

SEED SYSTEM:

THE KEY FOR A SUSTAINABLE AGRICULTURE FOR SMALLHOLDER FARMERS IN THE PHILIPPINES

MG Mula
Scientist – Seed System
ICRISAT, Patancheru 502 324, Andhra Pradesh, India
Paper Presented during the 1st In-Country Training Course cum Workshop: Strengthening Rainfed Agriculture
Research, Development and Extension in the Cordilleras. Ifugao State University, Lamut, Ifugao,
Philippines. January 9, 2012

Why the Need for Seed System?

Seed is the life blood of Agriculture

Low productivity @ <700 kg/ha (legumes)

Good quality seeds will increase productivity by 20-30%

Farmers save seed of local varieties and use this continuously for 3-5 years

80-90% seeds are sourced from farmers' own-saved seeds

Low seed replacement ratio @ 2-3%

Only 10-12% of quality seeds is available each year

Access to quality seeds by smallholder farmers is a recurring problem

Inadequate transfer of technologies appropriate for smallholder farmers

What is a Seed System?

"all the channels through which farmers acquire genetic pure materials in interaction with the commercial seed industry." (Tesfaye et al, 2005)

Seed Systems in Legumes are complicated due to these reasons:

- Economics of legume seed production not attractive enough to encourage private seed sector, mainly due to large seed volume and high transportation and storage costs.
- Public seed sector (responsible for legume seed production)
 largely failed to meet their obligation due to lack of
 accountability, poor quality control, low yield and profit.
- Subsidized government seed supplied is often not delivered in time, and quality is inconsistent.
- Farmers are left at the mercy of local traders who hardly care for variety integrity and quality.
- Stringent seed certification requirements and accompanying bureaucratic hassles discourage farmers' participation in the formal seed system.

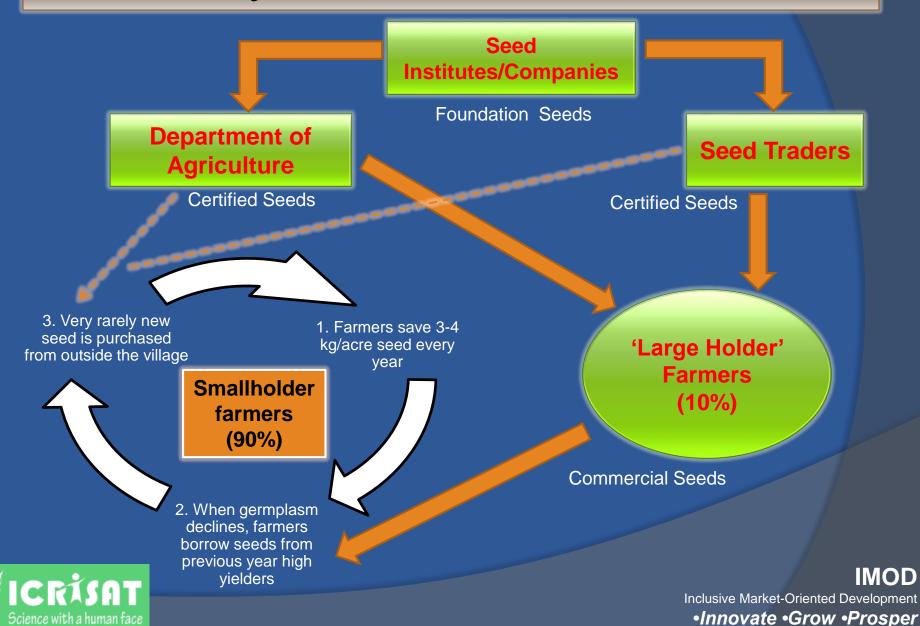
Farmer Pre-Market Seed System

1. All farmers grow some pigeonpea

2. All farmers save their own seed (3-4 kg/acre) every year

5. When intervillages measures fail, Seed is traded with other villages for increased variety

3. After 2-4 years out breeding depression is observed



4. Trade with other farmers for new seed helps mitigate the problem

Seed System Model in AP, India

Science with a human face

Seed System consists of . . .

