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ABSTRACT 

I'lic Irnn\genic pigconpea planti carrking 81 ct:1 1.lh and .\oi.hL,uti inr~.\rti rniirhrior 
fclie\ \ \ c ~ c  I ~ I ~ I c c L I I ~ ~ I >  c l i a r ; i c t r r ~ ~ ~ d  liir thc presence of ilis~cticidal pcncs ;ind hioo~s3!s 
\\ere c o ~ l d t ~ i t ~ d  to lest thcir cilicac! against the gram pod horer. \ f i ~ l i c o ~ ~ ~ ~ ~ ~ i i  iirtilr,yo.o 
il luhner) under both laboraturh and field cond~tionj. 

I'he investigations re~ea led  tliat thcrc was lor of \ariaticit1 in the pcrfornisncs of 
wgregating individual plant5 in terlns of'da~nage rating. lanal  survi\al and Idr\al i\eight. 
The sti~dies clcnrlj ~ndicatcd t l~a t  the Icvel\ ot'Crj l:lh endotokin or  5RTI toxic prorein\ 
present in the trarlsgenic pigcollpea plants s e r e  nor sullicien! to cauw jtgnificant 
deterrent effect on 11, arttii,qcra Though some plant? sho\\cii resistance to I 1  i~rr~ii~eerii 
o\+ing to the lo\\ expression of the rransgcnes, the resistance could nor he manifested i:l 

thcir p~ogenies  in suhwqucnr gcncrations. Field studies also indicated tliat the diifcre-~ccs 
hetizccn the transgenic and non-transgenic plants \\ere not significant in terms of 11~11nber 
of larva?. pod damage. locule damage and bicld. Thc larvae gained morc t\eight \\hen 
k d  on flowers rather than leavcs may be due to \cr! lo\\ toxin le\,els in i l i i~\crs  or due 10 
higher protein content in flo\vers. Lack of' significant differences in rile nunlhcr trfeggs 
laid on transgenic and nun-transgenic plants rho~ved that Cr)l!Zh toxin or SET1 had nil 

effect on thc oviposition b! the adults. It \\as also ohserped that the toxin levels prercnl 
in the leaves of transgenic plants could not inhihit the feeding by the larbae 



Artif icial diet impregnated with Iyophi l i~ed leaves o f  transgenic pigeonpea plants 
s [ l o ~ ~ c d  no effect on the larval weight, hut a slight prolongation o f  l a r ~ a l  per~od was  

on Rt 1.2.1 .2, Bt 1.2.1.4, SBTI 7.5.1.1, and S R I  1 7.5.2.3  hen compared to the 
non-transgcni~ plants. Similarly, no adverse effects o f  transgenic plants \\ere Sound [in 
larval weight, larval duration. pupal \\eights, pupal period and the percentage pilpatlon 
and adult emergence or  11 armigcru when fed on artificial diet impregnated ~ r i t h  
I!ophilized flowers or pods. Though the larvae here affected by toxin initially, the) 
recovered fully when transferred to normal diet. Transgenic pigeonpea plants namcl! HI 
].?.I.?, SRTI 7.5.2.5 and SBTl  7.5.2.3 initially sho\ved sign~ficant reduction in larval 
\\eight as compared to non-transgenic plants. but the differences were not noticed on 
continuous feeding indicating the larval adaptation to the transgenic plants particularl) 
under lo\+ levels o f  toxin expression, l 'he l a r ~ a e  fed on the pods o f  transgenic plants o f  
131 1.2. 1.2.8. SRTI 7.5.2.1.1 and SBTl 7.5.2.1.2 had lower eflicienc! o f  conversion o f  
ingested food into body matter (ECI) and efficient) oi'con\~ersion o f  digested food into 
bod! matter (ECL)) compared to the larvae fed on the pods o f  non-transgenic plants 
t loire\cr. approximate digestibilit! (AD) and consumplion o f  food per unit o f  bod! 
i\cight i i S I : ~ r ~ a  (CI)  Lrerc not significant11 cl~fferen~. 

PCll analyses for the presence o f  the ~ i p r l l  gene indicated that the transgenes ncrc 
successfi~ll) inherited through five generations. Southern blotting a l ~ o  confirmed the 
presence o f  ciyl.4h transgene. R'T-PCR confirmed the gene eupresrion at mKN!\ 1cvi.l. 
I lonc\er .  L L l S  tests indicated tlial the amounts o f  C n l 4 h  protcill present ir: the 
transgenic pigeonpea plants \\ere vcr! low. I he insect bioassays ind~catcd that thc 
transgenic planls with lo\\ or sub-lethal le\cls o f  toxins could nor afford adequatc Ic\cls 
of resistance to I 1  urr~ii,qcru 'l'hcrefore, further research should be oriented to de\elop 
transgenic plants that express higher levels o f  toxin to a c h i e ~ r  rcsrstance against 11 
orrt~i,q~~ru 
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CHAPTER I 

INTRODUCTION 

Over the last century. world agriculture has undergone a major transition fronl 

predominantly subsistence agriculturc to a highly intensive farm industq. llo\vcver. the 

orerall condition of agriculture. espcc~allj in the developing countries. is quite uncertain. 

which has serious socio-economic implications. To meet tht: food dernand for mill~ons of 

people. there is a need to double the food production b) 2025, and triple by 2050 

(Sharma. 2001). Hidden hunger in the form of nutritional imbalances is another problem. 

Ilcficient food consuniption leaves the people susceptible to recurring diseases. 

morhidity, and shortened life span. The need for food in developing countries. especially 

Africa and South Asia. where the higher proportion of the world's hung? people live. 

has to be met either through an increase in producti\ity or through appropriation of virgin 

land for agriculture. Increase in crop praductivit! can be achieved through ~mproled 

cultivars and reduction In pcst assoc~ated losses. Insect pests cause substantial losses 

estimated at 11% of thc total agricultural production (Oerke el ul.. 1994). The annual 

global cost of insecticide application to minimize the pest damage IS currently valued at 

US$ 10 billion. 

Although considerable efforts hale bee11 made to develop pest management 

strategies over the past 30 !ears. wc are still unable to manage sereral inrect pests in an 

environmentally benign manner. The dil'liculties experienced in controlling insect pests 



have largely been due to development of insect resistance to insecticides and overuse 

insecticides The emergence of resistant insect populations. high cost of protection, and 

harmful effects on the environment obviate the need for alternate strategies, which are 

en\~iro~lmentally sustainable and economically viable. There has heen a a ide  puhlicitb of 

integrated pest management (IPM) approaches since 1960's (Smith and van den Hoach. 

1967). in which the host plan1 resistance to insects i? the key component. Despite the 

efforts made over the past four decades to breed for resistance to insects. the progress has 

been less than satisfactory in many cases. H o ~ c v e r .  it has now been realized that 

traditional plant breeding methods may not be sufficient 10 mcet the increasing demand 

for food production (Mann. 1999). Many of the classical breeding methods are time- 

consuming and lahour-intensive. and their success is constrained hy limited variability in 

the available germplasm of different crops, lntrogression of resistance genes into high 

yielding cultivars is quite difficult. This has provided a strong impetus to develop newer 

lechnologies. which has provided access to n o ~ c l  genes from difTerent sources. 'The 

advances in recombinant DNA tcchiiolog) has made it possihle to clone the toxin genes 

and express in crop plants to confer resistance against insect pests (Bennet. 19941. 'The 

ability to alter genetic traits through transgtnsis is a ver) powerful tool for designing 

crops suited for specific requirements. Geneticall) engineered inherent crop resistance to 

insect pests offers the potential of a farmer-, environment-, and consumer-friendly 

method oi'crop protection to mcet the dcmands for suvtainable agricultural production in 

the 21" century. 



l'he bacterium. But.ililr.c /huringirn.ria Berliner (BO. a widely distributed species 

with many variants, produces a toxin that acts on some insects harmful to crops. The 

of 111 have been known tbr many years. Even organic Sam~ers spra! BI in their 

fields, when insect attacks get out o f  hand. because it is produced naturall!, degrades 

rapidly, and has no known harmful side effects. 'l'he fl/ based products are widel) 

regarded as bcing the least harmful to natural enemies. Because of its selecti\it) and 

environmental safety, usage of HI 1s ~ncreasing, panicul;~rly in IPM programs. 

Unfonunately, foliar application of 81 is ineffective under field conditiorls because ol'lts 

sensiti\'it) to UV rays. Ho\\evcr. realiring 11s potential adiantages. toxin genes have been 

widel! rccognizcd as candidate gene?, (among se\eral others). fbr genctlc transformation 

of crop plants for conferr~ng rssistance agnlnst insect pests. 111 genes have now been 

introduced into a wide range of crops such as tobacco, tomato. cotton, rice. potato, 

brinjnl, maize. braccoli, oilseed rape. soybean, walnut. larch, poplar, sugarcane. apple, 

peanut. swcct potato, chickpea, althll'a crc (fiilder and Boulter. 1999. James. 2002; 
- . -~ 

Sharma CI a/.. 2001). Of'lhe I;S$ 10  hilliori spent ;~nnuall! on inaecticidcs worldwide. it 

has been estimated that ncarl! I'SX 2 7 h~llion could be substituted w ~ t h  B! based 

biotechnological applications (Krartigc'r, 1907). rult i \at i(~n uT tranhgenlc crops has led to 

a substantial reduction in pesticide use and sign~ficant increase in crop yield (Cannon, 
. 

2000). in China. the economic gain for resource-poor HI cotton farmcrs was $ 500 per 

hectare equivalent to a national benefit of % 750 n~illion in 2001 (James, 2002). 

Transgenic plants with genes encodmy for tox~c proteins from BI have been found to be 
-. . 

quite efficient in reducing insect damage compared to that obtainable by conventional 

breeding (Sharma and Ofliz, 2000). whlch is limited by the accessibility of resistant 



genes in the existing gene pool. lhere is significant increase in global area under 

transgenic crops from 1.7 million hectares in 1996 to 81.0 mill~on liectares in 2004. i n  

which BI crops share was lyO/a (lf'the total arca (Jarncs. 2004). In addition. man) studies 

are underway to use non-Br genes. the pr(1ducts of which interfcrc with the nutritional 

requirements or  result In antibiosi.; towards Insects. Such genes include protease 

inhibitors. chitinases. secondary plant metahol~tes. ribosome inactivat~ng proieins. small 

liNA viruscs. and lectins etc.. o f  which proteasc Inhihitors havc sho\\n promise for insect 

control (Lawrence and Koundal. 2002) Sobbean t ~ p s i n  inhib~tors (SBTIJ have been well 

charactcrizrd and are being explo~ted to produce insect-resistant plants (Kand~  er ui.. 

1999). 

Pigeonpen. (C~rjtmiiv ccrjnn (L..)  Millsp.). is one of the major grain legumes in the 

semi-mid tropics (SAT) .  \\hich has a significant role in nutr~tional securi t  as an 

i~nportanr source o f  higti quaill! d~etar! protelli\ (about 20U0) for the \cgctar~an people. It 

is mostly consumed in the fbrm oi 'spl~t  pulse. In Indla. 11 is an important multi-purpose 

pulsc crop gro\\n on 3.20 million hectare5 with an annual production of 2 .4  tiiillion 

lonnes. More than 200 specie? oi' insects ired on pigeonpea crop. of \rhich H(4i~~ovcrpii 

urnzigcru (Huhner) i b  the most important pc5t (Shanoutr  of  ui.. 1999). Annual losses due 

to H urmigcrn in pigconpca have heen estimatrJ to exceed US5 317 million (ICKISAT, 

1992). Though the resource-poor farmers grow this crop on poor soils, there is a 

widespread use o f  insecticides for pest management. As a result. H u r m i ~ e r u  has 

developed high levels o f  resistarlcc against se\'erul ~nsecticides. Outbreak off! ormixera 

in south India on cotton and pigeonpea has Icd to sevcrr socio-economical disturbances. 



including suicide by farmers. Screening of  germplasm (more than 14.000 ptgeonpea 

accessions) klr resistancc to h' cirflliy(2ri~ has re\caled kcr! low to moderate Ic\els llf 

resistance to t h ~ s  pest (Reed rind I.atcef. lc)'10). I)cbpite the identificat~on of li.1, 

genot\pcs with resistance to H. urmigera. concerted effc~rts to transfer insect reststance 

into irnpro\cd cultivars with ecccptable yield and qualit! has not bceti verq successful. 

Genea for insect resistance are prohahlb lost during selection for high yield. wider 

adaptability. and improved nutr~tional value. Some cu l t i~a rs  are so susceptible to H 

iirmipcru attack that o n 1  a f;.w or no pods h u r ~ i \ e  unlu.; the plants arc chemicallj 

pl.otccted. Introduction oftransgenic inbect-rcs~atnnt plgeonpeil is cxpectcd to be useful In 

minimizing I 1  urrnrgrrrr damage In pigconpca I ransgcnic pigconpea plants with B/ and 

SBTl genes ha \c  recently been de\clvped at the Intsr~~ational Crops Research Institute for 

Semi-Arid Tropics (Sharma el (11. 2002). Thc present studies were undertaken to evaluate 

the pcrforn~ance oftransgcnic pigeonpea plants against If urniigrru 

1. ro c\aluarc thc relati\c efticac) of gcnrs dcri\ed from B~ici/ /u< riiurin,qii2n.\it (Bi) 
and \oybcuri iryp\iri ir~iiihiror (.S/llll in irans;t.nic pigeonpca against H orn?igeru 
at different stages of insect arid thc plant 

2 To study o\ipusitional and feeding p~rfcrcnccs of H urniigerii on transgenic and 
[>on-tranagcnic pigeonpca plants 

3. '1.0 .;tud) gro~bth and development of 11 ~irnligcr~i crn artificial die! impregnated 
\,ith Iyophilixd Iea\es. tlo\v<rs. and pod? of  transgenic and nun-transgelic 
piaI1ts. 

4. To study possiblc adaptation of II  trrmigeri~ to transgenic pigeonpea 

5. Molecular characterization for presence ofinscclicidal genes and their expression 
in advanced generations of  transgenic plants. 
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CHAPTER I1 

REVIEW OF LITERATURE 

Rcccnt adbances in recombinant DNA technolog! havc opened neb\ a\enuts for 

gcnetic cnlianccmcnt o f  crops through production o f  transgenic plantr n i t h  resistanci. to 

~~lscctu.  Corisidcrahlc progress has heen made in de\eloping transgenic crops \\ill1 

resistance to thc target insect pusts ovcr II!L past dccridc ( I l i ldcr  and Boulter. 1900. 

Sharma [,I 01 .  7000). The literature pertalnlng lo  genetic transror~iiation o f  Icgunics as 

\ \e l l  as e ~ a l u a ~ ~ o ~ i  of' transgenic cropz lor resistance to \arious lepidopteran insctr pests is 

proented lhcrciindcr. 

2.1 Crop l o~ses  due to Hrlicooerpo orntigera (Huhner) 

I l r~/ i i~o~.rr . ]~u orrtilgcni ( t l i ~hner )  (h'octuidsr.: l.ep~doptcra) ih a highl) pol>phagou~ 

peal It is a m q o r  pest o ~ i  3 \\ idc \arict! o i  food, fiber. oilsecd. ibdder. and horticultural 

crop<. In Ind~a.  11 ar~ir i ,~yr i r  lias hrcn rccorded on at least 181 plant hpzciea from 15 

f.~milies (h\lai!junatli e /  01,  10x0). I &  hosr range lncludcs cotton, m a i ~ c .  chickpea. 

plgeonpcs. sorghu~n. su~if lo\\er. soybean. groundnut. etc. Its high pcst status arises from 

the preference of larvae for plant structures rich in nitrogen such as f loacr  buds. Iloibrr:, 

and pods ( f i t t .  1089). Whcn [ h o e  are not a~ailable, i t  also reeds on young lca\cb. In 

addition. strong i l> i l ig  abilit) and long distance m~gration. abilit) to e \p lo~ t  scverul plant 

specics as Food. rapid population increase due to high fecundit!, and ahi l~t? to undergo 

diapausc undcr adverse conditions make tllis pcst more serious 



The I l e l~corc rpa  urmigcru moths f ly during the night and la) eggs o n  a verb \bldc 

range of host plants. l'he) arc rtrongly attracted to pigeonpea crop at the t1owcriny stage. 

Small \\liite eggs are lard singl) on leaves. flo\bers. and pods I he egg5 hatch in 3 to 4 

days. and the tiny larvae reed on the flo\\era and bore into the tender pods. eating the 

de~c lop ing  seeds and leaving charactcristic large holes along each loculc, A large larva 

can dcstro! man) f l o ~ c r s  and pods each da!. On cotton. 2 to 3 larvae per plant can 

destro) all the bolls \ritliin 15 da1.s. In pigeo;ipea. one larba per plant reduces 3 95 grccn 

pods. 7.05 dr) pods. 18 01 grains. 3 79 g pod \reiglit and 2.05 g grain \+eight per plant. A 

unit increasc in larvae per plant result., in 2.61 arid 4.93% increase In pod damage at the 

green and dr! stages. respectivel!. In the troprcu. total losser due to 11 urriiificrir on 

cotton. legumes. vegetahlcs. and cereals is close to I!SS 1 billion. and the cost o f  

insecticides used to control H urrnigero is ncarl) l!SS 500 million iMarijirnatli c.1 ol.. 

1989) 4nnual pigconpea losses due to I I  urmigcru have been estimated at LS$ 317 

 nill lion world\ridc (ICRISAT. 1902). In pigeonpea. this pelt can cause co~nplctc ios5 of 

crop (Reed and I.ateef. 1990. Shanonrr  cltrl.. 1999). 

2.2 Gcnctic t ransformation of lcgumcs 

2.2.1 Tissue cul turc 

Lilicient and reproducible regeneration s)sterns from tlssues atncnable to 

available transformatlor1 tccliriiques are a prerequisite for genetic transformation (Sahoo 

cl a/.. 2003). Despite the nidelq reported iri ~ , i ~ r o  recalcitrance of Icgurnes, at least 75 

apccies fiom 25 genera have undergone (I? noolo regeneration to date, but only a limlted 

contribution to crop improvement has heen reported. Legumes exhibit a diver5ity of 



responses when cultured in virro. Depending on several factors. regeneration occurs 1 . r ~  

organogenesis andlor embryogenesis either directly from explanted tissue or lnd~rcctl) 

after an intervening callus phase (Parrot el ul.. 1992). The direct adventitious shoot 

regeneration from various explants such ac cot!lcdon (Hinchce cl i i / .  1988; Lluthu 

liurnar rt (11.. 1995: Sharma and Anjaiah. 2000: Jayanand el dl.. 20U3). cot>lcdonar! 

nodes ([lavies e /  a/.. 1993; .lordan and tlohbs. 1993: Di et a/.. 1996: Uean el rrl.. 1997: 

hleurer el ul.. 1998; Jai\$al el u l .  ?001), epicot!l (Sato el 0 1 .  1993: Saini el u l .  2002). 

apical merislcm czcised from developing, mature. or germmated embr~on ic  axes (%hang 

ct ul.. 1999: Gcctha ? I  u/ 1999). decapitatcd cmbr!ogenic axcs (Fontanna et 01.. 1993: 

liar et cd., 1996; Krislinamurthy C I  01.. 2000). and nodal r h ~ n  cell laler (Yauerh) et 01.. 

1991) have been uscd for transformat~on of large seeded grain legurnes. Tlic first success 

in genetically engineering food lcg~lmc for insect resistance follo\\cd thc development of 

a reproducible transforrnat~orl and regeneration system for thc ~titroduc~icin of forcigti 

genes into peas culti\ars (Schroeder el ul.. 1993). wherein the a-orrij.lasc r~rhihiror gene 

of thc common bean expressed in the seeds of pea exhibited resistance to thc pca ivccvil. 

Urlichf i~ pi.~ortm7 (L.), (Schrocder el a i ,  1995) and to the storage pcstr, ('o//usobr~~chrr,\ 

nrmc.~rlaruc (Fabricius) and ('u/lasohr~ic~hr~s chtnensis (L.) (Shade el 01.. 1991). 

(;enetic transformat~on of legumes in general and pigeonpea in particular has 

been diflicult and challenging, although considerable progress has hccn achiebed in solne 

grain legumes, such as  pea (Puonti-Kacrlas el 01.. 1990; Schroeder el 01.. 1993. Uean el 

ul., 1997). Necrosis o f  the material after seberal wceks of growth (tiumar ei ol. ,  1983). 

and the secretion of phenolic compounds from the tissue in the medium (Melita and 



Mollanram. 1980) are major prohlems alrecting pigeonpea tissue culturc. Mehta and 

Jdohanram (1980) regenerated pigeonpea plantlets from cotqledon explants George and 

1:apen (1991) rcported direct direrentiation from leaf discs of pigeonpea T11ey also 

reported organogenesis and e m h ~ o g e n e s i s  from diverse explants of pigeonpca LIohan 

anJ Krishnamurthy (1998) reported de noyo organogenesis from thc d~sral half of 

cotyledon cxplants that lacked pre-exist~ng mcristenih in the pigeonpea genot!pes 1-15- 

I5 and (iAl!'I-82-90. 

Shiva I'rakash ei ul (1991) developed an efficient procedurc lor pigeonpca 

regencratlon kia multiple shoot formation from multiple shoot initials regenerated from 

ccjt!ledonar! node region of t\\o \\eeLs old germmated seedlings on MS (hlurash~gc and 

Skocrg. 1961) medium n i th  ? mg L ' 6-UAI' (Henryl aminopurinc). Ihe! also reported 

continuous formatiori of nc\\ shoot imnals \\hen cotkledonary node along \\ith mash of 

shoot initial5 were excised iiom the seedling i11ocu:atc.d on hlS lnedium ui th 6-R:ZP, and 

rupplernentcd \\ith 0.5 mg L indolc-3-acetic acid. Shoots \\ere clongatcd on haul MS 

and  rooted elticieritly on MS \\it11 1,(:4 ( 0 5  'rig I . ' ) .  'l'hi5 regeneratton protocol 1s 

suitable liir ,~i~rohucrerr~m~-mediated  rans sf or mat ion as \\ell as particle bombardment 

mediated transformation. Ceetha ei ol. [ 1098) obtained highest number of shoot hud 

regeneration with pigeonpea cotyledonary explants on h4S supplcmeiitcd \\it11 B A P  at 3 

concentration o f  2 m g  I-". Sreenivasu er a/. (1998) regenerated pigeonpea h! culturillg 

cotyledon and leaf explants from 10-day old seedlings on MS medium s~rpplemented wirh 

thidia~uron [ I-phenyl-3-(l,~,3-thidiazoI-5-yl) urea1 (1 DL)  at 2.2 mg L-'. Sr~ni\asan c /  a/. 



(2004) obtained pigeonpca shoot buds for genetic transformation from the distal cut ends 

o f the  petioles through di. novo regeneration. 

2.2.2 Transformation 

Agrohuc/eri~im-mediated transformation. biolistics, and protoplast-based methods 

have been employed for transformation of legumes. Legumes sho\v high susceptibility to 

a gram-negative soil bacterium. ,~~grohucleri:~m lumqfucieris. It causes crown gall tumors 

at the ~vound site of many dicot>iedonous plants (Smith and I b ~ l n s e n d .  1907). The crown 

gall formation is due to the transfer of a specific DNA fragment called the 'T-DhA 

(transfer DNA)  from tumor inducing (Ti) plasniid of the bacterium (Zaenen c1 a/.,  19741 

to the plant cell. 'The transfcr of 1'-DNA and its integration into the plant nuclear genome 

lends to cro\lJn gall phenotype (Schell ei nl.. 1979). In Agrohucierit~m-mediated 

iransformation. genetic sequences are introduced into disarmed Ti plasmids. trhich carry 

csscntial genetic elements required for the DNA transfer. A defined segment of DNA is 

cut Srom the l'i plasmid molecule, transferred into the recipient cell and integrated into 

thc plant chromosome. .dgrohuclcrium-mediated transformation and regeneration of 

transgenic plants have been reported in sobbean (Hinchee ef ul., 1988). pcas (Puonti- 

haerlas er a/.. 1990). chickpea (Fontanna ei ul.. 1993). peanut (Eapen and George. 1994). 

and co\+pea (hluthukumar el ul., 1996). 



Leaf disks of pigeonpea were transformed by A. ~umcfucicn. strain l.BA 4404 

platmid pBAL2 carrying kanamycin resistance and GUS reporter genes under the control 

of the C'aAfJ'35S promoter (Arundhati 1999). Gcetha er al. (1999) optimized a protocol 

for transformation o f  pigeonpea by co-cultivation of shoot apices and cotyledonary node 

explants \+ith A tuttiefacir~l.\. HoLrever. bctter response was obtained with cotyledonary 

nodes. I.aurence and lioundal (2001) achieved successful transformation of plgeonpea 

using d ru~nefuciens strain GV22 contd~::ing the construct of Isolated co\vpea protease 

inhibitor gene. \+hich is driven by (hM1'3jS promoter containing kanamycln as a 

selection marker. Embryonic axes excised from seeds germinated on MS basal 

supplemented with BAP (2 mg L") uere used as explants. Satyavathi et ul (2003) 

devclopcd transgenic pigeonpea plants expressing the surface glycoprotein M-gene of 

rinder pest virus via A. t~mtefacien~ strains EH.4 105. cloned with pB112 1. Embryonic 

axcs and cotyledonarq nodal esplants from gcrminatcd pigeonpea sceds developed shoot. 

on MSI medium containing 50 pg L- '  kananiyc~n and MS2 medium with 2 pM BAP and 

50 mg L-' kanamycin for elongation and rooting. Thu et a l .  (2003) rcportcd the 

production of transgenic pigeonpea using cotyledonary nodal region through 

microprojectile as  well as Agrohacrerium-mediated gene transfer methods. Dayal ct ul 

(2003) developed an efficient protocol for plant regeneration from leaf explants for 

production of transgenic pigeonpea plants through particle bombardment, using nprll and 

uidA as marker genes. They used MS medium with 5.0 pM benzyl adenine and 5.0 pM 

kinetin for multiple adventitious shoot induction. h4S with 0.58 pR4 GA; for shoot 

elongation, and MS ~ i t h  11.42 pM IAA for rooting. 



2.3 Transgenic crops with insect resistance 

Considerable progress has been made in developing transgenic crops uith 

resistance to insect pests. Since the first reports on thc introduction of  Br genes into 

tobacco (Barton el 01.. 1987) and tomato (Fischhoff el a/.. 1987; Vaeck el al.. 1987), and 

cowpea trypsin inhibitor gene into tobacco (Hilder el a l .  1987) there has been a rapid 

increase in transformation of other crop plants to achieve resistance against insect pests. 

Among se\eral genes that confer resi\ra'lce against insect pests, B thuringieri.s~r genes 

are uidely studied, and have been uscd to develop most of the insect-resistant transgenic 

plants. At least ten genes encoding different Bt toxins (Crq l Aa, Cry l4b .  CrylAc. 

