

Introduction and Expansion of Improved Pigeonpea (*Arhar*) Production Technology in Rainfed Upland Ecosystems of Odisha

Technological Empowerment and Sustainable Livelihood

Project Completion Report (2011-2015) and 2014-2015 Annual Accomplishment Report

International Crops Research Institute for the Semi-Arid Tropics

Citation: Mula MG, Sameer Kumar CV and Das Saroj. 2015. Introduction and Expansion of Improved Pigeonpea (*Arhar*) Production Technology in Rainfed Upland Ecosystems of Odisha, 'Technological Empowerment and Sustainable Livelihood'. Project Completion Report (2011-2015) and 2014-2015 Annual Accomplishment Report (June 2014 - May 2015). Patancheru 502 324, Telangana, India: International Crops Research Institute for the Semi-Arid Tropics. 96 pp.

Photos: ICRISAT

© International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), 2015. All rights reserved.

ICRISAT holds the copyright to its publications, but these can be shared and duplicated for non-commercial purposes. Permission to make digital or hard copies of part(s) or all of any publication for non-commercial use is hereby granted as long as ICRISAT is properly cited. For any clarification, please contact the Director of Strategic Marketing and Communication at icrisat@cgiar.org. ICRISAT's name and logo are registered trademarks and may not be used without permission. You may not alter or remove any trademark, copyright or other notice.

International Crops Research Institute for the Semi-Arid Tropics

11 May 2015

Dr PK Meherda Director Department of Agriculture and Food Production Bhubaneswar, Odisha Email: <u>diagri.or@nic.in</u>

Dear Dr Meherda,

Sub: Submission of Project Completion Report and 2014-15 Physical and Financial Accomplishment Report under the RKVY funded project 'Introduction and Expansion of Improved Pigeonpea (Arhar) Production Technology in Rainfed Upland Ecosystems of Odisha'

Greetings!

We are pleased to submit the 'Project Completion Report' and the '2014-15 Physical and Financial Accomplishment' under the RKVY funded project 'Introduction and Expansion of Improved Pigeonpea (Arhar) Production Technology in Rainfed Upland Ecosystems of Odisha'. The project has achieved an increase in investment gain by as much as 700% (Rs 853 million as compared to the financing of Rs 102.89 million) over four years. The achievement benefitted 43,354 smallholder farmers (including 3,776 women) under the improved pigeonpea production technology (IPPT) and the seed production program. With these technologies, an increase in productivity of at least 37% was seen compared to the landraces and there was a minimum increase of 170-190% in net income. A total of 25,999 ha were cultivated during the project duration, which corresponded to an increase of 4% as against the physical target of 25,000 ha.

The Odisha University of Agriculture and Technology (OUAT) in partnership with ICRISAT, smallholder farmers, and the Department of Agriculture through Rashtriya Krishi Vikas Yojana (RKVY) have released a medium-duration, disease resistant pigeonpea hybrid (ICPH 3762) as 'Parbati' in the State Varietal Release Committee during October, 2014. The release proposal was further acknowledged through a certificate by assigning the National Identity Number IC 612565 by the Division of Germplasm Conservation of ICAR – National Bureau of Plant Genetic Resources on 4 March 2015. This is a first for pigeonpea in the state because no other varieties have been released earlier.

Further, smallholder farmers are happy with their produce as manifested in the documented 'Odisha Success Stories'. A farmer from Rayagada (**Mr Pradip Kumar Panda**) received awards and recognition; he was honored by the President of India (**Shri Pranab Mukherjee**) with the "**Krishi Karman Award for Progressive Farmers**" for pulses (pigeonpea) on 10 February 2014. This recognition was the first for Odisha, particularly for pigeonpea.

Contd., in page 2

Heodquarters: Patuncheru 502 324 Telangana, India Tel +91 40 30713071 Fax (O) +91 40 3071 3074 www.icrisat.org ICRISAT's scientific information: http://EXPLOREit.icrisat.org Inclusive Market-Oriented Development (IMGD) – our approach to bringing prosperity in the drylands ICRISAT is a member of the CGIAR Consortium

// Page 2 //

Letter to Dr PK Meherda, Director, Department of Agriculture and Food Production, Government of Odisha

The institutionalization of the seed system resulted in producing 1,941 tons of various seed classes (Foundation, Certified and Truthfully Labeled seeds) of farmer-preferred varieties (ICPL 14001, ICPL 14002, ICP 7035, and ICPL 88039) and hybrids (ICPH 2671, ICPH 2740, ICPH 3762) through the 'one village one variety' concept.

For long-term sustainability of quality seeds in the project, ICRISAT produced a total of 16.9 tons of nucleus/breeder seeds, which were made available in the seed system. The improved pigeonpea production technology (IPPT) resulted in producing a total 13,851 tons of commercial seeds (ICPL 14001, ICPL 14002, ICP 7035, ICPH 2671 and ICPH 2740) registering 37% increase in productivity as against the previously cultivated landrace.

There was a remarkable increase in participation of stakeholders (farmers, DA Officers and technicians, NGOs and ICRISAT staff) in capacity building and awareness in relation to pigeonpea cultivation. A total of 64,636 patrons (including 9,747 women) attended various meetings, seminar-workshops, trainings on crop seed production of hybrids and varieties, IPM/IDM, exposure visits, and *dal mill* and warehouse operation and management. The operationalization of *dal mills* for value addition in Rayagada, Kalahandi and Nuapada gave an impetus to the adoption of inclusive market-oriented development (IMOD) by providing a cheap source of processed pigeonpea dal in the village and adjacent villages, apart from additional livelihood to women self-help groups and NGOs. Likewise, the construction of 25 metric ton capacity warehouses at Rayagada and Nuapada; and a 100 metric ton warehouse at Kalahandi were very useful.

We wish to thank you for your continuous support to the project.

With warm regards,

Joanna Kane-Potaka Director, Strategic Marketing & Communication

Copy: Mr Saroj Das, Director for Pulses, Government of Odisha

Drs Peter Carberry / Rajeev K Varshney / Myer G Mula / Ms Supriya Bansal, ICRISAT

Introduction and Expansion of Improved Pigeonpea (Arhar) Production Technology in Rainfed Upland Ecosystems of Odisha

'Technological Empowerment and Sustainable Livelihood'

Project Completion Report

(2011-2015)

and

2014-2015 Annual Accomplishment Report (June 2014-May 2015)

Compiled and Written by Myer G Mula, CV Sameer Kumar and Saroj Das

Submitted to

The Director

Department of Agriculture and Food Production Bhubaneshwar, Odisha (RKVY Sub-scheme)

International Crops Research Institute for the Semi-Arid Tropics

Contents

Section 1: Project Completion Report (2011-2015) 1
Completion report
Highlights of Accomplishment3
Project Benefit in Four Years (2011-2014 cropping season)7
Mid-Term Project Assessment Study (2011 and 2012 cropping season)7
Section 2: 2014-15 Annual Accomplishment
2014-15 Annual Accomplishment Report11
Executive Summary 11
Physical Accomplishment
Improved Pigeonpea Production Technology (IPPT)
Farmer Participatory Varietal Selection Trial (FPVST)
Hybrid Release in Odisha
Seed Systems
Certified Seed Production
Foundation Seed Production 19
Hybrid seed production (AxR) 21
Research Backstopping at ICRISAT 22
Seed Reconstitution and Multiplication at ICRISAT23
Seed Procurement for 2015-2016 Cropping Season23
Capacity Building 24
Literature, Print and Electronic Media, and Publication24
Literature (Booklets and Pamphlets) 24
Print and Electronic Media 25
Publication
Post-Harvest and Processing Facility 26
Awards and Recognitions
Challenges for the Improvement of the Project27
Financial Report27
Section 3: Photo documentation
Improved Pigeonpea Production Technology (IPPT)
a. Seed Distribution
b. Seed Sowing
c. IPPT in Various Cropping System

Farmer Participatory Varietal Selection Trial (FPVST)	37
Foundation, Certified and Hybrid Seed Production	39
Harvesting and Threshing of Foundation, Certified and Hybrid Seeds	40
Seed Procurement and Processing	42
Seed Production and Processing of Breeder and Hybrid Seeds @ ICRISAT	43
Variety and Hybrid Seed Production and Seed Reconstitution @ ICRISAT	44
Capacity Building	46
a. Specialized Training for DoA Staff, NGOs and ICRISAT Personnel	. 46
b. Project Orientation Workshop	. 49
c. Farmers Specialized Training on Godown and Dal Mill Processing and Management	. 51
d. IPM and IDM Farmers Training	. 52
e. Farmer Seed Growers Training	. 54
f. Farmers Awareness Meetings	. 56
g. Farmer's Field Day	. 58
h. Attendance to the State and District Agricultural Trade Fair	. 60
Farmer Friendly Literatures	63
a. Booklets and Pamphlets	. 63
b. Publications	. 64
Prints and Electornic Media	66
Posters	. 66
News Articles	67
a. Local News Articles	. 67
b. International News Articles (ICRISAT Happenings Newsletter)	. 71
Processing and Post Harvest Facility	75
Project Monitoring	78
On-Farm/On-Station Demonstration	86
Conduct of Midterm Project Assessment	87

Figures

Figure 1. Project's Organizational Flow Chart	. viii
Figure 2. Seed system institutionalized in the Odisha pigeonpea project	. 16

Tables

Table 1. Highlights of accomplishments vis-a- vis project objectives (2011-15)	3
Table 2. Details of the project area in the five districts covered in Odisha	5
Table 3. Summary of four year capacity building	5
Table 4. Summary of farmer friendly literature distributed	6
Table 5. Summary of post-harvest facility	6
Table 6. Project Benefit in 4 years (2011-2014)	7
Table 7. Pigeonpea projected area and production for 2015 and 2020	8
Table 8. Status of improved pigeonpea production technology (IPPT) in the five districts	13
Table 9. FPVST status of medium duration cultivars in the five districts.	15
Table 10. FPVST status of early duration cultivars in the five districts	15
Table 11. Certified seed production by district and block.	18
Table 12. Foundation seed production by district and block	19
Table 13. Hybrid seed production (AxB) by district and block	21
Table 14. ICRISAT breeding and research program	22
Table 15. Summary of Breeder seeds produced at ICRISAT.	23
Table 16. 2015 Seed procurement	23
Table 17. Capacity building conducted and attended by various stakeholders.	24
Table 18. Farmer friendly literature in Oriya language	24
Table 19. Enhancing local-level awareness through print and electronic media	25
Table 20. 2014 Publications	26
Table 21. Constraints in project implementation	27

List of Partners

Agency	Name of Staff	Designation
Department of Agriculture	PK Meherda	Director
and Food Production, Odisha	SK Das	Assistant Director (Pulses)
	Mr A Mandal	DDA – Nuapada
	Mr KC Singh	DDA – Rayagada
	Mr A Sahu	DDA – Kalahandi
	Mr K Gouda	DDA – Boudh
	Mr M Mallik	DDA – Bolangir
ICRISAT	Dr D Bergvinson	Director General
	Dr Peter Carberry	DDG - Research
	Dr R Varshney	Director – Grain Legumes
	Dr CVS Kumar	Senior Scientist/Pigeonpea Breeding
	Dr MG Mula	Senior Scientist/Project Investigator
	Mr RV Kumar	Manager, Field Research Operations
	Mr S Tripathy	State Coordinator
	Ms J Das	Dist. Coordinator (Kalahandi)
	Mr Y Naik	Dist. Coordinator (Nuapada and Bolangir)
	Mr S Mohanty	Dist. Coordinator (Rayagada and Boudh)
Development in Education & Environment Protection NGO	Mr BK Meher	Director, Nuapada District
LOKSEBAK NGO	Mr AP Mohanty	Secretary, Kalahandi Dist.
People's Forum NGO	Mr SK Samal	Program Manager, Boudh Dist.
Shramika Shakti Sangha NGO	Mr TS Dharua	President, Bolangir Dist.
Centre for Social Action and Tribal Development NGO	Mr PK Pradhan	Secretary, Rayagada Dist.
OSSOPCA	Mr CS Rao	Director

Figure 1. Project's Organizational Flow Chart.

The flow chart depicts the institutional organizational setup of the project's relationships and procedures in a way that shows how partnership can obtain the best results from the various efforts. The chart illustrates the structure of the project in terms of relationships among personnel or departments, and also highlights the lines of authority and responsibility within the project. Section 1: Project Completion Report (2011-2015)

Completion report

Background Information

While 70% of the population lives in the rainfed upland ecosystem of Odisha, around 85% of the workforce depends on agriculture. There are about 8.7 million hectares of agricultural lands in the state of which 70% are rainfed. Production of pulses has been reduced to 56.4% of the total agricultural area, in the last ten years. The districts of Rayagada, Kalahandi, Boudh, Bolangir and Nuapada were identified by the project because of their dry and rainfed ecology. About 53,350 hectares of total tillable area is suitable for new high yielding pigeonpea varieties and hybrids in the five districts. The project intends to introduce and expand the production of high yielding pigeonpea varieties and hybrids by means of adaptation, selection and promotion through a farmer participatory approach.

Pigeonpea is mainly grown in rainfed upland areas and is one of the most important pulse crops of the state. It is an affordable source of protein (22-24%) and contains carbohydrates, minerals and vitamins. Pigeonpea, which is also a good source of essential amino acids, can be an excellent crop to promote food and nutritional security in Odisha. However, its productivity is low in Odisha at 415 kg/ha compared to the national average of 700 kg/ha. It also has a very low seed replacement ratio of 2-3%. A large section of farmers in the rainfed upland ecosystems of Odisha have remained isolated from improved cultivars and management practices of pigeonpea for various reasons. There is ample scope for the expansion of high yielding short and medium duration pigeonpea varieties and hybrids in the rainfed areas for the development of sustainable livelihoods. It is mainly for these reasons that this project was implemented.

The project (Introduction and Expansion of Improved Pigeonpea (Arhar) Production Technology in the Rainfed Upland Ecosystems of Odisha' was funded by the Department of Agriculture and Food Production, Government of Odisha, India, through the Rashtriya Krishi Vikas Yojana (RKVY) sub-scheme 353 (No. 15(03)/19/2011). This was approved on 23 May 2011, for a period of 4 years from 2011 to 2015 with a total budget of Rs 10.288 crores (US\$2.29 million). The project was officially launched on 09 August 2011 at ICRISAT, Patancheru, Telangana, India.

Highlights of Accomplishment

The developmental project operates around a holistic approach with emphasis on seed systems, technology improvement, capacity building, post-harvest innovation, and market oriented development; the varietal release in the state was a bonus. Table 1 presents the highlights of accomplishments. A total of 25,999 ha were cultivated during the entire duration of the project which corresponded to an increase of 4% as against the physical target of 25,000 ha (Table 2).

Table 1. Highlights of a	Table 1. Highlights of accomplishments vis-a- vis project objectives (2011-2015).						
Project Objectives	Accomplished						
To evaluate and identify newly developed high yielding disease resistant varieties and hybrids of pigeonpea for further introduction and expansion.	A total of 315 sites of farmer preferred varietal selection trials (FPVST) were established for the duration of the project. The project has introduced 14 cultivars of high yielding disease resistant varieties and hybrids. Among this, hybrid ICPH 3762 was released in Odisha as 'Parbati' in 2015 and three more varieties (ICP 7035, ICPL 14001 and ICPL 14002) will be properly documented for further release by the state. As per the records, no pigeonpea varieties or hybrids have been released so far in the state.						

Table 1 Highlights of accomplishments vis a vis project objectives (2011 2015)

Continued...

Project Objectives	Accomplished
To promote cultivation of high yielding pigeonpea varieties and hybrids in marginal soils.	The farmer preferred varieties (ICPL 14001, ICPL 14002 and ICP 7035) and hybrids (ICPH 2740 and ICPH 2671) were introduced for commercial purposes under improved pigeonpea production technology (IPPT) covering 21,714 ha and benefitting 38,011 smallholder farmers including 3,520 women farmers (Table 6) with an average yield of 587 kg/ha. As compared to farmers local variety of 368 kg/ha in five covered districts. The farmer-preferred varieties and hybrids were sown in different cropping systems - as an intercrop with cotton, maize, groundnut, upland rice, finger millet, and cucumber, along rice bunds or as sole crop. In some districts, it served as a soil conservation mechanism in mountain slopes, especially in the upland areas of Kalahandi and Rayagada.
To develop village-level seed systems to achieve self-sufficiency in seeds of farmer preferred improved varieties and hybrids of pigeonpea.	Seed saving is common among resource-poor farmers of Odisha since this is the only way for them to sustain their farming livelihood. The seed system model was formed in this project to put in place the 'one village one variety' concept because the formal seed sector cannot ensure the timely supply of the huge volumes of quality seeds required by the farmers. The benefit of partnering with the Seed Certifying Agency, OSSOPCA, is that it has strengthened and institutionalized the informal seed production system in the districts of Kalahandi, Nuapada, Bolangir and Rayagada. A total of 1,941 tons of farmer preferred varieties and hybrid seeds of various seed classes were produced, covering 4,080 hectares and benefitting 5,343 smallholder farmers including 256 women farmers (Table 6).
To build the capacity of farmers, NGOs and self-help groups, in sustainable pigeonpea production technology components.	A total of 64,636 stakeholders including 9,747 women (farmers, DA Officers and Technicians, NGOs, and ICRISAT staff members) attended various awareness meetings, seminar-workshops, training sessions on crop seed production of hybrid and varieties, IPM/IDM, dal mill operation and maintenance, godown management, international training, and season-long courses (Table 3). To reinforce capacity building, literature was developed and distributed to farmers or aired using various mass media tools (Table 4).
To enhance profitability by linking production with dal processing and marketing.	As part of value addition and empowering smallholder farmers through inclusive market-oriented development (IMOD), the project has provided 9 dal mills to NGOs and SHGs and constructed two 25 mt godowns in Rayagada and Nuapada, and one 100 mt godown in Kalahandi (Table 5).
To provide research backstopping for refinement and research on pigeonpea and IPPT components as identified by researchers and farmers in the target area.	One of the objectives of this project is to notify smallholder farmers about new technologies including high yielding cultivars through FPVST. The project provided 14 high yielding cultivars (9 varieties and 5 hybrids) to look into adaptability and performance in comparison with the existing local varieties through improved production practices. The straight line method of planting on ridges was followed with a seed rate of 8 kg/ha for local varieties and 4 kg/ha for hybrids including fertilizer at the rate of 100 kg/ha of DAP for all the trials. Aside from FPVST, research cum seed production of nucleus and breeder seeds of farmer preferred varieties were produced at ICRISAT. A total 16.9 mt were produced and utilized in the project. More than 50 crosses were made at the ICRISAT headquarters by utilizing local Odisha landraces and ICRISAT elite lines to breed vegetable type of pigeonpea.

