
177

Palakolanu Sudhakar Reddy and Nese Sreenivasulu

Chapter 8
Different Omics Approaches in Cereals and 
Their Possible Implications for Developing 
a System Biology Approach to Study the 
Mechanism of Abiotic Stress Tolerance

P. K. Gupta and R. K. Varshney (eds.), Cereal Genomics II,  
DOI: 10.1007/978-94-007-6401-9_8,  
© Springer Science+Business Media Dordrecht 2013

P. S. Reddy · N. Sreenivasulu (*) 
Interdiciplinary Center for Crop Plant Research (IZN) Research Group Stress Genomics, 
Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 
Gatersleben, Germany
e-mail: srinivas@ipk-gatersleben.de

8.1 � Introduction

Cereals comprise a number of crops including rice, wheat, maize, barley, rye 
and sorghum. In the form of starch and proteins, the cereal grains provide nearly 
60 % of the calories consumed globally as food and fodder. There is a growing 
challenge to meet the global demand of food security for a human population of 
9 billion expected by the year 2050 (Royal 2009; Sreenivasulu and Schnurbusch 
2012). Current predicted climatic conditions such as prolonged drought and heat 
episodes pose a serious threat for the agricultural production world-wide, affecting 
yield losses estimated at billions of dollars (Mittler 2006; IPCC 2007; Battisti and 
Naylor 2009). Hence, increasing crop productivity in view of escalating popula-
tion as well diminishing cultivable land and natural resources in such challeng-
ing environmental conditions has become a matter of urgency. Although much 
research has been conducted to evaluate the effects of global warming due to a 
variety of human activities (Smit et al. 1988), efforts to search specific and practi-
cal approaches to improve adaptability of plants to the climate change have only 
begun recently (Charng et al. 2006; Montero-Barrientos et al. 2010).

Abiotic stresses lead to a series of changes in the plant that affect molecular, bio-
chemical, physiological and phenological processes eventually affecting the perfor-
mance of plant growth and development impacting overall yield (Wang et al. 2003; 
Sreenivasulu et al. 2007). Plants that successfully withstand stresses are constantly 
monitoring their external milieu and are redefining the appropriate cellular response. 
It depends on the ability of the plants to be equipped with intricate gene regulatory 
mechanisms leading to the appropriate physiological adaptation to survive harsh 
challenging conditions. Therefore, understanding plant abiotic stress responses is 
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now thought to be one of the most important topics in plant science. Different omics- 
approaches have been used to elucidate some of the key regulatory pathways in plant 
responses to abiotic stresses. The plant physiological and molecular responses to abi-
otic stresses have been investigated using various genomics strategies (Vij and Tyagi 
2007; Collins et al. 2008; Hu et al. 2009), which include transcriptomics (Rostoks  
et al. 2005; Mohammadi et al. 2007; Zeller et al. 2009), proteomics (Qureshi et al. 
2007; Caruso et al. 2009) and metabolomics (Shulaev et al. 2008). For a comprehen-
sive understanding of global response we need to integrate these responses at a sys-
tems level and need to build integrative platforms to derive knowledge, which may 
facilitate development of stress tolerance in crop plants.

A systems biology/omics approach is a new upcoming field in plant biology, 
which allows not only a better understanding of molecular processes and cellular 
function (Kitano 2000), but also to identify the molecular targets for crop improve-
ment (Cramer et al. 2011). One of the key challenges of systems biology is to inte-
grate the different omics information to give a more complete picture of living 
organisms. Such an integrated approach would unravel the complex interplay or 
cross-talk between the different components and to understand the dynamic activi-
ties of a tissue/organ/organism in different environments (Cramer et al. 2011). The 
availability of these data in model species not only allowed a comprehensive under-
standing of responses against abiotic stresses, but eventually will make the way for-
ward to identify key targets for engineering abiotic stress tolerance in cereals.

8.2 � Status of Genome Sequences in Cereals

The genome sequence, often referred to as the genetic blueprint, provides a foun-
dation for connecting the information from the genome to the phenome via struc-
tural and functional genomics with an extended approach of systems biology. The 
development of genomic resources has progressed in a number of plant species, 
thus creating the gold standard reference genomes in several crops of the grass 
family including rice, maize, Brachypodium and sorghum. Despite variation in 
genetic diversity, genome size and chromo-some number, there is substantial con-
servation in gene order between the grasses which is explored through the study of 
synteny and collinearity. Extensive data on all aspects of cereal genomics are now 
available at GrainGenes (http://wheat.pw.usda.gov/) and Gramene (http://gramene
.org/), the latter having a major emphasis on rice genome and its syntenic relation-
ship with other cereal genomes. Here, we briefly review the current status of avail-
able genomic sequences for cereal crop species (Table 8.1).

8.2.1 � Rice

Among cereals, the first draft sequence is released in rice in two sub-spe-
cies japonica and indica (the two subspecies of Asia) by the commercial effort 
from Syngenta, USA (Goff et al. 2002) and public academic effort by Beijing 

http://wheat.pw.usda.gov/
http://gramene.org/
http://gramene.org/
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Genomics Institute, China (Yu et al. 2002), respectively. This effort resulted in 
generating whole-genome shotgun (WGS) genome draft of japonica and indica, 
covering more than 90 % of the 420 megabase (Mb) genome and also suggested 
that genome size is increased by >6 % and >2 %, respectively compared to the 
common ancestor. Also these two sub-species showed a genetic divergence 
through a detection of numerous SNPs, indels within both the unique (coding) 
and the repetitive regions. In 2005, IRGSP released high quality map-based draft 
sequence in the public domain by providing indexing of 37,544 protein cod-
ing genes (International Rice Genome Sequencing Project 2002). Gene predic-
tions developed by the Plant Genomics Group at TIGR (http://rice.plantbiology
.msu.edu/) and RAP-DB released the rice genome annotation for the public use 
(Tanaka et al. 2008). The Rice FOX (full-length cDNA overexpressor) gene hunt-
ing system is a resource of gain-of-function mutants where 13,000 full-length 
rice cDNA clones are overexpressed in Arabidopsis (rice FOX Arabidopsis 
lines, http://ricefox.psc.riken.jp/) to characterize gene functions in a heterolo-
gous system (Kondou et al. 2009; Sakurai et al. 2011). By this way, several full-
length cDNAs from rice were shown to represent function of orthologous genes 
in Arabidopsis as a FOX line mutant collection with interesting phenotypes 
(Sakurai et al. 2011).