CrylBa. CryICa. Crq l H. Cr)?Aa. Cry3.4. Cry6.4, and Cry9C) have been engineered into 

dilrerent crop plants (Schuler el 01.  1998). Among non-Bt genes. lzhich interfere with the 

nutritional requirements or result in antibiosis towards insects. protease inhibitors have 

shoun promise for insect control (Ryan. 1990). Soybean trypsin inhibitors have been uell 

characterized and considered as candidate genes for producing insect-resistant plants 

(Johns~on et 01.. 1993). 

2.3.1 Bocillus flturingiensis: 

Toxin genes from 8, lhuringiensis have been hidely studied, and used for 

developing crop plants tbith resistance to insects. B rh~rringiensis is a gram-positive, 

aerobic soil-bacterium, which produces proteinaceous crystalline inclusion bodies during 

sporulation. The BI endotoxins are now known to constitute a family of  related proteins. 

for which 140 genes have been described with specificities for Lepidoptera, Coleoptera 

and Diptera (Crickmore er a[., 1998). The B rhur~ngiensis genes. called cql genes 



because of crystalline nature o f  the proteins, have been categorized into several families 

based on amino-acid sequence homologies and insecticidal spectrum. The toxin genes 

earlier were classified into four types. The toxins encoded by the c n ,  I. cry 11, crv 111, and 

c r ~  IV genes are toxic to lepidopterans. dipterans and lepidopterans. coleopterans, and 

dipterans. respectively. Kew families of genes include examples with dual lepidopteran 

and coleopteran activity (type V genes). 

2.3.2 Mode  of action of BI toxin 

The primary target for BI toxins is the insect midgut. The final toxicity of BI is the 

result of a series of cbcnts, including solubilization of crystal. activation of protein by gut 

proteases, recognition of binding sites on the brush-horder membrane, and post binding 

events such as channel formation and intracellular siglialing (English and Slatin. 1992). 

[luring sporulation, B tIturi~7gierisis produces parasporal crystalline protoxin inclusion 

bodies. The crystalline protoxins are inacthe until they are solubilired by the gut 

proteases. Upon ingestion b) insects. these protoxin crystals d~ssolve in the highly 
-.-. ~ - -- .- 

alkaline midgut (for many of the lepidopteran larvae, the gut pH is approx~mately 10.5 to 

11.0) releasing protoxins. Protoxins are cleaved by midgut proteases to  produce activated - 
6-endotox~ns (Schncpf er a / .  1998) 1 he actlbe touns  hlnd to the bruuh border tneniblane - -.- -- - - - 

ves~clea (BBMV) located on the apical brush border lncmbrane ol Ll~e colununar cells 
- 

After blndlng to the receptor, the tov~n  ~nserts ~rrebers~blq Into the plasma membrane and 
-- --- 

Increase the conductance o f  the aplcal membrane dlsruptlng the electrical, K'. and pH - A-- 

- - - 

grad~ents The d~sruptlon o f  gut lntegrlty leads to Cormat~on of pores, cell lysls, and death 

of the insect through starvation or septicemia. There is a positive corrclation between 
~~ - 



toxin activity and ability to  bind BBMV (Gill er al., 1992). and the toxicity is correlated 

with receptor number rather than receptor affinity. Spodoptcra lituru (Fahricius) is less 

sensitive to toxins from BI var kttr.sraki than H armigera. Achoea,janulu ( L . ) ,  Plur~llu 

r?In,\/ellu (I>.) and Spilosoma obliq~ra (Walker) (Mccnakshisundaram and Gijar, 1998). 

Agronomicall! important Lepidoptera, such as thc tobacco budworm, HeIiorhi.5 vixscenj 

(I.). pink bollworm. Pectinophora gos~?picila (Saunders), American holl\rorm. 

Helicoverpa :fa (Boddie), and fall a r m p o r m .  Spodopieru.f;fiu~qiprrdu (.I. E. Smith) differ 

w~de ly  in their susceptibility to the &endotoxins lbund in foliar applied B ~huringicnsis 

products (Maclntosh er 01.. 1990: Halcomb er 0 1 .  1996). Crq I Ab and Cry I Ac hind to the 

same receptors in the midgut o f  Ostrinio nuhilu1i.r (Huhncr). the receptor has a higher 

affinity for Cry lAb  than for CrylAc (Denolf el a/., 1993). The overall midgut pathology 

of /?I toxicity results in 105s of basal involut~ons in the columnar cells, swelling of the 

apical microvilli. \,csiculation of the endoplasmic reticulum. loss o f  ribosomes, s \+cl l~ng 

of mitochondria. cell and nucleus, and subsequcnt rupture o f  nuclear organelle. and 

plasma membranes releasing thc ccll content into the lumen (Griego ei u i ,  1980). 

However, for all insects. 8 rhuringien~i.~ proteins are most efficacious against the 

neonate larvae rather than later stagea. 

2.3.3 Proteinase inhibitors 

Proteaselproteinase inhibitors (Pls) of digestwe enzymes arc an interesting and 

important class o f  defense proteins that occur in many plants (Green and Ryan. 1972). 

The ttvo main classes o f  inhibitors discobered so far are the protease inhibitors and thc 

amylase inhibitors. Amongst them, protease inhibitors play an important role in defense 



of plants against herbivorous insects. They act as competitive inhibitors o f  enqmes by 

binding tightly to the active site o f  the enzyme. The antimetabolic activity o f  the protease 

inhibitors is due to direct inhibition o f  larval protcolysis and utilization o f  protcins 

leading to the deal11 o f  the larvae by slow stan~ation. 

The interest in protease inhibitor stems from their potential toxic nature. Protease 

inhibitors exert their anti-nutrill ,rial effect hy causing pancreatic 

h)pertrophy/hqperplasia. which ultimately results in growth inhibition. With the 

observation o f  Mickel and Standish (1917) that larvae o f  certain pests do not develop 

normally when fed \+ith soybean products, several researchers studied the effects o f  

~arious proteinase inhibitors and showed the inhibition o f  the midgut proteolytic activit! 

of  various insect pests. Proteinase inhibitors are widely distributed in the plant kingdom. 

particularly in seeds and tubers, where they often represent a large percentage of total 

protein (1,iencr and Kakade. 1969; Ryan. 1973; Richardson. 1977). They have been most 

entensi\cly studied in the I,eguminaccae. Graminac, and Solanaccac. presumabl) because 

a large number o f  species in these families, arc important (bod crops (Richardson. 1980). 

Based on specificit).; proteinase inhibitors can be divided in to four classes: inhibiting 

serine. cysteine, mctallo and aspartyl proteases. In plants. about ten protease-inhibitor 

families have been recognized (Garcia er a/., 1987), which are specific for each o f  the 

four mechanistic classes o f  proteolytic enzymes, i.e., serine, cysteinc, aspartic and 

metallo-proteases. Members of  the serine and cysteine proteinase inhibitor families have 

been more relevant to the area of plant defense than metallo and aspartyl proteinase 



inhibitors since only a feu of the latter t ~ v o  families o f  inhibitors have been found in 

plants. 

2.3.4 Serine proteinase inhibitors. 

Serine proteinases have been identified in extracts from the digestive tracts of  

insects o f  many families, particularly those of lepidoptera (Applebaum. 1985: Broadway, 

1989: Houseman. 1989). In lepidopterar! pcsts, the optimum pH o f  the gut is in the 

alkaline range (9 to I I ), where serine proteinase is most active. In addition. serlne 

proteinase inhibitors have anti-nutritional effects against several lepidopteran insect 

spccics (Applebaum. 1985: tlilder el 01.. 1987). Three specificities have been ascribed to 

serinc proteinases depend~ng upon the properties of  aniino ac~d occupying thc PI site. 

trlpsin like enzymes that split proteins at internal peptide bonds, chymotrypsin like 

protcinases that cleave at bulky hydrophobic residues. or elastasc like enzymes that 

clcave  hen small hydrophobic residues arc at PI site. There are about seven families o f  

protein inhibitors prescnt in the plants that inhibit serine proteinases. Out o f  thesc. 

soybean trypsin inhibitor (SBT1, Kunitr famil)), and Bowman-Birk proteinase inhibitor 

(RBI) are very important. 

Soybean trypsin inhibitor was the first protease inhibitor to bc well charactcrired. 

Its isolation and crystallization from soybean and that o f  its complex with trypsin is one 

of the classic achievements of inhibitor chemistry (Kunitz. 1947) I t  has a molecular 

weight o f  20,000 to 25,000 I<d with relatively few disulphide bonds and possesses a 

specificity, which is directed primarily towards trypsin. Trypsin is the main intestinal 



digestive enzyme responsible for the hydrolysis of food proteins. It is a serine protease 

and hydrolyzes peptide bonds, in which the lysine and arginine residues contribute the 

carboxyl groups. Due to the ability of this inhibitor to inhibit trypsin from the insect gut. 

it has received much attention as a target for control of insect pests. The Bowman-Birk 

typc proteinase inhibitors are readily isolated from the seeds of all leguminous plants. 

Bowman (1946) first discovered them in soybean. and thereafter Birk (1963) purified and 

characterized them. They have a molecillar  eight of 6000 to 10,000 Kd with a high 

proportion of cystine residues, and are capable of inhibiting trypsin as \veil as 

chyrnotrypsin at independent sites. 

2.3.5 Protcinase inhibitors in insect control 

Soybean trypsin inhibitor (Kunitz) in artificial diet has been reported to inhibit 

l a n d  grouth and cause delayed pupation in Osrriniu nuhilali.~ (Hubner) (Steffens e/ a/., 

1978). ~lunducu  sexta (L.) (Shukle and Murdock 1983), 11 zeu and Spodoptera ex~guu 

(Hubner) (Broadway and Duffe!, 1986). Broad-spectrum actikity of protease inhibitors 

involving suppression of the pathogenic nematodes (Williamson and Hussey. 1996), 

spore germination and the mycelium groulh (Dunaevskii el 01.. 1997), and the g r o ~ t h  of 

pathogenic fungi (Joshi et a/ . ,  1998) make them an attractive choice for use in genetic 

transformation o f  crop plants for resistance to pests. Besides enhancing the level of insect 

resistance. they are preferred for their small size, abundance. and stability. 



Pioneering study done by Hilder et al. (1987) led to the introduction of coMpeu 

t n p i n  inhibitor in tobacco. Transgenic tobacco plants expressing trvpsin inhibitor at 

nearlq I %  of total protein resulted in increased mortality. reduced insect grou.th and 

reduced damage by H virescens. Subsequent generations derived from the self-set secds 

also showed lower damage compared to the control plants. Since then, the genes from 

different plant species have been transferred to tobacco, potato, sweet potato, tomato. 

rice. whcat, cauliflouer, pea, and poplar. 

2.4 Efficacy of Bacillus thuringiensis (Bt)  and soybean Irjpsin inltibitor (SBTI) 
genes in transgenic crops against insect pests 

Vaeck et ai. (1987) reported the first successful use of transgenic technology in 

developing tobacco plants with cndotoxin genes from R, thuringiensis. I,evels of the 

cndotoxin as  low as 0.02 pcrccnt o f the  total soluble protein provided complete protection 

against .If .sexta neonates and the production of cndotoxin was inherited as  a simple 

dominant gene. Fischhoff et 01 (1987) engineered tomato plants with genes from Bl var. 

k~l~t tuk i  HD-I,  in uhich insecticidal protein wa, expressed at a Icvel s u f f i c i e  to kill 

larvae of three important lepidopteran pests of tomato namely, M sexta, I1  viresrms. and 

H x u .  Since then, several researchers have rcported their effectiveness under laboratoy 

as ircll as  field conditions. The first BI-cotton field trial was reported in 1992 (Wilson el 

ul , 1992) and &-potato ( ~ e w ~ e a f ~ ~ ,  Monsanto) was the first Bl-crop commercialized in 

1995. 



2.4.1 Bt transgenic crops 

Cotton 

Benedict er 01. (1996) evaluated transgenic cotton plants (BTK lines) carrying 

o?, lAb &endotoxin genes from B ~hurmgiens~s for resistance to H ~,irc..\cens and H 

armigcru. The mean percent injury h a s  obsened to be 2.3 in flowers and 1. I in capsules 

as compared to 23 and 12 percent in Coker 213. respectively. Gore el 01, (2002) found 

that an individual bollworm larva could damage 6.6 fruiting forms on non-Bollgard 

cotton, while its damage potential on Bollgard cotton was only 3.5 fruiting forms. 

Performance of single and double toxin genotypes has been found to he superior 

compared to conventional cotton against tobacco budworm. Ho\wver. Bollgard I1 with 

t\\o toxin genes may increase efficacy against Lepidopterans that mainly feed on 

reproductive structures. It was further observed that the increased activity of Bollgard I I  

iCrylAc and Crb2Ab) compared bcith Bollgard 1 (Cryl Ac) can be due to increased 

potency of Cry24h,  increased overall expression lebel of Cry2Ab, or  possibly a 

synergistic combination of CrylAc and Cry2Ab (Adamcrbk er a i .  2001a). Tabashnik er 

ul (2002) observed that Cryl4c-resistant pink boll\+orm had little or  no survival on 

second-generation transgenic cotton with Cr?2Ab alone or with CryIAc plus Cry2Ab. In 

the field studies conducted by Chitkouski er 01. (2003). larval populations of the 

bollworm, H. :@a, and the soybean looper, Psiredoplusiu inc1uden.r (Walker), \+ere 

significantly lower in Bollgard I I  than in Bollgard I cotton and conventional cotton, and 

the proportion o f  fruits damaged by H zeo was also low. Ridge et a1 (2000) found that 

dual toxin Bollgard I1  genotypes provided better control of bollaorms and soyhean 



loopers than the Bollgard variety DPjOB. Stewan and Knighten (2000) also indicated 

that Bollgard [I had significantly lower number of bollworm larvae and damaged fruits in 

comparison with Bollgard I cotton. 

Corn  

A truncated c n l A h  gene in field corn resulted in a high level o f  resistance to both 

leaf feeding by first generation larvae of the European corn borer. 0 nuhilolir, and sheath 

fccding and stalk tunneling by the second generation larvae (Armstrong ct 01.. 1995). 

Transgenic maize expressing cy9C.  an insecticidal crystal protein from B thuringiensis 

sub spp. tol~vorthi, effectively controlled both generations of 0 nuhiluii.\ (Jansens el ul , 

1997). Lynch ei  ui. (1999) reported that transgenic sweet corn hybrids containing a 

synthetic gene Sor C q  IAb protein production were highly resistant to leaf and silk 

feeding b) neonatc, 3- and 6-day old H zea larbae. Even in the absence of' conventional 

insecticide use, sweet corn hybrids expressing Cryl Ab toxin, provided 99 to 100 percent 

control o f 0  nzrbiluiis and 85 to 88 percent control o f  I1 2eu (Burkness er ai., 2001 ). The 

Bi-corn hybrids had significantly higher yields than the untreated non-Bl isolines when 

corn borer pressures were high (Catangui. 2003). CrylAb endotoxin in MONXIO Bi corn 

resulted in overall reductions in damaged ears by 33 percent and in the amount of kernels 

consumed by 60 percent by H. ;eu (Horner EI  ul., 2003). Bt corn was found to cause a 

steady mortality of  H. ;eu larvae during development permitting only 15 to 40 percent 

survival to the prepupal stage and reducing overall adult production by 65 to 95 

compared with non-BI corn (Storer el 01, 2001 ). 



Rice 

Transformation of  rice \vith B/ toxic genes offered higher level of resistancu 

against leaf folder, Cnuphalocroci.\ medinu1i.r (Guenec) (Fujimoto e1 01.. 1993). Cq.1Ah- 

transgenic rice plants showed enhanced insecticidal activity against yetlo\& stem borer. 

Scrrp~phuga incer1u1u.r (Walker) with mortality rates reaching upto 100 percent in 

bioassay with cut stems (Wu er 01. 1997a). Maqbool et 01 (1998) demonstrated that the 

Cr42A protein in transgenic rice was effeciive against the yellow stem borer and the leaf 

folder. Transformation o f  rice with Rt toxic genes offered higher level of resistance 

against stem borers, Chilo suppressalis (Walker) and S incer~ulus (Cheng er u l .  1998). 

Shu er 01. (2000) assessed transgenic rice plants with cyl.,lc gene against C. 

\lippresruli\. S incer/ulu.s. C. medinalls, Herpilogrumnla I~c.urisu/~s (M'alker), Srsunnu 

inlercns (\Valker), h'urimjia unescens (Moore), ,tlycalesi~ gotarnu (Moore), and Purnara 

gtiita~us (Moore), and observed 100 percent mortality in all insect species \$hen the 

neal) hatchcd or  third-instar larvae were fed with leaf tissues. Aromatic rice plants with 

crylAb gene controlled by phosphoenolp~ru~~aie curbu.x$u.se (PEI'C) promoter were 

rcsistnnt to  young larvae o f  S, incerrul~rs. C. s~rppres.ralir, and C medina1i.r at the 

\'egetative stages. hut not at the flo~vering stage (Alinia er ul., 2000). Tu el ul (2000) 

observed that hybrid rice plants expressing a fusion gene. ctylAb and c y l A c  under the 

influence o f  rice acrinl promoter were highly resistant to the larvae of both leaf folder 

and yellow stem borer. The expression level o f  the fusion gene (20 ng m g '  soluble 

protein) in the genome was suficient to control the lepidopteran insects. Two transgenic 

rice lines (KMDI and KMD2) containing a synthetic c y l A b  gene exhibited high and 



stable resistance against natural infestation of  rice leaf folder, C medinalis, while the 

llntransformed line showed serious damage (Ye et ui., 2003). 

\'cgetables 

Delannay el ul (1989) observed limited feeding by ,tl sex~u  larvae on the leaves 

of transyenic tomato with Bf var k~rrsfuki (HD-I), while non-transgenic controls suffered 

almost complete defoliation in two \rccl.c. Janscns er a1 (1992) reported that the 

percentage injury by H arrnlgera as well as number and si7e of larvae \\ere significantly 

rcduccd In cn , lAh  transgenic tomato plants, cven at high level of infcstation. 

'lransformation of brinjal plants \\it11 synthetic cn1.4h gene resultcd in a significant 

insec~icidal activity against thc larvae of fruit borer. Lrucinode\ orhoncriia (Guenee) 

(liumar el ul., 1998). In transgenic potato, neonate larvae o f  tobacco hornworm 

consumed significanlly less leaf arca (0.61 cm') as compared to the untransformed potato 

plant (1.86 cm2) (Cheng el ai.. 1992). Ahmed et ill. (2000) e\aluated the eflicacy of Bt- 

cg,S transgene under the influence of various promoters to control the potato tuber moth. 

Potato tuber moth mortality n a s  100 percent in the Br-cnS spunta lines that were 

transfbrmcd ~v i th  Rt-c1>,5 gene controlled h) the ('udfl'3i.S or k.elrin 5upc.r promoter. 

\ ~ h i l c  the Spunta lines expressing Bt-cn5 controlled by the pututin promoter showed 

lowest tuber moth mortality (25.6 and 3 1.1 percent). Ebora et al. (1994) observed 10 

percent mortalit) o f  first-instar Phrhorimea operculella (Zeller) after 48 h o f  fccding on 

leaf discs from transgenic c v l A r  potato plants. Further, second instar P vperculella nere  

slightly less capable of surviving on leaf discs from transgenic plants than those fed on 

untransformed plants after 240 h of feeding. 



Transformation of cabbage cultivar "Golden Acre" with c n l A b  gene resulted in 

high level o f  expression of  Bt toxic protein with significant insecticidal activity against 

the larvae o f  diamondback moth (Bhattacharqa et a l ,  2002). Similarly. insect bioassays 

t \ ~ t h  transgenic cauliflower. Pusa Snowball K-I, indicated the effectiveness of the c v l A h  

gene against infestation by diamondback moth larvae (Chakrabarthy ct 01, 2002). The 

tiiaxiinum mortality o f  P x~~lo.stella larvae fed on leaf discs o f  transgenic cauliflower \\as 

85.7 percent after 48  h. 

Tobacco 

kloffrnann et al. (1992) cvalualed the efficacy of transgenic tobacco plants 

containing genes encoding B thurinjiierisi.~ 6-endotoxin or  coupea trypsin inhibitor 

against H ;EU under field conditions and reported that larval mortality \$as high and the 

lcaf damage was low, on genotypes containing Bt gene as  compared to the lines 

containing ( r T 1  gene and control. Tobacco and tomato plants expressing cn~ I .4h  and 

cn,lAc genes have also been developed (Van der Salm cr al., 1994) to control 

lepidopteran insects. The expression of c n l A h - c n l A c  genes provided protection against 

S cxijiuu. M srsta, and H vircsccn> 

Grain legumes 

Parrot er 01, (1994) produced Bt transgenic soybean, which inhibited the growth 

of the bean moth larvae. Stewart L'I d l . ,  (1996) delivered the St  cn , lAr  gene into rhe 

soybean cv. Jack by means of microprojectile bombardment and obtained the expression 

level of CrylAc toxin as  high as  46 ng mg". Corn eamorm, IL  :ea caused less than 3 



percent defoliation on transgenic plants compared with more than 40 percent on non- 

transgenic plants. Molecular analyses of chickpea transformants revealed the presence o r  

the transferred functional cnl.4c gene v+hile, insect feeding assay indicated that the 

expression level of  the cr)lAc gene was inhibitor! to the larvae of H urmigera (Kar er 

ill . 1997). 

2.1.2 Transgenics expressing protease inhibitors 

The first successful example of genctic engineering of plants for insect resistance 

using gcncs o f  plant origin \\as achiebed using a co\cpeupruleu.se ini~ihitor gene (Hilder 

cr ul.. 1987). They transformed tobacco \+ith C'pTI, and the protein \\as expressed at 

nearly I percent o f  the total proteln. The transformed plants &ere relatively resistant to 

attack by the tobacco budworm. I 1  virescens. Johnson el a/. (1989) transformed tobacco 

plants wit11 genes encoding for the potato and tomato proteinase inhibitor I 1  protein, 

(having chymotrypsin and trbpsin i n h ~ b ~ t o r  acti\ities) and a tomato inhibitor I protein 

(having only chymotrypain inhihitor act~vity). Leaves of plants expressing the ~nhibitor I I  

proteins at levels of 50 pg per g retarded the g r o ~ ~ t h  of A4 wxra larvae, where as levels 

above 100 pg per g severely retarded the grovdh of larvae suggesting that the effect was 

dose dependant. Expression of ()TI in tobacco aflbrded a significant protection in the 

field against H :cu (Hoffmann el ul., 1992). 

McManus et a/.  (1994) transformed tobacco with potato inhibitor 11. which 

Inhibits chymotrypsin. Larvae o f  green looper, ('hg~sodeixis eriosma (Doubleday) Ere\\ 

slowly on leaf tissue from the transgenic plants than from non-transgenic plants. whereas 



no differences were observed in the growth rales of S lituru or TItj~.~unoplu.\iu orichulcru 

(Fabricius) larvae fed on leaves from transgenic or  non-transgenic plants. Transgenic 

tobacco containing Rt and @TI genes showed insecticidal activity towards If armigeru 

(Zhao et 01.. 1997). Gao el 01. (1998) reported that soybean trypsin inhibitor containing 

transgenic tobacco plants sho\*,ed high resistance to H arnliyera. 

Li cr a1 (1998) obtained transgenic cotton lines containing CpTl gene and found 

them to be highly resistant to cotton bollworm. Transgenic rice plants containing sujhean 

kzinir: r ~ p s i n  inhibitor (SK71) showed resistance to the brown plant hopper. 

l i lupuma~a lugens (Stal.) (Lee el a/.. 1999). Hou,evcr. transgenic poplar plants 

expressing a kunifz proreinuse inhihilor (K1i3) gene did not affect larval mortality, 

growth, and pupal weights of Lymunirio dispar (L.) and C'losrera unus/omosis (L.) 

(Confalonieri el 01.. 1998). 

2.5 Oviposition a n d  feeding preferences of H. armigera on transgenic and  non- 
transgenic plants. 

Oviposition is an important behavioral phenomenor for the dispersal and 

establishment of an insect population (Saxena. 1969). The selection of oviposition 5ites 

by the adult insect is crucial for the survival of offspring as  neonate larvae are usually 

incapable of moving \cry far for food. However, the complete chain of events, which 

culminate in oviposition is guided by visual, (particularly color and shape). plant 

volatiles. contact surface chemicals, and surface texture (Navasero and Kamaswamy, 

1991). In studies on ovipositional preference o f  H armigera. Sison and Shano\ber (1993) 

found maximum number o f  eggs on lCPL 87 among six short-duration pigeonpea 



genotypes tested, and suggested that flower color influences the choice. The flowers. 

pds. and leaves of lCPL 87 were also more attractive to lan~ae undcr multi-choice 

feeding tests. In addition. the larvae reared on ICIIL. 87 had thc 5htrrtcst larval 

de\,clopmental period, Ihc highest larval and pupal \*eights. and the longesl adult lire 

span. 

The Cry IAc  protein in Bollgard cotton does not affect boll\vorm adults 

(Macintosh el ai.. 1990). Parker and Luttrell (1998) found no differences in tobacco 

hud\borm egg density or vertical distribution of  eggs on Bollgard cotton plants compared 

\\it11 the non-Bollgard cottons. Similarly. egg densities o f  the soybean looper. Plu.sla 

inci~iden~ (M1alker) (Hall. 2000) and sites of  bollworm, / I  :ea ovipos~tion (Roof ei a/. ,  

2001) were not different on transgenic and non-transgenic cotton cu!tivars. Riggin-Ducci 

and Gould (1996) observed no differences In thc numbers o f  eggs laid by susceptible 

females of  diamondback moth on B thtrringiensu- sprayed and control plants in 

greenhouse and field tests. Similarly. no significant differences \+ere obsened in the 

number o f  eggs laid by the European corn borer on non-transgenic and transgenic corn 

containing o y l A b  gene (Orr and Landis. 1997) Both susceptible and resistant females 

\*ere unable to discriminate between ciylAc and normal broccoli (-I'ang el al.. 1999). 

Sch\\artz ct a[. (1991) observed no evidence o f  behavioral resistance in diamondback 

moth against spray formulations of  B, rhuringiensis. Similarly, diamondhack moth adults 

failed to discriminate between cabbage leafdiscs treated with B. thuringiensis from the 

untreated leaf discs (Grocters el al.. 1992). Lack o f  significant differences In the 

percentage of eggs laid between transgenic and non-transgenic plants shows that Cr?.IAc 



toxin from the transgenic plants failed to deter oviposition by adults o f  the susceptible 

strain o f  diamondback moth, indicating that susceptibility o f  the larvae and oviposition 

by the adults are not related in transgenic plants (Ramachandran el ai, 1998b). 

Generally, once a neonate is on a suitable host, it \$ i l l  settle and establish a 

feeding site. I f  the host or plan1 pan is unsuitable. then exploration within and between 

plants IS likely to continue. Studying neonaie establishment has been used in screening 

for host plant resistance in lield crops. Gould et ul (1951) observed that tobacco 

budworm lanae were able to detect and avoid high levels o f  B lhlrringiensi~ toxins in 

diet. Similarlj, increased movement and dispersal \4ere observed with this insect on 

transgenic cotton lines as compared with the conventional cotton (Benedict er 01.. 1992. 

