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Plant-growth-promoting rhizobacteria: drought stress alleviators
to ameliorate crop production in drylands
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Abstract Drylands are known for being a drought stressed
environment, which is an alarming constraint to crop produc-
tivity. To rescue plant growth in such stressful conditions,
plant-growth-promoting rhizobacteria (PGPR) are a bulwark
against drought stress and imperilled sustainability of agricul-
ture in drylands. PGPR mitigates the impact of drought stress
on plants through a process called rhizobacterial-induced
drought endurance and resilience (RIDER), which includes
physiological and biochemical changes. Various RIDER
mechanisms include modification in phytohormonal levels,
antioxidant defense, bacterial exopolysaccharides (EPS), and
those associated with metabolic adjustments encompass accu-
mulation of several compatible organic solutes like sugars,
amino acids and polyamines. Production of heat-shock pro-
teins (HSPs), dehydrins and volatile organic compounds
(VOCs) also plays significant role in the acquisition of
drought tolerance. Selection, screening and application of
drought-stress-tolerant PGPRs to crops can help to overcome
productivity limits in drylands.
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Introduction

Drylands (arid, semi-arid and dry sub-humid ecosystems) oc-
cupy approximately 40 % of the terrestrial surface and are so

characterized due to low inputs of mean annual precipitation
relative to mean annual potential evapotranspirational losses
(Millennium Ecosystem Assessment 2005). Drought stress
conditions prevailing in drylands impede crop production
(Debaeke and Abdellah 2004), as restricted water availability
changes physiological and biochemical processes that affect
growth and yield. Drought stress engenders cellular dehydra-
tion, which evokes osmotic stress, thus hampering cell expan-
sion (Bartels and Sunkar 2005). Awater deficit causes dimin-
ished water potential and turgor loss, stomatal closure, and
disruption of membrane integrity along with protein denatur-
ation. Stomatal closure in response to water deficit causes a
decline in the rate of photosynthesis. (Hoekstra et al. 2001;
Chen andMurata 2008; Yang et al. 2010; Alcazar et al. 2011).
A decrement in above-ground vegetative biomass accumula-
tion due to water deficit subsequently trammels plant yield
(Vile et al. 2012). Inoculation of plants with PGPR can am-
plify productivity of crops under a drought stress environment
(Chanway and Holl 1994). Plant-growth-promoting
rhizobacteria (PGPR) possess tremendous potential for mod-
ulating the physiological response to water deprivation, thus
ensuring plant survival under such stressful conditions
(Marasco et al. 2012). It has also been reported (Marulanda
et al. 2007) that PGPR inoculated plants display increases in
growth and yield to remarkable levels, as well as drought
tolerance in arid and semiarid areas. Inoculation of
Arabidopsis thaliana with Phyllobacterium brassicacearum
strain STM196 enhanced resistance to moderate water deficit
through a reproductive delay and changes in transpiration rate
(Bresson et al. 2013). Inoculating cucumber plants with BBS
(Bacillus cereus AR156, Bacillus subtilis SM21 and Serratia
sp. XY21), a consortium of three plant-growth-promoting
rhizobacterium strains decreased leaf monodehydroascorbate
(MDA) content, and enhanced superoxide dismutase (SOD)
activity, leaf proline content and photosynthetic activity in
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leaves over control under drought stress (Wang et al. 2012). It
has also been reported that Pinus halepensis inoculated with
Pseudomonas fluorescens (Rincon et al. 2008) and
Azospirillum-inoculated rice (Ruiz-Sanchez et al. 2011)
displayed increased photosynthetic capacity. Studies show
that Phyllobacterium brassicacearum strain STM196 in-
creased the length of lateral root (Kechid et al. 2013) as well
as density and length of root hairs, which led to a greater
exchange surface area with soil, and thus a higher water flux
through the whole root system up to the leaves of the plant.
The present review elucidates the role of PGPR to mitigate
drought stress prevailing in drylands, and provides a new av-
enue of investigation to improve drought tolerance in agricul-
tural crops.