Table 1. Highlights of accomplishments vis-a- vis project objectives (2011-2015). (Continued)

Table 2. Details of the project area in the five districts covered in Odisha.

	Total	Total	Blo	ock	Project Area (ha)									
	area	Village	Total	Cover	20)11	20	12	20)13	20	14	To	tal
Districts	(ha)	(no)	(no)	(no)	Т	А	Т	А	Т	А	Т	А	Т	А
Rayagada	20800	2667	11	4	1500	1504	708	705	1000	1096	2500	1894	5708	5199
Kalahandi	13190	2236	13	6	1000	1116	2026	2089	2238	2242	3000	3519	8264	8966
Nuapada	5870	663	5	4	500	504	1522	1633	2000	2269	2500	3024	6522	7430
Boudh	4410	1186	3	2	-	-	503	500	750	697	1000	1053	2253	2250
Bolangir	9080	1794	14	2	-	-	503	503	750	608	1000	1043	2253	2154
Total	53350	7546	46	18	3000	3124	5262	5430	6738	6912	10000	10533	25000	25999
				10	2000	9751	2202	0.00	0,00	0012	10000	10000	20000	20000

Note: T – target; A - accomplished

Table 3. Summary of four year capacity building.

		Particip	ant (no.)		
Particular	2011	2012	2013	2014	Total
Project Orientation and Planning Workshop	513 (18F)	65 (1F)	88 (2F)	84 (22F)	750 (43F)
Project launching cum training workshop	16 (1F)	-			16 (1F)
Customized season-long training at ICRISAT (July 2013 - February 2014)	-	-	8	8 (2F)	16 (2F)
1st International Training Course on pigeonpea seed production and management	11	-	-	-	11
Pigeonpea Seed Production and Management Training	-	90 (10F)	506 (46F)	806 (120F)	1,402 (176F)
Hybrid seed production and management training for farmer seed growers	-	35	-	-	35
International training course on high throughput phenotyping of chickpea and pigeonpea	-	-	3	-	3
Training cum field exposure on pigeonpea seed production	-	13	38 (3F)	122 (117F)	173 (120F)
Farmers specialized training programs	195 (11F)	553 (4F)	696 (51F)	1,629 (311F)	3,073 (377F)
Intra-district exposure visit @ Rayagada	-	-	35 (3F)	-	35 (3F)
Scientific visit @ ICRISAT	-	19 (1F)	47 (8F)	8 (8F)	74 (17F)
Dal mill processing and maintenance training	-	38 (14F)	85 (42F)	39 (24F)	162 (80F)
Godown management training	-	-	70 (6F)	-	70 (6F)
Monthly hands-on farmers training	-	-	-	28 (2F)	28 (2F)
Farmers awareness meetings	-	3,663 (785F)	19,113 (2,881F)	33,983 (5,087F)	56,759 (8,753F)
Farmer's Field Day	1,248 (56F)	324 (53F)	457 (58F)	-	2,029 (167F)
Total	1,983 (86F)	4,800 (868F)	21,146 (3,100F)	36,707 (5,693F)	64,636 (9,747F)

Торіс	2011	2012	2013	2014	Total
Cultural Management Practices of Pigeonpea	2,000	3,750	5,000	5,000	15,750
Integrated Pest and Disease Management	3,000	2,800	7,000	7,000	19,800
Effective and efficient seed production system of pigeonpea varieties and hybrids	-	6,750	10,000	10,000	26,750
Total	5,000	13,300	22,000	22,000	62,300

Table 4. Summary of farmer friendly literature distributed.

	Year										
	2011		2012		2013		2014		Total		
Particulars	Т	Α	Т	Α	Т	Α	Т	Α	Т	А	Remarks
Dal Mills	4	4	3	3	2	2	-	-	9	9	
Spiral seed cleaner	4	6	3	3	2	2	-	-	9	11	
Godown	3	2	-	1	-	-	-	-	3	3	Two 25 mt godowns were completed in 2014 at Nuapada and Rayagada while one 100 mt godown was partially completed in 2014. Poor workmanship was observed in the 100 mt godown in Bhawanipatnai, managed by the DDA Engineering Department of Kalahandi.

The over-all performance of the project has highlighted the increase in investment gain by as much as 700% (Rs 853 Million) as compared to the financing of Rs 102.89 Million for four years. Furthermore, smallholder farmers are happy with their produce as manifested in the documented 'Odisha Success Stories'. A farmer from Rayagada (**Mr Pradip Kumar Panda**) received awards and recognition; he was honored by the President of India (**Shri Pranab Mukherjee**) with the "**Krishi Karman Award for Progressive Farmers**" for pulses (pigeonpea) on 10 February 2014. This recognition was the first for Odisha or maybe for the entire country particularly for pigeonpea.

To put weight on the accomplishments, the Odisha University of Agriculture and Technology (OUAT) in partnership with ICRISAT, smallholder farmers, and the Department of Agriculture through Rashtriya Krishi Vikas Yojana (RKVY) have released a medium-duration, disease resistant pigeonpea hybrid (ICPH 3762) as 'Parbati' in State Varietal Release Committee during October, 2014. The release proposal was further acknowledge through a certificate by assigning the National Identity Number IC 612565 by the Division of Germplasm Conservation of ICAR – National Bureau of Plant Genetic Resources last March 04, 2015. This is the first of its kind for pigeonpea because no other varieties have been released in the state.

Project Benefit in Four Years (2011-2014 cropping season)

In the span of four years from 2011-2014, the net benefit was recorded at Rs 729 Million as against the total investment of Rs 102.89 Million, amounting to an increase of more than 700% (Table 6). The calculation was only based on the production of the improved pigeonpea production technology (IPPT) and on seed production (SP). The achievement benefitted 43,354 smallholder farmers including 3,776 women. Likewise, during the four year period, 25,794 hectares were covered by the project as against the target of 25,000 hectares with an increase of 794 hectares.

	Budget		Area	a (ha)	_ No. of	Total	Estimated	% Investment
Year (a)	allocationProgramTargetActualfarmers(RsM) (b)(c)(d)(e)(f)		production (t) (g)	value (RsM) (h)	gain I=(b vs h)			
2011	21.04	IPPT	2000	2102	5718	572	26	
		SP	1000	1000	1667	318	19	
2012	24.42	IPPT	4000	4069	6353 (385F)	2102	95	
		SP	1200	1300	1437 (67F)	590	35	
2013	27.15	IPPT	5620	5973	9983 (1358F)	4201	189	
		SP	1180	1240	1669 (137F)	691	42	
2014	30.28	IPPT	9500	9570	15957 (1777F)	6979	419	
		SP	500	540	570 (52F)	342	28	
Total	102.89		25,000	25,794	43354 (3776F)	15795	853	>729%

Mid-Term Project Assessment Study (2011 and 2012 cropping season)

The results of the study depict the project's success in achieving its initial goals that were mainly, to evaluate and identify newly developed high yielding disease resistant pigeonpea varieties and hybrids in marginal soils; to develop village-level seed delivery systems to achieve self-sufficiency in seeds; capacity building of farmers, self-help groups, NGOs and Agri-technicians in sustainable production technology components; to enhance profitability by linking production with dal processing and marketing; and to provide research backstopping for refinement and improved pigeonpea production technology (IPPT) components.

The study covered a wide socio-demographic mixture of people from all age groups, with varying marital status and educational qualifications. Increased participation by women (34%) was noticed as part of the project activities. The women participants learned line sowing as well as improved seed storage practices and at the same time participated in various cultural management practices. Farmers were introduced to a number of technologies such as the introduction of new high yielding varieties (ICPL 14002, ICPL 14001 and ICP 7035) as against their landraces; reducing the seed rate for farmers' practice from 20-25 kg/ha to 12 kg/ha; application of fertilizer [di-ammonium phosphate (DAP) at 100 kg/ha]; application of insecticide, weeding,

and line sowing in ridges, which were not being practiced before the project started. With these technologies, a noticeable increase of at least 70% was seen in the productivity as against landraces and there was an increase of a minimum of 170-190% in net income.

Overall, the results obtained are very positive and suggestions were considered and have been implemented accordingly. The positive achievements of the project bring to light the need for continuous and additional support for the project not only because of the current investment gain but also due to the projected increase in production by year 2020 especially in Rayagada and Boudh (Table 7).

Table 7. Pigeor	npea projected area and p	production for 201	5 and 2020.	
	A	rea ('000 hectares)		
			Proje	ction
District	1990 - 2007 Area	CAGR*	2015	2020
Bolangir	9.19	-0.02	7.35	6.65
Boudh	4.80	0.05	6.51	8.17
Kalahandi	13.25	-0.03	11.01	9.39
Nuapada	5.87	-0.04	4.40	3.66
Rayagada	20.89	0.01	23.73	25.40
	Pro	oduction ('000 tons))	
	1990 – 2007		Proje	ction
District	Production	CAGR*	2015	2020
Bolangir	6.78	-0.01	6.43	6.03
Boudh	3.27	0.04	4.21	5.07
Kalahandi	13.18	-0.02	11.99	10.76
Nuapada	4.82	-0.01	3.82	3.60
Rayagada	19.34	0.01	19.58	20.70
*Compound Annua	al Growth Rate			

Section 2: 2014-15 Annual Accomplishment

2014-15 Annual Accomplishment Report

Executive Summary

In the last year of its implementation the project has covered a larger area whereby production of pigeonpea has increased tremendously due to the interventions provided by ICRISAT through improved production practices and the adoption of high yielding varieties and hybrids. The total area sown with pigeonpea was recorded at 8,331 ha for improved pigeonpea production technology (IPPT); farmer preferred varietal selection trials (FPVST) were conducted at 105 sites or 42 ha (with 79 successful sites or 32 ha); and 371 ha productively produced various classes of seeds (foundation, certified and truthfully labeled seeds) of both farmers' preferred varieties and hybrids. A total of 10,533 ha were covered by the project as compared to the physical target of 10,000 ha, an increase of 533 ha (5%).

A remarkable increase in production was likewise observed with IPPT which generated 6,979 metric tons with a productivity of 765 kg/ha (better than the landrace at 451 kg/ha) and benefitted 15,957 smallholder farmers including 1,777 women (11%). The farmer-preferred varieties were sown in different cropping systems as an intercrop with cotton, maize, groundnut, upland rice, finger millet, and cucumber, along rice bunds or as a sole crop. In some districts, it served as a soil conservation mechanism, especially in the upland areas of Kalahandi and Rayagada. Likewise, smallholder-farmer seed growers have successfully enhanced various seed classes of farmer preferred varieties and hybrids by producing 306 metric tons. In this respect, the project has procured from farmer seed-growers, 15 metric tons of various seed classes for the extension project. This concept was introduced to strengthen the seed delivery system of the state by continuously supplying on time, quality seeds to smallholder-farmers. To backstop the seed system chain, ICRISAT has produced and supplied breeder seeds and hybrid parents, of farmer preferred varieties and hybrids. This has resulted in the production of 1,301 kgs of 14 high yielding cultivars. In addition, more than 25 crosses under the ICRISAT breeding program were produced to obtain vegetable type of pigeonpea. The said breeding lines will be further tested for their stability.

To constantly respond to the farmers' need for new high yielding cultivars, the FPVST showcased 5 hybrids and 8 varieties and results revealed that in medium duration trials, cultivars that produced more than 1 metric ton are ICPH 3933 (1513 kg/ha) followed by ICPL 20108 (1338 kg/ha), ICPH 2751 (1302 kg/ha), ICPL 14001 (1116 kg/ha) and ICPL 14002 (1103 kg/ha) which are far better than the local counterpart at 549 kg/ha. For early duration trials, all newly tested cultivars had higher yields than the local check. ICPL 88034 (1373 kg/ha), PRG 176 (1332 kg/ha), ICPL 161 (1221 kg/ha) and ICPL 88039 1174 kg/ha) had 79-110% higher yields than the local check.

There was a remarkable increase in the number of stakeholders (farmers, DA Officers and Technicians, NGOs, and ICRISAT staff) involved in capacity building and awareness in relation to pigeonpea cultivation. A total of 36,707 patrons (including 5,693 women) attended various meetings, seminar-workshops, training sessions on crop seed production of hybrid and varieties, IPM/IDM, exposure visits, and dal mill operation and management, which were held at different locations. Backing-up all these activities is the distribution of 22,000 copies of a wide range of farmer friendly literature in the local Oriya language. In addition, information on project implementation, activities and gains was disseminated through publication, in local and international print and electronic media for wider circulation among the stakeholders.

In order to market and add value to pigeonpea, a total of 30,000 kgs have been processed into dal and sold among farmers, during market days and trade fairs.

Physical Accomplishment

Improved Pigeonpea Production Technology (IPPT)

A majority of the farmers in Odisha cultivate pigeonpea landraces. Around 80-85% of the smallholder farmers plant pigeonpea as an intercrop (either with cotton, groundnut, maize, upland rice, pearl millet or finger millet), along rice bunds and along fish pens. Farmers normally do not apply any inputs (fertilizer and pesticides) and do not practice weeding in sole cropping. The intervention of the project in the IPPT was only through the provision of certified and TL seeds of new high yielding varieties and hybrids (ICPL 14002,ICPL 14001, ICP 7035, ICPH 2671, and ICPH 2740), line sowing (some farmers do line sowing in ridges) along with capacity building courses and distribution of literature on cultural management and practices, integrated pest management (IPM) and integrated disease management (IDM).

A total of 8,331 hectares were sown under IPPT which is 2,832.4 ha higher than the previous year's operation of 5,498.6 ha. The total production was 6,979.36 metric tons with a productivity of 765 kg/ha (better than the local check which was at 451kg/ha) and benefitted 15,957 smallholder farmers including 1,777 women (11%) (Table 8). However, productivity was lower than the previous year's cropping season due to non-favorable climatic conditions. Farmers prefer the new introduced varieties and hybrids to their local check due to their better taste and milling quality. Among the five districts, Kalahandi, Rayagada and Boudh performed better in terms of productivity at 929, 843 and 841 kg/ha, respectively as compared to the other two districts. However, the calculated increase in yield in the five districts was 70% more than their local check.

Rayagada: The average yield obtained by farmers from the varieties and hybrids was 843 kg/ha or 14.5% higher than local check which was 736 kg/ha (Table 8). A total of 1,086 ha were cultivated benefitting 3,007 smallholder farmers including 324 female farmers. Total production by the district was recorded at 915 metric tons.

Kalahandi: The average productivity of the varieties and hybrids was recorded at 929 kg/ha, a 165% higher yield than local check which was 350 kg/ha (Table 8). A total of 3,355 ha were sown with various cropping systems benefitting 6,203 smallholder farmers including 641 women farmers. Total production by the district was documented at 3,117 tons.

Nuapada: A total of 2,869 ha were planted with high yielding varieties and hybrids (which had a total production of 1823 tons) and served 4,453 smallholder farmers (374 women). The productivity level was recorded at 638 kg/ha, an increase of 110% over that of the local check which was 304 kg/ha (Table 8).

Boudh: As shown in Table 2, 1,065 smallholder farmers (166 women) benefitted from sowing 632 ha of pigeonpea varieties (ICPL 14002, ICP 7035 and ICPL 14001). Production and productivity was recorded at 531.8 tons and 841 kg/ha, respectively (Table 8). The productivity level was 35% higher than that of their local check (625 kg/ha).

Bolangir: The production and productivity of the district were recorded at 591 tons and 575 kg/ha, respectively covering 1,021 ha and benefitted 1,229 smallholder farmers including 272 female farmers (Table 8). The productivity was 140% higher than that of their local counterpart.