1993: Parker and L,uttrell, 1999). Larvac w r c  observed spinning down and cra~bling 

from the terminal o f  transgenic plants more readill than on conventional plants. 

Boll\rorm larvae have a150 been found to detect and avoid B lhuringrensis proteins in 

fuliar sprays (Jyothi et ul., 1956: Greenplate ct a/.. 1998). in meridic diets containing 

purified B, thuririgiensis proteins (Akin et ul.. 2001; Gore el a/ . ,  2005). Iyophilized 

transgenic plant tissues (Greenplate et ul.. 1998). and in transgenic cotton (Gore et ul.. 

2002). Dirie er 01. (2000) observed a significantly higher proportion o f  neonate S. 

inrertulus dispersed from cryIAh transgenic plants than from control plants. In the 

laboratory, first-instar larvae o f  light brown apple moth. Epiphya.~ posh'ittana (Walker). 

left artificial diet containing B thuringiensis toxins and accumulated on the control diet 

(Harris et al., 1997). Gould and Anderson (1991) found that both susceptible and resi~tant 

strains o f  H virescens avoided moderate and high concentrations o f  the Br endotoxins. In 



transgenic cotton. Wilson el al. (1992) also noted that antixenosis resistance to pink 

bollworm is not associated with the B. lhuringiensis 6-endotoxin, because the larvae 

penetrated the bolls o f  the transgenic lines as readily as the control cultivars. 

Arpaia and Ricchiuto (3993) studied the feeding behavior of young larvae o f  

Colorado potato beetle, Lepiinolarsa decemlinea/a Say. using potato leaf discs coated 

nith Br protein extract and found no antifeedant effects of B /huringiensis toxins, even at 

concentrauons that caused mortalit! or severely inhibited larval g ro~ t th .  Whereas. in 

preference tests, Ebora el al. (1994) showed that leaf discs from transgenic potatn plants 

uc rc  less preferred than those from untransformed plants by third-instar corn borer. 0 

niihiialis after 24 h of exposure. However, prolonged exposure sho\led that leaf discs 

from transgenic and untransformed plants were equally preferred by the corn borer 

larvae. In a study, 2". 3rd. and 41h instars of diamondback moth larvae were observed to 

move from the infested plants within 24 h (Ramachandran et a l .  1998a). 

Lack of discrimination between Bi and non-Bi cotton bolls by pink boll\-vorm (Liu 

ei 01.. 2002) and betaeen transgenic and non-transgenic canola by diamondback moth 

(Ramachandran el al., 1998b) indicated that oviposition preference or  feeding initiation 

by neonate larvae was independent of their susceptibility to Br Cry1 Ac  toxin. 



2.6 Effect of transgenic plants on survival and development of H. armigera 

Differences between B! and non-BI broccoli were not detected in larval survival or 

)\eight gain for Loxahatchee strain of diamondback moth ('rang el 01.. 1599). Similarly. 

no direrences were detected on Bt and non-BI canola for the NO-QA strain o f  

diamondback moth in extent of defoliation, larval survival, and head capsule width at 5 

days, percentage pupation, pupal wight,  and percenlage adult emergence 

(Kamachandran el 01.. 1998b). 

An increase in larval developmental time \\as reported for beet armyworm. S 

crifilru (Staple ct a1 1957). fall armyworm. S frujiiperda (Adamczyk ci  u l .  1998), and 

5o~bean looper. P inc1uden.i. (Muhammad ei a1 , 2001) \\hen fed on Rt cotton. Significant 
- 

monallty o f  I L  zra larvae and rcduced weights o f  surviving larvae were ohscrvcd in 

lahora~ory bioassays \+,hen fed on Ibophilized leaf and silk tissue from Bt corn hybrids 

incorporated into anificlal diet (Williams el al.. 1998). Significantly fewer moths 

emerged from pre-pupae collected from Bt corn than from non-Bt corn. indicating that 

effects o f  the expressed CrylAb toxin in MOh'810 corn extended to the pre-pupal and 

pupal stdges on H zca (Horner r t  01. 2003) 1)ulmage (1976) observed slmllar behabior 

ui th tobacco budworms when exposed continuously to Bt-endotoxins became intoxicated 

and stopped feeding, recovered, and then started feeding again. 

-Gore el u!~-"(2001) observed higher bollworm survival on floral bodies of  

- 
transgenic cotton than on other plant parts. They implied lower expression o f  the protein 



andlor lower levels o f  secondary plant chemicals in flowers for higher larval suwival. In 

addition, the nutritional value of  flowers might be such that bollwonn l anae  were 

capable o f  overcoming the adverse effects of CrylAc toxicity. Stewart et ul  (2001) 

~ndicatcd that second-instar bollworm larvae placed on different parts of Bollgard I I  

plants for 48 h. then transferred to diet. might ha\e  lower mortalit) than l anac  feeding 

only on plant material. Rao er a1 (1595) found Cry2Aa protein as the most potent toxin 

tcsted against L. urbunali.~, followed by Cri IC, CrylAc. CrylAb,  and CryIB in artilicial 

diet. 

2.6.1 Bioefficacy of protease inhibitors impregnated in artificial diet against insect 
pests 

Protease inhibitors in anificial diets at 0.33 and 0.66 percent affected the grouth 

rate of cadling moth larvae. Cjdiu po~nonella (L.).  Potato proteinase inhibitor I was most 

effective in reducing growth rate. followed by soybean trhpsin inhibitor (Markaich el ui.. 

1995). SB'I'I and SBBl in artificial dict rcsultcd in a continual reduction o f  larval gro\*.th 

and disruption in normal development of I! arnilgcra. Thcse cni.cts hc rc  much greater 

uith dietary SBTl than \*lth SBB1 (Johnston el a/.. 1953). 

When incorporated into an artificial diet, soybean t ~ p s i n  inhibitor at 0.84 percent 

(dry weight) significantly affected the gro\\th and digestive physiology of H armigcru 

by reducing the high alkaline trypsin-like enzyme activity by 18 percent (Wang et 111.. 

1995), while slowest growth rate and the lower weights were observed for S, lituru lar\ae 

fed with 0.5 percent (wlv) SBTl (McManus and Burgess, 1995). Winged bean prolease 

inhibitors (hBP1) effectively inhibited the growth and development o f  H armigera and 



affected the larval and pupal survival and adult emergence in a dosc-dependent manner. 

In addition. larval-pupal intermediates and malformed adults were also recorded (Gupta 

e/  ul.. 2002). 

2.7 Adaptation o f  insects to genetically protected plants 

Several studies havc shown that insect pests can adapt to 01 toxins under 

laboratory conditions (Shelton el al., 2002) Certain pests such as Plodiu inrerpuncrcllu 

(McGaughey, 1985b). H vire.scens (Stone er 01.. 1989). P xyiosrellu (Tabashnik er 01.. 

1990). S cxrguu (Moar e f  a!.. 1995). and 0 nuhilnlis (lluang er 01.. 1997) have been 

shown to develop some degree o f  resistance to B. 1hurrngicnvi.v under laboratory 

conditions. Evolution o f  insect resistance to insecticidal proteins produced by Br \+auld 

decrease our ability to control agricultural pests with genet~cally engineered crops 

designed to express genes coding for these proteins (Gould er a/ . ,  1992). Informalion on 

development o f  resistance in insects to BI toxins has been summarized below. 

Indian meal moth, Plodia intrrpunclella (Hubncr) 

The first studied case o f  resistance to BI-toxins was P inrerpuncrellir that had 

developed 100-fold resistance follobving 15 generations o f  laboratory selection with Dipel 

(McGaughey. 1985a). On further selection for 36 generations. the resistance levels 

reached 250-fold (McGaughey and Beeman, 1988). Bacllltis fhuringiensis sub spp. 

krosraki caused a narrow spectrum resistance to CrylAb and CrylAc toxins. while sub 

spp. aizmvai and entomocidus strains caused broad-spectrum resistance to CQ IAa, 

C r j  IAb, Cryl  Ac. Cryl  B, Cry1 C, and Cry2A (McGaughey and Johnson, 1994). 



Diamondhack moth, Plulella ~ l o s i e / / a  (L.) 

Diamondback moth, P x)io5tellu. was the first insect species known to have 

evolved high levels of resistance to BI as a result of repcatcd usc of formulated Bt 

~nsecticide (Tabashnik el a/.. 1990). Diamondback moth colony derived from field 

population in the Philippines, regularly exposed to Dipel, showed more than 200-fold 

1csi5tance to CrylAb (1:erre era/. ,  1991). As much as 1630-fbld resistance to BI has bccn 

recorded in localized populations of diamondback ninth from tlaaaii. I:lorida, and Asia 

(Tabashnik et ai.. 1992). In field populations of P ~\~lo.r/elia. resistance to BI sub spp. 

kfirriuki containing Cry lA (a,b.c). Cr)2A. and C 0 2 R  toxins and to a lower c'itelit RI sub 

spp. uizait,ui containing Cry1 A (a,b). Cry 1 C. and Cry1 D toxins has bccn observed in 

various countries (Tabashnik, 1994). Metz ct ul (1995) reported that a strain of 

diamondback moth that had evolbed resistance to foliar sprays 01' B th11ringiensi.r sub 

spp. kur.\taki in Florida could survive and reproduce on transgenic hraccoli that produced 

Cr) 1 .4~ .  w h ~ c h  provided 100 percent control of a susceptible diamondback moth strain. 

I>aboratory selection of P .~los/elia using purified CryiCa protein and in later 

generations on transgenic broccoli expressing CrylCa increased resistance by 12,400- 

fold (Lhao er ul.. 2000). Resistance to C q I A  toxins from Bt sub spp. !arr.rfaki caused 

cross-resistance to CrylF, but not to CrylB or CrylC (Tabashnik er ui., 1996). Contrary 

to the assumption that independent mutations are required to counter each toxin in P 

.~~~Iusteliu, an autosomal recessive gene conferred extremely high resistance to CrylAa. 

Cry1 Ab, CrylAc. and Cry lF  (Tabashnik era/., 1997). In a F1 xylostella colony possessing 

1,500-fold resistance to a commercial BI-formulation, the resistance rapidly fell to 300- 



fold in the absence o f  selection. but remained stable at this level in subsequent 

generations (Tang ct  a/., 1997). Though transgenic canola killed all the diamondback 

moth larvae tested from the susceptible strain, for the resistant strain. no differences 

occurred betiveen transgenic and non-transgenic canola in larval survival and head 

capsule ~vidth at day 5 ,  percentage pupation, pupal weight, percentage adult emergence, 

and extent of defoliation (Ramachandran el 01.. 1998b). 

In seven BI-resistant strains of P .tylo,s~ella. the resistance declined when exposure 

to insecticide ceased (mean R = -0.19). whereas in four other pests ( H  virisccn~. L. 

dccemlincuta. .I.l~r.rca domesrica (L.) and P interprmcrellu) resistance to Bt declined 

slowly or not at all (mean = -0.02) in the absence of exposure to Br (Iabashnik et 01.. 

1994). 

Cotton bollworm1 legume pod borer, Heliolliis/Helico~~erpa 

Highly mobile polyphagous pests such as  H armigera may develop rebistance to 

ilt on one transgenic crop and then disperse, nullifying the effectiveness of a wide range 

of Bt transgenic crops expressing the same or similar. Kranthi er ul. (2000) reported the 

development o f  resistance in IL urtnigeru to Cr) lAc in 7 to  8 generations A laboratory 

strain of H virescens developed resistance in response to selection with the BI toxin 

CrylAc. In contrast to  other cases of BI-toxin resistance, this strain exhibited cross- 

resistance to BI toxins that differ significantly in structure and activity (Gould PI ul.. 

1992). Gould et ul. (1995) obtained over 10,000-fold resistance to CrylAc in H virescens 

colony on selection with Cry1 Ac protoxin. Heckel el al. (1997) Identified a major BI- 



resistant locus in a strain of H. virescms exhibiting up to 10,000-fold resistance to 

~ p l A c  toxin. The insecticidal activity of Bt In leaves and squares of transgenic cotton 

plant was high during the second generation on the insect, but declined in the third and 

fourth generations of H armipru in North China. Thc surviving third and fourth 

larvae. after feeding on flo~vers of Bt cotton, fed on the bolls until pupation 

and caused sclcction in field populations. The increase in resistance was 7.1-fold after 17 

gcnerations of selection in the laboratorb (7ilao el a/., 1998). 1.iang et ui. (2000) found 

rhc resistance ratio of 43.3 for H urmigera alter selection for 16 generations against Bt 

transgenic cotton. and inheritance of resistance \vas controlled by a single autosomal 

~ncomplete recesshe allele. The BX strain of I 1  urmigero from Australia had 57-Sold 

resistance to CryIAc in diet and 58 percent survival on R1 cotton relativc to non-Bt cotton 

(.\lhurst el a/. .  2003). 

Helicovrrpa zra individuals surviving sublethal exposure to p-exotoxins of Bt 

chliibited fitness disadvantages including prolonged development. decreased larval 

\rcight, and reduced fecundity (liornby and Gardner, 1987). Ficld and laboratoq 

obsen,ations have sho%n that the larvae of .-fa that survived on transgenic Bt cotton 

\bere smaller and developed slower than those on non-Bt cotton (Sims el 01.. 1996; 

hleyers er a/., 1997). Harris e ta / .  (1998) found that larvae of I l  zea exposed to sub-lethal 

doses of BI toxins were more susceptible to the pyrethroids cyhalothrin than those not 

exposed to the toxins. Sublethal effects of MON 810 BI corn resulted in prolonged larval 

and prepupal development, smaller pupae, and reduced fecundity of H rea (Homer er a/., 

2003). Larvae of H :ea fed on Bt plants, weighed significantly less and generally 



slower development and were susceptible to chemical insecticides than those 

ftd on non-BI plants (Brickle el 01.. 2001 I. Halcomh el a1 (1996) suggested that 

transformed Cryl Ac BTK cotton platits are highly toxic to 1"-4"' instars of If :ea and I{  

,.irr,scms, hut not to  the 5 I h  instars. 

Furopeun corn borer, Osfrinia nubilalis (Hubner) 

There was significant decrease in susceptibility across generations for selected 

strains of 0 nubi1uli.v after chronic exposure to formulated Cry IAb (Huang el a / .  1997: 

Chaufaux el al.. 20011. Similarly, a 162-fold increase in resis~ance to CrylAc was 

ohserved in European corn borer after 8 generations of laboratory selection (Bolin PI al.. 

Ic)90). Event 176 BI corn hqbrids expressed high levels of CryIAh toxin in green plant 

tissue and pollen, but extremely low levels in the silk and kernel$ (Koziel el 01.. 1993). on 

\*hich second generation 0, nubi1ali.s larvae have been shown to survive (Siegfried er 01.. 

2001). Zoerb el a1 (2003) stated that 0 nzrbiluii~ larvae either survived exposure to 

sublethal doses o f  Cry lAb BI toxin or exploited plant tissues that did not express the 

toxin. They suggested that Event 176 hybrids did not satisfy requirements for higher 

doses that were recommended for resistance management purposes. 

Pink bollworm, Pecfinophora gossypiella (Saunders) 

Field collected pink bollworm quickly evolved resistance t o  CrylAc under 

laboratory selection (Patin er al., 1999; Simmons el ul., 1998; Tabashnik e t a / . ,  2000). P 

gossypiella selected with CrylAc protoxin developed 300-fold resistance to CrylAc 

protoxin, and high levels of cross-resistance to CrylAa and CrylAh protoxin. and lo\\ 



levels of resistance for CrylBb protoxin (Tabashnik el u l .  2000). Three selections with 

c ~ 1 A . c  in artificial diet increased resistance of pink boll&orm to >loo-fold relative to a 

susceptible strain (Liu el al.. 2001). Relative to performance of non-BI cotton. 81 cotton 

adversely affected developmental rate, pupal weights, and fecundity of pink bollworm. 

but not the percentage of eggs hatched (Liu el u l .  1999). Compared to a resistant or 

susceptible pink bollwortn larvae reared on non-BI cotton, resistant larvae reared on Bt 

cotton had lower survival and slower dc\clopmcnt. and had lower pupal weight and 

fecundity (Liu er ul., 2001). 

Tobacco caterpillar, Spodoptera spp. 

In general. Spodopreru spp. larvae were not very susceptihle to the Cry toxins 

(Strirhov cl 01.. 1996). Honever, CryIC toxin had been reponed to be toxic against S 

c'~-igliu (Visser el ul., 1990) and ,Y lilloruli.\ (Van Rie ei ul , 1990). Selection to Cry lCa 

caused 850-fold rcsistance to it, and cross-resistance to CrylAb, Cry9C. and Cry2A. as 

~ c l l  as to a recombinant CrqIE-CryIC fusion protein in S exiguu (Moar el ul., 1995). In 

5. 1i~oruli.s. 500-fold resistance to Cry I Ca and partial cross-resistance to Cry ID. Cry I E. 

and CryIAb has been recorded (Muller-Cohn el ul., 1996). Sublethal feeding o f  S e x i p a  

on transgenic petunia significantly reduced larval weight and prolonged larval and pupal 

development times (Omer el u i ,  1997). Continuous feeding on transgenic petunia 

significantly reduced fecundity, egg hatch, and longevity in female and male moths. No 

significant differences have been observed between normal and transgenic cotton plants 

in larval survival of fall armyworm at 2, 4, 6, 8, 10, and 12 days after exposure, number 

of larvae pupated and adult emergence. However, larval weights were signiticantly lower 



at 6 and 12 days after exposure on NuCORJ 33 leaves than on normal cotton leaves. and 

time to pupation and adult eclosion were significantly delayed on NuCOT3 33 leaves as 

compared to DP 5415 leaves (Adamczyk cr a l ,  1998). 

The lower boll penetration success for fall amlyworm larvae reared on NuCOTN 

33 (20%) might have been caused by sublethal effects attributed to the 6-endotoxin in 

KuCOTN 33 leaves that hindered boll penetration (Adamcryk e/ ul 1998). The larvae 

that \\ere unable to penetrate the boll could not survive on thc cx~ernal boll t~ssuc arid 

subsequently died before pupation. Retnakaran E /  a1 (1983) noted the failure of spruce 

bud\vorm, Choristoncura ,fumiferana (Clem.), to produce frass \\hen fed on sublethal 

doses of B /huringiensit toxin as a direct result of feeding inhibition or anorexia. Van 

Frankenhujzen and Gringorten (1991) also observed a dose dependent response of 

feeding inhibition by B thtrringir.nsis toxin against ( '  ,fum@rana in terms of absence of 

frass and arrested development. 

2.8 Rlolccular characterization for insecticidal genes in transgenic plants. / 

Molecular characterization of transformed plants for stable and efficient gene 

expressisn is important for evaluation of their performance against the target pests. The 

pre-requisites for stable transformation are: a) a tight correlation between molecular data 

on integration of foreign genes (Southern blot) and phenotypic expression of integrated 

genes (enzyme assays of reporter genes), b) transmission and expression of integrated 

foreign genes in sexual offsprings, and c) use of appropriate controls in various assays to 

rule out false positives and combination problems often encountered in experimentation 



(Yang, 1993). PCR (polymerase chain reaction) is an in rirm enzymatic method of 

amplifying spccilic DNA sequences ( ~ I u l l ~ s .  1990), and relies upon repeated synthesis of  

the targeted DNA by the enzyme DNA polymerase. A breakthrough had come in PCR 

with the introduction of the thermo-stable enzyme, Tuq DNA polymerase (Lawyer er ul . 
1989) from the thermophilic bacterium. Thcrmus uquaticus, ~ ' h i c h  is resistant to high 

temperature. 

Transgenic maize plants containing c n . / A h  genes expressed by the pollell and 

/'i./'(' promoters produced the insecticidal protein in those plant parts consumed by both 

fir<[ and second generation o f  European corn borer. 0, ntihilolic while minimizing 

expression in seeds and other parts o f  the plants (Koziel et ai., 1993). Kumar er al. (1998) 

transferred a synthetic c n l A h  gene to brinjal plants and demonstrated gene integration 

and mRNA expression by h~bridization experiments. EI.ISA confirmed the Rt toxin 

protein expression. and resulted in significant insecticidal actikit) against the larvae o f  

fiuit borer, L orhonaiis. Greenplate (1999) quantified Rr insect control protein. CrylAc 

overtime In transgenic cotton fruit and terminals and round that Cry l Ac !eveis in the 

terminal foliage declined with plant age, and at any particular sa~npling time, terminal 

fol~ar concentrations \\ere always greater than those in the fruit. Plant structures such as 

terminal leaves express more 6-endotoxin than flowers (Greenplate. 1999: Adamczqk er 

ai.. 2001b). Bhattacharya et 01. (2002) demonstrated synthetic c1yl.4b gene integration 

and mRNA expression by hybridization experiments in transformed cabbage. 

lmmunoblot analysis revealed high-levels o f  expression o f  Bl toxin protein. ~ h i c h  

resulted in a significant insecticidal activity against the larvae o f  diamondback moth. P 



J ~ / o ~ t e l l a .  Wu et a / .  (2002) studied the inheritance and expression o f  the c n l A h  gene in 

61 transgenic rice and indtcated that the c n l A h  gene driven bq the maize uhrqzri~rn 

promoter \+as stab11 transmitted in an intact manner via six successive sexual 

generations. and the concentration o f  the CryIAb protein was quantitatively stable. 

Iligher levels of the CryIAb protein were found in thc stems. Ieavcs, and leaf slicath, 

thnn in the roots and grains and the content in the leaves peaked at thc boot~ng stage, 

~ h i l e  it \\as at lowest at thc heading stage. 

Matsuoka et a / .  (1994) showed that PEPC retains high level of transcriptional 

acti\.it) in the leaf blades and sheaths of rice. There were differences in Bt protein lebel in 

leaves and stems o f  tramgenic rice plants depcnding on the promoter. Higher Ri protein 

cspression \$,as observed \\ith the PEPC' promoter causing 100 percent mortaltt) of 

qellou stem borer larvae (Datta ct a l ,  1998). ~ I l in i a  er ui. (2000) observed the effect of 

plant age and larval age on resistance of a tr?i.Ah gene under control o f  PEPC' promoter 

in transformed aromatic rice to lepidopterous stem borers and foliage feeders. Plants of 

the ciyl.46 transformed lines were more resistant to young larvae o f  S. 1ncerlu1u.s. C. 

suppres.salis, and C. medinalis than the control plants at the vegetative stages, but not at 

the flowering stage. The decline in toxin titrc in the leaf sheaths might be related to 

morphological changes during development such as decline in the proportion of 

mcsophyll cells relative to vascular tissues in *hich the PEPC promoter h a s  not active. 

Leaf senescence and an associated decline in photosynthesis could also be thc 

contributing factors. Husnain et al. (2002) observed enhanced resistance against stem 

borer and leaf folder in transgenic indica Basmati rice in which uh~quitin promoter 



expressed CryIAb toxin at 0.15 percent of  the total protein in stems. Godal cr al. (2001) 

achieved genetic engineering of Basmati rice using synthetic c ~ l A c  and ,7021 genes. 

Segregation analysis during the T I  and T2 generations confirmed the Mendelian 

inlleritance for marker, reporter and c y l A c  genes. lnsect bioassals during the 7 ,  and Tz 

generations have shown enhanced resistance to yellow stem borer, Khan er ul. (2001) 

reported that monocot (maize) derived trhiqtritr~i promoter expressed a Rt gene in a dicot 

plant (tobacco) in an effective manner to rcndcr the transformed plants highly resistant 

against H urnzigeru. 'lobacco plants were conlirmed for transformation, gene expression. 

and insecticidal activity through PCR. GUS. Southern blot, and Western blot analyses. 

Insect bioassays ui th transformed To and TI  transgenic plants showed high level of 

toxicit) towards Amer~can boll\\orm giving I00 percent mortality of thc larvae. 

Perlak er a / .  (1990) reported that the lckel of CrylAb or C r y l . 4 ~  proteins in 

cotton expressing the modified sequences ranged from 0.05 to 0.1 percent o r  total soluble 

protein. Event 176 Rr corn hybrid expressed high levels of CrylAb toxins in green plant 

tissue and pollen. but extremely low levels in the silk and kernels (Koziel et ul.. 1993). 

In transgenic cotton certain structures. such as tcrminal leaves. expressed more C N ~ A C  

endotoxin compared to flower structures (Greenplate. 1999; Greenplate el al., 2000; 

Adamczyk et a/., 2001b, Gore er al., 2001; Adamcryk and Sumerford, 2001). Season- 

long expression profile of CrylAc in transgenic varieties showed that the C b 1 . 4 ~  

endotoxin level decreased with the plant ages (Fitt, 1998; Sachs ct a / ,  1998; Greenplate 

a l ,  2000; Adamczyk el al., 2001a). 



Sachs et a1 (1998) implicated that enbirontnental factors. presumablq. so11 

moisture and soil fertility also have strong influence on the Ie\el of Bt expression. In 

transgenic cotton, within each tissue type, significant differences among field sites were 

also seen suggesting environmental influence on either Cry IAc production or stability 

((;reenplate. 1999), while Finnegan et a/. (1998) opined that part o f  the decline in 

C r y l . 4 ~  expression was related to reduction in the levels of mRN.4 production. 

Dra~bhacks in EI.ISA assaq may include matrix effects as they influence extraction of 

protcins from cotton tissue (Miks~c,  1992; Sachc EI a / ,  1998) and the fact that ELlSA 

actibity is based on an antibody-antigen interaction and ma! not necessaril! reflect 

insect-active Cryl4clCry IAb. 

Based on the observations made on the stability of the expression of the transgcne 

cryIAb through five gcncrations of IR64 transformants. Maiti et a1 (2001) concluded 

that; the resistance against insect attach in outdoor condition \+,as significantlq different 

from that of laboratory condition. the inheritance of the transgene in certain cases did not 

cntirely tally with the Mendelian inheritance pattern, seasonal variation of rice c u l t ~ ~ a t i o n  

inlluenced the capacitq o f  resistance of the Rt lines against insect infestation. 

supplementary application of chemlcal insecticides in winter cultivation helped 

protection o f  thc transgenic crop, and selection of a few transgenic lines showing stable 

expression and protection against insect attack \\as possible. Successful expression of an 

introduced gene in plants was largely dcpendent on the promoter. leader sequences. 3' 

non-coding sequences, the presence of potential volunteer plant regulating sequences, 

codon frequency, the stucture of the rnRNA, and the gene product (Perlak el a/., 1990). 



Genetically protcctcd crops are rapidly becoming an imponant component of 

integrated pest managcrnenl programs of various crops, and several researchers have 

demonstrated the advantages of gro\+ing transgenic crops (Hilder and Boulter, 1999; 

B a r n b a d e  el ul.. 2004). The ideal transgenic technology should be conimerciall) Liable. 

environmentally benign, easy to use in diverse agro-ecosystems. and have a wide 

spectri~m of activity against the target insect pests (Sharma P I  01. 2001). 



