RILs as described by Elshire
et al. (2011). In brief, the GBS libraries from the paren-
tal lines and RILs were prepared using ApeKI endonucle-
ase (recognition site: G/CWCG) and sequenced using the
Ilumina HiSeq 2000 platform (Illumina Inc, San Diego,
CA, USA). Genomic DNA of selected mapping popula-
tion and parental lines were subjected for restriction diges-
tion using endonuclease ApeKI for 2 h at 75 °C. Adapters
with unique multiplex sequence index (barcodes) were
ligated to the sticky ends using ligase buffer with ATP and
T4 ligase. Samples were incubated at 22 °C for 1 h and
heated to 65 °C for 30 min to inactivate the T4 ligase. Ali-
quot of each sample (5 pl) was pooled (multiplexed) and
purified to remove the excess adapters. DNA samples were
eluted in a final volume of 50 ul. PCR was performed to
increase the restriction fragments from each library using
primers complementary to the corresponding adapters. The
amplified pools constituting the “sequencing library,” were
cleaned up and evaluated for fragment sizes using a DNA



Mol Genet Genomics (2015) 290:559-571

561

analyzer. Libraries without adapter dimers were subjected
to sequencing.

SNP calling

The reads obtained were first de-multiplexed according to
the sample barcodes and adapter sequences were removed
using custom perl script. The reads having more than 50 %
of low quality base pairs (Phred <5 %) were discarded
and filtered data were used for calling SNPs after quality
check (Q score >20). The filtered, high-quality data from
each sample was aligned to the draft genome sequence
(CaGAVv1.0) of chickpea (Varshney et al. 2013a) using
SOAP (Li et al. 2009). The nucleotide with highest prob-
ability at each position under a Bayesian model was identi-
fied for individual RILs and the consensus sequences were
saved in FASTA format. Consensus sequences from all sam-
ples were compared to detect polymorphic loci. Polymor-
phic loci that were either heterozygous in any of the parents
or present in <50 % individuals in the population were dis-
carded and a high-quality SNP dataset was generated.

Linkage mapping

Genotyping data generated in this and previous studies
(See Online Resource 1) were compiled for linkage analy-
sis using JoinMap V4.0 (Van Ooijen and Voorrips 2006).
Marker order was assigned using the regression mapping
algorithm with maximum recombination frequency of
0.4 at minimum logarithm of odds (LOD) of 3 and jump
threshold of 5. Ripple command was used after adding
each marker locus to confirm marker order. The Kosambi
mapping function was used to calculate the map distance
(Kosambi 1943). To detect segregation distortion, Chi-
square (x°) values were calculated using Joinmap V4.0.
Highly distorted and unlinked markers were excluded from
analysis. Mapchart 2.2 (Voorrips 2002) was used to visu-
alize a constructed map for each linkage group. Linkage
groups were named according to Varshney et al. (2014a).

QTL analysis

Genotyping data obtained in the current study and the
phenotyping data for 20 drought tolerance-related traits
including root traits, morphological, phenological, yield,
yield-related traits and drought indices (as mentioned in
Varshney et al. 2014a) were used for QTL analysis using
QTL Cartographer V.2.5 software (Wang et al. 2012). Com-
posite interval mapping (CIM) was performed by select-
ing Model 6 with the default window size 10 cM, control
marker number 5, and backward regression method. To
obtain more precise results the default walk speed was
reduced to 1 cM. LOD method (LOD > 3) was used to

determine the significance of each QTL interval with the
threshold level performed at 1,000 permutations, signifi-
cance level of p < 0.05.

Conversion of SNPs into CAPS and dCAPS

Single-nucleotide polymorphisms (SNPs) integrated in the
“QTL-hotspot” region were converted to CAPS and dCAPS
using dCAPS Finder 2.0 (Neff et al. 2002). The predicted
CAPS and dCAPS candidates were amplified in a 20 pl
PCR reaction using GeneAmp® PCR System 9700 ther-
mal cycler (Applied Biosystems, Foster City, CA, USA)
on 5 parental genotypes of chickpea inter and intra-specific
mapping populations (PI 489777, ICC 4958, ICC 1882,
ICC 8261 and ICC 283). Amplicons for each CAPS and
dCAPS were subjected to digestion using their respective
restriction enzymes followed by separation on 2 % agarose
gel electrophoresis as described in Gujaria et al. (2011).
Details about these primer sequences, PCR conditions and
product size are given in Online Resource 2.