Mechanism of action of PGPR to alleviate drought
stress

Several mechanisms of drought resistance in plants have been
proposed to be induced by PGPR, through elicitation of the
so-called rhizobacterial-induced drought endurance and resil-
ience (RIDER) process that involves various physiological
and biochemical changes. It includes modifications in
phytohormonal content (Khalid et al. 2006) and antioxidant
defense. PGPR also produce osmolytes and bacterial
exopolysaccharides (EPS) to ensure survival of plants under
drought stressed conditions (Vanderlinde et al. 2010). Produc-
tion ofheat-shock proteins (HSPs), (Berjak 2006), dehydrins
(Timmusk andWagner 1999) and volatile organic compounds
(VOCs) (Ryu 2004) have been reported to impart drought
tolerance to plants.

Phytohormonal modifications

One of the mechanisms employed by PGPR strains ensuring
plant survival under drought stress is modification in content
of bacterial phytohormones, such as auxins, gibberellins, cy-
tokinins, ethylene and abscisic acid (ABA). Indole-3-acetic
acid (IAA) has been reported to be effective in imparting os-
motic stress tolerance to bacteria (Boiero et al. 2006). IAA
production by PGPR causes modifications in root system ar-
chitecture by increasing the number of root tips and the root
surface area, thus increasing water and nutrient acquisition
(Mantelin and Touraine 2004), which helps plants to cope
water deficit (Egamberdieva and Kucharova 2009). Plants in-
oculated with Pseudomonas putida were able to survive
drought stress due to the production of IAA (Marulanda
et al. 2009). It has also been reported that bacterial VOCs from
Bacillus subtilis strain GB03 cause growth promotion in
Arabidopsis by upregulating transcripts involved in auxin ho-
meostasis (Zhang et al. 2007). Pereyra et al. (2012) reported

that wheat seedlings inoculated with Azospirillumwere able to
cope with osmotic stress due to morphological modifications
in coleoptile xylem architecture. This was attributed to upreg-
ulation of the indole-3-pyruvate decarboxylase gene and en-
hanced IAA synthesis in Azospirillum. Physiological modifi-
cations in soybean plants inoculated by the gibberellins secret-
ing rhizobacteriumP. putidaH-2–3 improved plant growth un-
der drought conditions (Sang-Mo et al. 2014). Production
of ABA and gibberellins by Azospirillum lipoferumalleviated
drought stress in maize plants (Cohen et al. 2009). Cellular
dehydration induces biosynthesis of ABA, which is common-
ly known as a stress hormone because of its prodigious accu-
mulation during water deficit. ABA is involved in water loss
regulation by control of stomatal closure and stress signal
transduction pathways (Yamaguchi et al. 1994). Arabidopsis
plants inoculated with Azospirillum brasilense Sp245 had
elevated levels of ABA compared to non-inoculated ones
(Cohen et al. 2008). PGPR Phyllobacterium brassicacearum
strain STM196, isolated from the rhizosphere of Brassica
napus, improved osmotic stress tolerance in inoculated
Arabidopsis plants by elevating ABA content, leading to de-
creased leaf transpiration (Bresson et al. 2013). Inoculation of
Platycladus orientalis container seedlings with cytokinin-
producing PGPR (Bacillus subtilis) has been reported to inter-
fere with suppression of shoot growth, thus conferring drought
stress resistance (Liu et al. 2013). Ethylene biosynthesis is
increased during drought stress that results in reduced root
and shoot growth. Investigations have indicated that certain
PGPR strains possess enzyme ACC deaminase (Glick 2007),
which can cleave the plant ethylene precursor ACC to ammo-
nia and a-ketobutyrate, thereby lowering the ethylene level
(Shaharoona et al. 2006). The deleterious effect of ethylene
is abated by the removal of ACC, thus ameliorating plant
stress and promoting plant growth (Glick 2007). Bacterial
ACC deaminase (produced by PGPR strain Achromobacter
piechaudii ARV8) confers tolerance against water deficit in
tomato and pepper, resulting in significant increases in fresh
and dry weights (Mayak et al. 2004). Inoculating pepper with
Bacillus licheniformisK11 increased ACC deaminase produc-
tion, thus imparting tolerance to cope with drought stress (Hui
and Kim 2013). A co-relationship between IAA and the
ethylene precursor ACC demonstrates the positive effects of
IAA on root growth through the reduction of ethylene levels
(Lugtenberg and Kamilova 2009). Inoculation of Pisum with
Pseudomonas spp. (ACC deaminase containing bacteria) in-
duced longer roots, which led to an increased uptake of water
from soil under drought stress conditions (Zahir et al. 2008).
Hontzeas et al. (2004) reported an increase in transcripts of
genes related to cell division and proliferation and a downreg-
ulation of genes related to stress in canola plants colonized by
the ACC-deaminase-producing strain Enterobacter cloacae
UW4. Furthermore, it was also observed that auxin responsive
genes were upregulated and those involved in ethylene
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responses were downregulated in Arabidopsis plants colo-
nized by P. fluorescens FPT9601-T5 (Wang et al. 2005).