Materials and 
Methods 



CHAPTER I11 

MATERIALS AND METHODS 

The present investigations on the. "As~essment of transgenic pigeonpea for 

rcsi';tance to the legunle pod horer. Hclicoverpii urmigeru (Hubner)" were carried out at 

Internattonal Crops Research Institute for the Semi-Arid lropics (ICKISA-l). Patancheru, 

!\ndhra Pradesli. India during 2001-2004 The latitude and longitude of the location are 

17'77'N and 78"?8'E respecti~ely aid altitude 1s 545 m above mean sea le\el The 

transgenic pigconpea accessions for the studies were obtained from the Genetic 

liansformation Laboratory. ICRIS.4T. 

The pigeonpea varieties. ICPI. 88039 and ICPI. 87 were transformed using the 

cclnbtructs. pHs  723: B! crj'i..lb and pIIS 737: SB7'l b! ..lgrohiic/rri~im lurncfncio~s- 

iiiediated transformation method for resistance to I1  nrmigern. The To plants (A plant 

deri\ed from tissue culture of transformed callus (Fig. IA)) wcre raised in gro'ikrh 

clx~mbers for accliniatization and later transferred to a containment (Pz level) green house 

( ] ' i f .  1 B&C) approved for growing transgenic plants. with conditions of 24-28°C 

temperature. 70-80% RH. and a natural photo period of 12: 12 (I.: D) h. Later 

generations, i .e . ,  T I ,  Tz, T; and Tq plants were also maintained in the same green house. 

Ihe present investigations were carried out to evaluate the transformed plants for 

resistance to H nrrnigera and also to characterize them at molecular level for tlie 

Preseiicc of the transgene. The plants were analyzed for the presence of transgene in each 



guleration by polymerase chain reaction (PCR) and only thosc plants showing PCR 

positi\.e results were selected for funher evaluation. 

Laboratory studies on the assessment of transgenic pigeonpea against H urmiger.u 

ncrr conducted during 2001-2004 at the ICRIS.4T, Patanchem. India. A field trial for thc 

iame was also conducted with the approval of Department of Biotcchnolog). 

(iover~inicnt of India. The different materials used and methods followed during the 

course of invesligations are presented in t h ~ s  chapter. 

3.1 Maintenance of insect culture 

To obtain a continuous supply of H armigeru for all the bioassays. a diet- 

adaptcd laboratory colony was maintained at ICMSAI', Palancheru. India. The culture 

Itas established from the field-collcc~ed larvae, which were reared on chickpea flour 

based diet (Arnmes el 01.. 1992) a1 controlled environment of ?7'C temperature, 65O/u 

rclntivc humidity and I?: I? I1 (L: D) of light-dark regime in the laboratory (Fig. 2 ) .  

3.1.1 Rearing of H. armigera on artificial diet 

The artificial larval diet was prepared, using the following ingredients. 

Chickpea flour 150 g 

.4scorbic acid 2.35 g 

Methyl-p-hydroxqbenroate 2.5 g 

Sorbic acid 1.5 g 

Aureomycin 5.75 g 

Vitamin stock solution 5 ml 

Water 225 ml 



Figure 1. Developnle~lt of transgenic pigeonpea plants 
(A) Tissue cultured pigeonpea plant 
(B&C) Acclim.ati&ation in Pz level greenhouse 

Figure 2. Rearlng of H. armigera in the laboratorj. 
(A) Oviposition cage 
(B) AduIt 
(C) Eggs laid on liner 
(D) V instar larva 
(E) Pupa 



Yeast 24 g 

Agar 8 25 g 

Water (for agar) 400 ml 

Vitamin stock solution (250 ml) 

Nicotinic acid 

Calcium pantothenatr 

Riboflavine 

Ancurme hydrochloride 

Pyridox~ne hqdrochloride 

Folic acid 

D-biotin 

Cyanocohalamine 

Water 

Chickpea flour. ascorbic acid. rncthyl-p-hydrclx) henloate, sorbic acid. 

aurcom!cln. !east granules were taken accilrd~ng to the rcquireincnt in to a houl and 

tnlsed thoroughly wilh warm haler (225 ml) In a blender. In the meantime, agar was 

hoilcd \\.it11 \rarer (400 mi), and added to the conlents in the blender. \litamin stock 

~olurion and formalin were addcd and mixed thoroughly for 5 minutes. fhe thick slun?; 

h a  formed was poured into cell wells of the plastic trays. uhich were kept in laminar 

a~flu\r ,  chamber and allowed for propcr sett~ng of the diet. Care was taken not to over- 

dry the dict. which is characterized by the diet pulling away from the sidewalls of wells. 

The larvae collected from field were reared on this artificial diet until pupation 

The pupae were separated and surface sterilized using 0.05 per cent sodium hypochlorite 

(NaOCI) solution for a few minutes and washed thoroughly with water lo remove traces 



<,fsodium hypochlorite. After blotting out thc excess moisture from the pupae, they were 

,-,laced on moistened vermiculite in a container with ventilated lids. 

The adults emerged from the pupae were sexed. l'he female moth can bc 

distinguished from the male by rounded abdomen. lack of tufts at abdomen tip and by 

large valves at the end of the abdomen through ahich the ovipositor can be extruded 

( Arnmes r /  ai. 1992). 'l'he males and females were released in an equal ratio in a cage 

\ r~ th  nappy liner strips hung as suixtrate for o~~pos i t lon .  Sucrose solution (lOO/o) was 

pro\~ded as diet to the adults through a cotton swab. and was changed ever): alternate day 

lo a\oid mold growth. A single female can lay about 200 pale yellou colored fertile eggs 

on the nappy liners in a night. The h e r s  \ \~ th  eggs were removed daily and surface 

sterlllzed with sodium hypochlorite for a minute. followed b) repeated rinsing with w-ater. 

lhesc uere placed in plastic cups ( I0  cm d~anletcr) containing a thin layer of larval d~e t .  

and Lcpt in the rcaring room. Aftcr three days of ~ncubation. neonate lanae  emerged from 

thc egg5 Thesc neonate larvae were used for various bloassays I'or experiments 

requiring thlrd instar larvae, the neonate larvae \\ere reared individually in six well plates 

to  avoid cannibalism. A cube of artificial diet approximately 1.5 x 1.5 x 1.5 cm was 

sufficient to sustain them until pupation. 

3.2 Evaluation of transgenic pigeonpca with Bacillus tliuringiensis (Bt) and 
soj3bean t rps in  inhibitor (SBTI) genes for resistance to H. armigera 

Transgenic pigeonpea lines Mere obtained from Genetic Transformation 

1-ahoratot3.. ICRIS.4T and were grown in a PI level glasshouse. Plants were analyzed for 

the presence of transgenes through polymerase chain reaction (PCR) and positi\.c plants 



%ere used for the evaluation. The plant parts such as leaves, flowers, and pods were used 

fir bioassays. The plant parts were collected at different stages of plant growth and 

assayed for their efficacy against the neonate and third instar larvae of H armigera. 

3.2.1 Bioassay using leaves 

Leaf bioassay studies against H urmigera I m a e  were performed in plastic cups 

of") 5 cm diameter (Fig. 3A). After arranging the cups in a slanting position, 20 ml of 

agar (3%) solution was poured into them and allowed to solidify, l'he solidified agar was 

uscd as a substratum for inserting the leaves or twigs. Fully expanded tender pigeonpea 

leaves were detached from transgenic as well as non-transgenic plants and immediately 

placed in cups with the petiole inserted into the agar substratunl. The agar keeps the 

leaves fresh for a longer period. Ten neonates of H urmigeru were released on the upper 

surface of the leaf using a soft camel hairbrush. Cups were closed with lids and stacked in 

trabs. which were kept at 27°C temperature. 65% RH and 12: 12 (L: D) photoperiod. 

4fter 72 h of larval feeding, the damage was scored visually on a 1 to 9 scale (I = < 10% 

leaf area danlaged. 2 = 11 to 20%. 3 = 21 to 30%, 4 = 31 to 40%. 5 = 41 to 50%. 6 = 51 

to hOO'o. 7 = 61 to 70%. 8 = 71 to 80% and 9 = > 80% leaf area damaged). l h e  number of 

surviving larvae and their weights were also recorded. The experiment was replicated 

thrice and the data were subjected to statistical analysis. 

3.2.2 Bioassay using flowers 

Equal number (10) of flowers from transformed and control pigeonpea plants 

were placed in petri dishes (9 cm diameter) lined with moistened filter paper at the top 



, ~ i ~ .  38). Ten neonate ian3ae were released on flowers in each petri dish using a camel 

hair brush. Larvae were allowed to feed for 72 h after which the number of surviving 

lanae was recorded by dissecting the flowers. The weights of surviving larvae were also 

recorded. Three replications were maintained for each assay in a completely randomized 

design. Bioassay using inflorescences were also performed in plastic cups as described 

ibr leaf bioassay (Fig. 3C). 

3.2.3 Bioassay using pods 

Tender pods of both transformed and control plants were used for bioassay. Since 

the neonate larvae were unable to feed on the pods, larvae reared on artificial diet for one 

or tuo  days were used for the assay. The pods were placed equidistantly from the center 

of cups with a moistened filter paper inside the lid (Fig. 3D). One larva was released into 

each cup. The larvae were allowed to feed for 4 days and their weights \+ere recorded. 

1 hrrc were three replications in a completely randomized design. 

3.2.4 Field evaluation 

:I field trial was conducted to e\zaluate transgenic pigeonpea carrying Bacillus 

Ii7rrrin~ien.sis and soj.beon t r~ps in  inhihilor (SBTI) genes for resistance to H armigera 

during Kharif, 2003-04 and 2004-05 at ICKISAT, Patancheru, India with the approval of 

the Institute of BioSafety Committee (IBSC) of ICRlSAT and the Department of 

Biotechnology, Government of India Leaf bioassay studies against H armigera larvae 

here performed in plastic cups of 9.5 cm diameter (Fig. 4). All the biosafety precautions 

were taken care of while canying out the experiment. Entire experimental area was 



'igure 3. Insect biuassa? using: 
I) Leaves B) Flowers 
I) lnflorcscences D) ~ ~ d s  

Figure 4. Evaluation of transgenic pigeo~~pea plants under 
coirtained field conditions. 



co\cred with a fine nylon wire net to avoid the entry of insect pollinators. Two rows of 

non-transgenic pigeonpea (ICPL 871 were planted around the experiment for further 

testing of gene flou: if any. Surrounding this, another two rows of sorghum was planted 

to  prevent pollen drift due to wind. All the weeds present in the proximity of field were 

~ll led using herbicides. The field was also secured uith Iron fcncc guarded by lock to 

a ~ o i d  animal or unauthorized people' entry 

I'here were two pigeonpea cuitivars namely ICPI. 88039 and ICPL 87 with Br and 

SU77 genes. respectively. Transgenic pigeonpea of T4 and T5 generations were included in 

thc experiment. Nine lines including t u o  non-transgenic controls were evaluated in each 

experiment in Randomxed Block Design in three replications. During 7003-04, in the 

cxpcriment with T4 generation plants neonate larvae (1O:larvae) were released on five 

vngged plants in each plot, while In the other experiment with T generation plants, adults 

(60 pairs) were released. During 2004-05, there were ten lines from Ti generation in 

\\li~ch the neonate lilrvile (20lplanO aere  rclcased on the tagged plants. Data on various 

parameters such as number of eggs (where the adults were released). number of larvae 

aurvivcd. pod damage, locule damage and total grain yield were recorded. 

3.3 Oviposition and feeding preferences of H. armigera towards transgenic and 
non-transgenic pigeonpea 

3.3.1 Oviposition preference 

The influence of plant type on oviposition behavior of IL armrgera was studied 

under no-choice, dual-choice, and multi-choice conditions (Fig. 5). Fresh inflorescences 

(20 cm long) with flowers and tender leaves were collected from the glass house. and 



placed in a conical flask (150 ml) filled with water. Cotton swab was placed around the 

stem at the neck of the conical flask to keep the inflorescence in upright condition. For 

no-choice test. the conical flask with inflorescence was placed at the center of cage and 

t;,r dual choice test, two inflorescences; one from transgenic and the other from non- 

{ransgenic plant of the same cultivar were placed in a wooden cage (33.5 x 25.5 x 31.2 

cm), The three sidewalls of the cage were covered with glass and the fourth one had a 

~ o o d e o  door with a cloth sleeve to facilitate the release of moths and changing twigs. For 

no-choice tests three pairs of 2-day 013 moths, and for dual-choice tests five pairs of two- 

day old moths were released inside the cage. Sucrose solution (10?4) through cotton swab 

\{as served as adult diet and was changed every alternate day to avoid mold growth. 

lndcr dual-choice conditions. enough care was taken to provide approximately equal 

amount of plant material of the transformed and untransformed plants. The number of 

eggs laid by the moths were recorded daily, and the inflorescences were changed 

e i e ~ d a y .  

Preference for ovipoisition under multi-choice conditions was studied by keeping 

all the test genotypes inside a wooden cage. In this test, the moths were given choice of 

all the test genotypes for oviposition. Conical flasks (containing twigs) of all the test 

genotypes were arranged inside the wooden cage in completely randomized block design. 

Four pairs of two-day old moths were released inside thc cagc. Moths were provided with 

sucrose solution through a cotton swab. The number of eggs laid was recorded as above. 



The experiments were conducted in the laboratory under a photoperiod of 12: 12 

h (L: D) and replicated six times in a completely randomized design. Percentage of eggs 

laid on each plant within a block was calculated from the total number of eggs laid within 

[hat block. The numbers of eggs laid were transformed to respective square root values 

and standard errors of means for three replications were calculated under no choice and 

multi choice conditions. Two tailed student "t" test was adopted for the mean number of 

eggs laid on the genotypes to test the null hypothesis under dual choice conditions. 

3.3.2 Neonate feeding preference assay 

Fully expanded tender leaves of equal size from transformed and non-transformed 

pigeonpea plants were collected and placed one centimeter apart using pins in a petri dish 

(90 mm) on moistened filter paper (Fig. 6). Their positions were fixed in such a way that 

the leaf on the left side was always from the transgenic plant while the other one usas 

fiorn the non-transgenic plant. Ten neonate larvae were placed between transformed and 

untransformed l e a ~ e s  in the middle of each plate. so that the larvae can move to their own 

choice. After 72 h of feeding. the damage on each leaf was scored on a 1 - 9 scale and the 

larcal position was monitored. The number of surviving larvae on each leaf and their 

wcights were recorded separately as in the no-choice tests. Each treatment was replicated 

five times, and plates were incubated as described previously. 

3.4 Growth and  development of H. armigera on artificial diet impregnated with 
lyophilized leaves, flowers, and pods of transgenic plants 

For quantifying the biological activity of transgenic plants, insect feeding assays 

were conducted on artificial diet impregnated with transgenic plant material. Plant parts 



as leaves. flowers. and pods were lyophilized individually and the lyophilized 

,narerial was impregnated into artificial diet to conduct bioassay studies against H, 

nrlnlgera larvae (Fig. 7). 

Pigeonpea plant tissue samples i e., leaves, flowers, and pods were collected from 

giasshouse individually in 4"X 6" Zip-lock sample bags, and immediately frozen at - 

20°C. Untransformed lCPL 88039 and ICPL 87 plants grown in same conditions of 

transgenic plants were used as source of control tissue. The samples were lyophilized in a 

Free~e Dqing System (Thermo &\antTM) to minimizc denaturation of sensitive proteins. 

In~t~ally. the condenser temperature of the equipn~ent was allowed to reach to -40°C. The 

prefrozen plant samples were placed on rack mounted trays and the plate assembly was 

transferred on to the flange of the base unit. Then. it \\,as covered with acrylic chamber 

and lised with vacuum greese to ensure leak proof. Depending on the nature, the samples 

\\.ere allowed to freeze dq ing  for 24-48 h. When lyophilization was completed, samples 

were removed and ground at room temperature in a chemicallexhaust hood using a 

grinder. The dried plant material was ground to fine powder to pass through a 40-mcsh 

hieve, Individual powder samples were stored in labeled polythene bags and kept in 

desiccators and maintained at room temperature. 

The optimunl amount of pigeonpea leaflflowerlpod powder needed to be 

Incorporated in artificial diet to measure antibiotic effect on H armigera larvae, was 

quantified using dose-mortality response. Tissue powder samples from glasshouse g r o w  

pigeonpea ICPL 88039 and ICPL 87 were tested in dilution series of 5 .  10, 15 and 20 g 



Figure 5. Oviposition preference by A antzlgera moths towards transgenic pigeonpea 
inflorescences. 
(A) No-choice 
(B) Dual-choice 
(6)  Multi-choice conditions, 

Figure 6. Feeding preference of Figure 7. Artificial diet impregnated 
neonate H annrgera larvae towards with lyophilized transgenic pigeonpea 
transgenic pigeonpea leaves. (A) Leaves 

(B) Flowers 
(6) Pods 
(D) Standard artificial diet 



,,.ith chickpea flour of 70. 65% 60. and 55 g respectively, using the diet incorporation 

bioassay. Control pigeonpea powder had no effect on H arrnigera larvae at 10 g 

concentration. 'l'herefore, with 10 g dilution the developmental effects if any. were 

caused by the presence of crylAb or SBTI gene only. 

For insect grohlh inhibition bioassay, 10 mg of powder sample was added in the 

artificial diet. Leaf powder was mixed with other ingredients and blended in warm water 

(I00 ml) for 2 minutes. Boilcd agar-agar solution (100 ml) wras added to the constituents 

and blended for 2 minutes. The s l u q  was poured into diet cups. In addition to the control 

trsatment ~vith leaf powder of non-transgenic pigeonpea. another control without any leaf 

powder was also taken. Each treatment was replicated thrice (n=30 larvae). Diet (20 mi) 

\+as poured in small individual cups (30 ml capac~ty). One neonate larva was released in 

each cup u ~ t h  the help of a camel hair brush and they were closed halfxvay uith a sere\+ 

cup. leaving space for gas exchange. All these processes were done in a lammar air flab 

cliamber. Biology and morphometrics of H urmigera were studied in terms of post- 

emblyonic development and fecundity. After releasing the larvae on tissue impregnated 

arlilicial diet, the trays were incubated at 27°C and data wcre recorded on lanjal sur\,ival 

and lanal weights on the logh day. Larval development was e>aluated by determining the 

l~umber of larvae in each treatment that had developed to pupation. Larvae were 

considered dead if it was unable to crawl away after 10 seconds of prodding with forceps. 

Pupal weights were recorded one day after pupation. Duration of larval period was 

recorded in terms of number of days from the release of larvae to the day of pupation. 

Duration of pupae was recorded in t e n s  of days from the day of pupation to till adult 



Percentage of larvae pupated and adult emergence were calculated from the 

total number of larvae released in each replication. Treatment effects were analyzed using 

ANOVA (Genstat). 

3.5 Adaptation of H, armigera to transgenic pigeonpea 

The l a m e  of H armigrra were exposed to transgenic and non-transgenic plants 

and their efficiency of food utilization was studied on transgenic and non-transgenic 

plants Larval survival and their growth and development were observed, to draw 

necessaq inferences on the adaptation of If armigera on transgenic pigeonpea. 

Fully opened leaves (2" from the top) of transgenic and non-transgenic plants 

Here placed individually in cups with agar substrate as described earlier. Each leaf was 

infested with ten H armigera neonates using a fine camel hair brush. The cups were 

sccurcd with lids and placed in racks. After three days. the larvae here transferred into 

cups individually to avoid cannibalism and flower buds of their respective lines were 

offered as food. Nev, flower buds were provided every alternate day. When the l m a e  

altained considerable size (third instar). they \\.ere given tender pods till pupation. On the 

1 0 ' ~  day. the number of l anae  surviving in each treatment and their weight were 

recorded. One day after pupation. they werc weighed. placed individually in plastic cups 

and observed for emergence. Percentage of adult emergence and sex were recorded. The 

experiment was replicaled three times in a randomized complete block design in a 

lahoratoy under 12: I2  (L: D) h photoperiod. 



Another experiment was done with second-instar H armigera and tender pods of 

pigeonpea, Pods were obtained from both transgenic and non-transgenic pigeonpea plants 

and placed singly in plastic cups after recording their fresh weight. A singlc second-~nstar 

lama, which was reared on artificial diet was also weighed and released in each cup. 

;2fter three days of larval feeding on pods. the Ianjac were weighed and the d~fference 

beljveen their initial weight and final weight was considered as growth. Similarly. left 

oycr pods were also weighed and the difference between initial and final weights was 

recorded to arrive the amount of h o d  consumed by each larva. The frass collected in 

individual cups was also allowed to dry in hot air oven at 36'C for three days and dry 

weight was recorded Various indices of food consumption and utilization were calculated 

as proposed b! Flopkins (I  912) and Waldbauer ( I  962, 1963. 1968) 

Consumption lndcx - - Food consumed 
. ~ ~ ~ - - - - - - - - - ~ ~ ~ - ~ ~ ~ ~ ~ ~ ~ ~ ~ - - - - ~ ~ ~ ~ ~ - ~ ~ ~ ~ ~ ~ ~ ~ ~ - ~ - -  x I00 
Duration of feeding period x Mean larval weight 

Efficiency orconversion - Weight gain b) lanae during the feeding period 
of Ingested food ----------.-----------------------------------.--- x 100 

Weight of food consumed 

F.rficiency oiConversion = Weight gain by larvae during the feeding period 
of Digested food ----------------.-........------------------------------- x I00 

Weight of food consumed - Weight of faeces 

Approximate Digestibility = Weight of food c o n s u m e d  Weight of faeces 
--.-.----.------------------------------------------ x loo 

Weight of food consumed 

As the level of toxicity in transgenic plants was not to the extents that cause 

significant effects on the growth and development of H urmigrra and also because the 

plant material required for selecting the insect populations for number of generations was 

limited, studies on the development of resistance in the H armigera could not be 

conducted carried out. 



3.6 Molecular characterization for the presence of insecticidal genes and their 
expression in advanced generations of the transgenic plants 

Molecular characterization of transgenic plants was carried out to determine the 

,,rcsence of insecticidal genes (131 crylAh and SBTI) through polymerase chain reaction 

( ~ c R )  and southern blotting and to evaluate their expression through reverse 

transcriptase PCR (RT-PCR), nonhern blotting. and ELISA. 

3.6.1 DNA isolation. 

Genomic DNA was isolated from fresh lea\es of transgenic pigeonpea according 

to protocol giben by Porebski e /  ul. (1997). 

Solutions required 

I Chloroform: Octanol (24: I)  

1. NaCl5 M 

3.TF buf i r .  10 mhl Tris-1ICI pIi 8.47 ImM EDTA, pH 8.4 

4 RNase A : 10 mglml 

5 .  I'roteinase K .  I mgiml (made fresh before use) 

6 I'henol saturated in TE 

7 Poly vin:l pyrrolidone (PVP 40,000) 

8 95% ethanol (-2O0c): 70% ethanol (0.4'~): absolute ethanol 

9. Extraction buffer 

Component Working conc. Stock For 100 ml solution 

Tris I 00 nlM 1 M I0 ml 

YaCI, p~ 8.0 1.4 mM 5 h$ 28 ml 

EDTA, pH 8.0 20 mM 500 mM 4 ml 



CZ4B 2% 

p-mercaptoethanol 0.3% 

(added just before use) 

Made hP to 100 ml with distilled water. 

Protocol 

Pigeonpea leaf samples (500 mg) were taken from green house and pulverized 

into a fine powder using mortar and pestle in the presence of liquid nitrogen. To the leaf 

ponder, 5 ml extraction buffer (preheated to 60°C) \\as added and transferred to 30 ml 

polypropylene tube containing 50 mg PVI'. The contents nere mixed by inverting and 

incubated at 6OoC in water bath for 45 minutes with intermittent mixing. To the incubated 

mixture. 6 ml of chloroform: octanol (24:l vlv) was added and mixed by inversion to 

for111 an emulsion and centrifuged at 3000 rpm for 20 minutes at room temperature. The 

aqueous solution was transferred into fresh tuhcs by using \vide bore pipctte tips. To the 

supernatant. I!? volume of 5M NaCl and 2 volumes of cold 95 per cent ethanol were 

added and after gentle mixing by inversion. incubated at -20°C for 30 minutes to allow 

precipitation of DNA. DNA pellet was obtained by centrifuging for 10 minutes at 6000 

rprn and it was washed twice with cold ethanol. The pellet was air dried and then 

dissolved in 300 p1 of TE. After some time, 10 pl of RNase A (10 mg L-') was added to 

the dissolved DNA and incubated at 37°C for 1 hour. Then 3 pl of Proteinase K was 

added and further incubated at 37'C for another 30 minutes. 



purification of DNA 

Three hundred p1 of phenol. chloroform and isoamyl alcohol mixture (25: 24: 1 

\.:v) was added to DNA solution, mixed gently by slow inversion, then centrifuged for I0 

minutes at 13000 rpm. The clear supernatant was collected into new tubes. and 1/10 

\,olume of 3 M sodium acetate and equal volume of absolute ethanol were added and 

incubated overnight at -80°C. The DNA pellet was obtained by centrifuging at 13000 

rpm for 15 minutes and it was washed with 70% cold ethanol. The pellet was air dried 

and dissolved in 200 1 1  TE at 37'C The dissolved DKA samples were storcd at 4°C for 

funher use. 

3.6.2 Polymerase Chain Reaction (PCR) 

PCR amplification of the n(,tII gene was carried out to check the presence of 

transgene. For this. the plant DNA was isolated from tender leaves of transgenic lines and 

control (untransformed) plants follo\ving the protocol given by Porebski et al. (1997). 

The 11prI1 specific primer sequences (fornard) 5'GAG GCT A n '  CGG CTA TGA CTG- 

-3'and (reverse) 3'ATC GGG AGG GGC G.4T ACC GTA-5' were used for conducting 

PCK. PCR reaction was performed in 25 pl (total ~ o l u m e )  consisting of 10 X PCR buffer 

(-l.lgC12), dNTP mix (0.5 P I ) ,  MgCI2 (0.75 p1 of 50 mM). forward primer (0.5 111 of 10 

mM), reverse primer (0.5 p1 of 10 mM), sterile water (18.125 ~ 1 ) .  Taq DKA polymerase 

(0.125 pl). and template DNA (2 PI). The amplification reactions were carried out by 

using a ~ e c h n e ~ ~  PHC3 thermal cycler involving the following conditions; 94'C for 4 

minutes (one cycle), 92°C for 60 s (denaturation), 52°C for 45 s (annealing), 72°C for 90 



, for 28 cycles and final extension at 72'C for 5 minutes (one cycle) (Sharma 

alld Anjiah, 2000). 

'Thus amplified DNA fragments were electrophoresed on a 1.2% agarose gel in 

l i j ~  (Tris acetate EDTA) buffer uith ethedium bromide and b i e ~ e d  under UV 

transilluminator. 

3.6.3 Southern hlot technique 

Thtal genomic DNA, which was isolated earlier was used LO carry out southern 

blot hybridization for Bt gene. 

Composition of Buffers used for southern hybridization: 

[)enaturntion buffer (for I I.) 