Identification of candidate genes

The amino acid sequences predicted from gene models
of genes located in the region delimited by the “QTL-
hotspot” were retrieved from draft genome sequence
(CaGAV1.0) of chickpea (Varshney et al. 2013a; http:/
www.icrisat.org/gt-bt/ICGGC/GenomeManuscript.htm)
and searched against NCBI-nr protein database using
blast program implemented in Blast2GO software
(Conesa et al. 2005) with an E value threshold of <e2°.
Associated gene ontology (GO) terms were exported and
searched for plant-related GO terms using the GO slim
viewer from the AgBase web server (http://www.agbase.
msstate.edu), which also categorize terms into three dif-
ferent classes as biological processes (BP), molecular
function (MF) and cellular components (CC).

Results
Sequence data and SNP discovery

Parental genotypes of the mapping population (ICC
4958 x ICC 1882) were sequenced at higher depth (5x
coverage) than RIL individuals, and a total of 69.39 million
reads containing 6.24 Gb for ICC 4958 and 62.79 million
reads containing 5.65 Gb for ICC 1882 were generated. In
addition, 701.05 million reads containing 59.03 Gb were
generated for 208 RILs. The number of reads generated var-
ied from 0.28 million (RIL0O78) to 19.23 million (RIL204)
with an average of 3.37 million per line. The data obtained
were filtered and used for SNP identification using SOAP
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Fig.1 High-density intra-specific genetic map of chickpea (ICC
4958 x ICC 1882). This map is comprised of 1,007 markers includ-
ing 743 novel SNPs from GBS approach and spans 727.29 cM.
Genetic distances (cM) were shown on the /eft side and the markers
were shown on the right side of the bars. Map was constructed using

software. The SNPs identified were again parsed to remove
heterozygous SNPs in parents and a set of 828 SNPs were
identified across 208 RILs. The flanking sequences of all
SNPs have been provided in Online Resource 3.

Construction of genetic map

Genotypic data for 828 polymorphic SNPs generated
in this study along with 318 markers (including 241
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JoinMap 4.0 and Kosambi function. Markers in black color font are
from the framework map and markers in red color font are newly
generated SNP markers. For clear visualization, the CaLG04 and
CaLGO06 were split into two parts and named as A, B

markers from Varshney et al. 2014a) obtained from the
earlier studies (Online Resource 1) were used for genetic
map construction. In total, 1,146 markers were used for
genetic map construction, of which 1,007 (87.87 %) could
be mapped on eight linkage groups (CaLG01-CaLGOS)
covering 727.29 cM (Fig. 1; http://cmap.icrisat.ac.in/cmap/
sm/cp/jaganathan/). These included 743 SNPs, 232 simple
sequence repeats (SSRs), 21 diversity arrays technology
(DArT), 7 expressed sequence tag-SSR (EST-SSR) and 4
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Fig. 1 continued
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Table 1 Distribution of different types of markers on the intra-specific genetic map based on the RIL population ICC 4958 x ICC 1882

Marker series SNP SSR EST-SSR GMM DArT Total Distance Density
markers (cM) (markers/cM)

Total markers used 828 279 14 4 21 1,146

Total markers mapped 743 232 7 4 21 1,007

Percent mapped 89.73 83.15 50 100 100 87.87

Markers unlinked 85 47 7 0 0 139

Percent unlinked 10.3 16.85 50 0 0 12.13

Markers mapped on different linkage groups

CalLGO1 77 21 1 - 10 109 101.27 1.08

CalLG02 70 18 - 1 1 90 92.16 0.98

CalLG03 41 47 2 - - 90 72.78 1.24

CaLG04 342 35 1 1 7 386 112.10 3.44

CaLGO05 9 29 - - 1 39 59.41 0.66

CaL.G06 124 34 1 - 1 160 104.36 1.53

CaLGO7 33 24 1 1 1 60 96.59 0.62

CaLGO08 47 24 1 1 - 73 88.62 0.82

Total 743 232 7 4 21 1,007 727.29

Average 125.88 90.91 1.30

genic molecular markers (GMM) (Table 1). The highest
number of markers was mapped on CaLG04 (386), while
the lowest number of markers was mapped to CaLGO05
(39). The distribution of marker loci on 8 linkage groups
has been shown in Fig. 1 and Online Resource 4.