Antioxidant defense

Generation of reactive oxygen species (ROS) such as super
oxide radicals, hydrogen peroxide and hydroxyl radicals is
generally at low levels in various plant organelles during ideal
growth conditions (Apel and Hirt 2004). Water deficit condi-
tions disrupt photosynthetic machinery and increase photores-
piration, thus altering the normal homeostasis of cells, subse-
quently resulting in amassed production of ROS. Plants are
armed with antioxidant defense systems constituting both en-
zymatic and non-enzymatic components that work in concert
to alleviate the oxidative damage occurring during drought by
the scavenging of ROS (Miller et al. 2010). Enzymatic com-
ponents include superoxide dismutase (SOD), catalase (CAT),
ascorbate peroxidase (APX), and glutathione reductase (GR).
Non-enzymatic components contain cysteine, glutathione and
ascorbic acid. Excess ROS results in enhanced lipid peroxida-
tion and subsequent damage to proteins, DNA and lipids
(Pompelli et al. 2010), but ROS also act as a signal for the
activation of stress-response and defense pathways (Pitzschke
et al. 2006). Therefore, it is imperative to regulate ROS levels
through the coordination of ROS production and ROS scav-
enging systems to manage oxidative damage and simulta-
neously modulate signalling events. High activities of antiox-
idant enzymes are linked with oxidative stress tolerance
in plants (Stajner et al. 1997). A significant relation exits
between drought stress and antioxidant enzyme activity,
but inoculation with PGPR mitigates the adverse effect
of drought stress on antioxidant enzyme activity (Han
and Lee 2005). Maize plants inoculated with Bacillus
species developed protection against drought stress by
reducing activity of the antioxidant enzymes APX and
GPX (Vardharajula et al. 2011). Decreased activity of
APX, CAT and GPX enzymes has also been reported
in maize plants inoculated with EPS-producing bacteria,
subsequently conferring stress tolerance to plants
(Naseem and Bano 2014).

Accumulation of osmolytes

Plants under water deficit conditions have a greater requisite
to adjust osmotically, in order to alleviate cell turgidity losses.
The accumulation of osmolytes, such as proline, glycine be-
taine and trehalose, is the most frequent acclimatization re-
sponse observed in plants and bacteria under water deficit
conditions (Sakamoto and Murata 2002; Chen et al. 2007;
Gruszka et al. 2007; Rodriguez et al. 2009). Protecting mem-
brane integrity to prevent protein denaturation is essential

under drought stress (Hoekstra et al. 2001; Farooq et al.
2009). Elevated levels of amino acids, which are considered
to be an indication of drought tolerance (Zhu 2002), have been
reported in sorghum, pepper and wheat (Yadav et al. 2005).
Accumulation of amino acids is due to hydrolysis of proteins,
which occurs in response to changes contributing to osmotic
adjustments (Iqbal et al. 2011; Krasensky and Jonak 2012).
Proline synthesis results in osmotic adjustment, free radical
scavenging and stabilization of subcellular structures in plant
cells to overcome the detrimental effects of drought (Hare
et al. 1998). Elevated proline levels have been reported to
confer drought in plants (Valentovic et al. 2006; Chen et al.
2007). The repressed catabolic pathway leads to a colossal
increase in proline content, which helps plants to amputate
oxidative damage (Nayer and Reza 2008). PGPR exudate
osmolytes in response to drought stress, which act synergisti-
cally with plant-produced osmolytes and stimulate plant
growth (Paul and Nair 2008). Proline synthesis has been ob-
served to be increased in osmotically stressed plants in the
presence of Burkholderia (Barka et al. 2006). Inoculation with
Bacillus strains significantly increased proline content in
plants under drought stress; this is attributed to the upregula-
tion of genes for P5CS, which acts during the biosynthesis of
proline, as well as inhibiting expression of the gene for
ProDH, which acts during metabolism of proline (Yoshiba
et al. 1997). Introduction of proBA genes derived from Bacil-
lus subtilis into A. thaliana lead to enhanced proline produc-
tion, which is correlated to acquisition of osmotic tolerance in
transgenic plants (Chen et al. 2007). Maize plants inoculated
with Bacillus spp. displayed higher levels of proline, sugars
and free amino acids, thus increasing plant biomass, relative
water content, leaf water potential and root adhering soil/root
tissue ratio (Vardharajula et al. 2011). Elevation of leaf proline
levels in maize plants was triggered during drought stress,
which was further enhanced on inoculation withP. fluorescens
(Ansary et al. 2012).Azospirillum lipoferum has been reported
to increase maize growth, while accumulating free amino
acids and soluble sugars during drought stress (Qudsaia
et al. 2013).