XaC1 (1.5 M) 87.66 g 

NaOH (0.5 M) 20 g 

Keutralization buffer (for 1 L) 

NaCI ( I  .5 hl) 87 66 g 

Tris (0.5 M), (pH 7.5) 60.55 g 

20X SSC (for I L): 

NaCl 175.3 g 

Tri sodium citrate dehydrate 88.2 g 

Primary wash buffer (for 1 L) 

Urea 2 M 120 g 

SDS 0.1% I g 



0.5 M Na phosphate 

(pH 7.0) * 50 mM I00 ml 

NaCl 150 mM 8.7 g 

MgC12 I mM I ml 

Blocking reagent 0.2% 2 g 

* Sodium phosphate (0.5 M) can be made by using sodium dihydrogen phosphate and 

adjusting the pH to 7.0 with sodium hydrox~de. 

'I 11s primary wash buffer can be kept for I ucck in a refrigerator at 2-8°C 

Secondary wash buffer (20X) stock 

Tris base 1 M 121 g 

NaCl 2 M 132 g 

I h e  pH was adjusted to 10.0 and made up to I litre with distilled water and stored in 

refrigerator at 2-8°C. 

Secondarq wash buffer- working concentration 

fhi- stock was diluted (1: 20) and 2 ml L-' of' 1M MgCl: was added to give a final 

concentration of 2 mM magnesium in the buffer 

Restriction digestion of genomic DNA and electrophoresis 

Approximately 50 pg (100 p1) of genomic DNA was digested with HlndlIl (3 PI). 

1-hc other component of the reaction included a 12 pl of 10X restriction buffer. The total 

lolume was made to 120 pl using sterile distilled water and incubated overnight at 37'C. 

TAE (2 11 of 20 X) and bromophenol blue were added to the restricted DNA before 

electrophoresis. The restricted DNA was size fractionated in 0.8% agarose gel prepared in 



TAE buffer with 2 ethedium bromide. to visualize the rcstricted fragments under 

trans-illuminator. A marker was also loaded into one lane for comparing the slze of 

restricted fragments. The electrophoresis was allowed to run at 50 volts in TBE buffer by 

loading digested genomic DNA of transgenic plants into lanes of the gel. Thus. restricted 

UXA was transferred to a N' nylon membrane by capillary blotting of the gel. 

processing and  capillary blotting of the gel 

N i  nylon membrane and 4 pleccs of Whatman 3 mm size filter papers of exact 

dimensions s e r e  cut. The gel was placed in reverse position such that the wells face 

do\vnwards on a 3 mm Whatman filter paper in transfer apparatus; the edges were dipped 

In :OX SSC. which sen'cd as a wick for capillary blot. N'membrane \vas presoaked in 2X 

SSC for 10 minutes, and was placed on top of gel. The side was marked for identification 

by cuning a comer of the membrane. Over the membrane 3 sheets of filter papers of the 

s i x  as the membrane were placed and the alr bubbles present between the mcmbrane and 

papcrs. wcrc squeezed out by rolling a pipette. Then a stack (about 3 inch height) of 

absorbent paper towels was kept for capillary mo\,enient. A glass platc was placcd over 

the set up and a 1 kg weight was placed over it. The capillar) blotting was carried over 

night. 'The membrane was removed by disassembling the Southern and was baked at 

80°C for half an hour for proper fixing. 

Labeling and  detection 

The Gene images TM Alkphos ~ i r e c t ~  labeling and detection system from 

h e r s h a m  ph-acia biotech, UK, is used for labeling of DNA probes and 

chemiluminescent detection. 



pnparation of labeled oligo probe 

DNA (10 pl) was placed in a micro-centrifuge tube and denatured by heating for 5 

minutes in vigorously boiling water. Immediately, it was cooled on ice for 5 minutes and 

spinned briefly to collect the content at thc bottom of the micro-centrifuge tube. Reaction 

buiTer (10 pl) was added to the cooled DNA and mixed thoroughly, but gently. To it, 2 pl 

of labeling reagent was added and mixed gently. Then 10 pl of cross linker solution was 

added and mixed by spinning in a micro-centrifuge. The reaction mixture was incubated 

for 30 minutes at 37OC and the labeled probe was kept on ice for further use. 

Hybridization 

The blot was prehybridized in a bottle with 10 ml of hybridization buffer 

(preheated to 55°C) by rotating hori~ontally in hybridization oven for 15 minutes at 

55°C. The labeled probe was added to the buffer used for prehybridization, and was 

hbbr~dized at 55°C for overnight in hybridizat~on oven. 

I'ost hybridization steps 

The blot was washed twice in primary wash buffer. which was preheated to 55'C 

In hybridization oven at 55OC. The blot was then washed twice with secondary wash 

buffer at room temperature. The blot was removed for signal detection. 



signal generation and detection 

Chemiluminescent signal generation and detection was performed with CDP star 

with kit). Detection reagent was added on the blot using micropipette and left 

fc,r 2 to 5 minutes and the blot was b~apped in a saran wrap. The blot was placed in film 

cassette facing the DNA side up. A sheet of autoradiography film was placed on the top 

of blot and the cassette kept closed for 1 hour at room temperature. The film was 

developed using debeloper and transferred to fixer. This was carried out in a dark room. 

3.6.4 Reverse Transcript PCR 

KNA isolation 

The total RNA from the transgenic pigeonpea leaves was isolated using TRlzol 

Reagent (Invitrogen), a ready-to-use reagent. RT-PCR analysis of RKA molecules of 

transgenic pigeonpea was performed using the ~ h e r m o ~ c r i ~ t ~ ~  (Invitrogen) RT-PCR 

i!stsn~. The stcps invol\,ed in this were; RNA sample denaturation. cDNA synthesis. 

rrdction termination, removal of RNA template and PCR anlplification. The cDN.4 was 

qnthesized using poly (A)--selected RNA pr~med with oligo (dT) at 55°C. Later. PCR 

\$as performed in a separate tube using primers specific for the nprII gene. 

cDNA synthesis 

In a 0.5 ml tube, primer (50 pM Oligo(dT)*o, RNA, and dNTI' mix were added 

and adjusted the volume to 12 ~1 with DEPC-treated water. Denaturation of RNA and 

Prlrner was done by incubating at 65°C for 5 minutes and placed on ice. The master 

reaction mix was prepared using the components (5x cDNA synthesis buffer, 0.1 M DTT, 



l i N a s e ~ ~ ~ T M ,  DEPC-treated water and ~ h e r m o ~ c r i ~ t ' ~ )  supplied in the kit and 8 pl of 

",aster reaction mix was added into each reaction tube on ice. The samples were then 

to a thermocycler preheated to the cDNA synthesis temperature 55°C and 

,,cubated for 60 minutes. Later, the reaction was terminated by incubating at 85°C for 5 

minutes. After adding 1 PI of RNaseH again incubated at 37'C for 20 minutes. The cDNA 

\\as used for PCR amplification of the nptll gene. 

3.6.5 Northern blot technique 

The total RNA from the transgenic pigeonpea leaves was isolated using TKlzol 

Keagent (Invitrogen), a ready-to-use reagent. 

Preparation of formaldehyde denaturing gel 

Agarose (4 g) was dissolved in 250 ml nuclease free water and cooled to 55°C. 

Preheated (5j°C) formaldehyde (7.5 ml) and 10 X MOPS buffer (30 ml) was added and 

cast the gel. 

lOX hlOPS buffer 

3-(N-morpholino) propanesulfonic acid (MOPS) 41.2 g 

Sodium acetate 10.9 g 

EDTA, Sodium salt 3.7 g 

1)issolved in 800 ml of nuclease free water and adjusted the pi1 to 7 with NaOI1. then 

made up to a final volume of 1000 ml. 



pXparation of RNA samples 

RNA samples were prepared using RNA (5 PI), formaldehyde (5.5 PI), formamide 

, I 5 PI). 1 OX MOPS buffer (1.5 PI) and water (3 PI). The samples were placed at 55'C for 

15 minutes to denature. After denaturation. 3 p1 of 10X nucleic acid dye loading buffer 

\\as added and loaded onto agarose gel. 

The RNA samples were separated using 1X MOPS buffer as the electrophoresis 

buffer. The gel was placed in a tray covering with distilled water and incubated for 15 

mii~utes with gentle agitation. After discarding the water. sterile IX SSC was replaced 

and incubated another 15 minutes with agitation. Capillay blot was set up as described 

Tor Southern blotting technique using ?OX SSC as the transfer buffer. Labeling. 

h)bridization and signal detection steps were followed as mentioned for Southern 

hlotting. However. the result from this experiment was not satisfactory 

3.6.6 Enzyme-Linked Immuno Sorbent Assay (ELISA) 

Quantification of Bt-Cyl Ab protein in the transgenic pigeonpea plants was 

carried out using a double-antibody sandwich (DAS) enzyme-linked immunosorbent 

assay (ELISA). For this Pathoscreen kit for El-CrylAb!lAc protein ( ~ ~ d i a ' )  was used. 

In this kit, antibody coated microplate, required buffers and enzyme conjugates were 

supplied. The leaf (100 mg) samples were ground using mortar and pestle and diluted 

"ith PBST buffer at 1: 10 ratio to extract the protein. 



rest procedure 

Initially, enzyme conjugate (100 PI) was dispensed in each well, and 100 p1 of 

each test sample was dispensed into the appropriate test wells of the ELlSA plate 

following the loading diagram. Positive and negative controls (100 p1 each) were also 

into the appropriate test well. The plate was kept inside a humid box and 

incubated for 2 h at room temperature. After completion of the incubation. the plate was 

washed \\ith I X PBST wash buffer for seven times with a quick flipping motion to empt) 

the contents of the wells into a sink Each well was again filled with IX PBST wash 

buffer and left for 1 minute. The wells \\.ere empt~ed with a quick flipping motion and the 

remaining drops of buffer were removed from the wells by tapping firmly on a folded 

paper towel. TMB substrate solution (100 pl) was dispensed into each well of the plate 

and kcpt aside for color development. After 15 minutes, color was developed. At the end 

of I5 minutes incubation with Th4B substrate 50 p1 of 3 M H2SO4 was added to each test 

ncll and the optical density of the test wells was measured on a plate reader at 450 nm. 

\\'rlls in which blue color developed indicated positive results while the \+ells that 

rcniained clear indicated negative. The Bt protein was quantified based on the optical 

density (OD) values of test samples ~vith respect to the standard samples. The C N ~ A ~  

protein levels varied from 0.07 to 0.126 ng per gram fresh leaf tissue. In most of the 

samples analysed. the levels of Bt protein were very less and below the detectable level. 



Results 



CHAPTER IV 

RESULTS 

The transgenic pigeonpea plants carrying c q ~ l A h  endotoxin genes from the 

bacterium. Bacil lu~ thuringiensis (Berliner) and rryp.~in ~nhihitor genes from soybean 

(Sf31 1 )  Mere evaluated for resistance to the pod borer. Helicoverpa urmi,qera (Hubner). 

Insect bioassays were conducted using different plant pans such as leaves. flowers, and 

pods. The relative resistance of transgenic pigeonpea lines was assessed in terms of 

damage caused b! the larvae, percent larval survival, larval weight, and post-embryonic 

development. 

4.1 Effect of transgenic pigeonpea on growth and development of H. armigera in 
T I  generation 

1.1.1 Detached Leaf assay 

In bioassays using the transgenic pigeonpea leaves, the damage ratlng (DR) varied 

tium 3.0 to 7.5 on transgenic plants compared to 6.0 on non-transgenic plants. ICP1. 

88039 and ICPL 87 (Table 1). Larval survival ranged from 10 to 100 percent on 

lransgenic plants. while 90 percent survival was recorded on the non-transgenic plants. 

Larval weight at 3 days after infestation on transgenic pigeonpeas baried from 0.1 17 to 

0.771 mg as against 0.351 and 0.493 mg on non-transgenic plants of ICPL 88039 and 

1CPL 87, respectively. Since there was lot of variation in the performance of the 

illdicidual plants, plants that caused <O.300 mg larval weight were pooled for analysis 

(Table 2). Plant numbers Bt 3.5, Bt 6.1, Bt 6.2, Bt 6.6, and SBTl 1.2 showed a DR of 3.0. 



Table I :  Relative susceptibility of transgenic pigeonpea plants (TI) to neonate H. 
armigera larvae fed on leaves (2001-02) 

Genotype Line Damage Lan-al survival Larval weight (mg) 
rating (%) 3 DAI 

ICPL 88039 Bt-1.1 5.0 90.0 (71.6) 0.456 

ICPL 88039 
ICPL 88039 
ICPL 88039 
lCPL 88039 
ICPL 88039 

lCPL 88039 
lCPL 88039 
lCPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 

ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
lCPL 88039 
ICPL 88039 
lCPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 87 
lCPL 87 
ICPL 87 

ICPL 87 
ICPL 87 
ICPL 87 
lcPL 88039 
ICPL 88039 
ICPL 88039 

ICPL 88039 
ICpL 88039 



ICPL 88039 
ICPL 88039 
lCPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
lCPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
lCPl 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
lCPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 

Bt-7.1 
81-7.2 
Bt-7.3 
Bt-7.4 
Bt-7.5 
Bt-7.6 
Bt-8.1 
Bt-8.2 
Bt-8.3 
Bt-9.1 
Bt-9.2 
Bt-9.3 
Bt-9.4 
Bt-10.1 
Bt-10.2 
Bt-10.3 
Bt-10.4 
Bt-10.5 
Bt-10.6 
SBTI-1.1 
SBTI-I .2 
SBTI-1.3 
SBTI-1.4 
SBTI-1.5 
SBTI-1.6 
SBTI-2.1 
SBTI-2.2 
SBTI-2.3 
SBTI-2.4 
SBTI-2.5 
SBT1-2.6 
SBTI-3.2 
SBTI-3.3 
SBTI-3.4 



lCPL 88039 
lCPL 88039 
lCPL 88039 
lCPL 88039 
lCPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 87 
lCPl 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
IC PL 87 
ICI'L 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
lCPL 87 
lCPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
lCPL 87 
ICPL 87 
ICPL 87 



ICPL 88039 SBTI-10.1 5.0 100.0 (90.0) 0.580 
ICPL, 88039 SBTI-10.2 5.0 80 0 (63.4) 0.500 
ICPL 88039 SBTI-10.3 4.5 100.0 (90.0) 0.520 
ICPL 88039 SBTI-10.4 5.0 100.0 (90.0) 0.590 
ICPL 88039 SBTI-10.5 5.5 100.0 (90.0) 0.470 
ICPL 88039 SBTI-10.6 5.5 100.0 (90.0) 0.490 
ICPL 88039 Control 6.0 90.0 (7 1.6) 0.351 
ICPL 87 Control 6.0 90.0 (7 1.6) 0.493 
LSD 0.3 4.5 0.031 
SE* 0.1 1.6 0,011 

FP <0.001 <0.001 <0.001 
*Figures in parentheses are ~n-gular transformed values. 
Damage rating (1=<10% leaf area damaged. and 9=>80°/0 leaf area damaged). 
DAI=Days after infestation. 



Table 2: Relative susceptibility of transgenic pigeonpea plants (TI)  to neonate 
ormigera larvae fed on leaves (2001-02) 

Genotype 

ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 87 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 88039 

Line 

Bt- 1.2 
Bt- 1.3 
Bt-1.5 
Bt-1.6 
Bt-2.1 
Bt-2.3 
Bt-3.2 
Bt-3.5 
Bt-3.6 
B1-5.1 
Bt-6.1 
Bt-6.2 
Bt-6.6 
Bt-7.1 
Bt-7.2 
81-8.1 
Bt-8.3 
Rt-9.2 
SBTI-I .2 
SBTI-1.4 
SBTI-2.2 
SBTI-2.5 
SBTI-4.3 
SBTI-5.2 
SBTI-6.4 
SBTI-6.5 
SBTI-7.5 
Control 

Damage 
rating 

6.0 

Larval survival Larval weieht (me) 

ICPL 87 Control 6.0 90.0 (71.6) 0.493 
LSD 0.5 7.7 0.036 

Fp <0.001 <0.001 <0.001- - -  

*Figures in parentheses are Angular transformed values. 
~ ~ l = ~ a ~ s a f t e r  infestation. - 



~ , ~ ~ a l  survival varied from 50 to 100 percent as against 90.0 percent on the non- 

trallsgenic plants. Larval weight at 3 days after infestation varied from 0.1 17 to 0.286 mg 

on transgenic lines as against 0.351 mg on lCPL 88039 and 0.493 mg on lCPL 87. 

Fuflher bioassay were continued with the plants showing promise in the preliminary 

screening. 

In another bioassay using the transgenic pigeonpea leaves. the damage score 

ranged from 1.7 to 5.0 on transgenic plants, compared to 4.5 and 3.3 on non-transgenic 

plants of lCPL 88039 and lCPL 87, respectively (Table 3). Plant numbers Bt 6.1 (1.7). Bt 

I.? ( l o ) ,  SBTl 2.2 (2.0), Bt 6.2 (2.2), Bt 3.6 (2.3), Bt 9.2 (2.3). SBTI-1.4 (2.3). Bt 3.2 

(2.7). SB'I'I 4.3 (2.7) Bt 2.1 (3.0) Bt 6.6 (3.0), and SBTl 2.5 (3.0) suffered significantly 

less leaf damage compared to the non-transgenic plants of ICPL 88039 (4.5). Larval 

s u r ~ ~ v a l  varied from 10.0 to 46.7 percent as against 30.0 and 20.0 percent sunival on 

controls, ICPL 88039 and lCPL 87, respectively. Plants Bt 6.1 (10.0%). SBTl 1.4 

113.3%), Bt 3.2 (16.7%). and Bt 6.2 (16.7%) showed significantly less larval survival 

than the non-transgenic lCPL 88039 (30.0%). Larval n'eights at 3 days after infestation 

iaried from 0.5 17 to 1.500 mg on transgenic plants compared to 1.000 mg on the non- 

transgenic plants of ICPL 88039 and 1.122 mg on ICPL 87. Larval weights were lower 

on Bt 2.1 (0.517 mg), Bt 8.1 (0.542 mg), Bt 3.2 (0.567 mg). Bt 7.2 (0.597 mg), Bt 1.2 

(0.600 mg), Bt 6.2 (0.622 mg). SBTl 4.3 (0.628 mg), SBTl 2.5 (0.633 mg), SBTl 1.2 

(0.650 mg), and SBTl 7.5 (0.733 mg) compared to the non-transgenic plants. 





4.1.2 Flower bioassay 

In the flower bioassay. larval survival ranged from 30 to 100 percent on the 

trallsgenic plants, while the non-trnsgenic plants of ICPL 88039 and ICPL 87 showed 100 

and 90 percent larval survival, respectively (Table 4). The lama1 weight at 3 days after 

infestation varied from 1.20 to 3.100 mg on transgenic plants while on non-transgenic 

plants of ICPL 88039 and ICPl 87 the larval weights were 2.167 and 2.650 mg, 

respectively. 

1.1.3 Pod bioassay 

In the pod bioassay. the larval weight gain 3 days after infestation ranged from 

56.62 to 89.19 perccnt on transgenic plants, as compared to 82.18 to 88.44 percent on 

non-transgenic plants of ICPL 88039 and ICPL 87 (Table 5). The larvae gained 

h~gnificantly less weight on Bt 2.2 (56.62%), Bt 2.1 (56.93%). and Bt 2.3 (64.34%) than 

on non-transgenic plants of ICPL 88039 (82.18%). 

4.2 Effect of transgenic pigeonpea on growth and development of H. armigera in 
T2 generation 

Bioassays were continued with a total of 10 lines namely; Bt 1.2, Bt 2.1, Bt 3.2, 

Dt 6.2, Bt 7.2, Bt 8.1, SBTl 1.2, SBTl 2.5. SBTl 4.3, and SBTl 7.5, which were found 

Promising in T I  generation. 



Table 4: Relative susceptibility of transgenic pigeonpea plants (TI) to neonate H. 
armigera larvae fed on flowers (2001-02) 

Genotype Line Larval survival Larval weight (mg) 
(Yo) 3 DAI 

ICPL 88039 Bt-1.3 50.0 (45.0) 1.840 
ICPL 88039 Bt-1.5 50.0 (45.0) 2.460 
ICPL 88039 Bt-1.6 90.0 (71.6) 2.322 
ICPL 88039 Bt-2.1 100.0 (90.0) 2.410 
ICPL 88039 Bt-2.3 90.0 (71.6) 2.444 
ICPL 88039 81-3.2 90.0 (71.6) 1.933 
ICPL 88039 Rt-3.5 70.0 (56.8) 2.571 
ICPL 88039 Bt-3.6 50.0 (45.0) 3.100 
ICPL 87 Bt-5.1 30.0 (33.2) 2.500 
ICPL 88039 Bt-6.6 90.0 (71.6) 3.089 
ICPL 88039 Bt-7.1 50.0 (45.0) 1.200 
ICPL 88039 Bt-7.2 100.0 (90.0) 1.500 
ICPL 88039 Bt-8.1 70.0 (56.8) 2.557 
ICPL 88039 Bt-8.3 50.0 (45.0) 2.740 
ICPL 88039 Bt-9.2 60.0 (50.8) 1.817 
ICPL 88039 SBTI-1.2 90.0 (71.6) 1.378 
ICPL 88039 SBTI-1.4 100.0 (90.0) 1.490 
ICPL 88039 SBTI-2.2 80.0 (63.4) 2.438 
ICPL 87 SBTI-6.1 80.0 (63.4) 2.125 
ICPI. 88039 Control 90.0 (71 .h)  2.167 
ICPL 87 Control 100.0 (90.0) 2.650 
LSD 10.6 0.324 

Fp <0.001 ~ 0 . 0 0 1  
*Figures in parentheses are Angular transformed values. 
~ ~ ~ = ~ a ~ s - a f t e r  infestation. - 



Table 5:  Relative susceptibility of transgenic pigeonpea plants (TI) to neonate H. 
armigera larvae fed on pods (2001-02) 

Genotype Line Larval weight (mg) Weight gain 
Initial Final (%) 

ICPL 88039 Bt-1.2 7.8 25.3 69.17 
lCPL 88039 
ICPL 88039 
ICPL 88039 
lCPL 88039 
ICPL 88039 
ICPL 88039 
lCPL 88039 
lCPL 88039 
ICPL 88039 
ICPL 88039 
lCPL 88039 
lCPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
lCPL 88039 
ICPL 88039 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 88039 

Bt-1.3 5.5 50.9 89.19 
Bt-1.4 11.3 87.1 87.03 
Bt- 1.5 6.4 30.5 79.02 
Bt-1.6 11.5 50.8 77.36 
Bt-2.1 8.7 20.2 56.93 
81-2 2 11.8 27.2 56.62 
Bt-2.3 10.2 28.6 64.34 
Bt-3.2 8 1 39.3 79.39 
Bt-3.5 10.8 45.9 76.47 
Bt-3.6 9.1 57.3 84.12 
81-6.1 4.6 21.4 78.50 
Bt-6.2 5.1 15.8 67.72 
Bt-6.6 6.7 36.6 81 69 
Bt-7.1 6.8 34.0 80.00 
Bt-7.2 6.0 24.8 75.81 
Bt-8.1 6.0 19.5 69.23 
Bt-8.3 9.1 51.2 82.23 
Bt-8.4 11.3 38.1 70.34 
SBTI-I .2 8.8 55.5 84.14 
SBTI-1.5 6.3 49.6 87.30 
SBTI-5.1 7.3 52.3 86.04 
Control 3.6 20.2 82 18 

lCPL 87 Control 5.7 49.3 88.44 
*kote: Prior to releasing on pods, the larvae were reared on anificial diet for 5 days. 



Table 6 :  Relative susceptibility of t ransgenic  pigeonpea plants  (T2) t o  neonate  larvae 
" f ~ .  armigera fed o n  leaves (2002) 

Genotype L ine  Damage  La rva l  survival La rva l  weight (&) 
rat ing ( y o )  3D.41 

lCpL 88039 Bt-1.2.1 2.9 100.0 (90.0) 0.320 
ICI'L 88039 Bt-1.2.2 2.8 77.5 (62.1) 0 346 
ICPL 88039 Bt-1.2.3 2.3 75.0 (60.1) 0.375 
ICPL 88039 Bt-1.2.4 2.6 92.5 (78.8) 0.424 
ICPL 88039 Bt-2.1.1 3.4 85.0 (67.9) 0.240 
ICPL 88039 Bt-2.1 2 3.9 87.5 (69.5) 0.558 
ICPL 88039 Bt-2. I .3 3.0 92.5 (76.2) 0.550 
ICPL 88039 Bt-2.1.4 3 6 77.5 (62.3) 0.541 
ICPL 88039 Bt-3.2.1 2.8 65.0 (54.2) 0.5 18 
ICPI. 88039 Bt-6.2.1 3 4 77.5 (62.1) 0.439 
ICPL 88039 81-6.2.2 2.6 72.5 (59.2) 0.454 
lCPL 88039 Bt-6.2.3 2.6 92.5 (81.7) 0.612 
ICPL 88039 Bt-6.2.4 1.6 77.5 (65.8) 0.364 
ICPI. 88039 R1-7.2.1 2.4 80.0 (66 8) 0.394 
ICPL 88039 Bt-7.2.2 3.1 90.0 (76 7)  0.605 
ICPL 88039 Bt-7.2.3 1.8 80.0 (66.8) 0.345 
ICPL 88039 Bt-7.2.4 1.6 87.5 (69.5) 0.383 
1CPL 88039 Bt-8.1.1 3.5 92.5 (78.8) 0.513 
ICPL 88039 Bt-8.1.2 3.4 90.0 (76.7) 0.460 
ICPL 88039 Bt-8.1.3 3.4 82.5 (68.4) 0.643 
ICPL 88039 Bt-8.1.4 3.1 97.5 (85.4) 0.589 
ICPL 88039 SBTI-1.2.1 2.5 80.0 (67.3) 0.561 
ICPL 88039 SBT1-1.2.2 3.3 92.5 (76.2) 0.578 
lCPL 88039 SBTI-I .2.3 2.9 87.5 (72.1) 0.214 
lCPL 88039 SBTI-1.2.4 4.1 95.0 (80.8) 0.425 
ICPL 88039 SBTI-2.5.1 3.0 82.5 (69.5) 0.243 
ICPL 88039 SBTI-2.5.2 2.9 97.5 (85.4) 0.336 
1CPL 88039 SBTI-2.5.3 3.1 97.5 (85.4) 0.310 
1CPL 88039 SBTI-2.5.4 4.0 87.5 (69.5) 0.389 
lCPL 88039 SBTI-4.3.1 3.4 90.0 (71.6) 0.539 
1CPL 88039 SBTI-4.3.2 3.9 85.0 (67.5) 0.428 
1CPL 88039 SBTI-4.3.3 2.9 92.5 (78.8) 0.472 
1CPL 88039 SBT1-4.3.4 3.5 95.0 (83.4) 0.4 13 
lCPL 87 SBTI-7.5.1 2.6 87.5 (69.5) 0.304 
lCPL 87 SBTI-7.5.2 2.8 92.5 (76.2) 0.3 13 
1CPL 87 SBTI-7.5.3 3.1 80.0 (66.8) 0.25 1 
lCPL 87 SBTI-7.5.4 2.5 85.0 (70.4) 0.264 
ICPL 88039 Control 2.6 80.0 (67.3) 0.440 
1CPL 87 Control 3.3 77.5 (62.3) 0.472 
SE* 0.3 5.9 0.048 
LSD 0.9 16.5 0.134 
FJI <0.001 0.003 CO.001 
'Figures in parentheses are Angular transformed values. DAI=Days after infestation 



4.2.1 Detached Leaf assay 

Damage score ranged from 1.6 on Bt 6.2.4 to 4.1 on SBTl 1.2.4, ~ h i l e  the non- 

transgenic plants of ICPL 88039 and ICPL 87 had damage scores of 2.6 and 3.3. 

respectively (Table 6). Bt 6.2.4 (I .6) and SBTI 7.5.4 (2.5) showed l o ~ e r  leaf feeding than 

the non-transgenic plants. Larval survival ranged from 72.5 to 100 percent. Howe~er ,  the 

differences were not significant statistically The larval weights at 3 days after infestation 

ranged from 0.240 to 0.643 mg or) transgenic plants compared to 0.440 and 0.472 mg on 

non-transgenic plants of ICPL 88039 and ICPL 87 plants, respectively. Larvae fed on the 

leaves of Bt 2.1 .I and SBTl 2.5.1 recorded significantly lower weights (0.240 and 0.243 

Ing. respectively), as compared to the non-transgenic plants of ICPL 88039 

The same bioassay was done again to see the repeatability. Damage score ranged 

born 2.0 to 4.2 on transgenic lines. while the non-transgenic plants of ICPL 88039 and 

I('PL 87, had a damage rating of 3.2 and 3.3. respectively (Table 7). Plants Bt 1.2.2 (2.0). 

ut 2.1.1 (2.0), SBTl 2.5.3 (2.0), Bt 7.2.4 (2.2) Bt 1.2.1 (2.3). Bt 6.2.1 (Z.3), and Bt 6.2.4 

(2.3) suffered lower leaf damage than the non-transgenic plants of ICPL 88039 (3.2). 