8.2.2 � Maize

Maize is an important model C4 cereal crop that is predominantly a cross-pollinat-
ing, a feature that has contributed to its broad morphological variability and geo-
graphical adaptability. Maize genome size is estimated to be 2,500 Mb, which is 
six times bigger than the rice genome, owing to the expansion of families of trans-
posable elements, particularly retrotransposons (Berhan et al. 1993). The maize 
genome size has expanded dramatically (up to 2.3  Gb) over the last ~3  million 
years via a proliferation of long terminal repeats of retrotransposons (SanMiguel 
et al. 1998). Comparative analysis of grass genomes also reveals conservation of 
gene order but some local rearrangements interrupt collinearity at molecular level 
(Feuillet and Keller 2002). These rearrangements often prevent maize gene clon-
ing using other cereals genome sequence information as a reference. Thus, having 
completed maize genome sequencing is extremely beneficial to better understand 
gene and genome structure of rice and maize, and to understand the evolution 
of complex grass genomes. The draft genome of maize B73 has been sequenced 
(Schnable et al. 2009) using a minimum tiling path of bacterial artificial chromo-
somes (BACs) (16,848) and fosmid (63) clones derived from an integrated physical 
and genetic map (Wei et al. 2009), augmented by comparisons with an optical map 
(Zhou et al. 2009). Shotgun sequenced clones covered up to 4–6 fold genome and 
followed by automated and manual sequence improvement of the unique regions 
only, which resulted in the B73 reference genome version 1(B73 RefGen_v1). This 
B73 RefGen_v1 contains 855 families of DNA transposable elements that make 

http://rice.plantbiology.msu.edu/
http://rice.plantbiology.msu.edu/
http://ricefox.psc.riken.jp/
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up 8.6 % of the genome. From the genome sequence information 32,540 protein-
encoding genes and 150 microRNA (miRNA) genes were predicted from assem-
bled B73 RefGen_v1. Exon sizes of maize genes were similar to that of their 
orthologous genes in rice and sorghum, but maize genes contained larger introns 
because of insertion of repetitive elements (Wei et al. 2009; Haberer et al. 2005). 
In future, exploring intraspecific gene variability and a study of the role of epige-
netics and retrotransposons will remain an important exercise to resolve the hybrid 
vigour and plant performance in maize.

8.2.3 � Brachypodium

The whole genome sequence of Brachypodium reveals that relative to other 
grass genomes, Brachypodium genome is compact (272  Mb), with retrotranspo-
sons concentrated at the centromeres and at the collinearity breakpoints. A total 
of 25,532 protein-coding genes were predicted in the v1.0 annotation. This is 
in the same range as sorghum (27,640) (Paterson et al. 2009). Between 77 and 
84 % gene families are shared among the three grass subfamilies represented by 
Brachypodium, rice and sorghum, reflecting a relatively recent common origin 
(The International Brachypodium Initiative 2010). The similarities in gene con-
tent and gene family structure between Brachypodium, rice and sorghum sup-
port the value of Brachypodium as a functional genomics model for all grasses. 
The relatively small genome of Brachypodium contains many active retroelement 
families, but recombination between these retroelements keeps genome expan-
sion in check. Because of small size and rapid life cycle, and its genetic prox-
imity to tribe Triticeae, Brachypodium has several advantages. The small size of 
some accessions makes it convenient for cultivation in a small space. This has 
led to the development of highly efficient transformation systems for a range 
of Brachypodium genotypes (Vain et al. 2008; Vogel and Hill 2008; Alves et al. 
2009). Also several important resources have been developed, which includes 
germplasm collections (Vogel and Hill 2008; Filiz et al. 2009; Vogel et al. 2009), 
genetic markers (Vogel et al. 2009), a genetic linkage map (Garvin et al. 2010), 
bacterial artificial chromosome (BAC) libraries (Huo et al. 2006, 2008), physi-
cal maps (Gu et al. 2009), large-scale collection of T-DNA tagged lines termed 
‘the BrachyTAG program’ mutant collections (Thole et al. 2010), microarrays and 
databases (Table  8.2). These resources are facilitating the use of Brachypodium 
by the research community, and will allow Brachypodium to be used as a power-
ful functional genomics resource for grasses. Since Brachypodium is more closely 
related to the Triticeae (wheat, barley) than to the other cereals, Brachypodium 
genome also helps in the genome analysis and gene identification in the large 
and complex genomes of Triticeae tribe (wheat and barley), which are among the 
world’s most important crops. It is also an important advance in grass structural 
genomics permitting for the first time, whole-genome comparisons between mem-
bers of the three most important grass subfamilies.
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8.2.4 � Barley

Barley (Hordeum vulgare L.) ranks fourth among the cereals in worldwide pro-
duction and due to its broad stress tolerance adaptability, high genetic variabil-
ity and close relationship to wheat and rye, barley is considered as an excellent 
model C3 crop of Triticeae (Koornneef et al. 1997; Hayes et al. 2003; Sreenivasulu  
et al. 2008a). Barley genome comprises seven chromosomes with estimated 
genome size of 5,100  Mb (12 times that of rice) of which 80  % of genome is 
composed of repetitive DNA, which is presently a major challenge to decipher 
the complete genome. The systematic efforts for sequencing the whole barley 
genome were initiated in 2006 by International Barley Sequencing Consortium 
(IBSC) (http://www.public.iastate.edu/~imagefpc/IBSC%20Webpage/IBSC%20
Template-home.html) and the cultivar Morex was recommended as a reference 
genome. Several approaches are being used to unlock the gene content in the 
whole genome by next-generation sequencing of sorted chromosomes, sequenc-
ing of gene-rich BAC clones and full-length cDNA collections (Sreenivasulu et 
al. 2008b; Mayer et al. 2011; Schulte et al. 2011). As a result, Barley Sequencing 
Consortium is continuously generating voluminous sequencing data that is acces-
sible from the website (http://webblast.ipk-gatersleben.de/barley/index.php). A 
novel analytical platform is also available for genome-wide SNP genotyping (9 K 
Infinium array) for barley and has been used to survey genomic variations among 
barley germplasm and to evaluate chromosomal distribution of introgressed seg-
ments of near-isogenic lines. Also several transcriptome platforms are available to 
generate genome wide transcriptome atlas (Druka et al. 2006, 2011; Sreenivasulu  
et al. 2006, 2008a). Natural variants among barley collections were used to inves-
tigate the associations between nucleotide haplotypes and growth habits that are 
witnessed in different geographical distribution (Saisho and Takeda 2011; Pasam 
et al. 2012).

8.2.5 � Wheat

Wheat is the most widely grown and important staple cereal crop, which occu-
pies more arable land (17  % of all crop area) and possesses more market share 
($31 billion) than any other cereal crop (Gupta et al. 2008; Safar et al. 2010). 
Wheat is a hexaploid, with A, B and D subgenomes, the entire genome being 
40-fold larger than the rice genome (Arumuganathan and Earle 1991) and each 
individual subgenome being  ~5,500  Mb in size. The large genome size, hexa-
ploid nature and a high proportion of repetitive DNA creates significant chal-
lenges in elucidating its genome sequence and to connect genome sequences 
to the phenotypic variance of agronomic traits (Chantret et al. 2005; Paux 
et al. 2008; Wanjugi et al. 2009). International wheat genome sequenc-
ing consortium (IWGSC) has began to target a complete high quality genome 

