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Chapter I 

INTRODUCTION 

Pigeonpea (Cajanus cajan (L). Millsp.) is an important grain legume crop of 

rainfed agriculture in the tropical and sub-tropical areas.  Pigeonpea belongs to 

genus Cajanus of sub tribe Cajaninae, tribe Phaseoleae of the sub-family 

Papilionoideae under family Leguminosae and it is the only cultivated food crop of 

the Cajaninae sub tribe. The genus Cajanus comprises 32 species, most of which 

are found in India, Australia and one species is native to west Africa (van der 

Maesen, 1986). Pigeonpea is cultivated, either as the sole crop or inter crop with 

soybean, finger millet, sorghum, pearl millet, maize or with short duration 

legumes. 

Botanically, pigeonpea is a perennial plant but cultivated as an annual 

crop. It is grown for its high protein seeds, which is consumed as a popular staple 

diet in predominantly vegetarian diet. It is mainly consumed in the form of dal. It 

plays an important role in food security, provide balanced diet and for alleviation 

of poverty because of its diverse usage as a food, fodder and fuel. The dry stalks 

are used for fuel and as wind breaks. The dried leaves, pod shells and seed coat 

are used as animal feed.  

Pigeonpea is known with various names in different cultures such as red 

gram, arhar, tur, Angola pea, Congo pea, (van der Maesen 1986), tuvara 

(Achaya, 1998) etc. According to De Candolle (1904) and Krauss (1932), 

pigeonpea originated in Africa, from where it was introduced into West Indies, 

Brazil and India (Tothil, 1948). De (1974) believes that Cajanus species, together 

with the closely related Atylosia were first established in Northern India and on 

Deccan plateau 3,500 years ago. However, Vavilov (1926) concluded that large 

amount of variability with several wild relatives was available in Hindustan Centre 

and hence historians agree that the true origin of pigeonpea is India particularly in 

the Eastern Ghats (Vavilov, 1951; De, 1974; Royes 1976; van der Maesen, 1980, 

1991). 

It is cultivated worldwide on 5.83 million hectares (m ha) with an annual 

production of 4.40 million tons (mt) and average productivity of 754.9 kg ha-1 

(Table 1.1). In India, pigeonpea is cultivated in 4.42 m ha with production of 2.86 
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mt and productivity of 647 kg ha-1 (FAOStat, 2011). The scenario of pigeonpea in 

India over a last decade for the area, production and productivity is presented in 

Fig. 1.1. In Madhya Pradesh, pigeonpea is cultivated on 0.53 m ha (13.24 %) with 

annual production of 0.33 mt (12.60 %) and productivity of 625 kg ha-1 in 2011-12 

(IIPR, Kanpur, 2013).  

Table 1.1 Global pigeonpea scenario (FAOStat 2011) 

Region / 
country 

Area 
 (million ha) 

Production 
 (million tons) 

Yield  
(kg ha-1) 

World 5.836 4.405 754 

Asia 5.072 3.713 732 

India 4.420 2.860 647 

Nepal 0.017 0.014 807 

Myanmar 0.633 0.837 1322 

Bangladesh 0.001 0.001 923 

Philippines 0.001 0.001 1014 

Central America 0.004 0.002 455 

South America 0.002 0.001 787 

Africa 0.724 0.658 907 

Uganda 0.093 0.094 1024 

Tanzania 0.288 0.272 946 

Kenya 0.138 0.084 607 

Malawi 0.190 0.195 1026 

 

 

Fig.- 1.1 Area, production and productivity trend of pigeonpea in India from 

2000 to 2012 (Source- AICRP on pigeonpea, IIPR Kanpur, 2013) 
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The phenomenon of male-sterility was recorded as early as by Kolreuter 

(1763) where the plants are unable to reproduce through natural means because 

of their defective male-reproductive parts. Such plants reproduce only when fertile 

pollen from other plants is placed on the stigmatic surface of the male-sterile 

flowers through any mechanical means such as deliberate manual efforts, wind or 

insects. Male-sterility has been successfully used for enhancing yield in a number 

of cereal and vegetable crops. In food legumes, this technology could never been 

used either due to non-availability of natural out-crossing system, or an efficient 

male-sterility system or both.  

Pigeonpea is unique among legumes as its floral morphology allows both 

self as well as insect-aided cross pollination and it varies from place to place. 

However, most breeders in the past ignored this fact and handled pigeonpea as a 

self-pollinated crop as far as its breeding methodology was concerned. The 

International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), 

located at Patancheru (India), focused pigeonpea research on hybrid breeding 

through development of stable cytoplasmic male-sterility (CMS) system (Saxena 

et al., 2005) and partial (25–70%) natural out-crossing ability (Saxena et al., 

1990).Pigeonpea is a partially cross-pollinated pulse and recent success in 

breeding a stable male-sterility system has allowed breeders to exploit hybrid 

vigour for increasing yields. 

The discovery of genetic male sterility (GMS) coupled with the natural out 

crossing, opened the possibility of commercial utilization of heterosis in 

pigeonpea (Reddy et al., 1978 and Saxena et al., 1983). The GMS based world‟s 

first pigeonpea hybrid ICPH 8 was released by ICRISAT for cultivation in 1991 

(Saxena et al., 1992). Since no commercial hybrids were available in any pulse 

crop, the release of ICPH 8 was considered as a milestone in the history of 

breeding pulses. However, the hybrid seed production with a genetically 

determined male-sterile sibs, which account for 50 % of the population grown was 

a time and labour-intensive, involving 40-50 % of the seed production cost 

(Muthiah et al., 1998). Inefficiency in eliminating the fertile sibs reduces quality of 

the hybrid seed. Further, the removal of 50 % of the population (Fertile sibs) also 

results in reduced yields. The experience with GMS hybrid technology has 
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conclusively demonstrated that in pigeonpea the exploitation of hybrid vigour was 

possible, if the seed production techniques were optimized (Saxena et al., 1998; 

Rathnaswamy et al., 1998a). Hence, it was felt that hybrid breeding could be 

revolutionized if the CGMS system (cytoplasmic genic male-sterility system) is 

exploited for hybrid breeding (Saxena et al., 1998).  

The first unsuccessful attempt to develop cytoplasmic genic male-sterile 

(CGMS) lines in pigeonpea by using the crossable wild relatives of pigeonpea 

was made by Reddy and Faris (1981). Ariyanayagam et al. (1995) and Saxena et 

al. (2004) reported Cajanus sericeus as the CGMS source. The first CGMS line 

GT 288A was developed by using C. scarabaeoides at Gujarat Agricultural 

University, S. K. Nagar, India (Tikka et al., 1997) and at ICRISAT (Saxena and 

Kumar, 2003). Subsequently, other scientists have identified male-sterile lines 

from the interspecific crosses involving C. volubilis (Wanjari et al., 2001), C. 

acutifolius (Rathnaswamy et al., 1998b; Mallikarjuna and Saxena 2002), and C. 

cajanifolius (Saxena et al., 2005b), while Mallikarjuna and Saxena (2005) 

reported a CMS source from a pigeonpea cultivar itself (C. cajan). The different 

cytoplasmic male sterility sources derived from wild relatives of pigeonpea are 

given in Table 1.1. 

Hybrid technology has successfully been used to increase the yields. A 

new hybrid pigeonpea breeding technology is capable of substantially increasing 

the productivity of pigeonpea, and thus offering hope of pulse revolution in the 

country (Saxena and Nadarajan, 2010). The CGMS based hybrids in extra short, 

short and medium maturity groups have recorded grain yield superiority of 61 % 

over the best control cultivar in different locations across India (Saxena, 2008). 

 Meanwhile, ICRISAT developed a number of experimental hybrids and 

tested in multi-location trials. They also developed genetically diverse CMS lines 

and their fertility restorers for developing widely adaptable hybrids to different 

agro-ecological areas and cropping systems. Among the medium duration hybrids 

with A4 cytoplasm, ICPH 2671 and ICPH 2740 are very promising in multi-location 

trials conducted for four years. During 2009, the best performing hybrid ICPH 

2671 was evaluated in 1248 on-farm trials in four states of India (Saxena et al., 

2010). In these trials ICPH 2671, recorded 28.4 % yield superiority over local 
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checks in farmer‟s fields and, therefore, ICPH 2671 was released in Madhya 

Pradesh for commercial cultivation in 2010 (Saxena et al., 2013). Likewise other 

hybrid ICPH 2740, also recorded 35.8 % superiority over the control was released 

for commercial cultivation in Andhra Pradesh by ICRISAT and Acharya N. G. 

Ranga Agriculture University, Hyderabad in 2012 (Saxena et al., unpublished). 

 For effective utilization of a male-sterility system in hybrid breeding, it is 

important that the expression of both the male-sterility and its fertility restoration is 

stable over the years and locations. Looking to its prospects of development of 

new hybrids in pigeonpea, the present investigation is aimed with the following 

objectives: 

 To evaluate the variability in fertility status of different hybrids and CMS lines. 

 To study the stability of cytoplasmic genic male-sterile lines. 

 To study the stability of fertility status of different hybrids under varying 

environmental conditions. 

 Identification of stable fertile hybrids and sterile CMS lines. 

 

Table 1.1 List of CMS sources derived from different wild relatives of 

pigeonpea. 

S. No. Wild relative CMS System 

1 Cajanus sericeus (Ariyanayagam et al., 1995) A1 

2 Cajanus scarabaeoides (Saxena and Kumar, 2003) A2 

3 Cajanus volubilis (Wanjari et al., 2001) A3 

4 Cajanus cajanifolius (Saxena et al., 2005) A4 

5 Cajanus cajan (Mallikarjuna & Saxena, 2005) A5 

6 Cajanus lineatus A6 

7 Cajanus platycarpus (Mallikarjuna et al., 2011) A7 

8 Cajanus reticulates (Saxena et al., unpublished) A8 

Source: Saxena et al. 2010 and Mallikarjuna N. 2012. 
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CHAPTER II 
REVIEW OF LITERATURE 

The commercial exploitation of heterosis or hybrid vigour through the 

cultivation of hybrid cultivars is one of the landmark achievements of plant 

breeding. Ever since the two pioneering publications by George H. Shull about 

100 years ago, in which he scientifically described heterosis and laid the 

foundation of modern hybrid breeding in maize. Development of male-sterile lines 

in pigeonpea opened new vista for commercial exploitation of heterosis. Recently, 

ICRISAT developed a hybrid pigeonpea breeding technology based on 

cytoplasmic male-sterility (CMS) and insect-aided natural out-crossing systems 

(Saxena et al., 2006). So far, over 1500 experimental hybrids have been tested 

and promising hybrids with yield advantages of 25 to 156 % over the best inbred 

variety (Kandalkar 2007, Saxena and Nadarajan 2010). The male-sterile lines 

developed need to study their stability for expression of male sterility and fertility 

restoration with their per se performance. Therefore, the present investigation 

was aimed to obtain information on development and stability of male sterility and 

fertility restoration over the environments. The literatures reviewed on related 

subjects are presented below. 

2.1 Methods of stability analysis 

The stability analysis gives an idea about the homeostasis of the material 

tested. The present study was carried out to evaluate the stability of the 

pigeonpea hybrids and CMS lines under varying environmental conditions to test 

whether there is any environmental effect on the performance of these hybrids 

and CMS lines for pollen fertility and sterility percentage respectively. The 

literature reviewed related to methods of stability analysis has been provided 

below. 

2.1.1 Measurements of genotype × environment interaction  

The genotype × environment interaction is a major challenge in obtaining a 

complete understanding of genetic control of variability. The study of genotype × 

environment interaction in biometrical aspects is important from the genetically 
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and evolutionary point of view. The phenotype has been conventionally defined 

as a linear function of the genotype, environment and interaction between them. 

Grafius (1956) emphasized that the studies of individual yield component 

can lead to simplification in genetic explanation of yield stability. If characters 

associated with yield stability could be found, the breeder might effectively select 

for yield stability by selecting for these correlated characters. The genetic 

association of the component characters with yield should also be known.  

Interaction will be absent when all the genotypes behave consistently in all 

environments or in other words their ranking does not change when subjected to 

different environments. Several workers (Finlay and Wilkinson, 1963; Perkins and 

Jinks, 1968; (a and b) and Johnson et al., 1968) have attempted to measure the 

relationship between genotype and environment as well as interactions of 

genotype and the environment. 

Finlay and Wilkinson (1963) developed a simple dynamic interpretation of 

varietal adoption to natural environments, which could provide a basis for 

formulation of broad biological concept of value to agronomist and the breeders. 

According to them an ideal variety may be defined as one with maximum yield 

potential in the most favorable environment with maximum phenotypic stability 

measured by regression coefficient. 

The approaches of Finlay and Wilkinson (1963) and Tai (1971) are purely 

statistical and the components of this analysis have not been related to 

parameters in biometrical genetical model. Another approach is based on fitting of 

model, which specifies the contribution of genetic, environmental and genotype × 

environmental interactions to generation means and variances. This approach 

allows for contribution of additive, dominance and epistatic gene actions to the 

genetic and interaction components (Mather and Jones 1958, Jinks and Stevens 

1959, and Bucio and Hills 1966). This approach was used to investigate genotype 

× environment interactions in Nicotiana rustica. 

Eberhart and Russell (1966) improved upon the model of Finlay and 

Wilkinson (1963) by adding another stability parameter namely the deviation from 

regression (S2di). Later Breese (1969) applied this approach to data on grasses 

and has discussed the utility of this technique in predicting relative performance 
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of genotype and hybrids over years, seasons and locations as well as to deduct 

differences in stability. He has shown that a major part of genotype × environment 

interaction could be explained by difference between linear responses as 

estimated by regression. 

Perkins and Jinks (1968a) attempted to fill the gap between the two 

approaches by expressing the expectation of the statistical analysis in terms of 

standard model of genes, environmental action and genotype × environmental 

interactions and have extended the analysis to cover many inbred lines and 

crosses among them. Perkins and Jinks (1968b) have mentioned that prediction 

of the sole parameters can be made both across the environments and across 

the generations. 

 Breese (1969), Samuel et al. (1970) and Paroda and Hays (1971) stated 

that the linear regression should simply be considered as a measure of response 

of genotype, whereas deviation around the regression line is a measure of 

stability. They also pointed out that a genotype with a lowest deviation may be the 

most stable and vice-versa.  

 Shukla (1972) defined the stability variance of genotypes as its variance 

across environments after the main effects of environmental means have been 

removed. Since the genotype main effect is constant, the stability variance is thus 

based on the residual (GEij + eij) matrix in a two-way classification. The stability 

statistic is termed as “stability variance” (i
2). The stability variance is the 

difference between two sums of squares, it can be negative, but negative 

estimates of variances are not uncommon in variance component problems. 

Negative estimates of variance may be taken as equal to zero as usual. 

Homogeneity of estimates can be tested using Shukla‟s (1972) model of stability 

based on stability variance. 

 Verma et al. (1978) proposed a technique which is consistent with the 

assumption that distinct sets of genes control linear sensitivity in contrasting 

environments. In the proposed analysis, the environments, first truncated at zero 

environmental index providing two subsets of environments, first comprising all 

the negative environmental indices (below average environment) and the second 

with the positive environmental indices (above average environment) as well as 
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the negative index with the smallest absolute value. Two response curves for the 

trial genotype are fitted separately for the two sets of graded environments. 

Pooni and Jinks (1980) proposed the procedure which is more general in 

the sense that a pair of regression lines is fitted without the tacit assumption that 

the switch over between regressions takes place around the same environment 

value. This is achieved by refining the two phase regression techniques on the 

principle that significant part of the non-linearity results from thresholds in 

response of genotypes to change in environmental conditions. Here the 

environmental value at which a particular genotype changes its slope is 

determined as the point of intersection of a pair of best fitting straight lines, which 

allow for a considerable reduction in the residual mean square. 

 Becker and Leon (1988) suggested two different concepts of stability: 

static (biological) and dynamic (agronomical). With the static concept, a stable 

genotype possesses an unchanged performance regardless of variation in the 

environmental conditions. Thus, genotypic variance among environments is zero. 

With the dynamic concept, response of a genotype to environments is 

predictable. Thus, a stable genotype has no deviation from response to 

environments. Both concepts of stability are useful, but their application depends 

on the trait considered. For qualitative traits such as resistance to diseases or 

stress, the static concept of stability is useful. For quantitative traits such as yield, 

the dynamic concept of stability is useful. 

Gauch (1988, 1992) has advocated the use of what he term AMMI 

analysis of yield trial data. In many cases this procedure has been showed to 

increase estimation accuracy since it fits additive main effects for genotypes and 

environment by an ordinary ANOVA procedure and then applies PCA to the 

matrix of residuals of that remain after the fitting of main effects. The interaction 

and error can be decomposed into N space PCA axes. 

Recently Yan et al., (2001) developed GGE-biplot method which provides 

more elegant and useful display of multi environment trial (MET) data. It 

effectively addresses both the issue of mega-environment differentiation and the 

issue of genotype selection for a given mega-environment based on mean yield 

and stability. It also allows environments to be evaluated just as well as 



24 
 

genotypes. In addition, it facilitates interpretation of GE as genotypic factor by 

environmental factor interactions (Yan and Hunt, 2001). 

2.2 Development of CMS lines & their cyto-histological studies. 

Both the genetic and cytoplasmic genic male-sterility systems were 

developed with help of wide hybridization technology. Newly developed CMS 

lines replaced the GMS lines. Some of the male-sterile lines developed were 

sensitive to environment. The literature reviewed related to development of CMS 

lines and their cyto-histological studies has been provided below. 

Reddy et al. (1978) studied the microsporogenesis in six male-sterile lines 

of pigeonpea. The results indicated that microsporogenesis was similar in the 

male fertile and sterile plants at the pre-meiotic and post-meiotic stage. Tetrad 

formation was the latest stage observed in which fertile and sterile did not differ. 

Tetrads were released from the spore mother cell sac in the fertile plants; in 

sterile plants the tetrads were not released and they started degenerating by 

vacuolation was the prime cause of male sterility. 

Dundas et al. (1981) studied microsporogenesis in genic male-sterile lines 

of pigeonpea and concluded that, in the sterile plants, pollen mother cell (PMC) 

degeneration occurred at the young tetrad stage with the rupturing of each 

nuclear membrane and callose of the outer cell wall. Conversely, in the fertile 

plants, microsporogenesis proceeded quickly from PMC to mature bi-nucleate 

pollen grains. 

Reddy and Faris (1981) attempted first to develop cytoplasmic male 

sterility in pigeonpea using the crossable wild relatives of pigeonpea. They 

crossed Cajanus scarabaeoides, a wild species with fertile F1 plants of C.  cajan × 

C  scarabaeoides. The resultant BC1F1 plants were fertile but in BC1F2 generation 

some male sterile segregants were identified. 

Saxena et al. (1981) studied the cytology of a partially male-fertile line of 

pigeonpea and reported that in such plants the breakdown of the tapetum was 

irregular with inconsistency extent was the prime cause of production of fertile 

pollens by CMS lines. 
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Dundas et al. (1987) studied the meiotic behavior of hybrids of pigeonpea 

and two Australian native Atylosia species. They found that meiosis in the 

parental pigeonpea and Atylosia accessions appeared regularly, while that in the 

hybrids showed a lower frequency of ring bivalents at Metaphase 1st multivalents, 

univalents, rod bivalents, chromatin bridges, fragments, laggards and 

supernumerary microspores occurred in meiotic cells of hybrids.  

Ariyanayagam et al. (1993) used several accessions of four wild Cajanus 

species as females and one as male in crosses with Cajanus cajan. They 

observed large differences in the level of cytoplasmic male-sterility (CMS) present 

in the different species and its transmission to successive generations. Sterile 

progeny were more frequent in crosses involving C. sericeus, C. scarabaeoides 

and C. acutifolius as female parents, compared with C. albicans. Furthermore, 

accessions within the three most promising species responded differently to 

selection for CMS PR4562 (C. scarabaeoides) and EC121208 (C. sericeus) 

responded well in triple crosses and backcrosses.  

Rajni et al. (1993) searched sources of cytoplasmic male sterility, five 

species of Atylosia, two of Rhynchosia and two of Flemingia were crossed with 

nine varieties of Cajanus cajan. They reported one plant from the cross C. cajan 

cv. T21 x A. mollis was male sterile out of seven F1 plants raised from those 

crosses. Analysis of PMC meiosis showed no separation of tetrads indicating that 

no pollen grains were formed. The plant was maintained by backcrossing with 

T21. 

Ariyanayagam et al. (1994) studied the microsporogenesis of a 

cytoplasmic-genetic male sterile line of pigeonpea and reported that the 

development of sporogenous tissue and the progression into PMCs was normal. 

The tapetum showed signs of disintegration, suggesting that the development of 

the PMCs had progressed; the PMC developed into tetrads. Signs of meiotic 

failure appeared later when cytoplasm was seen to separate from the wall of the 

newly formed pollen grain; vacuolation then occurred and the pollen eventually 

became clear and unstained. Meiotic failure of the genetic-cytoplasmic male-

sterile line occurred at a later stage than that reported for genetic male-sterile 

lines. 
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Katti et al. (1994) studied the persistence of callose and tapetum in the 

microsporogenesis of genic male-sterile lines of Cajanus cajan. They reported 

quite different reason for male-sterility than those reported by Dundas et al. 

(1981). They found that, the pre-meiotic development was identical in the anthers 

of both the lines, during post-meiotic stages, sterile anthers showed persistent 

callose and tapetum.  

Pandey et al. (1994) found 15 obcordate leaf shape plants in a seed 

production plot of Cajanus cajan cv. EA1. All had pollen sterility ranging from 80 to 

100 %. Some flowers had two or more carpels. Those that had three had one 

bifid stigma and two which were free. Having bi- and tri-carpellate flowers it may 

increase the chances of two or three pods setting from the same flower. The 

exposed keel petals may encourage cross-pollination by wind and insects and, 

hence, pod setting. However, flower drop was very high causing a lack of pod 

setting in the early stages. Pod setting through open pollination increased with a 

rise in temperature. 

Ariyanayagam et al. (1995) reported that the resultant BC1 F1 plants were 

fertile but some male sterile segregants were identified in BC1F2 generation. This 

male sterility was linked with female sterility and therefore, it was not pursued 

further they crossed C. sericeus with cultivated pigeonpea and the F1 progeny 

was partially male sterile. The backcross (BC1F1-BC3F1) populations were found 

segregating for male sterility. 

Pelletier and Budar (1997) reported that nucleocytoplasmic male 

sterilities are binary genetic systems driven by mitochondrial, maternally inherited 

genes that induce male sterility and a female phenotype and which are overcome 

by nuclear restorers of fertility. They contribute to the reproductive biology and 

evolution of natural populations; and are valuable tools for the commercial 

production of hybrid seeds in crops. For species with no natural form of 

cytoplasmic male sterility, such sterility can in some cases be introduced from 

different, but related, species through sexual crosses or somatic hybridization.  

Tikka et al. (1997) reported development of cytoplasmic-genic male-

sterility in pigeonpea with the help of wide hybridization using Cajanus 

scarabaeoides as female parent. The F1 was partially fertile, while they got 
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completely sterile plants in the F2 generation, to which they used as female parent 

and made crosses with four genotypes. They got 100 % sterile plants in the 

BC1F1 generation. 

Verulkar and Singh (1997) observed a male sterile plant in the UPAS 120 

cultivar of pigeonpea.  The plant was about 5-7 days late flowering and had white 

translucent anthers with complete pollen sterility. 

Ravikesavan et al. (1998) sprayed 100, 200 and 300 ppm gibberellic acid 

(GA) on flower buds of pigeon pea cultivar ICPL 87 and pollens were evaluated 

for sterility after three days. They found that 100 and 200 ppm GA resulted in 25.8 

and 62.2% pollen sterility. 

Rathnaswamy et al. (1999) crossed two wild species C. cajanifolius and 

C. acutifolius to the genic male-sterile lines of Cajanus cajan (ms co 5). All the F1s 

of ms co 5 × C. cajanifolius were found to be fully fertile. The F1 of ms co 5 × C. 

acutifolius were found to be partially sterile and they were backcrossed to ms co 

5. They further found that the frequency of male-sterility varied from 40 – 90% 

and more plants were in 60–70 % range. Level of pollen fertility decreased during 

the initial flowering phase in September possibly due to high temperatures and 

low humidity. 

Wanjari et al. (2000) reported that male-sterility derived from Cajanus 

sericeus × Cajanus cajan is actually a single dominant gene possibly acting in 

concert with a single recessive gene to mimic cytoplasmic male-sterility. They 

found a segregation ratio of 1:1 (fertile: sterile) in the F3 sibs while a ratio of 3:1 

(fertile: sterile) in the selfed progenies, which shows that this male-sterility is 

governed by monogenic recessive gene and that the male-sterile plants are 

homozygotes (ss). The fertile counterparts in the segregating sibs are 

heterozygotes (Ss).  

Reddy et al. (2000) studied characterization of hybrids between Cajanus 

cajan × C. reticulatus var. gradifolius. The meiotic cells of the hybrid were found 

to have quadrivalents, trivalents, univalents and showed chromosome pairing as 

revealed by the increased number of rod bivalents per cell at Metaphase I and 

stickiness and precocious movement of chromosome to poles in the second 

division. In comparison to parents, the hybrid had fewer pods and seeds. 
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Saxena and Kumar (2001) reported a natural male-sterile mutant in the 

population of a short-duration pigeonpea (C. cajan) cv. ICPL 85010. This mutant 

is characterized by light yellow anthers of reduced size that are devoid of pollen 

grains. This mutant was crossed with two pigeonpea cultivars to study its 

inheritance. The results showed that this male sterility trait was genetic in origin 

and is controlled by a single recessive gene.  

Sharangpani and Shirke (2001) conducted an experiment on the 

developmental stages in fertile and sterile anthers of pigeonpea cv. MS 3783 

using histochemical staining techniques. They reported that the development of 

anthers up to the tetrad formation was similar in fertile and sterile plants. At the 

onset of the tetrad formation stage, however, significant variations were observed 

between the two sets of anthers. In sterile anthers, the callose wall remained 

persistent and the microspores did not separate even at the mature stage.  

Wanjari et al. (2001) studied the cytoplasmic male sterility in pigeonpea 

hybrids carrying the cytoplasm from Cajanus volubilis. They reported that a 

completely sterile progeny having the highest frequency of sterile plants in BC2, 

i.e. 36107-5 x 36108-20 was crossed with pigeonpea cultivars. The hybrids of the 

male parents ICPL-85030 and Akms 21 expressed complete sterility while the 

other crosses yielded partially fertile plants along with sterile pollens. 

Backcrossing of the male sterile hybrids of AKT-8811, Akms-21, and ICPL-85030 

with their respective parents yielded completely sterile progenies. 