Table 8. Sta	itus of improved pi	Table 8. Status of improved pigeonpea production technology (IPPT) in the five districts.	the five districts				
			Farmers	Area	Total production	Average vield	Local check average vield
District	Block	Cultivar	(no.)	(ha)	(t)	(kg/ha)	(kg/ha)
Rayagada	Rayagada	ICPL 14002 / ICPL 14001 / ICP 7035 / ICPH 2671 / ICPH 2740	685 (92F)	269	231.03	859	750
	Kolnara	ICPL 14002 / ICPL 14001 / ICP 7035	531 (37F)	197	159.08	807.5	780
	K.singhpur	ICPL 14002 / ICPL 14001 / ICP 7035 / ICPH2740	908 (157F)	257	206.03	802	750
	Ramnaguda	ICPL 14002 / ICPL 14001 / ICP 7035 / ICPH 2671 / ICPH 2740	613 (22F)	270	240.63	891	200
	Bisamcuttack	ICPL 14002 / ICPL 14001	270 (16F)	93	78.54	844.5	200
	Sub-Total		3007 (324F)	1086	915.31	843	736
Kalahandi	Bhawanipatna	ICPL 14002 / ICPL 14001 / ICP 7035 / ICPH 2671 / ICPH 2740	1057 (132F)	610	557.30	913.6	380
	Kesinga	ICPL 14002 / ICPL 14001 / ICP 7035 / ICPH 2671 / ICPH 2740	634 (46F)	620	568.67	917.2	370
	Narla	ICPL 14002 / ICPL 14001 / ICP 7035	1661 (120F)	680	636.21	935.6	380
	Lanjigarh	ICPL 14002 / ICPL 14001 / ICP 7035 / ICPH 2671 / ICPH 2740	843 (137F)	510	471.63	924.8	390
	Dharmagarh	ICPL 14002 / ICPL 14001 / ICPH 2671 / ICPH 2740	791 (111F)	225	224.01	995.6	290
	Golamunda	ICPL 14002 / ICPL 14001 / ICP 7035	754 (40F)	430	397.91	925.4	340
	Th.rampur	ICPL 14002 / ICPL 14001 / ICP 7035 / ICPH 2740	463 (55F)	280	262	935.6	300
	Sub-Total		6203 (641F)	3355	3117.7	929.3	350
							Continued

Table 8. Sta	tus of improved pi	Table 8. Status of improved pigeonpea production technology (IPPT) in the five districts. (Continued)	he five districts.	(Continued)			
					Total	Average	Local check
			Farmers	Area	production	yield	average yield
District	Block	Cultivar	(no.)	(ha)	(t)	(kg/ha)	(kg/ha)
Nuapada	Komna	ICPL 14002 / ICPL 14001 / ICP 7035 / ICPH 2671/ ICPH 2740	1342 (94F)	811	494.71	610	310
	Khariar	ICPL 14002 / ICPL 14001 / ICP 7035 / ICPH 2671 / ICPH 2740	1193 (97F)	637	422.97	664	275
	Sinapali	ICPL 14002 / ICPL 14001 / ICP 7035 / ICPH 2671 / ICPH 2740	1151 (85F)	776	481.90	621	350
	Boden	ICPL 14002 / ICPL 14001 / ICP 7035 / ICPH 2671 / ICPH 2740	767 (98F)	645	423.77	657	280
	Sub-Total		4453 (374F)	2869	1823.35	638	304
Boudh	Kantamal	ICPL 14002 / ICPL 14001 / ICP 7035	629 (152F)	318	269.9	848.7	600
	Boudh	ICPL 14002 / ICPL 14001 / ICP 7035	436 (14F)	314	261.9	834.1	650
	Sub-Total		1065 (166F)	632	531.8	841.4	625
Bolangir	Bangomunda	ICPL 14002 / ICPL 14001 / ICP 7035 / ICPH 2671/ ICPH 2740	882 (177F)	648	382.32	590	210
	Muribahal	ICPL 14002 / ICPL 14001 / ICP 7035	347 (95F)	373	208.88	560	270
	Sub-Total		1229 (272F)	1021	591.20	575	240
Total			15957 (1777F)	8331	6979.36	765.34	451

Farmer Participatory Varietal Selection Trial (FPVST)

One of the objectives of this project is to notify smallholder farmers about new technologies including high yielding cultivars through FPVST. The project provided five early maturing varieties, three medium duration varieties and five medium hybrids to look into adaptability and performance in comparison with the existing local cultivars. Aside from the seeds (at the rate of 8 kg/ha for variety and 4 kg/ha for hybrids), fertilizer at the rate of 100 kg/ha of DAP and insecticide were supplied. The straight line method of planting on ridges was followed for all the trials. Of the 80 sites established for medium duration trials and 25 for early duration trials, only 64 and 15 sites respectively, were successfully implemented due to damage during sowing and the early vegetative stage due to continuous rainfall and poor farmers' management.

In the medium duration trials, cultivars that produced more than 1 metric ton are ICPH 3933 (1,513 kg/ha) followed by ICPL 20108 (1,338 kg/ha), ICPH 2751 (1,302 kg/ha), ICPL 14001 (1,116 kg/ha) and ICPL 14002 (1,103 kg/ha). This further revealed that the new varieties and hybrids are giving better yields, 100-175% higher than the local counterpart at 549 kg/ha (Table 9). For early duration trials, all newly tested cultivars gave higher yields than the local check. ICPL 88034 (1373 kg/ha), PRG 176 (1332 kg/ha), ICPL 161 (1221 kg/ha) and ICPL 88039 (1174 kg/ha) had 79-110% higher productivity despite maturing 130 days earlier than the local check (Table10).

Table 9. FP	VST sta	tus of m	edium du	iration cu	ultivars i	n the fiv	e district	s.		
					Avera	ge yield (kg/ha)			
District	Site (no.)	ICPL 14001	ICPL 14002	ICPL 20108	ICPH 3762	ICPH 2751	ICPH 3933	ICPH 2671	ICPH 2740	Local (check)
Rayagada	9	923	828	-	773	-	-	926	859	596
Boudh	5	869	820	-	676	-	-	907	766	542
Bolangir	10	-	1072	-	1155	-	-	884	919	329
Kalahandi	20	1557	1592	1522	-	1536	1369	-	-	762
Nuapada	20	-	1204	1155	1174	1068	1657	1068	1096	516
Total	64	1116	1103	1338	944	1302	1513	946	910	549

Table 9 ED//ST status of modium duration cultivars in the five districts

Table 10. FPVST status of early duration cultivars in the five districts.

	_			Average	yield (kg/ha)		
District	Site (no.)	ICPL 88039	ICPL 88034	ICPL 161	ICPL 81-3	PRG 176	Local (check)
Rayagada	1	1055	904	904	844	1024	753
Boudh	1	1748	2048	1506	1446	1656	695
Bolangir	5	746	895	1027	738	1143	422
Kalahandi	4	1547	1595	1635	896	1557	766
Nuapada	4	774	1425	1035	953	1278	637
Total	15	1174	1373	1221	975	1332	655

Hybrid Release in Odisha

The Odisha University of Agriculture and Technology (OUAT) in partnership with ICRISAT, smallholder farmers, and the Department of Agriculture have released a medium-duration, disease resistant pigeonpea hybrid (ICPH 3762) as 'Parbati' in State Varietal Release Committee during October, 2014. This was realized through the conduct of FPVST. The release proposal was further acknowledged by assigning the National Identity Number IC 612565 by the Division of Germplasm Conservation of ICAR – National Bureau of Plant Genetic Resources in March 04, 2015. This is the first of its kind for pigeonpea because no other varieties have been released in the state.

During CY 2013, the on-farm testing of ICPH 3762 in five districts of Odisha (Kalahandi, Naupada, Rayagada, Boudh and Bolangir) under the project 'Introduction and Expansion of Improved Pigeonpea (Arhar) Production Technology in Rainfed Upland Ecosystems of Odisha' recorded an increase of 124% over local check based on data from 72 locations. The local farmers were surprised by this performance and moreover this hybrid is resistant to two major diseases Fusarium wilt and sterility mosaic diseases. This hybrid was likewise tested in multilocation trials in different locations in India.

Seed Systems

There is a need to continuously enhance and strengthen the Odisha formal and informal seed sector to sustain the requirement of smallholder farmers for quality seeds and new high yielding cultivars. The seed system model was formed in this project to put into place the 'one village one variety' concept (Figure 2) because the formal seed sector cannot ensure timely supply of the huge volumes of quality seeds required by the farmers. The benefit of partnering with the Seed Certifying Agency, OSSOPCA, is that it has strengthened and institutionalized the informal seed production system in the five districts.

The project started by identifying villages and providing them with one farmer preferred variety and hybrid parent material suited to the type of soil. The participation of OSSOPCA was critical

Figure 2. Seed system institutionalized in the Odisha pigeonpea project.

in monitoring and maintaining good quality seeds of farmer-preferred varieties and hybrids. An isolation distance of 300 m between varieties and 500 m for hybrid seed production was initiated. However, the national policy of considering only released varieties of less than 10 years to be certified, has led to the non-certification of various seed classes of farmer preferred varieties produced in the project. This condition has forced the project's smallholder seed growers to sell their produce to middlemen/traders. Nevertheless, during the 2015 harvest season, farmers have experienced a better price of Rs 10-20 more per kg than what they got in the previous year. Prices of pigeonpea have gone up by as much as 30% due to reduced production which is related to the abrupt change in rainfall pattern that damaged the crop during sowing as well as during the vegetative and flowering phases.

A continuous delivery of pure seeds to farmers will enhance seed production and the quality of the seeds. ICRISAT will continuously supply Breeder seeds of farmer-preferred varieties and parental lines of hybrids to selected progressive farmer seed growers to multiply into Foundation and hybrid seeds. The Foundation seeds produced by farmer seed growers will then be distributed to selected farmer seed growers for seed multiplication of Certified and TL seeds. The entire seed production process will be carried out under the watchful eye of OSSOPCA for monitoring and certification.

Certified Seed Production

A total of 158.72 metric tons of certified seeds were produced in 201 ha benefitting 319 smallholder farmers (including 33 female farmers) (Table 11). The average yield for the three districts was listed at 752 kg/ha. Rayagada had the highest productivity of 876 kg/ha followed by Kalahandi at 768 kg/ha as compared to the other two districts.

Rayagada: The total production of Certified seeds was 29.81 metric tons from 34.8 ha and benefitted 57 smallholder farmers including 5 women farmers (Table 11). The average yield was recorded at 876.5 kg/ha.

Kalahandi: Seed production of Certified seeds totaled 61.06 tons from 72 ha and benefitted 93 farmers including 9 women farmers (Table 11). The average productivity was 768 kg/ha. The low average calculated yield of the district was due to poor performance of early duration cultivars that were affected during the flowering stage when strong rains hampered the pollination of flowers. On the contrary, medium duration cultivars had an increase in yields, recording more than 1 metric ton per hectare like in the case of ICPL 14001, ICPL 14002 and ICP 7035.

Bolangir: Production of ICP 7035 was recorded at 9.86 metric tons from 15 ha and benefitted 11 smallholder seed growers (Table 11).

Nuapada: A total production of 57.99 tons was harvested from 79.2 ha with an average productivity of 701 kg/ha and benefitted 158 farmers including 19 women farmers (Table 11).

	Certified seed pro				Tatalar	A
District	Block	Variety	Farmer (No)	Area Certified (ha)	Total Yield (t)	Average Yield (kg/ha)
Nuapada	Komna	ICPL 14001	12	6	4.17	695
		ICPL 14002	9 (1F)	5.2	3.69	709
		ICP 7035	20	10	7.4	740
	Khariar	ICPL 14002	7 (1F)	5	3.92	784
		ICPL 14001	11 (4F)	5	4.28	856
		ICP 7035	9	5	3.76	752
	Sinapali	ICPL 14001	12	5	3.66	732
	•	ICP 7035	47	20	15.15	757
	Boden	ICPL 14001	12 (1F)	10	7.36	736
		ICP 7035	14 (9F)	5	4.34	868
		ICPL 88039	5 (3F)	3	0.26	87
	Sub-Total		158 (19F)	79.2	57.99	701.5
Bolangir	Muribahal	ICP 7035	4	5	3.39	678
	Bangomunda	ICP 7035	7	10	6.47	647
	Sub-Total		11	15	9.86	662.5
Kalahandi	Bhawanipatna	ICPL 14002	4	3	3.18	1060
		ICPL 14001	4	3	1.90	633
		ICP 7035	12	5	4.95	990
		ICPL 88039	2	1	0.21	210
	Kesinga	ICPL 14001	5	5	5.13	1026
		ICPL 14002	2 (1F)	3	2.47	823
		ICP 7035	13	5	4.92	984
		ICPL 88039	2	1	0.21	210
	Narla	ICPL 14001	4	3	2.90	967
		ICPL 14002	2	2	1.58	790
		ICP 7035	9	8	8.65	1081
		ICPL 161	1	6	0.13	130
	Dhawaaaark	ICPL 14001	3 (2F)	4	3.94	985
	Dharmagarh	ICP 7035	1	2	1.63	815
	Lanjigarh	ICPL 14001	8	10	9.69	969
		ICP 7035	13 (5F)	8	7.31	914
	Golamunda	ICPL 7035	2 (1F)	2	2.03	1015
		ICPL 88039	4	1	0.23	230
	Sub-Total		93 (9F)	72	61.06	768.4
Rayagada	Rayagada	ICPL 14001	14 (4F)	6.8	5.96	876
		ICPL 14002	1	1	0.91	910
		ICP 7035	2	1	0.81	810
	Ramnaguda	ICPL 14001	7	2	2.42	1210
	-	ICP 7035	1	1	0.96	960
	Kolnara	ICPL 14001	7 (1F)	7	6.07	867
		ICPL 14002	4	2	1.81	905
		ICP 7035	2	2	1.34	670
	K.singhpur	ICPL 14001	18	11	8.77	797
	C .	ICP 7035	1	1	0.76	760
	Sub-Total		57 (5F)	34.8	29.81	876.5
Total			319 (33F)	201	158.72	752.23

Table 11. Certified seed	production by	y district and block.
--------------------------	---------------	-----------------------

Foundation Seed Production

A total of 143.7 ha were cultivated for Foundation seed production of farmer-preferred varieties which covered three districts. Total production was recorded at 121.5 metric tons with a productivity of 692 kg/ha benefitting 216 farmer seed growers including 19 women farmers (Table 12). Among the districts, Rayagada had the highest productivity of 811 kg/ha.

Nuapada: A total of 38.71 metric tons were produced in 50.2 ha with a productivity of 641 kg/ha benefitting 78 smallholder farmers including 9 women farmers as seen in Table 12.

Rayagada: A total of 28.5 ha were cultivated to produce 30.84 metric tons of foundation seeds of ICPL 14001, ICPL 88039, PRG 176 and ICP 7035 and benefitted 31 smallholder farmers including 1 woman farmer (Table12). This district had the highest yield of 811 kg/ha as compared to the other two districts.

Kalahandi: The total production of foundation seeds was recorded at 51.95 metric tons from 65 ha and benefitted 107 smallholder farmers including 9 women farmers (Table 12). Productivity was recorded at 623 kg/ha.

			Farmer	Area Certified	Total Yield	Average Yield
District	Block	Variety	(No)	(ha)	(mt)	(kg/ha)
Nuapada	Khariar	ICPL 14002	4	2	1.57	785
		ICPL 14001	8 (1F)	5	5.18	1036
		ICP 7035	14 (2F)	10	8.87	887
		ICPL 87091	6	2	1.18	590
	Komna	ICPL 14002	6	3	2.35	783
		ICP 7035	6	5	4.03	806
		PRG 176	2	1.2	0.31	258
	Sinapali	ICPL 7035	14	5	3.74	748
		PRG 176	6 (3F)	2	0.92	460
		ICPL 161	1	1	0.31	310
	Boden	ICP 7035	3	5	4.92	984
		ICPL 14001	6 (3F)	5	4.44	888
		ICPL 87091	1	2	0.33	165
		ICPL 88039	1	2	0.56	280
	Sub-total		78 (9F)	50.2	38.71	641
Rayagada	Rayagada	ICP 7035	10 (1F)	5	5.08	1016
		ICPL 14001	3	2	1.39	695
		PRG 176	2	1	0.39	390
	Kolnara	ICPL 14001	8	13	17.10	1315
	K.singhpur	ICPL 14001	6	6	6.00	1000
		ICP 7035	1	0.5	0.38	760
	Ramnaguda	ICPL 88039	1	1	0.50	500
	Sub-total		31 (1F)	28.5	30.84	811

Table 12. Foundation seed production by district and block.

Continued...

District	Block	Variety	Farmer (No)	Area Certified (ha)	Total Yield (mt)	Average Yield (kg/ha)
Kalahandi	Narla	ICPL 14001	4	5	4.87	974
		ICPL 14002	1	2	2.03	1015
		ICP 7035	3	4	3.60	865
	Kesinga	ICPL 14001	7	3	3.03	1010
		ICPL 14002	9 (2F)	5	5	1000
		ICP 7035	17 (1F)	5	5.61	1122
		ICPL 88039	1	1	0.15	150
		ICPL 87091	3 (1F)	2	0.37	185
		PRG 176	5	2	0.38	190
		ICPL 161	1	1	0.13	130
	Bhawanipatna	ICPL 14002	10 (1F)	4	4.18	1045
		ICPL 88039	5	4	0.71	177.5
		ICP 7035	10 (1F)	5	5.34	1068
		ICPL 87091	2	1	0.25	250
		PRG 176	1	2	.14	70
	Th.Rampur	PRG 176	3 (1F)	2	0.42	210
	Dharmagarh	ICPL 14001	4	4	4.29	1072.5
		PRG 176	1	1	0.12	120
	Golamunda	ICPL 88039	1	1	0.15	150
		ICP 7035	1	1	0.92	920
	Lanjigarh	ICPL 14001	16 (2F)	8	8.38	1047.5
		ICP 7035	2	2	1.88	940
	Sub-total		107 (9F)	65	51.95	623
Total			216 (19F)	143.7	121.5	692

 Table 12. Foundation seed production by district and block. (Continued)

Hybrid seed production (AxR)

Hybrid technology is new to Odisha. Although we have gained two years experience by the project, farmer seed growers, NGOs and technicians should continuously be trained to produce quality seeds. Three promising hybrids (ICPH 2671, ICPH 2740 and ICPH 3762) were introduced benefitting 35 smallholder farmers for seed multiplication of hybrid seeds. A total of 38.8 hectares were sown with a production of 25.63 metric tons of A-line and 8.78 metric tons of R-line seeds (Table 13). The seeds (A-Line) will be utilized as commercial hybrids in the IPPT fields in the coming 2014-15 cropping season.