http://www.public.iastate.edu/~imagefpc/IBSC%20Webpage/IBSC%20Template-home.html
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sequence, by adopting a chromosome-based strategy to construct physi-
cal BAC clone maps and subsequently to sequence each of the individual 
chromosomes (Dolezel et al. 2007). In this context, around 68,000 BAC 
clones of a 3B chromosome-specific BAC library (Safar et al. 2004; Paux  
et al. 2008) have been fingerprinted at the French National Sequencing Centre and 
the sequencing of these BAC clones is under progress (http://urgi.versailles.inra.
fr/index.php/urgi/Projects/3BSeq). Several approaches have been initiated to 
sequence the complex wheat genome. For instance, the consortium from UK 
produced 5X sequence of the bread wheat genome using Roche 454 technology 
(http://www.cerealsdb.uk.net/), and also produced a draft wheat genome assembly 
from the donor species of the wheat D genome, A. tauschii (http://www.cshl.edu/
genome/wheat). Sequences from individual flow-sorted bread wheat chromosome 
arms are also piling up gradually (Berkman et al. 2011; Wicker et al. 2011). With 
the increased availability of wheat genome sequence data, it is necessary to pro-
vide resources that can integrate wheat-specific sequence information to become 
useful for crop improvement (Edwards and Batley 2010). Since wheat genome 
sequencing is still in progress, and a high quality genome sequence is expecting by 
2015, one can foresee the possibilities of launching systems biology approaches 
even in barley and wheat. These systematic attempts to move from genomic to 
post-genomic strategies greatly facilitate researchers who wish to use this infor-
mation to improve this valuable crop. The update about the genome sequencing  
project information and other genetic resources are listed in the Table 1.

Evaluating the impact of genome organization, monitoring dynamic  
alteration of retrotransposons, assessing the impact of epigenetic hallmarks by 
covering genome wide DNA methylation and omics driven systems biology 
approaches are all part of genome dynamic applications. In this review we focus on 
transcriptome, proteome and metabolome data available in cereals and other model 
species. Further we discuss the future needs of implementing systems biology 
applications to derive work flow to identify key target genes for crop improvement.

8.3 � Omics Revolution by High Throughput Approaches

Major progress made in the last decade is through the use of new high-through-
put techniques not only in the field of whole genome sequencing but also through 
characterization of genes through functional genomics. Systematic use of differ-
ent omics approaches such as transcriptomics, proteomics, metabolomics, fluxome 
and a way forward to connect the global data to the phenotypic variance (gener-
ated through phenomics) have led to expand the area towards systems biology 
for elucidating the mechanisms underlying the expression of agronomic traits. 
System-based approaches based on a combination of multiple omics analyses has 
been an efficient approach to determine the global picture of cellular systems and 
to reveal the plant responses and adaptation to a specific stress. In this context, the 
integrated approaches with multiple-omics data should contribute greatly to the 

http://urgi.versailles.inra.fr/index.php/urgi/Projects/3BSeq
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identification of key regulatory steps and to characterize the pathway interaction 
in various processes. These illustrative examples demonstrate the power of multi-
omics-based systems analysis for understanding the key components of cellular 
systems underlying various plant functions. The integration of a wide spectrum 
of omics datasets from various plant species is then essential to promote transla-
tional research to engineer plant systems in response to the challenges of emerging  
climate change.

8.3.1 � Transcriptomics

Genome-wide transcriptome profiling is a powerful approach to assemble a tran-
scriptome atlas of expressed genes involved in various biological phenomena and 
to reveal the molecular cross-talk of gene regulatory networks of responses to vari-
ous abiotic stresses. Microarray analysis is known to be an important approach to 
elucidate the molecular basis of the plant stress response (Van Baarlen et al. 2008; 
Deyholos 2010). The investigation of gene expression related to several physiologi-
cal and agronomical traits have been reported in different cereals. These responses 
include the following: responses to hormones (Seki et al. 2002b; Rabbani et al. 
2003), various stress responses (Kreps et al. 2002; Rabbani et al. 2003; Takahashi 
et al. 2004), including drought (Kreps et al. 2002; Oono et al. 2003; Rabbani et al. 
2003), cold (Kreps et al. 2002; Rabbani et al. 2003; Yamaguchi et al. 2004), high 
light (Rossel et al. 2002; Kimura et al. 2003), hyperosmolarity, oxidative stress 
(Takahashi et al. 2004), and iron deficiency (Thimm et al. 2001).

More detailed and comprehensive gene expression studies have been conducted 
in the model species like Arabidopsis and rice, and the resulting knowledge can be 
used in cereals through comparative gene networks. In case of cereals, several data 
repositories have been created to store the raw data and normalized expression val-
ues generated from GeneChip arrays including Affymetrix 57 K from Rice, 61 K 
Wheat, 22 K Barley1, full-genome Brachypodium and Maize arrays. Furthermore, 
these databases not only allow storage of data from Affymetrix platform but 
also allow storing data from Agilent and NimbleGen platforms (Sreenivasulu  
et al. 2010). These databases include PLEXdb, GEO, Genevestigator, UniProt, 
PlantGDB (Bombarely et al. 2011) Gramene (Youens-Clark et al. 2011), TAIR 
(Swarbreck et al. 2008) and MaizeGDB (Schaeffer et al. 2011).

Transcriptome studies have also been carried out in cereals and other model 
plants but mainly applying single stress at a time such as drought, salinity, cold or 
heat during the vegetative state (for recent reviews see Ingram and Bartels 1996; 
Sreenivasulu et al. 2004a, 2007; Kishor et al. 2005; Vij and Tyagi 2007; Fleury  
et al. 2010). Interestingly, unique stress responsive pathways such as osmolyte 
metabolism, antioxidant machinery, dehydrin and LEA proteins, chaperones and 
gene machinery involved in protection of cell integrity are preferentially upregu-
lated in both dicots and monocots (Xue et al. 2006; Ergen et al. 2009; Fleury  
et al. 2010; Sreenivasulu et al. 2010). However, within osmolyte metabolism, wide 
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array of biochemical pathways are known to activate preferentially in a species 
and genotype specific manner, which corresponds to compounds proline, manni-
tol, myo-innositol, trehalose, glycine metabolism, accumulation of sugar alcohols 
and free sugars including fructose metabolism. Additionally, some studies have 
identified abundance of various transcripts during heat treatment, including genes 
encoding for galactinol synthase and enzymes in the raffinose oligosaccharide 
pathway, and antioxidant enzymes (Lim et al. 2006; Xu et al. 2007). Comparison 
of transcript profiles between tolerant and susceptible lines under various stress 
responses has revealed differences in stress-responsive pathways reflecting dif-
ference in physiological response and adaptation behavior. Transcriptome analy-
sis also revealed some unexpected results such as a decrease in the expression of 
glutathione-related genes following withholding of water in a tolerant synthetic 
wheat line (Mohammadi et al. 2007), or the accumulation of proline in a drought-
sensitive emmer wheat line (Ergen and Budak 2009), suggesting that some path-
ways/mechanisms are dependent upon genotype, the duration, intensity, and 
type of stress applied. There are some reports, which show decrease in transcript 
abundance related to programmed cell death, basic metabolism, and biotic stress 
responses (Larkindale and Vierling 2008) under heat stress conditions. Recently, 
Pinheiro and Chaves (2011) reviewed 450 research papers on drought-mediated 
changes in photosynthesis.