Similarly. SBTI 7.5.2 (2.3) showed a significant effect compared to the non-transgenic 

lCPL 87 (3.3). Larval survival varied from 56.7 percent on SBTl 2.5.3 to 100 percent on 

Bt 1.2.2 and Bt 8.1 . I .  Larval survival on non-transgenic plants of ICPL 88039 and ICPL 

87. was 90.0 and 80.0 percent, respectively. However, the differences were not 

significant. Larval weight at 3 days after infestation ranged from 0.209 to 0.503 mg on 

transgenic lines as against 0.274 and 0.312 mg on non-transgenic plants of ICPL 88039 



Table 7: Relat ive susceptibility of transgenic pigeonpea plants  (T2) t o  neonate larvae 
of H. armigera fed o n  leaves (2002) 

E n t ~  L i n e  Damage La rva l  survival  La rva l  weight (mz 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
lCPL 88039 
lCPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
lCPL 88039 
ICPI. 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICI'L 88039 
ICI'L 88039 
ICPI. 88039 
ICPL 88039 
lCPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
lcPL 88039 
ICPL 88039 
lcpL 88039 
lcPL 87 
ICPL 87 
ICPL 87 
1cPL 87 

Bt-1.2.1 
Bt-1.2.2 
Bt-I .2.3 
Bt-1.2.4 
Bt-2.1. I 
Bt-2.1.2 
Bt-2.1.3 
Bt-2.1.4 
Bt-3.2.1 
81-6.2.1 
Bt-6.2.2 
01-6.2.3 
81-6.2.4 
Bt-7.2.1 
81-7.2.2 
81-7.2.3 
Bt-7.2.4 
Bt-8.1.1 
Bt-8.1.2 
Bt-8.1.3 
Bt-8.1.4 
SBTI-I .?. I 
SBT1-I .2.2 
SBT1-1.2.3 
S13'11-1.2.4 
SBTI-2.5.1 
SBTI-2.5.2 
SBTI-2.5.3 
SBTI-2.5.4 
SBTI-4.3.1 
SBI'I-4.3.2 
SBTI-4.3.3 
SBTI-4.3.4 
SBTI-7.5.1 
SBTI-7.5.2 
SBTI-7.5.3 
SBTI-7.5.4 

rat ing 
2.3 
2.0 
3.7 
3.5 
2.0 
2.8 
2.5 
3.0 
3.5 
2.3 
3 8 
3.5 
2.3 
3.0 
4.2 
3.8 
2.2 
3.3 
3.0 
2.8 
3.2 
3 0 
4.0 
4.0 
3.0 
2.5 
3.0 
2.0 
2.8 
3.7 
3.8 
3 3 
3.0 
2.8 
2.3 
3.2 
2.8 

3 DAI 
0.209 
0.300 
0.374 
0.465 
0.247 
0.300 
0.271 
0.392 
0.381 
0.263 
0.370 
0.278 
0.383 
0.3 15 
0.372 
0.325 
0.355 
0.367 
0.277 
0.41 1 
0.503 
0.355 
0.396 
0.332 
0.347 
0.2 15 
0.332 
0.343 
0.342 
0.457 
0.348 
0.273 
0.408 
0.303 
0.227 
0.300 
0.210 

1 ' 2 %  88039 Control 3.2 90.0 (71.6) 0.274 
lCPL 87 Control 3.3 80.0 (63.4) 0.312 
SE-t 0.3 7.2 0.027 
LSD 0.9 NS 0.076 
Fp <O.OOl 0.152 <0.001 

*Figures in parentheses are Angular transformed values. DAI=Days after infestation. 



and ICPL 87, respectively. Lower larval weights were recorded on Bt 1.2.1 (0.209 mg), 

sRTI 2.5.1 (0.215 mg) and Bt 2.1.1 (0.247 mg), but did not differ significantly from non- 

transgenic plants of 1CPL 88039 (0.274 rng). Plants of SBTl 7.5.4 (0.210 mg) and SBr l  

7.5.2 (0.227 mg) caused significant reduction in larval weight compared to non- 

transgenic plants of ICPL 87 (0.312 mg). 

Six transgenic lines were selected based on the previous bioassays, for further 

studies. The damage score ranged from 2.4 to 2.7 on transgenic lines compared to 2.8 and 

3.3 on non-transgenic plants of lCPL 88039 and ICPL 87, respectively (Table 8). Leaf 

damage was significantly lower on Bt 1.2.1 (2.4) and Bt 2.1.1 (2.4) than on non- 

transgenic plants of ICPL 88039 (2.8). Similarly, SBTl 7.5.4 (2.4), SBTI 7.5.2 (2.5), and 

SBTI 7.5.3 (2.5) also suffered significantly lower leaf damage than non-transgenic plants 

of ICPL 87 (3.3). Larval survival ranged from 78.8 to 90.0 percent on transgenic lines. 

and 88.2 and 89.4 percent on non-transgenic plants of ICPL 88039 and lCPL 87. 

respectively. However, the differences \bere not significant. Larval weight at 3 days after 

lnSe?tation ranged from 0.256 mg on SBTl 7.5.4 to 0.315 mg on Bt 1.2.1 as compared to 

0.347 and 0.402 mg on non-transgenic plants of ICPL 88039 and lCPL 87, respectively. 

Larvae fed on leaves of SBTl 2.5.1 (0.261 mg) and Bt 2.1.1 (0.285 mg) showed 

significant reduction in the larval weights as compared to the lanpae fed on the leaves of 

non-transgenic plants of ICPL 88039 (0.347 mg). The larvae fed on the leaves of SBTl 

7.5.4 (0.256 mg), SBTl 7.5.2 (0.264 mg), and SBTl 7.5.3 (0.296 mg) weighed 

significantly lower as compared to those fed on non-transgenic plants of ICPL 87 (0.402 

mb9. 



Table 8: Relative biological actib'ity of leaves of transgenic pigeonpea plants (T2) 
against neonate larvae of H. armigera (2002) 

Genotype Line Damage Larval survival Larval weight (mg) 
rating (%) 3DAI 

ICPL 88039 Bt-1.2.1 2.4 84.1 (72.8) 0.315 
ICPL 88039 Bt-2.1 .I 2.4 78.8 (66.4) 0.285 
ICPL 88039 SBT1-2.5.1 2.7 90.0 (77.5) 0.26 1 
ICPL 87 SBTI-7.5.2 2.5 85.3 (70.5) 0.264 
ICPL 87 SBTI-7.5.3 2.5 82.4 (68.0) 0.296 
ICPL 87 SBTI-7.5.4 2.4 78.8 (65.7) 0.256 
ICPL 88039 Control 2.9 88.2 (74.3) 0.347 
ICPL 87 Control 3.3 89.4 (74.8) 0.402 
SE* 0.13 3.3 0.02 
LSD 0.36 NS 0.056 
Fp <0.001 0.131 <0.001 
'Figures in parentheses are Angular transformed values. DAl=Days after infestation. 



4.3 Effect of transgenic pigeonpea on growth and development of H. armigera in 
T, generation 

Progenies of four transgenic pigeonpea lines namely; Bt 1.2.1, Bt 2.1.1. SBTl 

2 5.1, and SBTl 7.5.2 selected from T2 generation, were evaluated for resistance to I/ 

drmigera in T3 generation. 

1.3.1 Detached leal  assay 

'The damage score ranged from 1.3 to 4.7 on transgenic l~nes while the non- 

tramgenic plants of ICPL 88039 and ICPL 87 scored 2.8 and 3.2, respectively (Table 9). 

Plants of SBTI 2.5.1.4 (1.3). SBTl 2.5.1.2 (1.8). Bt 2.1.1.5 (1.8), and Bt 1.2.1.2 (2.0) 

suffcred signiticantly lower leaf damage as compared to the non-transgenic plants of 

IVPL 88039 (2.8). Similarly, SBTl 7.5.2.6 (2.3) and SBTI 7.5.2.5 (2.5) suffered 

significantly lower leaf damage as compared to non-transgenic plants of ICPL 87 (3.2). 

llle larval survival varied from 66.7 to 96.7 percent on transgenic lines, compared to 93.3 

and 90.0 percent on non-transgenic ICPI. 88039 and ICPL 87 plants. respectively. 

tlowever, the differences were not significant. Larval weights at 3 days after infestation 

on the transgenic plants ranged from 0.282 mg on Bt 2.1.1 .I to 0.856 mg on Bt 1.2.1.4 as 

against 0.368 and 0.455 mg on non-transgenic plants of ICPL 88039 and ICPL 87, 

respectively. Lower larval weights were recorded in larvae fed on the leaves of Bt 2.1.1.1 

(0.282 mg), SBTl 2.5.1.1 (0.291 mg), SBTl 2.5.1.2 (0.303 mg), SBTl 2.5.1.4 (0.312 mg), 

and Bt 2.1.1.4 (0.329 mg), but did not differ significantly from the larvae reared on non- 

transgenic plants. 



Table 9: Effect of transgenic pigeonpea plants (T3) on neonate larvae of H, armigera 
fed on leaves (2002-03) 

Genotype Line Damage Lanral survival Lanral weight (mg) 
rat in^ (%) 3 DAI 

ICPL 88039 Bt-I .2.1 .I 2.5 73.3 (59.7) 0.536 
ICPL 88039 Bt-1.2.1.2 2.0 83.3 (66.6) 0.591 
LCPL 88039 Bt-1.2.1.3 2.2 80.0 (63.9) 0.546 
ICPL 88039 Bt-I .2.1.4 3.2 90.0 (71.6) 0.856 
ICPL 88039 Bt-1.2.1.5 2.7 96.7 (83.9) 0.829 
ICPL 88039 Bt-1.2.1.6 2.8 83.3 (70.1) 0.369 
ICPL 88039 Bt-2.1 . I  .I 2.2 66.7 (55.9) 0.282 
ICPL 88039 Bt-2.1.1.2 2.8 93.3 (81.1) 0.548 
ICPL 88039 Bt-2.1 . I  .3 2.2 93.3 (81.1) 0.616 
ICPL 88039 Bt-2.1.1.4 2.7 76.7 (66.9) 0.329 
ICPL 88039 Bt-2.1 . I  .5 1.8 93.3 (81.1) 0.61 1 
1CPL 88039 Bt-2.1 .I .6 2.5 86.7 (72.3) 0.675 
lCPL 88039 SBTI-2.5.1 .I 3.0 86.7 (68.9) 0.291 
lCPL 88039 SBT1-2.5.1.2 1.8 83.3 (66.1) 0.303 
ICPL 88039 SBTI-2.5.1.3 3.0 93.3 (77.7) 0.598 
ICPL 88039 SBTI-2.5.1.4 1.3 66.7 (55.8) 0.312 
lCPL 88039 SBTI-2.5.1.5 2.7 96.7 (83.9) 0.679 
lCPL 88039 SBTI-2.5.1.6 3.0 86.7 (68.9) 0.508 
lCPL 87 SBTI-7.5.2.1 4.7 90.0 (75.0) 0.426 

ICPL 87 SBTI-7.5.2.2 3.5 80.0 (68.9) 0.671 
ICPL 87 SBTI-7.5.2.3 3.5 83.3 (70.8) 0.637 
lCPL 87 SBTI-7.5.2.5 2.5 83.3 (66.1) 0.680 
ICPL 87 SBTI-7.5.2.6 2.3 93.3 (81.1) 0.646 
ICPL 88039 Control 2.8 93.3 (81.1) 0.368 
lCPL 87 Control 3.2 90.0 (75.0) 0.455 
SE* 0.3 7.6 0.051 

LSD 0.7 NS 0.145 
Fp <0.001 0.295 <0.001 
*Figures in parentheses are Angular transformed values. DAI=Days after infestation. 



1.3.2 Flower bioassay 

The larval survival when fed on flowers ranged from 66.7 to 100.0 percent on 

lines. as compared to 93.3 and 86.7 percent survival on non-transgenic plants 

of [CPL 88039 and lCPL 87. respectively (Table 10). However, the differences wcre not 

significant. Larval weights ranged from 0.403 mg on Bt 2.1.1.1 to 0.862 mg on Bt 2.1.1.2 

as against 0.537 and 0.670 mg on non-transgenic ICPL 88039 and ICPL 87 plants. 

rcspectively. Lower weights were recorded in larvae fed on the flowers of Bt 2.1.1.1 

(0.403 mg). SBTl 2.5.1.4 (0.471 mg), SBTl 2.5.1.1 (0.501 mg), SBTl 7.5.2.5 (0.507 mg). 

and SBTl 7.5.2.1 (0.520 mg), but the differences were not significant. 

In another flower bioassay, the lanlal survival varied from 80.0 to 100.0 percent 

In transgenic lines. nhile in non-transgenic plants of ICPL 88039 and ICPL 87. it \\as 

03.3 and 100 0 percent, respectively (Table I I). However, the differences were not 

significant. Larval weight at 5 days after infestation ranged from 2.73 to 3.67 mg on 

transgenic plants as against 3.31 and 4.43 mg on non-transgenic plants of ICPL 88039 

and ICPL 87. respectively. None of the Bt lines showed appreciable adverse effect on 

survival and weight gain of neonate larvae of H armigera. 

43.3 Inflorescence bioassay 

'The damage caused by H, armigeru to transgenic pigeonpea inflorescences varied 

from 3.0 to 7.2 as against 5.8 and 7.2 on non-transgenic plants of ICPL 88039 and ICPL 

87, respectively (Table 12). The plants of Bt 1.2.1.2 (2.8), Bt 2.1.1.2 (3.0), Bt 2.1.1.3 

(3.81, SBTl 2.5.1.5 (4.8), and Bt 1.2.1.3 (5.0) suffered significantly less damage. 



Table 10: Growth of first-instar H. armigera larvae fed on the flowers of transgenic 
pigeonpea (T3) plants (2001-02) 

Genotype Line Larval survival Larval weight (mg) 
(%) 3DAI 

ICPL 88039 Bt-1.2.1.1 93.3 (81.1) 0.572 
ICPL 88039 Bt- 1.2.1.2 93.3 (81.1) 0.607 
ICPL 88039 Bt-1.2.1.3 93.3 (81.1) 0.532 
ICPL 88039 Bt-1.2.1.4 93.3 (81.1) 0.594 
ICPL 88039 Bt-1.2. 1.5 80.0 (63.4) 0.550 
ICPL 88039 Bt-2.1.1.1 93.3 (81.1) 0.403 
ICPL 88039 Bt-2.1.1.2 86.7 (72.3) 0.862 
ICPL 88039 Bt-2.1.1.3 86.7 (72.3) 0.645 
1CPL 88039 Bt-2.1.1.4 93.3 (81.1) 0.685 
ICPL 88039 Bt-2.1.1.5 73.3 (64.2) 0.582 
ICPL 88039 Bt-2.1.1.6 93.3 (81.1) 0.737 
ICPL 88039 SBT1-2.5.1 .I 80.0 (68.1) 0.501 
ICPL 88039 SBT1-2.5.1.3 73.3 (64.2) 0 732 
ICPL 88039 SBTI-2.5.1.4 86.7 (76.9) 0.471 

ICPI. 88039 SBTI-2.5.1.5 86.7 (72.3) 0.553 
ICPI, 88039 SBTI-2.5.1.6 80.0 (68.1) 0.747 

ICPL. 87 SBTI-7.5.2.1 100.0 (90.0) 0.520 

ICPL 87 SBTI-7.5.2.2 86.7 (76.9) 0.582 

ICPL 87 SBTI-7.5.2.3 80.0 (68.1) 0.613 

ICPL 87 SBTI-7.5.2.5 80.0 (68.1) 0.507 

ICPL 87 SBTI-7.5.2.6 66.7 (55.0) 0.600 

1CPL 88039 Control 93.3 (81.1) 0.537 
ICPL 87 Control 86.7 (72.3) 0.670 

SE* 10.1 0.051 
LSD NS 0.140 
Fp 0.849 <0.001 
*Figures in parentheses are Angular transformed values. 
DAl=Days after infestation. 



Table 11: Survival and weight gain by the tirst-instar larvae of H. armigera on 
flowers of transgenic pigeonpea (T3) plants (2001-02) 

Genotype Line Larval survival Larval weight (mg) 
("/.) 5 DAI 

ICPL 88039 Bt-1.2.1.1 80.0 (68.1) 3.67 
ICPL 88039 Bt-1.2.1.2 93.3 (81.1) 3.30 
ICPL 88039 Bt-1.2. I .5 93.3 (81.1) 3.14 
ICPL 88039 Bt-2.1.1.3 80.0 (63.4) 3.41 
ICPL 88039 Bt-2.1.1.4 100.0 (90.0) 3.40 
ICPL 88039 Bt-2.1.1.5 100.0 (90.0) 3.47 
ICPI. 88039 SBTI-2.5. i 1 100.0 (90.0) 3.15 
ICPL 88039 SBTI-2.5.1.2 93.3 (81.1) 3.05 
ICPL 88039 SBTI-2.5.1.4 100.0 (90.0) 3.28 
ICPL 88039 SBTI-2.5.1.5 86.7 (76.9) 3.42 
ICPL 87 SBTI-7.5.2.2 93.3 (81 . I )  2.73 
ICPI. 87 SBTl-7.5.2.5 93.3 (81.1) 2.99 
ICPL 87 SBTI-7.5.2.3 93.3 (81.1) 3.39 
ICPL 87 SBTI-7.5.2.4 100.0 (90.0) 2.9 1 

ICPL 87 SBTI-7.5.2.6 93.3 (81.1) 2.75 
ICPL 88039 Control 93.3 (81.1) 3.3 L 
ICPL 87 Control 100.O (90.0) 4.43 

SE* 7.5 0.33 
LSD NS NS 
Fp 0.119 0.191 
*Figures in parentheses are Angular transformed values. 

DAIyDays after infestation. 



Table 12: Effect of transgenic pigeonpea (T3) inflorescences on first-instar larvae of 
H. armigera (2003) 

Genotype Line Damage Larval Survival Larval weight (mg) 
rating (YO) 5DAI 

ICPL 88039 Bt-1.2.1.1 5.8 63.3 (53.9) 9.59 
ICPL 88039 Bt-1.2.1.2 2.8 55.0 (48.2) 3.33 
ICPL 88039 Bt-1.2.1.3 5.0 50.0 (45.0) 5.74 
ICPL 88039 Bt-1.2.1.4 6.7 55.0 (48.0) 7.16 
ICPL 88039 Bt-1.2.1.5 7.0 55.0 (48.2) 5.70 
ICPL 88039 Bt-1.2.1.6 6.0 75.0 (60.8) 12.20 
ICPL 88039 Bt-2.1.1.1 7.0 65.0 (54.8) 6.39 
ICPL 88039 Bt-2.1.1.2 3.0 50.0 (45.0) 4.13 
ICPL 88039 Bt-2.1 .I .3 3.8 35.0 (36.2) 5.13 
ICPL 88039 Bt-2.1.1.4 7.2 90.0 (71.6) 8.93 
ICPL 88039 Bt-2.1 .I .5 7.2 55.0 (48.2) 8.49 
ICPL 88039 Bt-2.1.1.6 5.7 30.0 (32.2) 6.40 
ICPL 88039 SBTI-2.5.1. I 7.2 50.0 (45.0) 14.12 
ICPL 88039 SBTI-2.5. I.? 7.2 60.0 (51.8) 9.97 
ICPL 88039 SBTI-2.5.1.3 5.7 50.0 (45.0) 11.21 
ICPL 88039 SBTI-2.5.1.4 7.0 60.0 (50.9) 8.65 
ICPL 88039 SBTI-2.5.1.5 4.8 30.0 (33.0) 2.90 
ICPL 88039 SBTI-2.5.1.6 7.2 60.0 (51.8) 6.21 
lCPL 87 SBT1-7.5.2.1 3.8 35.0 (35.9) 2.18 
lCPL 87 SBT1-7.5.2.2 3.8 45.0 (42.1) 9.78 
lCPL 87 SBTI-7.5.2.3 6.2 50.0 (45.0) 10.16 
ICPL 87 SBTI-7.5.2.5 4.7 50.0 (45.0) 13.21 
lCPL 87 SBTI-7.5.2.6 6.5 65.0 (54.1) 7.00 
ICPL 88039 Control 5.8 55.0 (48.2) 8.72 

lCPL 87 Control 7.2 40.0 (39.2) 9.09 
S E i  0.19 5.6 1.92 
LSD 0.5 15.8 5.46 
Fp <0.001 0.001 0.002 
*Figures in parentheses are Angular transformed values. DAl=Days after infestation. 



to the non-transgenic plants of lCPL 88039 (5.8). All ICPL 87 transgenic 

plants were significantly less damaged compared to non-transgenic plants of ICPL 87 

(7.2). The plants of SBTl 7.5.2.1 and SBTl 7.5.2.2 suffered least damage (3.8). Larval 

sunival ranged between 30.0 to 90.0 percent on transgenic plants, and 55.0 and 40.0 

percent on non-transgenic plants of lCPL 88039 and ICPL 87, respectively. Plants of Bt 

2 I .  1.6 showed significantly less survival as compared to non-transgenic plants. Larval 

ueights at 5 days after infestation on transgenic pigeonpea inflorescences ranged from 

2.18 to 14.12 mg as compared to 8.72 and 9.09 mg on non-transgenic plants of ICPI. 

88039 and ICPL 87, respectively. Larval weights were significantly lower on the SBTl 

2.5.1.5 (2.90 mg) and Bt 1.2.1.2 (3.33 mg) as compared to those on non-transgenic plants 

of ICPL 88039 (8.72 mg). Larvae fed on SBTl 7.5.2.1 (2.18 mg) recorded the least 

weight, and \\;as signiticantly lower than the larvae fed on non-transgenic plants of ICPL 

87 (9.09 nig). The SBTl 2.5.1.1 plants showed highest larval weight (14.12 mg). 

4.3.1 Pod bioassay 

Larval weights at 4 days after infestation on transgenic pigeonpea pods ranged 

rrom 0.97 mg on Bt I .2. I .4 to 3.23 mg on Bt 2.1.1.4 as against 1.67 and 2.97 mg on non- 

transgenic plants of ICPL 88039 and ICPL 87. respectively (Table 13). Larval weight 

"as least on Bt 1.2.1.4 (0.97 mg), but did not differ significantly from the non-transgenic 

plants of lCPL 88039 (1.67 mg). Larval weights were lower on SBTl 7.5.2.5 (1.00 mg) 

and SBTl 7.5.2.3 (1.20 mg) than on non-transgenic ICPL 87 (2.97 mg). Larval weights at 

8 days after infestation varied from 3.87 to 56.57 mg on transgenic lines as against 48.0 

and 40.37 mg on non-transgenic plants of ICPL 88039 and ICPL 87, respectively. Larval 



Table 13: Weight gain by the first-instar larvae of H. armigera on pods of transgenic 
pigeonpea (T3) plants (2003) 

Genotype Line Larval weight (mg) 
4 DAI 8 DAI 

ICPL 88039 Bt-1.2.1 . I  1.57 26.73 
ICPL 88039 
ICPL 88039 
ICPL 88039 
lCPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
lCPL 88039 
lCPL 88039 
lCPL 88039 
lCPL 88039 
ICPI. 88039 
ICPL 88039 
ICPL 87 
ICPL 87 
lCPL 87 
ICPL 87 
ICPL 87 
ICPL 88039 

Bt-1.2.1.2 
Bt-1.2.1.3 
Bt-1.2.1.4 
Bt-1.2.1.5 
Bt-1.2. 1.6 
Bt-2.1.1.1 
Bt-2.1.1.2 
Bt-2.1.1.3 
Bt-2.1.1.4 
SBTI-2.5.1.1 
SBTI-2.5.1.2 
SBTI-2.5.1.3 
SBTI-2.5.1.4 
SBTI-2.5.1.5 
SBTI-2.5.1.6 
SBTI-7.5.2.1 
SBT1-7.5.2.2 
SBTI-7.5.2.3 
SBTI-7.5.2.5 
SBTI-7.5.2.6 
Control 

ICPL 87 Control 2.97 4 0 )  
SE* 0.36 7.84 
LSD 1.02 22.34 
Fp <0.001 <0.001 

DAl=Days after infestation. 



\reight~ were significantly lower on Bt 1.2.1.3 (3.87 mg), Bt 1.2.1.2 (7.27 mg). Bt 1.2.1.4 

(8.57 mg), Bt 2.1.1.1 (9.00 mg), SBTl 2.5.1.2 (10.23 mg), SBTl 2.5.1.6 (20.43 mg), and 

SBTI 2.5.1.3 (24.73 mg) as compared to non-transgenic plants of ICPL 88039 (48.0 mg). 

I.arval heights \\ere significantly lower on SBTI 7.5.2.3 (7.57 mg) and SBTl 7.5.2.5 

( 1  1.80 mg) as compared to non-transgenic plants of ICPL 87 (40.37 mg). 