					A-Li	ne	R-Lir	ne
District	Block	Hybrid	Area (ha)	Farmer (No)	Total production (mt)	Average yield (kg/ha)	Total production (mt)	Average yield (kg/ha)
Kalahandi	Kesinga	ICPH 2740	5	1	4.5	900	1.5	300
		ICPH 3762	0.4	1	0.45	1125	0.15	375
	Narla	ICPH 2671	4	1	1.5	375	0.5	125
		ICPH 2740	7	4	1.37	196	0.70	100
	Bhawanipatna	ICPH 2740	0.8	2	0.43	400	0.23	320
	Sub-Total		17.4	9	8.25	599	2.58	244
Nuapada	Boden	ICPH 2740	3	3	2.89	963	1.01	337
		ICPH 2671	4	1	2.64	660	0.88	220
	Komna	ICPH 2740	2	2	1.32	660	0.38	190
		ICPH 3762	1	1	0.65	650	0.42	420
	Khariar	ICPH 2740	4	7	5.42	1353	1.35	337
	Sub-Total		14	14	12.92	857	4.04	301
Bolangir	Bangomunda	ICPH 2740	1.2	2	0.76	633	0.14	118
	Sub-Total		1.2	2	0.76	633	0.14	118
Rayagada	Rayagada	ICPH 2671	1.8	3	1.80	600	0.30	300
		ICPH 3762	0.4	1	0.30	300	0.70	350
	Kolnara	ICPH 2740	1	1	0.40	400	0.25	250
		ICPH 3762	0.5	1	0.20	400	0.25	500
	K.singhpur	ICPH 2740	1.5	2	0.60	400	0.22	150
	Ramnaguda	ICPH 2740	1	2	0.40	400	0.30	300
	Sub-Total		6.2	10	3.7	417	2.02	308
Total			38.8	35	25.63	626.5	8.78	243

Table 13. Hybrid seed production (AxB) by district and block.

Research Backstopping at ICRISAT

The pupose of the pigeonpea research program under this project was to improve the Odisha germplasm for breeding purposes. Three local landraces of long duration type (240-250 days) were collected in 2012, purified and used for breeding purposes to produce vegetable type pigeonpea. The said landraces were maintained with multiple sub-types of single plant selection (SPS) (Manjahai Kandula-18 SPS; Kaveri Local- 15 SPS and Rayagada Local-22 SPS). Besides purifying the landraces, an adiallel crossing program and crossing with elite lines were implemented (Table 14). The objective of this program is to come up with large seeded pigeonpea that has a sweetness coupled with resistance to diseases (sterility mosaic and *Fusarium* wilt) and pests (pod borer) and can be used for canning and freezing.

Diallel Crossing Program	Number of F1 seeds harvested	SN	Improving local types by crossing with elite lines	Number of F1 seeds harvested
PH 1-16-2-2 x Kaveri Local P# 1151	50	1	Rayagada Local x ICPL 161	10
ICPL 87091 x Kaveri Local P# 1151	122	2	PH 1-16-2-2 x Manjahai Kandula	a 4
ICPL 87119 x Kaveri Local P# 1151	121	3	PH 3-7-5 xManjahai Kandula	13
ICP 8863 x Rayagada Local 1-11-17	75	4	PH 6-5-5 x Manjahai Kandula	4
ICPL 85063 x ManjahaiKandula 3-4	104	5	PH 7-1-5 x Manjahai Kandula	7
ICPL 85063 x Rayagada Local 1-11-17	73	6	PH 10-1-4 x Manjahai Kandula	5
Kaveri Local-2-27 x ICP 7035	200	7	ICP 7035 x Manjahai Kandula	20
Kaveri Local-2-27 x ICPL 85063	240	8	ICPL 14002 x Manjahai Kandula	11
Kaveri Local-2-27 x ICPL 87091	102	9	PH 1-16-2-2 x Kaveri Local	3
Kaveri Local-2-27 x ICPL 87119	211	10	PH 2 x Kaveri Local	50
Kaveri Local-2-27 x ICPL 88039	90	11	PH 6-5-5 x Kaveri Local	12
Kaveri Local-2-27 x PH 7-8	56	12	PH 7-1-5 x Kaveri Local	30
Kaveri Local-2-27 x Rayagada Local 1-11-17	22	13	PH 10-1-4 x Kaveri Local	1
Manjahai Kandula-3-4 x ICP 13395	78	14	ICP 7035 x Kaveri Local	20
Manjahai Kandula-3-4 x ICP 7035	256	15	ICPL 87091 x Kaveri Local	23
Manjahai Kandula-3-4 x ICP 8863	115	16	ICPL 14002 x Kaveri Local	29
Manjahai Kandula-3-4 x ICPL 87091	177	17	PH 1-16-2-2 x Rayagada Local	8
Manjahai Kandula-3-4 x ICPL 87119	145	18	PH 2 x Rayagada Local	2
Manjahai Kandula-3-4 x ICPL 88039	175	19	PH 3-7-5 x Rayagada Local	1
Manjahai Kandula-3-4 x PH 1-6	220	20	PH 6-5-5 x Rayagada Local	10
Manjahai Kandula-3-4 x PH 7-8	90	21	PH 7-1-5 x Rayagada Local	10
Manjahai Kandula-3-4 x Rayagada Local 1-11-17	210	22	PH 10-1-4 x Rayagada Local	12
Rayagada Local 1-11-17 x ICP 13395	333	23	ICP 7035 x Rayagada Local	19
Rayagada Local 1-11-17 x ICP 7035	283	24	ICPL 87091 x Rayagada Local	5
Rayagada Local 1-11-17 x ICPL 87091	370	25	ICPL 14002 x Rayagada Local	27
Rayagada Local 1-11-17 x ICPL 87119	306	26		
Rayagada Local 1-11-17 x ICPL 88039	245	27		
Rayagada Local 1-11-17 x PH 1-6	318	28		
Rayagada Local 1-11-17 x PH 7-8	237	29		

Table 14. ICRISAT breeding and research program.

Seed Reconstitution and Multiplication at ICRISAT

To strengthen the seed system component of the project, ICRISAT continuously produces a total of 1,301 kgs of Breeder seeds of farmer preferred varieties and parental lines of hybrids to maintain their quality and productivity (Table 15).

Table 15. Summary	of Breeder seeds p	roduced at ICRISAT.		
Cultivar	Growth habit	Maturity duration	Type of seeds	Quantity (kg)
Variety				
ICPL 14002	Non-determinate	Medium	Breeder seeds	356
ICPL 14001	Non-determinate	Medium	Breeder seeds	305
ICP 7035	Non-determinate	Medium to long	Breeder seeds	144
ICPL 20326	Non-determinate	Super early	Breeder seeds	42
ICPL 20338	Determinate	Super early	Breeder seeds	160
MN 1	Determinate	Early	Breeder seeds	10
MN 5	Determinate	Early	Breeder seeds	17
MN 8	Determinate	Early	Breeder seeds	10
ICPL 151	Determinate	Early	Breeder seeds	1
ICPL 87	Determinate	Early	Breeder seeds	25
ICPL 151	Determinate	Early	Breeder seeds	20
ICPL 88039	Non-determinate	Early	Breeder seeds	68
ICPL 161	Non-determinate	Early	Breeder seeds	150
PRG 176	Non-determinate	Early	Breeder seeds	13
Total				1,301

Seed Procurement for 2015-2016 Cropping Season

Establishing the seed system in the project site has made the purchase of good quality seeds efficient and effective, apart from the benefit in income that the farmer seed growers get. Each sample of the processed seeds was drawn by OSSOPCA to be submitted to the Bargarh Seed Testing Laboratory (STL) for germination test, moisture percentage, purity percentage and percentage of insect damage. The total seeds of various seed classes of varieties and hybrids procured by the project for the 2015-2016 cropping season was 33 metric tons. These seeds will be used in Maharastra and in the Pigeonpea Extension Project of Odisha (Table 16).

Table 16. 2015 Seed procurement.			
Particulars	Cultivars	Quantity (kg)	Remarks
Foundation Seeds	ICP 7035	2,549	Procured at project
	ICPL 14001	3,433	sites
	ICPL 14002	3,840	
	ICPL 88039	258	
	ICPL161	425	
	PRG 176	327	
	ICPL 87091	145	
Sub-total		10,977	
Certified Seeds	ICPL 14001	2,000	Procured at project
	ICPL 14002	1,000	sites
	ICP 7035	1,000	
	ICPL 161	23	
Sub-total		4,023	
Hybrids	ICPH 2671	1,000	Procured at project
	ICPH 2740	16,800	sites
	ICPH 3762	200	
Sub-total		18,000	
Grand total		33,000	

Capacity Building

The year 2014-15 saw an increasing participation of smallholder farmers in various capacity building activities as well as the involvement of women farmers (15%). A total of 36,707 stakeholders including 5,693 women (farmers, DA Officers and Technicians, NGOs, and ICRISAT staff members) attended various awareness meetings, seminar-workshops, trainings on crop seed production of hybrids and varieties, IPM/IDM, dal mill operation and maintenance, seasonlong and exposure visits (Table 17).

Table 17. Capacity building conducted and attended by various stakeholders.				
	District	Participant	Women	
Particular	(no.)	(no.)	(no.)	Remarks
Project Orientation and Planning Workshop	5	84	22	NGOs, ICRISAT Staff, Farmers and DA Officers and Technicians
Customized season-long training at ICRISAT	3	8	2	DCs, SC, NGO, Field attendants
Pigeonpea Seed Production and Management Training	5	806	120	Farmer seed growers; Technicians of Kalahandi, Rayagada, Nuapada; NGOs; ICRISAT staff
Training cum field exposure on pigeonpea seed production	1	122	117	Field Attendants, Farmers, DoA Officers and ICRISAT Staff
Farmer specialized training programs	5	1,629	311	Pigeonpea awareness, IPM / IDM, cultural management
Scientific visit @ ICRISAT	3	8	8	Women Farmers and ICRISAT staff
Dal mill processing and maintenance training	2	39	24	SHGs of Rayagada, Nuapada, Kalahandi
Monthly hands on training of farmers	1	28	2	Rayagada
Farmers' awareness meetings	5	33,983	5,087	Farmer beneficiaries
Total		36,707	5,693	

Literature, Print and Electronic Media, and Publication

Literature (Booklets and Pamphlets)

To complement stakeholders', awareness meetings, training sessions, and seminar-workshops, the project distributed various farmer friendly publications in the Oriya language. A total of 22,000 smallholder farmers benefitted from the booklets on cultural management practices of pigeonpea, integrated pest and disease management, and pamphlets on effective and efficient seed production system of pigeonpea varieties and hybrids (Table 18). This literature was distributed to farmers during seed distribution for the conduction of IPPT and seed production, as well as during the conduct of trainings and field exposure visits and during agro-trade fairs.

Table 18. Farmer friendly literature in Oriya language.			
Particular	Торіс	Copy (no.)	Farmers (no.)
Booklet	Cultural Management Practices of Pigeonpea	5,000	5,000
Booklet	Integrated Pest and Disease Management	7,000	7,000
Pamphlet	Effective and efficient seed production system of pigeonpea varieties and hybrids	10,000	10,000
Total		22,000	22,000

Print and Electronic Media

An effective way to advocate project implementation among farmers in Odisha is through local and international news articles and through the use of local electronic media for wider circulation of project activities and benefits (Table 19). There are at least 5 local print media concerns that are interested in writing about Odisha pigeonpea project activities. Moreover, nine articles were published in 'ICRISAT Happenings' during the 2014-15 cropping season.

Table 19. Enhancing local-level awareness through print and electronic media.				
Particulars	Location	Date	Торіс	
Radio	Kalahandi	18 Jul, 2014	Production technology and benefits of HYVs and hybrids of Arhar	
Radio	Kalahandi	22 Mar, 2014	Production technology of pigeonpea intercropping with cotton	
TV (Door Darshan)	Kalahandi	15 Sep, 2014	Commercial cultivation of pigeonpea and value addition	
Local Daily (Dharitri) Kalahandi		15 Oct, 2014	Six women farmer representatives attending the World Women Agriculture Day	
Local Daily (Bhaskar)	Kalahandi	16 Oct, 2014	Women Farmer Awarded	
Local Daily (Bhaskar and Samaj)	Kalahandi	13 Nov, 2014	Role of smallholder farmers in agriculture	
Local Daily (Dharitri)	Kalahandi	13 Nov, 2014	Role of smallholder farmers in agriculture	
Local Daily (Samaj)	Nuapada	24 Sept, 2014	Successful and awardee women farmer from Sinapli block is felicitated	
Local Daily (Prameya)	Nuapada	28 Sep, 2014	Training on cultural practices of pigeonpea	
Local Daily (Sambad)	Rayagada	29 Sep, 2014	Block level training program of ICRISAT	
Local Daily (Dharitri)	Nuapada	15 Oct, 2014	Participation of six women farmers at World Women Farmers Day at ICRISAT, Patancheru	
Local Daily (Samaj)	Nuapada	9 Feb, 2015	Successful event of four years of Odisha pigeonpea project in Nuapada District	
Local Daily (Samaj)	Nuapada	29 Mar, 2015	ICRISAT pigeonpea farmer felicitated at Khariar Mohatsav	
ICRISAT Happenings	Telangana	3 Apr, 2015	ICRISAT participates in Odisha state agriculture fair	
ICRISAT Happenings	Telangana	27 Mar, 2015	Indian state of Odisha gets its first hybrid pigeonpea	
ICRISAT Happenings	Telangana	9 Jan, 2015	Odisha government extends ICRISAT pigeonpea project for four years	
ICRISAT Happenings	Telangana	28 Nov, 2014	ICRISAT scientists honored	
ICRISAT Happenings	Telangana	12 Sep, 2014	ICRISAT awards outstanding women farmers in India	
ICRISAT Happenings	Telangana	22 Aug, 2014	Pigeonpea improves women participation and enhances livelihoods	
ICRISAT Happenings	Telangana	14 Mar 2014	Pigeonpea cultivation improving livelihoods of farmers in Odisha, India	
ICRISAT Happenings	Telangana	28 Feb 2014	Season-long training on pigeonpea seed production and management concludes	
ICRISAT Happenings	Telangana	14 Feb 2014	Farmer partner on pigeonpea seed production in Odisha, India receives top honor	

Publication

The year 2013 provided an avenue to publish important documents pertaining to the milestones the project has achieved (Table 20). Aside from the 2013 annual report, 140 success stories of smallholder farmers' testaments (on how they have improved their livelihood) were documented from Nuapada (26), Kalahandi (32), Boudh (18), Bolangir (15) and Rayagada (49). In addition, the Mid-term Assessment of the project was also published.

Table 20. 2014 Publications.			
Particulars	Copy (no)	Title	
2013 Annual Report	100	Mula MG and Saxena KB. 2014. Introduction and expansion of improved pigeonpea (Arhar) production technology in rainfed upland ecosystems of Odisha. Accomplishment report (June 2013-May 2014) and 2014 Physical Targets. ICRISAT, Patancheru 502324, Telangana, India.	
Odisha Pigeonpea Success Stories (English)	100	Mula MG, Gopalan RS, Saxena KB, Das SK, Kumar RV, Kumar CVS. Mohanty SK, Naik YB, Das Juli and Tripathy SK. 2014. ICRISAT Pigeonpea: A seed for positive change. Patancheru, Telangana, India: ICRISAT. 160 pp.	
Odisha Pigeonpea Success Stories (Oriya)	100	Mula MG, Gopalan RS, Saxena KB, Das SK, Kumar RV, Kumar CVS. Mohanty SK, Naik YB, Das Juli and Tripathy SK. 2014. ICRISAT Pigeonpea: A seed for positive change. Patancheru, Telangana, India: ICRISAT. 193 pp.	
Mid-Term Impact Assessment Study	50	Rosana Mula, Myer Mula, R SanthaGopalan, Saroj Das, RV Kumar, KB Saxena. 2014. Mid-Term Impact Assessment Study: Final Report. Introduction and expansion of improved pigeonpea (Arhar) production technology in rainfed upland ecosystems of Odisha. 79 pp.	

Post-Harvest and Processing Facility

ICRISAT's strategy of adopting the inclusive market-oriented development (IMOD) approach by providing additional livelihood to farmers, NGOs and self-help groups (SHG), has benefitted from the dal mill machines and spiral seed cleaner provided by the project. A total of 30,000 kgs have been processed into dal and sold among farmers, during market days and trade fairs. The operationalization of dal mills in Rayagada, Kalahandi and Nuapada brought in an inexpensive way of processing pigeonpea dal right to the doorstep of smallholder farmers in the village and in adjacent villages. In addition, construction of 25 metric ton (Rayagada) and 100 metric ton (Kalahandi) godowns has made it possible for farmers to store their seeds appropriately.