Mallikarjuna and Saxena (2002) found that the interspecific hybrid seed 

obtained by cross between Cajanus acutifolius and Cajanus cajan were semi-

shriveled. Very few seeds germinated to give rise to F1 plants. Backcrossing the 

hybrid plants are obtained after recovering the aborting embryos in vitro. The BC1 

plants showed normal meiotic pairing, but had low pollen fertility. The reason for 

embryo abortion and low pollen fertility in spite of normal meiosis could be due to 

effects of wild species cytoplasm. 

Saxena and Kumar (2003) developed a stable CMS system derived from 

a cross involving C. scarabaeoides and cultivated pigeonpea. Recently at 

ICRISAT, CMS lines were also developed using C. sericeus and C. cajanifolius 

as female parent. Identification of male sterile plants was also reported in 
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interspecific crosses with C. volubilis and C. mollis, to broaden the genetic base 

of newly established CMS lines. Agronomically superior and good combiners 

were selected and converted into CMS through backcross breeding programme. 

Chauhan et al. (2004) studied an efficient and stable cytoplasmic genic 

male sterility system by using the cytoplasmic genic male sterile line GT-288 A/B 

along with fertility restoration mechanism. To identify perfect pollen fertility 

restorers, 543 derivative lines of the F5 and F6 populations of C. scarabaeoides x 

C. cajan and 1365 germplasm accessions were used as pollen parents. The 

promising pollen fertility restoring parents were advanced and purified through 

selection and selfing. A total of 18 fertility restorers were identified and 

characterized. 

Mallikarjuna and Kalpana (2004) reported two types of CMS plants in 

pigeonpea, which were distinguished by anther morphology. The type I CMS had 

partially or totally brown and shriveled anthers and the process of 

microsporogenesis was inhibited at the pre-meiotic stage, while type II CMS 

plants had pale white shriveled anthers and the breakdown in microsporogenesis 

was at the post-meiotic stage after the formation of tetrads, which caused male-

sterility of the plants. The cyto-genetic analysis between three cultivars of 

Cajanus cajan and four wild species of Cajanus showed normal meiosis in the 

parents but some meiotic abnormalities were observed in the F1s indicating 

varying degrees of chromosomal and genetic differences between C. cajan and 

C. acutifolius (Jogendra Singh et al., 2004). 

Mallikarjuna and Saxena (2005) reported a cytoplasmic genic male-

sterility system from cultivated pigeonpea cytoplasm. Here the wild species C. 

acutifolius has been used as one of the parent‟s maintained complete male-

sterility. Cytological analysis revealed that both in the male-sterile as well as the 

fertile floral buds, meiosis proceeded normally till the tetrad stage. However, in 

the male-sterile genotypes during the formation of tetrads, the pollen mother cell 

(PMC) wall did not dissolve to release the tetrads unlike in the fertile genotypes 

and this major event was found to be responsible for male-sterility. 

Singh et al. (2007) developed two CMS lines GT 288A using the 

cytoplasm of Cajanus scarabaeoides and 67A using the cytoplasm of Cajanus 
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sericeus through wide hybridization and diversified into several agronomic bases. 

For the diversification of these two CMS sources, desirable recurrent parents 

UPAS 120, ICPL 84023 and PA 163, having resistance to key biotic stresses 

along with good combining ability were selected. Individual plants of recurrent 

(male) parents used in crossing were selfed. Sterile plants resembling the 

recurrent parents were selected and crossed with the recurrent parent to get 

BC2F1 generation. 

Thiyagarajan et al. (2008) developed cytoplasmic genetic male-sterile 

(CGMS) lines in pigeonpea, viz. CORG 990052 A and CORG 990047, by 

interspecific hybridization of Cajanus cajan and C. scarabaeoides. Restorers 

were identified and three CGMS-based pigeonpea hybrids were developed. The 

hybrid COPH 3 was found to be promising in Tamil Nadu State, India. 

Mallikarjuna et al. (2011) successfully crossed Cajanus platycarpus, a 

distantly related wild species with cultivated pigeonpea using embryo rescue and 

tissue culture techniques. They reported that advance generation lines showed a 

wide range of desirable characters including cytoplasmic male sterility. A range of 

pigeonpea cultivars restored fertility and was maintained by few lines including 

cultivar ICPL 85010. Clasmogamous flowers were observed in the male sterile 

lines. They reported two mechanisms of male sterility existed, one was 

premeiotic, where PMCs did not form and in the second, although PMCs gave 

rise to pollen grains, they were either partially or totally sterile accompanied by 

nondehiscence of anther wall. 

 

2.3 Stability studies on CMS lines 

Pigeonpea 

Rao et al. (1996) studied pod and seed set by hand pollination in 

greenhouse condition. The result showed that 23 potted plants raised from 

progeny expressed 100 % pollen sterility and remaining plant showed 5-9 % 

pollen sterility because of several constraints.  Pollination studies using hand and 

natural out crossing suggest that CMS plants were female fertile and were 

capable of an acceptable level of pod set under natural pollination.   
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Vanniarajan et al. (1996) studied eight male sterile lines of the ms1 and 

ms2 types raised in four different environments. Anthers were embedded, 

sectioned and stained for analysis of pollen formation. All lines were stable under 

all environments and failed to produce fertile pollens. 

Basha et al. (2008a) studied the effect of environment factors on inducing 

male sterility in four environmental sensitive male sterile lines (ESMS) of pigeon 

pea, namely PSMS 4-2, PSMS 5-16, PSMS 7-4 and PSMS 8-25.  The data were 

recorded on per cent pollen sterility and other yield contributing traits. 

Environment is a major factor in inducing male sterility in ESMS. The temperature 

and day-length hours decreased under short days which results in the increase of 

per cent pollen sterility and vice versa. These two factors are interdependent in 

respect to expression of photo thermo sensitive male sterility hybrid seed 

production. PSMS 4-2 and PSMS 8-25 have shown 100 % pollen sterility during 

December. 

Basha et al. (2008b) evaluated 18 new cytoplasmic male-sterile lines in 

pigeonpea. Data were recorded for yield, yield attributing characters and pollen 

sterility. They reported that CMS lines flowered early as compared to their 

maintainers at both the seasons. Similarly, plant height of the corresponding 

maintainers was more than the CMS lines. Among CMS lines, pollen sterility was 

100 % in five lines, namely ICPMS 2004-1, ICPMS 2004, ICPMS 2006, ICPMS 

2024 and CMS 288.  

Mahiboobsa et al. (2011) studied 12 F1's under the insect proof condition 

with an objective of transferring the male sterility into the back ground of locally 

adopted cultivars for developing stable male sterile lines. The 100 per cent male 

sterility was found in two F1 combinations viz., GT-288A x Maruti and ICPA-2078 

x WRP-1. In further back crossing, sterile back ground of recurrent parent 

genome can be recovered along with male sterility. The study of BC4F1 and 

BC5F1 generations revealed that there was no single cross which exhibited 100 

per cent male sterility or not even near to 99 per cent male sterility. There was no 

drastic improvement in male sterility from the previous generations to present. 
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Sawargaonkar et al. (2012) studied stability of three male sterile lines 

ICPA 2043, ICPA 2047 and ICPA 2092 derived from Cajanus cajanifolius (A4) 

cytoplasm. The study of stability of CMS lines under different month temperature 

revealed that the male sterility was ranged from 84-100 % in ICPA 2043, from 94-

100% in ICPA 2047 and from 93 -100 % in ICPA 2092. All the three male sterile 

lines derived from A4 cytoplasm exhibited stability throughout the crop season 

without any effect of increase or decrease in temperature, indicating male sterility 

in A4 was independent of environment condition. 

Makelo et al. (2013) studied the stability of pollen sterility of CMS lines 

under Kenyan conditions. Six CMS lines, with over 96 % cytoplasmic male 

sterility were sourced from ICRISAT India and evaluated for two seasons in 2009. 

They reported that two out of six CMS lines, ICPA 2039 and ICPA 2043 were 

most stable across the location with 99 and 100 % pollen sterility. Performance of 

two promising CMS lines under Kenyan conditions for pollen sterility was 

comparable to the result obtain from India can, therefore, be used in commercial 

hybrid breeding program. 

Other crops 

Since hybrid pigeonpea breeding technology was the first and new 

among the legumes, there was limited literature to review on stability of CMS 

lines for their sterility. Hence, the available literature on stability of CMS lines in 

other CMS based crops such as wheat, rice, sorghum and sunflower were briefly 

reviewed hereunder. 

Wheat 

Arya et al. (2003) studied the stability of wheat cytoplasmic male sterile 

(CMS) lines, WH 416 A-1 (CMS 1), HD 2329 A (CMS 2), HD 2160 A (CMS 3) and 

WH 416 A-2 (CMS 4) along with the ability of the restorer lines CDWR 9591, CM 

159, Zhan 742, CM 233, WH 595 and Raj 3765 to restore the fertility of CMS 1 

and 4. They reported that all the CMS lines were stable under the different 

environments. Fertility restoration was highest (80.6%) in CMS 4 pollinated by 

WH 595. 
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Goral et al. (2006) studied the stability of male sterility of 6 triticale lines 

and that of restoring fertility of 15 F1 hybrids, obtained from crossing three male 

sterile lines with five genotypes in several environments. The stability was 

assessed by a regression coefficient and deviation from regression of grain 

number per ear and restoration index of individual genotypes to the environment 

means. They reported that cms Salvo and cms 19 (bi close to zero) were the 

most stable male sterile inbreds. The restoration index of individual hybrids 

ranged from 50 to 100% in various environments. The hybrids with cultivars 

Lamberto and Krakowiak as pollinators exhibited the highest fertility and bi below 

one or close to one. The studies show that the fertility restoration should be 

assessed in different environments.  

Zhang et al. (2007) analyzed the stability of sterility based on the data of 7-

year experiments, in which C49S was sown on different dates. They reported that 

C49S showed sterility variation from complete sterility to semi-sterility to normal 

fertility and the variation pattern appeared to be stable throughout the 7 years. In 

Chongqing, China, C49S was completely sterile or highly sterile when sown 

before October, semi-sterile when sown between November 10 and November 

30, and fertile when sown after December 10. The abnormal temperatures in a 

few years influenced the fertility expression of this line. It is concluded that C49S 

can be used in the multiplication of the male sterile line or in hybrid seed 

production by adjusting its sowing date. 

 

Rice 

Wu and Yin (1992) studied the stability of 3 transferable light-sensitive and 

temperature-sensitive male-sterile lines of indica rice. They reported that the lines 

in which transfer from fertility to male sterility, was temperature dependent, was 

stable and unaffected by sowing date and site. The An Nong and HengNong 

populations showed greater stability than did W6154S. The period of illumination 

had a slight effect on fertility in HengNongS1 and W6154S, but there was no such 

effect in An NongS1. 
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Sarial and Singh (1999) studied cytoplasmic male sterility (CMS) 

breakdown and relative stability of CMS lines for their sterility. Twelve CMS lines 

were evaluated over two seasons at Delhi. They found that the CMS lines 

PMS2A, PMS3A and PMS 10A were completely pollen sterile, had zero spikelet 

fertility and were highly stable while PMS 5A and IR 58025A were stable. The 

remaining CMS lines studied were unstable.  

Sawant et al. (2006) studied the relative stability for sterility, agronomic 

characters and floral traits influencing outcrossing of 20 cytoplasmic male sterile 

lines (CMS) in rice. They reported that the CMS lines IR 58025A, IR 68886A, IR 

68901A, IR 69628 A, PMS 2 A, IR 54755 A, G 46 A, D 297 A and IR 66707 A 

were completely pollen sterile and had zero spikelet fertility and were highly 

stable, while IR 68897 A, IR 68899 A, IR 70907 A, IR 71564 A, IR 68885 A were 

stable. The remaining CMS lines were unstable. 

Umadevi et al. (2010) evaluated a total of 74 CMS lines in rice and their 

maintainers for morphological and floral characters influencing out crossing rate. 

Out of these CMS lines, 42 CMS lines were completely pollen sterile. For all the 

CMS lines spikelet fertility ranged from 0.51 to 4.55 %. The medium duration 

CMS lines viz., COMS 13, COMS 15, IR 68281, ICR 6626, DRR 7, RTN 6, RTN 

13 and PMS 17 were found promising for the characters viz., pollen sterility (%) 

and medium duration favorable for out-crossing during seed production of A x B 

and A x R combinations. These CMS lines offer scope for utilizing in the 

development of three line hybrids with high yield in rice. 

Sorghum 

Shinde et al. (2006) computed the photo-thermo-sensitivity for male sterile 

lines on the basis of photoperiod sensitivity and seed setting percentage in 

sorghum. The male sterile that differed by lower magnitude of photoperiod 

sensitivity and recorded higher seed set percentage were considered as photo-

thermo-insensitive. On the other hand the male sterile line that differed by higher 

magnitude of photoperiod sensitivity and recorded lower seed set percentage was 

considered as photo-thermo-sensitive. They found that male sterile line 1409A 

was found to be most photo-thermo-insensitive for all seasons. 
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Shivanna and Rahiman (2006) studied four male sterile lines of sorghum 

from diverse sources, i.e. 296A (A1), ICSA701 (A2), ICSA741 (A3) and ICSA764 

(A4), to check the stability of these male sterile lines for male sterility expression. 

Observations on seed set under selfed condition and days to 50% flowering were 

recorded. They reported that all four lines tested did not produce seeds across all 

three seasons. This indicates that all male sterile lines are stable in expression of 

sterility and can be effectively utilized in the development of hybrids. 

Sunflower 

Reddy et al. (2004) studied the stability of cytoplasmic male sterile lines of 

newly-developed cytoplasmic sources in sunflower. To identify the most stable 

sources among the newly-developed cytoplasmic sources, all the CMS lines were 

sown at 2-month intervals from June 1999 to April 2000 in Hyderabad, Andhra 

Pradesh. They reported that ANL-2 and PEF-1 was unstable as it produced fertile 

pollens during April June, August and December whereas no fertile pollen was 

produced during October. GIG-1, PET-1 and PET-2 did not produce fertile pollen 

in all planting dates and were regarded as stable sources. Pollen and seed fertility 

was highest in the April-sown crop. High temperature and marginally low relative 

humidity prevailed during March, April, May and June indicating that the effect of 

high temperature and low relative humidity were the causes for breakdown of 

male sterility in sunflower. 

2.4 Studies on fertility restoration in hybrids. 

 There are various approaches contemplated to break the existing yield 

barriers in pigeonpea to feed the increasing population, hybrid technology is 

considered as one of the promising, sustainable and eco-friendly technologies. 

Impressive progress and success made by ICRISAT in this regard has 

encouraged the global pigeonpea production and productivity by adopting the 

CMS-based hybrid technology. Presence of exploitable hybrid vigour, availability 

of cytoplasmic nuclear male sterility and fertility restoration system and sound 

seed production techniques are the pre-requisites for the success of any hybrid 

breeding programme. In the exploitation of heterosis from potential crosses, the 

level of fertility restoration would likely be the key for added yield advantages. 
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Therefore, a precise understanding of the genetics and stability of fertility 

restoration is necessary for improving the efficiency and quality of restorers used 

in hybrid pigeonpea breeding. The literature on fertility restoration in pigeonpea is 

briefly reviewed here under. 

 Saxena et al. (1983) reported the inheritance of the B15B male 

sterile/fertile character. For the study of male sterile/fertile, male sterile plants of 

B15B were crossed with cultivars 3D8 103, QPL- 1 and Royes. The F1 and F2 

generations and test cross progenies of fertile F1 plants crossed to male sterile 

B15B were classified for male fertility. The results fitted a 3 fertile: 1 sterile ratio in 

all cases (all P>0.01, most P>0.05). The test cross progenies were of limited size 

but each fitted a 1: 1 ratio. These results suggested that B15B male 

sterility/fertility was conditioned by a single recessive/dominant gene. 

Saxena and Kumar (2003) studied the fertility restoration system in A2 

cytoplasm of pigeonpea. They developed the crosses between three CMS lines 

on the basis of A2 cytoplasm with 14 diverse pigeonpea lines. Among these, five 

crosses had 94 to 100% fertility restoration and these parents need to be 

preserved to use directly in breeding as high yielding restorer lines. Six crosses 

were male-sterile and from this group one or two crosses can be selected to 

develop maintainer by backcrossing to diversify the genetic base of the CMS 

system. The remaining three crosses segregated for partial fertility and such 

pollinators need to improve their genetic purity for fertility restoration ability. 

 Chauhan et al. (2004) studied fertility restoration in cytoplasmic genic 

male-sterile lines (CGMS) of pigeonpea derived from C. scarabaeoides. To 

identify perfect pollen fertility restorers, 543 derivative lines of C. scarabaeoides x 

C. cajan and 1365 germplasm accessions were used as pollen parent on stable 

cytoplasmic genic male sterile line GT-288A during kharif 1997 to 2003. The F1 

progenies of all the crosses were evaluated during kharif 1998 to 2003 for their 

pollen fertility. The promising pollen fertility restoring parents were advanced and 

purified through selfing. Finally, eighteen fertility restorers were identified and 

characterized. 

Gangwar and Bajpai (2005) studied pollen fertility in F3 generation of 

interspecific hybrids in pigeonpea and reported that all male and female parents 
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had complete pollen fertility (92.80-98.23 %). The hybrids of C. cajan x C. 

cajanifolius showed wide variation for pollen fertility (68.69-89.20 %) and the 

maximum fertility was seen in C. cajan x C. scarabaeoides (74.23-85.51 %). The 

poor fertility (8.02-36.50 %) was seen in segregants of C. cajan x C. acutifolius. 

Lad and Wanjari (2005) reported that there may be many genes governing 

the fertility restoration in pigeonpea. They observed in segregating progenies a 

monogenic segregation pattern of 3 good : 1 poor dehiscence for pollen fertility 

percent. These progenies produced plants with 50-80% pollen fertility. 

Singh and Bajpai (2005) studied the relative pollen fertility in interspecific 

crosses. They found that, C. cajan × C. acutifolius hybrid showed low pollen 

fertility in F1 generation, whereas high pollen fertility was found in crosses utilizing 

C. cajanifolius and C. scarabaeoides. They also noticed moderate variation in 

size of pollen grains among the parents and their hybrids.   

Saxena et al. (2005) studied that the tool of inter-specific hybridization can 

be used for the development of stable cytoplasmic genic male-sterility system in 

pigeonpea. They designated the CMS system as A4, which is developed by an 

inter-specific cross between Cajanus cajanifolius, a wild relative of pigeonpea and 

a cultivar ICP 11501. Also they tested various testers for knowing fertility 

restoration and maintenance reaction. They found ICPH 2470 as a promising 

short-duration experimental hybrid, which exhibited 77.5 % advantage over the 

control cultivar UPAS 120. 

Chaudhary et al. (2006) noticed a higher order of sterility in the hybrids of 

A3 cytoplasm when cornered to other cytoplasmic hybrids. Fertility status of A4 

cytoplasm hybrids were in between A2 and A3. From the fertility restoration studies 

it was concluded that the order of sterility in the diverse cytoplasm increased from 

A1 to A2 to A4 to A3.  

Singh et al. (2006) studied two cytoplasmic genetic male sterile (CMS) 

lines of pigeonpea in BC3F1 namely, GT 288 A and CMS 1024 A along with their 

maintainers to confirm the nature of male sterility system. Pollen fertility test 

exhibited that only 50 and 35% plants of GT 288 A and B were completely male 

sterile and fertile, respectively, indicating that both A and B lines should be back 

crossed/selfed for a few more generations to obtain the perfect line. However, 
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CMS 1024A appeared to have a mutated gene (s) with varying degree of fertility 

and the lack of pod setting after selfing is due to heterostyly nature of the flower. 

Wanjari et al. (2007) studied that individual hybrid of a set of 156 hybrid 

were tested for anther dehiscence and pollen fertility.  Among 136 hybrids tested, 

11 expressed high pollen fertility (> 80 %) in all the plants. 

Dalvi et al. (2008a) reported the fertility restoration in cytoplasmic-nuclear 

male-sterile lines derived from three wild relatives of pigeonpea. To study the 

fertility restoration of the CMS lines, three cytoplasmic-nuclear male-sterile (CMS) 

lines derived from C. sericeus (A1 cytoplasm), C. scarabaeoides (A2 cytoplasm), 

and C. cajanifolius (A4 cytoplasm) were crossed to seven pigeonpea cultivars in a 

line x tester mating scheme. Twenty-one F1 hybrid combinations were planted in 

three environments. There was no effect of environment on the expression of 

fertility restoration. Pigeonpea cultivar ICPL 129-3 restored fertility in A1 

cytoplasm and maintained male sterility in the other two (A2 and A4) cytoplasm. 

Among crosses involving CMS line (of A4 cytoplasm) ICPA 2039 one hybrid 

combination was male-sterile and another male fertile. The remaining five 

combinations segregated for male-fertility (66–84 % fertility restoration). Such 

testers can easily be purified for use in hybrid breeding programmes by selfing 

and single-plant selection for 2–3 generations. 

 Dalvi et al. (2008b) studied the genetics of fertility restoration in a CMS line 

ICPA 2039 and its five fertility restorers in pigeonpea. All the F1 plants in 5 

crosses were fully fertile indicating the dominance of fertility restoring genes. 

Among the 5 crosses studied, three (ICPA 2039 x ICPL 12320, ICPA 2039 x ICPL 

11376, and ICPA 2039 x HPL 24-63) segregated in a ratio of 3 fertile : 1 sterile in 

F2 generation and 1 fertile : 1 sterile in BC1F1 generation indicating the 

monogenic dominant nature of a single fertility restoring gene. The crosses ICPA 

2039 x ICP 10650 segregated two dominant duplicate gene action with a ratio of 

15 fertile : 1 sterile in F2 and 3 fertile : 1 sterile in BC1F1, respectively. The cross 

ICPA 2039 x ICP 13991 had two complementary gene action of 9 fertile : 7 sterile 

in F2 and 1 fertile : 3 sterile in BC1F1, respectively.  

 Nadrajan et al. (2008) studied the extent of fertility restoration for various 

cytoplasmic sources across germplasm lines, advanced breeding lines and 
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cultivars. One hundred and sixty eight CGMS based hybrids were synthesized by 

adopting L x T mating design with 12 CGMS lines and 14 testers. The hybrids 

were tested for fertility restoration by observing the pollen fertility status. The 

results indicated that 19 hybrids were restored out of 168 crosses evaluated 

accounting to 11.3 %. The extent of restoration varied from 9.5 to 14.3 % across 

the three cytoplasmic sources viz., A1, A2 and A4. Among the three sources of 

male parents selected, restoration was maximum in the germplasm inbreds as 

compared to advanced breeding lines and cultivars indicating need for intensive 

exploration across genetically and geographically diverse genetic resources.  

Ali (2009) evaluated seven hybrids in kharif 2005-06 for fertility, crop 

duration and grain yield and reported that all hybrids were 100 % fertile.  

Similarly, evaluation of nine hybrids during 2005-06 showed that four hybrids, 

namely GT 288 A x JBP 110, GT 290A x ICP 1763, 67A x ICP 9596 and Hy 28 

BA x ICP 41 were 100% fertile.  

Singh et al. (2009) reported that the formation of fertile pollen and its 

involvement in fertilization, pod formation and seed development was seriously 

affected or less in winter season (December – January) and an increase in 

temperature during spring season (February – March), however resulted in 

normal pod and seed development. Again in summer (April – May) fertilization, 

pod formation and seed development were decreased due to high temperature 

>350C. 

 Saxena et al. (2010a) reported the development of cytoplasmic–nuclear 

male sterility, its inheritance, and fertility restoration for potential use in hybrid 

pigeonpea breeding. They searched wide diversity of fertility restores and male-

sterility maintainers to produce heterotic hybrids for diverse environments. Among 

251 F1s evaluated, 30 (12.0%) maintained male sterility, 23 (9.2 %) restored 

fertility, and 198 (78.9 %) segregated for male-fertility and sterility traits due to 

heterozygosity within germplasm accessions. All 35 F1 plants of hybrid ICPA 2067 

x ICP 12320 were male fertile indicated the dominance of fertility restoring genes. 

Out of 359 F2 plants grown, 303 were found fertile whereas only 56 exhibited 

male sterility. This segregation fit well to a ratio of 13 fertile: 3 sterile (P = 0.01). In 

BC1F1 generation out of 175 plants, 121 were male fertile and 54 had male-sterile 
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anthers, which showed a good fit for a 3 fertile: 1 sterile (P = 0.01) ratio. These 

results suggested the presence of two dominant genes, with one basic and one 

inhibitory gene action for the determination of fertility restoration in ICPA 2067. 

Lay and Saxena (2011) studied fertility restoration system in five CMS-

based pigeonpea hybrids. They reported two hybrids „ICPH 2671‟ and „ICPH 

2740‟ which had the same male parent but different females segregated in F2 in 

the ratio of 12 fertile (F): 3 partial fertile (PF):1 sterile (S), and in BC1F1 generation 

as 2 fertile: 1 partial fertile: 1 sterile, suggesting that fertility restoration in these 

hybrids was controlled by digenic dominant epistatic interaction. The progenies 

derived from hybrid „ICPH 3359‟ fitted well to an F2 ratio of 9 F : 6 PF : 1 S, and 1 

F : 2 PF : 1 S in BC1F1 generation, indicating the involvement of two major genes 

with incomplete dominant epistasis. Progenies of the other two hybrids „ICPH 

4012‟ and „ICPH 4344‟ segregated in F2 in the ratio of 9 F: 3 PF: 4 S and 1 F: 1 

PF: 2 S in BC1F1 generations, suggesting that pollen fertility was controlled by 

digenic recessive epistatic gene action. They concluded that the fertility 

restoration of A4 CMS system in pigeonpea was governed by two major genes but 

with different types of epistatic interactions in different crosses. 

 Saxena et al. (2011a) studied the inheritance of the obcordate leaf trait and 

its fertility restoration ability using obcordate leaf line ICP 5529. The crosses were 

made between four CMS-lines (ICPA 2089, ICPA 2047, ICPA 2048 and ICPA 

2049) and ICP 5529. All the F1 plants of the obcordate donor were fully male-

fertile and had normal leaves suggested that the obcordate leaf trait was 

recessive and that fertility restoration was due to the effect of dominant gene (s).  

Saxena et al. (2011b) studied one extra-early- (120 days), two early- (150 

days), and two late maturing (180 days) pigeonpea hybrids to generate 

information on the genetics of fertility restoration of the A4 CMS system. In the 

extra early maturing hybrids, pollen fertility was controlled by a single dominant 

gene, whereas in the early- and late-maturing hybrids, male fertility was governed 

by two duplicate dominant genes. It was also observed that hybrids with two 

dominant genes produced a greater pollen load and expressed greater stability as 

compared with those carrying a single dominant gene. It was also concluded that 
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for breeding hybrids with stable fertility restoration, the presence of two dominant 

genes is essential. 