4.4 Effect of transgenic pigeonpea on growth and development of H. armigero in 
TI generation 

The progenies of seven transgenic pigeonpea lines namely: Bt 1.2.1.2. Bt 1.2.1.3. 

Bt 1.2.1.4, Bt 2.1 . I . ] ,  SBTl 7.5.2.1, SBTl 7.5.2.3, and SBTI 7.5.2.5 selected from T3 

generation were evaluated for resistance to I 1  urmigeru in Tqgeneration. 

4.4.1 Detached leaf assay 

The damage score varied from 3.0 to 8.0 on transgenic lines, while the non- 

Transgenic plants of ICPL 88039 and ICPL 87 showed a damage rating of 6.0 and 6.8, 

respectively (Table 14). The plants of Bt 1.2.1.3.4 (3.0). Bt 1.2.1.2.5 (3.8), Bt 1.2.1.3.6 

(3.8), Bt 1.2.1.3.7 (4.2). Bt 1.2.1.2.2 (4.3), Bt 1.2.1.2.3 (4.3,  Bt 2.1.1.1.1 (4.31, Bt 

1.2.1.2.1 (4.9,  Bt 1.2.1.3.5 (4.5), Bt 2.1.1.1.2 (4.9,  Bt 1.2.1.2.4 (4.71, Bt 1.2.1.3.2 (4.7). 

Bt 1.2.1.4.2 (4.7). and Bt 1.2.1.4.7 (4.7) suffered significantly less damage than the non- 

transgenic plants of lCPL 88039 (6.0). Similarly, lines SBT1 7.5.2.3.8 (4.3). SBTl 

7.5.2.1.8 (4 .9 ,  SBTl 7.5.2.3.1 (5.2), SBTl 7.5.2.5.2 (5.2), SBTl 7.5.2.1.6 (5.3), SBTl 

7.5.2.5.8 (5.3), and SBTl 7.5.2.5.4 (5.5) suffered lower damage than the non-transgenic 



Table 14: Relative susceptibility of transgenic pigeonpea (T4) plants to neonate 
larvae of H. armigera fed on leaves (2003) 

Genolype Line Damage Larval survival Larval weight (mg) 
rating ("h) 4 DAI 

ICPL 88039 Bt-1.2.1.2.1 4.5 80.0 (68.1) 2.83 
[CpL 88039 Bt-1.2.1.2.2 4.3 86.7 (72.3) 1.70 
ICPL 88039 Bt-1.2.1.2.3 4.3 86.7 (76.9) 2.38 
ICPL 88039 Bt-1.2.1.2.4 4.7 93.3 (81.1) 1.92 
ICPL 88039 Bt-1.2.1.2.5 3.8 80.0 (63.4) 2.03 
ICPL 88039 Bt-1.2.1.2.6 4.8 93.3 (81.1) 2.39 
ICPL 88039 Bt-1.2.1.2.7 5.7 73.3 (59.2) 3.51 
ICPL 88039 Bt-1.2.1.2.8 5.5 86.7 (72.3) 3.26 
ICPL 88039 Bt-1.2.1.2.9 5.2 80.0 (68.1) 1.93 
ICPL 88039 Bt-1.2.1.3.1 5.0 73.3 (59.2) 2.78 
ICPL 88039 Bt-1.2.1.3.2 4.7 80.0 (68.1) 3.18 
ICPL 88039 Bt-1.2.1.3.3 6.8 73.3 (63.9) 5.25 
ICPL 88039 Bt-1.2.1.3.4 3.0 66.7 (60.0) 2.35 
ICPL 88039 Bt-1.2.1.3 5 4.5 80.0 (68.1) 1.82 
ICPL 88039 81-1.2.1.3.6 3.8 80.0 (63.4) 1.32 
lCPL 88039 Bt-1.2.1.3.7 4.2 93.3 (81.1) 1.74 
ICPL 88039 Bt-1.2.1.3.8 6.7 93.3 (81.1) 3.24 
ICPL 88039 Bt-1.2.1.3.9 8.0 100.0 (90.0) 1.81 
ICPL 88039 Bt-1.2.1.4.1 7.0 73.3 (63.9) 4.82 
ICPL 88039 81-1 2.1.4.2 4.7 100.0 (90.0) 1.94 
ICPL 88039 Bt-1.2.1.4.3 5.2 60.0 (51.1) 1.79 
ICPL 88039 Bt-1.2.1.4.4 5.8 80.0 (63.4) 3.39 
ICPL 88039 Bt-I .2.1.4.5 5.8 73.3 (59.2) 3.14 
[CPL 88039 Bt-1.2.1.4.6 6.8 60.0 (51.1) 6.45 
ICPL 88039 Bt-1.2.1.4.7 4.7 66.7 (55.0) 3.03 
lCPL 88039 Bt-1.2.1.4.8 6.7 80.0 (63.4) 2.4 1 
ICPL 88039 Bt-2.1.1 .I .I 4.3 73.3 (59.2) 2.27 
lCPL 88039 Bt-2.1.1 .I .2 4.5 86.7 (76.9) 2.17 
1CPL 88039 Bt-2.1.1.1.3 6.2 66.7 (55.0) 3.48 
lCPL 88039 Bt-2.1.1.1.4 5.0 93.3 (81.1) 2.32 
1CPL 88039 Bt-2.1 .I .I .5 5.2 73.3 (64.2) 2.41 

1CPL 88039 Bt-2.1 .I .I .6 6.3 66.7 (55.0) 2.41 
ICPL 87 SBTI-7.5.2.1.5 6.5 66.7 (55.0) 3.1 1 
1CPL 87 SBT1-7.5.2.1.6 5.3 100.0 (90.0) 1.67 

lCPL 87 SBT1-7.5.2.1.8 4.5 73.3 (59.2) 2.26 



ICPL 87 
ICPL 87 
ICPL 87 
lCPL 87 
lCPL 87 
lCPL 87 
ICPL 87 
lCPL 87 
lCPL 87 
ICPL 87 
ICPL 88039 
ICPL 87 
SE* 
LSD 

SBTI-7.5.2.1.9 
SBTI-7.5.2.3. I 
SBTI-7.5.2.3.8 
SBT1-7.5.2.3.9 
SBTI-7.5.2.5.1 
SBTI-7.5.2.5.2 
SBTI-7.5.2.5.4 
SBTI-7.5.2.5.7 
SBTI-7.5.2.5.8 
SBTI-7.5.2.5.9 
Control 
Control 

Fp <0.001 0.049 <0.001 
*Figures in parentheses are Angular transformed values. DAl=Days after infestation 



plants of ICPL 87 (6.8). Larval survival varied from 60.0 to 100 percent on transgenic 

lines. while on non-transgenic plants of 1CPL 88039 and ICPL 87. it was 100 and 66.7 

percent, respectively. However. differences were not significant. Larval weights at 4 days 

after infestation on leaves ranged from 1.32 on Bt 1.2.1.3.6 to 6.45 mg on Bt 1.2.1.4.6 as 

against 3.14 and 4.25 mg on non-transgenic plants of ICPL 88039 and ICPL 87. 

respectively. Larval weight on Bt 1.2.1.3.6 (1.32 mg) was significantly lower than on 

non-transgenic plants of ICPL 88039 (3.14 mg). Similarly, larval weights on SBTI 

7.5.2.3.8 (1.42 mg), SBTl 7.5.2.5.1 (1.64 mg). SBTl 7.5.2.1.6 (1.67 mg), SBTl 7.5.2.5.8 

(1.96 mg). SBTI 7.5.2.3.1 (2.01 mg), SBTl 7.5.2.5.2 (2.01 mg). SBTI 7.5.2.5.9 (2.06 

mg). SBTl 7.5.2.1.8 (2.26 mg), and SBTl 7.5.2.1.9 (2.47 mg) were significant11 lower 

compared to those on non-transgenic plants of ICPL. 87 (4.25 mg). 

In another bioassay, leaf damage rating varied from 4.2 to 9.0 on transgenic lines, 

~ h i l e  non-transgenic plants of ICPL 88039 and ICPL 87 showed damage rating of 8.0 

and 7.8, respectively (Table 15). The plants of Bt 1.2.1.3.4 (4.2). Bt 1.2.1.3.5 (4.2), Bt 

1.1.1.3.6(4.3). Bt 1.2.1.3.1 (4.8). Bt 1.2.1.3.3 (4.8). Bt 1.2.1.2.4(5.0). Bt 1.2.1.2.8(5.0), 

Ht 1.2.1.2.1 (5.7), Bt 1.2.1.2.5 (5.7), Bt 1.2.1.3.2 (5.7), Bt 1.2.1.2.6 (5.8), Bt 1.2.1.2.2 

(6.01, and Bt 2.1.1.1.6 (6.3) suffered significantly less leaf damage than non-transgenic 

plants of ICPL 88039 (8.0). Similarly, plants of SBTl 7.5.2.3.8 (4.8), SBTl 7.5.2.1.2 

(5.01, SBTl 7.5.2.1.1 (5.3), SBTl 7.5.2.1.9 (5.9,  SBTl 7.5.2.3.1 (5.7), SBTl 7.5.2.5.9 

(5.81, SBTI 7.5.2.3.2 (6.0). SBTl 7.5.2.5.5 (6.0), SBTl 7.5.2.5.4 (6.2), and SBTl 7.5.2.5.8 

(6.2) also suffered lower damage than non-transgenic plants of 1CPL 87 (7.8). Larval 

Survival varied from 53.3 to 96.7 percent on transgenic lines, while on non-transgenic 



Table 15: Relative susceptibility of transgenic pigeonpea (T4) plants to neonate 
larvae of H, armigera fed on leaves (2003) 

Genotype Line Damage Larval survival Larval weight (mg) 
rating (Oh) 3 DAI 

ICPL 88039 Bt-1.2.1.2.1 5.7 90.0 (78.9) 0.406 

ICI'L 88039 
ICPL 88039 
lCPL 88039 
lCPL 88039 
lCPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL, 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
lCPl 88039 
ICPL 88039 
lCPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
1CPL 88039 
ICPL 88039 
ICPL 88039 
1CPL 88039 
1CPL 88039 
1CPL 88039 
1CPL 88039 
lcPL 88039 
ICPL 87 

Bt-1.2.1.2.2 
Bt-l.2.1.2.3 
Bt-l.2.1.2.4 
Bt-l.2.1.2.5 
Bt-1.2.1.2.6 
81-1.2.1.2.7 
Bt-1.2.1.2.8 
Bt-1.2.1.2.9 
Bt-1.2.1.3.1 
Bt-1 2.1 .3.2 
Bt-1.2.1.3.3 
Bt-1.2.1.3.4 
Bt-1.2.1.3.5 
Bt-1.2 1.3.6 
Rt-1.2.1.3.7 
81-1.2.1.3.8 
Bt-1.2.1.3.9 
Bt-1.2.l.4.1 
Bt-1.2.1.4.2 
Bt-1.2.1.4.3 
Bt-1.2.1.4.4 
Bt-1.2.1.4.5 
Bt-1.2.1.4.6 
Bt-1.2.1.4.7 
Bt-1.2.1.4.8 
Bt- 1.2.1.4.9 
Bt-2.1.1.1.1 
Bt-2.1.1.1.2 
Bt-2.1.1.1.3 
Bt-2.1.1.1.4 
Bt-2.1.1.1.5 
Bt-2.1.1.1.6 
Bt-2.1.1.1.7 
SBTI-7.5.2.1. 



ICPL 87 
ICPL 87 
lCPL 87 
lCPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
lCPL 87 
ICPI, 87 
ICPI, 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL-88039 
ICPL 87 
SE* 
LSD 

SBTI-7.5.2. .2 
SBTI-7.5.2. .3 
SBTI-7.5.2. .4 
SBTI-7.5.2. .5 
SBTI-7.5.2. .6 
SBTI-7.5.2. .7 
SBTI-7.5.2. .8 
SBTI-7.5.2.1.9 
SBTI-7.5.2.3.1 
SBTI-7.5.2.3.2 
SBTI-7.5.2.3.3 
SBTI-7.5.2.3.4 
SBTI-7.5.2.3.5 
SBTI-7.5.2.3.6 
SBT1-7.5.2.3.7 
SBTI-7.5.2.3.8 
SBTI-7.5.2.3.9 
SBTI-7.5.2.5.1 
SBTI-7.5.2.5.2 
SBTI-7.5.2.5.3 
SBTI-7.5.2.5.4 
SBTI-7.5.2.5.5 
SBTI-7.5.2.5.6 
SBTI-7.5.2.5.7 
SBTI-7.5.2.5.8 
SBTI-7.5.2.5.9 
Control 
Control 

Fp <0.001 0.065 <0.001 
*Figures in parentheses are Angular transformed values. DAI=Days after infestation 



plants ICPL 88039 and lCPL 87, it has  76.7 and 86.7 percent, respectively. Larval 

sur\,ival was significantly lower on SBTl 7.5.2.3.3 (56.7%). as compared to non- 

transgenic plants. Larval weight at 3 days after infestation on transgenic pigeonpea plants 

ranged from 0.259 mg on Bt 1.2.1.2.4 to 2.123 mg on Bt 1.2.1.4.7 as against 0.698 and 

0.918 mg on non-transgenic plants of ICPL 88039 and ICPL 87, respectively. Larval 

)\eights were significantly lower on Bt 1.2.1.2.4 (0.259 mg). Bt 1.2.1.2.8 (0.320 mg), Bt 

1.2.1.2.6 (0.336 mg), Bt 1.2.1.3.4 (0.347 mg), Bt 1.2.1.2.5 (0.352 mg), Bt 1.2.1.3.8 (0.374 

mg), and Bt 1.2.1.2.1 (0.406 mg), as compared to that on non-transgenic plants of ICPL 

88039 (0.698 mg). Larval weights \+ere also significantly lower on SBTl 7.5.2.1.1 

(0.244). SBTl 7.5.2.5.9 (0.330 mg), SBTI 7.5.2.5.3 (0.341 mg). SBTl 7.5.2.1.2 (0.344 

mg), SBTl 7.5.2.1.3 (0.383 mg), SBTl 7.5.2.5.8 (0.440 mg), SBTl 7.5.2.1.8 (0.500 mg). 

SBTI 7.5.2.5.7 (0.502 mg). SBTI 7.5.2.3.1 (0.522 mg), and SBTl 7.5.2.3.2 (0.616 mg) as 

compared to that on non-transgenic plants of ICPL 87 (0.918 mg). 

4.4.2 Flower bioassay 

Larval survival on flowers ranged from 40.0 to 100.0 percent on transgenic lines, 

while on non-transgenic plants of ICPL 88039 and ICPL 87, it was 80.0 and 73.3 percent, 

respectively (Table 16). Significantly lower survival was recorded on Bt 1.2.1.3.5 

140.0%), Bt 1.2.1.3.2 (46.7%), Bt 1.2.1.3.1 (50.0%), Bt 2.1.1.1.3 (50.0%), Bt 1.2.1.3.8 

(53.3%), Bt 1.2.1.2.6 (56.7%), Bt 1.2.1.2.8 (60.0%), Bt 1.2.1.4.1 (60.0%). and Bt 

1.2.1.4.3 (60.0%) as compared to non-transgenic plants of ICPL 88039 (80.0%). Plants 

SBTl 7.5.2.1.5 and SBT1 7.5.2.1.7 also exhibited lower larval sunival (50%) as 

compared to non-transgenic plants of ICPL 87 (73.3%). Larval weights at 3 days after 





ICPL 87 SBTI-7.5.2.1.6 66.7 (54.8) 0.81 
ICPL 87 SBTI-7.5.2.1.7 50.0 (45.0) 1.63 
ICPL 87 SBTI-7.5.2.1.8 63.3 (52.9) 1.62 
ICPL 88039 Control 80.0 (63.9) 1.38 
ICPL 87 Control 73.3 (59.2) 1.01 

SEf  4.4 0.14 
LSD 12.5 0.40 
Fp <0.001 <0.001 
'Figures in parentheses are Angular transformed values. 
D A I = D ~ ~ S  after infestation. 



,nfestation ranged from 0.78 mg on SBTl 7.5.2.1.3 to 1.88 mg on Bt 2.1 . I  . I  .4 on 

transgenic plants as against 1.38 and 1.01 mg on non-transgenic plants of lCPL 88039 

and ICPL 87, respectively. Larval weights were significantly lower on Bt 2.1 .I . I .  1 (0.79 

mg), Bt 2.1.1.1.3 (0.91 mg). Bt 1.2.1.3.1 (0.95), and Bt 1.2.1.3.2 (0.98 gm), as compared 

to that on non-transgenic plants of ICPL 88039 (1.38 mg). 

l . 5  Evaluation of transgenic pigeonpea plants for resistance to H. armigera in 
contained field conditions 

The transgenic plants were maintained in P- level containment greenhouse for 4 

gcncrations and assessed for resistance to H armigera in the laboratory. Seven transgenic 

lines each from ' r3  and T4 generation, which showed promising performance in laboratory 

hioassays, were evaluated under contained field conditions during 2003-04 rainy season 

brilh the approval of Department of Biotechnology, Government of India. There were two 

sets of experiments; 1) no-choice screening with neonate larvae (@ 10 larvae per plant) 

and 2) multi-choice tests . ~ i t h  adults (60 pairs were released in the enclosure of 20 x 30 x 

5 m). 

4.5.1 Evaluation of T4 generation transgenic pigeonpea for resistance to H. 
armigera 

4.5.1.1 Detached leaf assay 

The damage score varied from 5.4 to 6.8 on the transgenic lines while the controls 

ICPL 88039 and ICPL 87 showed leaf damage rating 7.5 and 7.3, respectively (Table 17). 

Transgenic plants with c v l d b  genes were not signiticantly different from the non- 

transgenic plants of lCpL 88039 However, SBTl 7.5.2.5 (5.4) and SBTl 7.5.2.3 (5.6) 

Suffered significantly less damage than the non-transgenic plants of ICPL 87 (7.3). Larval 



rurvival varied from 68.9 to 84.4 percent on transgenic lines, while the non-transgenic 

Plants of ICPL 88039 and 1CPL 87 had 83.3 and 90.0 percent larval sun,ival. 

respectively However, the differences were not significant. Larval weights at 3 days after 

infestation on transgenic pigeonpea leaves ranged from 1.42 mg on SBTI 7.5.2.5 to 2.48 

mg on Bt 1.2.1.3 as against 2.3 1 and 2.74 mg on non-transgenic plants of ICPL 88039 

and lCPL 87, respectively. Larval weight on SBTl 7.5.2.5 (1.42 mg) was significantly 

lower as compared to that on non-transgenic plants of lCPL 87 (2.74 mg). 

1.5.1.2 Evaluation of transgenic pigeonpea for resistance to H. armigera through 
infestation with larvae under net house conditions 

The numbers of larvae per plant at 10 days after infestation varied from 0.20 to 

1.47 compared to 0.33 and 0.40 larvae per plant on non-transgenic plants of lCPL 88039 

and ICPL 87. respectively (Table 18). Plants of SBTl 7.5.2.3 harbored significantly more 

number of larvae than non-transgenic plants of ICPL 87 at 10 and 15 days after 

infestation. There were no differences in larval survival at 20 days after infestation. Pod 

damage ranged from 13.6 to 52.3 percent in transgenic plants as against 19.2 and 35.4 

Percent damage in non-transgenic plants of ICPL 88039 and ICPL 87, respectively (Table 

19). None of the lines with Bt genes was significantly superior to non-transgenic ICPL 

88039. Lowest pod damage (13.6%) was recorded in BT 1.2.1.4. Transgenic SBTl 

7.5.2.1 (21.1%) suffered significantly lower pod damage than non-transgenic plants of 

ICPL 87 (35.4%). Locule damage varied from 6.5 to 24.4 percent, but the differences 

"ere not significant. Plants of BT 1.2.1.4 yielded 186.3 g per 10 plants, and were 

superior to non-transgenic ICPL 88039 (1 15.8 g per 10 plants). Plants of 



Table 17: Evaluation of transgenic pigeonpea (Td) leaves for resistance to neonate 
larvae of H, armigera (2003 rainy season) 

G e n o t v ~ e  Line Damage Larval survival Larval weieht . - 
rating (%) (mg) 5 D ~ I  

ICPL 88039 Bt-1.2.1.2 6.8 82.2 (65.4) 1.92 
ICPL 88039 Bt-1.2.1.3 6.6 68.9 (56.3) 2.48 
ICPL 88039 Bt-1.2.1.4 6.8 84.4 (67.8) 2.3 1 
ICPL 88039 Bt-2.1 .I .I 6.2 83.3 (66.5) 1.98 
ICPL 87 SBTI-7.5.2.1 6.7 78.9 (64.4) 2.07 
ICPL 87 SBTI-7.5.2.3 5.6 70.0 (57.2) 2.03 
ICPL 87 SBTI-7.5.2.5 5.4 75.6 (60.7) I .42 
ICPL 88039 Control 7.5 83.3 (66.1) 2.31 
ICPL 87 Control 7.3 90.0 (71.6) 2.74 
SE* 0.53 4.6 0.33 
LSD NS NS NS 
Fp 0.155 0.359 0.310 

*Figures in parentheses are Angular transformed values. DAl=Days after infestation 

Table 18: Evaluation of transgenic pigeonpeas (TJ) for resistance to neonate larvae 
of H. armigera under field conditions (2003 rainy season) 

Genotype Line Number of larvaelplant 
lODAR lSDAR 2ODAR 

ICPL 88039 Bt-1.2.1.2 0.27 (0.86) 0.13 (0.79) 
ICPL 88039 Bt-1.2.1.3 0.27 (0.85) 0.07 (0.75) 
ICPL 88039 Bt-1.2.1.4 0.20 (0.83) 0.27 (0.87) 
ICPL 88039 Bt-2.1.1.1 0.60 (1.05) 0.13 (0.79) 
ICPL 87 SBTI-7.5.2.1 0.27 (0.86) 0.20 (0.83) 
ICPL 87 SBTI-7.5.2.3 1.47 (1.40) 0.73 (1.08) 
ICPL 87 SBTI-7.5.2.5 1.07 (1.20) 0.33 (0.91) 
ICPL 88039 Control 0.33 (0.91) 0.07 (0.75) 
ICPL 87 Control 0.40 (0.93) 0.13 (0.79) 
SE * 0.12 0.07 
LSD 0.37 NS 
Fp 0.05 0.12 
*Figures in parentheses are Angular transformed values. 
DAR=Days after release. 



SBTI 7-5-2-1 recorded lowest yield (155.4 g per 10 plants), which may be attributed to 

inherent inability to recover from damage. 

1.5.2 E ~ a l u a t i o n  of Ts generation transgenic pigeonpea for resistance to H. 
armigera 

4.5.2.1 Detached Leaf assay 

The damage scores varied from 5.2 to 7.0 on transgenic lines while the controls 

ICPI, 88039 and ICPL 87 showed a leaf feeding scores of 7.5 and 7.3, respectively (Table 

20). Plants of SBTl 7.5.2.5.8 (5.2) SBTI 7.5.2.3.8 (5.7), and SBTI 7.5.2.1.1 (6.1) 

suffered significantly less damage than non-transgenic plants of ICPI. 87 (7.3). Larval 

survival ranged from 72.2 to 82.8 percent on transgenic lines. while on non-transgenic 

plants of ICPL 88039 and ICPL 87, it was 83.3 and 80.0 percent, respectively. However, 

the differences were not significant. Larval weight at 3 days after infestation on 

transgenic pigeonpea leaves varied from 1.68 mg on SBTl 7.5.2.5.8 to 2.33 mg on Bt 

1.2.1.3.8 as against 2.14 and 2.24 mg on non-transgenic plants of ICPL 88039 and ICPL 

87, respectively. Larval weight on SBTI 7.5.2.5.8 (1.68 mg) was significantly lower 

compared to the non-transgenic ICPL 87 (2.24 mg). 

45.2.2 Inflorescence bioassay 

Larval survival on inflorescences varied from 57.5 to 92.5 percent on transgenic 

lines, while on non-transgenic ICPL 88039 and ICPL 87, it was 80.0 and 70.0 percent. 

respectively (Table 21). However, the differences were not significant. Larval weight at 5 

days after infestation was 3.246 mg on SBTl 7.5.2.1.2 and 4.761 mg on SBTl 7.5.2.1.1 as 

against 5.401 and 3.660 mg on non-transgenic plants of ICPL 88039 and ICPL 87, 

respectively. Larval weight on Bt 1.2.1.3.8 (3.322 mg) was significantly lower than non- 



Table 19: Evaluation of transgenic pigeonpeas (T4) for resistance to neonate larvae 
of H. armigera under field conditions (2003 rainy season) 

Genotype Line Pod damage Locule damage Yield 
(Oh) (%) (g110 plants) 

ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 88039 

Bt-1.2.1.2 26.5 (30.8) 
Bt-1.2.1.3 16.0 (23.4) 
Bt-1.2.1.4 13.6 (21.6) 
Bt-2.1.1.1 25.0 (29.6) 
SBTI-7.5.2.1 21.1 (27.2) 
SBTI-7.5.2.3 52.3 (46.3) 
SBTI-7.5.2.5 27.6 (31.5) 
Control 19.2 (26.0) 

ICPL 87 Control 35.4 (36.5) 21.0 (26.8) 
SE 1.9 3.2 
LSD 5.6 9.6 
Fp <0.001 0.022 
+ ~ i ~ u r e s  in parentheses are Angular transformed values. 

Table 20: Evaluation of transgenic pigeonpea (Ts) leaves for resistance to neonate 
larvae of H. armigera (2003 rainy season) 

Genotype Line Damage Larval survival Larval weight (mg) 
rating w )  3 DAI 

lCPL 88039 
lCPL 88039 
ICPL 88039 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 

ICPL 88039 
1CPL 87 
SE* 
LSD 

Bt-1.2.1.2.4 
Bt-1.2.1.2.8 
Bt-1.2.1.3.8 
SBTI-7.5.2.1 .I 
SBTI-7.5.2.1.2 
SBTI-7.5.2.3.8 
SBTI-7.5.2.5.8 
Control 
Control 

Fp 0.001 0.832 0.036 
*Figures in parentheses are Angular transformed values. DAI=Days after infestation. 



transgenic plants of ICPL 88039 (5.401 mg). Lines with SBTl gene did not differ from 

non-transgenic plants in respect of larval weight. 

1.5.2.3 Evaluation of transgenic pigeonpea for resistance to  H. armigera through 
infestation with adults under contained field conditions 

Egg laying ranged from 0.20 to 3.67lplant. More number of eggs \bas recorded on 

ICPL 87 because of clustered nature of its inflorescence (Table 22). However, the 

differences were not significant. Larvae were not recorded on ICPL 88039 at 12 days 

after releasing the moths. There were no larvae on SBTI 7.5.2.1.1 as well. Low larval 

numbers were recorded on SBTl 7.5.2.1.2. SBTl 7.5.2.3.8, and SBTl 7.5.2.5.8 (0.07 to 

0.73 larvaelplant). but they were not significantly different from the non-transgenic plants 

of ICPL 87 (0.07 larvaelplant) (Table 23). At 17 days after release of moths, Bt 1.2.1.3.8, 

R t  1.2.1.2.8, and Bt 1.2.1.2.4 had 0.0.0.13. and 0.20 larvaelplant, respectively. Lanral 

numbers on SBTl 7.5.2.1.1 (0.0) and SBTl 7.5.2.1.2 (0.07) plants were significantly 

lo~cer than on non-transgenic plants of ICPL 87 (1.87). At 22 days after releasing the 

moths. the number of larvaelplant was lowest on Bt 1.2.1.3.8 (0.07) but did not differ 

ugnificantly from the non-transgenic plants of ICPL 88039 (0.53 larvaelplant). 