The length of the linkage groups varied from 59.41 cM
(CaLGO0S5) to 112.10 cM (CaLGO04). The highest marker
density was observed for CaLG04, which had 3.44 mark-
ers per cM on average, whereas lowest marker density
was observed for CaLGO7, which had 0.62 markers per
cM on average. Overall, the map had 1.30 markers per cM
on average (Table 1; Fig. 1). Of 828 SNPs used for link-
age map construction, 743 SNPs (89.73 %) were mapped,
among which 342 were mapped on CaLG04. Of 279 SSR
markers used, 232 (83.15 %) were mapped. Comparatively,
SSR markers were mapped evenly on all the eight linkage
groups, the highest number of SSR markers was mapped on
CalLG03 (47), and the lowest number of SSR markers was
mapped on CaLGO02 (18). Out of 14 EST-SSRs, 50 % were
mapped, whereas all GMM and DArT markers used in the
present study were mapped. However, among 21 DArT
markers mapped, 47.6 % (10) were on CaLGO1, 33.33 %
(7) on CalLGO03, one each on CaLG02, CaLGO05, CaLG06
and CaLGO7. Out of four GMM markers, one each was
mapped on CaLG02, CaLG04, CaLGO07 and CaL.GOS.

Marker enrichment in the “QTL-hotspot” region
QTL analysis based on genotypic data for 1,007 markers

and phenotypic data for 20 traits (as described in Varshney
et al. 2014a), identified a total of 164 robust main-effect

QTLs (M-QTLs) by QTL Cartographer 2.5. More than
50 % (91 M-QTLs) of these M-QTLs were located on
CalL.G04 and significantly, all 91 QTLs were detected in
the “QTL-hotspot” region (Online Resource 5). The ear-
lier reported “QTL-hotspot” region (Varshney et al. 2014a)
had 7 SSR markers (ICCM0249, NCPGR127, TAA170,
NCPGR21, TR11, GA24 and STMSI11) and spanned
29 cM on linkage group CaLGO04. The current study inte-
grates 49 new SNP markers in the “QTL-hotspot” region
spanning 14 cM (Fig. 2).

QTL analysis

Out of 20 traits analyzed, QTLs were identified for 16,
including root length density (RLD, cm cm ™), root surface
area (RSA, cm?), root dry weight/total plant dry weight
(RTR, %), shoot dry weight (SDW, g), plant height (PHT,
cm), primary branches (PBS), days to 50 % flowering (DF),
days to maturity (DM), 100-seed weight (100 SDW, g),
biomass (BM, g), harvest index (HI, %), pods/plant (POD),
seeds/pod (SPD), yield (YLD, g), drought susceptibil-
ity index (DSI) and drought tolerance index (DTI). QTL
nomenclature was adopted as per Varshney et al. (2014a).
In case a QTL reported for a given trait in (Varshney et al.
2014a) has been further resolved into two or more QTLs,
the QTLs are further named using a decimal followed by
a roman numeral. For instance QR3rld0O1 reported ear-
lier was resolved into three, hence named as QR3rld01.1,
OR3rld01.2, QR3rld01.3 (Online Resource 5). QTLs were
considered as ‘stable’ (if they appeared in more than one
location for the specified trait) and ‘consistent’ (if they
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Fig. 2 Saturated “QTL-hotspot” region with additional markers. The figure shows comparison of the “QTL-hotspot” updated with 49 novel SNP
markers in this study and with the one reported by Varshney et al. (2014a)

appear in more than 1 year/season for the specified trait) as
described in Varshney et al. (2014a). Identified QTLs are
discussed below.