Sawargaonkar et al. (2011) studied single crosses involving four CMS lines 

and three known fertility restorers to determine the genetics of fertility restoration 

in pigeonpea (Cajanus cajan L. Millsp.). They observed that the interaction of 

dominant nuclear genes of ICP 2766 with ICPA 2092 produced 100% fertile F1 

plant and showed complete dominance for fertility restoration. The restorer ICP 

2766 when crossed with ICPA 2092 showed monogenic inheritance (3:1), while 

the of ICP 2766 × ICPA 2043 revealed digenic inheritance (15:1) of fertility 

restoration.  

Kalaimagal et al. (2012) studied inheritance of fertility restoration in A2 

cytoplasm (Cajanus scarabaeoides (L.) Thouars) by utilizing two CMS lines, 

CORG 990052A and CORG 990047A crossed with three restorers viz., Co 1R, 

Co 2R and Co 3R. The study of F2 generation indicated that the fertility 

restoration in CORG 990052A by Co 1R was governed by two independent 

dominant genes, while fertility restoration by Co 2R and Co 3R in CORG 

990047A was governed by single dominant gene. 

 Since hybrid pigeonpea breeding technology was the first and new among 

the legumes, there was limited literature to review. Hence, the available literature 

on stability of fertility restoration in other CMS based hybrid crops such as rice, 

maize, and wheat were briefly reviewed hereunder. 

Maize 

Chen and Liu (1991) studied 24 maize cross combinations from 2 CMS 

lines and 5 restorer lines with C, E, S and T type cytoplasm groups with 4 sowing 

dates at 3 sites for evaluating the stability of male fertility restoration of maize 

hybrids. They reported that there were highly significant differences in fertility 

restoration existed among the cross combinations and among cytoplasm groups. 

Fertility restoration of hybrids varied with genetic background and environment. 

Lui and Chen (1992) studied the effect of ecological and climatic conditions 

on the restoration of fertility in 24 maize cross combinations. They reported that 

effects of the restorer varied significantly with genetic background and 
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environment. Cool environments with a high level of moisture were more 

favourable for restoration of male fertility than high temperatures and dry 

conditions. Levels of fertility restoration were stable across different sowing dates. 

It is suggested that restorability tests and selection of restorers should be 

conducted before CMS hybrids are entered into production. 

Weider (2009) evaluated 22 CMS versions of modern European maize 

hybrids under 17 environments in Switzerland, France, and Bulgaria with two or 

three sowing dates, in 2005 and 2006. They reported both stable and unstable 

male sterile lines in all three CMS types. T-cytoplasm hybrids were the most 

stable, while hybrids developed from S-cytoplasm showed partial restoration of 

fertility while C-cytoplasm was similar to T-cytoplasm regards to maintaining the 

male sterility. Climatic factors, especially air temperature, evapotranspiration and 

water vapor during the 10 days before anthesis as well as during anthesis, were 

correlated positively or negatively with the partial reversion to male fertility of 

CMS hybrids, indicated an interaction between genetic and climatic factors. 

Rice 

Sarkar et al. (2003) studied the effect of the environment on fertility 

restoration exhibited by rice hybrids derived from cytoplasmic male sterile lines 

with different genetic backgrounds under 10 different environments in eight 

locations of India. The stability analysis on fertility restoration, yield and other 

attributes revealed that fertility restoration in hybrids from different CMS lines was 

highly sensitive to the changes in the environment with gradual delay of sowing 

dates. Estimates of stability parameters showed that the hybrids were unstable 

over the environments for both fertility restoration and grain yield, with the 

exception of PRH 3. A linear (predictable) response was shown by nearly all 

hybrids for all characters, as revealed by a significant genotype × environment 

interaction (linear) variance, though part of the variation was unpredictable in 

nature as shown by significant pooled deviation values.  
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Wheat 

Esimbekova (1990) evaluated the variation in the trait due to genotype-

environment interaction in a 3-year study of 23 F1 wheat hybrids bred by top 

crosses using cytoplasmic male sterility from Triticum timopheevii. Environmental 

effects accounted for 67.4 % of the variation. The material studied was divided 

into 3 groups on the basis of response, with <5 %, 5-10 % and >10 % variation of 

the genotype under contrasting environmental conditions. The first group was the 

most promising for breeding hybrid varieties, since the fertility restoration of this 

group was stable over the years. 

Zhan et al. (2005) studied K-type hybrids with 2 sterile lines (A) and some 

restorer lines (R) to evaluate the easy restoration of fertility (ERF), stability of 

fertility restoration, and the effects of sowing time and method on the degree of 

restoration. They reported that the degree of restoration of fertility in most of the 

K-type hybrids varied significantly between the years. The hybrids characterized 

by high degrees of restoration also showed stability in fertility restoration. The 

sowing date had significant effects, whereas the sowing method had slight effects 

on the degree of restoration in K-type hybrids. Abnormally high temperature from 

ear emergence to anthesis was the major environmental factors affecting the 

stability of the degree of restoration. 
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CHAPTER III 

MATERIALS AND METHODS 

The present investigation was carried out to determine the stability of male 

sterility of CMS lines and fertility restoration in CMS-based pigeonpea hybrids 

under different environmental conditions. The experimental materials used and 

the methods applied during the course of present investigation have been 

described below. 

3.1 Study of stability of fertility restoration in hybrids. 

3.1.1 Experimental materials 

The experimental materials comprised of 12 genotypes, including 10 

hybrids and two varietal checks (Table 3.1). The material was obtained from 

International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), 

Patancheru (Andhra Pradesh) and evaluated at three different locations viz. 

Patancheru (Andhra Pradesh), Ranchi (Jharkhand) and Sehore (Madhya 

Pradesh). The Details of materials used in the investigation are given in Table 

3.1. 

3.1.2. Environmental conditions  

The experimental material was sown at three locations in India viz. 

ICRISAT, Patancheru, Andhra Pradesh (E1), GVT Farm, Department of Genetics 

and Plant Breeding, Birsa Agriculture University, Ranchi, Jharkhand (E2) and 

Experimental Field of College of Agriculture, Sehore, Madhya Pradesh (E3). The 

locations Patancheru, Ranchi and Sehore are designated as environment first, 

second and third (E1, E2 and E3 environment) respectively. The details of 

environmental conditions of each location are given in Table 3.2. 

3.1.3. Experimental design and sowings 

The 10 promising hybrids developed by ICRISAT were evaluated along 

with two checks (Asha and Maruti) in Randomized Complete Block Design with 

two replications during kharif 2012. Six-row plots were planted with 4 m length 

with inter and intra-row spacing of 75 and 50 cm respectively. 



46 
 

Table 3.1: Salient characteristics of CMS-based pigeonpea hybrids and varieties used in study. 

DB= Dark brown, B= Brown 

 

S. no. 
Name of 
hybrids 

Parentage 
Maturity 
(days) 

Plant height 
(cm.) 

100 Seed 
mass (g) 

Seed 
color 

1 ICPH 2671 ICPA 2043 × ICPL 87119 165-175 230-260 11.0-11.5 DB 

2 ICPH 2740 ICPA 2047 × ICPL 87119 180-185 210-230 10.4-11.3 B 

3 ICPH 3933 ICPA 2078 × ICPL 87119 170-185 190-200 10.5-11.6 B 

4 ICPH 2751 ICPA 2048 × ICPL 87119 175-185 210-240 11.0-11.8 B 

5 ICPH 3477 ICPA 2047 × ICPL 20098 175-185 180-230 10.0-10.8 B 

6 ICPH 3461 ICPA 2092 × ICPL 87119 170-185 230-250 10.2-10.5 B 

7 ICPH 3762 ICPA 2092 × ICPL 20108 171-184 220-240 10.4-10.8 B 

8 ICPH 4490 ICPA 2047 × ICPL 20126 175-190 200-220 11.2-12.0 B 

9 ICPH 3491 ICPA 2048 × ICPL 20096 170-190 210-240 11.5-12.3 B 

10 ICPH 3494 ICPA 2048 × ICPL 20093 180-195 210-230 11.0-12.0 B 

11 Asha C11 x ICP 1-6W3B 175-180 200-220 10.2-11.2 B 

12 Maruti ICP 8863 165-175 190-210 10.0-10.4 B 
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The experimental materials were sown at three locations- ICRISAT, 

Patancheru (E1) on June 29, 2012; GVT Farm, Department of Genetics and Plant 

Breeding, Birsa Agriculture University, Ranchi, (E2) on July 11, 2012; and 

Experimental Field of College of Agriculture, Sehore, Madhya Pradesh (E3) on 

August 16, 2012. To reduce competition between the crop and weeds for nutrient 

uptake, water absorption, and photosynthesis, two weedings were done at 

vegetative stage. Two irrigations were provided at the time of vegetative growth 

stage at Patancheru while the trail was maintained under rainfed conditions at 

Ranchi and Sehore. A basal fertilizer dose of 25:50:0 N:P:K kg/ha was applied 

uniformly in soil and three sprays of pesticides (acephate and spinosad at 1 kg 

ha−1 and 0.2 L ha−1, respectively) at 10 days intervals to control pod borers 

(Maruca vitrata Fab. and Helicoverpa armigera Hub.) between flowering and 

podding stages and other agronomic practices were followed as per 

recommendations to keep the crop in good condition. 

3.2. Study of stability of maintenance of male sterility of CMS lines. 

3.2.1 Experimental materials 

 The experimental materials comprised of nine cytoplasmic male sterile 

(CMS) lines of pigeonpea, ICPA 2039, ICPA 2043, ICPA 2047, ICPA 2051, ICPA 

2092, HyC3A, BRG1A, BRG3A and TTB7A. All these lines had Cajanus 

cajanifolius (A4) cytoplasm. The lines ICPA 2039, ICPA 2043, ICPA 2047, ICPA 

2051 and ICPA 2092 were developed at International Crops Research Institute 

for the Semi-Arid Tropics, Patancheru, and the other CMS lines HyC3A, BRG1A, 

BRG3A and TTB7A were developed by University of Agriculture Science, 

Bangalore, Karnataka. All these lines were evaluated for their stability of 

expression of male sterility under varying environmental conditions. The brief 

details of all CMS lines are given in Table 3.3. 
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Table 3.2 The details of geographical information of the three environments 

used in this study. 

 

3.2.2. Environmental conditions 

 The experimental material was sown at experimental field of International 

Crops Research Institute for the Semi-Arid Tropics (ICRISAT) Patancheru, 

Andhra Pradesh. To study on the stability of expression of male sterility, the 

experimental material was sown in three different dates- August 7, 2012, 

September 11, 2012, and October 18, 2012 to provide a range of environments. 

The details of environmental conditions of this location are given in Table 3.2. 

Particulars 
Environments 

E1 E2 E3 

Location ICRISAT, 

Patancheru, 

Hyderabad. 

Experimental farm, 

B.A.U.,  Ranchi 

Experimental farm, 

R.A.K. College of 

Agriculture, Sehore 

Latitude 17o 53'N 23o 17'N 23°12‟ N 

Longitude 78o 27'E 85o 19'E 77°05‟ E 

Altitude 545.0 m 625.0 m 498.77 m 

Soil type Medium black 

soil 

Sandy soil Medium black soil 

Climatic zone Moderate rainfall 

zone 

sub-tropical sub-tropical 

Total rainfall 745.52 mm 984.7 mm 936.5 mm 

Temperature Min. oC 

                      Max.oC 

7.6 1.8 6.1 

38.6 32.5 35.5 

Humidity   Min. (%) 

                 Max. (%) 

14.0 59.9 33.18 

98.0 85.3 98.42 

Date of sowing June 29, 2012 July 11, 2012 August 16, 2012 

Date of harvesting January 4, 2013 February 12, 2013 February 4, 2013 
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Table 3.3: Details of cytoplasmic male sterile lines used for study. 

S. No. CMS Lines Pedigree Sources Plant type 

1. ICPA 2039 (ICPW 29 x Pusa Ageti) x Pusa Ageti x Pusa Ageti x 

Pusa Ageti x Pusa Ageti x Pusa Ageti 

ICRISAT-A Lines DT 

2. ICPA 2043 (ICPA 2039 x ICPL 20176) x ICPL 20176  x ICPL 

20176 x ICPL 20176 x ICPL 20176 x ICPL 20176 

ICRISAT-A Lines NDT 

3. ICPA 2047 (ICPA 2039 x ICPL 99050) x ICPL 99050 x ICPL 

99050 x ICPL 99050 x ICPL 99050 x ICPL 99050 

ICRISAT-A Lines NDT 

4. ICPA 2051 (ICPA 2039 x ICP 5357) x ICP 5357 x ICP 5357 x ICP 

5357 x ICP 5357 x ICP 5357 

ICRISAT-A Lines NDT 

5. ICPA 2092 (ICPA 2039 x ICPL 96058) x ICPL 96058 x ICPL 

96058 x ICPL 96058 x ICPL 96058 x ICPL 96058 

ICRISAT-A Lines NDT 

6. HyC3A Selection from Hyderabad (A.P.) material U.A.S. Bangalore NDT 

7. BRG1A (Hy3C x Hosakote local) x Hosakote local x Hosakote 

local x Hosakote local x Hosakote local x Hosakote 

local 

U.A.S. Bangalore NDT 

8. BRG3A (Hy3C x OGUK3) x OGUK3 x OGUK3 x OGUK3 x 

OGUK3 x OGUK3 

U.A.S. Bangalore NDT 

9. TTB7A Local Selection U.A.S. Bangalore NDT 

DT= Determinate, NDT= Non determinate
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3.2.3. Experimental design and sowings 

The cytoplasmic male sterile lines were evaluated in Randomized 

Complete Block Design with two replications on August 7, 2012, September 11, 

2012 and October 18, 2012 respectively identified as first, second and third date 

of sowing. Two-row plots were planted with 4 m length with inter and intra row 

spacing of 75 and 30 cm respectively. Border rows were planted in all three dates 

of sowings to increase the precision of study and reduce border effect. All the 

agronomic practices were followed in these CMS lines as per also practiced for 

hybrids to keep the crop in good condition. Two irrigations were provided in first 

date of sowing while because of less availability of moisture in soil, three 

irrigations were provided in second and third date of sowing.  

3.3 Observations recorded 

a) Cyto-histological observations 

Assessment of pollen fertility and sterility in hybrids and CMS lines 

 Each plant of hybrids and CMS lines was tested for its pollen 

fertility/sterility status at the initial flowering stage. To identify fertility/sterility of 

pollen grains, 2 % aceto-carmine solution was used. Five well developed flower 

buds were collected randomly from different parts of each plant at the time of 

anthesis (9 -10 AM). From each bud, the anthers were collected on a glass slide 

and crushed with a drop of 2 % aceto-carmine stain and examined under a light 

microscope. The count of sterile and fertile pollen grains in 10x microscopic fields 

was noted, five such microscopic fields were examined under each slide. The 

round and well stained pollen grains were counted as fertile while shriveled 

hyaline and unstained pollen grains were scored as sterile. The means for all the 

microscopic fields were worked-out and the proportion of fertile and sterile pollens 

was expressed in percentage on total in individual plants. The mean value of 

pollen fertility/sterility of all plants was considered as pollen fertility/sterility (%) for 

that genotype. Based on the number of stained and unstained pollen grains, the 

fertility and sterility status of hybrids and CMS lines were computed as follows.  
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      Number of fertile (round and stained) pollens 

Pollen fertility (%) = -----------------------------------------------------------------------x 100 

         Total number of pollen grains examined 

 
   No. of sterile (unstained, shrivelled hyaline) pollens 

Pollen sterility (%) = ------------------------------------------------------------------------x 100 
         Total number of pollen grains examined 

 
b) Number of fertile and sterile plants 

 Numbers of fertile and sterile plants were counted on the basis of pollen 

fertility and sterility of individual plant. In hybrids, plants were categorized 

according to their fertility status, the plants showing >80 % pollen fertility were 

considered as fully male fertile and the plants which had 40-80 %, 10-39 % and 

<10% pollen fertility were considered as partial male fertile, partial male sterile, 

and complete male sterile plants respectively. While, in CMS lines plants were 

categorized according to their sterility status. The plants which showed >90 % 

pollen sterility were considered as complete male sterile and which had 61-90 %, 

20-60 % and <20 % sterility were considered as partial male sterile, partial male 

fertile, and fully male fertile plants respectively (Khin Lay, 2011). 

c) Plant fertility and sterility (%) 

The total plant fertility and sterility percentage of different genotypes was 

classified into percentage of fully male fertile, partial male fertile, partial male 

sterile and complete male sterile plants. The per cent of fertility of each category 

was calculated on the basis of number of plants of that category found in each 

entry. The plant fertility/sterility (%) of these categories was calculated by the 

following formulae: 

      No. of fully male fertile plants 
Fully male fertile plants (%) = --------------------------------------------x 100 

    Total number of plants 

 
            No. of partial male fertile plants 

Partial male fertile plants (%) = ----------------------------------------------x 100 
        Total number of plants 
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    No. of partial male sterile plants 
Partial male sterile plants (%) = -----------------------------------------------x 100 
           Total number of plants 

     No. of complete male sterile plants 
Complete male sterile plants (%) = -------------------------------------------------- x 100 
      Total number of plants 

 
d) Plant stand 

Plant stand for each genotype was taken by counting the total number of 

plants in net plot area (area excluding border rows and plants) at the time of 

recording pollen fertility data in hybrids. 

3.4  Statistical analysis 

The model for experimental design used in randomized block design can be 

expressed as follows. 

Pij= μ+ gi+  rj  + eij 

Where,  

Pij = phenotypic effect of ith genotype in the jth replication. 

μ   = general population mean 

gi   = effect of ith genotype. 

rj   = effect of jth replication. 

eij= error associated with the experiment. 
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Table 3.4 The skeleton for analysis of variance for randomized complete 

block design  

Source of 

variation 

    D .F.  Sum of 

squares 

Mean sum of 

squares 

Replication (r-1) SSr σ2 r 

Genotypes (g-1) SSg σ2  e  +   r σ2   g 

   Error  (r-1)(g-1) SSe σ2  e 

Total (rg-1)   

 

Where, 

r = number of replications 

g = number of genotypes. 

σ2g = genotypic variance 

σ2e = error variance 

3.4.1. Test of significance 

The mean sum of squares for genotypes and replications were tested 

against the error mean sum of squares for calculating F values which were 

compared with tabulated F value at 5 and 1 percent level of significance. 

3.4.1.1 Mean: 

Mean was calculated using following conventional formula 

ΣX 

X    =   -------------------- 
 N 
Where, 

X= simple mean 

ΣX = summation of all the observation 

N   = number of observation 
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3.4.1.2 Range: 

It is the range of lowest and highest values of each trait taken in the 

observations. 

3.4.1.3. Standard error of mean. 

It was calculated as formula given below. 

SEm± = MSe/ r 

Where, 

SE m± = standard error of mean 

MSe = mean sum of square due to error 

r      = number of replication. 

3.4.1.4. Standard error of differences. 

It was calculated as formula given below 

SEd ±= 2MSe/r 

Where, 

SEd± = standard error of differences. 

Mse   = mean sum of square due to error. 

r         = number of replications. 

3.4.1.5. Critical difference: 

It was measured as formula mentioned below. 

CD = SEd X t value at 5% level of significance. 

Where,  

CD = critical difference 

SEd= standard error of difference 

T = table value at 5% probability level of error df. 
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3.4.2. Stability analysis 

Stability analysis of hybrids and CMS lines was carried out for 5 characters 

under study. Three different approaches were adopted for estimating the stability 

parameters (a) conventional pooled analysis of variance (G x E interactions), (b) 

regression analysis of Eberhart and Russell (1966) and GGE biplot method of 

stability analysis (Yan et al., 2000). 

3.4.2.1 Pooled analysis of variance  

The pooled analysis of variance was carried out as per the standard procedure 

given by Singh and Chaudhari (1985). The form of analysis of variance is given 

below. 

 Table 3.5 Analysis of variance for mean data 

Source df 

Environments 

Genotypes 

Genotypes x Environment 

Pooled error 

(e-1) 

(v-1) 

(e-1) (v-1) 

e (r-1) (v-1) 

 

Where, e, v and r stand for number of environments, genotypes and 

replications respectively. The mean sum of squares due to genotypes and 

environments were tested against mean sum of squares due to genotype x 

environment. The mean sum of squares due to genotype x environment were 

tested against mean sum of squares for pooled error. 

3.4.2.2 Stability model of Eberhart and Russell (1966) 

The stability parameters are defined with the following model: 

Yij   =   m + biIj  +dij 
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i   =   1, 2 ..t and j  =  1, 2… s. 

Where,  

Yij = mean of ith variety in jth environment 

m = mean of all the varieties over all the environments 

bi =  the regression coefficient of the ith variety on the  

               environmental index which measure  the response of this  

               variety to varying environments. 

Ij = the environmental index which is defined as the deviation of  

    the mean of all the varieties at a given location from the  

    overall mean. 

dij =  the deviation from regression of the ith variety at jth environment. 

   iYij   ijYij  

 Ij =   -         

   v       n 

With iIj = 0 

a) Environmental index (Ij) 

Ij =   [( iYij/ g) -  ( ijYij/ge)]     With Ij =  0 

Where, 

Ij = environment index 

Yij = summation of all the genotypes for jth environment 

g = number of genotypes 

ijYij = summation of all the genotypes overall the  

environments. 
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ge = number of genotypes  ×  number of environments 

 

b) Regression coefficient (bi) 

The first stability parameter is a regression coefficient. The regression 

coefficient of the varietal mean on environmental index is estimated as: 

bi = jYijIj / EI2j 

Where, 

jYijIj = sum of the ith genotype x environmental index in jth  environment 

 I2j  = as for environmental index 

c) Deviation from regression 

 The performance of each genotype can be predicted by using estimate of 

parameter. 

Yij = Xi + bi Ij 

Where,  

Xi is the estimate of mean. 

The deviations (Sij = Yij = Yij) are squared to provide an estimate of 

another stability parameter (S2di). 

S2di = [σ 2ij/(e-2) – S2 e/r] 

Where, 

S2 e/r =        Estimate of the pooled error. 

σ2ij = [Y2ij = Y2 i/e – (jYijIj)2 / jI2j] 

The appropriate analysis of variance is given in following table.  With this 

model the sum of squares due to environment and genotype x environment 
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partitioned in environment (linear), genotype x environment (linear) and deviation 

from regression. 

Table 3.6 Analysis of variance for stability parameter 

Source of variation df Expectations of mean squares 

Genotype (G) (g-1) 1/e i Y   - C.F. = Y2j 

Environment (E) (e-1) 1/g j Y2 – C.F. = Y2j 

Genotype x Environment (g-1) (e-1) ijY2ij – C.F.  = j – Y2j 

Environment (linear) 1 1/g (j YijIj)2/jI2j) Ms2 

Genotype x Environment 

(linear) 
(g-2) i (j YijIj)2/jI2j)- Env. (linear) 

Pooled deviation g(e-2) i j S2ij  Ms3 

Genotype-g (e-2) (jY2g-Y2g/e) – (jYg I2j) / jI2j = j2g) 

Pooled error (r-1) (g-1)  

d) Test of significance  

(a) In order to test the significance of the difference among the variety means,  

i.e. H0 = µ1 = µ2 = µ3 = … µn 

The appropriate „F‟ test is defined as: 

 F   =  Ms1 / Ms3 

(b) To test that the varieties do not differ for their regression on the 

environmental          

            index, i.e.  H0=  b1  =  b2  =   … bn, 

F  =   Ms2 / Ms3 

 Thus all the variances can be tested against pooled deviation means 

square (Ms3). 

(c) An appropriate test of the deviation from regression for each genotype can 

be obtained. 
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 F =  [ijσ2ij / e-2] / Pooled error. 

The test of significance carried for the stability parameter, for phenotypic 

index and regression coefficients are as follows: 

 S.E. =  Error M.S. / r e  

 F = Ij-  µ / S.E. 

Thus, 

L.S.D. for Ij = S.E. x „t‟ at 0.05 per cent. 

The hypothesis that any regression coefficient does not differ from unity 

can also be tested by „t‟ test. The S.E. and „t‟ for regression coefficient were 

calculated as follows: 

S.E. (b) =  [deviation Ms / j Ij2]1/2  

„t‟ =  b –1 / S.E.(b) 

Thus, L.S.D. for b-1 = S.E. (b) x „t‟ at 0.05 per cent. 

3.4.2.3 GGE Biplot analysis (Yan et al., 2000) 

To evaluates the phenotypic stability and adaptability, the GGE biplot 

analysis performed, considering the simplified model for two main components. In 

this approach, the effects of genotype (G) and genotype by environment (GE) 

were considered as random in the model. In this case, the best linear unbiased 

prediction (BLUP) of G and GE effects are calculated. 

The components of genotypic variance, of the variance of GE interaction 

and residual were estimated by the method of restricted maximum likelihood 

(REML). For analysis of variance the software package SAS 9.2 version was 

used. GGE biplot software was used to explain relationship between genotype 

and locations graphical (Yan and Kang, 2003). 

The model for a GGE biplot (Yan, 2002) based on singular value 

decomposition (SVD) of first two principal components is: 

ij - µ-βj = 1i1j1 + 2i2j2 + ij   [1] 
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where ij is the measured mean (DBH) of genotype i in environment j, μ is 

the grand mean, βj is the main effect of environment j, μ + βj being the mean yield 

across all genotypes in environment j, 1 and 2 are the singular values (SV) for 

the first and second principal component (PC1 and PC2), respectively, i1 and i2 

are eigenvectors of genotype i for PC1 and PC2, respectively, j1 and j2 are 

eigenvectors of environment j for PC1 and PC2, respectively, ij is the residual 

associated with genotype i in environment j. 

PC1 and PC2 eigenvectors cannot be plotted directly to construct a 

meaningful biplot before the singular values are partitioned into the genotype and 

environment eigenvectors. Singular-value partitioning is implemented by, 

   gi1 = 1
f1
i1 and eij = 1

1-f1
1j   [2] 

Where f1 is the partition factor for PC1, Theoretically f1 can be a value 

between 0 and 1, but 0.5 is most commonly used. 

To generate the GGE biplot, the formulae [1] was presented as: 

  ij - µ- βj = gi1e1j+gi2e2j + ij   [3] 

If the data was environment-standardized, the common formula for GGE 

biplot was reorganized as follows: 

ij - µ- βj/sj =  gi1e1j + ij    [4] 

Where, sj  is the standard deviation in environment j, l =1, 2,…,k, gi1 and e1j 

are PC1 scores for genotype i and environment j, respectively. 