Awards and Recognitions

A resounding accomplishment of the project was the honor bestowed on one of our farmer cooperators (Mr Pradip Kumar Panda) by the President of India (Shri Pranab Mukherjee) - the "Krishi Karman Award for Progressive Farmers" on pulses (pigeonpea) on 10 February 2014. The said recognition was the first for Odisha on pulses and particularly pigeonpea. Likewise, the ICRISAT scientist Dr Myer G Mula was recognized for his contributions to pigeonpea seed system improvement in the state on 9 November, 2014. In addition, ICRISAT through the Director General William D Dar, bestowed the 'Partnership Award' to the Department of Agriculture and Food Production headed by Director RS Gopalan during the December 10, 2014 Annual Day at the ICRISAT headquarters.
Challenges for the Improvement of the Project

The 2013-2014 cropping season was a better year for pigeonpea stakeholders. Although some areas were affected by continuous rain, most smallholder farmers realized an increase in yield as compared to their usual local cultivars. The hiring of District Coordinator, Field Attendants and the engagement of NGOs has helped a lot in monitoring project activities. Table 21 presents the constraints and possible solutions for improving project implementation.

Table 21. Constraints in project implementa	ation.
Constraints	Solution
Limited ability of farmer seed growers to sell their various certified seeds at higher prices.	DoA to take the lead in purchasing or linking the produce of farmer seed growers to market.
Natural calamity	Abnormal and harsh rainfall pattern that affects pigeonpea during the vegetative and flowering phase.
Abrupt drop of temperature (8-10°C) in December, which adversely affected the fertilization of PP flowers and caused the flowers to drop.	Introduction of early duration varieties (ICPL 88039, PRG 176, ICPL 161, ICPL 87091, ICPL 81-3, ICPL 88034).
Pests during flowering and pod development stage.	Provision of pesticide in seed production and IPPT. DoA to provide a subsidy scheme for fertilizer and pesticide to fully support the program. In seed production, the project will provide 50% of the fertilizer and pesticides.
Non-compliance of the technology by other farmers.	Farmer selection must be given strict importance.
Non-certification of ICP 7035 by leading institution	Government of Odisha with assistance from Odisha Agricultural University and Technology (OUAT) to release ICP 7035 as a state variety.
Seed procurement	Department of Agriculture should take the lead in ensuring the purchase of good quality seeds.

Financial Report

The budget for operating the project in 2014-2015 was granted with ₹302.81 lakhs and was fully utilized as shown in the attached utilization certificate and statement of accounts (Annex 1).

Annex 1

UTILISATION CERTIFICATE

(OGFR-19)

RASTRIYA KRUSHI VIKASH YOJANA (RKVY)

SI.No.	Letter No. And Date	Amount Sanctioned
1	RTGS 26/05/2014	1,84,14,000
2	RTGS 05/11/2014	1,00,00,000
	Total	2,84,14,000

 Certified that out of Rs. 2,84,14,000 (Rupees One Crore Eighty Four Lakhs Fourteen only) of grant in aid sanctioned during the year 2014-15 in favour of Director General, ICRISAT, Patancheru, AP by the Director of Agriculture & Food Production, Government of Odisha, Bhubaneswar under RKVY vide letter No. NIL, and an amount of Rs. 27,70,708 is receivable as

at 31 March 2014 and a sum of Rs. 2,71,27,459 (Rupees Two Crores Seventy One Lakhs Twenty Seven Thousand Four Hundred Fifty Nine only) has been utilized during 1 April 2014 to 28 February 2015 and the balance receivable amount as of 28 February 2015 is Rs.14,84,167 (Rupees Fourteen Lakhs Eighty Four Thousand One Hundred Sixty Seven only).

2. We have met the project targets on time.

3. Certified that I have satisfied that the condition on which the grant in aid was sanctioned have been duly fulfilled and that I have exercised the following checks to see that the money was actually spent for the purpose for which it was sanctioned.

Kinds of checks exercised:

- The Financial management of the project has been done thru Financial Services, ICRISAT.
- 2 Procurements have been made thru centralized Purchase and Supplies Division, ICRISAT.
- 3 Expenditures have been verified and approved by the Project Manager.
- 4 ICRISAT maintains its accounting records as per CGIAR-Guidelines.

Signature-

een **Rajesh Agrawal**

Designation: Assistant Director General Finance

Date: 24 March 2015

(Seal)