Root-related traits

Three QTLs were identified, one each for RLD, RSA and
RTR with PVE ranging from 10.65 to 13.56 % (Table 2).
Among them, RLD and RTR were identified in the “QTL-
hotspot” as reported earlier, whereas a QTL for RSA was
identified on CalLGO06 (Online Resource 5). The QTL
for RLD, ‘QR3rld01’ was refined to 3.23-5.37 ¢cM from
10.54 cM, whereas that for RTR, ‘QR3rtrO0I’ was refined
to 1.81-5.37 cM from 5 cM (Table 2, Online Resource 5).
Both QTLs were consistent across years (2005 and 2007).

Morphology-related traits

A total of 3 and 9 QTLs were identified for SDW and PHT,
respectively, out of which 2 and 5 were newly identified
for the respective traits. Overall, PVE ranged from 10.05
to 34.57 % (Table 2). The QTL size for SDW ‘QR3sdw01’
was similar as reported earlier, whereas QTL for PHT,
‘OR3pht03’ was refined to 1.81 ¢cM from 5.37 ¢cM (Online
Resource 5). Out of 9 QTLs identified for PHT, 3 were

@ Springer

stable and 5 were consistent. Interestingly, two QTLs,
‘OR3pht06’, and ‘QR3pht08’ were found consistent and
stable, which were previously reported to be unstable and
inconsistent by Varshney et al. (2014a). A QTL for primary
branches (PBS) ‘OR3pbs02’ was newly identified in the
current study which explained the PVE of 12.92 % (Table 2
and Online Resource 5).

Phenology-related traits

For phenological traits, 3 and 2 QTLs were identified for
DF and DM, respectively. The maximum phenotypic vari-
ation explained by the QTL, ‘QR3df04° was much higher
(67.71 %) as compared to the earlier study (26.87 %) for
DF (Online Resource 5). This QTL has been refined to
1.81 cM from 5.14 cM. Similarly, the QTL, ‘QR3dmO0I’
explained 47.43 % PVE for DM which was comparatively
higher than that reported earlier (19.71 %) and was refined
to 7.33 ¢cM from 15.13 cM (Table 2 and Online Resource
5).

Yield-related traits and drought indices

A total of 16 QTLs including 5 novel QTLs were iden-
tified for yield and yield-related traits, including 2 each
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for 100 SDW and POD and 3 each for BM, HI, SPD
and YLD. Overall, the QTLs spanned the same size
as reported previously (Varshney et al. 2014a); how-
ever, QTLs for BM and POD have been refined to 15.13
and 5.37 cM, respectively (Table 2). The PVE by each
QTL was comparatively high, especially for 100SDW,
‘OR3100sdw03,” which had PVE of 60.41 % (Online
Resource 5).

In the case of drought indices, a novel QTL, ‘QR3dsi02’,
was identified explaining 13.00 % phenotypic variation for
DSI, whereas no QTL for DSI was reported in the earlier
study (Varshney et al. 2014a) (Table 2). Three QTLs were
identified for DTI, of which 2 were novel. Interestingly, a
QTL from the “QTL-hotspot”, ‘QR3dti02’, which was ear-
lier reported to be a minor QTL, was ranked as robust in
this study (Table 2 and Online Resource 5).

CAPS and dCAPS marker assays

As breeders are interested in an inexpensive and technically
less demanding genotyping platform for marker-assisted
breeding, the SNPs integrated into the “QTL-hotspot” were
converted to CAPS/dCAPS markers. A total of 16 CAPS
and 33 dCAPS primer pairs were designed and verified for
amplification (Online Resource 2). However, only 20 out
of 49 primer pairs showed single prominent amplicon and
subsequently used for restriction digestion on a panel of
5 parental genotypes. As a result, 14 CAPS and 1 dCAPS
were developed (Online Resource 6). In total, 8 CAPS
markers were polymorphic in inter-specific mapping pop-
ulation PI 489777 x ICC 4958, while 14 (13 CAPS and
1 dCAPS) each in two intra-specific mapping populations
ICC 4958 x ICC 1882 and ICC 283 x ICC 8261 were pol-
ymorphic (Online Resource 2).