 We used environment standardized model [4] to generate biplot of “which-

won where”. For the analysis of relationship between the trials, genotype and 

environment evaluation, we used unstandardized model [3]. The analyses were 

conducted and biplot generated using the “GGE biplot” software (Yan and Tinker, 

2005). 
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CHAPTER IV 
RESULTS 

 The present investigation entitled, “Stability of maintenance of male 

sterility and fertility restoration in pigeonpea under different environments” was 

conducted during kharif 2012 using 10 hybrids and two standard checks. The 

stability of fertility restoration was studied over three locations, while the stability 

of expression of male sterility was studied with nine CMS lines in different dates 

of sowing at ICRISAT. All the hybrids and checks were obtained from Pigeonpea 

Breeding Programme, ICRISAT, Patancheru while five out of nine CMS lines 

were obtained from ICRISAT and the other four CMS lines were obtained from 

University of Agriculture Science, Bangalore, Karnataka. The results obtained 

from the present investigations are presented as under.  

4.1 Study on stability of CMS-based hybrids for fertility restoration. 

4.1.1 Analysis of variance 

The mean performance of genotypes (hybrids and checks) for each of the 

characters studied was analyzed statistically and the genotypic differences were 

found to be highly significant (P<0.01) for all the characters except for plant stand 

at each of three locations (Table 4.1). The mean genotypic values from different 

locations were subjected to pooled analysis. The result of pooled analysis of 

variance also revealed that genotypic differences were highly significant (P<0.01) 

for all traits except for plant stand. From pooled analysis of variance, it was 

observed that the individual environment effect was highly significant for all 

characters except partial male sterile plants (%), whereas the significant 

genotypic difference were found for all characters except plant stand. All 

characters except partial male sterile plants (%) and plant stand were found 

significant for G × E interaction when tested against pooled error (Table 4.2). The 

characters which had non-significant G × E interaction were not further analyzed 

for stability. 
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Table 4.1 Mean sum of squares for pollen fertility (%) and other characters of 

hybrids at three different locations. 

*, ** = Significant at P≤ 0.05 and P≤ 0.01, respectively 

 

 
 
 
Table 4.2 Analysis of variance over the location (F values) 

*, ** = Significant at P≤ 0.05 and P≤ 0.01, respectively 

 

 

 

Traits 
PATANCHERU RANCHI SEHORE 

Genotype Error Genotype Error Genotype Error 

Degree of freedom 11 11 11 11 11 11 

Pollen fertility (%) 0.157** 0.002 0.115** 0.003 0.098** 0.002 

Fully male fertile plants (%) 0.315** 0.007 0.279** 0.000 0.309** 0.002 

Partial male fertile plants (%) 4.094** 0.188 3.035** 0.185 4.991** 0.049 

Partial male sterile plants (%) 2.905** 0.446 3.821** 0.321 3.457** 0.208 

Complete male sterile plants (%) 4.569** 0.040 1.858** 0.073 1.764** 0.290 

Plant stand    2.405 2.678 0.985 1.303 2.223 1.405 

Source of 

variation 
df 

Pollen 

fertility 

(%) 

Fully 

fertile 

plants 

(%) 

Partial 

fertile 

plants 

(%) 

Partial 

sterile 

plants 

(%) 

Complete 

sterile 

plants 

(%) 

Plant 
stand 

Replication 3 1.72 2.65 2.36 1.75 0.58 0.73 

Genotype 11 145.61** 279.54** 74.75** 30.24** 53.76** 1.28 

Environment 2 12.16** 47.13** 15.74** 1.12 18.59** 79.62** 

Genotype  × 

Environment 
22 2.87* 14.67** 5.61** 0.56 6.34** 1.03 
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4.1.2. Mean performance of hybrids 

 The location-wise as well as pooled per se performance of hybrids and 

controls for pollen fertility (%) and other characters are given in Table 4.3 to 4.6. 

These were compared by using respective standard error of mean and coefficient 

of variation. The results related to individual characters are given below. 

4.1.2.1 Pollen fertility (%) 

 Pollen fertility (%) is an important character to evaluate the restoration of 

fertility and amount of viable pollens produced by particular hybrid which is a 

basic need for the successful production of high yielding CMS-based hybrids of 

pigeonpea. At Patancheru, the variability for pollen fertility ranged from 48.2 to 

98.4 %. Among the hybrids, ICPH 2740 recorded maximum pollen fertility (96.5 

%) followed by ICPH 3933 (93.6 %) and ICPH 2671 (93.4 %), whereas the 

minimum pollen fertility was recorded in ICPH 3491 (48.2 %) followed by ICPH 

3494 (55.1 %) (Table 4.3). At Ranchi, the variability for pollen fertility ranged from 

58.0 to 98.5 %. Among the hybrids, ICPH 2671 (96.2 %) exhibited highest pollen 

fertility followed by ICPH 2740 (95.7 %) and ICPH 2751 (94.3 %). These values 

matched well with checks Asha (96.5 %) and Maruti (98.5 %). The minimum 

pollen fertility was recorded in ICPH 3494 (58.0 %) followed by ICPH 3491 (64.0 

%) (Table 4.4). At Sehore, the variability for pollen fertility ranged from 62.1 to 

98.1 %. Among hybrids, the maximum pollen fertility was recorded in ICPH 2671 

(95.9 %) followed by ICPH 2740 (95.4 %) and ICPH 2751 (92.6 %). The hybrid 

ICPH 3494 (62.1 %) was recorded as minimum pollen fertility followed by ICPH 

3491 (67.2 %). The checks Maruti (98.1 %) and Asha (97.6 %) recorded high 

pollen fertility at this location (Table 4.5). The pooled analysis over the locations 

showed that, the variability for pollen fertility in different hybrids ranged from 58.5 

to 98.3 % across the locations. Among hybrids the maximum pollen fertility was 

recorded in ICPH 2740 (95.9 %) followed by ICPH 2671 (95.3 %) and ICPH 2751 

(91.4 %). The minimum pollen fertility was recorded in ICPH 3494 (58.5%) 

followed by ICPH 3491 (60.1 %). Meanwhile all the hybrids except ICPH 3491 

and ICPH 3494 recorded high pollen fertility across the locations indicating their 

fertility restoration was better over the locations (Table 4.6). 
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Table 4.3 Per se performance of CMS-based pigeonpea hybrids for pollen 

fertility (%) and other characters at Patancheru. 

  

 

 

 

 

 

 

Genotypes 

Pollen 

fertility 

(%) 

Fully 

fertile 

plants (%) 

Partial 

fertile 

plants (%) 

Partial 

sterile 

plants (%) 

Complete 

sterile 

plants (%) 

Plant 

stand 

ICPH 2671 93.4 100.0 0.0 0.0 0.0 24 

ICPH 2740 96.5 100.0 0.0 0.0 0.0 24 

ICPH 3933 93.6 100.0 0.0 0.0 0.0 24 

ICPH 2751 86.4 89.5 8.5 1.6 0.0 24 

ICPH 3477 83.0 85.5 6.1 1.6 6.1 24 

ICPH 3461 90.0 98.9 1.6 0.0 0.0 24 

ICPH 3762 83.4 80.2 15.6 3.3 0.0 23 

ICPH 4490 81.1 83.6 12.2 4.2 0.0 24 

ICPH 3491 48.2 46.8 14.8 17.0 21.3 24 

ICPH 3494 55.1 56.3 12.5 12.5 18.7 24 

Check       

Asha 97.7 100.0 0.0 0.0 0.0 22 

Maruti 98.4 100.0 0.0 0.0 0.0 21 

Mean 86.87 93.11 4.06 2.00 1.74 23.29 

SEm± 0.03 0.05 0.30 0.47 0.14 1.15 

LSD at 5% 0.10 0.18 0.95 1.47 0.44 3.60 

CV (%) 4.14 6.90 20.31 42.17 13.42 7.02 
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Table 4.4 Per se performance of CMS-based pigeonpea hybrids for pollen 

fertility (%) and other characters at Ranchi. 

Genotypes 

Pollen 

fertility  

(%) 

Fully 

fertile 

plants (%) 

Partial 

fertile 

plants (%) 

Partial 

sterile 

plants (%) 

Complete 

sterile 

plants (%) 

Plant 

stand 

ICPH 2671 96.2 100.0 0.0 0.0 0.0 24 

ICPH 2740 95.7 100.0 0.0 0.0 0.0 24 

ICPH 3933 90.0 100.0 0.0 0.0 0.0 24 

ICPH 2751 94.3 100.0 0.0 0.0 0.0 24 

ICPH 3477 92.9 100.0 0.0 0.0 0.0 24 

ICPH 3461 92.2 100.0 0.0 0.0 0.0 24 

ICPH 3762 85.9 100.0 1.6 1.6 0.0 24 

ICPH 4490 86.1 86.3 8.4 3.4 0.0 22 

ICPH 3491 64.0 64.6 10.3 18.7 6.1 24 

ICPH 3494 58.0 53.6 15.6 17.4 12.9 23 

Check       

Asha 96.5 100.0 0.0 0.0 0.0 23 

Maruti 98.5 100.0 0.0 0.0 0.0 24 

Mean 89.76 97.87 1.59 1.67 0.72 23.58 

SEm± 0.04 0.01 0.30 0.40 0.19 0.80 

LSD at 5 % 0.12 0.05 0.95 1.25 0.60 2.51 

CV (%) 5.08 1.53 29.71 38.48 24.43 4.48 
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Table 4.5 Per se performance of CMS-based pigeonpea hybrids for pollen 

fertility (%) and other characters at Sehore. 

Genotypes 

Pollen 

fertility  

(%) 

Fully 

fertile 

plants (%) 

Partial 

fertile 

plants (%) 

Partial 

sterile 

plants (%) 

Complete 

sterile 

plants (%) 

Plant 

stand 

ICPH 2671 95.9 100.0 0.0 0.0 0.0 21 

ICPH 2740 95.4 100.0 0.0 0.0 0.0 20 

ICPH 3933 89.8 100.0 0.0 0.0 0.0 20 

ICPH 2751 92.6 100.0 0.0 0.0 0.0 19 

ICPH 3477 90.7 100.0 0.0 0.0 0.0 20 

ICPH 3461 90.6 100.0 0.0 0.0 0.0 19 

ICPH 3762 84.6 92.5 5.1 1.8 0.0 20 

ICPH 4490 86.2 93.2 6.8 0.0 0.0 22 

ICPH 3491 67.2 52.8 23.7 18.3 3.4 19 

ICPH 3494 62.1 51.0 19.6 14.5 14.1 21 

Check       

Asha 97.6 100.0 0.0 0.0 0.0 18 

Maruti 98.1 100.0 0.0 0.0 0.0 19 

Mean 89.48 97.14 2.31 1.29 0.65 19.54 

SEm± 0.03 0.02 0.15 0.32 0.38 0.83 

LSD at 5 % 0.10 0.09 0.49 1.00 1.19 2.61 

CV (%) 4.26 3.01 13.25 33.96 50.22 6.06 
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Table 4.6 Pooled performances of CMS-based pigeonpea hybrids for pollen 

fertility (%) and other characters, over the locations. 

Genotypes 

Pollen 

fertility  

(%) 

Fully 

fertile 

plants (%) 

Partial 

fertile 

plants (%) 

Partial 

sterile 

plants (%) 

Complete 

sterile 

plants (%) 

Plant 

stand 

ICPH 2671 95.3 100.0 0.0 0.0 0.0 23 

ICPH 2740 95.9 100.0 0.0 0.0 0.0 23 

ICPH 3933 91.2 100.0 0.0 0.0 0.0 23 

ICPH 2751 91.4 98.7 1.7 0.4 0.0 22 

ICPH 3477 89.2 98.2 1.3 0.4 1.3 23 

ICPH 3461 91.0 99.8 0.4 0.0 0.0 22 

ICPH 3762 84.6 94.1 6.3 2.2 0.0 22 

ICPH 4490 84.5 88.1 9.0 2.1 0.0 23 

ICPH 3491 60.1 55.0 15.8 18.0 8.9 22 

ICPH 3494 58.5 53.6 15.8 14.7 15.1 22 

Check 
      

Asha 97.3 100.0 0.0 0.0 0.0 21 

Maruti 98.3 100.0 0.0 0.0 0.0 21 

Mean 88.74 96.29 2.58 1.65 1.00 22.14 

SEm± 0.02 0.02 0.15 0.23 0.15 0.55 

CV (%) 4.54 4.20 21.40 38.89 29.92 6.05 
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4.1.2.2 Fully male fertile plants (%) 

 In pigeonpea, maximum proportion of fully male fertile plants is a desirable 

character for CMS-based hybrids. At Patancheru, the fully male fertile plants in 

different hybrids ranged from 46.8 to100 %. Among the hybrids ICPH 2671, ICPH 

2740, and ICPH 3933 recorded 100 % fully male fertile plants followed by ICPH 

3461 (98.9 %) and ICPH 2751 (89.5 %). The minimum proportion of fully male 

fertile plants was observed in ICPH 3491 (46.8 %) followed by ICPH 3494 (56.3 

%) (Table 4.3). At Ranchi, the variability for fully male fertile plants within hybrids 

ranged from 53.6 to 100 %. The maximum (100 %) proportion of fully male fertile 

plants was observed in all the hybrids except ICPH 4490 (86.3 %), ICPH 3491 

(64.6 %) and ICPH 3494 (53.6 %); whereas all other hybrids produced similar 

proportion of fully male fertile plants compared to both the checks Asha and 

Maruti (100 %) (Table 4.4). At Sehore, the fully male fertile plants ranged from 51 

to 100 %. Among the hybrids ICPH 2671, ICPH 2740, ICPH 3933, ICPH 2751, 

ICPH 3477 and ICPH 3461 recorded 100 % fully male fertile plants followed by 

ICPH 4490 (93.2 %) and ICPH 3762 (92.6 %). The minimum proportion of fully 

male fertile plants was observed in ICPH 3494 (51.0 %) followed by ICPH 3491 

(52.8 %) (Table 4.5). The pooled analysis showed that, the performance of 

hybrids for fully male fertile plants over the locations ranged between 53.7 to 100 

%. Among the hybrids 100 % fully male fertile plants were recorded in ICPH 

2671, ICPH 2740 and ICPH 3933 followed by ICPH 3461 (99.9 %) and ICPH 

2751 (98.7 %) whereas, the minimum number of fully male fertile plants over the 

locations were recorded in ICPH 3494 (53.7 %) followed by ICPH 3491 (54.9 %). 

All the hybrids except ICPH 3494 and ICPH 3491 recorded high proportion of fully 

male fertile plants across the locations (Table 4.6). 

4.1.2.3 Partial male fertile plants (%) 

 In CMS-based hybrids the restoration of fertility and its expression is 

depends on the genetic purity and restoration ability of the restorers. Therefore, to 

evaluate the proportion of partial male fertile plants in different hybrids is 

important to check either the restoration of fertility and its expression on different 

locations are good and stable or not. The absence of partial male fertile plants is 
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a desirable character for CMS-based hybrids. At Patancheru, the variability 

among hybrids for proportion of partial male fertile plants ranged from 0 to 15.9 

%. The highest number of partial male fertile plants were recorded in ICPH 3762 

(15.6 %) followed by ICPH 3491 (14.8 %) and ICPH 3494 (12.5%) while there 

were no partial male fertile plants in ICPH 2671, ICPH 2740 and ICPH 3933 

which was similar to both the checks Asha and Maruti (Table 4.3). At Ranchi, the 

performance of hybrids for partial male fertile plants varied from 0 to 15.6 %. The 

highest number of partial male fertile plants recorded in ICPH 3494 (15.6 %) 

followed by ICPH 3491 (10.3 %) and ICPH 4490 (8.4 %); while there were no 

partial male fertile plants in hybrids ICPH 2671, ICPH 2740, ICPH 3933, ICPH 

2751, ICPH 3477, ICPH 3461 and ICPH 3762. All these hybrids performed similar 

to both the checks for this character (Table 4.4). At Sehore, the partial male fertile 

plants ranged from 0 to 23.7 %. The maximum number of partial fertile plants 

were recorded in ICPH 3491 (23.7 %) followed by ICPH 3494 (19.6 %) and ICPH 

4490 (6.8 %); while there were no partial male fertile plants in hybrids ICPH 2671, 

ICPH 2740, ICPH 3933, ICPH 2751, ICPH 3477 and ICPH 3461 (Table 4.5). The 

pooled analysis showed that, the partial male fertile plants ranged from 0 to 15.9 

% across the locations and the highest number of partial male fertile plants were 

recorded in ICPH 3491 (15.9 %) followed by ICPH 3494 (15.8 %) and ICPH 4490 

(9.0 %); while there were no partial male fertile plants in hybrids ICPH 2671, 

ICPH 2740 and ICPH 3933. Meanwhile all the hybrids except ICPH 3494, ICPH 

3491 and ICPH 4490 were recorded non-significant proportion of partial male 

fertile plants indicating the restoration of fertility and its expression over the 

locations was better in these hybrids (Table 4.6). 

4.1.2.4 Partial male sterile plants (%) 

 The absence of partial male sterile plants is also a desirable character for 

CMS-based hybrids in pigeonpea. At Patancheru, the partial male sterile plants 

produced by different hybrids ranged from 0 to 17.0 %. The maximum number of 

partial male sterile plants were recorded in ICPH 3491 (17.0 %) followed by ICPH 

3494 (12.5 %) and ICPH 4490 (4.2 %) while there were no partial male sterile 

plants in hybrids ICPH 2671, ICPH 2740, ICPH 3933 and ICPH 3461 (Table 4.3). 
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At Ranchi, the variability for partial male sterile plants recorded in hybrids ranged 

from 0 to 18.7 %. The maximum number of partial male sterile plants were 

recorded in ICPH 3491 (18.7 %) followed by ICPH 3494 (17.4 %) and ICPH 4490 

(3.4 %); while there were no partial male sterile plants in ICPH 2671, ICPH 2740, 

ICPH 3933, ICPH 2751, ICPH 3477 and ICPH 3461 which is similar to both the 

checks Asha and Maruti (Table 4.4). At Sehore, The highest number of partial 

male sterile plants were recorded in ICPH 3491 (18.3 %) followed by ICPH 3494 

(14.5 %) and ICPH 3762 (1.8 %); while there were no partial male sterile plants in 

remaining all hybrids (Table 4.5). The pooled analysis revealed that, the variability 

for partial male sterile plants ranged from 0 to 18.0 %. The maximum number of 

partial male sterile plants were recorded in ICPH 3491 (18.0 %) followed by ICPH 

3494 (14.7 %) and ICPH 3762 (2.2 %); while there were no partial male sterile 

plants in hybrids ICPH 2671, ICPH 2740, ICPH 3933 and ICPH 3461 which was 

similar to both the checks Asha and Maruti (Table 4.6). 

4.1.2.5 Complete male sterile plants (%) 

 Fertility restoration and its expression are main requisites for development 

of hybrids based on cytoplasmic male sterility system. Therefore to check the 

fertility restoration and its stability over the environment it is important to evaluate 

the hybrids and their progenies either being fertile or sterile. Absence of complete 

male sterile plants is a desirable character for CMS-based hybrids. At 

Patancheru, the variability for complete male sterile plants in hybrids ranged from 

0 to 21.3 %. The highest number of complete male sterile plants were recorded in 

ICPH 3491 (21.3 %) followed by ICPH 3494 (18.7 %) and ICPH 3477 (6.1 %); 

while there were no complete male sterile plants in other hybrids (Table 4.3). 

Similarly, at Ranchi the complete male sterile plants ranged from 0 to 12.9 % and 

maximum number of complete male sterile plants were recorded in ICPH 3494 

(12.9 %) followed by ICPH 3491 (6.1 %) (Table 4.4). At Sehore, the variability for 

complete sterile plants recorded in different hybrids ranged from 0 to 14.1 %. The 

highest number of complete male sterile plants were recorded in ICPH 3494 (14.1 

%) followed by ICPH 3491 (3.4 %); while there were no complete male sterile 

plants in other tested hybrids (Table 4.5). The pooled analysis showed that, the 
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complete male sterile plants in hybrids ranged between 0 to 15.1 %. The 

maximum number of complete male sterile plants were recorded in ICPH 3494 

(15.1 %) followed by ICPH 3491 (8.9 %) and ICPH 3477 (1.3%); while there were 

no complete male sterile plants in all other hybrids indicating their better fertility 

restoration (Table 4.6). 

4.1.2.6 Number of plants per plot  

 Plant stand is not very important character from breeding point of view but 

it provides valuable information about number of plants present in net plot area at 

the time of observations recorded. It also provides information related to number 

of plants survived till the harvesting. In present investigation the plant stand of 

individual genotype was recorded at the time of observing pollen fertility. At 

Patancheru, the plant stand of different hybrids ranged from 21 – 24. All the 

hybrids except ICPH 3762 (23) had maximum plant stand (24) with superiority 

over both the checks. The minimum plant stand was observed in Maruti (21) 

followed by Asha (22). All the hybrids were superior over both the checks for plant 

stand (Table 4.3). At Ranchi, the plant stand ranged from 22 to 24 and the 

maximum (24) plant stand was recorded in all hybrids except ICPH 2751, ICPH 

4490, and ICPH 3494. The minimum plant stand was observed in ICPH 4490 (22) 

followed by ICPH 3494 (23) (Table 4.4). At Sehore, the highest plant stand was 

observed in ICPH 4490 (22) followed by ICPH 2671 (21) and ICPH 3494 (21). 

The minimum plant stand was observed in Asha (18) followed by Maruti (19). All 

the hybrids had superiority over both the checks for plant stand (Table 4.5). The 

pooled analysis showed that, the plant stand ranged from 21 to 23. The highest 

(23) plant stand was recorded in ICPH 2671, ICPH 2740 and ICPH 3933 followed 

by ICPH 3477 and ICPH 4490 (23) whereas both the checks Asha and Maruti 

(21) recorded as minimum plants stand. All the hybrids were superior to both the 

checks for plant stand across the locations (Table 4.6). 
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Fig. 4.1 The graph showing pollen fertility status of different CMS-based   

hybrids of pigeonpea at three different locations. 
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4.1.3 Stability analysis of hybrids by Eberhart and Russell’s (1966) model of 

stability. 

 Development of a stable variety is one of the major objectives of all 

breeding programmes. Phenotypically stable varieties are usefully sought for 

commercial production of crop plants. In any breeding programme, it is necessary 

to screen and identify phenotypically stable genotypes, which could perform more 

or less uniformly under different environmental conditions. Several models have 

been proposed for stability analysis. According to Eberhart and Russell‟s (1966) 

model, a stable variety is one, which has above average mean yield, a regression 

coefficient of unity (bi=1) and non-significant mean square deviations from 

regression (S2di=0). The high value of regression (bi>1) indicates that the variety 

is more responsive for input rich environment, while, low value of regression 

(bi<1) is an indication that the variety may be adopted in poor environment. 

 The stability analysis may be more meaningful when the material is tested 

under various environments. In the present study, a set of 10 hybrids with two 

checks were evaluated at three locations i.e. Patancheru, Ranchi and Sehore 

during kharif 2012. The performance of different genotypes in respect to various 

characters i.e. pollen fertility (%), fully male fertile plants (%), partial male fertile 

plants (%), partial male sterile plants (%) and complete male sterile plants (%) 

were studied for estimating stability and significance of genotype × environment 

interactions. 

4.1.3.1 Analysis of variance 

The pooled analysis of variance provides an estimate of genotype × 

environment interaction, which measures changes in rank and magnitude of 

fluctuations about the mean of different environments. The mean sum of squares 

due to genotypes were highly significant (P<0.01) for all the characters except for 

plant stand while the individual environment effect was significant for all 

characters except partial male sterile plants (%). The mean sums of squares due 

to genotype × environment interaction were significant for all the characters 

except partial male sterile plants (%) and plant stand. Thus, stability analysis was 
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carried out for all the traits except partial male sterile plants (%) and plant stand 

(Table 4.2). 

 Analysis of variance for stability (Table 4.7) revealed the existence of 

substantial variability among the genotypes for pollen fertility (%), fully male fertile 

plants (%), partial male fertile plants (%) and complete male sterile plants (%) 

showed that genotypic differences were highly significant for these characters. 

Significance of genotype × environmental interaction was found for all characters 

revealed that genotypes interacted significantly with environments (location). The 

partitioning of interaction showed that both the linear components of interaction 

(environment and genotype × environment linear) were highly significant. The 

phenotypic stability of genotypes was estimated by mean performance over the 

locations, regression coefficient (bi) and deviation from regression (S2di). 

 

Table 4.7 Analysis of variance (mean sum of square) for phenotypic stability for 

pollen fertility (%) and other characters of pigeonpea hybrids. 

Source df 
Pollen 

fertility (%) 

Fully fertile 

plants (%) 

Partial 

fertile 

plants (%) 

Complete 

sterile 

plants (%) 

Genotype 11 0.179** 329.892** 5.264** 51.451** 

Environment+ (Genotype 

× Environments) 
24 0.004** 709.381** 0.488* 17.130** 

Environment (Linear) 1 0.028** 15837.392** 2.950** 282.245** 

Genotype × Environment 

(Linear) 
11 0.006** 103.689** 0.582** 19.917** 

Pooled deviation 12 0.001 3.932** 0.196 0.816 

Pooled error 33 0.001 0.500 0.070 0.500 

*, ** Significant at P≤ 0.05 and P≤ 0.01, respectively 
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4.1.3.2 Stability for individual characters  

 Analysis of stability of hybrids indicated that the differences in regression 

coefficient were found significant for most of the genotypes for all the characters. 

All the hybrids assessed with checks for their stability based on mean 

performance, regression coefficient (bi) and deviation from regression line (S2di) 

for each character are presented in Table 4.8. 