Until now most of the transcriptome responses have been studied in veg-
etative tissues and recently few attempts were made to reveal the transcrip-
tome alterations in developing seeds to understand the yield stability. In case 
of cereals, transcriptome analyses were recently applied to analyze rice devel-
oping caryopses under high temperature conditions (Yamakawa and Hakata 
2010) and seed developmental alterations in barley under drought (Worch  
et al. 2011). Overall, several extensive attempts have been made to identify sev-
eral genes/pathways in a number of cereal crops including rice (Amudha and 
Balasubramani 2011; Hadiarto and Tran 2011; Yang et al. 2010). However, any 
deeper and/or new insights into mechanisms of the function of genes were miss-
ing. In combination with these reviews, the present review of literature based on 
transcriptome studies should present a pertinent update on genes involved in abi-
otic stress tolerance in crop plants. The effort is to lend a perspective on how 
different pieces may fit into the complicated puzzle and to present the integrated 
view on abiotic stress tolerance.

8.3.2 � Proteomics

Although transcriptomics data provides an useful overview of global gene expres-
sion regulation, proteomics is often used as a complementary technique that 
provides the actual state of the condition of cell response to stress. Moreover, pro-
teomics is considered as an essential bridge between the transcriptome and the 
metabolome (Wasinger et al. 1995; Zhu et al. 2003). Compared to transcriptome 
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analysis, proteomics approach has a close relationship to phenotype because of 
their direct action on several biochemical processes. This approach is important in 
evaluating stress responses since the mRNA levels may not always correlate with 
protein accumulation (Gygi et al. 1999) and moreover several regulatory proteins 
are subjected to proteolysis to fine tune the dynamics of transcribed machinery. 
Despite this strategic importance, compared to transcriptomics analysis, plant pro-
teome response to abiotic and biotic stresses is still limited.

In the last decade, good progress has been made in the separation of proteins 
and their identification by mass spectrometry. Studies have evaluated changes in 
protein levels of plant tissues in response to stresses (Canovas et al. 2004; Kim 
et al. 2003). However, these studies have mainly focused on model species such 
as Arabidopsis and rice (Canovas et al. 2004). Implication of proteomic stud-
ies in cereals is mainly based on rice as a model species (Agrawal and Rakwal 
2006, 2011; Komatsu and Yano 2006). A proteomic analysis of drought and 
salt-stressed rice plants found that around 3000 proteins could be detected in a 
single gel and over 1,000 could be analyzed (Salekdeh et al. 2002). The effect 
of salt stress on young rice panicles has been investigated by the same group 
(Dooki et al. 2006). The proteomic analysis of rice leaf sheaths during drought 
stress identified 10 up-regulated and two down-regulated proteins. Among the 
up-regulated proteins, one was an actin depolymerizing factor present at high 
levels in the leaves of non-stressed drought-resistant cultivars (Ali and Komatsu 
2006). Proteome reference maps have been compiled for maize (Mechin et al. 
2004) and wheat (Vensel et al. 2005) endosperm and for barley grain (Finnie  
et al. 2002) during the processes of grain filling and maturation. The effect 
of heat stress on the grain of hexaploid wheat has been thoroughly studied at 
the protein level and down-regulation of several proteins involved in the starch 
metabolism and the induction of HSPs was reported (Majoul et al. 2003, 2004). 
The effect of drought on the wheat grain proteome, involved 121 proteins that 
exhibited significant changes in response to the stress; 57 of these 121 proteins 
could be identified (Hajheidari et al. 2007). Two-thirds of the identified pro-
teins turned out to be thioredoxin targets, revealing the link between drought 
and oxidative stresses. Changes in the protein complement have been moni-
tored in maize under progressive water deficit and several genes/proteins were 
reported to be involved in the drought response (Riccardi et al. 1998). The 
high level of genetic variability observed at the proteome level for the drought 
response in maize (de Vienne et al. 1999) allowed identification of Asr1 (ABA/
water-stress/ripening-related1) gene as a candidate for genetic improvement 
(Jeanneau et al. 2002). Apart from this, some proteomics resources are also avail-
able for grasses, such as the plant proteome database (http://ppdb.tc.cornell.edu/) 
which provides information on the maize and Arabidopsis proteomes. RIKEN 
Plant Phosphoproteome Database (RIPP-DB, http://phosphoproteome.psc.
database.riken.jp) was updated with a data set of large-scale identification of 
rice phosphorylated proteins (Nakagami et al. 2010, 2012). The OryzaPG-DB 
was launched as a rice proteome database based on shotgun proteomics (Helmy  
et al. 2011). Although only a handful of studies have been carried out in cereal 
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crops, it is expected to have a significant increase in the implementation of these 
techniques in cereal crops to study genome wide protein–protein interactions.

8.3.3 � Metabolomics and Fluxome

Metabolomics is one of the important component of functional genomics. It 
defines the quantitative metabolite signatures present in a cell/tissue under a given 
set of physiological conditions (Oliver et al. 1998; Kell et al. 2005; Jordan et al. 
2009). Higher plants have the remarkable ability to synthesize a vast array of 
compounds that differ in the chemical complexity, structure and biological activ-
ity, playing indispensable roles in chemical defenses against biotic and abiotic 
stresses (Verpoorte and Memelink 2002; Dixon and Strack 2003; Schwab 2003). 
Moreover, under various stress conditions, crop species are known to modulate 
the primary metabolism due to the impaired photosynthesis and respiration events. 
The main advantage of metabolomics is that it allows one to measure the impact 
of metabolism and to interlink the key metabolic signatures to the phenotype.

Study of metabolic regulation during stressful conditions has been facilitated 
through mass spectrometry-based analytical methods resulting in the detection 
and identification of diverse metabolites (Sawada et al. 2009). Metabolite profil-
ing deals with detection of a wide range of metabolites in diverse concentrations, 
which makes their analysis more complicated. Therefore, more comprehensive 
coverage can only be achieved by using multi-parallel complementary extraction 
and detection technologies subjected to chemical analysis using liquid and gase-
ous chromatography-mass spectrometry (LC–MS and GC–MS), nuclear magnetic 
resonance (NMR) and Fourier transform-infrared spectrometer (FT-IR).