- Formal seed system
- Informal seed system
- Integrated seed supply system

Formal Seed System

Formal seed system operates within specified quality standards

- International Agricultural Research Centers
- Government agencies
- Government-assisted cooperatives
- Multinational corporations (MNC)
- Domestic private sector companies
- MNC + domestic companies

Formal Seed System Framework

National

Government,
Universities,
Research
Institutes, and
Seed Companies

International

Multinational and Bi-lateral Development Agencies, Seed Companies

IARC

Informal Seed Sector: Coops, Farmers' Org, NGOs, Govt. Org, Farmers

Formal Seed Systems Limitations for Smallholder Farmers:

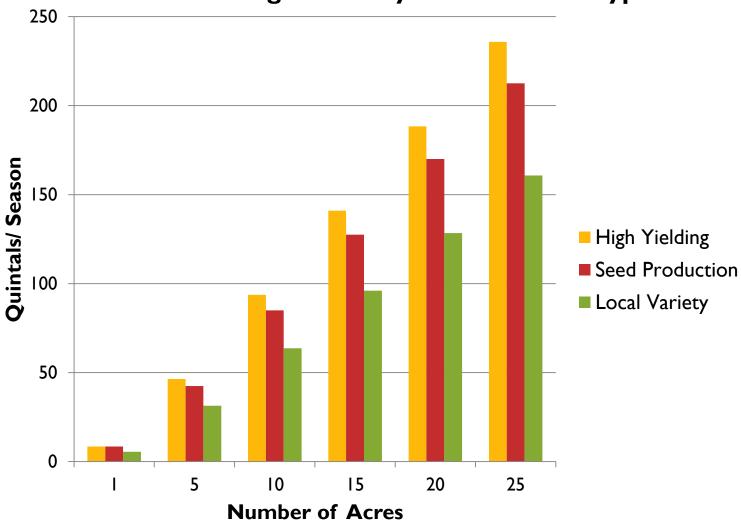
- Only a limited range of varieties are available, and operates within specified quality standards
- Seed transactions are in large quantities (volume)
- The existence of even a relatively developed formal sector at the national level certainly cannot guarantee smallholder farmer seed security at the community and household levels

Informal Seed System

- NARES
- Farmer Cooperatives/Associations
- Self Help Groups
- Individual Farmers
- NGOs

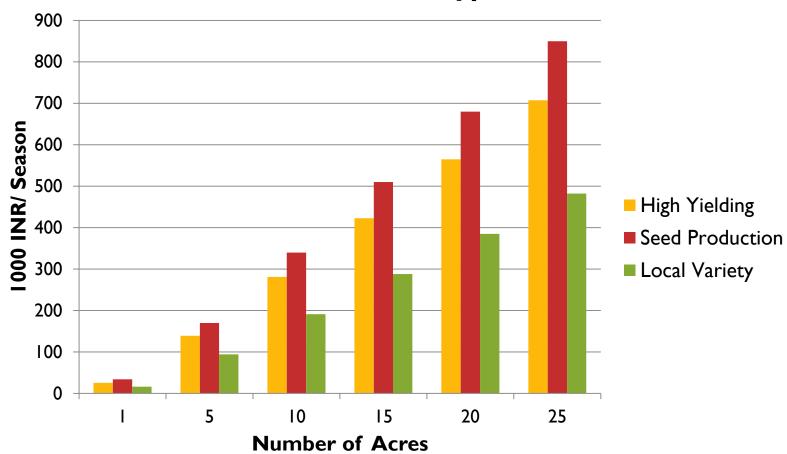
Types of Informal Seed System

- One Village One Variety' concept for OPV
- Community Based Seed Production Model

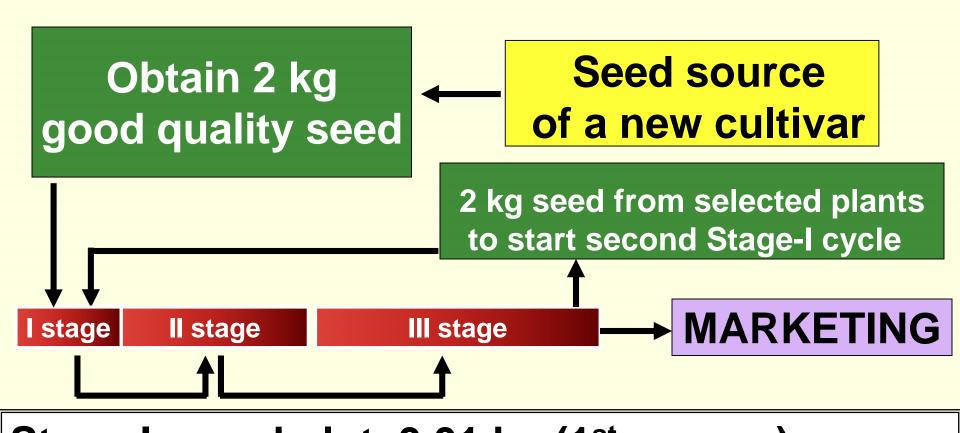

'One Village One Variety' Model

- Ability to do seed production (exponential market returns) by smallholder farmers
- Purity of seed is maintained in subsequent years by avoiding out-crossing.
- Farmers maintains desirable varietal traits (high yields, wilt resistance, etc.)
- Farmers will become entrepreneurs