4.1.3.2.1 Pollen fertility (%) 

All the hybrids recorded non-significant mean square deviation from 

regression (S2di=0) for pollen fertility (%) indicating that the hybrids did not 

deviate across the locations for pollen fertility. The linear regression was 

observed non-significant (bi=1) for five hybrids. Among the hybrids, ICPH 2671 

and ICPH 3461 were highly stable with high mean, non-significant regression 

coefficient (bi=1) and zero deviation from regression. Other two hybrids, ICPH 

2740 and ICPH 3933 exhibited high mean pollen fertility with significant 

regression coefficient less than unity (bi<1) and non-significant deviation from 

regression (S2di=0) indicating their above average stability and these hybrids can 

also perform in poor environmental conditions. All over, six hybrids performed 

above average mean while the other four were below the average mean (Table 

4.8). The greater value of regression coefficient (bi>1) with non-significant mean 

square deviation from regression (S2di=0) was observed in two hybrids ICPH 

2751 and ICPH 3477 indicating that these hybrids showed positive interaction 

with favorable environment. Across the locations, the stable hybrids for pollen 

fertility were ICPH 2671 (mean=95.27, bi= 1.422, S2di= 0.000), ICPH 3461 

(mean=90.98, bi=0.630, S2di=0.001), ICPH 2740 (mean= 95.87, bi= -0.532, S2di= 

0.000) and ICPH 3933 (mean=91.23, bi= -1.591, S2di= 0.000). All other hybrids 

were unstable with either greater regression coefficient (bi>1) or below mean 

pollen fertility (Table 4.8).  
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Table 4.8 Estimates of stability parameters for pollen fertility (%) and other characters of CMS-based pigeonpea 

hybrids evaluated during 2012 rainy season 

Genotypes 

Pollen fertility (%) 
Fully male fertile plants 

(%) 

Partial male fertile 

plants (%) 

Complete male sterile 

plants (%) 

Mean bi (bi=1) 
S2di 

(S2di=0) 
Mean 

bi 

(bi=1) 

S2di 

(S²di=0) 
Mean 

bi 

(bi=1) 

S²di 

(S²di=0) 
Mean 

bi 

(bi=1) 

S²di  

(S²di=0) 

ICPH 2671 95.27 1.422 0.000 100.00 1.102 0.174 0.00 0.000 0.000 0.00 0.391* 0.133 

ICPH 2740 95.87 -0.532* 0.000 100.00 1.102 0.174 0.00 0.000 0.000 0.00 0.391* 0.133 

ICPH 3933 91.23 -1.591** 0.000 100.00 1.102 0.174 0.00 0.000 0.000 0.00 0.391* 0.133 

ICPH 2751 91.39 2.856** 0.000 98.73 1.198** 5.698** 1.67 3.570* 0.378* 0.00 0.391* 0.133 

ICPH 3477 89.22 3.192** 0.001 98.25 1.215** 8.399** 1.26 2.892 0.248 1.26 2.183** 6.315** 

ICPH 3461 90.98 0.630 0.001 99.85 1.131* 0.203 0.40 1.130 0.038 0.00 0.391* 0.133 

ICPH 3762 84.62 0.602 0.000 94.08 1.268** 17.253** 6.29 3.722** 0.004 0.00 0.391* 0.133 

ICPH 4490 84.52 1.567 0.000 88.06 0.731** 10.62** 8.96 0.993 0.145 0.00 0.391* 0.133 

ICPH 3491 60.11 3.543** 0.002 54.95 0.553** 3.21* 15.85 0.472 1.303** 8.92 3.627** 1.904 

ICPH 3494 58.45 0.953 0.002 53.65 0.395** 0.929 15.77 -0.780 0.236 15.12 2.67** 0.369 

Asha 97.29 -0.571** 0.001 100.00 1.102 0.174 0.00 0.000 0.000 0.00 0.391* 0.133 

Maruti 98.31 -0.071 0.000 100.00 1.102 0.174 0.00 0.000 0.000 0.00 0.391* 0.133 

Mean 88.74 1.00 - 96.29 1.00 - 2.58 1.00 - 1.00 1.00 - 

SEm± 0.02 0.50 - 1.40 0.05 - 0.31 0.89 - 0.64 0.23 - 

Where, bi= Regression coefficient and S2di = Deviation from regression 
 
*, ** Significant at P≤ 0.05 and P≤ 0.01, respectively
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4.1.3.2.2 Fully male fertile plants (%) 

 The main requisite for successful development of high yielding CMS-based 

hybrids is to evaluate their stability for fertility restoration under varying 

environmental conditions. The proportion of fully male fertile plants in different 

hybrids is an indicator of fertility restoration. The values of linear regression were 

non-significant (bi=1) for three hybrids while, the non-significant deviations from 

regression line (S2di=0) were observed in five hybrids. The most stable hybrids 

for fully male fertile plants were ICPH 2671, ICPH 2740 and ICPH 3933 

(mean=100, bi=1.102, S2di=0.174) with similarly high mean, non-significant 

regression coefficient (bi=1) and non-significant deviation from regression 

(S2di=0). One another hybrid ICPH 3461 (mean= 99.85, bi= 1.131, S2di= 0.203) 

exhibited high mean with regression coefficient close to unity and non-significant 

deviation from regression line indicating that it was also stable over the locations. 

The hybrids ICPH 2751 (mean= 98.7, bi= 1.198, S2di= 5.698) and ICPH 3477 

(mean= 98.25, bi= 1.215, S2di= 8.399) recorded greater performance to average 

mean with significantly greater regression coefficient (bi>1) and significant 

deviation from regression line (S2di>0) showed that these hybrids deviated for 

proportion of fully male fertile plants which indicating their instability for fully male 

fertile plants. Likewise, hybrids ICPH 3762 (mean= 94.08, bi=1.268, S2di= 

17.253) and ICPH 4490 (mean= 88.06, bi=0.731, S2di= 10.62) performed below 

average mean with significant deviation from regression line (S2di>0) indicating 

these hybrids were also unstable for proportion of fully male fertile plants (%). 

Another two hybrids ICPH 3494 (mean= 53.65, bi=0.395, S2di= 0.929) and ICPH 

3491 (mean= 54.91, bi=0.553, S2di= 3.210) recorded lowest mean with significant 

regression coefficient (bi<1) and deviation from regression line (S2di>0) showed 

that these hybrids were also unstable with poor fertility restoration (Table 4.8). 

4.1.3.2.3 Partial male fertile plants (%) 

 In pigeonpea, low mean performance and below average linear response 

are desirable for number of partial male fertile plants because higher number of 

partial male fertile plants indicate that the restoration of fertility in hybrid is not 

considerably good and stable. All the hybrids except ICPH 3491 and ICPH 2751 
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observed non-significant deviation from regression (S2di=0) while the values of 

regression coefficient were found to be significant for ICPH 2751 and ICPH 3762 

among all the hybrids. Six out of 10 hybrids recorded below the average mean, 

three of them (ICPH 2671, ICPH 2740 and ICPH 3933) had no partial male fertile 

plants across the locations with non-significant regression coefficient and 

deviation from regression (S2di=0) showed that these hybrids were highly stable 

over the locations. Other two hybrids ICPH 3461 (mean=0.04 %, bi=1.130 and 

S2di=0.038) and ICPH 3477 (mean=1.26 %, bi=2.892 and S2di=0.248) performed 

below the average mean with non-significant regression coefficient and deviation 

from regression line indicating these hybrids were also good and stable for partial 

male fertile plants (%). The higher value of regression indicated that these hybrids 

would perform better under favorable conditions. Four hybrids were observed 

above average mean for partial male fertile plants which is undesirable for CMS-

based hybrids. The hybrid ICPH 3491 (mean=15.85 %, bi=0.472 and S2di= 1.303) 

had highest mean with significant deviation from regression (S2di>0) while ICPH 

3494 (mean=15.77 %, bi= -0.780 and S2di=0.236) recorded high mean with non-

significant deviation from regression (S2di=0) indicating that these two hybrids 

performed poor and unstable across the location. Five out of 10 hybrids were 

stable for partial male fertile plants with below mean performance, non-significant 

regression coefficient and deviation from regression (Table 4.8). 

4.1.3.2.4 Complete male sterile plants (%) 

 Seven out of 10 hybrids had no complete male sterile plants with 

significant regression coefficient less than unity (bi<1) and non-significant mean 

square deviation (S2di=0) indicating their above average stability for complete 

male sterile plants across the locations. Other three hybrids recorded high mean 

for complete male sterile plants as compared to average mean with significant 

regression coefficient greater than unity (bi>1) showed that these hybrids were 

unstable and more responsive in favorable environments. Two hybrids ICPH 

3494 (mean=15.12 %, bi=2.670 and S2di=0.369) and ICPH 3491 (mean=8.92 %, 

bi=3.627 and S2di=1.904) observed higher proportion of complete male sterile 

plants with significantly greater regression coefficient  (bi>1) indicating these 
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hybrids had poor fertility restoration and unstable for complete male sterile plants 

while ICPH 3477 (mean= 1.26 %, bi= 2.183 and S2di= 6.315) recorded above 

average mean with significant regression coefficient (bi>1) and significantly 

greater deviation from regression (S2di>0) indicating it was also unstable for 

complete male sterile plants (Table 4.8). 

4.1.4 Stability analysis by GGE Biplot method (Yan et al., 2000) 

 A phenotype is a result of genotype (G) and environment (E) components 

and the interactions (G × E) between them. Genotype × Environmental interaction 

complicates the process of selecting genotypes with superior performance. 

Consequently, METs (multi-environment trials) are widely used by plant breeders 

to evaluate the relative performance of genotypes for target environments (Delacy 

et al., 1996). Numerous methods have been proposed to reveal patterns of G × E 

interaction, such as joint regression (Finlay and Wilkinson, 1963; Eberhart and 

Russell, 1966; Perkins and Jinks, 1968), additive main effects and multiplicative 

interaction (AMMI, Gauch, 1992). These methods are commonly used to analyze 

METs data and have also been applied on G × E interaction. 

 GGE biplot analysis was recently developed to use some of the functions 

of these methods jointly. In total phenotypic variation, “E” explains most of the 

variation and “G” and “GE” are usually small (Yan, 2002). However, only the “G” 

and “G×E” interaction are relevant to cultivar evaluation particularly when G×E 

interaction is identified as repeatable (Hammer and cooper 1996). Hence, Yan et 

al. (2000) deliberately put two together and referred to the mixture as GGE. 

Following the proposal of Gabriel (1971), the biplot technique was used to display 

the GGE of a METs data, referred to as a GGE biplot (Yan, 2001; Yan et al., 

2000). 

 The data from multi environment trials are usually large, and their graphical 

presentation helps to understand the pattern involved in particular data set. The 

GGE biplot allows visual examination of the GE interaction pattern of multi 

environment trials data. To construct a meaningful biplot, PC1 and PC2 

eigenvectors were plotted after partitioning of singular values into the genotype 
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and environment eigenvectors. Theoretically, the partitioning factors can take any 

value between 0 and 1. However, for this analysis, a value of 0.5 was used to 

give equal importance to both, the genotypes as well as environments. 

 The mean sum of square due to genotypes was highly significant for all the 

characters except for plant stand. The mean sum of squares due to genotype by 

environment interaction was significant for all the characters except partial sterile 

plants (%) and plant stand. Only those characters were analyzed for stability by 

GGE biplot which showed significant genotype × environmental interaction. The 

details of genotype code, name, parentage and source of 10 pigeonpea hybrids 

and two varietal checks used in present investigation are given below (Table 4.9) 

 

Table: 4.9 Details of genotype code, name, parentage and source of 12 

pigeonpea genotypes: 

Genotype 
code 

Genotype 
name 

Parentage 
Type of 

genotype 
Source 

1 ICPH 2671 ICPA 2043 × ICPL 87119 Hybrid ICRISAT 

2 ICPH 2740 ICPA 2047 × ICPL 87119 Hybrid ICRISAT 

3 ICPH 3933 ICPA 2078 × ICPL 87119 Hybrid ICRISAT 

4 ICPH 2751 ICPA 2048 × ICPL 87119 Hybrid ICRISAT 

5 ICPH 3477 ICPA 2047 × ICPL 20098 Hybrid ICRISAT 

6 ICPH 3461 ICPA 2092 × ICPL 87119 Hybrid ICRISAT 

7 ICPH 3762 ICPA 2092 × ICPL 20108 Hybrid ICRISAT 

8 ICPH 4490 ICPA 2047 × ICPL 20126 Hybrid ICRISAT 

9 ICPH 3491 ICPA 2048 × ICPL 20096 Hybrid ICRISAT 

10 ICPH 3494 ICPA 2048 × ICPL 20093 Hybrid ICRISAT 

11  Asha (check) C11 x ICP 1-6W3B Variety ICRISAT 

12  Maruti (check) ICP 8863 Variety ICRISAT 
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4.1.4.1 Pollen fertility (%) 

The biplot analysis, as viewed the environment-vector of hybrids, has been 

shown in Fig 4.2. The results of PCA of GEI (genotype × environment interaction) 

showed that the first two principal components in the biplot explained 98.9 % of 

the total variation in GEI (Cooper and Delacy, 1994). 

(a) Polygon view of GGE biplot analysis of MET data of pollen fertility (%) 
 The polygon view of a biplot is the best way to visualize the interaction 

patterns between genotypes and environments (Yan and Kang, 2003) to show 

the presence or absence of cross over GE interaction which is helpful in 

estimating the possible existence of different mega environments (Gauch and 

Zobel, 1997; Yan and Rajcan, 2002; Yan and Tinker, 2006). Visualization of the 

"which won where" pattern of MET data is necessary for studying the possible 

existence of different mega environments in the target environment (Gauch and 

Zobel, 1997; Yan et al., 2000). Fig. 4.2 represents a polygon view of MET data for 

pollen fertility of different hybrids in this investigation. In this biplot, a polygon was 

formed by connecting the vertex of genotypes with straight lines and the rest of 

the genotypes placed within the polygon. The partitioning of GE interaction 

through GGE biplot analysis showed that PC1 and PC2 accounted for 97.88 and 

2.02 % of GGE sum of squares, respectively, explaining a total of 99.89 % 

variation. The vertex genotypes in this study were 12, 11, 3, 10, 9, 5, and 4. 

These genotypes were the best or the poorest genotypes in some or all of the 

environments because they were farthest from the origin of the biplot (Yan and 

Kang, 2003). From the polygon view of biplot analysis of MET data in three 

locations, the genotypes were scattered in all four sections whereas the test 

environments positioned in two sections. The first section contains the test 

environments Ranchi and Sehore which had the genotype 12 as the winner and 

the second section contains the environments Patancheru with also the genotype 

12 as the best. The vertex genotype 9 and 10 were not the good genotypes for 

pollen fertility in any environment (Fig. 4.2). 
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(b) Mean yield and stability performance of genotypes for pollen fertility 

 The ranking of 10 pigeonpea hybrids and the two standard check cultivars 

based on their mean pollen fertility and stability performance has been shown in 

Fig. 4.2. The genotypes more close to concentric circle indicates higher mean 

yield. The line which passes through the origin and is perpendicular to the AEA 

(Average Environment Axis) represents the stability of genotypes. Either direction 

away from the biplot origin on this axis indicates greater GE interaction and 

reduced stability. The genotypes on the right side of the perpendicular line (Fig. 

4.2) performed greater than mean pollen fertility and the genotypes on the left 

side of this line had pollen fertility less than mean. For selection, the ideal 

genotypes are those with both high mean pollen fertility and high stability. In the 

biplot, they are close to the origin and have the shortest vector length from the 

AEA. The genotypes 12, 11, 1, 6 and 2 were highly stable with both high mean 

pollen fertility and shortest vector length from AEA. The genotypes with lower 

pollen fertility and greater vector length from AEA were 10 and 9 indicating their 

instability for pollen fertility whereas the genotypes with below to average pollen 

fertility and shorter vector length from AEA were 8 and 7 indicating that these 

hybrids were also unstable for pollen fertility across the locations. The genotype 

11 (with relatively high performance) and 8 (with low performance) showed similar 

GE interaction. A breeder can also use Fig. 4.2 for selecting the genotypes with 

the best response to particular environments. For instance the genotype 11, 2 

and 3 had the highest pollen fertility in Patancheru than other two locations and 

the genotype 4 and 5 performed well in Ranchi and Sehore than Patancheru 

showed their specific adaptability in these two environments. 

(c) Evaluation of genotypes for pollen fertility relative to an ideal genotype 

 An ideal genotype should have the highest mean performance and be 

absolutely stable (Yan and Kang, 2003). Such an ideal genotype is defined by 

having the greatest vector length of the high-yielding genotypes and with zero 

GEI (or highest stability), as represented by the concentric circle with an arrow 

pointing to it (Fig. 4.2). An ideal genotype, which is located at the center of the 

concentric circles, is the one that has both high mean performance and high 
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stability. Ideal genotype projection on the AEA X-axis is designed to be equal to 

the longest vector of all the genotypes. The ideal genotype is stable because its 

projection on the AEA Y-axis is near zero. A genotype is more favorable if it is 

closer to the ideal genotype. The genotype 12 was near to concentric circle hence 

it was an ideal genotype. Ranking of other genotypes based on the ideal 

genotype was 11>1>2> 6. In other words, the lower performing genotypes (9 and 

10) were unfavorable because they are far from the ideal genotype (Fig 4.2). The 

relative contributions to the identification of desirable genotype for pollen fertility 

found in this study by the ideal genotype procedure of the GGE biplot are similar 

to those found in other stability studies (Samonte et al., 2005; Fan et al., 2007). 

(d) Relationship among test environments  

 The summary of the interrelationships among the test environments has 

been provided in Fig. 4.2. The lines that connect the biplot origin and the markers 

for the environments are called environment vectors. The angle between the 

vectors of two environments is related to the correlation coefficient between them. 

The cosine of the angle between the vectors of two environments approximates 

the correlation coefficient between them (Kroonenberg, 1995; Yan, 2002). Acute 

angles (<90º) indicate a positive correlation, obtuse angles (<90º) a negative 

correlation and right angles (=90º) indicate no correlation (Yan and Kang, 2003). 

A short vector may indicate that the test environment is not related to other 

environments. Based on the angles between environment vectors, all the three 

environments (Patancheru, Ranchi and Sehore) were positively correlated with 

each other because of acute angles (<900) formed between them.  
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Fig. 4.2 GGE biplot showing the ranking of genotypes for both mean pollen 

fertility and stability performance over the environments. The line 

passing through the biplot origin is called the average environment 

coordinate (AEC). Polygon view of G × E interaction for pollen fertility 

showed that the vertex genotype in each sector is the best genotype at 

environments whose markers fall into the respective sector. 

Environments within the same sector share the same winning genotype, 

and environments in different sectors have different winning genotypes. 

More close to concentric circle indicates higher mean yield. 

 

 

 

 

 

 

 

 



83 
 

4.1.4.2 Fully male fertile plants (%) 

 The biplot analysis, as viewed the environment-vector of hybrids, has been 

shown in Fig 4.3. The results of PCA of GEI (genotype × environment interaction) 

showed that the first two principal components in the biplot explained 99.39 % 

(PC1= 95.89 %, PC2= 3.50 %) of the total variation in GEI (Cooper and Delacy, 

1994). 

(a) Evaluation of genotypes based on GGE biplot 

 The position and perpendicular projection of genotypic points onto an 

environmental vector can be used to identify a genotype or genotypes having 

specific adaptation in that environment (Yan et al., 2000). The genotypes that are 

farther along the positive direction of the vector tend to give higher performance, 

and are better adapted to those environments. The hybrids 1, 2, 3, and 6 had the 

highest and closely similar mean performance with shortest vector length from 

AEA and equal distant with all environments indicating that these hybrids were 

stable for fertility restoration across the locations. Among the hybrids, 7, 5 and 4 

had high mean performance but away from AEA showed that these hybrids were 

unstable but they are near to Ranchi and Sehore indicating their specific 

adaptability to both the environments (Fig. 4.3). The genotype 10 and 9 observed 

performance below mean and had longest distance from the AEA indicating their 

instability and poor fertility restoration under all environments.  

(b) Environment evaluation based on GGE biplot: 

 The pattern of environment in the biplot (Fig. 4.3) suggests that all the 

environments were clustered in a single group. In present study, as the angle 

between any two environments was less than 900, it suggested that GE was 

moderately small and these environments tend to discriminate among genotypes 

in a similar manner. The Sehore and Ranchi environment vectors positioned 

above the AEA with smaller angle (<45º) between them indicated presence of 

positive correlation. Similarly, the Patancheru environment vector was found 

below the AEA and positively correlated with Sehore and Ranchi. It indicates that 

stability could be assessed by testing at either Sehore or Ranchi and Patancheru. 
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Patancheru had the longest environment vector which demonstrated more 

discriminating ability than other environments. The environments of Sehore and 

Ranchi were most discriminating along with smaller angle with the AEA and the 

genotypes nearer to these two environment vectors exhibited stability for fully 

fertile plants; whereas Patancheru had larger angle with AEA as compared to 

other two environments indicating that it was discriminating among all the 

environments. 

 

 

 
Fig. 4.3 GGE biplot showing the ranking of genotypes for mean and stability 

performance for fully male fertile plants (%) over the locations 
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4.1.4.3 Partial male fertile plants (%) 

The GGE biplot ranking for stability and mean performance of genotypes 

for partial male fertile plants (%) has been presented in Fig. 4.4. The results of 

PCA of GEI (genotype × environment interaction) showed that the first two 

principal components in the biplot explained 97.61 % (PC1= 86.77 %, PC2= 

10.84 %) of the total variation. Among the genotypes 9, 10, 8 and 7 had the high 

mean performance with longer vector length from AEA showed that these hybrids 

were unstable for partial male fertile plants. The hybrids 9 and 10 are near to 

Sehore and Ranchi indicating their highest performance in both the environments 

respectively (Fig 4.2), whereas hybrids 7 and 8 are positioned near to Patancheru 

indicating their higher performance in this environment. The hybrids 1, 2, 3, 6 and 

5 had the low mean performance with shortest vector length from AEA indicating 

their stability for partial male fertile plants. The hybrid 4 had performed below the 

mean with greater vector length indicating it was unstable and performed more in 

Patancheru environment. The result revealed that the genotypes present in left 

side of perpendicular line with shorter vector length were the best and stable 

across the locations. The environments Ranchi and Sehore were positioned 

above the AEA with smallest angle (<45º) between them indicated presence of 

positive correlation between them. Similarly, the Patancheru environment vector 

was found below the AEA and positively correlated (<90º) with Ranchi and 

Sehore.  
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Fig 4.4 GGE biplot showing the ranking of genotypes for mean and stability 

performance for partial male fertile plants (%) over the locations. 
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4.1.4.4 Complete male sterile plants (%) 

 The GGE biplot ranking for stability and mean performance of genotypes 

for complete male sterile plants (%) has been presented in Fig. 4.5. The results of 

PCA of GEI showed that the two principal components in the biplot explained 

99.94 % (PC1= 91.87 %, PC2= 8.07 %) of the total variation. All the genotype 

except 9 and 10 were observed below the population mean for proportion of 

complete male sterile plants. The hybrid 10 and 9 had highest mean for complete 

male sterile plants with greater vector length from AEA indicating their instability 

for complete male sterile plants and poor fertility restoration. The hybrid 10 was 

positioned near to Sehore and Ranchi indicate that this genotype performed more 

in both the locations whereas the genotype 9 was positioned near to Patancheru 

indicating that it was more responsive in Patancheru environment. The hybrids 1, 

2, 3, 4, 6, 7, and 8 were highly stable across the locations with lower proportion of 

complete male sterile plants and shortest vector length from AEA. It also indicates 

their better fertility restoration across the locations. The genotype 5 was observed 

below the average mean with greater projection from AEA indicating its instability 

for complete male sterile plants across the location. 

 

Fig. 4.5 GGE biplot showing the ranking of genotypes for mean and stability 
performance for complete male sterile plants (%) in hybrids over the 
locations. 
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4.2 Stability studies of CMS lines 

 The experiment for stability of CMS lines was conducted at Patancheru 

under three different dates of sowing (7th August, 11th September and 18th 

October) in 2012. The data collected individually from different sowings. In 

present investigation, a set of nine CMS lines were evaluated in three different 

dates of sowing during 2012 rainy season for stability analysis. The performance 

of different CMS lines in respect to different characters i.e. pollen sterility (%), 

complete male sterile plants (%), partial male sterile plants (%), partial male fertile 

plants (%) and fully male fertile plants (%). The data recorded on following 

characters showed that there was very small proportion of partial male sterile 

plants (%) and fully male fertile plants (%) found in only one CMS line while there 

were no partial male fertile plants recorded in all three sowings therefore the 

analysis could not be performed for these three characters. Other characters 

were statistically analyzed for estimating the stability and significance of genotype 

× environment interactions. 

4.2.1 Analysis of variance 

 The mean performance of CMS lines for the characters studied was 

analyzed statistically and the genotypic differences were found to be significant 

(P<0.05) for pollen sterility (%) in all three dates of sowings. Whereas for 

complete sterile plants (%) significant genotypic differences were observed in first 

and second sowing and the non-significant genotypic difference was observed in 

third sowing (Table 4.10). The mean genotypic values from different locations 

were subjected to pooled analysis. The result of pooled analysis of variance 

reveled that genotypic differences were highly significant for both the characters. 

From pooled analysis of variance, it was seen that the genotypic differences were 

highly significant for both the characters whereas, the individual environment 

effects were highly significant only for pollen sterility (%). The result showed that 

there was significant G×E interaction for pollen sterility (%) while, it was observed 

non-significant for complete male sterile plants (%) hence it was not further 

analyzed for stability (Table 4.11). 
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Table 4.10 Mean sum of squares for pollen sterility (%) and other characters 

of CMS lines in three different dates of sowing. 

*, ** Significant at P≤ 0.05 and P≤ 0.01 respectively, 

Note- The character partial male sterile plants (%), partial male fertile plants (%) 

and fully male fertile plants (%) could not be analyzed because most of the values 

were zero for these three characters. 

 
 
 
Table 4.11 Analysis of variance over the different dates of sowing (F values) 

*, ** Significant at P≤ 0.05 and P≤ 0.01, respectively 

 

 

 

 

 

Traits 
I Sowing  II Sowing III Sowing 

Genotype Error Genotype Error Genotype Error 

Degree of freedom 8 8 8 8 8 8 

Pollen sterility (%) 0.034** 0.001 0.021* 0.004 0.008** 0.001 

Complete male sterile 

plants (%) 
0.046** 0.004 0.026** 0.001 0.004 0.004 

Source of variation df 
Pollen 

sterility (%) 

Complete male sterile 

plants (%) 

Replication 3 2.63 1.12 

Genotype 8 25.20** 19.57** 

Environment 2 20.11** 2.42 

Environment × genotype 16 2.66* 1.55 
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4.2.2. Mean performance of CMS lines 

 The location wise as well as pooled per se performance of CMS lines for 

pollen sterility and other characters are given in Table 4.12 - 4.15. All the CMS 

lines were analyzed only for pollen sterility (%) and complete male sterile plants 

(%). The data recorded for partial male sterile plants (%), partial male fertile 

plants (%) and fully male fertile plants (%) were zero for most of the CMS lines 

therefore these characters could not be analyzed and the results of these 

characters are described on the basis of mean performance. The results 

according to individual characters are described below. 