Metabolome analyses of model plants have markedly increased in the recent 
decade and helped to understand the plant response to various stresses. To obtain 
deeper view into cellular conditions under abiotic stresses, metabolomic investiga-
tions have been performed initially in model species like Arabidopsis and other 
plant species (Schauer and Fernie 2006). From the genome sequence informa-
tion of the A. thaliana, it is evident that plants appear to re-organize their meta-
bolic network in order to adapt to such conditions (Kaplan et al. 2004). Therefore, 
metabolomics plays a key role in understanding cellular functions and decoding 
the functions of genes under challenging abiotic stress conditions (Fiehn 2002; 
Bino et al. 2004; Oksman-Caldentey and Saito 2005; Hall 2006; Schauer and 
Fernie 2006; Hagel and Facchini 2008; Saito et al. 2008). Metabolic adjustments 
in response to different stress conditions are dynamic and multifaceted because 
of their intensity and nature of the stress, but it also depends on the cultivar and 
the type of plant species. This approach also covers the extensive comprehensive 
metabolite analyses, illustrating the complexity of metabolic adjustments to dif-
ferent abiotic stresses (Rizhsky et al. 2004; Urano et al. 2009) including salinity 
(Cramer et al. 2007; Kempa et al. 2007; Sanchez et al. 2008; Janz et al. 2010; 
Lugan et al. 2010), and temperature stress (Cook et al. 2004; Rizhsky et al. 2004; 
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Kaplan et al. 2007; Usadel et al. 2008; Espinoza et al. 2010; Caldana et al. 2011). 
Some metabolic changes are common to salt, drought, and temperature stress, 
whereas others are specific to particular stress (Gong et al. 2005; Cramer et al. 
2007; Gagneul et al. 2007; Kempa et al. 2008; Sanchez et al. 2008; Usadel et al. 
2008; Urano et al. 2009; Lugan et al. 2010). Metabolomic profiles illustrate that 
plants have developed a wide range of strategies to adapt their metabolism to unfa-
vorable growth conditions and that enhanced stress resistance is not restricted to 
a single compound or mechanism. Several metabolites/metabolic pathways that 
contribute to stress acclimation also play a role in development (Hanzawa et al. 
2000; Samach et al. 2000; Eastmond et al. 2002; Palanivelu et al. 2003; Imai et al. 
2004; van Dijken et al. 2004; Alcazar et al. 2005; Gupta and Kaur 2005; Satoh-
Nagasawa et al. 2006; Mattioli et al. 2008, 2009; Szekely et al. 2008; Deeb et al. 
2010; Zhang et al. 2011).

Surprisingly, metabolomic research has made a limited progress in cereals. 
A recent metablolome study in rice identified 88 metabolites from the extract of 
leaves. It was found that sugar and amino acid metabolism is dynamically altered 
under stress treatment (Sato et al. 2008). Metablolome study from maize ker-
nels showed wide range of natural variability based on the influence of genetic 
background and growing season (Reynolds et al. 2005), developmental stages 
(Seebauer et al. 2004) and environment (Harrigan et al. 2007). Metabolome 
study of diverse maize genotypes recently explored and highlighted the impor-
tance of grain fatty acid methyl esters, free fatty acid methyl esters, free amino 
acids. Around 167 metabolites were identified from 300 distinct analytes by using 
GC–MS approach (Rohlig et al. 2009). Integrated metabolome and transcriptome 
analysis has also been applied to investigate changing metabolic systems in plants 
growing in field conditions, such as the rice Os-GIGANTEA (Os-GI) mutant 
and transgenic barley (Kogel et al. 2010; Izawa et al. 2011). The application of 
metabolomics in cereals has just begun, and its full potential will be realized only 
in future. Large-scale metabolic analyses are therefore necessary to observe the 
metabolic networks important for plant growth and development under a range of 
environmental conditions.

Measurement of metabolism-wide fluxes through steady-state metabolic flux 
balance analysis (MFA or FBA) by measuring 13C redistribution signatures within 
the primary metabolism at subcellular compartment level, and the information 
about the biomass composition and growth rate generate data, which is collec-
tively described as Fluxome. Predicted flux maps is an important part of meta-
bolic engineering (Becker et al. 2007). Recently, several methods are refined to 
predict metabolic networks that determine the fluxes, which directly report on 
cellular physiology. The most widely used approaches for fluxome analysis are 
based on GC–MS measurement of labelling pattern of metabolites from the tracer 
studies. This approach is optimized and applied to move from gaining informa-
tion of static metabolic signatures to end products. A recent approach to the flux-
ome consists of the comprehensive determination of enzyme activities from cyclic 
robotic assays and determination of the activity of each reaction step in the meta-
bolic pathway (Gibon et al. 2006; Osuna et al. 2007). The most direct information 
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of metabolic regulations can be obtained through the determination of an actual 
metabolic flux. This method also allows gaining precise knowledge of metabolic 
physiology and its engineering (Christensen and Nielsen 2000; Des Rosiers et 
al. 2004). A range of different MFA methods has been applied to plant systems, 
resulting in identifying unique insights into the operation of plant metabolic net-
works. Implementing the emerging MFA methods for plant studies faces consider-
able hurdles because of the greater complexity of plant metabolic networks and 
our ignorance of understanding the biochemical pathway and kinetics at sub-cellu-
lar compartment levels (Sweetlove et al. 2008). For metabolic flux calculation, the 
different labelling data obtained are usually utilized to globally fit the unknown 
flux parameters by a computer flux model combining isotopomer and metabo-
lite balancing strategies (Wiechert et al. 2001; Kiefer et al. 2004; Wittmann et al. 
2004; Frick and Wittmann 2005). It has been recognized that better optimization 
of experimental designs is essential for distinguishing activities between parallel 
metabolic pathways operative in distinct cellular compartments, such as cytosol 
and plastids (Allen et al. 2007; Kruger et al. 2007; Li et al. 2008). Overall, MFA 
and dynamic labeling methods are instrumental for quantifying metabolic fluxes 
of plant responses under ambient and challenging environments (Roscher et al. 
2000; Boatright et al. 2004; Matsuda et al. 2005; Ratcliffe and Shachar-Hill 2006; 
Matsuda et al. 2009). Recently, genome wide metabolic fluxes have been predicted 
in Arabidopsis for high temperature and hyperosmotic stress, so that it was pos-
sible to identify key signatures such as severe reduction in carbon-use efficiency 
through reduction in PEP flux and increased TCA cycle for altered growth rate 
(Williams et al. 2010). Fewer studies have applied MFA in cereals. In maize, fast-
growing excised root tips were used to study the central carbon metabolism by 
keeping them for 12–18 h in a medium containing 13C-labeled glucose (Dieuaide-
Noubhani et al. 1995; Edwards et al. 1998), and then analyzing the most abun-
dant labeled free intracellular metabolites (i.e., sugars and amino acids) by NMR 
or MS; large flux maps of central carbon metabolism were derived in this man-
ner (Dieuaide-Noubhani et al. 1995; Alonso et al. 2005). In other studies 13C 
labeled glucose was used to label maize kernels and barley caryopsis, and label 
was analyzed in both glucose (derived from starch) and amino acids (derived 
from proteins) available in the starchy endosperm (Glawischnig et al. 2001, 2002; 
Grafahrend-Belau et al. 2009; Rolletschek et al. 2011).