Accumulation of soluble sugars as osmolytes is an-
other adaptive mechanism contributing towards osmotic
adjustment under drought stress. It was reported that
starch hydrolysis leads to higher sugar levels (Enebak
et al. 1997). An increase in soluble sugar content in
drought-stressed plants was observed (Dekankova et al.
2004). Starch depletion and higher sugar content were
simultaneously observed in grapevine leaves (Patakas
and Noitsakis 2001) during drought stress. Maize seed-
lings inoculated with Bacillus strains displayed higher
sugar content due to starch degradation, thus imparting
resistance to plants during drought stress (Nayer and
Reza 2008). Sandhya et al. (2010) demonstrated that
adverse effects of drought stress on plant growth under
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uninoculated condition may be attributed to declining
sugar levels . Maize seedl ings inocula ted with
Pseudomonas spp. once increased soluble sugar content
compared to uninoculated, thus indicating that inocula-
tion leads to hydrolysis of starch, subsequently provid-
ing sugar for osmotic adjustment to negate the effect of
drought stress (Bano and Fatima 2009). It is also well
documented that enhanced biosynthesis of glycine beta-
ine, like quaternary compounds, increases plants adapt-
ability to various types of abiotic stresses (Sakamoto
and Murata 2002; Chen and Murata 2008). While gly-
cine betaine does not scavenge ROS directly, its synthe-
sis produces H2O2 that activates ROS-scavenging en-
zymes and thus mitigates oxidative stress. Rapid accu-
mulation of glycine betaine in Oryza inoculated with
Pseudomonas pseudoalcaligenes has been reported to
confer stress tolerance (Jha et al. 2011). Arabidopsis
inoculation with the VOC-emitting strain Bacillus
subtilis GB03 induced elevated glycine betaine content
and its precursor choline levels in plants, imparting
them with drought tolerance. However, GB03-induced
drought tolerance was lost in the xipotl mutant of
Arabidopsis with reduced choline production (Zhang
et al. 2010). Trehalose, a non-reducing disaccharide,
acts as osmoprotectant by stabilizing dehydrated en-
zymes and membranes; thus, its biosynthesis imparts
osmoprotection in bacteria (Yang et al. 2010). Biosyn-
thesis of trehalose in A. brasilense increased drought
tolerance and biomass production in maize plants
(Rodriguez et al. 2009). Enhanced trehalose accumula-
tion was noticed in Phaseolus vulgaris plants inoculated
with Rhizobium etli, which bestows drought stress toler-
ance to plants. A microarray analysis of 7200 expressed
sequence tags from nodules of plants inoculated with
PGPR overexpressing trehalose-6-phosphate synthase
gene displayed upregulation of genes involved in stress
tolerance, elucidating a plant signalling mechanism
responding to bacterial trehalose (Suarez et al. 2008).
Co-inoculation of Rhizobium tropici and Paenibacillus
polymyxa (overexpressing a trehalose-6-phosphate syn-
thase gene) increased plant growth and nodulation of
Phaseolus vulgaris L. submitted to 3 weeks of drought
stress, compared with plants inoculated with Rhizobium
alone (Figueiredo et al. 2008). Mannitol, N-acetyl
glutaminyl glutamine amide (NAGGN) and betaine are
other compatible osmolytes that have been reported in
P. putida (Kets et al. 1996). Polyamines are aliphatic
nitrogen compounds ubiquitous in bacteria, plants and
animals, and are involved in various metabolic and hor-
monal pathways that regulate plant growth and develop-
ment as well as plant responses under drought stress
(Alcazar et al. 2010). Enhanced root growth caused by
cadaverine (polyamine) production helped Oryza

seedlings to mitigate osmotic stress when inoculated
with A. brasilense Az39 (Cassan et al. 2009).