4.2.2.1 Pollen sterility (%) 

 Analysis of variance revealed that there was significant genotypic 

difference present among all the CMS lines for pollen sterility across the different 

dates of sowing. In first sowing, the variability for pollen sterility ranged from 93.3 

to 100 %. The 100 % pollen sterility was recorded in BRG1A, HyC3A, BRG3A 

and TTB7A followed by ICPA 2092 (99.1 %) and ICPA 2039 (99.0 %) whereas, 

the minimum pollen sterility was recorded in ICPA 2047 (93.3 %) followed by 

ICPA 2051 (96.2 %) (Table 4.12). In second sowing, the variability for pollen 

sterility ranged from 94.9 to 100 %. Among the CMS lines BRG1A, HyC3A, 

BRG3A and TTB7A had 100 % pollen sterility followed by ICPA 2039 (99.9 %) 

and ICPA 2092 (99.5 %) while ICPA 2047 (94.9 %) recorded minimum pollen 

sterility (%) (Table 4.13). In third sowing, the 100 % pollen sterility was recorded 

in ICPA 2039, BRG3A, HyC3A, BRG1A and TTB7A followed by ICPA 2051 (99.9 

%) and ICPA 2092 (99.8 %) while the minimum pollen sterility (%) recorded in 

ICPA 2047 (98.1 %) (Table 4.14). The pooled analysis revealed that, the pollen 

sterility ranged between 95.5 to 100 % across the different sowings. The 

maximum (100 %) pollen sterility recorded in CMS lines BRG3A, HyC3A, BRG1A 

and TTB7A showed that these lines were performed superior and unable to 

produce fertile pollen grains in all three different sowings whereas ICPA 2047 

(95.7 %) had minimum pollen sterility across the sowings. All the CMS lines 

exhibited high (>95 %) pollen sterility (Table 4.15).  
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Table 4.12 Per se performance of CMS lines for pollen sterility (%) and other 

characters in first sowing (August 7, 2012). 

CMS lines 

Pollen 

sterility 

(%) 

Complete 

sterile 

plants (%) 

Partial 

sterile 

plants (%) 

Partial 

fertile 

plants (%) 

Fully 

fertile 

plants (%) 

ICPA 2039 99.0 100.0 0.0 0.0 0.0 

ICPA 2043 98.3 98.9 2.1 0.0 0.0 

ICPA 2047 93.3 89.7 4.2 0.0 6.3 

ICPA 2051 96.2 100.0 0.0 0.0 0.0 

ICPA 2092 99.1 100.0 0.0 0.0 0.0 

BRG3A 100.0 100.0 0.0 0.0 0.0 

HyC3A 100.0 100.0 0.0 0.0 0.0 

BRG1A 100.0 100.0 0.0 0.0 0.0 

TTB7A 100.0 100.0 0.0 0.0 0.0 

Mean 99.16 99.72 0.69 0.00 0.69 

LSD at 5 % 0.10 0.15 NA NA NA 

SEm± 0.03 0.05 - - - 

CV (%) 2.98 4.48 - - - 

NA= Not analyzed 
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Table 4.13 Per se performance of CMS lines for pollen sterility (%) and other 

characters in second sowing (September 11, 2012). 

CMS lines 

Pollen 

sterility 

(%) 

Complete 

sterile 

plants (%) 

Partial 

sterile 

plants (%) 

Partial 

fertile 

plants (%) 

Fully 

fertile 

plants (%) 

ICPA 2039 99.9 100.0 0.0 0.0 0.0 

ICPA 2043 99.2 100.0 0.0 0.0 0.0 

ICPA 2047 94.9 93.9 2.1 2.1 2.1 

ICPA 2051 99.1 100.0 0.0 0.0 0.0 

ICPA 2092 99.5 100.0 0.0 0.0 0.0 

BRG3A 100.0 100.0 0.0 0.0 0.0 

HyC3A 100.0 100.0 0.0 0.0 0.0 

BRG1A 100.0 100.0 0.0 0.0 0.0 

TTB7A 100.0 100.0 0.0 0.0 0.0 

Mean 99.65 99.88 0.23 0.23 0.23 

LSD at 5 % 0.14 0.07 NA NA NA 

SEm± 0.04 0.02 - - - 

CV (%) 4.03 1.88 - - - 

NA - Not analyzed 
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Table 4.14 Per se performance of CMS lines for pollen sterility (%) and other 

characters in third sowing (October 18, 2012) 

CMS lines 

Pollen 

sterility 

(%) 

Complete 

sterile 

plants (%) 

Partial 

sterile 

plants (%) 

Partial 

fertile 

plants (%) 

Fully 

fertile 

plants (%) 

ICPA 2039 100.0 100.0 0.0 0.0 0.0 

ICPA 2043 99.6 100.0 0.0 0.0 0.0 

ICPA 2047 98.1 98.9 0.0 0.0 2.1 

ICPA 2051 99.9 100.0 0.0 0.0 0.0 

ICPA 2092 99.8 100.0 0.0 0.0 0.0 

BRG3A 100.0 100.0 0.0 0.0 0.0 

HyC3A 100.0 100.0 0.0 0.0 0.0 

BRG1A 100.0 100.0 0.0 0.0 0.0 

TTB7A 100.0 100.0 0.0 0.0 0.0 

Mean 99.88 99.97 0.00 0.00 0.23 

LSD at 5 % 0.07 0.15 NA NA NA 

SEm± 0.02 0.05 - - - 

CV (%) 2.08 4.27 - - - 

NA - Not analyzed 
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Table 4.15 Pooled performances of CMS lines for pollen sterility (%) and 

other characters in three different dates of sowing in 2012. 

CMS lines 

Pollen 

sterility 

(%) 

Complete 

sterile 

plants (%) 

Partial 

sterile 

plants (%) 

Partial 

fertile 

plants (%) 

Fully 

fertile 

plants (%) 

ICPA 2039 99.8 100.0 0.0 0.0 0.0 

ICPA 2043 99.1 99.8 0.7 0.0 0.0 

ICPA 2047 95.7 94.9 2.1 0.7 3.5 

ICPA 2051 98.9 100.0 0.0 0.0 0.0 

ICPA 2092 99.5 100.0 0.0 0.0 0.0 

BRG3A 100.0 100.0 0.0 0.0 0.0 

HyC3A 100.0 100.0 0.0 0.0 0.0 

BRG1A 100.0 100.0 0.0 0.0 0.0 

TTB7A 100.0 100.0 0.0 0.0 0.0 

Mean 99.62 99.88 0.31 0.08 0.39 

SEm± 0.02 0.02 NA NA NA 

CV (%) 3.13 3.73 - - - 

NA- Not analyzed 
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4.2.2.2 Complete male sterile plants (%) 

 For successful production of CMS-based hybrids, the stability of CMS lines 

for expression of male sterility is as much important as the stability of fertility 

restoration in hybrids therefore it is main requisite to evaluate the CMS lines for 

proportion complete male sterile plants (%). It provides an idea about number of 

complete male sterile plants produced by CMS lines which clearly indicates the 

status of CMS line for expression of male sterility. The results obtained from 

present investigation revealed that the mean performance of different CMS lines 

for complete male sterile plants in first sowing ranged from 89.7 to 100 %. All the 

CMS lines except ICPA 2043 and ICPA 2047 recorded 100 % complete male 

sterile plants whereas the CMS lines ICPA 2047 (89.7 %) recorded  minimum 

proportion of complete male sterile plants followed by ICPA 2043 (98.9 %) (Table 

4.12). In second sowing, the complete male sterile plants ranged from 93.9 to 100 

%. All the CMS lines except ICPA 2047 recorded 100 % complete male sterile 

plants when sown in September month (Table 4.13). All the CMS line except 

ICPA 2047 had 100 % complete male sterile plants in third sowing (Table 4.14). 

The results obtained from pooled analysis revealed that the proportion of 

complete sterile plants in different CMS lines ranged between 94.9 to 100 %. All 

the CMS line except ICPA 2047 (94.9 %) and ICPA 2043 (99.8 %) recorded 100 

% complete male sterile plants across the different dates of sowing indicating that 

these lines were highly stable for expression of male sterility (Table 4.15). 

4.2.2.3 Partial male sterile plants (%) 

 For the quality seed production of hybrids, CMS lines should be stable for 

expression of male sterility and unable to produce fertile pollen grains. Evaluation 

of partial male sterile plants provides us information about number of partial male 

sterile plants produced by a CMS lines in different dates of sowing. All the CMS 

lines except ICPA 2043 (2.1 %) and ICPA 2047 (4.2 %) had no partial male sterile 

plants in first sowing (Table 4.12) whereas in second sowing, only ICPA 2047 had 

partial male sterile plants (2.1 %) and all other CMS lines were unable to produce 

partial male sterile plants (Table 4.13) while there were no partial male sterile 
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plants in all CMS lines of third sowing (Table 4.14). The results obtained from 

pooled analysis revealed that all the CMS lines except ICPA 2043 (0.7 %) and 

ICPA 2047 (2.1 %) recorded no partial male sterile plants across the different 

sowings showed that all the CMS lines exhibited complete male sterility (Table 

4.15). 

4.2.2.4 Partial male fertile plants (%) 

 All the CMS lines had non-significant proportion of partial male fertile 

plants across the different dates of sowing. Except ICPA 2047 in second sowing, 

the CMS lines had no partial male fertile plants in all three sowings (Table 4.12 to 

4.14). The CMS line ICPA 2047 only produced 2.1 % partial fertile plants in 

second sowing (Table 4.13). Pooled analysis revealed the same result with ICPA 

2047 which produced 0.7 % partial male fertile plants across the three sowings. 

As the absence of partial male fertile plants in CMS lines is a desirable character 

showed that all the CMS lines were stable for expression of male sterility (Table 

4.15). 

4.2.2.5 Fully male fertile plants (%)  

 A fully male fertile plant in CMS lines is undesirable character which 

indicates their poor performance for expression of male sterility. In present study, 

all CMS lines except ICPA 2047 were unable to produce fully male fertile plants in 

all three dates of sowing (Table 4.12 to 4.14). The highest proportion (6.3 %) of 

fully male fertile plants in first sowing was recorded in ICPA 2047 whereas it was 

recorded similar (2.1 %) proportion of fully male fertile plants in second and third 

date of sowing. The result of pooled analysis showed that all the CMS lines 

except ICPA 2047 (3.5 %) recorded no fully male fertile plants indicating that all 

these lines were unable to produce fertile plants and performed very well for 

expression of male sterility (Table 4.15). 
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Fig. 4.6 The graph showing pollen sterility status of nine CMS lines of 

pigeonpea in three different dates of sowing. 
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4.2.3 Stability analysis of CMS lines by Eberhart and Russell’s (1966) model  

 The stable CMS lines identified can be used as parents in the future 

breeding programmes for developing suitable high yielding hybrids with wider 

adaptability. Environment is a major factor which affects expression of male 

sterility of CMS lines. As the temperature and day length increased under short 

days, which result in decreased pollen sterility (%) and vice versa (Basha et al., 

2008). It is essential to have more precise information on the effect of 

temperature on male-sterility in order to utilize this CMS system in production of 

commercial hybrids. Therefore the objective of this study was to determine the 

influence of different month temperature on the expression of male-sterility of 

CMS lines of pigeonpea. The phenotypic stability of CMS lines for expression of 

male-sterility in different dates of sowing was estimated by mean performance 

over the locations (x), the regression coefficient (bi) and deviation from regression 

(S2di). 

4.2.3.1 Analysis of variance 

The pooled analysis of variance provides an estimate of genotype × 

environment interaction, which measures changes in rank and magnitude of 

fluctuations about the mean of different sowings. The mean sum of square due to 

genotypes was highly significant for all the characters studied. The result showed 

that the individual environment effect was significant only for pollen sterility (%). 

The mean sum of squares due to genotype × environment interaction was 

significant for pollen sterility (%). Thus stability analysis was carried out only for 

this character. 

 Analysis of variance for stability revealed the existence of substantial 

variability among the genotypes for pollen sterility (%). Significance of genotype × 

environmental interaction revealed that genotypes interacted significantly with 

environments (different dates of sowing). The partitioning of interaction showed 

that both the linear components (environment and genotype × environment) were 

highly significant for this character (Table 4.16). 
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Table 4.16 Analysis of variance (mean sum of square) for phenotypic 

stability of CMS lines of pigeonpea for pollen sterility (%). 

Source df Pollen sterility (%) 

Genotype 8 0.027** 

Environment+ (Genotype ×Environments) 18 0.003** 

Environment (Linear) 1 0.030** 

Genotype × Environment (Linear) 8 0.004** 

Pooled deviation 9 0.000 

Pooled error 24 0.001 

*, ** Significant at P≤ 0.05 and P≤ 0.01, respectively 

 

4.2.3.2 Stability for individual characters  

 All the CMS lines were assessed for their stability performance based on 

mean performance, regression coefficient (bi) and deviation from regression 

(S2di) for pollen sterility (Table 4.17). The result of stability of CMS lines indicated 

that the regression coefficients were found significant in most of the CMS lines for 

pollen sterility. 

4.2.3.2.1 Pollen sterility (%)  

All the CMS lines were recorded non-significant mean square deviation 

from regression line (S2di=0) for pollen sterility while the linear regression was 

observed significant for all CMS lines except ICPA 2043 and ICPA 2092. The 

CMS lines BRG3A, HyC3A, BRG1A and TTB7A exhibited highest pollen sterility 

with significant regression coefficient less than unity (bi<1) and non-significant 

(S2di=0) deviation from regression indicating their above average stability and 

these lines can also perform in poor environmental conditions. Two out of five 

lines of ICRISAT had significant regression coefficient more than unity (bi>1) with 

non-significant mean square deviation from regression (S2di=0) indicating their 

instability and positive interaction with the favorable environment. Over all six out 

of nine CMS lines had above average mean performance while two had 

performance around the average mean. The CMS line ICPA 2039 had high mean 

pollen sterility with regression coefficient close to unity and non-significant 
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deviation from regression (S2di=0) indicating its stability for pollen sterility. Two 

CMS lines, ICPA 2043 and ICPA 2092 performed very close to average mean 

with non-significant regression coefficient and deviation from regression showed 

that these lines were also stable across the different dates of sowing. CMS lines 

ICPA 2047 and ICPA 2051 performed below the mean with significantly greater 

regression coefficient (bi>1) showed that these lines were unstable and more 

responsive to the favorable environments (Table 4.17). 

 

Table 4.17 Estimates of stability parameters for pollen sterility (%) of CMS 

lines of pigeonpea evaluated during 2012-13 rainy season. 

CMS lines 
Pollen sterility (%) 

 
Mean bi (bi=1) S²di (S²di=0) 

 
ICPA 2039 99.8 1.684* 0.001 

 
ICPA 2043 99.1 1.157 0.000  

ICPA 2047 95.7 2.047** 0.002  

ICPA 2051 98.9 2.974** 0.000  

ICPA 2092 99.5 0.855 0.000  

BRG3A 100.0 0.095** 0.000  

HyC3A 100.0 0.000** 0.000  

BRG1A 100.0 0.188* 0.000  

TTB7A 100.0 0.000** 0.000  

Mean 99.62 1.00 -  

SEm± 0.011 0.27 -  

Where, bi= Regression coefficient and S2di = Deviation from regression 

*, ** Significant at P= 0.05 and 0.01, respectively 
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4.2.4 Stability analysis by GGE Biplot method (Yan et al., 2000) 

 Performance and stability of CMS lines were visualized graphically through 

GGE biplot (Fig. 4.7). The line with single arrow head is the AEC abscissa which 

passes through the biplot origin and marker for average environment and pointing 

towards higher mean values. The perpendicular line to the AEA passing through 

the biplot origin is referred as an indicator of stability. The greater absolute length 

of the projection of a cultivar showed less stable it is. Furthermore, the average 

yield of genotypes is approximated by the projections of their markers to the AEC 

abscissa (Kaya et al., 2006). 

The pooled analysis of variance provides an estimate of genotype × 

environment interaction, which measures change in rank and magnitude of 

fluctuations about the mean of different environments. The mean sum of square 

due to genotypes was highly significant for both the characters. The mean sum of 

square due to genotype by environment interaction was significant only for pollen 

sterility (Table 4.11). Therefore the GGE biplot analysis was performed only for 

pollen sterility to assess the stability of CMS lines for this character.  

  

Table: 4.18 Details of genotype code, name, plant type and source of nine 

CMS lines of pigeonpea: 

Genotype code Genotype name Plant type Source 

1 ICPA 2039 DT ICRISAT, Patancheru 

2 ICPA 2043 NDT ICRISAT, Patancheru 

3 ICPA 2047 NDT ICRISAT, Patancheru 

4 ICPA 2051 NDT ICRISAT, Patancheru 

5 ICPA 2092  NDT ICRISAT, Patancheru 

6 BRG3A NDT U.A.S., Bangalore 

7 HyC3A NDT U.A.S., Bangalore 

8 BRG1A NDT U.A.S., Bangalore 

9 TTB7A NDT U.A.S., Bangalore 

DT- Determinate, NDT- Non-determinate 
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4.2.3.2.1 Pollen sterility (%) 

The ranking of nine CMS lines of pigeonpea based on their mean pollen 

sterility and stability performance has been shown in Fig. 4.7. The ideal 

genotypes are those with both high mean performance for pollen sterility and high 

stability. The first two principal components PC1 (96.04 %) and PC2 (3.93 %) 

explained total 99.97 % variation for pollen sterility. The CMS lines 6, 7, 8, and 9 

observed very close to AEC with shortest vector from the AEA indicating these 

lines were highly stable for pollen sterility across the different sowings. The CMS 

lines 1, 5 and 2 performed high pollen sterility with shorter vector length from AEA 

indicating their stability for male sterility. The genotypes on the left side of the 

perpendicular line had pollen sterility below average mean. The genotype with 

below average performance with highest vector length from AEA was 4 whereas 

the genotype with lowest pollen sterility and shorter vector length from AEA 

stability was 3 (ICPA 2047) indicating these two CMS lines were unstable for 

pollen sterility. Breeders can also use GGE biplot (Fig. 4.7) for selecting the CMS 

lines with the best response to particular sowing. For instance, all the CMS lines 

had the highest performance for pollen sterility when they were sown in October 

(third sowing) whereas the CMS lines observed so far from first sowing indicating 

that the expression of male sterility of CMS lines was less in first sowing as 

compare to second and third sowings. All the three dates of sowing were 

positively correlated with each other because acute angles (<45º) were formed 

between them. The first sowing was most discriminating among all three sowings 

with longest environment vector while second and third sowings had high 

performing environment with shortest environment vectors and near to AEC. 

Meanwhile seven out of nine CMS lines were stable for expression of male pollen 

sterility and it was observed that there was significant influence of varying 

environments on pollen sterility.  
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Fig. 4.7 GGE biplot showing the ranking of CMS lines for mean and stability 
performance for pollen sterility (%) over the different dates of sowing. 
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Chapter V 
Discussion 

 The genetic male-sterility system (GMS) was identified in pigeonpea in late 

seventies that was controlled by a single recessive gene (Reddy et al., 1978) but 

the hybrids from this material were not accepted by seed industries due to 

inherent problems associated with GMS system. The other type of major 

reproductive abnormality leading to male sterility is caused by interaction of 

specific nuclear and cytoplasmic genetic factors. In most cases, the recessive 

nuclear genes interact with specific genetic factors housed in the cytoplasm of a 

cell and make an individual‟s anthers non-functional leading to male-sterility. 

Such plants produce fertile pollen when the recessive nuclear genes are replaced 

by their dominant counterparts or the cytoplasmic male sterility causing factors by 

fertility inducing genetic factors.  

Cytoplasmic nuclear male sterility (CMS) system is ideal for commercial 

hybrid seed production of pigeonpea. The expression of CMS is controlled by 

genetic factors that are carried by the female parents and retained over 

generations. The male sterile (A) line with „sterile‟ cytoplasm and homozygous 

recessive (frfr) nuclear genes is maintained by its counterpart male-fertile 

maintainer (B) line that carries a normal (fertile) cytoplasm, and the same 

homozygous recessive (frfr) nuclear genes. To produce male fertile hybrids, the 

A-line is crossed with a male fertility restorer (R) line, which carries normal 

cytoplasm and dominant nuclear alleles (FrFr) for fertility restoration. Hence, the 

hybrid breeding technology based on this system involves three parents; a male 

sterile (A) line, its maintainer (B) line and a fertility restorer (R) line. 

As no CMS system could be found in pigeonpea germplasm, efforts were 

made to breed for this trait by placing pigeonpea genome into the cytoplasm of its 

related wild species. Using this mechanism Saxena et al. (2005) developed a 

stable cytoplasmic male sterility system in pigeonpea. It was developed by 

crossing Cajanus cajanifolius as female parent with a pigeonpea cv. „ICP 28‟ as a 

male parent and designated as A4 CMS system. The development of this stable 

CMS system in pigeonpea has opened new vistas for breeding commercial 

hybrids. Pigeonpea is the only food legume where commercial CMS-based 
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hybrids are now available (Saxena et al., 2013 and Saxena et al., Unpublished). 

This CMS system facilitates easy and cost effective seed production of pigeonpea 

hybrids and their parents because it can reduce production costs by eliminating 

extra labours. In order to take advantage of this CMS-based hybrid technology, it 

is essential to breed new high yielding hybrids and CMS lines with diverse genetic 

backgrounds and stable fertility restoration. 

Therefore, present experiments were conducted to generate information 

on the stability of nine CMS lines for expression of male sterility and also to know 

the stability of fertility restoration in hybrids. In the present investigations, the 

major objective was to assess the performance of different hybrids for fertility 

restoration across the locations and CMS lines for expression of male sterility 

over the different dates of sowing. The interaction with environment and stability 

parameters for pollen fertility and sterility with other characters were estimated 

using Eberhart and Russell‟s (1966) and GGE biplot (Yan et al., 2000) methods. 

The findings of present research are discussed here with appropriate sub 

headings. 

5.1. Stability of hybrids for fertility restoration 

 Genotype × environment interaction is of major importance to the plant 

breeder in developing stable genotypes that will perform well under diverse 

environment conditions. If stability of performance or the ability to show a 

minimum interaction with the environment is a genetic characteristic, then 

preliminary evaluation could be planned to identify the stable genotypes. For 

development of high yielding CMS-based hybrids, it is essential to test new 

hybrids and CMS lines for their stability by growing them in number of 

environments. 

5.1.1 Analysis of variance 

 The analysis of variance revealed that the genotypic differences among 

the entries were highly significant (P<0.01) for all the characters except for plant 

stand at all three locations i.e. Patancheru, Ranchi and Sehore. It indicating the 

presence of substantial genetic variation among the hybrids for pollen fertility and 
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other characters selected for the study. The pooled analysis of variance also 

revealed that the genotypic differences were highly significant for all traits except 

for plant stand whereas, the individual environment effects were highly significant 

for all characters except partial male sterile plants (%). 

5.1.2 Mean performance of hybrids 

 Pollen fertility is an important character to assess the restoration of pollen 

fertility which is the basic need for the successful seed set in hybrids. The extent 

of pollen fertility among the hybrids ranged between 58.5 to 98.3 % across the 

locations. High values of pollen fertility indicates the higher fertility restoration and 

the vice versa. Among the hybrids, ICPH 2740 had highest pollen fertility at 

Patancheru, while ICPH 2671 recorded the maximum pollen fertility at the other 

two locations. All the hybrids except ICPH 3494 and ICPH 3491 exhibited high 

(>80 %) pollen fertility over the locations. Similarly, Wanjari et al. (2007) also 

reported high (>80 %) pollen fertility in different hybrid combinations. Among the 

hybrids tested, ICPH 2671, ICPH 2740, ICPH 3933, ICPH 2751 and ICPH 3461 

have common male parent (ICPL 87119) but different female parents, and all 

these hybrids recorded >90 % pollen fertility across the locations. It indicated that 

the parent ICPL 87119 is a best fertility restorer and it can be utilized in further 

hybrid breeding programmes. Hybrids ICPH 3491 (ICPA 2048 × ICPL 20096) and 

ICPH 3494 (ICPA 2048 × ICPL 20093) have same female parent but different 

male parents and they exhibited least pollen fertility (50-60 %) across the 

locations. Similarly, Singh and Bajpai (2005), Saxena (2005) and Nadrajan et al. 

(2008) reported many hybrids with variable fertility restoration. 

 The pooled performances of hybrids for all the characters studied in the 

three environments are presented in Tables 4.3 to 4.6. 

 Among the hybrids, ICPH 2671, ICPH 2740 and ICPH 3933 produced 100 

% fully male fertile plants followed by ICPH 3461 (99.9 %) and ICPH 2751 (98.7 

%). This indicated that these hybrids expressed complete fertility restoration over 

the locations, whereas the minimum numbers of fully male fertile plants over the 

locations were recorded in ICPH 3494 and ICPH 3491, indicating its poor 

performance with partial fertility restoration. All the hybrids except ICPH 3494 and 



109 
 

ICPH 3491 exhibited high proportion of fully male fertile plants across the 

locations indicating their better fertility restoration. Similarly, Nadrajan et al. 

(2008) also reported the many hybrid combinations with better fertility restoration. 

High proportion of partial male fertile plants in CMS-based hybrids 

indicates poor fertility restoration. In the present investigation two out of 10 

hybrids (ICPH 3491 and ICPH 3494) recorded highest (15.8 %) proportion of 

partial male fertile plants indicating its poor fertility restoration. There were no 

partial male fertile plants in hybrids ICPH 2671, ICPH 2740 and ICPH 3933 

indicating its perfect fertility restoration while other three hybrids ICPH 2751, 

ICPH 3477 and ICPH 3461 recorded very low proportions of partial male fertile 

plants indicating that these hybrids were highly fertile. Similar results were 

reported by Kalaimagal et al. (2008) and Masood Ali (2009). 

 The absence of partial male sterile plants is a desirable character for CMS-

based hybrids of pigeonpea. The variability for partial male sterile plants recorded 

in different hybrids ranged between 0 to 15.9 % at Patancheru; 0 to 15.6 % at 

Ranchi; and 0 to 23.7 % at Sehore. Four hybrids ICPH 2671, ICPH 2740, ICPH 

3933 and ICPH 3461 had no partial male sterile plants across the locations 

showed that these hybrids had superior fertility restoration. Another two hybrids, 

ICPH 2751 and ICPH 3477 recorded very little proportion of partial male sterile 

plants at Patancheru while they did not produce partial male sterile plants at 

Sehore and Ranchi. The maximum number of partial male sterile plants were 

recorded in ICPH 3491 followed by ICPH 3494. All the hybrids except ICPH 3494 

and ICPH 3491 did not produce any significant number of partial male sterile 

plants indicating that the expression of fertility restoration was better across the 

locations. 

 The performance of different hybrids for complete male sterile plants over 

the locations ranged between 0 to 15.1 %. The highest proportion of complete 

male sterile plants was recorded in ICPH 3494 (15.1 %) followed by ICPH 3491 

(8.9 %) indicating that these hybrids were unable to express complete fertility 

restoration while complete male sterile plants were not recorded in other hybrids. 
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Fertility restoration and its expression are prime requisites for development of 

CMS-based hybrid technology. The highest number of complete male sterile as 

well as partial male sterile plants were recorded in both the hybrids (ICPH 3494 

and ICPH 3491) indicated that the fertility in these two hybrids was partially 

restored. All the hybrids except ICPH 3494 and ICPH 3491 did not produce 

complete male sterile plants across the locations indicating their stability for 

fertility restoration. Saxena et al. (2004) also reported many CMS-based cross 

combinations with partial fertility restoration. 