Selection of candidate genes

A detailed analysis of QTLs from the “QTL-hotspor”’
region showed that, QTLs for 9 traits (RTR, SDW, PHT,
DF, 100SDW, DM, HI, SPD and DTI) were flanked
by Ca4_11276225 and Ca4_12558541 markers. Fur-
ther, the traits RTR, RLD, PHT, DF, DM, 100 SDW,
BM, POD and YLD were flanked by Ca4_13687456 and
NCPGR21 markers. As the QTLs for 13 out of 16 traits fall
between markers Ca4_11276225 and NCPGR 21 (whose
physical position on genome is 14,146,315 bp), the ~3 Mb
region between these markers was selected for candidate
gene identification (Online Resource 5). The 3 Mb region
contained 286 genes. The amino acid sequences for these
286 genes were searched against the NCBI-nr protein data-
base. Of these, 211 sequences were annotated and 1,050
GO terms were obtained (Online Resource 7 and 8). Cat-
egorization of these terms into BP, MF and CC showed
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predominance of stress-related GO terms in BP class, while
in MF class GO terms for binding, catalytic, transferase,
hydrolyses and kinase activity were predominantly present.
Genes having a direct role in stress such as dehydration-
responsive element-binding protein (DREB), heat stress
transcription protein, thiamine thiazole synthase and few
uncharacterized proteins were also identified in the region
(Online Resource 7 and 8).

Discussion

Drought seems to continue to be a serious constraint to
chickpea production. Owing to its complex nature, the
genetic dissection of drought tolerance into component
traits has been challenging. However, comprehensive
insights have been provided into component traits by Var-
shney et al. (2014a). The reported “QTL-hotspot” required
mapping refinement to allow QTL cloning for component
trait improvement through molecular breeding. In the pre-
sent study, efforts were made to saturate this region to facil-
itate fine mapping.

SNP markers and linkage mapping

To date, primarily SSR markers have been used for linkage
mapping in chickpea intra-specific populations. Although
availability of genomic resources has reduced the SSR
marker identification span, polymorphism study and further
screening is still a time-consuming and labor-intensive pro-
cess. As a result, most genetic maps remain limited to only a
few hundred markers (Radhika et al. 2007; Jamalabadi et al.
2013; Varshney et al. 2014a). We used a GBS approach
which has the advantage of simultaneous SNP identification
and genotyping. As a result, we identified 828 novel SNPs.
Thus, a greater number of markers are now available for
this intra-specific population. As compared to GBS studies
in other plant species, SNP markers identified in the present
study were less (Poland et al. 2012; Sonah et al. 2013). This
might be because of variable number of reads generated per
RIL (0.28-19.23 million reads) resulting in more missing
data points or very stringent SNP calling criterion adopted,
for instance SNPs present in <50 % RILs were excluded.

A total of 1,146 markers were used for linkage map
construction, out of which 1,007 (87.87 %) markers were
mapped which spanned 727.29 cM. This saturated map has
approximatively fourfold more markers and increases the
marker density from 0.50 to 1.30 per cM as compared to
the previous 241 loci map (Varshney et al. 2014a). Nearly,
94.60 % (228) markers from the earlier study (Varsh-
ney et al. 2014a), were mapped on the respective linkage
groups in the new map, reflecting the higher level of con-
servation in marker order between the maps. Interestingly,
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46 % of the SNP markers were mapped on CaLGO04. This
may be due to high repeat-rich regions in the case of Ca4
pseudomolecule and it was evident from our earlier stud-
ies (Varshney et al. 2013a), that the average SNP density
per Kb (7.6) is higher in the case of chickpea “Ca4” psue-
domolecule, i.e., the CaLGO04. Further, the study also indi-
cated higher diversity level in elite cultivars of chickpea
in the case of “Ca4” pseudomolecule (Theta Pi = 2.8180;
Theta w = 2.2377). High Theta n and Theta w are usually
associated with repeat-rich regions in genome.