Production of EPS

EPS, components of bacterial biofilms, are hydrated com-
pounds with 97 % water in a polymer matrix that imparts
protection against desiccation (Bhaskar and Bhosle 2005).
Increased EPS production by Bacillus amyloliquefaciens
was observed during water stressed conditions as compared
to non-stressed conditions. EPS increases microaggregates
that improve plant growth under drought stress by increasing
aggregate stability and RAS/RT (root-adhering soil/root tis-
sue) ratio. Better aggregation of RAS leads to increased up-
take of water and nutrients from rhizosphere soil, thus ensur-
ing plant growth and survival under drought stress
(Vardharajula et al. 2011). Colonization of wheat plants with
Pantoea agglomerans (EPS-producing rhizobacteria) in-
creased RAS dry mass to root tissue (RT) dry mass (RAS/
RT) and enhanced water stability of adhering soil aggregates
(Amellal et al. 1998). Inoculating sunflower plants with bac-
terial strain YAS34 (EPS-producing) also increased the RAS/
RT ratio as well as RAS macroporosity, which helps to relieve
the effect of water stress on sunflower growth, where crops are
often subjected to long dry periods (Alami et al. 2000). EPS
cause stabilization of soil aggregates and water regulation
through plant roots, as they possess unique water-retaining
properties (Roberson and Firestone 1992). Bensalim et al.
(1998) reported that plants inoculated with EPS-producing
bacteria display increased resistance to water stress. Cells un-
der stress trigger production of guanine cyclases, subsequently
leading to production of cyclic-di-GMP, protein adhesins and
EPS involved in biofilm development (Borlee et al. 2010).
EPS production by Pseudomonas spp. increased shoot and
root length, and total dry weight in plants (Ahn et al. 2007).
Inoculation with EPS-producing bacteria results in the devel-
opment of an extensive root system which further increases
shoot growth during water deficit (Awad et al. 2012). EPS-
producing bacteria resulted in increased drought tolerance in
maize (Naseem and Bano 2014). Almost all Pseudomonas
species possess the capability to produce alginate, a major
EPS (Halverson 2009) that maintains hydration of biofilms
and attenuates oxidative stress. Drought tolerance enhance-
ment of alginate might be due to its hygroscopic properties,
but can also results from its role in biofilm architecture, which
contributes to reduced evaporation loss. Dehydration condi-
tions are known to induce ALG genes in the alginate biosyn-
thesis gene cluster in Pseudomonas aeruginosa, which in
addition also contains Psl, a mannose 13 galactose-rich EPS
polymer, and Pel, a glucose-rich EPS which highlights signif-
icant roles of EPS under drought stress conditions (Chang
et al. 2007). Recent research studies done on diverse bacterial
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species have revealed an inventory of molecular determinants
that participate during the process of bacterial colonization of
surfaces and biofilm development. LapA and LapF are large
extracellular proteins that play a pivotal role in the formation
of biofilms by P. putida. LapA is first required for initial ad-
hesion of individual bacteria to a surface, while LapF is in-
volved in the development of mature biofilms (Martinez et al.
2014). Expression from the lapA promoter increases with high
levels of c-di-GMP, while the opposite is true for lapF. The
transcriptional regulator FleQ is required for modulation of
lapA expression by c-di-GMP, but has a minor influence on
lapF. It has also been reported that Fis (a small DNA binding
and bending homo dimeric protein) binds to lapF promoter
in vitro and represses the expression of LapF in P. putida
(Lahesaare et al. 2014).