Image: constrained of the co	Image: state	Image: state	Expendiation Expendiation Expendiation Hangle Cumunistenci L Application Expendiation Application Application Application Application Expendiation Application Application Application Application Application Application Application A	a state			Agriculture Department, Government of Odisha Restricted - Bilateral Project USD May 1, 2011 to April 30, 2015		
Containered April 12 Containered and 1 <td< th=""><th>Catabateria Matrix Catabateria Matrix <</th><th>Image: 1 mining April 1 April 1</th><th>Hange Contractione bit Address Address artic uses 0.053 116 mod 321 211 760 mod 321 artic uses 0.053 116 mod 321 0.053 106 mod 321 artic uses 1345,000 424,000 124,000 234,000 120,000 artic 1345,000 96,000 14,000 244,000 100,000 244,000 100,000 artic 1345,000 96,000 96,000 244,000 100,000 242,000 100,000 artic 1345,000 96,000 96,000 243,000 100,000 243,000 100,000 artic 1345,000 15,000 14,000 100,000 123,000 100,000 123,000 100,000 123,000 100,000 123,000 100,000 123,000 100,000 123,000 100,000 123,000 100,000 123,000 123,000 123,000 123,000 123,000 123,000 123,000 123,000 123,000 123,000 123</th><th>2 10 10 10 10 10 10 10 10 10 10 10 10 10</th><th></th><th>Batance</th><th></th><th></th><th></th></td<>	Catabateria Matrix Catabateria Matrix <	Image: 1 mining April 1	Hange Contractione bit Address Address artic uses 0.053 116 mod 321 211 760 mod 321 artic uses 0.053 116 mod 321 0.053 106 mod 321 artic uses 1345,000 424,000 124,000 234,000 120,000 artic 1345,000 96,000 14,000 244,000 100,000 244,000 100,000 artic 1345,000 96,000 96,000 244,000 100,000 242,000 100,000 artic 1345,000 96,000 96,000 243,000 100,000 243,000 100,000 artic 1345,000 15,000 14,000 100,000 123,000 100,000 123,000 100,000 123,000 100,000 123,000 100,000 123,000 100,000 123,000 100,000 123,000 100,000 123,000 123,000 123,000 123,000 123,000 123,000 123,000 123,000 123,000 123,000 123	2 10 10 10 10 10 10 10 10 10 10 10 10 10		Batance			
5 161 163 164 163 164 163 164 163 164 165 164 165 164 165	5 101 105	5 101 023 061 033 061 033 033 10 100	add USS PBT USS USS <th></th> <th>Constitution to - documy 26, 2015</th> <th>February 20, 20</th> <th>10</th> <th></th> <th></th>		Constitution to - documy 26, 2015	February 20, 20	10		
00 17.00.00 0.01/10 0.001/10 0.	0 100.01 0.01.	0 1.00.00 0.01	24 101.000 458.000 17.000.000 327.700 0.136.100 000 21.000.000 360.000 12.000.000 24.000 0.101.100 01 21.000.000 360.000 360.000 24.000 24.000 0.101.100 01 21.000.000 360.000 36.000 12.000 240.000 0.101.00 01 21.000.000 36.000 24.000 24.000 0.101.00 24.000 01 20.0000 26.701 26.0000 10.0000 07.010 0.102.00 01 20.0000 01.00 24.0000 24.0000 01.000 01.000 01 20.0000 01.00 24.0000 24.0000 01.000 01.000 01 21.00000 01.00 24.260.00 24.260.00 01.000 01.000 01 24.0000 24.260.00 24.260.00 24.260.00 01.000 01.000 01 24.0000 24.260.00 24.260.00 24.260.00 01.0000 01.000 01.000		-	-	55		
0000 02010 <th0< td=""><td>1 1</td><td>1 1</td><td>Alternation 21100000 30000 30000 2440000 627010 2440000 627010 2440000 627010 2440000 627010 2440000 627010 2440000 627010 2440000 2440000 2440000 2440000 2440000 2440000 2440000 2440000 2440000 2400000 242000 2400000 627301 2400000 627301 2400000 627301 2400000 627301 2400000 627301 627301 627301 627301 627301 627301 627301 627301 6273010 6273</td><td></td><td>11</td><td>122.802</td><td>8</td><td>UNI</td><td>105</td></th0<>	1 1	1 1	Alternation 21100000 30000 30000 2440000 627010 2440000 627010 2440000 627010 2440000 627010 2440000 627010 2440000 627010 2440000 2440000 2440000 2440000 2440000 2440000 2440000 2440000 2440000 2400000 242000 2400000 627301 2400000 627301 2400000 627301 2400000 627301 2400000 627301 627301 627301 627301 627301 627301 627301 627301 6273010 6273		11	122.802	8	UNI	105
Image: biology of the biolog	10 10000 1000 1000 <th1< td=""><td>10 10<</td><td>Mathematical 314(0)(0) Mathematical Control Control<td></td><td>_</td><td></td><td></td><td>L</td><td></td></td></th1<>	10 10<	Mathematical 314(0)(0) Mathematical Control Control <td></td> <td>_</td> <td></td> <td></td> <td>L</td> <td></td>		_			L	
00 00000 0.0000	10 1000 1000 2000 0001 0	0 0	0000 00000000 00000000 00000000 00000000 00000000 0000000						
40000 730 50000 647 5000 548 73 5000 733 5000 733 5000 733 <th<< td=""><td>model model <th< td=""><td>0000 <th< td=""><td>n 100,000 15,000 15,000 7,011 500,000 7,011 500,000 61,000 60,000 61,000 60,000</td><td></td><td>-</td><td></td><td>-</td><td></td><td></td></th<></td></th<></td></th<<>	model model <th< td=""><td>0000 <th< td=""><td>n 100,000 15,000 15,000 7,011 500,000 7,011 500,000 61,000 60,000 61,000 60,000</td><td></td><td>-</td><td></td><td>-</td><td></td><td></td></th<></td></th<>	0000 0000 <th< td=""><td>n 100,000 15,000 15,000 7,011 500,000 7,011 500,000 61,000 60,000 61,000 60,000</td><td></td><td>-</td><td></td><td>-</td><td></td><td></td></th<>	n 100,000 15,000 15,000 7,011 500,000 7,011 500,000 61,000 60,000 61,000 60,000		-		-		
10 704.10 12.510 12.012 12.010 10.011 12.010 10.001 12.010 10.001 12.010 10.001 12.010 10.001 12.010 10.001 12.010 10.001 12.010 10.001 12.010 10.001 12.010 10.001 12.010 10.001 12.010 10.001 12.010 10.001 12.010 10.001 12.010 10.001 12.010 10.001 12.010 10.001 12.010 10.001 12.010 10.001	10000 100000 10000 10000 <t< td=""><td>10.000 10.000<</td><td>model 1,200,250 200,050 200,6400 17,540 61,2540 2568,410 17,540 61,2561 62,321 <t< td=""><td></td><td>_</td><td></td><td></td><td>22.527.456</td><td>L</td></t<></td></t<>	10.000 10.000<	model 1,200,250 200,050 200,6400 17,540 61,2540 2568,410 17,540 61,2561 62,321 <t< td=""><td></td><td>_</td><td></td><td></td><td>22.527.456</td><td>L</td></t<>		_			22.527.456	L
77 2.66.010 0.00 67.2.10 0.000 3.300.60 0.0000 <td>713 266.00 0.040 0.73.01 0.000 0.330.00 0.0401 0.330.00 0.0401 0.330.00 0.0401 0.330.00 0.0401 0.330.00 0.0401 0.330.00 0.0401 0.330.00 0.0401 0.330.00 0.0401 0.330.00 0.3401 0.0401 0.330.00 0.3401 0.0401 0.3401 0.0401 0.3401 0.0401 0.3401 0.0401 0.3401 0.0401 0.3401 0.0401 0.3401 0.0401 0.3401 0.0401 0.3401 0.0401</td> <td>771 2060.00 60.010 60.010 51.200 50.010 51.200 50.010 51.200 50.010 51.200 50.010 51.200 50.010 51.200 50.010 51.200 50.010 51.200 50.010 51.200 50.010 51.200 50.010 51.200 50.010 51.200 50.010 51.200 50.010 51.200 50.010 51.200 50.010 51.200 50.010<td>off 10,0000 (5,7.7) 2,664,107 (0.00) (57.2.17) 2,664,107 (0.00) (57.2.17) 2,664,107 (0.01) (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.10)</td><td>-</td><td></td><td></td><td>- 75</td><td></td><td>4</td></td>	713 266.00 0.040 0.73.01 0.000 0.330.00 0.0401 0.330.00 0.0401 0.330.00 0.0401 0.330.00 0.0401 0.330.00 0.0401 0.330.00 0.0401 0.330.00 0.0401 0.330.00 0.0401 0.330.00 0.3401 0.0401 0.330.00 0.3401 0.0401 0.3401 0.0401 0.3401 0.0401 0.3401 0.0401 0.3401 0.0401 0.3401 0.0401 0.3401 0.0401 0.3401 0.0401 0.3401 0.0401	771 2060.00 60.010 60.010 51.200 50.010 51.200 50.010 51.200 50.010 51.200 50.010 51.200 50.010 51.200 50.010 51.200 50.010 51.200 50.010 51.200 50.010 51.200 50.010 51.200 50.010 51.200 50.010 51.200 50.010 51.200 50.010 51.200 50.010 51.200 50.010 <td>off 10,0000 (5,7.7) 2,664,107 (0.00) (57.2.17) 2,664,107 (0.00) (57.2.17) 2,664,107 (0.01) (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.10)</td> <td>-</td> <td></td> <td></td> <td>- 75</td> <td></td> <td>4</td>	off 10,0000 (5,7.7) 2,664,107 (0.00) (57.2.17) 2,664,107 (0.00) (57.2.17) 2,664,107 (0.01) (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.17) 2,660,200 (57.2.10)	-			- 75		4
146 4.256/150 196/154 2.560/156 153.41 6.60.356 6.43.275 6.60.366 6.43.275 6.60.366 6.43.275 6.60.366 6.43.276 173.461 7.3.461	146 5-356/10 16,010 5,340/10 5,340/10 5,340/10 5,340/10 5,340/10 5,340/10 5,340/10 5,340/10 5,340/10 5,340/10 5,340/10 5,340/10 7,340/10 34/10/10 34/10/10 34	(16) 2.360/70 10,010 2.660.30 14,210 2.660.30 14,101 2.300.000 77.301 14,412 2.300.000 77.301 14,412 2.300.000 77.301 14,412 2.300.000 77.301 14,412 2.300.000 77.301 14,412 2.300.000 77.301 14,412 2.300.000 77.301 14,412 2.300.000 77.301 14,412 2.300.000 77.301 14,412 2.300.000 77.301 14,412 2.300.000 77.301 14,412 2.301.00 2.377.00 14,412 2.301.00	of) 7.00,70 7.2,150 2.2,60,750 2.5,60,300 2.5,60,300 2.5,60,300 2.66,300 2.66,300 2.66,300 2.66,300 2.66,300 2.66,300 2.66,300 2.66,300 2.64,430 2.64,430 2.64,430 2.64,430 2.72,640 2.72,640 2.72,640 2.72,640 2.72,640 2.72,640 2.72,640 2.72,640 2.72,640 2.72,640 2.72,640 2.72,640 2.72,640 2.72,640 2.72,640 2.72,640 2.72,640 2.72,640		_		-	1	
(1) 2<650,000 33.3,41 660.000 3,4,10 5,300,000 7,4,13 5,300,000 7,4,13 5,000,000 7,4,13 5,000,000 7,4,13 5,000,000 7,4,13 5,000,000 7,4,13 5,000,000 7,4,13 5,000,000 7,4,13 5,000,000 7,4,13 5,000,000 7,4,13 5,000,000 7,4,13 5,000,000 7,4,13 5,000,000 7,4,13 5,000,000 7,4,13 5,000,000 7,4,13 5,000,000 7,4,13 5,000,000 7,13 5,000,0	(1) 2<650,000 33.3.51 660.000 1,4.10 5,300,000 7.1.73 1,4.00 7.1.73 1,4.00 7.1.73 1,4.00 1,0.000 1,4.1.13 1,4.0.000 1,4.1.13 1,4.0.000 1,4.1.13 1,4.0.000 1,4.1.13 1,4.1.14 <td>(1) 2×66,000 31,341 660,000 1,4,10 5,500,000 7,12% 1,000</td> <td>of) 3.300.000 67.0h1 2.460,000 39.341 660.000 Alen100 Alen2000 73.773 X.400.000 14.315 60.000 Alen2000 30.417 X.400.000 34.753 60.000 14.316 Alen2000 2.450,000 30.417 2.450,000 2.47.66 100.002 Alen2000 2.410,000 2.410,000 2.410,000 2.412,000 100.002 Alen2000 2.450,000 2.410,000 2.420,000 2.42,000 17.600 2.734,000 Alen2000 4.7460 0.07,400 2.420,000 2.420,000 2.420,000 2.420,000 Alen2000 4.7460 0.7260 3.522,540 0.7,400 2.544,91 - Alen2000 2.420,000 0.7260 0.7260 0.7260 -</td> <td></td> <td></td> <td></td> <td>1000</td> <td></td> <td></td>	(1) 2×66,000 31,341 660,000 1,4,10 5,500,000 7,12% 1,000	of) 3.300.000 67.0h1 2.460,000 39.341 660.000 Alen100 Alen2000 73.773 X.400.000 14.315 60.000 Alen2000 30.417 X.400.000 34.753 60.000 14.316 Alen2000 2.450,000 30.417 2.450,000 2.47.66 100.002 Alen2000 2.410,000 2.410,000 2.410,000 2.412,000 100.002 Alen2000 2.450,000 2.410,000 2.420,000 2.42,000 17.600 2.734,000 Alen2000 4.7460 0.07,400 2.420,000 2.420,000 2.420,000 2.420,000 Alen2000 4.7460 0.7260 3.522,540 0.7,400 2.544,91 - Alen2000 2.420,000 0.7260 0.7260 0.7260 -				1000		
//1 XXX/00 /14,116 (442) (443) <t< td=""><td>//1 XXX/00 /14,116 (443)(00 XX/10 XXX/10 (100,000) 01 XXX12 07.00 01.000 XX/10 36,375 (100,000) (100,000) 01 XXX12 07.00 7.2170,000 2.0160 2.206,000 20,000 (100,000) (100,000) 01 2.0160 2.0160 2.0060 2.0060 2.0060 (0000) (224) 01 2.0161 01.0151 2.0161 0.02516 01.2261 01.011 01 2.0162 01.0141 01.02514 01.0141 01.011 01.011 01 2.0162 01.0141 01.0141 01.0141 01.011 01.011 01 2.0161 01.0141 01.0141 01.0141 01.011 01.011 01 2.0101 01.0141 01.0141 01.0141 01.0141 01.011 01 01.0141 01.0141 01.0141 01.0141 01.0141 01.011 01 01.011 01.011</td><td>//1 XXX/00 /14,116 XXX/10 XXXX/10 XXXX/10 XXXX/10 XXXX/10 XXXX/10 XXXX/10 XXXX/10 XXXX/10 XXXX/10 XXXXX/10 XXXXX/10 XXXXX/10 XXXXX/10 XXXXXXXX XXXXXXXX</td><td>Million 3.450,000 13.77.0 3.660,000 14.37.6 Million pic Simenens Workelens) 4.040,000 00.010 3.47.3.96 100.002 100.002 win fuz 2014-015 1.346,000 20.147 3.47.3.96 100.002 13.77.96 win fuz 2014-015 1.346,000 2.612,000 2.612,000 2.612,000 17.756 17.756 ab Sta2,000 1.556,022 81.843 1.116,000 2.734,500 17.463 2.744,500 ab Sta2,000 1.556,022 81.843,611 1.116,000 2.743,610 1.7463,611 1.7743,611 1.746</td><td></td><td>1</td><td></td><td></td><td></td><td></td></t<>	//1 XXX/00 /14,116 (443)(00 XX/10 XXX/10 (100,000) 01 XXX12 07.00 01.000 XX/10 36,375 (100,000) (100,000) 01 XXX12 07.00 7.2170,000 2.0160 2.206,000 20,000 (100,000) (100,000) 01 2.0160 2.0160 2.0060 2.0060 2.0060 (0000) (224) 01 2.0161 01.0151 2.0161 0.02516 01.2261 01.011 01 2.0162 01.0141 01.02514 01.0141 01.011 01.011 01 2.0162 01.0141 01.0141 01.0141 01.011 01.011 01 2.0161 01.0141 01.0141 01.0141 01.011 01.011 01 2.0101 01.0141 01.0141 01.0141 01.0141 01.011 01 01.0141 01.0141 01.0141 01.0141 01.0141 01.011 01 01.011 01.011	//1 XXX/00 /14,116 XXX/10 XXXX/10 XXXX/10 XXXX/10 XXXX/10 XXXX/10 XXXX/10 XXXX/10 XXXX/10 XXXX/10 XXXXX/10 XXXXX/10 XXXXX/10 XXXXX/10 XXXXXXXX XXXXXXXX	Million 3.450,000 13.77.0 3.660,000 14.37.6 Million pic Simenens Workelens) 4.040,000 00.010 3.47.3.96 100.002 100.002 win fuz 2014-015 1.346,000 20.147 3.47.3.96 100.002 13.77.96 win fuz 2014-015 1.346,000 2.612,000 2.612,000 2.612,000 17.756 17.756 ab Sta2,000 1.556,022 81.843 1.116,000 2.734,500 17.463 2.744,500 ab Sta2,000 1.556,022 81.843,611 1.116,000 2.743,610 1.7463,611 1.7743,611 1.746		1				
(10) 3.0.17.3 (m) 25.005 00.007 2.170 (m) 3.0.275 (100.003) (100.003	(10) 3.0.17.3 (m) 35.005 00.007 2.170 (m) 3.0.175 (100.003) (100.003	(10) 3.0.17.106 35.000 00.007 2.170.001 3.0.175 (100.000) (100.000) (100.000) (100.000) (10) 2.273.007 30.007 30.007 30.007 30.007 4000 (10) 1.320.017 30.007 30.007 30.007 30.007 4000 (10) 1.104.0175 3.3.2.006 3.0.017 1.3264.11 114.4.800 (72.0) (20) 1.006.211 114.61755 3.3.2.006 5.0.01 1.3264.11 100.017 (31) 1.006.211 1.014.01755 3.7.201.610 1.3265.610 1.3264.611 1.01.010 (31) 1.000.211 1.014.01755 3.7.22.540 1.3265.610 1.01.010 1.01.010 (31) 1.000.211 1.014.01755 3.7.22.540 1.3264.61 1.01.010 (31) 1.000.211 1.014.01755 3.5.27.540 1.3264.61 1.01.010 (31) 1.010.21125 2.7.77.401 1.225.640 1.3264.61 1.01.010 (31) 1.01	Ref Columnation Columnation State		_	-			
(10) 2.5.42.5.0.25 (2.5.1.2.1) 4.7.601 (2.4.3.10) 2.0.602 (2.4.3.10) 2.0.602 (2.4.3.10) 2.0.601 (2.4.3.10) 2.0.7.401 (2.4.3.10) 2.0.7.401 (2.4.3.10) </td <td>(10) 2.512,0.00 (2.00,21) 1.270,007 (2.00) 2.0600 (2.00) 2.0000 (2.00) 2.00000 (2.00) 2.00000 (2.00) 2.000000 (2.00) 2.0000000 (2.00) 2.000000000000000000000000000000000000</td> <td>(10) 2.01.001 2.01.001 2.01.001 2.01.001 2.01.001 2.01.001 2.01.001 2.01.001 2.01.001 2.01.001 2.01.001 2.01.001 2.01.001 2.01.001 2.01.001 2.01.001 2.01.001 2.01.01<!--</td--><td>mthr/mthc/nth 1,340,000 201 v0 2512,325 47,641 1,2170,007 2,2170,007 2,542,000 49,601 2,512,325 47,561 7,243,007 317,900 1,400,000 25,602 65,604 1,000,219 11,040,006 317,900 4,543,000 87,560 1,000,219 11,040,006 317,900 317,900 4,746,000 87,266 3,292,560 87,466 11,620,66 317,950 4,746,000 87,266 3,292,560 87,466 317,950 11,520,66 11,400,000 2,346,070 87,266 31,622,560 87,466 31,525,600 11,400,000 2,346,77 0,600,260 11,622,660 11,526 31,527,660 10,400,000 2,436,77 0,600,260 146,296 31,726 1 10,41,100,000 2,447,760 9,010,000 1,437,479 27,436 1,437,439 1</td><td>_</td><td>_</td><td></td><td>(1) (0003)</td><td></td><td></td></td>	(10) 2.512,0.00 (2.00,21) 1.270,007 (2.00) 2.0600 (2.00) 2.0000 (2.00) 2.00000 (2.00) 2.00000 (2.00) 2.000000 (2.00) 2.0000000 (2.00) 2.000000000000000000000000000000000000	(10) 2.01.001 2.01.001 2.01.001 2.01.001 2.01.001 2.01.001 2.01.001 2.01.001 2.01.001 2.01.001 2.01.001 2.01.001 2.01.001 2.01.001 2.01.001 2.01.001 2.01.001 2.01.01 </td <td>mthr/mthc/nth 1,340,000 201 v0 2512,325 47,641 1,2170,007 2,2170,007 2,542,000 49,601 2,512,325 47,561 7,243,007 317,900 1,400,000 25,602 65,604 1,000,219 11,040,006 317,900 4,543,000 87,560 1,000,219 11,040,006 317,900 317,900 4,746,000 87,266 3,292,560 87,466 11,620,66 317,950 4,746,000 87,266 3,292,560 87,466 317,950 11,520,66 11,400,000 2,346,070 87,266 31,622,560 87,466 31,525,600 11,400,000 2,346,77 0,600,260 11,622,660 11,526 31,527,660 10,400,000 2,436,77 0,600,260 146,296 31,726 1 10,41,100,000 2,447,760 9,010,000 1,437,479 27,436 1,437,439 1</td> <td>_</td> <td>_</td> <td></td> <td>(1) (0003)</td> <td></td> <td></td>	mthr/mthc/nth 1,340,000 201 v0 2512,325 47,641 1,2170,007 2,2170,007 2,542,000 49,601 2,512,325 47,561 7,243,007 317,900 1,400,000 25,602 65,604 1,000,219 11,040,006 317,900 4,543,000 87,560 1,000,219 11,040,006 317,900 317,900 4,746,000 87,266 3,292,560 87,466 11,620,66 317,950 4,746,000 87,266 3,292,560 87,466 317,950 11,520,66 11,400,000 2,346,070 87,266 31,622,560 87,466 31,525,600 11,400,000 2,346,77 0,600,260 11,622,660 11,526 31,527,660 10,400,000 2,436,77 0,600,260 146,296 31,726 1 10,41,100,000 2,447,760 9,010,000 1,437,479 27,436 1,437,439 1	_	_		(1) (0003)		
101 2.472,007 1.270,007 2.000 1.270,007 0.001	101 3-2-12,000 1-270,007 2.000 2.000,000 2.000 0.0077 0.000 0.0017 0.000 0.0017 0.000 0.0017 0.000 0.0017 0.000 0.0017 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000	101 3-2-12,000 0.3200,000 3-300,000 3-300,000 3-300,000 3-00,000 0.0001 0.000 0.0001 0.000 0.0001	Amount Distriction Distriction <thdistrition< th=""> <thdistriction< th=""> <thdi< td=""><td>_</td><td></td><td></td><td></td><td></td><td></td></thdi<></thdistriction<></thdistrition<>	_					
Mich 2.2048,000 50,077 144,800 07,401 21 2.2048,000 50,077 1,366,143 3,001 3,001 21 2.2048,013 50,017 1,366,143 1,366,143 1,010,107 21 2.2048,013 50,017 1,366,143 1,005,143 1,01,107 21 2.2048,013 3,017,549 347,259 67,460 1,225,451 10,107 21 2.202,549 07,400 1,255,451 1,01,107 1,01,107 21 0.002,141 1,01,234 67,460 1,255,451 1,01,107 20 0.002,141 1,00,364 0,347,162 1,325,451 1,01,107 20 0.002,141 2,017,541 0,347,162 1,325,451 1,01,107 20 0.002,141 2,017,541 0,347,162 1,01,556 340,293 6,148 20 0.002,141 2,017,104 1,01,556 340,293 6,148 0,124,463 20 0.002,141 2,017,244 1,02,347,457 1,01,	Model 2.2.064,000 30.0771 (144,800) 07.34) 211 1.10302 3.017 1.206,113 1.01012 3.011 0.011 211 3.1011 1.01012 3.0111 1.206,113 1.01012 0.011 211 3.1011 0.011 1.001,113 1.010112 1.01011 0.011 211 3.011 0.011 1.010112 1.0201413 1.010114 0.01111 211 0.011 0.0114 0.0114 0.0114 0.01111 0.01111 210 1.02014 0.0114 0.0114 0.0114 0.01111 0.01111 210 1.02014 0.0114 0.0114 0.0114 0.01111 0.01111 210 1.02014 0.0114 0.0114 0.0114 0.01111 0.01111 0.01111 210 1.00110 0.0114 0.0114 0.0114 0.0114 0.01111 0.01111 20010 0.0114 0.0114 0.01111 0.0114 0.01111 <	Mot 2.2046 2.046 2.046 0.077 (44.800) 0.730 21 3.323.54 1.13.60 3.31.66 9.017 1.306.13 9.016 9.017 1.44.800 0.730 21 3.325.54 1.13.66,153 3.665.4453 3.655.557 1.45.400 0.017 25 3.425.546 0.7466 3.455.546 0.7466 1.01.077 26 3.525.546 0.7466 1.256.453 1.01.077 26 3.027.546 0.7466 1.01.077 0.01.07 26 1.027.546 0.7466 1.01.077 0.01.07 26 1.027.546 0.7466 1.01.077 0.01.07 26 1.027.546 0.31.47.667 1.01.576 3.02.046 0.01.07 26 1.001.06 2.31.747.667 1.001.356 3.02.046 0.01.07 0.01.06 26 1.001.06 2.31.77.566 3.02.046 0.01.06 0.01.06 0.01.06 0.01.06 26 1.001.06 1.001.367	x x	_	_		(508)		
Octo Trans. Octo District Distrit <thdistrict< th=""> <thdistrict< td=""><td>Other Transfer Direction <thdirection< th=""> <thdirection< th=""> <thdirect< td=""><td>Other Transfer District <thdistrict< th=""> District <th< td=""><td>AT ARCINGO COLORATION COLORAT</td><td>- 11</td><td></td><td></td><td>(1724)</td><td></td><td></td></th<></thdistrict<></td></thdirect<></thdirection<></thdirection<></td></thdistrict<></thdistrict<>	Other Transfer Direction Direction <thdirection< th=""> <thdirection< th=""> <thdirect< td=""><td>Other Transfer District <thdistrict< th=""> District <th< td=""><td>AT ARCINGO COLORATION COLORAT</td><td>- 11</td><td></td><td></td><td>(1724)</td><td></td><td></td></th<></thdistrict<></td></thdirect<></thdirection<></thdirection<>	Other Transfer District District <thdistrict< th=""> District <th< td=""><td>AT ARCINGO COLORATION COLORAT</td><td>- 11</td><td></td><td></td><td>(1724)</td><td></td><td></td></th<></thdistrict<>	AT ARCINGO COLORATION COLORAT	- 11			(1724)		
227 0.0.0.0.01 1.100, 000 257, 440 357, 351 Red54, 552 1, 355, 553 144, 420 256 3.000, 540 07, 450 07, 450 07, 450 1, 325, 451 19, 179 256 3.000, 540 07, 450 07, 450 07, 450 07, 450 1, 325, 451 19, 179 267 0.000, 541 0.01, 400 0.01, 400 1, 225, 451 19, 179 267 0.000, 541 0.01, 400 0.01, 400 0.01, 400 40, 914 267 0.000, 541 0.01, 400 0.01, 401 0.01, 401 10, 100 260 0.000, 541 0.01, 400 0.01, 400 40, 914 40, 914 260 0.01, 401, 574 382, 833 0, 144 40, 414	327 0.0.0.0.01 1.100,000 257,448,911 367,553 (16,450) (10,101) 266 3.000,548 0.74,60 0.7400 0.7400 1.200,461 10,101 366 3.000,548 0.7400 0.7400 0.7400 1.200,461 10,101 367 9.00 0.7400 0.7400 0.7400 0.7400 0.7401 367 9.00 0.7400 0.7400 0.7400 0.7400 0.7401 300 9.00 0.00,910 0.00,90 0.00,90 0.00,91 0.00 700 9.00,100 0.00,516 0.00,301 0.00,91 0.01 0.01 700 9.00,100 0.01,407 3.03,747,467 0.03,747,467 9.04,576 9.02,093 0.1	027 0.0.0.0.010 0.7.0.000 0.7.0.010 0.7.0.010 1.2.0.0.451 10.1.001 260 3.0222.040 0.7.400 0.7.400 1.220.4631 10.1.001 261 3.0272.040 0.7.400 0.7.400 1.220.4631 10.1.001 261 0.002.010 0.01.400 0.7.400 0.7.400 0.7.400 0.01.001 261 0.002.010 0.01.201 0.02.7641 0.2.300.000 0.1.400.00 0.01.001 261 0.002.010 0.00.2010 0.01.761 0.02.761 0.01.001 0.01.001 261 0.002.010 0.001.2010 0.01.761 0.03.761,001 0.01.001 0.01.001 261 0.002.010 0.001.2010 0.01.761 0.03.761,001 0.01.761,001 0.01.761 261 0.002.010 0.001.2010 0.01.761 0.01.761,001 0.01.761,001 0.01.761 261 0.002.010 0.001.2010 0.01.761,012 0.01.761,012 0.01.761,012 0.01.761,012 0.01.761,012 2010	All All <td></td> <td></td> <td>3,001</td> <td>101 </td> <td></td> <td></td>			3,001	101 		
256 3.722.540 07.400 1.226.451 10.707 266 3.522.546 07.400 1.226.451 10.707 266 3.522.546 07.400 1.226.451 10.707 261 0.002.516 07.400 1.226.451 10.707 261 0.002.516 07.400 1.226.451 10.707 261 0.002.516 0.71.610 0.3.200.00 1.00 261 0.002.516 0.3.200.00 2.902.70 40.004 00.7 262 0.001.516 0.01.47.516 1.001.257 302.833 0.144 261 0.01.47.516 1.001.516 302.833 0.144	200 3.72(2):54(0) 07.40(0) 1.22(3,424) 1.22(3,424) 1.32(3,424) 264 3.12(2):54(0) 0.74(0) 1.22(3,424) 1.22(3,424) 10,1701 267 0.000(2)(1) 0.000(2)(1) 0.000(2)(1) 0.000(2)(1) 0.000(2)(1) 0.010 260 0.000(2)(1) 0.000(2)(1) 0.017/(2)(1) 0.017/(2)(1) 0.01 740 0.000(2)(1) 0.000(2)(1) 0.017/(2)(1) 0.017/(2)(1) 0.01 740 0.000(2)(1) 0.017/(2)(1) 0.017/(2)(1) 0.01/(2)(1) 0.01 740 0.010(1)(1) 0.017/(2)(1) 0.01/(2)(1) 0.01/(2)(1) 0.01 740 0.014(1)(1) 0.01/(2)(1) 0.01/(2)(1) 0.01/(2)(1) 0.01/(2)(1) 740 0.014(1)(1) 0.01/(2)(1) 0.01/(2)(1) 0.01/(2)(1) 0.01/(2)(1) 740 0.014(1)(1) 0.01/(2)(1) 0.01/(2)(1) 0.01/(2)(1) 0.01/(2)(1)	256 3.202.540 07.400 1.200.461 1.200.461 10.101 261 0.002.541 07.400 0.7400 1.200.461 0.7010 261 0.002.541 0.7400 0.7400 1.200.461 0.7011 261 0.000.541 0.000.541 0.000.541 0.010.541 0.011 740 0.000.541 0.000.541 0.000.541 0.011 0.011 740 0.000.541 0.000.541 0.011.670 2.001.70 0.014 740 0.000.541 0.012.540 0.012.540 0.014.550 0.016 740 0.014.550 2.001.701 0.014.550 2.002.701 0.014.550 740 0.014.550 2.014.570 0.014.550 0.014.550 0.014	- -		+	(385'258)	1025 19		
250 3.523,540 07,450 1.225,641 07,450 1.0,107 36 3.527,540 07,450 0.525,640 07,450 1.225,641 90,792 60 0.000,010 0.00,010 0.000,010 0.000 0.000 0.000 760 0.000,010 0.000,010 0.000,010 0.000 0.000 760 0.000,010 0.000,010 0.000,010 0.000 0.000 760 0.000,010 0.000,010 0.000,010 0.000 0.000 760 0.000,010 0.01,000 0.01,000 0.01,000 0.010 760 0.01,000 0.01,000 0.01,000 0.01,000 0.010 760 0.01,000 0.01,000 0.01,000 0.01,000 0.010 760 0.01,000 0.01,000 0.01,000 0.01,000 0.010 780 0.01,000 0.01,000 0.01,000 0.01,000 0.010	All All <td>ZER ALEXANDE COLUMENT - ALEXANDE COLUMENT - ALEXANDE -</td> <td>m a. 716,000 07,256 3.522,540 07,480 </td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td>	ZER ALEXANDE COLUMENT - ALEXANDE COLUMENT - ALEXANDE -	m a. 716,000 07,256 3.522,540 07,480		_				
38 3.022.040 07.450 - - - - 5.022.440 1.225.451 16.781 601 0.000.010 0.000.010 0.017.000 2.007.000 2.007.001 007 740 Mu.nish.nos L.421.4753 450.667 10.376.167 3.022.433 0.164 740 Mu.nish.nos L.421.4754 450.667 10.3747.467 450.4667 10.3747.467 450.4677 4.044.576 40.41.576 40.41.675 4.444 740 Mu.nish.nos L.421.4754 450.4667 10.3,747.467 5.061.576 302,4333 4.444	388 3.027,040 - - 3.022,040 - 1.255,451 16,781 501 0.000 96,096 3.027,040 40,094 40,094 60,19 700 Nu.016,000 L.031,000 2.46,070 3.65,657 1,037 9.144 700 Nu.016,000 L.031,000 2.46,070 3.65,553 6,144 700 Nu.016,000 L.031,007 3.65,667 103,347,967 3.62,533 6,144	38 3.023,540 07,450 4.0,306 3.027,540 40,004 1,255,451 157,651 16,170 60 700,510 2.00,710 2.00,710 2.00,710 2.00,170 0.016 700 700,510 2.00,710 2.00,170 2.00,170 0.016 700 700,500 2.00,200 2.00,200 2.00,100 0.016 700 700,500 2.00,200 2.00,200 0.016 0.016 700 700,500 2.00,200 2.00,200 0.016 0.016					10. 101		
072 0.000.018 0.007 62.316 0.3.200.006 240.018 0.07 740 740.016 2.43.16 0.3.276,005 2.464,016 460.004 0.07 740 740.616,006 2.464,016 460,467 40.01,016 362,033 60,464 740 740.616,016 362,023 450,466 10.3,747,467 40.61,576 362,033 6,964 61 61 62.316 10.3,747,467 40.81,576 362,633 6,964	072 0.0000.0110 0000.000 0.017 0.0100.010 0.017 740 Multitude 400.000 240.000 240.000 240.004 0.017 740 Multitude 10.016.000 300.000 300.000 0.016 0.016 10 Multitude 10.016.000 10.017.000 2400.000 0.016 0.016	071 0400.0H 040.0H 030.07 (HII) 430.0H 0.3.70 (HII) 240.0H 00.0 740 740.161 2.171.400 2.917.400 2.917.400 2.917.500 0.01 10 740 740.151 3.01.500 2.917.400 2.917.500 0.01 10 740.151.160 2.917.671.400 4.946 10.01.747.400 0.01 0.01	Implifies Implifies <thimplifies< th=""> Implifies <thimplifies< th=""> Implifies Implifies</thimplifies<></thimplifies<>			1	1.0L 00		
740 Nu.cis.Nue L.421.474 22,422,485 456,687 103,247,967 5,681,576 362,633 6,164 6,164	Tele Nu.nis, Nue L. 4271, ATV 27, 727, 456 456, 687 103, 247, 967 5, 614, 576 382, 833 6, 184 6 Homelyneit	Yeto Nu.nin, Num L. 4271, 4714 3450, 6887 NO.3, 247, 987 S, 081, S76 382, 833 6, 184 6 Honophilant Anonphilant No.2, 433 6, 184 10, 3, 247, 983 6, 184 10, 10, 10, 10	404,727,420 100,000 1410,00 101,000 22,400 22,400				100		
			1900.		747, 167 1,681,574		V 101	1	
1 wordplane (112	ment	
Lange Lines 1							Ralph	h Agrawal	
			* The brought and his here characterizes are us specified by the dotest at perposition of Carriery consensation (PVCxLD) are at average exchange tasks an approache.				Finar	ant Director Genera co	