8.3.4 � Role of Hormones

Abiotic stress response involves a trigger of similar set of transcription fac-
tors involved in both ABA-dependent and ABA-independent manner in both 
dicotyledonous and monocotyledonous plants (reviewed by Sreenivasulu  
et al. 2007). Genes differentially regulated in Arabidopsis and rice in response to 
drought, salinity and cold stress comprise gene-sets enriched with DRE-related 
and ABRE core motifs. Therefore both ABA-dependent and ABA-independent 
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signaling pathways are important in regulating the transcriptome responses 
(Seki et al. 2002a, 2001; Gomez-Porras et al. 2007). Abscisic acid (ABA) 
remains the best-studied hormone for plant stress response. However, other 
hormones such as cytokinins, auxins, gibberellins, brassinosteroids, strigolac-
tones, jasmonic acid, salicylic acid as well as the gaseous hormones, ethylene 
and nitric oxide are being studied for their role in abiotic stress response in the 
recent past. Hence, we need to understand the manipulation of the phytohor-
mone synthesis and action across the plant life-cycle, which is an attractive ave-
nue to understand and engineer abiotic stress tolerance. In barley, the response 
to salinity stress includes the synthesis and the induction of the jasmonate sig-
nalling transduction pathways (Walia et al. 2006, 2007). Recently, modifica-
tion of cytokinin expression, with the critical difference in the use of a stress 
and maturation-induced promoter in rice resulted in elevating drought toler-
ance to produce higher yield under stress (Peleg et al. 2011). The observed dif-
ferences in the content of other phytohormones in the cytokinin-modulated 
transgenic rice lines also suggested synergistic or antagonistic interactions 
between auxins, ethylene, cytokinins and ABA in regulating stomatal behavior. 
Furthermore, gibberellins and brassinosteroids have a strategic importance in tol-
erance to a variety of abiotic stresses (Peleg and Blumwald 2011). Critical altera-
tion in the ratio of cytokinins and abscisic acid and its antagonistic responses is 
known to alter the growth dynamics under abiotic stress response (Nishiyama  
et al. (2011). Also, the effects of three different phytohormones auxin, ABA and 
cytokinins on the single trait of nitrogen acquisition were reported in a recent 
review (Kiba et al. 2011). Nitrogen acquisition and remobilization is an important 
trait to be considered in abiotic stress tolerance to fine tune source-sink relation-
ships in enhancing grain yield (Seiler et al. 2011; Kohli et al. 2012).

8.3.5 � Phenomics

Phenomics involves comprehensive capture of a plant’s phenotype that helps to 
explore the germplasm. Unfortunately, there is a large gap in our understanding 
of events that may occur when genotype is translated into phenotype; there is an 
urgent need to fill this gap (Zamboni and Sauer 2004; Furbank and Tester 2011). 
Plant genomes possess great plasticity in the genomes for producing various types 
of phenotypes. However, the genetic variability that may prove useful for develop-
ing stress tolerant lines is limited.

There are large number of initiatives launched (IPPN: International Plant 
Phenomics Network; DPPN: Deutsches Pflanzen Phänotypisierungs Netzwerk; 
EPPN: European Plant Phenotyping Network; APPF: Australian Plant Phenomics 
Facility) to create phenotyping facilities to screen populations, GMO material and 
mutant collections by employing high end image capture technologies in the phyto-
trons and glass houses. The Plant Accelerator (Lemnatech scan analyzer 3D) which 
takes non-destructive measurements of plant biomass (Finkel 2009) can also be 
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used. The core of the Plant Accelerator’s phenotyping facility also measures level of 
watering and nutrient supplementation control, managing plant movement and track-
ing, and records images of plants in a range of different wavelengths, thus provid-
ing enormous information about the diversity of phenotype. Visible cameras quantify 
overall plant morphology, size, colour, shoot mass and other physical characteristics; 
near infra-red cameras detect water content of the leaves and soil; far infra-red pro-
vides information about leaf temperature and transpiration rate. While UV detects 
chlorophyll fluorescence, the GFP fluorescence will be helpful to monitor transgene 
expression. The first phenomics study was the use of quantitative phenotypic assays 
to measure salt tolerance traits such as osmotolerance Na+ exclusion and Na+ tissue 
tolerance in the diploid wheat T. monococcum (Rajendran et al. 2009). The advan-
tage of this approach is that it is non-invasive, allowing other omics approaches to 
analyze cell products from the same plant. Also other non-invasive techniques such 
as magnetic resonance imaging, high resolution based nuclear magnetic resonance 
and positron emission tomography are implemented to gain insights into structure–
function relationship (reviewed by Mir et al. 2012). To fully explore the genotype 
dependent tolerance mechanisms within the breeding programs, field-based high-
throughput phenotyping platforms are essential to monitor the canopy tempera-
ture using infrared thermography. Furthermore, implementations of remote sensing 
technologies are essential to fully explore phenotypic plasticity at the field level. To 
explore the key agronomic traits for the improvement of sustainable agriculture, one 
needs to expand the systematic phenotyping to explore allelic variation in mapping 
populations, breeding programs and large scale mutants and GMO collections.

8.4 � Integrative Systems Biology

Integration of the different omic approaches in the area of abiotic stress tolerance 
allows more robust identifications of molecular targets for future biotechnologi-
cal applications in crop plants. Manipulating plant metabolism to better serve the 
future needs requires an improved understanding of the links between genotype 
and phenotype. Therefore, the massive omics data created from multifaceted plat-
forms of genome, transcriptome, proteome, metabolome, flux and enzyme kinetics 
(Table 8.2 and Fig. 8.1) need to be interlinked to the cellular phenotype to under-
stand the cellular physiological status under perturbed environmental conditions 
(Sauer et al. 1999). To address the missing links between molecules and physiol-
ogy, different approaches of systems biology are implemented which includes 
“top–down” and “bottom–up” strategies. The major strengths of top-down systems 
biology are to gain an integrative view of the huge collection of omic data sets like 
transcriptomics and/or proteomics, metabolomics and fluxomics (Westerhoff and 
Palsson 2004). Top–down systems biology identifies molecular interaction net-
works on the basis of correlated molecular behavior observed through genome-
wide ‘omics’ studies. Also, bottom-up systems biology deduces the functional 
properties that could emerge from a subsystem that has been characterized to a 
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high level of mechanistic detail using molecular methods but focuses at the cellular 
level. By employing the systems biology tools in plant science, many abiotic stress-
inducible genes were identified and their functions were precisely characterized in 
the model species.

Also, top–down systems biology concerns the identification of the structure of 
the molecular network that underlies system behavior that is, ‘reverse engineering’ 
from system data alone. Top–down approach starts by (re)constructing a possible 
topology of the network at a low level of complexity and provides a broad overview 
of the system at low resolution. Transcriptional networks through reverse engineer-
ing methods from the collections of gene expression data have been well pioneered 
on single-cell organisms, but have increasingly been applied to higher order organ-
isms including plants where applications of systems biology methods are now 
emerging (Carro et al. 2010; Carrera et al. 2009; Needham et al. 2009). The availa-
ble network models are mainly based on Boolean, Relevance, or Bayesian networks 
or association rules (Hache et al. 2009). These network inference methods are cate-
gorized into (1) those that aim to influence the genes in the general manner to influ-
ence the expression of other genes by forming gene regulatory networks (Bansal et 
al. 2007; Marbach et al. 2010) and (2) those, which aims to having physical interac-
tion between transcription factors and the regulatory genes/motifs by forming the 
gene regulatory networks (Styczynski and Stephanopoulos 2005). The metabolic 
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network reconstructions that are normally done at the genome-scale are the key 
factors to characterize the genotype to phenotype relationships using all sequence 
and functional annotation data that is available in public databases combined with 
manual curation using the available literature and experimental data (Feist et al. 
2009). Most systems biology studies have been implemented in the model plant 
Arabidopsis, where large transcriptomics programs have generated adequate quan-
tities of high-quality data to enable systems analysis (Krishnan et al. 2009). The 
resulting knowledge can be used in cereals through comparative gene networks. 
Therefore, it is important to perform parallel studies in cereals with other charac-
teristics, as well as to develop methods to allow use of data from the Arabidopsis 
system to conduct studies in other plant species.