Refining the “QTL-hotspot” and developing
breeder-friendly markers

The current analysis integrated 49 new SNP markers in the
“QTL-hotspot” region thereby enriching the same from 7
markers to 55 markers (among 7 previously mapped SSRs,
two SSR markers GA24 and TR11 could not be mapped;
however, ICCM0065 was newly mapped in this region).
Integration of these 49 markers has refined the “QTL-hot-
spot” region from 29 to 14 cM. Several fine mapping stud-
ies earlier have shown that the integration of additional
markers has narrowed down the QTL interval. For instance,
in the case of rice, Yu et al. (2011) demonstrated that map-
ping of additional SNP markers not only detected new
QTLs but also increased the resolution of the QTLs. Simi-
larly, Silvar et al. (2012) fine mapped the QTLs for pow-
dery mildew resistance by integrating 32 markers in the
QTL region in Spanish barley. Likewise, in case of basmati
rice, the “aro3-1” QTL was narrowed down to an interval
of 390 kb from the earlier reported interval of 8.6 Mb and
“aro8-1” QTL was narrowed down to a physical interval of
430 kb (Singh et al. 2007).

The QTL analysis was performed for 20 different traits
and 164 robust M-QTLs were detected for 16 traits which
included all 14 reported traits from Varshney et al. (2014a).
More than 50 % (91) of QTLs were located on CalLG04
and all were detected in the “QTL-hotspot” region which
highlights the importance of this region in drought toler-
ance mechanism in chickpea. In addition, the current study
also identified new QTLs for PBS and DSI which were not
detected/reported earlier. Furthermore, some QTLs which
were unstable, inconsistent in the earlier study (Varshney
et al. 2014a) were identified to be stable and consistent. For
instance, five additional QTLs were identified in the case
of PHT and one additional QTL each for SDW, DF, BM,
POD, SPD and yield (Online Resource 5). Comparatively,
the PVE observed for most of the traits was significantly
high, indicating robustness of the identified QTLs.

To enhance molecular breeding for introgressing
the “QTL-hotspor”, SNP markers were converted into
CAPS/dCAPS. As the SSR markers from the “QTL-hot-
spot” showed less/no polymorphism between ICC 4958

and few recurrent chickpea elite cultivars (Thudi et al.
2014), these CAPS and dCAPS markers would be of inter-
est to breeders in marker-assisted breeding programs to
introgress the “QTL-hotspot” region.

Candidate gene identification

Functional annotation of the candidate genes revealed their
role in various abiotic and biotic stress tolerance mecha-
nisms. For instance, dehydration-responsive element-bind-
ing protein (DREB) which is a well-known transcription
factor involved in abiotic stress including drought tolerance
(Liu et al. 1998; Lata and Prasad 2011) was identified in
the “QTL-hotspot” region. Similarly, thiamine thiazole syn-
thase, which was reported to be involved in stress-related
mechanisms (Rapala-Kozik et al. 2012) was also identified
in the “QTL-hotspot” region. In addition to these, few trait-
specific genes like E3 ubiquitin—protein ligase and TIME
FOR COFEFE (TIC) were also identified. The E3 ubiquitin—
protein ligase activity has been reported to be involved in
grain width and weight in rice (Song et al. 2007) while
TIC protein has been reported to play role in plant growth,
development and circadian clock (Hall et al. 2003; Sanchez
etal. 2011; Shin et al. 2013). Shin et al. (2012) has reported
a role of TIC in jasmonic acid signaling pathways and in
the control of root meristem size in Arabidopsis. Loss of
this gene was reported to result in reduced root meristem
length and cell number (Hong et al. 2014). Therefore, fur-
ther fine mapping and cloning of genes underlying QTL
would unravel the genetics behind drought tolerance in
chickpea.

In summary, we implemented GBS approach for devel-
oping a high-density linkage map from an intra-specific
population in chickpea. The map contains 1,007 loci span-
ning 727.29 cM and enriching the “QTL-hotspot”’ region
from 7 markers to 55 markers. Also this study has refined
the “QTL-hotspot” region from 29 to 14 cM on a genetic
map corresponding to ~4 Mb on the physical map. The
current study also identified the presence of several stress-
related candidate genes including DREB in the "QTL-hot-
spot" region. Further characterization of these genes will
help in identifying the mechanisms of drought tolerance in
chickpea. In addition, the CAPS/dCAPS markers developed
in this study can be used in marker-assisted breeding pro-
gram for introgressing the “QTL-hotspot” into elite cultivar.
Further study and marker enrichment of this region will
facilitate fine mapping, QTL cloning and help in under-
standing the mechanism of drought tolerance in chickpea.
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