Section 3: Photo Documentation

Improved Pigeonpea Production Technology (IPPT)

a. Seed Distribution

b. Seed Sowing

c. IPPT in Various Cropping System

Cotton intercrop with pigeonpea.

Maize intercrop with pigeonpea.

Finger millet intercrop with pigeonpea.

Upland rice intercrop with pigeonpea.

Pigeonpea along fishponds.

Groundnut intercrop with pigeonpea.

Pigeonpea in rice bunds.

Pigeonpea along water reservoirs.

Pigeonpea in mountain slopes.

Cowpea with pigeonpea.

Pigeonpea in mango orchard.

Pigeonpea as sole crop.

Farmer Participatory Varietal Selection Trial (FPVST)

Foundation, Certified and Hybrid Seed Production

Harvesting and Threshing of Foundation, Certified and Hybrid Seeds

Seed Procurement and Processing

Seed Production and Processing of Breeder and Hybrid Seeds @ ICRISAT

Variety and Hybrid Seed Production and Seed Reconstitution @ ICRISAT

Capacity Building

a. Specialized Training for DoA Staff, NGOs and ICRISAT Personnel

b. Project Orientation Workshop

ଓଡ଼ିଶାରେ ବର୍ଷ ଆଧାରିତ ଭଳ ଜମିରେ ଭନ୍ନତ ହରତ ଉତ୍ସାଦନ କୌଶଳର ପ୍ରବର୍ତ୍ତନ ଓ ପ୍ରସାରଣ (Introduction & Expansion of Improved Pigeonpea Production Technology in upland Ecosystems of ODISHA)

ତାଲିମଦାତା: ତକ୍ର ମାସାର ଜି ମୁଲା, ଇକ୍ରିସାର୍ଟ୍, ହାଇଦରାବାଦ (RESOURCE PERSON: Dr. MYER G. MULA, ICRISAT)

> 2119 49100: 010 00 0014 (000), 0041 00010 (Financial Suggers Brown of 201544)

c. Farmers Specialized Training on Godown and Dal Mill Processing and Management

d. IPM and IDM Farmers Training

e. Farmer Seed Growers Training

f. Farmers Awareness Meetings

g. Farmer's Field Day

h. Attendance to the State and District Agricultural Trade Fair

Farmer Friendly Literatures

a. Booklets and Pamphlets

(IIIII) can per a per a per a per

More of such or she of the of the set of the 盘 Protect function (001 loss of losses) Bigg assessing group drops angling road namona authentage Protectors in Marine 1 (Marine Index)

- A new first equal to d and new contrast to equal to d is also of the second state of the second sta

- one trease can target and 1 of eq.
- ramente terre transmission di manifiti i of 10 is another to 10, take reactions on to and the
- wai ya afa fiti per kasa di oli ya pernet data none mga na uwa adda ng adfi na ng adfi adfi per kasa di oli ya pernet data ng ang adfi pertek da per adfi ng adfi per adfi , o ta per persent ad an adfi per adfi per adfi per adfi per adfi per adfi adfi per adfi per adfi , o ta per persent ad an adfi per adfi p

dicaliat the material and all all more sound formers the more are and, on for any one demons whereas present in these 1 these failure way of formers are

當

- the state state of the state wave of the states are states and the states are state
- 4. If Y and Reading, S. (1999) and S. (19
- And allow these is a second state one type and it of eq. with the second state of the
- प्रदेश हरका। प्राप्त ने प्राप्त प्राप्त के प्राप्त का स्थान के प्राप्त के प्राप का प्राप्त के प्राप्त क का प्राप्त के प्राप्त क

b. Publications

ding phore and modificer dura and hybrids in the rainfiel an majority of farmers in these

Jichigar and and

es operations ment of Ordin

- numents on provinging and improved rights Production Sectorizing (2011) amonts is Mermitted Sciencearchers and

נים פּשָּׁ פּט אַשעי אַדע פּער אוויא אראשר

refers the or musice may general toy in trutter res into moting with an even point point form global prior and goo shown with coth with oil surfar means global premiers cance upper even don not upper many and even sociations of the with general memory assurances, and music experiments and the sociation of the social memory assurances, and music experiments and the social of the social memory assurances and the social memory assurances

2011 Accomplishment Report (June 2011 - May 2012) 2012 Targets and Revised Project Proposal

Generational Crops Research Institute

FINAL REPORT

MID-TERM IMPACT ASSESSMENT STUDY Introduction and Expansion of Improved Pigeonpea (Arhar) Production Technology in Rainfed Upland Ecosystems of Odisha

Reports P Mula, Myse G Mula, R Spetta Copptan, Saroy Day, BY Kampr and KR Sampra

UICRISAT International Crops Receards Institute

Prints and Electornic Media Posters

News Articles

a. Local News Articles

Control of the contro

b. International News Articles (ICRISAT Happenings Newsletter)

Odisha Government extends ICRISAT pigeonpea project for four years

efficule of the Gevennment of Odialia at the IONSAT stall. (Egint) Farmans from 10 dis georges societies on display

I well space of CRISAT's pipeoper
generated of CRISAT's pipeoper
(CRISAT's end pipeoper
(CRISAT's en

The "introduction and Expension of Improved Pigeospace Production Technology in Narhold Upland Econoperson of Ordina's Index to implementate in file data this Reangeads, Kalerland, Nucanada, Nolargir and Soudh) of Ordina state during the period 2013-2014.

Achevaletiging CREAT's construction, the Department of Agriculture and Food Production. Generowest of Oddina, scholar (CREAT to par us a stall characterize) and insprund Exchangings beneficial to scholarize for an exchange here at Berthermour, Genjem district, Orlidha.

The internet sector of the sector of the sector of the sector of the sector estimates and the sector of the sector

A team Needed by MI Sarat Kumai Tripethy, State Docidinator, put up the staff where samples of

In CASA, which supports. The task was childred by a large number of hornest from 12 data kto and Oshok and generment of Ma excluding the Produces Konst Markon Structure, Markon Agriculture, Groenement of Oshok, Markon Structure, Agriculture, Schwerm, Berlinder Structure, Struc-derma, Principal Extensis, Department of Agricultures and Proof Productions. Mr Aperl Sorth Additional Direction of Agricultures and Mr Sarth Senia Date, Steparty Director Agricultures (Model)

For more information on pigeonpea visit. Etta //implemet.kcs.at.ar.p/pear/signer.pea/547. •

The grapher partners were Department of Agriculture and Roce Production, Ostilia: Odobo Sano Sinal and Departs Production Constitution Agriculture MODE Simulating: Walkah Adrivers (assessed, Propile) Proven, Departure Schedule Schedule and Senior for Supplia Agriculture Mode Schedulerment. per progecti a fuerante de consecuente de la consecuente de Cal-Die progecti à fuerante de la Cal-Calanda de Calenda de

ICRISAT Happenings

Indian state of Odisha gets its first hybrid pigeonpea

The Bath Variate Advances Converting Optimized States The Bath Variate Advances Converting (IVAC) of Sovernment of Obligat a Islawing Islawing appropriate Uthan CPM IDE2 in the name of Sodders Tablet). The environe of this hybrid can given to part to small failular pagenages farmers in the State to environe their Vocema and Weithood: Accounting to Dr Myer Mala, Somital, Seed Systems, ICKSR, there muse appropries from a solutions of Oddela are made for research by warrend.

- Replace of Palwin (CPH 1742)
 R is a real-size duration hybrid and takes around takes around takes around takes around takes to 100 days to motive
 Solution for collocation is alread all agro-timetic conditions of Odola
 NigNy seatures to frustium with and dentify mouse diverse

resource (D-556). (DHI 3742) recorded 123% increase in pithl over local types. The hybrid also possesses complete resistance against will and sterility means: diseases. It was tested in 72 locations in five major pigeonpea growing storects of Odisha.

Comparison of party performance (lig)/hell

111111111111111

17 March 2211 No. 1648

More on plynospex see <u>http://eudoreit.ictuit.org/</u> exps/bleroners/367.

Partners: Odisha University of Agricultum and Technology, ICNIA7 Hornology, Union NGDs – Lokasban, People's Forum, Sahabagi Vikas Abhyan, Shramika Shaitti Sangha, Centre for Social Action and Tribal Development.

Pigeonpea hybrids released by SVRCs in India 2000 – K/Hr 20/1 – Madhya Praslash 2013 – K/Hr 2140 – Andres Pradesh (andivided) 2013 – K/Hr 3162 – Odola

mers are the aroung her

ICRISAT awards outstanding women farmers in India

Recognizing the contribution of women to Reproduce a ontical to achieve global load accurity, said by William Die, Director General, c01547.

when the service of t

Of the 2 billion smallholder famers in the developing world producing majority of the world's food, 20 per-cent air women, mostly living in instreme povers. If we are to exolute hunger and povers, we need to live the paying find the communicate empowering women famers," Dr Oar continued.

to page 2 ... P

<text><image><image><image>

rr] with Drs William Dar and

fermers immensely, ICRISAT Director General

Summary INTERPART Districts General Or William Der tragenshalten Dir Uppellways and walt. "The restignition of year high quality statement and your tostributions globally and making us prova". De 11. Direct, Specy Director General-Nesanch, XURAT and Di Sanjara Nataram, the 2014 World God Prist Lawaras, also computational Di Uppellyays on torowing the honor. "With this award to Uppellyays to see all the minist decontrate tokents in the GGAA system, having been assorted the Fellum of American Society of American (2016), and frenk N Hoper World and Crop Science Research Award in 2013;" Di Gowda savat.

parts, or some and Do CS Remote Reading Sensor Accentral - Sectionalogy Exhanges, Research Program- Dryland Convals, received the Doritzgualide Science RS Advisesment Award from Dr Vac Omagguand, the President of Liborate Academy of Agriculture Sciences, RI Chins, Dr Reddy was humaned for Na contribution to their

and productively. Dr Marce II Multic, Scienttat - Send Systems, Research Program - Sami Japannes was recognised for his contributions in signoropea and system improvement, at Mike Special Fecklator Functions that was organized by the local MOC, IDEXESTAR, hald at Devennipation, Oxfoh, Infish, & Mike wise presented with the Fasce of Anographics hy the Orief Guest, Mi Lakitymas Kume Fakas local, Douby Director of Agriculture, Kalahandi District, Odisha

Agrocutine, services 'Introduction and Expa improved Pigenopies (Anar) Production and expansion of the service of the service of the expansion of the service of the service of the availability of quality seeds to farmers. Nee examing green on similar signale areas and is the meet important pulse organ.

14 February 2014 No. 1610

Farmer partner on pigeonpea seed production in Odisha, India receives top honor

Mr Pradip Kumar Panda, a progressive farmer cooperator under ICRISAT's "Introduction and Expansion of Improved Pigeonpea (Arhar) Production Technology in Rainfed Upland Ecosystems of Odisha" project was honored with the India Agriculture Minister's "Krishi Karman Award for Progressive

Farmers" on 10 February.

Mr Panda received the award from the Honorable President of India, Mr Pranab Mukherjee during the inaugural

Antamoda village, Rayagada district, Odisha owns 17 hectares of land on which he cultivates paddy, cotton, pigeonpea and maize. This award was in recognition of his involvement in

ceremony of the World Agroforestry Congress 2014

at Vigyan Bhavan in New Delhi. Mr Panda of

2011-2012 cropping season as seed producer of ICRISAT line ICP 8863 (Maruti). He was also the recipient of the Odisha Best Farmer Award on Pigeonpea last March 2013. In 2013-2014 cropping season, he increased his area to 14 ha (some leased) to produce foundation seeds of Maruti. His field has been used as demonstration site for farmers from other districts, as well as for projects such as the Tropical Legumes II.