Integration of different multiple ‘omics’ data is required to reconstruct complex 
networks that characterize the phenotypes in the cell (Moles et al. 2003; Kremling 
et al. 2004). In particular, transcriptome co-expression analysis for delimiting 
genes of interest has been implemented more efficiently using publicly available 
large transcriptome datasets such as AtGenExpress (Schmid et al. 2005; Goda  
et al. 2008) and NASCArrays (Craigon et al. 2004), which contain data from >1000 
microarrays from model species alone. This kind of in-depth data is yet to be gen-
erated among cereal species to elucidate gene regulatory networks. The current 
status of available resources related to integrated databases for cereal crop species 
are listed in the Table 2. Transcriptome data sets are now available for co-expres-
sion analysis of the transcriptome in cereal crops; for instance, RiceArrayNet and 
OryzaExpress databases provide web-accessible co-expression data for rice (Lee  
et al. 2009; Hamada et al. 2011). The ATTED-II database also provides co-expres-
sion data sets for rice in addition to those for Arabidopsis (Obayashi et al. 2007; 
2011). A co-expressed barley gene network was recently generated and then 
applied to comparative analysis to discover potential Triticeae- -specific gene 
expression networks (Mochida et al. 2011). PlaNet (http://aranet.mpimp-golm.
mpg.de/), a database of co-expression networks for Arabidopsis and six plant crop 
species, uses a comparative network algorithm, NetworkComparer, to estimate 
similarities between network structures (Mutwil et al. 2011). This platform inte-
grates gene expression patterns, associated functional annotations and MapMan 
term-based ontology, and facilitates knowledge transfer from Arabidopsis to crop 
species for the discovery of conserved co-expressed gene networks. The KEGG 
PLANT Resource (KEGG; http://www.genome.jp/kegg/) is one of the most widely 
established integrated database which provide information on primary metabolism 
of biosynthetic pathways. It aims to integrate genomic information resources with 
the biosynthetic pathways of natural plant products (Masoudi-Nejad et al. 2007). 
Another information resource for biosynthetic pathways, PlantCyc platform has 
been used for a number of plant species to analyze the computational analysis of 
the genes, enzymes, compounds, reactions and pathways involved in developmen-
tal and stress response. The pathways section in the Gramene databases provides 
RiceCyc, MaizeCyc, BrachyCyc and SorghumCyc, for rice, maize, Brachypodium 
and sorghum, respectively (http://www.gramene.org/pathway/). These resources 
will enable cereal workers to focus on active analysis of regulatory networks that 

http://aranet.mpimp-golm.mpg.de/
http://aranet.mpimp-golm.mpg.de/
http://www.genome.jp/kegg/
http://www.gramene.org/pathway/


196 P. S. Reddy and N. Sreenivasulu

may be involved in different biological functions (de la Fuente et al. 2002; Vlad  
et al. 2004; Kholodenko et al. 2002).

Generally, a preselected set of genes designated as guide genes or bait genes 
for the core part of the network modules is computed for co-expression with other 
genes for the generation of co-expression networks (Horan et al. 2008). If a net-
work frame is formed between unknown and known genes, it is presumed that 
these genes share a common regulatory system and thus are involved in the same 
pathway. This approach was applied for identification of genes involved in sev-
eral biochemical pathways such as cellulose synthesis (Persson et al. 2005), ali-
phatic glucosinolate biosynthesis (Hirai et al. 2007), glucosinolate biosynthetic 
pathway (Hansen et al. 2007; Geu-Flores et al. 2009) and hormone metabolism (Goda  
et al. 2008). In case of cereals, the integrated analysis of metabolome and transcriptome 
was recently conducted to analyze rice caryopses developing under high temperature 
conditions (Yamakawa and Hakata 2010); molecular events underlying pollination-
induced and pollination-independent fruit sets were also examined (Wang et al. 2009). 
Integrated analysis of metabolome and transcriptome has also been applied to investi-
gate changing metabolic systems in field grown plants of rice Os-GIGANTEA (Os-GI) 
mutant and transgenic barley lines (Kogel et al. 2010; Izawa et al. 2011). An integrated 
analysis of proteome and metabolome was also used to compare the differences in 
response to anoxia between rice and wheat coleoptiles (Shingaki-Wells et al. 2011). 
Furthermore, an integrated analysis of transcriptome, proteome and metabolome was 
conducted to characterize the cascading changes in UV-B-mediated responses in maize 
(Casati et al. 2011). In this context, the integrated approaches with multiple omics data 
should contribute greatly to the identification of key regulatory steps and to character-
ize the pathways for various processes. Following these successful efforts, multi-omics-
based systems analyses have improved our understanding of plant cellular systems by 
integrating metabolome analysis with genome and transcriptome resources (Hirai et al. 
2004; Saito et al. 2008; Okazaki et al. 2009). The URLs of each integrative database in 
plant genomics are listed in Table 2.

The main objective of the above strategy is to discover new molecular mecha-
nisms using an iterative cycle that starts with experimental data, followed by data 
analysis and data integration to determine correlations between the molecules. As 
an end process, the formulation of hypotheses concerning co- and inter-regulation 
of groups of those molecules will be revealed. The omics data obtained under a spe-
cific condition such as stress response from a given gene knockouts are used for 
integrated omics analysis in this strategy. Such an analysis allowed the prediction of 
functional relevance of key genes involved in stress-specific regulons determining 
tolerance. This approach has become the key to decipher the functional analysis of 
the genes identified from the whole genome sequencing of the plants. Alternatively, 
it also helps to identify ubiquitous stress regulated pathways. However, more atten-
tion is now focused in the creation of mutants and screening the response to abiotic 
stress using multi-layered omics strategy. To date, more than half a million T-DNA 
mutants have been developed for rice and Arabidopsis (An et al. 2005; O’Malley 
and Ecker 2010). In other cereals, like Brachypodium, a large-scale collection of 
T-DNA tagged lines termed ‘the BrachyTAG program’ have been developed and 
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used to investigate gene functions (Thole et al. 2010). A collection of several knock-
out mutants in cereals has been generated to assess the function of genes involved 
in abiotic stress. The rice full-length cDNA overexpressed Arabidopsis mutant 
database (Rice FOX Database, http://ricefox.psc.riken.jp/) was a new informa-
tion resource for the FOX line (Sakurai et al. 2011). The system was also used to 
screen salt stress-resistant lines in the T1 generation produced by the transforma-
tion of 43 focused stress-inducible transcription factors of Arabidopsis (Fujita et al. 
2007). Then, the system was applied to a set of full-length rice cDNA clones aiming 
for in planta high-throughput screening of rice functional genes, with Arabidopsis 
as the host species (Kondou et al. 2009). Thus, the FOX hunting system is capa-
ble of the high-throughput characterization of gene functions. Furthermore, in rice, 
the endogenous retrotransposon Tos17, which is activated in particular conditions, 
is also available for the study of the insertion mutant lines of a japonica rice culti-
var, Nipponbare (Miyao et al. 2007). Several mutants were isolated in wheat, which 
showed increased resistance towards biotic stress tolerance. In wheat, heat tolerant 
(Mullarkey and Jones 2000) and salt tolerant plants (Huo et al. 2004) have already 
been charecterized to study the genetic basis of stress tolerance. Additionally, the 
maize Enhancer/Suppressor Mutator (En/Spm) element has also been used as an 
effective tool for the study of functional genomics in plants (Kumar et al. 2005). 
Other approach to study the gain-of-function of mutations by activation tagging 
have been developed and performed in Arabidopsis, rice and soybean (Weigel et al. 
2000; An et al. 2005; Kuromori et al. 2009). The current status of available resources 
related to mutants database for cereal crop species were listed in the Table 8.2.