5.1.3 Stability analysis of hybrids by Eberhart and Russell’s (1966) model. 

Information on genotype × environment interaction helps in the breeding of 

stable genotypes. Eberhart and Russell (1966) emphasized the need of 

considering both the linear (bi) and non-linear (S2di) components of interaction in 

judging the stability of a genotype. 

5.1.3.1 Analysis of variance for stability 

The pooled analysis of variance for stability of pollen fertility and other 

characters showed significant differences among the genotypes under study 

(Table 4.7). The interaction between genotype and environment including linear 

was highly significant for all characters. Existence of real genotypic differences for 

regression over environmental means was revealed by highly significant variance 

due to environment (linear).  

Genotype with unit regression coefficient and non-significant or least 

deviation from regression (S2di) is considered as average stable one. When this 

is associated with high mean, genotypes have above average stability, but when 

the mean is low, genotypes are considered as poorly adapted. Regression values 

above unity (bi>1) reflect increasing sensitivity of the genotypes to environmental 

change (below average stability) and greater specificity of adaptation to favorable 

environments. Regression coefficient less than unity (bi<1) indicate greater 

resistance to environmental change (above average stability) and therefore, 

increasing specificity to poor environments.  
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The analysis of stability of hybrids revealed that the linear components of 

genotype × environment interaction (bi) as well as non-linear component (S2di) for 

the characters studied were non-significant for most of the genotypes. The mean 

performances of the hybrids with stability parameters for different traits are 

presented in Table 4.8. 

5.1.3.2 Stability of individual characters 

5.1.3.2.1 Pollen fertility (%) 

The most stable hybrids for pollen fertility across the locations were ICPH 

2671, ICPH 2740, ICPH 3933 and ICPH 3461 with higher mean, non-significant 

regression coefficient (bi=1) and non-significant deviation from regression 

(S2di=0). The hybrids ICPH 2751 and ICPH 3477 had regression coefficient 

greater than unity indicated their instability and these hybrids were more 

responsive to the favorable environments while ICPH 2740, ICPH 3933 and ICPH 

3461 had regression coefficient less than unity (bi<1) indicated their above 

average stability and adaptation also in poor environmental conditions. Four              

out of 10 hybrids were stable over the environment with non-significant deviation 

from regression (S2di=0), unit regression coefficient (bi=1) and performance 

above average mean indicating that there was no effect of environment on 

expression of fertility restoration in these hybrids (Table 5.1). Similar findings 

were earlier reported by Dalvi et al. (2008a) where, there was no effect of 

environment on expression of fertility restoration.  
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Table 5.1 Stable (S) and unstable (US) hybrids over the locations for pollen 

fertility (%) and other characters by Eberhart and Russell’s model. 

Genotype 
Pollen 

fertility (%) 

Fully male 
fertile plants 

(%) 

Partial male 
fertile plants 

(%) 

Complete 
male sterile 
plants (%) 

ICPH 2671 S S S S 

ICPH 2740 S S S S 

ICPH 3933 S S S S 

ICPH 2751 US US US S 

ICPH 3477 US US S US 

ICPH 3461 S S S S 

ICPH 3762 US US US S 

ICPH 4490 US US US S 

ICPH 3491 US US US US 

ICPH 3494 US US US US 

Asha (check) S S S S 

Maruti (check) S S S S 

 

5.1.3.2.2 Fully male fertile plants (%) 

 The most stable hybrids with high mean, unit regression coefficient and 

non-significant deviation from regression line for fully male fertile plants were 

ICPH 2671, ICPH 2740, ICPH 3933 and ICPH 3461. Two hybrids ICPH 2751 and 

ICPH 3477 had significant regression coefficient more than unity (bi>1) and 

significant deviation from regression (S2di>0) indicating that these hybrids were 

unstable across the locations and positive interaction with favorable 

environments. Eight out of 10 hybrids performed better for fully male fertile plants 

across the locations and four of them were showed stability for fertility restoration 

across the locations (Table 5.1). Saxena et al. (2011) also reported many hybrid 

combinations with stable fertility restoration. 

5.1.3.2.3 Partial male fertile plants (%) 

 The hybrids ICPH 2671, ICPH 2740 and ICPH 3933 exhibited above 

average stability (no partial male fertile plants, bi<1 and S2di=0) for partial male 

fertile plants. The other two hybrids ICPH 3461 and ICPH 3477 had performance 

lower than mean, non-significant regression coefficient and deviation from 
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regression indicating these hybrids were also stable for partial male fertile plants. 

The hybrid ICPH 3762 and ICPH 2751 performed above average mean with 

greater regression coefficient (bi>1) and non-significant deviation from regression 

(S2di=0) indicating their instability over the locations and more responsive to the 

favorable environments. The hybrids ICPH 3494 and ICPH 3491 exhibited 

highest number of partial male fertile plants with minimum pollen fertility across 

the location indicating that these hybrids were unstable with partial fertility 

restoration (Table 5.1). 

According to Saxena et al. (2011b) the fertility restoration in A4 CMS lines 

of pigeonpea is controlled by either one or two dominant fertility restoring genes. 

The visual differences for pollen load and fertility among the hybrid plants is 

linked to the number of fertility-restoring genes present in an individual. The 

hybrid plants with both the fertility-restoring genes, the pollen load in the floral 

buds was similar to that of pure-line cultivars. On the contrary, when a single 

fertility restoring gene was present in the hybrids, they produced relatively fewer 

pollen grains and their fertility restoration was unstable in diverse environments. 

In this context, it is concluded that eight hybrids showed high pollen fertility and 

stability for fertility restoration at three different locations may have two dominant 

fertility-restoring genes while other two hybrids ICPH 3494 and ICPH 3491 

produced lowest pollen fertility with unstable partial fertility restoration may have 

single fertility-restoring gene (Dalvi et al., 2008a). Similarly, Bodden (1977) also 

identified certain wheat (Triticum aestivum L.) lines with poor pollen production, 

and they concluded that the restorer parents with a single gene were responsible 

for their poor pollinating capacity. Tang et al. (2007) also observed partially fertile 

plants in sorghum [Sorghum bicolor (L.) Moench] population that segregated for 

fertility-restoring alleles and they reported that full pollen fertility in a genotype 

essentially results from the presence of all the major and minor genes 

simultaneously. The previous studies on genetics of fertility restoration in 

pigeonpea suggested that hybrids with two dominant genes produced a greater 

pollen load and expressed greater stability as compared with those carrying a 

single dominant gene and it was concluded that for breeding hybrids with stable 



114 
 

fertility restoration, the presence of two dominant genes is essential (Saxena et 

al., 2011b; Dalvi 2008a). 

5.1.3.2.4 Complete male sterile plants (%) 

 All the hybrids except ICPH 3494, ICPH 3491 and ICPH 3477 exhibited 

absence of complete male sterile plants across the environments with regression 

coefficient less than unity (bi<1) and non-significant deviation from regression 

indicating their above average stability for complete male sterile plants. It also 

indicates that the fertility restoration in these hybrids was better over the 

locations. The hybrid ICPH 3477 performed above mean for complete male sterile 

plants with regression coefficient greater than unity (bi>1) and significant 

deviation from regression (S2di>0) indicating its instability and more responsive to 

favorable environmental conditions. Two hybrids ICPH 3494 and ICPH 3491 

recorded higher proportion of complete male sterile plants with significant 

regression coefficient (bi>1), indicating that these hybrids were also unstable for 

complete male sterile plants with partial fertility restoration. As the possibility of 

two or more genes for fertility restoration, the male parents of both the hybrids 

may not be having all the genes which are responsible for restoration of pollen 

fertility and this led to the expression of partial fertility restoration in these hybrids. 

Plant to plant crosses accompanied with selection may be helpful to identify the 

perfect restorer from segregating lines (Dalvi et al., 2008a). 

5.1.4 Stability analysis by GGE biplot method 

 According to GGE interpretation, an ideal test environment should be both 

discriminating and representative. An „ideal‟ environment probably does not exist 

in reality but can be used as a reference point. From this study, it can be seen 

that Ranchi is the closest to the ideal environment, and therefore, is the most 

desirable among the three environments studied. The GGE biplot analysis is 

more efficient than the Eberhart and Russell‟s method because GGE biplot 

explains higher proportions of the sum of squares of the G × E interaction and is 

more informative with regard to environments and cultivar performance. 
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5.1.4.1 Pollen fertility (%) 

 The partitioning of GE interaction through GGE biplot analysis showed that 

both the principal components explained a total of 99.89 % variation. The hybrids 

ICPH 2671 (1), ICPH 2740 (2), ICPH 3933 (3) and ICPH 3461 (6) showed both 

high mean and stability for pollen fertility across the locations. The genotype 

Maruti (12) was near to concentric circle showing their higher performance for 

pollen fertility among all the genotypes hence it was an ideal genotype. Four out 

of 10 hybrids were stable over the locations (Fig. 4.2). The acute angles (<900) 

between environment vectors showed that all the three environments 

(Patancheru, Ranchi and Sehore) were positively correlated with each other. 

Sawargaonkar et al. (2011) were earlier used the GGE biplot method to estimate 

the stability of hybrids for seed yield and related traits. 

5.1.4.2 Fully male fertile plants (%) 

 The results of PCA of GEI in biplot showed that the first two principal 

components in the biplot explained 99.39 % (PC1= 95.89 % and PC2= 3.50 %) of 

the total variation. The hybrids ICPH 2671 (1), ICPH 2740 (2), ICPH 3933 (3) and 

ICPH 3461 (6) had maximum proportion of fully male fertile plants with shortest 

vector length from AEA indicating their higher stability for fertility restoration. All 

the three environments were found to be positively correlated with smaller angle 

(<45º) between them. The environments of Sehore and Ranchi were most 

discriminating along with smaller angle with the AEA and the genotypes nearer to 

these two environments exhibited higher stability for fully male fertile plants at 

these two locations. 

5.1.4.3 Partial male fertile plants (%) 

 The hybrids ICPH 2671 (1), ICPH 2740 (2), ICPH 3933 (3) and ICPH 3461 

(6) had no partial male fertile plants in all environments with shortest vector length 

from AEA indicating their higher stability for partial male fertile plants and 

expression of fertility restoration followed by ICPH 3477 (5). Five out of 10 hybrids 

were stable with absence or little proportion of partial male fertile plants and 

shorter vector length from AEA. The hybrid ICPH 3762 (7) had the longest vector 

length and near to Patancheru location indicating its instability and more 
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responsive at Patancheru as compared to Ranchi and Sehore. The results 

revealed that the genotypes which are positioned left side of perpendicular line in 

Fig 4.4 were the best with higher stability.  

5.1.4.4 Complete male sterile plants (%) 

 The results showed that all the hybrids except ICPH 3491 (9), ICPH 3494 

(10) and ICPH 3477 (5) observed absence or least proportion of complete male 

sterile plants with shorter vector length from AEA indicating that these hybrids 

were highly stable and better for fertility restoration over the locations. The 

hybrids ICPH 3494 (10) observed highest proportion of complete male sterile 

plants followed by ICPH 3491 (9) with longest vector length from AEA indicated 

that this hybrids were unstable with poor fertility restoration. The results obtained 

from both the methods (GGE biplot and Eberhart and Russell‟s) were similar for 

all the characters but the GGE biplot analysis provided additional information‟s 

related to correlation between environments and genotypes, and information 

related to „which won where‟ is helpful for breeder to select the stable genotypes 

for specific location (Gauch and Zobel, 1997; Yan et al., 2000). 

5.2 Stability of CMS lines 

Development of cytoplasmic nuclear male sterile lines at cellular level 

 Several efforts were made to understand the cause of cytoplasmic male 

sterility at cellular level in pigeonpea. The cytological studies of male-sterile as 

well as male fertile floral buds showed normal meiosis with 11 chromosomes at 

each pole at anaphase and visible abnormalities were rare. The PMC‟s (Pollen 

Mother Cells) of the male-sterile plant becomes shriveled and the major reason 

for shriveled PMC‟s in male sterile plants is breakdown of tapetum layer, which 

not only gives support but also provides nutrition to PMC‟s. However, during 

growth of the tetrads, unlike in fertile plants, the normal event of dissolution of 

PMC wall was inhibited and the tetrads remained enclosed within the persistent 

tetrad wall. Consequently, the further growth of tetrads ceased and they lost their 

cell contents leading to premature abortion of the pollen grains; but they remained 

together till the flowers opened. Hence, the degeneration of pollen grains at the 



117 
 

late tetrad stage was identified as the prime cause for the manifestation of the 

male sterility in pigeonpea. Breakdown of microsporogenesis due to persistent 

tapetum was also observed in the genetic male sterility system reported by Reddy 

et al. (1978). However in the cytoplasmic male sterile pigeonpea during the 

formation of tetrads, the PMC wall did not dissolve to release the tetrads is a 

major cause found to be responsible for male sterility. This was confirmed based 

on studies  by Wallis et al. (1981), Dundas et al. (1981), Dundas et al. (1982), 

Saxena et al. (1983), Katti et al. (1994), and Mallikarjuna and Saxena (2005). 

 Cytoplasmic male-sterility system has played an important role in 

exploiting hybrid vigor for enhancing productivity in field crops as well as in 

horticultural crops (Saxena, 2005). There are eight CMS systems developed so 

far in pigeonpea, the A4 system derived by crossing of Cajanus cajanifolius, a wild 

relative of pigeonpea and a cultivar (Saxena et al., 2005) is the best because it is 

stable across environments and has a large number of fertility restorers (Saxena 

et al., 2006). According to De (1974), C. cajanifolius resembles cultivated types in 

most morphological traits. Therefore, the male sterile lines derived from A4 

cytoplasm are the best among those identified so far and found to be highly 

stable male sterile lines across environments and years (Saxena et al., 2005; 

Dalvi et al., 2008a; Saxena 2008; and Sawargaonkar 2010) and never showed 

any morphological deformity. In order to take advantage of this CMS hybrid 

technology, it is essential to breed promising hybrid parents and information 

related to their stability. 

The environmental influences on male-sterility were noted for several plant 

species. Pigeonpea is a short day plant with the late maturing type‟s having a 

strict day-length requirement for induction of flowering. The phenological 

responses in pigeonpea are influenced by photoperiod and temperature that have 

played a major role in evolution of the various crop production systems that have 

been established. The photoperiod sensitive reaction in pigeonpea germplasm is 

not only linked to days to flowering but also to the amount of pollen grains 

produced (Wallis et al., 1981). The objective of this study was to determine the 

influence of temperature in different months on the expression of male sterility of 

CMS lines by growing them in different dates of sowing. In present experiment 
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nine male sterile lines were planted during 2012 in three different dates at 

International Crops Research Institute for the Semi-Arid Tropics, Patancheru, 

Andhra Pradesh. 

5.2.1 Analysis of variance  

 The genotypic differences were significant (P<0.05) for pollen sterility (%) 

in all three dates of sowings whereas for complete male sterile plants (%) 

significant genotypic differences observed in first and second dates of sowing and 

the non-significant genotypic difference found in third date of sowing. The result 

of pooled analysis of variance also revealed that genotypic differences were 

found to be significant for all traits. 

5.2.2 Mean performance of CMS lines 

 The CMS lines BRG3A, HyC3A, BRG1A and TTB7A recorded 100 % 

pollen sterility indicate that these lines were performed superior and unable to 

produce fertile pollen grains in all three different dates of sowing. Among the A-

lines of ICRISAT, ICPA 2039 (99.8 %), ICPA 2092 (99.5 %) and ICPA 2043 (99.1 

%) recorded highest pollen sterility over the different dates of sowing. All the CMS 

lines performed well with high (>95 %) pollen sterility across the different dates of 

sowing. Similar results were earlier reported by Dalvi (2007), Sawargaonkar et al. 

(2012a) and Makelo et al. (2013) in CMS lines of pigeonpea. 

 The proportion of complete sterile plants produced by different CMS lines 

over the different dates of sowing ranged from 94.9 to 100 %. All the CMS lines 

except ICPA 2047 and ICPA 2043 observed 100 % complete male sterile plants, 

exhibited their complete and stable expression of male-sterility in all three dates 

of sowing. The CMS line ICPA 2043recorded 99.8 % complete male sterile plants 

indicating that it also expressed complete male sterility. Sawargaonkar et al. 

(2012a) and Makelo et al. (2013) also reported the similar results in their studies 

where the CMS lines were stable for expression of male sterility.  

All the CMS lines except ICPA 2043 (2.1 %) and ICPA 2047 (4.2 %) had 

no partial male sterile plants in first sowing, whereas in second sowing the partial 

male sterile plants observed only in ICPA 2047 and all other CMS lines were not 
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produced partial male sterile plants. All the CMS lines did not produce partial 

male sterile plants in the third sowing. Meanwhile, all the CMS lines except ICPA 

2047 (2.1 %) were recorded as no partial male sterile plants across the different 

sowings. The cause of such partial male sterile plants in CMS lines was reported 

by Saxena et al. (1981). According to them, the irregularities in breakdown of the 

tapetum with an inconsistent extent is the prime cause of production of partial 

male fertile/sterile plants in CMS lines and the site of degeneration of the tapetal 

tissues in different flowers and plants. The microsporogenesis of the male sterile 

plants was not examined in this study, but it was likely that both pollen 

development and its release processes would be defective. 

The CMS line ICPA 2047 was only observed to produce partial male fertile 

plants in second sowing, while all other CMS lines had no partial male fertile 

plants across the dates of sowing indicating that these lines exhibited stable 

male-sterility. The CMS line ICPA 2047 produced 0.7 % partial male fertile plants 

across the three sowings which was not significant and considerable amount of 

partial male fertile plants showed that it was also stable for expression of male 

sterility. 

 All the CMS lines except ICPA 2047 were unable to produce fully male 

fertile plants in all the three dates of sowing indicating that all these lines were 

stable for expression of male sterility. The CMS line ICPA 2047 recorded 

significantly inconsiderable proportion of fully male fertile plants showed that this 

line was also stable for male sterility. Individual plant to plant crosses may be 

helpful to identify the perfect maintainer. All the nine male sterile lines derived 

from A4 cytoplasm exhibited stability throughout the different dates of showing 

without any effect of increase or decrease in temperature, indicating male sterility 

in A4 system was independent of environment condition. Saxena et al. (2005) also 

found that the CMS lines derived from A4 cytoplasm were stable when tested 

under varying environmental conditions at Patancheru. 
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5.2.3 Stability of CMS line by Eberhart and Russell’s (1966) method. 

As the expression of CMS requires two different genetic factors, one of 

each in cytoplasm and nucleus, to come together in a single cell; the frequency of 

spontaneously occurring mutants simultaneously in both the entities (i.e., nucleus 

and cytoplasm) is quite low. The influence of environment (temperature and/or 

photoperiod) on CMS controlling nuclear fr and Fr genes is more prominent. This 

may lead to instability of the expression of male sterility and its fertility restoration. 

Such unstable expressions are also some times influenced by the genetic 

background of an individual. Commercial use of CMS requires highly stable male 

sterility; to ensure genetically pure F1 hybrid seed, therefore it is essential to have 

more precise information on the effect of temperature on male sterility in order to 

utilize A4 CMS system in production of commercial hybrids. The objective of this 

study was to determine the influence of different dates of sowing on the 

expression of male sterility of different CMS lines. 

5.2.3.1 Analysis of variance 

 Analysis of variance for stability revealed the existence of substantial 

variability among the genotypes for pollen sterility (%). Significance of genotype × 

environmental interaction revealed that genotypes interacted significantly with 

environments (different dates of sowing). The partitioning of interaction showed 

that both the linear components (environment and genotype × environment) were 

highly significant for pollen sterility. It was seen that the individual environment 

effects and interactions were highly significant for pollen sterility (%) hence the 

stability analysis was carried out for pollen sterility. 

5.2.3.2 Stability of individual characters 

5.2.3.2.1 Pollen sterility (%)  

The non-significant deviation from regression line (S2di=0) for pollen 

sterility (%) was observed for all the CMS lines indicating their stability across the 

different dates of sowing while the linear regression was observed significant 

either greater or less than unity for all CMS lines except ICPA 2043 and ICPA 
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2092. The CMS lines BRG3A, HyC3A, BRG1A and TTB7A exhibited 100 % 

pollen sterility with significant regression coefficient less than unity (bi<1) and 

non-significant (S2di=0) deviation from regression indicating their above average 

stability and these lines can also perform in poor environmental conditions. The 

lines ICPA 2047 and ICPA 2051 had regression coefficient more than unity (bi>1) 

with non-significant deviation from regression line (S2di=0) indicate that these 

CMS lines were unstable and more responsive to the favorable environment. 

Seven out of nine CMS lines were highly stable across the different sowings with 

non-significant deviation from regression line (S2di=0), unit regression coefficient 

(bi=1) and performance above or close to average mean (Table 5.2). Similarly, 

Sawargaonkar et al. (2012a) reported the stability of CMS lines for expression of 

male sterility under different month temperature. Makelo et al. (2013) also 

reported the similar results for stability of CMS lines under different environmental 

conditions. Zhang et al. (2007) reported the stability of CMS lines of wheat in 

different dates of sowing and Goral et al. (2006) reported the stability of CMS 

lines of wheat using method of stability analysis based on regression coefficient. 

 

Table 5.2 Stable (S) and unstable (US) CMS lines over the different dates of 

sowing for pollen sterility (%) by Eberhart and Russell’s model. 

Genotype Pollen sterility (%) 

ICPA 2039 S 

ICPA 2043 S 

ICPA 2047 US 

ICPA 2051 US 

ICPA 2092 S 

BRG1A S 

HyC3A S 

BRG3A S 

TTB7A S 
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5.2.4 Stability of CMS lines by GGE Biplot method (Yan et al., 2000) 

4.2.4.1 Pollen sterility (%) 

The CMS lines BRG3A (6), HyC3A (7), BRG1A (8), and TTB7A (9) were 

observed very close to AEC with shortest vector from the AEA indicates that 

these lines were highly stable. Among the A-lines of ICRISAT, ICPA 2039 (1), 

ICPA 2092 (5) and ICPA 2043 (2) recorded high pollen sterility from average 

mean with shorter vector length from AEA indicating these lines were also stable. 

Another CMS lines ICPA 2051 (4) performed below the average mean with 

greater vector length from AEA indicating its instability for pollen sterility over the 

different dates of sowing. All the CMS lines had highest pollen sterility when they 

were sown in October month (third sowing) whereas the CMS lines were 

observed so far from first sowing indicating that the expression of male sterility in 

CMS lines was less in first sowing as compared to second and third sowings. It 

also indicates the influence of temperature on expression of male sterility. The 

CMS lines of first sowing were flowered on last week of November to first week of 

December when the temperature was lower by 120 C under shorter day length 

which induced production of fertile pollens in some CMS lines. Saxena (2009) 

reported the similar result where shortening of day lengths and reduction in 

temperature induced male fertility, while high temperature and longer days 

maintained male sterility. 

5.3 Implications of present study in hybrid breeding  

 Stability analysis of hybrids for fertility restoration and CMS lines for 

expression of male sterility provides guideline for use of different restorer‟s and 

CMS lines in development of new commercially adopted hybrids for enhancement 

of yield. The promising stable hybrids ICPH 2671, ICPH 2740, ICPH 3933, ICPH 

3461, and ICPH 2751 recorded high degree of fertility restoration. This is due to 

the presence of a common male parent ICPL 87119 in them having all the genes 

responsible for fertility restoration. Thus, it may be crossed with another CMS 

lines to breed new high yielding hybrids. These hybrids must be tested over the 

locations to confirm the stability for yield performance also. Following are the 

breeding implications of present study: 
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1. For pollen fertility and the proportion of fully male fertile plants, the hybrids 

ICPH 2671, ICPH 2740, ICPH 3933, ICPH 2751, ICPH 3461 and ICPH 3762 

were superior over the locations. The hybrids ICPH 2671 and ICPH 2740 

exhibited superiority with stable yield performance have already been 

released for commercial cultivation. The other promising hybrids for fertility 

restoration may also be released with further heterosis and stability studies for 

seed yield and related traits. 

2. The hybrids showing stability for fertility restoration need to be tested for yield 

across more diverse environments. 

3. The data on expression of male sterility of CMS lines may be used for 

diversification of CMS lines and for the development of new heterotic cross 

combinations. 

4. The hybrids showing segregation for fertility restoration may be improved 

further with plant-to-plant crosses to select the perfect maintainer and restorer 

genotypes. 

5. To confirm the restoration of a genotype for the particular cytoplasm, isogenic 

male-sterile lines may be used. 

6. The results of stability of male sterility of CMS lines will help in further studies 

on combining ability with diverse restorer lines. 

7. The efforts made to know the stability of CMS lines may help in identifying the 

stable CMS lines. This study may be extended with more number of male-

sterile lines with different cytoplasmic sources for genetic diversification. 

8. The stability of male-sterile lines must be tested in controlled environments to 

know the factors affecting the stability of CMS lines and making it sensitive to 

environment. 
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Chapter-VI 
Summary, conclusion and suggestions for further work 

 The present investigation entitled “Stability of maintenance of male sterility and 

fertility restoration in pigeonpea (Cajanus cajan (L.) Millsp.) under different environments” 

was carried out to evaluate information on stability of cytoplasmic male sterile lines for 

expression of male sterility and also it was aimed to study the stability of fertility 

restoration in hybrids developed at International Crops Research Institute for the Semi-

Arid Tropics (ICRISAT), Patancheru (Andhra Pradesh). To study the stability of fertility 

restoration, a set of 10 hybrids and two standard varietal checks obtained from ICRISAT, 

Patancheru were evaluated at three different locations viz. ICRISAT, Patancheru (Andhra 

Pradesh) (17º53‟N, 78º27‟E), Birsa Agriculture University, Ranchi (Jharkhand) (23º17‟N, 

85º19‟E) and College of Agriculture, Sehore (Madhya Pradesh) (23º12‟N, 77º05‟E). All 

these materials were evaluated in Randomized Complete Block Design (RCBD) with two 

replications during kharif 2012. Six row plots were planted with inter and intra row 

spacing of 75 and 50 cm respectively. Nine CMS lines derived from Cajanus cajanifolius 

(A4) cytoplasm were also planted at ICRISAT in Randomized Complete Block Design 

(RCBD) with two replications in 2012 to study their stability for expression of male sterility 

in varying environmental conditions. To provide the varying environmental conditions, the 

CMS lines were planted under three different dates viz. August 7, 2012, September 11, 

2012 and October 18, 2012 named as first, second and third dates of sowing 

respectively.  Five out nine CMS lines were obtained from ICRISAT; and other four CMS 

lines were obtained from University of Agriculture Science, Bangalore, Karnataka. 