Production of other responses

Cell membrane proteins are at elevated risk of denaturation
due to their direct contact with the environment. Desiccation
due to water deficit causes protein aggregation, exposure of
hydrophobic regions, subsequent inactivation of enzymes and
changes in tertiary structure that prohibit their use as structural
proteins (Allison et al. 1999). HSPs are upregulated upon
exposure to drought stress. HSPs,which are also called chap-
erones, such as GroEL, DnaK, DnaJ, GroES, ClpB, ClpA,
ClpX, sHSPs and proteases are involved in various stress re-
sponses (Munchbach et al. 1999). The primary function of
these proteins is to govern the folding and refolding mecha-
nism of stress natured proteins. Clp family proteases are im-
plicated in the participation of multiple stress responses, sug-
gesting they are key to bacterial fitness (Ekaza et al. 2001).
Plant small heat shock proteins (sHSPs) function as molecular
chaperones that facilitate native folding of proteins and play
an important role during stress by preventing irreversible ag-
gregation of denatured proteins (Sarkar et al. 2009).
P. aeruginosa strain AMK-P6 isolated from a semi-arid loca-
tion displayed induction of HSPs when exposed to high tem-
perature (Ali et al. 2009). Pepper plants inoculated with Ba-
cillus licheniformis K11 showed increased expression of
genes Cadhn, VA, sHSP and CaPR-10 under drought stress
(Hui and Kim 2013). Timmusk and Wagner (1999) reported
that induction of the drought responsive gene ERD15 (Early
Response to Dehydration 15) and of an ABA-responsive
gene, RAB18, confers drought tolerance in A. thaliana inoc-
ulated with Paenibacillus polymyxa. These genes, known as
dehydrins (Group II late embryogenesis abundant proteins),
are related to drought and cold stresses, whose expression is
commonly upregulated by cellular water deficits. Many
dehydrins are believed to function via stabilization of large-
scale hydrophobic interactions such as membrane structures
or hydrophobic patches of proteins (Borovskii et al. 2002).

Rocha et al. (2007) reported differential expression of 93
genes in sugarcane, including drought-responsive genes such
asMRB andWRKY transcription factors under drought condi-
tions; however, cotreatment of the same plant with
Herbaspirillum spp. and Gluconacetobacter diazotrophicus
resulted in the induction of stress resistance and salicylic acid
biosynthesis genes. VOCs are commonly emitted from plants
leaves, and these emissions are known to increase substantial-
ly under stress situations. VOCs released by Bacillus play a
role in stress tolerance response (Ryu 2004). VOCs released
by Bacillus subtilis strain GB03 stimulated Arabidopsis bio-
synthesis of choline (precursor of glycine betaine), a compat-
ible solute involved in maintaining cell turgor under
dehydrating conditions (Zhang et al. 2007). Another VOC,
2R, 3R-butanediol, has been reported to induce stomata clo-
sure in plants colonized by Pseudomonas chlororaphis O6,
subsequently imparting stress resistance by interferring with
various hormone signalling pathways comprising salicylic ac-
id, ethylene, ABA and jasmonic acid (Cho et al. 2008).

Future prospects

The future trend needs to be in developing genetically
modified PGPR over transgenic plants for boosting
plant performance under drought stress, as it is simpler
to modify a bacterium than complex higher organisms.
Moreover, instead of engineering individual crops, a sin-
gle, engineered inoculant can be employed for several
crops, especially when using a non-specific genus like
Azospirillum. PGPR strains development is hampered
mainly by the fact that these organisms are sometimes
unable to survive harsh environmental conditions, in-
cluding high concentrations of environmental contami-
nants, salts, extremities of pH and temperature. Genetic
engineering can be used to develop PGPR strains that
are effective at low inoculum doses and under a variety
of environmental conditions. It is urgent to develop
more effective PGPR strains with longer shelf-lives to
achieve sustainable crop production in drylands. Recent
advances in the fields of microbiology, biotechnology,
molecular biology and bioinformatics have opened up
the way to identify novel genes involved in drought
tolerance. Concepts of microbiotechnology application
in agriculture should be employed to isolate indigenous
PGPR from the stress-affected soils, and screening on
the basis of their stress may be useful in rapid selection
of efficient strains that could be used as bioinoculants
for crops grown in drylands . Appl ica t ions of
bionanotechnology could also provide new avenues for
the development of carrier-based microbial inocula. Use
of nanoformulations may enhance the stability of PGPR
with respect to dessication, heat and UV inactivation.
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Conclusions

Drought stress hampers plant growth and development due to
impaired biochemical and physiological mechanisms. It is
perceived that RIDER mechanisms elicited by PGPR play a
vital role in ensuring plant survival under drought stress in
drylands, as they help plants to counteract osmotic and oxida-
tive damages. Stress-tolerant abilities of PGPR strains can be
harnessed for the betterment of dryland agriculture; identifi-
cation, cloning and functional characterization of genes in
such bacteria that confer resistance towards drought stress
are needed.
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