Yield According to Variety or Production Type

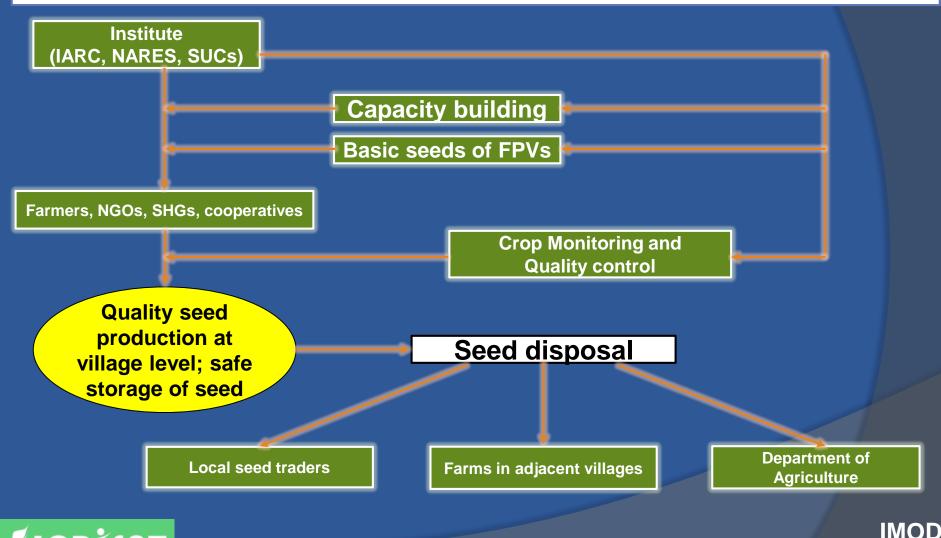


IMOD
Inclusive Market-Oriented Development
•Innovate •Grow •Prosper



Market Return According to Variety and Production Type

Groundnut and Chickpea Seed Production Model


Stage-I seed plot 0.01 ha (1st season)
Stage-II seed plot 0.10 ha (2nd season)
Stage-III commercial plot 1 ha (3rd season)

Informal Seed System Limitations

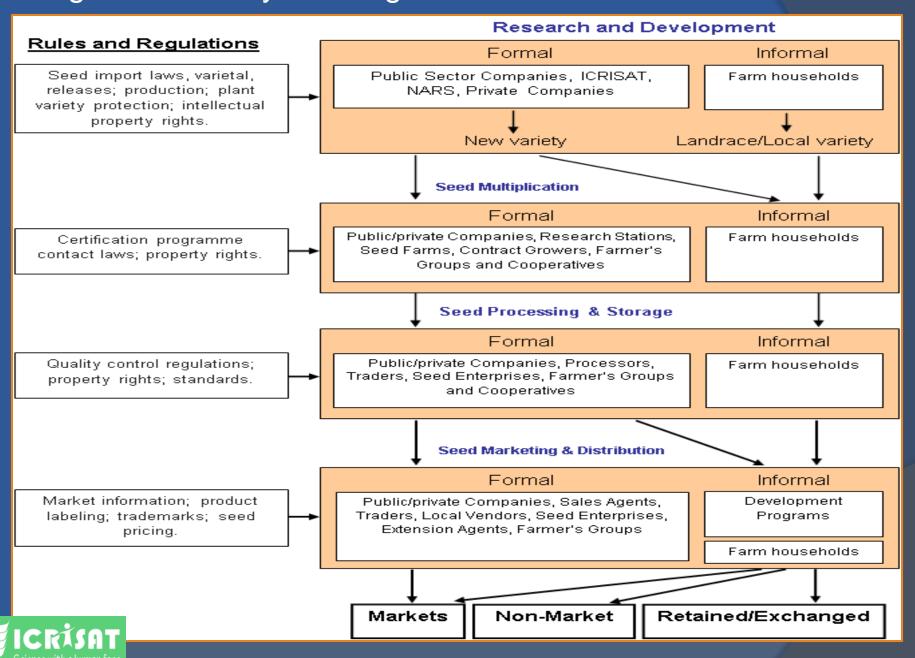
- Regulatory and legal framework adversely affect the informal seed system
- Seed standards may be incompatible with farmers' needs
- Seeds used for sowing come from own farm, exchange, or traders are sub-standards
- During crop failures, the seed supplied by the Government, may be insufficient in quantity and not in good quality
- Seed transaction of new varieties are limited
- Traditional varieties