8.5 � Identification of Key Candidate Genes for Tolerance  
to Abiotic Stress and Validation of their Functions 
Using Transgenic Approaches

One of the key challenges facing agriculture today is the acute water shortage and 
high temperature caused by worldwide climate change and the increasing world 
population. Fulfilling the needs of this growing population is quite difficult from 
the limited arable land area available on the globe. Although there are legal, social 
and political barriers to the utilization of biotechnology, advances made in this field 
have great potential to substantially improve agricultural productivity under chal-
lenging environments. Both non-GMO and GMO strategies have been implemented 
to improve tolerance in crop plants. Genetic engineering is thus being intensively 
explored to improve plant tolerance to various abiotic stresses, and transgenic crop 
genotypes with improved stress resistance have actually been produced (Bartels 
and Sunkar 2005; Vinocur and Altman 2005; Umezawa et al. 2006; Pennisi 2008; 
Wan et al. 2009). In case of maize, drought tolerance transgenics are also undergo-
ing field trails in Africa, and some other drought tolerant genotypes are also being 
used by the farmers for commercial cultivation. Performance of a number of other 
events in maize and other crops are being subjected to field trials. Partial drought 

http://ricefox.psc.riken.jp/
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tolerance has been achieved in the vegetative phase through gene transfer by alter-
ing the accumulation of osmoprotectants, production of chaperones, protection of cell 
integrity by expression of LEA proteins and improved superoxide radical scaveng-
ing mechanisms (see reviews by Hasegawa et al. 2000; Kishor et al. 2005; Sangam 
et al. 2005; Sreenivasulu et al. 2004b, 2007; Vij and Tyagi 2007). In addition, over-
expression of the key regulators ABF2, ABF3 and ABF4 of Arabidopsis involved 
in ABA-dependent signaling as well as constitutive expression of the Arabidopsis 
DREB1A, DREB1B, DREB1C and DREB2A transcription factors participating in 
ABA-independent signaling pathways have been shown to be effective in engineer-
ing drought tolerance (see reviews by Agarwal et al. 2006; Umezawa et al. 2006; 
Sreenivasulu et al. 2007). Genetic engineering strategy has been successfully applied 
to increase tolerance against a number of other abiotic stresses also. In this context, a 
variety of crops from cereals (rice, maize, barley, Brachypodium and wheat etc.,) have 
been engineered for enhanced resistance to a multitude of stresses, each individually, 
or in combination of biotic and abiotic stresses. Enhancing plant tolerance to abiotic 
stresses involves multiple mechanisms and therefore involves manipulation of differ-
ent physiological and biochemical pathways (Wang et al. 2003; Zhang et al. 2009).

8.6 � Summary and Outlook

The availability of complete genome sequence information of model species like 
Arabidopsis thaliana, Oryza sativa and other cereal plants has made valuable contri-
butions in dissecting the stress response at the level of transcriptional regulation, post-
transcriptional, post-translational modifications and epigenetic regulation. Using high 
throughput modern techniques like transcriptomics, metabolomics and proteomics, 
stress-responsive pathway genes have been identified. These strategies enabled us to 
identify key stress regulators by deriving complicated regulatory network. Employing 
the systems biology tools in plant science, many abiotic stress-inducible genes were 
identified and their functions were precisely characterized in the model species.

The identification of stress-regulators gave rise to the idea that plants have 
developed flexible cellular response mechanisms to efficiently respond to vari-
ous abiotic stresses. Numerous genes that are induced by various abiotic stresses 
have been identified using various microarray systems and these gene products are 
classified into two groups. The first group includes proteins functioning in direct 
abiotic stress tolerance; these include the following: chaperones, LEA proteins, 
osmotin, antifreeze proteins, mRNA-binding proteins, key enzymes for osmolyte 
biosynthesis such as proline, water channel proteins, sugar and proline transport-
ers, detoxification enzymes, and enzymes involved in fatty acid metabolism, pro-
teinase inhibitors, ferritin, and lipid-transfer proteins. The second group includes 
factors involved in regulatory function related to signal transduction, hormonal 
response and transcription factors, which are responsive to various stress factors. 
These transcription factors could regulate various stress inducible genes coopera-
tively or independently, and may constitute gene networks.
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Under drought, photosynthesis is affected by decreased intake and diffusion 
of CO2 due to modulation of stomatal opening by phytohormones. In response to 
altered carbon intake, the changed leaf sugar status acts as a metabolic signal. In 
concert with other phytohormones, it inhibits growth, which further alters the car-
bon: nitrogen ratio. The stress conditions generated by severe drought and nutrient 
deprivation triggers energy imbalances, as well further loop-in alteration between 
growth promoting and growth retarding phytohormones (Sreenivasulu et al. 2012), 
generation of reactive oxygen species (ROS) and second messengers such as cal-
cium to affect transcriptional regulation of numerous genes. Their meta-analysis 
indicated that variables on the time and severity of stress and plant species made it 
difficult to find a general trend in relating molecular responses to the physiologi-
cal status of the plant. Functional characterization of stress inducible transcription 
factors should provide more information in the complex regulatory gene networks 
that are involved in responses to drought, high temperature, and high salinity 
stresses. At present, the functions of many of these genes are not fully character-
ized. Some attempts at analyzing large scale high throughput data allows us to 
bring the different elements together, suggesting that the integration of stress cues 
into development and plant growth in dealing with crop yield under stress is rather 
complicated. Such diversity in needs, approaches, opinions and indeed results has 
led to generation of massive literature, which needs to be systematically reviewed 
to derive proper strategies for understanding the stress tolerance mechanisms. 
Therefore methods implied in systems biology approaches remain pivotal to sys-
tematically reveal the function of these stress-responsive pathways.
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