Observations were recorded from all the plants at the initial flowering stage on pollen 

fertility (%), fully male fertile plants (%), partial male fertile plants (%), partial male sterile 

plants (%), complete male sterile plants (%) and plant stand. Two most reliable methods 

of stability analysis, one is Eberhart and Russell‟s (1966) model based on regression 

coefficient and another graphical presentation of stability of genotypes called as GGE 

biplot method (Yan et al., 2000) were used to estimate the stability of hybrids and CMS 

lines. The highlights of the results are summarized below. 

A) Per se performance of hybrids 

1. The hybrids ICPH 2671 and 2740 had highest pollen fertility across the locations 

indicating these hybrids were best among all hybrids. 
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2. Eight out of 10 hybrids recorded high (>80 %) pollen fertility showed their better 

fertility restoration across the locations. 

3. The hybrids ICPH 3494 and ICPH 3491 exhibited lower pollen fertility over the 

locations with minimum proportion of fully male fertile plants indicating their poor 

fertility restoration. 

4. The hybrids ICPH 2671, ICPH 2740 and ICPH 3933 had 100 % fully male fertile 

plants across the locations, whereas other three hybrids ICPH 2751, ICPH 3477 and 

ICPH 3461 performed more than 98 % fully male fertile plants showed their complete 

fertility restoration. These hybrids had no partial male fertile, partial male sterile or 

complete male sterile plants over the locations. 

5. The hybrids ICPH 3491 and ICPH 3494 had highest proportion of partial male fertile, 

partial male sterile and complete male sterile plants at all three locations showed that 

these hybrids had poor fertility restoration. 

B) Per se performance of CMS lines 

1. The CMS lines BRG3A, HyC3A, BRG1A and TTB7A had 100 % pollen sterility in all 

three different sowings showed that these lines were unable to produce fertile pollens 

in all three dates of sowing. 

2. Four out of five CMS lines of ICRISAT showed more than 99 % pollen sterility across 

the different dates of sowing. Meanwhile, all the CMS lines expressed high (>95%) 

pollen sterility over the different sowings. 

3. Eight out of nine CMS lines had 100 % complete male sterile plants in all three dates 

of sowing and unable to produce partial male sterile, partial male fertile and fully male 

fertile plants. 

C) Stability of hybrids for fertility restoration 

i) Stability analysis by Eberhart and Russell’s method. 

1. The hybrids ICPH 2671, ICPH 2740, ICPH 3933 and ICPH 3461 showed high mean 

for pollen fertility with regression coefficient (bi=1) and deviation from regression line 

(S2di=0), which indicates their higher stability for pollen fertility under different 

environmental conditions.  
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2. Four out 10 hybrids, ICPH 2671, ICPH 2740, ICPH 3933 and ICPH 3461 recorded 

100 % fully male fertile plants with unit regression coefficient and non-significant 

deviation from regression (S2di=0) indicating their above average stability for fertility 

restoration. 

3. The highly stable hybrids which had no partial male fertile, partial male sterile and 

complete male sterile plants with regression coefficient below unity (bi<1) and zero 

deviation from regression line were ICPH 2671, ICPH 2740, ICPH 3933 and ICPH 

3461. 

4. The results of the present study indicated that the hybrids ICPH 2671, ICPH 2740, 

ICPH 3933, ICPH 3461, ICPH 2751, ICPH 3762 and ICPH 4490 observed to have 

better fertility restoration. Four hybrids identified stable for fertility restoration can be 

used for commercial cultivation with yield superiority in future. 

ii) Stability analysis by GGE biplot method 

1. The hybrids ICPH 2671 (1), ICPH 2740 (2), ICPH 3933 (3) and ICPH 3461 (6) 

showed both high mean and stability for pollen fertility across the locations and the 

other hybrids were unstable for pollen fertility with low performance over the locations 

or greater vector length from AEA. 

2. The hybrids ICPH 2671 (1), ICPH 2740 (2), ICPH 3933 (3) and ICPH 3461 (6) had 

maximum proportion of fully male fertile plants with shortest vector length from AEA 

indicating their high stability for fully male fertile plants and exhibited complete fertility 

restoration over the locations. 

3. The most stable hybrids for fertility restoration were ICPH 2671 (1), ICPH 2740 (2), 

ICPH 3933 (3) and ICPH 3461 (6) which exhibited no partial male fertile as well as 

complete male sterile plants with shortest vector length from AEA. 

4. The most unstable hybrids for fertility restoration were ICPH 3494 (10) and ICPH 

3491 (9) with lowest pollen fertility and fully male fertile plants with highest proportion 

of partial male fertile, partial male sterile and complete male sterile plants over the 

locations with longest vector length from AEA and farthest from AEC. 
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D) Stability of CMS lines 

i) Stability of CMS lines by Eberhart and Russell’s model 

1. The CMS lines ICPA 2043, ICPA 2039, ICPA 2092,  BRG1A, BRG3A, HyC3A and 

TTB7A were highly stable across the different dates of sowing with more than 99 % 

pollen sterility, significant regression coefficient less than unity  (bi<0) and non-

significant deviation from regression (S2di=0). 

2. Seven out of nine CMS lines were stable for pollen sterility and can be effectively 

utilized in the development of high yielding hybrids. 

3. The non-significant G × E interaction was found for complete male sterile plants (%) 

showed that all the CMS lines were stable for expression of male sterility. 

ii) Stability of hybrids by GGE biplot method 

1. Seven out of nine CMS lines were highly stable with the shorter vector length from 

AEA and near to AEC. 

2. All CMS lines performed well in all three different dates of sowing and expressed 

complete male sterility. Comparatively all the CMS lines were expressed highest 

sterility in third sowing as compared to first and second sowings. The result from 

GGE biplot analysis showed that all three sowing dates were positively correlated 

because acute angle (<450) is formed between them. 

Conclusion 

Stability analysis of hybrids and CMS lines showed that there was no effect of 

environment on both expression of male sterility and fertility restoration. There was 

significant genotypic differences were observed for all characters. The significant 

genotype x environmental interaction was observed for four characters of hybrids and it 

was observed significant only for pollen sterility (%) in CMS lines. Analysis of variance for 

stability of hybrids and CMS lines revealed that both the linear component of variation 

were significant for all the characters. 

The results revealed that GEI was an important source of variation for pollen 

fertility and sterility. The results obtained from both the methods of stability analysis 

showed that GGE biplot analysis is more efficient than Eberhart and Russell‟s method of 
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stability analysis because its biplots were effective enough for visualizing the response 

patterns of genotypes and environments. GGE Biplot method is adequate to explain the 

genotype × environment interactions, providing results that are consistent with the classic 

methods based on regression coefficient. The discriminating power × representativeness 

view of GGE biplot was effective in evaluating test environment, which is not possible 

with Eberhart and Russell‟s model of stability analysis. The results obtained from present 

investigations concluded that significant variability for pollen fertility and sterility was 

present among the hybrids and CMS lines. Four out of 10 hybrids performed better pollen 

fertility (%) and fully male fertile plants across the locations showed their stability for 

fertility restoration and there was no effect of environment on expression of fertility 

restoration in these hybrids. All CMS lines were highly stable for expression of male 

sterility across the different sowings and it was concluded that there was no effect of 

different sowing dates and temperature on expression of male sterility of these CMS 

lines.  

Suggestions for further work 

Information on stability of male sterility of CMS lines and fertility restoration in hybrids 

is very important and helpful in planning of future breeding programmes. On the basis of 

present investigation, breeding repercussions and suggestions have been made for 

further works are given below: 

 A stable hybrid for expression of fertility restoration across the environments 

stable for seed yield and vice versa. So these stable hybrids can be tested for 

further yield performance and promising ones can be released. 

 A stable male sterile line when crossed with stable male parent produced stable 

hybrids and vice versa. So more importance have to be given to these stable 

CMS lines of pigeonpea in hybrid breeding programme to develop stable high 

yielding hybrids under marginal environment conditions. 

 The information generated on stability of fertility restoration will help to know the 

selection of parents which can be utilized in further transfer of fertility restorer 

genes into elite backgrounds. 

 Stability of fertility restoration revealed that the environmental influence was 

cross-specific and depends on the nuclear background of CMS line and fertility 
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restorer. The data on fertility restoration may be used for diversification of CMS 

lines. 

 As the hybrids belong to male parent ICPL 87119 showed the highest pollen 

fertility and complete fertility restoration. Therefore it can be exploited in further 

hybrid breeding programmes. 

 The stability of CMS lines should be evaluated on different locations for 

expression of male sterility to ensure their stability on various locations also. 

 The genetic purity of parental lines used in hybrid breeding programme should be 

increased to restore complete fertility. 
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APPENDIX I 

Daily weather data during the crop season recorded at ICRISAT, Patancheru, 

2012-13 

Latitude: 17o53‟N Longitude: 78o27‟ E                         Altitude: 545 m 

Date 
dd/mm/yyyy 

Rain 
fall 

(mm) 

Minimum 
Temperature 

(ºC) 

Maximum 
Temperature 

(ºC) 

Rel. 
Humidity 
at 07:17 

(%) 

Rel. 
Humidity 
at 14:17 

(%) 

1-Jul-2012 0.0 22.6 32.5 51 87 

2-Jul-2012 0.0 22.6 29.8 69 87 

3-Jul-2012 0.0 22.2 29.5 64 83 

4-Jul-2012 0.0 22.3 30.2 64 81 

5-Jul-2012 0.0 23.6 31.8 53 77 

6-Jul-2012 0.0 23.8 32.7 53 76 

7-Jul-2012 13.0 20.8 30.4 59 90 

8-Jul-2012 0.0 22.7 30.7 66 84 

9-Jul-2012 0.2 22.0 32.6 55 92 

10-Jul-2012 0.4 21.7 31.2 55 93 

11-Jul-2012 0.0 22.8 33.2 50 85 

12-Jul-2012 0.0 22.5 33.7 50 84 

13-Jul-2012 0.0 23.8 33.6 51 83 

14-Jul-2012 30.2 21.0 32.7 63 98 

15-Jul-2012 11.5 21.5 29.0 71 98 

16-Jul-2012 16.9 21.6 28.4 74 97 

17-Jul-2012 3.6 22.0 27.5 81 92 

18-Jul-2012 5.6 21.9 31.3 67 93 

19-Jul-2012 10.8 20.8 29.2 71 91 

20-Jul-2012 0.6 22.0 27.4 77 91 

21-Jul-2012 71.0 20.8 28.0 78 98 

22-Jul-2012 1.8 21.6 26.0 90 92 

23-Jul-2012 0.0 21.8 27.8 78 85 

24-Jul-2012 0.0 22.0 31.3 61 91 

25-Jul-2012 0.0 22.4 30.4 67 87 

26-Jul-2012 19.0 21.0 28.8 77 91 

27-Jul-2012 0.0 22.4 27.6 73 87 

28-Jul-2012 0.0 22.0 27.7 73 90 

29-Jul-2012 14.2 21.5 30.8 61 88 

30-Jul-2012 0.4 21.8 29.8 64 90 

31-Jul-2012 0.0 22.0 29.2 66 85 

1-Aug-2012 4.8 20.9 28.2 68 91 

2-Aug-2012 0.4 21.0 29.9 62 91 

3-Aug-2012 5.4 20.8 29.2 69 91 

4-Aug-2012 1.0 21.8 27.5 92 91 

5-Aug-2012 0.0 22.0 28.0 76 88 
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6-Aug-2012 0.8 22.4 29.4 75 88 

7-Aug-2012 0.0 22.0 30.2 66 88 

8-Aug-2012 1.5 21.9 31.2 60 90 

9-Aug-2012 1.4 21.5 31.3 61 88 

10-Aug-2012 2.4 21.4 30.4 65 90 

11-Aug-2012 1.0 22.0 30.1 65 90 

12-Aug-2012 7.8 21.0 30.2 63 91 

13-Aug-2012 2.6 21.2 29.6 65 91 

14-Aug-2012 0.0 20.7 30.2 66 86 

15-Aug-2012 0.0 21.4 30.5 58 86 

16-Aug-2012 0.0 22.2 30.4 64 82 

17-Aug-2012 0.0 22.2 30.0 58 91 

18-Aug-2012 0.8 22.0 30.8 54 93 

19-Aug-2012 1.0 22.0 30.2 60 83 

20-Aug-2012 0.0 22.3 28.4 71 91 

21-Aug-2012 0.0 22.9 31.3 62 85 

22-Aug-2012 0.0 22.0 28.4 67 92 

23-Aug-2012 0.0 22.3 30.8 55 87 

24-Aug-2012 0.0 23.2 31.8 58 88 

25-Aug-2012 0.0 22.5 28.8 73 92 

26-Aug-2012 8.4 21.9 30.4 95 91 

27-Aug-2012 22.6 21.0 27.2 74 98 

28-Aug-2012 7.4 21.5 28.2 82 91 

29-Aug-2012 22.8 21.5 29.8 77 91 

30-Aug-2012 0.0 22.6 30.2 72 91 

31-Aug-2012 2.6 22.5 28.0 80 92 

1-Sep-2012 0.0 22.2 29.0 77 91 

2-Sep-2012 0.0 22.7 29.4 71 90 

3-Sep-2012 18.4 21.5 30.7 68 95 

4-Sep-2012 9.0 21.9 26.8 84 95 

5-Sep-2012 0.6 21.4 27.7 80 91 

6-Sep-2012 0.0 22.5 28.5 75 87 

7-Sep-2012 0.0 21.5 30.0 65 93 

8-Sep-2012 0.0 22.2 29.9 62 88 

9-Sep-2012 0.0 22.3 30.3 66 91 

10-Sep-2012 0.0 22.5 29.2 69 91 

11-Sep-2012 10.8 21.3 27.4 81 93 

12-Sep-2012 2.4 21.9 29.2 69 95 

13-Sep-2012 2.4 22.0 29.0 65 97 

14-Sep-2012 0.0 21.2 30.0 61 91 

15-Sep-2012 0.0 20.5 30.3 58 93 

16-Sep-2012 0.0 21.5 29.6 63 86 

17-Sep-2012 0.0 22.5 29.0 63 88 

18-Sep-2012 0.0 22.1 28.1 72 91 

19-Sep-2012 0.0 21.7 29.8 62 95 
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20-Sep-2012 0.0 22.2 30.5 66 95 

21-Sep-2012 0.0 22.2 32.2 56 98 

22-Sep-2012 6.6 21.7 30.2 70 95 

23-Sep-2012 2.6 21.5 30.2 65 98 

24-Sep-2012 0.0 21.0 29.2 69 89 

25-Sep-2012 0.0 21.7 31.0 61 95 

26-Sep-2012 0.0 20.6 30.5 62 98 

27-Sep-2012 0.0 20.6 31.3 56 98 

28-Sep-2012 0.0 20.9 31.5 55 93 

29-Sep-2012 0.0 20.7 31.4 44 95 

30-Sep-2012 5.6 21.6 31.3 56 97 

1-Oct-2012 4.8 22.0 31.0 64 95 

2-Oct-2012 29.4 21.5 29.2 71 98 

3-Oct-2012 17.4 21.5 27.2 83 97 

4-Oct-2012 21.2 20.5 28.0 75 98 

5-Oct-2012 0.0 21.7 29.2 68 91 

6-Oct-2012 0.2 22.3 30.7 71 98 

7-Oct-2012 0.5 21.0 30.2 84 93 

8-Oct-2012 0.0 20.0 31.2 58 96 

9-Oct-2012 0.0 18.2 31.4 47 93 

10-Oct-2012 0.0 16.5 30.8 50 94 

11-Oct-2012 0.0 16.1 31.6 38 92 

12-Oct-2012 0.0 15.3 31.2 37 90 

13-Oct-2012 0.0 15.6 31.4 36 94 

14-Oct-2012 0.0 14.6 31.0 38 92 

15-Oct-2012 0.0 14.9 31.7 35 92 

16-Oct-2012 0.0 15.0 31.8 30 90 

17-Oct-2012 0.0 15.0 31.8 33 90 

18-Oct-2012 0.0 14.7 31.8 36 94 

19-Oct-2012 0.0 15.6 31.5 40 98 

20-Oct-2012 0.0 19.6 30.7 44 87 

21-Oct-2012 0.3 21.0 27.8 68 95 

22-Oct-2012 0.0 19.9 29.8 59 86 

23-Oct-2012 0.0 20.0 29.9 58 98 

24-Oct-2012 0.0 19.0 30.3 52 96 

25-Oct-2012 0.0 19.2 30.3 49 96 

26-Oct-2012 0.0 19.0 31.2 41 96 

27-Oct-2012 0.0 16.7 30.6 52 96 

28-Oct-2012 0.0 16.9 30.3 43 94 

29-Oct-2012 0.0 16.6 31.0 41 63 

30-Oct-2012 0.0 14.3 29.8 32 86 

31-Oct-2012 0.0 13.6 28.2 38 90 

1-Nov-2012 0.4 21.0 29.8 47 84 

2-Nov-2012 26.6 21.0 23.5 91 98 

3-Nov-2012 11.0 21.0 24.0 95 96 
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4-Nov-2012 0.2 21.4 26.3 84 97 

5-Nov-2012 0.0 18.0 28.8 65 98 

6-Nov-2012 0.0 17.0 29.4 50 96 

7-Nov-2012 0.0 17.9 30.0 49 98 

8-Nov-2012 0.0 18.5 30.2 50 94 

9-Nov-2012 0.0 18.5 30.2 48 86 

10-Nov-2012 0.0 15.7 26.2 58 98 

11-Nov-2012 0.0 15.4 29.2 45 96 

12-Nov-2012 0.0 13.5 29.0 42 94 

13-Nov-2012 0.0 12.7 28.7 57 93 

14-Nov-2012 0.0 11.5 28.8 28 93 

15-Nov-2012 0.0 11.3 28.8 51 93 

16-Nov-2012 0.0 9.6 28.2 37 88 

17-Nov-2012 0.0 8.1 26.8 35 95 

18-Nov-2012 0.0 7.9 27.2 33 92 

19-Nov-2012 0.0 8.9 27.3 34 95 

20-Nov-2012 0.0 13.0 30.7 48 98 

21-Nov-2012 0.0 14.9 29.8 37 96 

22-Nov-2012 0.0 21.4 30.8 54 90 

23-Nov-2012 0.0 18.6 29.2 57 98 

24-Nov-2012 0.0 18.0 30.0 52 98 

25-Nov-2012 0.0 17.5 29.8 52 98 

26-Nov-2012 0.0 17.9 30.0 54 96 

27-Nov-2012 0.0 17.0 30.4 48 98 

28-Nov-2012 0.0 16.0 29.2 51 98 

29-Nov-2012 0.0 15.3 29.6 44 94 

30-Nov-2012 0.0 15.4 29.9 47 96 

1-Dec-2012 0.0 14.9 29.8 42 96 

2-Dec-2012 0.0 16.9 30.3 34 98 

3-Dec-2012 0.0 12.5 29.7 42 98 

4-Dec-2012 0.0 14.0 29.4 41 89 

5-Dec-2012 0.0 16.4 29.0 47 96 

6-Dec-2012 0.0 16.5 28.7 52 90 

7-Dec-2012 0.0 15.5 30.5 55 92 

8-Dec-2012 0.0 16.4 32.2 39 96 

9-Dec-2012 0.0 15.4 31.6 41 92 

10-Dec-2012 0.0 14.8 33.2 33 82 

11-Dec-2012 0.0 16.3 33.2 31 70 

12-Dec-2012 0.0 15.0 32.6 33 79 

13-Dec-2012 0.0 14.7 32.4 35 94 

14-Dec-2012 0.0 16.4 31.4 40 96 

15-Dec-2012 0.0 15.0 30.8 33 94 

16-Dec-2012 0.0 12.7 29.2 36 96 

17-Dec-2012 0.0 13.5 29.2 39 96 

18-Dec-2012 0.0 11.0 29.0 44 95 
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19-Dec-2012 0.0 10.5 28.9 32 95 

20-Dec-2012 0.0 10.0 28.8 39 95 

21-Dec-2012 0.0 11.4 28.9 36 98 

22-Dec-2012 0.0 12.5 28.6 44 91 

23-Dec-2012 0.0 11.5 29.2 44 91 

24-Dec-2012 0.0 12.4 28.7 30 98 

25-Dec-2012 0.0 12.2 27.8 45 98 

26-Dec-2012 0.0 8.7 28.4 28 95 

27-Dec-2012 0.0 8.5 28.7 23 90 

28-Dec-2012 0.0 7.6 28.0 23 85 

29-Dec-2012 0.0 10.9 29.4 38 91 

30-Dec-2012 0.0 18.9 29.0 52 84 

31-Dec-2012 0.0 21.0 28.8 62 85 

1-Jan-2013 0.0 19.3 30.4 59 93 

2-Jan-2013 0.0 19.4 32.0 56 96 

3-Jan-2013 0.0 19.4 32.7 45 87 

4-Jan-2013 0.0 18.4 33.2 42 91 

5-Jan-2013 0.0 16.9 32.7 40 94 

6-Jan-2013 0.0 16.5 33.5 32 94 

7-Jan-2013 0.0 16.1 31.5 44 96 

8-Jan-2013 0.0 18.5 31.2 43 91 

9-Jan-2013 0.0 17.3 30.3 45 85 

10-Jan-2013 0.0 12.9 28.8 51 89 

11-Jan-2013 0.0 11.9 29.6 37 93 

12-Jan-2013 0.0 9.5 28.9 29 88 

13-Jan-2013 0.0 8.5 29.4 22 88 

14-Jan-2013 0.0 9.9 31.5 28 83 

15-Jan-2013 0.0 12.2 32.6 26 83 

16-Jan-2013 0.0 13.3 32.0 25 96 

17-Jan-2013 0.0 14.0 31.8 27 98 

18-Jan-2013 0.0 12.3 30.1 33 98 

19-Jan-2013 0.0 14.1 29.9 31 98 

20-Jan-2013 0.0 13.2 29.5 38 93 

21-Jan-2013 0.0 12.7 29.2 38 93 

22-Jan-2013 0.0 17.7 29.7 38 94 

23-Jan-2013 0.0 15.8 29.8 39 94 

24-Jan-2013 0.0 17.3 29.3 40 90 

25-Jan-2013 0.0 18.5 30.2 39 91 

26-Jan-2013 0.0 17.4 29.8 40 92 

27-Jan-2013 0.0 16.9 30.0 44 90 

28-Jan-2013 0.0 17.8 30.6 41 92 

29-Jan-2013 0.0 16.1 29.9 40 90 

30-Jan-2013 1.0 17.9 30.4 42 94 

31-Jan-2013 0.0 15.1 28.2 47 96 

 



151 
 

APPENDIX II 

Weakly weather data during the crop season recorded at Ranchi, Jharkhand 

2012-13. 

Latitude: 23o17‟N   Longitude: 85o19‟E          Altitude: 625 m 

Standard 
weak 

Rain 
fall 

(mm) 

Minimum 
Temperature 

(ºC) 

Maximum 
Temperature 

(ºC) 

Rel. 
Humidity at 
07:17 (%) 

Rel. 
Humidity 
at 14:17 

(%) 

27 43.8 20.1 32.5 59.9 84.1 

28 33.6 20.5 29.9 69.6 85.3 

29 89.2 20.4 28.6 67.4 82.9 

30 65.5 20.3 28.8 71.9 82.1 

31 125.1 21.1 29.3 71.9 81.1 

32 76.8 19.9 28.0 71.6 81.3 

33 169.2 20.4 28.8 71.4 83.3 

34 4.5 20.7 30.5 71.5 82.0 

35 4.2 21.1 31.2 71.2 82.0 

36 92.1 20.0 28.3 71.7 82.6 

37 62.9 21.7 31.1 72.3 82.7 

38 75.1 21.3 30.3 72.4 82.3 

39 0.0 19.3 29.9 72.4 83.6 

40 0.0 19.1 31.1 68.4 83.0 

41 14.3 17.2 28.2 71.1 82.4 

42 0.0 15.1 28.1 70.7 81.1 

43 0.0 17.5 29.5 72.3 83.6 

44 16.5 11.7 25.0 71.7 83.9 

45 22.5 12.8 26.0 70.7 82.0 

46 0.0 7.4 24.2 70.6 84.4 

47 0.0 9.8 24.9 70.0 84.6 

48 0.0 6.5 24.0 71.0 85.1 

49 0.0 6.8 24.5 71.7 83.7 

50 17.4 11.9 19.6 73.6 83.3 

51 0.0 6.3 22.9 72.1 83.1 

52 0.0 1.8 19.5 70.0 82.3 

1 0.0 6.8 22.9 71.6 83.3 

2 0.0 2.5 19.7 72.1 83.4 

3 0.0 9.7 27.0 59.9 85.1 

4 0.0 4.4 21.9 70.4 82.9 

5 0.0 5.7 22.8 67.3 83.3 

6 2.2 9.2 24.6 62.6 82.6 

7 14.0 10.3 23.2 66.3 82.6 
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APPENDIX III 

Weakly weather data during the crop season recorded at Sehore, Madhya 

Pradesh, 2012-13. 

Latitude: 23o12‟N Longitude: 77o05‟ E                        Altitude: 499 m 

Standard 
weak  

Rain 
fall 

(mm) 

Minimum 
Temperature 

(ºC) 

Maximum 
Temperature 

(ºC) 

Average Rel. 
Humidity (%) 

26 9.0 27.6 35.5 46.2 

27 50.0 26.4 33.1 68.6 

28 93.0 25.5 31.0 71.5 

29 5.0 25.1 31.1 79.9 

30 101.0 22.5 25.4 92.7 

31 99.0 19.6 26.8 88.8 

32 166.0 20.7 26.0 91.3 

33 140.0 20.7 22.1 89.8 

34 87.0 25.0 29.4 91.2 

35 53.0 22.1 28.4 88.4 

36 98.0 21.8 28.4 85.9 

37 32.0 22.6 28.3 85.3 

38 0.0 21.7 29.7 79.4 

39 3.0 20.8 30.7 71.4 

40 0.0 17.9 32.5 56.2 

41 0.0 17.2 32.6 51.2 

42 0.0 16.8 31.1 48.3 

43 0.0 15.7 31.6 46.3 

44 0.0 15.1 28.2 46.6 

45 0.0 15.3 30.5 50.0 

46 0.0 14.4 29.7 50.8 

47 0.0 13.3 28.4 51.9 

48 0.0 13.6 26.5 55.5 

49 0.0 11.9 27.8 53.6 

50 0.0 27.2 26.7 56.0 

51 0.0 7.4 24.6 59.1 

52 0.0 6.6 23.2 51.4 

1 0.0 6.9 22.0 59.5 

2 0.0 6.3 23.3 51.0 

3 0.0 10.1 23.9 58.6 

4 0.5 6.1 20.9 52.9 

5 0.0 10.2 25.3 54.0 
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