Community-based Seed Production Model of the Informal Seed System

Inclusive Market-Oriented Development
•Innovate •Grow •Prosper

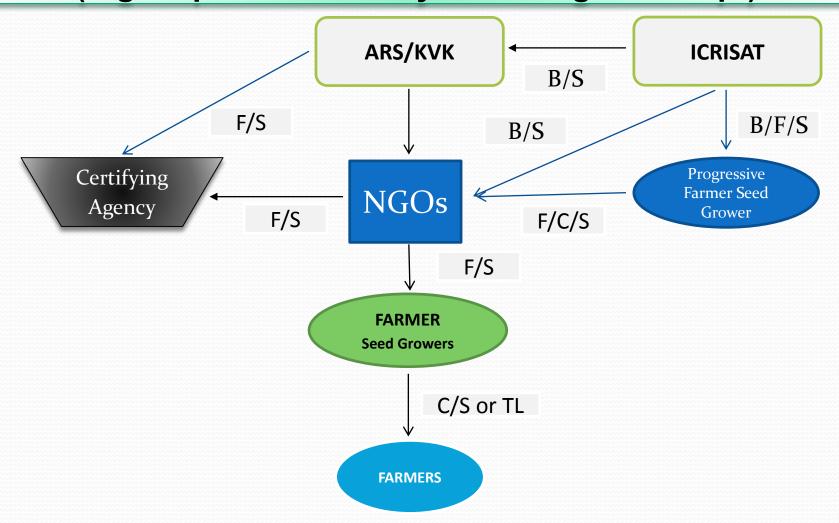
Community-based Seed System Limitations

- Poor infrastructure in rural areas
- Shortage of seed & other resources
- Lack of awareness for new technology
- Poor assessment of potential adoption of new varieties
- Inadequate participation of farmers
- Weak local seed exchange networks
- Inadequate cropping systems
- Inadequate institutional support
- Exploitation by middlemen



Integrated Seed System

- Promotion of new varieties
- Integrate breeding, seed production, & distribution
- Farmers involved at some stages
- Shown promise in improving seed supply to smallholder farmers
- The strengths and weaknesses of local seed systems and the formal seed systems are complimentary



Integrated seed system organizational and institutional schema

Odisha, India: Formal - Informal Seed Village Model Framework (Pigeonpea 'one variety one village' concept)

How to Improve Farmers' Participatory Seed Systems

- Develop strategies to produce, test, & market
- Backup institutional support & crop insurance
- Agreements between farmers & seed agencies
- Help farmers in adoption of new technology
- Develop specific models based on geographic and ethnic considerations
- Implement self-reliance seed programs to decentralize seed business
- Identify and promote farmer preferred cultivars through varietal trail and field demonstration

Continuation...

- Encourage or partner with seed companies to involve in pulses
- Encourage policy makers to support pulses seed programs
- Strengthen capacity of self-help groups (associations and cooperatives)
- Incentives to participating farmers (buyback scheme)
- Develop a quality seed backup program through government and private sectors

Quality Seed Required By 2025

Chickpea seed

```
Breeder = 448,720 \text{ kg}
```

Foundation = 5,983,830 kg

Certified = 74,800,000 kg

Pigeonpea seed

Breeder = 4,940 kg

Foundation = 220,100 kg

Certified = 9,174,000 kg

ARE WE READY ??