6 ICRISAT HAPPENINGS 14 FEBRUARY 2014 1610

ICRISAT Happenings 4 Marsh 2014

Pigeonpea cultivation improving livelihoods of farmers in Odisha, India

Pipeorpea farmers in the Indian state of Odista are experiencing a lightficant 70% increase in visited by using KRMAM improved varieties over the traditional landrace. This is than has resulted in about 80% increase in income levels.

th the past year, a total of 620,000 kg of var BUIL DAY fuid

620,000 kg of vansus servine seeds of farmer perferred varieties and Nybrids were product from the seed production component of the perfect "introduction and Explanation of Improved Rigerupses Productions "Activations" in Received Rigerupses Productions "Activations" in Received Rigerupses Productions "Activations" in Received Rigerupses Productions "Activations" in Receiver Octains under the Rightings Richards (Rights) activations and the Rightings Richards (Rights) Richards (Rights) activation of Rights (Rights) activations and the Rightings Richards (Rights) activations and the Rightings Richards (Rights) activations and the Rightings Richards (Rights) activations activation activa sub-scheme and it being implemented in Rayagada. Ralahandi and Ruapada detricts.

Katahandi and Kaupoto dentricti. The highlights of the 2013-2014 crop season were generated at a workholo held or Shawanipatra, Kalahand on 4 March. A total of 70 participants including two Desiry Directors of Agnituture (for Ayagaya, Kalahandi, Nuupoda, Boudh and Boleger directuit), agricultural technication, non governiment organizations, ICRIAF staff and Lamens attended the Generation and Plansing Workshop for 3014-2015 to map the way forward.

Participants of the workshop defiberated on seed procurement of 79 tons of various seed classes

(Foundation, Centified and Truthilip-Liberiad oseds) of ICP 7055, ICP, 88039, Auha, Maruti, ICPH 2672 and ICPH 2740 to cover the target production area of 10,000 histories for the grant. The project's mid-term selectment study was also precented.

protection of study was also preperform. ICRUSHT's Dr Myer Mulds and Nr Voyas Kumar managenetic polymers in Bhowastaanta, Kalahandi and Royagada. Mr K Istermanth Rac, Manager of Farm Services. (ICRUSH), make a precentation on godown manageneos. Part of the godowns wal also arens as offices for ICRUSH galancies of in the area for easie in project monitoring. Mr Sarat Thgethy (Istate Coordinator) presented the 2015-20154 cropping instant accomplicitneests.

This project is being undertaken under the CGIAR Research Program on Grain Legumes.

ICRISAT Happenings

Season-long training on pigeonpea seed production

Season-long training on pigeonp and management concludes As part of the institut's capacity building hased in the state of lotios, all the initiations, seven tachnical taff them IOEAL based on the state of Otobia, builds and one representative of a non-governmental organization bolicabil were successfully trained in pigeorpas saming, harvesting (peed successful and imporend crop management techniques at the IOEAL hadquarters

Under the project "https://con.and.Faparsision.of Improved Pignospea (Arbar) Production Technolog in Rainfold Upland Ecosystem of Dalsha', the participants took part in a team of a training session every memb from July 2013 to February 2014.

The 'season long training' followed the crop production cycle, and the participants' leedback production report, and the participants' revolution was collected in monthly reports and presented to (RRSA's Or Myver G Mula, fraining Coordinator and Principal Investigator of the project. Improved crop management was adopted during the production

No. 1617

ing program

articipanti of the training program. The trainess included: start Kumar Tripathy (State Coordinauci), Saensch Ramar Mohanty (Wangdas and Bachl Dritterk Coordinauto), Yachrobanta Naki (Maugas and Balangir District Coordinauto), Raji Kohan-Panda Ukuagada Field Attendurit, Itangula Chantosechar (Rusgadas Field Attendurit), Itangula Chantosechar Hull Attendurit, Jangula Chantosechar Hull Attendurit, and Atte Phasad Mohanty (Listabad) The activity was understama gas and of the CGMA Research Program on Grain Legumes. **B**

As part of ICEBAT's minimum of responsering Assallability inclusive number of each provide through inclusive number of each provide rest of dat machines were inquagatized and harmed over to partners in OBbits on 15–16 January, under project "Inducidation and Expansion of Inprovide response (Munt Production Technology in Reinford Updam) Loopyrous of Odolast. "De Niver Mala and We Saret Tripathy of KSBAT presided over this activity.

The partners. Maa Tarini Self-Hidy Ganag (with 10 women memben) of Kaiyansinggur, Rayagada and Lokashak, a nonguremment organization (NGO) in Husaanjatha, Kaldanth Ihova burnsved Ri 170,000 (US\$3,000) and Na 201,000 (US\$5,000), momentively to construct fashiding to Inose the dat mills. Maamehide in Khariar, Naquarta, the dal mill

building constructed by tababhagi Vikash Abhiyan (NGD) is ready for occupation. The cost of each dat mill set (comprised of dat mill machine, polisher, and generation) provided by the project is 45 210,000 (USS),1000.

10253,17000. During the activity, Dr Maila also monitored the production of brandation and contified work of improved varieties (Manufa, Maika, Kanica, and CPE, 100306). Inder two desites. It is estimated that 2,000 2240.0Mile and theme preferend varietal electrics (FPVS) in the two desites. It is estimated that 2,000 ignitude, 2000 to ignord quality works will be produces and procured in the 2003-2014 company season by the popiet and by the State Sector and Coganic Products Carefulcation Agency (USSOPCA). ■

ICRISAT Happenings interwith a human face

International Crops Research Institute for the Semi-Arid Tropics

4 May 2012

Odisha pigeonpea project evaluation and planning workshop held

Ameeting and an Orientation and Planning expansion of improved page-rapea larbed production technology in anoted page-rapea (arbitrar) production technology in anoted appared to consistence of Outbala' were held at the Directorate of Agriculture and Food Production, Bludbareshwar and in Bhavanapatana. Odinha on 19 and 20 April, impectively.

Opping on 19 and 26 April: implectively. The meeting at Biodianes/show was Falined by Director RS Cepalan together with his Deputy Director RS of Dan. Present during the meeting were the three Deputy Directors of Agriculture (IDDA) or Neurophili, Raymodia, and Kalafatodic NGDb (IDSSIBAK and SVA), NVK-Umarkow, here distric-tionediations and States. Joint Complexity and States (IDSSIBAK and SVA), NVK-Umarkow, need certificities coordinators and State coordinator; seed certifying agency; and Dr MG Mula and Mr RV Kumar from ICHSAT.

IR (BSA). During the expert fortiant, Dr Gegalian recommended an adjustment of the 2012 targets as an othbodt of the 2013 empty. It is install, a reduction in emposed pigetopop production technology (IPF) takes from 6000 has to 4000 has inclusion or Boards and Bolioger dimits in a the project predictions of the IPF1 was in Rayapada inem 1500 has no 500 has tertilizer salivity in the seed project prediction of the IPF1 was in Rayapada inem 1500 has no 500 has tertilizer salivity institutionalizing used delivery system in the project insultanonal cruady seek for farmer prediction variations and hybridy and hinnig 15 field anistants. Neuroshilk inter Chinestron and Thomas Workshop

Murrahile, the Orientation and Planning Workshop was participated in by 65 project implementers involving four DOAs (Stalshord). Nagaaha. Rayagada and Bolhgert with their agricultural officers, KVK Nagaaha, NGOs LOKSEBAK and

No. 1517

SVAI, OSSOPCA (Central Seed Cortification Officer and statu), 15 newly-bired field assistants, district coordination, State coordinator, and ICRISAT accesses

coordinates, State coordinates, and ICRISAT wiseness. Prior to the planning warkshop, Dr Aulia presented the 2011 posteria accomplianments and targets for 2012, The main output of the workshop max to technike the delivery of section his tests covering. 15 Mocks in five districts Nanpadha, Kalahandi, Rayagada, Biolinger, and Boardhi ris the tests covering of 4.000 hectates of IP711. LOOD hectates for curtiled production; 4th Nectaes for hybrid seed production and 42 hectaes for tarree participatory varietal trails (PVT). The workshop came up with specific cord) under the scheduled issuing before 13 here. Feelingers with the subskillood by the project only under the seed production and FPVT component of the project.

dicaisat Happenings

ICRISAT participates in Odisha Agricultural Trade Fair

variety of RCR5AT's pigocopea varieties, hybrid society, planse, will project accomplishment and view including here of the Rothpathy orderd vare put on show at the state-level Kolde-ociety, as a garicultural exhibition-comm-stade that (in Chandbasekharput, Bhuhanessar, Odalha or 2 March. 19-22 March

KRNAT was allofted an exclusive booth where it displayed activities conducted as part of the project on throductura and Expansion of Improved Pageropean Production Technology in Raselet Updired TechSterens of Global with financial support from Rastinya Kruels Visiah Yojna (BKVD).

pport from Ramma Evene when repeating how TIDO loaden diffective and History Seed column of Pgeoregica Hydroxianaty, 300 column Assagement Pgeoregica, and 200 column Assagement Pgeoregica, and 200 column (Caluma) Assagement Practices of cookium chra

Pignorpial in the kical language Orina view distributed to maleholders. Value-added products like pignorpia tall (in 113. - 1 kg packs) prepared be summer's self-heig prospin Gladanal and Rayagada using the dat mil sugplied by the proper-sen also displayed. Alman 1,400 kg of dal was sold lister the KEISAT stall.

29 March 20 No. 1164

Se. 1523

The fair was intaggrated by Odisha Chief Minister Ne Nareen Partails. W RS Grapain, Director (4 Agriculture and Food, pade on the occasion. The annual fair conducted by the Generativest of Odisha through its Department of Agriculture, saw 137 body showcassing products and multihology from public and private institutions.

Arong How who parts (parts) over State coordinates Mr Sarat Kontar Tripathy (ICREAT), and Distric Cavedinaters Mr III Sahe (Halahumil), Wr Y Naid (Napperha ord Mr Savahert) (Regulation and State Statements)

Happenings

International Crops Research Institute for the Semi-Arid Tropics 15 June 2012

Odisha farmers trained on pigeonpea seed production

Under the project "httruduction and Expansion of Improved Pigeoripsis (Mhar) Production Technology in Ramied Upland Lonsystems of Doblaw," ICRRMS staff baseded to Dr Myee G Mula and Am Sent Sumar Tripothy facilitated the conduct of the barring program. "Ngcorpoa Seed Picolaction and Amagement" on 5-7 June for the larmer seed growers of Odaha.

protection counter the non-disc training usas participated in by 301 temer steed geovers from 3 districts #3yogada – 100; Kaluhandi – 133; and Nauparha – 1161, as seell as 11 from roorgovernment copasizations (Lokachak – 4; 5VA – 32; 13 field passiants from five districts figaragada – 2; Kaluhandi – 6; Nauparha – 4; Bolinger – 1; and Boudh – 11; 3 Datrict

The training, amend to enhance tammer' knowledge and prepare and pooside three with guidelines in seed production prior is sowing which furths on 15 Jane. For this year's cropping sources, a total of 1, 226 bectares will be converted with 1,000 hertares of Abia and Variati for centrified seed production; 1365 hectares for foundation seed production (ABIA, Maint, KP 7015, and ICST, RIU29); and 40 hectares for hybrid seed production (ICFH 2671 and ICFH 2740).

of the RX's'T team visiting a pip form at the ICRISAT

Pigeonpea improves women's participation and enhances livelihoods

Production of Improved Paymous Production Technology (IPPT) in the state of Odisha, Isdia, has instrusted women's participation by 248, more than doubled net incomes from 55,075 per into 151,124 per ha, and enhanced productivity from 522 kg per has for the landscale to 204 kg per has for 151,045 marzused to 15,557 semithed from ICREAP server shows the landscale to 150 kg per has for the truth indicates to 204 kg per has for the improved varieties. Answer 20,352 semithed from ICREAP serverstown.

Licker I representations. I and adapted in retrievage Introduction and Espansion of Improved Pipoopes (Arrai) Production Recharge in Rainfeit Upland Espansions of Coloniz, Funded By the Expension Agriculture and food Production, Sourcement of a Spanisher and Reconstruction of a Spanisher a

10 page 2 +

1.011 Participants of the training-cum-field exposure held in Patanchers. (Eight) At the hybrid seed production derive plat.

To interrighten the capacity or pigeonpea seed under the "thready and management of Qeish and State Under the "thready action and management of Qeish and State Under the "thready action and management of Qeish and State Under the "thready action and state of the st

LERISAT Happenings

International Crops Research Institute for the Semi-Arid Tropics 17 February 2012

Orissa seed certification staff and entrepreneurs trained at ICRISAT

of the training at Patanchero.

A four-day training corriesponum wirit was a solution of the 12 seed contribution whicen and a sold entroprocurs from Orisia on 13-16 hobrary at (CRSAT-paracheru. The training was part of CRSAT-protect on "transaction and requiring or improved pignospea (Multi production technology in rained spland ocosystems of Orisia" with the Genemonent of Orisia.

The defegation led by E Nandi, Chief Seed Certification Officer of the Ohsia State Seed & Organic Products Certification Agoncy, was received by Director General William Dar and Research Program Director for Grain Legames CLL Gaveda

So. 1585

In his welcome address. Dr Goveda emphasized on the importance of seed gardaction systems in groundnot, chickpea, and pigcongea. In his brief message, Dr Dar underlined the importance of "patting the sinid and heart tagethe" to emage access in any endoaror. He also thanked the Covernment of China in the origing patternship and ice reposing insta in CREATA's corribution in the development of the State. und on

Dr Rosana Mula, Learning Systems Unit (LSU) Coordinator, presented the training and field? laboratory visit rationale and objectives to the participants.

ICRISAT participates in Odisha state agriculture fair

L to R: Me Sanat Kumar Tribathy, Sozie noordinazo, CARSAC, Me Gangadhar Dax silver Serretary UC and Mr Beavert Kantar Day Agnoomuti, Robinsk Kriste Notar Cell, Dovernment of Oduka, at the ICREAT stati dust was put up at the Agri Fair organized by Department of Agnoshum, Government of Dishlah. The tall belocused me and Improved waintins and Schmidgles of chickpas and approprise. Alkohmidgles of chickpas and ajsonopes. Alkohmidgles of the State and alistricts of Oduka sixted the stat.

Processing and Post Harvest Facility

a. Dal Mil Processing

b. 25 MT Godown at Rayagada and Nuapada

c. 100 MT Godown at Bhawanipatna, Kalahandi

Project Monitoring

On-Farm/On-Station Demonstration

a. Pigeonpea in the rice-fallow cropping system

b. Chickpea in the rice-fallow cropping system

c. Sweet potato intercrop with pigeonpea

Conduct of Midterm Project Assessment

ICRISAT Science with a human face

International Crops Research Institute for the Semi-Arid Tropics

The International Crops Research Institute for the Semi-Arid

Tropics (ICRISAT) is a non-profit, non-political organization that conducts agricultural research for development in Asia and sub-Saharan Africa with a wide array of partners throughout the world. Covering 6.5 million square kilometers of land in 55 countries, the semi-arid tropics have over 2 billion people, of whom 644 million are the poorest of the poor. ICRISAT innovations help the dryland poor move from poverty to prosperity by harnessing markets while managing risks - a strategy called Inclusive Market-Oriented Development (IMOD).

ICRISAT is headquartered in Patancheru, Telangana, India, with two regional hubs and six country offices in sub-Saharan Africa. It is a member of the CGIAR Consortium. CGIAR is a global research partnership for a food secure future.

ICRISAT-India (Headquarters)

Patancheru 502 324, Telangana, India Tel: +91 40 30713071 Fax: +91 40 30713074 icrisat@cgiar.org

ICRISAT-Liaison Office CG Centers Block, NASC Complex, DP Shastri Marg, New Delhi 110 012, India Tel: +91 11 32472306 to 08 Fax: +91 11 25841294

ICRISAT-Ethiopia

C/o ILRI Campus, PO Box 5689 Addis Ababa, Ethiopia Tel: +251-11 617 2541 Fax: +251-11 646 1252/646 4645 icrisat-addis@cgiar.org

ICRISAT-Kenya (Regional hub ESA) PO Box 39063, Nairobi, Kenya Tel: +254 20 7224550 Fax: +254 20 7224001 icrisat-nairobi@cgiar.org ICRISAT-Malawi

Chitedze Agricultural Research Station PO Box 1096, Lilongwe, Malawi Tel: +265 1 707297, 071, 067, 057 Fax: +265 1 707298 icrisat-malawi@cgiar.org

About ICRISAT: www.icrisat.org | ICRISAT's scientific information: EXPLOREit.icrisat.org | DG's Journal: dgblog.icrisat.org

ICRISAT is a member of the CGIAR Consortium

ICRISAT-Mali (Regional hub WCA) BP 320, Bamako, Mali

Tel: +223 20 709200, Fax: +223 20 709201 icrisat-w-mali@cgiar.org

ICRISAT-Mozambique C/o IIAM, Av. das FPLM No 2698 Caixa Postal 1906, Maputo, Mozambique Tel: +258 21 461657, Fax: +258 21 461581

icrisatmoz@panintra.com **ICRISAT-Niger**

BP 12404, Niamey, Niger (Via Paris) Tel: +227 20722529, 20722725 Fax: +227 20734329 icrisatsc@cgiar.org

ICRISAT-Nigeria PMB 3491, Sabo Bakin Zuwo Road,

Tarauni, Kano, Nigeria Tel: +234 7034889836, 8054320384, +234 8033556795 icrisat-kano@cgiar.org

ICRISAT-Zimbabwe

Matopos Research Station PO Box 776, Bulawayo, Zimbabwe Tel: +263 383 311 to 15, Fax: +263 383 307 icrisatzw@cgiar.org