Diversify & Simplify the Systems

Role of Philippine Agencies Involved in the Seed System

Agency	Role					
DA	Lead Institute					
IPB, BPI	Continuously produce or develop nucleus, breeder seeds					
SUCs	Backstop in providing breeder and foundation seeds					
PHILMEC	Provide cold storages, and other post harvest facilities i.e. thresher, harvester, seeder, dal mill etc.					
DA-RFU/RIARCs	Develop nucleus and breeder seeds and mass produced foundation and certified seeds					
ATI	Provide capacity strengthening to stakeholders					
DA-AMAS	Provide market study and market linkage to farmers domestically and internationally					
LGUs	Coordinate all the activities and provide financial and physical support					
Farmer Seed Growers	Mass produced certified and good seeds					

IMOD

i.e. Responsibility of partners in the seed production program

Crop	Type of seeds produced	Responsible institute		
Groundnut and	Nucleus and Breeder seeds	ICRISAT, IPB, SUCs		
Chickpea	Breeder and Foundation seeds	SUCs, ROS (DA), IPB, BPI		
	Certified, Registered and Good seeds	Registered farmer seed growers		
Pigeonpea and Sorghum	Nucleus and Breeder seeds; Hybrid parent material	ICRISAT, IPB, SUCs		
	Breeder and Foundation seeds, Hybrid seeds	SCUs, ROS (DA), IPB, BPI		
	Certified, Registered and Good seeds	Registered farmer seed growers		

Seed Production and Multiplication (3 year development plan)

Crop	Estimated	Year 1		Year 2		Year 3	
	Yield/ha (kg)	Area planted (ha)	Total Yield (kg)	Area Planted (ha)	Total Yield (kg)	Area Planted (ha)	Total Yield (kg)
Pigeonpea	500/ha	5	2500	125	62,500	3125	1562500
Chickpea	800/ha	3	2400	30	24,000	300	240,000
Sorghum	2000/ha	3	6000	1000	2000000	333333	
Remarks		Breeder		Foundation		CS	

Seed and area requirement for the 1st year of breeder seeds provided by ICRISAT

- Pigeonpea 100 kgs @ 20 kg/ha = 5 ha (ICPL88039- early duration variety)
- Chickpea 216 kgs @ 80 kg/ha = 3 ha
- Sorghum 20 kgs @ 6 kg/ha = 3 ha

Pigeonpea Seed Production & Multiplication of Medium Duration Cultivars

Year	Area Planted (ha)	Yield Assumption	Area Planted (ha)	Yield Assumption	Area planted (ha)	Yield Assumption
Year 1	1 ha	• Production (500 kg)				
Year 2	2 ha	• Production (1000 kg)	41 ha	Productivity (500 kg/ha)Production (20,500 kg)		
Year 3	3 ha	• Production (1500 kg)	83 ha	Productivity (500 kg/ha)Production (41,500 kg)	1,708 ha	Year 3 production is estimated at 854,000 kg
Year 4	4 ha	• Production (2000 kg)	125 ha	Productivity (500 kg/ha)Production (62,500 kg)	3,458 ha	Year 4 production is estimated at 1,729,000 kg
Year 5	5 ha	• Production (2500 kg)	166 ha	Productivity (500 kg/ha)Production (83,000 kg)	5,208 ha	Year 5 production is estimated at 2,604,000 kg
Year 6			208 ha	Productivity (500 kg/ha)Production (104,000 kg)	6,916 ha	Year 6 production is estimated at 3,458,000 kg
Note: Planting distance: 75cm x 30xm Seed Requirement: 12 kg/ha					Productivi	ty: 500 kg/ha

IMOD

Chickpea seed production & multiplication

Planting distance: 30x30cm or 60x10cm

Seed requirement: Desi – 60 kg/ha; Kabuli – 100-120 kg/ha

Training distance: 30x300m of 30x200m					occu requirement best of	ייטו (שיי וסיי	2011 100 110 110/110
Year	Area (ha)	Assumption	Var	Area (ha)	Assumption	Area (ha)	Assumption
Year 1	1 ha	Productivity (1500 kg/ha)	Desi				
		Productivity (2000 kg/ha)	Kabuli				
Year 2			Desi	25	Productivity (1500 kg/ha)		
					Production (37,500 kg)		
			Kabuli	18	Productivity (2000 kg/ha)		
					• Production (36,000 kg)		
Year 3			Desi			625	Productivity (1500 kg/ha)
							Production (937,500 kg)
			Kabuli			327	Productivity (2000 kg/ha)
							• Production (654,000 kg)
		Total		43	Production (73,500 kg)	952	Production (1,591,500 kg)

Basic guidelines for the concept note on seed system

- Review existing resources (area, manpower, budget) to complement external funding.
- Review requirements/needs for the proposed seed system project
- Sustainability issue (impact commercialization)