Transgenic SBTl 7.5.2.1.1 had 0.27 larvaelplant, and was significantly better than the 

non-transgenic ICPL 87 (2.60 larvaelplant). Similar trends were observed at 27 days after 

releasing the moths. 

Locule damage (4.4%) was lober on Bt 1.2.1.3.8 plants as compared to non- 

transgenic plants of ICPL 88039 (15.5%) (Table 24). Lowest pod damage of 10.4 percent 

was recorded on Bt 1.2.1.3.8 as compared to 23.2 percent on non-transgenic plants of 



~ C P L  88039. However, the differences were not significant. Plants of SBTl 7.5.2.1.1, 

nhich showed 3.9 percent locule damage and 9.6 percent pod damage. were significantly 

superior to the non-transgenic plants of ICPL 87 (19.4 and 42.6% damage to locules and 

p d s ,  respectively). Bt 1.2.1.3.8 yielded 138.4 g per 10 plants. which was even loiver than 

that in non-transgenic control (234.3 g per I0 plants). 

4.6 Evaluation of transgenic pigeonpea for resistance to H. armigera under 
contained field conditions (2004 rainy season) 

4.6.1 Detached leaf assay 

The leaf damage score varied from 3.3 to 4.6 on transgenic lines chile the non- 

transgenic plants of ICPL 88039 and lCPL 87 suffered a leaf damage score of 3.8 and 

1.3, respectively (Table 25). The larval survival ranged from 8 1.1 to 96.7 percent on the 

transgenic lines. The non-transgenic plants of ICPL 88039 and ICPL 87 had 88.9 and 

91.1 percent larval survival, respectively. There were no signiticant differences among 

the test lines both in terms of damage score and larval survival. Larvae fed on plants of Bt 

1 .?. 1.4 heighed significantly lower (0.709 mg). than the larvae fed on leaves of non- 

transgenic plants of ICPL 88039 (1,120 mg). On SBTl 7.5.2.1 plants, the larval weight 

(0.821 mg) was least and significantly lower than that on non-transgenic plants of ICPL 

87 (1.387 mg). 

&6.2 Inflorescence bioassay 

The larval survival varied from 76.7 to 86.7 percent on transgenic lines as against 

80.0 percent on non-transgenic plants of ICPL 88039 and ICPL 87 (Table 26). However, 



Table 21: Evaluation of transgenic pigeonpea (T5) inflorescences for resistance to 
neonate larvae of H. armigera (2003 rainy season) 

Genotype 

ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 87 
ICPL 87 
lCPL 87 
lCPL 87 
ICPL 88039 

Line 

Bt-1.2.1.2.4 
Bt-1.2.1.2.8 
Bt-I .2.1.3.8 
SBTI-7.5.2.1 .I 
SBT1-7.5.2.1.2 
SBTI-7.5.2.3.8 
SBTI-7.5.2.5.8 
Control 

Larval sunzival Larval weight (mg) 
( y o )  5 DAI 

lCPL 87 Control 70.0 (56.8) 3.660 
SE* 5.78 0.637 
LSD 16.9 NS 
F 0.028 0.260 

*12if:es in parentheses are Angular transformed values. DAl=Days after infestation. 

Table 22: Evaluation of transgenic pigeonpeas (Ts) for resistance to neonate larvae 
of H. armigera under field conditions (2003 rainy season). 

Genotype Line Eggsplant 

ICPL 88039 
lCPL 88039 
ICPL 88039 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 88039 
lCPL 87 
SE* 
LSD 

Bt-1.2.1.2.4 
Bt-I .2.1.2.8 
Bt-1.2.1.3.8 
SBTI-7.5.2.1.1 
SBTI-7.5.2.1.2 
SBTI-7.5.2.3.8 
SBTI-7.5.2.5.8 
Control 
Control 

5 DAR 

0.47 (0.93) 
0.47 (0.97) 
0.20 (0.83) 
1.67 (1 25)  
1.40 (1.3 1) 
2.13 (1.62) 
3.67 (2.02) 
1.07 (I .22) 
1.60 (1.35) 

0.26 
NS 

Fp 0.106 
'Figures in parentheses are (\I x+0.5) transformed values 
DAR=Days after release 



Table 23: Evaluation of transgenic pigeonpeas (Ts) for resistance to neonate larvae 
of H. armigera under field conditions (2003 rainy season) 

Genotype Line Number of Larvael plant 
I2 DAR 17DAR 22 DAR 27DAR 

lCPL 88039 
ICPI, 88039 
ICPL 88039 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
I (  PL 88039 
lC  PL 87 

SE* 
LSD 

Bt-l.2.1.2.4 
Bt-1.2.1.2.8 
Bt-1.2.1.3.8 
SBTI-7.5.2.1 . I  
SBTI-7.5.2.1.2 
SBTI-7.5.2.3.8 
SBTI-7.5.2.5.8 
Control 
Control 

Fp 0.025 <0.001 0.003 0.001 
*Figures in parentheses are (4 x+0.5) transformed values. DAR=Days after release. 

Table 24: Evaluation of transgenic pigeonpeas (Ts) for resistance to neonate lawae 
of H. armigera under field conditions (2003 rainy scason) 

Genotype Line Locule damage Pod damage Yield 
(%) (%) (gilO plants) 

ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 87 
1CPL 87 
ICPI, 87 
ICPL 87 
[CPL 88039 
ICPL 87 
SE* 
LSD 

Bt-1.2.1.2.4 
Bt-1.2.1.2.8 
Bt-1.2.1.3.8 
SBTI-7.5.2.1.1 
SBTI-7.5.2.1.2 
SBTI-7.5.2.3.8 
SBTI-7.5.2.5.8 
Control 
Control 

Fp 0.075 <0.001 
'Figures in parentheses are Angular transformed values. 



Table 25: Evaluation of transgenic pigeonpea (T4) leaves for resistance to neonate 
larvae of H. armigero (2004 rainy season) 

Genotype Line Damage Larval survival Larval weight (mg) 
rating (Yo) 5 DAI 

ICPL 88039 Bt-1.2.1.2 3.6 93.3 (78.5) 1.212 
ICPL 88039 Bt-1.2.1.3 3.7 81.1 (65.3) 1.020 
ICPL 88039 Rt-1.2.1.4 3.3 85.6 (71.5) 0.709 
ICPL 88039 Bt-2. I. I. l 3.7 91.1 (72.9) 1.280 
ICPL 87 SBTI-7.5.2.1 3.8 91.1 (76.9) 0.821 
ICPL 87 SBT1-7.5.2.3 4.5 96.7 (81.5) 1.375 
ICPL 87 SBTI-7.5.2.5 3.9 93.3 (78.5) 1.187 
ICPL 88039 Bt-1.2.1.3.8 4.6 94.4 (79.4) 1.262 
ICPL. 88039 Control 3.8 88.9 (73.9) 1.120 
ICPL 87 Control 4.3 91.1 (73.2) 1.387 
S E I  0.4 6.5 0.138 
LSD NS NS 0.410 
Fp 0.515 0.825 0.038 

'Figures in parentheses are Angular transformed values. DAI=Days after infestation. 

Table 26: Evaluation of transgenic pigeonpea (T4) inflorescences for resistance to 
neonate larvae of H. armigera (2004 rainy season) 

Genotype Line Larval survival Larval weight (mg) 
(Yo) 5 DAI 

ICPL 88039 
lCPL 88039 
ICPL 88039 
lCPL 88039 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 88039 
ICPL 88039 
ICPL 87 
SE* 
LSD 

Bt 1.2.1.2 
Bt 1.2.1.3 
Bt 1.2.1.4 
Bt2.1.1.1 
SBTl 7.5.2.1 
SBTl 7.5.2.3 
SBTl 7.5.2.5 
Bt 1.2.1.3.8 
Control 
Control 

Fp 0.589 0.011 
'Figures in parentheses are Angular transformed values. DAI=Days after infestation. 



the differences were not significant. At 5 days after infestation. larval weights on Bt 

1.3.1.4 and Bt 1.2.1.3 were 3.87 and 4.00 mg, respectively and were significantlq lower 

than the larval weight on the non-transgenic plants of lCPL 88039 (5.83 mgilarva). None 

of the transgenic lines with SET1 genes was significantly different from the non- 

transgenic plants of ICPL 87 (4.51 mgilana). 

4.6.3 Pod bioassay 

Larval weight gained by 3rd instar larvae at 3 days after infestation varied from 

108.73 mg on Bt 1.2.1.3 to 129.69 mg on SBTl 7.5.2.3, while the larval weights on non- 

tranagenic plants of ICPL 88039 and lCPL 87 were 127.58 and 126.48 mg, respectively. 

However, the differences were not significant (Table 27). 

4.6.4 Evaluation of transgenic pigeonpea for resistance to H. armigera through 
infestation with larvae under net house conditions 

The numbers of larvae per plant at 6 days after infestation varied from 1.67 on Bt 

1.2.1.2 to 3.93 on SBTl 7.5.2.5 as compared to 2.47 and 1.20 larvae on non-transgenic 

plants of ICPL 88039 and ICPL 87, respectively (Table 28). At 12 days after release, Bt 

1.2.1.2 (0.87) had the lowest and SBTl 7.5.2.3 (2.80) had the highest number of larvae 

per plant. The non-transgenic plants of ICPL 88039 and ICPL 87 had 2.20 and 3.00 

larvae per plant, respectively. However, the differences were not significant. The pod 

damage varied from 69.2 to 93.9 percent in transgenic lines compared to 67.7 and 82.9 

Percent on non-transgenic plants of ICPL 88039 and ICPL 87, respectively. 



Table 27: Evaluation of transgenic pigeonpea (T4) pods for resistance to 3rdinstar 
larvae of H. armigera (2004 rainy season) 

Genotype Line Larval weight (mg) 
3 DAI 

ICPL 88039 Bt-1.2.1.2 121.45 
ICPL 88039 Bt-1.2.1.3 108.73 
ICPL 88039 Bt-1.2.1.4 112.35 
ICPL 88039 Bt-2.1 .1.1 120.47 
ICPL 87 SBTI-7.5.2.1 128.87 
ICPL 87 SBTI-7.5.2.3 129.69 
ICPL 87 SBTI-7.5.2.5 11 3.80 
ICPL 88039 Bt-1.2.1.3.8 120.78 
ICPL 88039 Control 127.58 
ICPL 87 Control 126.48 

SE* 7.20 
LSD NS 
Fp 0.442 
DAI=Days after infestation. 

Tablc 28: Evaluation of transgenic pigeonpeas (Ts) for resistance to neonate larvae 
of H. armigera under field conditions (2004 rainy season) 

Genoiypc Line Number of larvae/ plant Pod damage (%) 
6 DAR 12 DAR 20 DAR 

ICPL 88039 Bt-1.2.1.2 1.67 (1.43) 0.87 (1.15) 69.2 (56.3) 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 88039 
ICPL 88039 
ICPL 87 
SE* 
LSD 

Bt-1.2.1.3 
Bt-1.2.1.4 
Bt-2.1.1.1 
SBTI-7.5.2.1 
SBTI-7.5.2.3 
SBTI-7.5.2.5 
Bt-1.2.1.3.8 
Control 
Control 

Fp 0.413 0.391 0.344 
'Figures in parentheses are (4 x+0.5) transformed values. DAR- Days after release. 



Pod damage at harvest ranged from 62.6 to 97.6 percent in transgenic plants as 

against 76.6 and 96.2 percent damage in non-transgenic plants of ICPL 88039 and ICPL 

87. respectively (Table 29). Locule damage varied from 39.8 to 67.0 percent in transgenic 

plants as against 47.6 and 65.6 percent damage in non-transgenic plants of ICPL 88039 

and ICPL 87, respectively. Yield per 10 plants ranged from 102.2 to 153.3 g in transgenic 

lines as against 150.3 and l 11.7 g in non-transgenic plants of ICPL 88039 and ICPL 87, 

respectively. However, the differences were not significant. 

4.7 Evaluation of putative transgenic pigeonpea plants for resistance to H. 
armigera, 2003 

4.7.1 Detached leaf assay 

Leaf feeding score ranged from 3.0 to 6.0 on transgenic lines compared to 4.2 on 

non-transgenic plants of ICPL 87 (Table 30). The plants of Bt 22.3 (3.0). Bt 8.1 (3.2). Bt 

22.4 (3.3), Bt 24.1 (3.3) Bt 25.1 (3.3), Bt 25.4 (3.3), and SBTl 18.1 (3.3) suffered 

significantly lower leaf damage than the non-transgenic plants of ICPL 87 (4.2). The 

percentage larval survival ranged from 30.0 to 96.7 on transgenic lines, and 86.7 percent 

on non-transgenic plants of ICPL 87. The plants Bt 23.3 (30.0%). Bt 26.2 (40.0%). Bt 8.2 

(46.7%). Bt 22.3 (46.7%), Bt 23.4 (50.0%). Bt 8.1 (53.3%), and Bt 22.2 (56.7%) had 

significantly lower larval survival as compared to non-transgenic plants of ICPL 87 

(86.7%). Larval weight at 4 days after infestation ranged from 0.400 mg on Bt 8.1 to 

3.589 mg on Bt 16.3 as compared to 1.097 mg on non-transgenic ICPL 87. Larvae fed on 

the leaves of Bt 8.1 (0.400 mg), Bt 22.3 (0.520 mg), and SBTl 18.4 (0.525 mg), showed a 

significant reduction in the larval weight as compared to the larvae fed on the leaves of 

non-transgenic plants of ICPL 87 (1.097 mg). 



Table 29: Evaluation of transgenic pigeonpeas (Ts) for resistance to neonate larvae 
of H. armigera under field conditions (2004 rainy season) 

Genotype Line Pod damage (%) Locule damage Yield 
at harvest (g/10 plants) 

lCPL 88039 
lCPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 88039 
ICPL 88039 
ICPL 87 
SEI 
LSD 

Bt-1.2.1.2 
Bt-1.2.1.3 
Bt-1.2.1.4 
Bt-2.1.1.1 
SBTI-7.5.2.1 
SBTI-7.5.2.3 
SBTI-7.5.2.5 
Bt-1.2.1.3.8 
Control 
Control 

Fp 0.027 0.071 0.056 
'Figures in parentheses are angular transformed values. 



Table 30: Relative susceptibility of leaves of transgenic pigeonpea plants (TI) to 
neonate larvae of H. armizera (2003) . . 

Genotype Line Damage Larval survival Larval weight (mg) 
rating (YO) 4 DAI 

ICPL 87 Bt-8.1 3.2 53.3 (46.9) 0.400 
ICPL 87 Bt-8.2 3.7 46.7 (43.1) 0.800 
ICPL 87 81-8.3 4.2 70.0 (56.8) 0.843 
ICPL 87 Bt-8.4 4.0 86.7 (68.9) 1.744 
ICPL 87 Bt-16.1 3.7 80.0 (63.4) 1.325 
ICPL 87 Bt-16.2 3.5 66.7 (54.9) 1.600 
ICPL 87 Bt-16.3 5.8 86.7 (68.9) 3.589 
ICPL 87 Bt-16.4 3.7 80.0 (63.9) 0.813 
ICPL 87 Bt-17.1 3.8 80.0 (63.9) 1.338 
ICPL 87 Bt-17.2 3.7 90.0 (75.0) 0.767 
ICPL 87 Bt-17.3 5.2 70.0 (57.0) 2.243 
ICPL 87 Bt-17.4 4.2 86.7 (68.9) 1.444 
ICPL 87 Bt-18.1 3,7 90.0 (75.0) 1.056 
ICPL 87 Bt-18.2 3.8 90.0 (75.0) 1.678 
ICPL 87 81-18.3 3.8 80.0 (63.9) 1.013 
ICPL 87 Bt-18.4 3.5 80.0 (63.9) 1.113 
ICPL 87 Bt- 19.1 4.0 96.7 (83.9) 1.660 
ICPL 87 Rt-19.2 3.8 76.7 (61.2) 2.063 
ICPL 87 Bt-19.3 4.3 86.7 (68.9) 2.656 
ICPL 87 Bt- 19.4 4.2 86.7 (68.9) 2.956 
ICPL 87 Bt-21.1 5.3 96.7 (83.9) 2.900 
ICPL 87 81-2 1.2 6.0 96.7 (83.9) 2.010 
ICPL 87 Bt-21.3 4.2 66.7 (54.8) 2.614 
ICPL 87 Bt-2 1.4 5.5 86.7 (68.9) 1.811 
ICPL 87 81-22,] 3.7 76.7 (61.2) 0.575 
ICPL 87 Bt-22.2 4.0 56.7 (48.8) 0.967 
ICPL 87 Bt-22.3 3.0 46.7 (43.1) 0.520 
ICPL 87 Bt-22.4 3.3 76.7 (6 1.2) 0.563 
ICPL 87 Bt-23.1 4.0 70.0 (57.0) 2.271 
1CPL 87 Bt-23.2 4.2 93.3 (77.7) 1.190 
lCPL 87 Bt-23.3 4.2 30.0 (33.0) 3.067 
ICPL 87 Bt-23.4 3.7 50.0 (45.0) 1.160 
ICPL 87 Bt-24.1 3.3 60.0 (50.9) 0.750 
ICPL 87 Bt-24.2 3.8 60.0 (50.9) 2.183 
ICPL 87 Bt-24.3 3.8 86.7 (68.9) 0.933 



ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
lCPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
lCPL 87 
ICPL 87 
ICPL 87 
ICI'L 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
lCPL 87 
ICPL 87 
ICPL 87 

LSD 

Bt-24.4 
Bt-25.1 
Bt-25.2 
Bt-25.3 
Bt-25.4 
Bt-26.1 
Bt-26.2 
Bt-26.3 
81-26.4 
81-30.1 
Bt-30.2 
Bt-30.3 
Bt-30.4 
SBTI-9.1 
SBTI-9.2 
SBTI-9.3 
SBTI-9.4 
SBTI- I I. I 
SBTI-I I .2 
SBTI-1 1.3 
SBTI-I I .4 
SBTI-16.1 
SRTI-16.2 
SBTI-16.3 
SBTI-16.4 
SBTI-17.1 
SBTI-17.2 
SBT1-17.3 
SBTI-17.4 
SBTI-I 8.1 
SBTI-18.2 
SBTI-18.3 
SBTI-I 8.4 
Control 

FP (0.05) <0.001 <0.001 <0.001 
'Figures in parentheses are Angular transformed values. DAI=Days after infestation 



4.8 Evaluation of putative transgenic pigeonpea plants for resistance to H. 
armigera, 2004 

4.8.1 Detached leaf assay 

The leaf damage score varied from 3.0 to 5.2 on transgenic lines, while non- 

transgenic plants of ICPL 88039 and ICPL 87 showed a damage rating of 3.0 and 3.5. 

respectively (Table 31). None of the transgenic plants showed a significant reduction in 

leaf damage as compared to non-transgenic plants. Larval survival varied from 66.7 to 

06.7 percent on transgenic lines. while the controls ICPL 88039 and ICPL 87 had 86.7 

and 80.0 percent survival, respectively. However, the differences bere not significant. 

Larval weight at 5 days after infestation ranged from 0.428 mg on Bt 33.2 to 1.836 mg on 

Bt 15.2 transgenic plants as against 0.569 and 0.671 mg on non-transgenic plants of ICPL 

88039 and ICPL 87, respectively. Larval weight on Bt 33.2 (0.428 mg) h a s  lower, but 

did not differ significantly. Weights of lanae on some of the transgenic lines were 

grcater than those fed on non-transgenic plants. 

4.8.2 Flower bioassay 

Larval survival on flowers ranged from 70.0 to 100.0 percent on transgenic lines. 

and 86.7 and 93.3 percent on non-transgenic plants of ICPL 88039 and ICPL 87, 

respectively (Table 32). However, the differences were not significant. Larval weights at 

5 days after infestation on transgenic plants ranged from 7.57 mg on Bt 33.2 to 16.56 mg 

on Bt 32.1 as against 12.14 and 12.70 mg on non-transgenic plants of ICPL 88039 and 

ICPL 87, respectively. Larval weights were significantly lower on Bt 33.2 (7.57 mg) and 

SET1 20.1 (8.50 mg) as compared to the larvae fed on non-transgenic plants. 



Table 31: Relat ive susceptibility o f  leaves of  putat ive t ransgenic  pigeonpea plants 
(TI) t o  neona te  l a rvae  of  H. armigera (2004) 

Genotype 

ICPL 88039 
lCPL 88039 
ICPL 88039 
ICPL 88039 
1CPL 87 
ICPL 87 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ILPL 88039 
ICI'I 88039 
ICPL. 88039 
ICPL 88039 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL. 87 
ICI'L 87 

ICPL 88039 
lCPL 88039 
ICPL 88039 
1CPL 88039 
l cPL  88039 
1CPL 88039 
ICPL 87 
1CPL 87 
ICPL 87 
1CPL 87 
1CPL 87 
ICPL 87 

L ine  Damage 
rat ing 

4.2 
4.3 
3.8 
3.8 
4.2 
3.5 
4.0 
4.8 
3.8 
4.0 
4.2 
3.3 
3.7 
3.2 
4.0 
3.5 
3.3 
3.7 
4.0 
4.0 
4.2 
4.0 
3.5 
3.7 
4.3 
3.5 
4.5 
4.8 
5.2 
5.0 
3.7 
4.3 
4.7 
4.3 

La rva l  survival  L a r v a l  weight  (mg) 
(%) 5 DAI  



[CpL 88039 SBTI-20.1 3.2 73.3 (60.0) 
1CPL 88039 SBTI-20.2 3.5 80.0 (63.9) 
ICPL 87 SBTI-21 .I 4.8 90.0 (78.9) 
ICPL 87 SBTI-21.2 3.3 80.0 (68.1) 
ICPL 88039 SBT1-22.1 3.7 93.3 (77.7) 
JCPL 88039 SBTI-22.2 3.7 86.7 (72.3) 
ICPL 88039 Bt-22.3.1 3.7 80.0 (63.9) 
lCPL 88039 Bt-8.1.1 3.2 76.7 (61.2) 
ICPI. 88039 Bt-8.1.2 3.7 80.0 (63.9) 
ICPI. 88039 Control 3.0 86.7 (68.9) 
ICPL 87 Control 3.5 80.0 (63.9) 
SEf  0.3 7.6 
LSD 0.8 NS 
Fp (0.05) <0.001 0.186 ~ 0 . 0 0 1  
*Figures in parentheses are Angular transformed values. DAI=Days after infestation. 



Table 32: Growth of first-instar H. armigera larvae fed on the flowers of transgenic 
pigeonpea (TI) plants (2004) 

Genotype 

ICPL 88039 
ICPL 88039 
ICPL 87 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPI. 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 87 
ICPL 88039 
ICPL 88039 
ICPL 87 
ICPL 87 
ICPL 88039 

Line Larval survival Larval weight (mg) 
5 DAI 

10.54 
13.64 
13.08 
10.36 
13.54 
13.1 I 
11.33 
1 1.90 
11.87 
13.80 

15.36 
12.16 
9.62 
16.56 
15.1 1 

12.05 
7.57 
12.50 
12.62 
13.61 
1 1.96 
13.10 
10.76 
13.33 
1 1.56 
12.38 
10.62 
10.82 
8.50 
12.05 
13.48 
11.65 
12.30 



ICPL 88039 SBTI-22.2 80.0 (63.9) 12.96 
ICPL 88039 Bt-8.1.1 96.7 (83.9) 11.80 
ICPL 88039 Control 86.7 (72.3) 12.14 
ICPL 87 Control 93.3 (77.7) 12.70 

S Ef  6.2 1.01 

LSD NS 2.84 
Fp (0.05) 0.081 <0.001 

'Figures in parentheses are Angular transformed values. DAI=Days after infestation. 



4.8.3 Detached leaf assay 

In bioassays using the leaves from putative transgenic pigeonpea plants, the 

damage rating varied from 3.7 to 6.5 on transgenic plants as compared to 5.0 on non- 

transgenic plants of ICPL 88039 (Table 33). Larval survival ranged from 63.3 to 100 

percent on transgenic plants compared to 86.7 percent on non-transgenic plants. Larval 

\\eight at 4 days after infestation varied from 0.482 to 1.254 mg in the larvae fed on 

leaves from transgenic plants as against 0.650 mg on non-transgenic plants of lCPL 

88039. Lower larval weights were recorded in larvae fed on the leaves from transgenic 

plants of Bt 4.14 (0.482 rng), Bt 11.19 (0.485 mg), Bt 11.7 (0.533 mg), and Bt 11.25 

(0.534 mg) than in the larvae fed on non-transgenic plants of ICPL 88039 (0.650 mg). 

I lowever, the differences were not significant 

Five transgenic plants here selected based on the earlier tests, and leaf hioassays 

\+ere carried out. The damage score ranged from 3.8 to 5.0 on transgenic lines compared 

to 4.7 on non-transgenic plants of ICPL 88039 (Table 34). 'The Bt 1 1 . I 9  (3.8) suffered 

significantly lower leaf damage than the non-transgenic plants of ICPL 88039. The 

percentage larval survival ranged from 90.0 to 100.0 on transgenic lines, and 96.7 percent 

on non-transgenic plants of ICPL 88039. I-lowever. the differences were not significant. 

L.arval weight at 4 days after infestation ranged from 0.263 mg on Bt I 1.19 to 0.955 mg 

on Bt 11.22 as compared to 0.574 mg on non-transgenic plants of lCPL 88039. Larvae 

fed on the leaves of Bt 11.19 (0.263 mg) showed a significant reduction in the larval 

"eight as compared to the larvae fed on the leaves of non-transgenic plants of ICPL 

88039 (0.574 mg). 



Table 33: Relative susceptibility of leaves of putative transgenic pigeonpea plants 
(TI) to neonate larvae of H. armigera (2004) 

Genotype 

ICPL 88039 
ICPL 88039 

ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 

ICPL 88039 
ICPL 88039 

ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 

ICPL 88039 
ICPL 88039 

ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 

ICPL 88039 
ICPL 88039 
lCPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
lCPL 88039 

lCPL 88039 
ICPL 88039 

Line Damage 
rating 

Larval survival Larval weight (mg) 
(Yo) 4 DAI 



iCPL 88039 
lCPL 88039 
lCPL 88039 
lCPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 

SE* 
LSD 

Bt 11.18 
Bt 11.19 
Bt 11.20 
Bt 11.21 
Bt 1 1.22 
Bt l 1.23 
Bt 11.24 
Bt 11.25 
Bt 11.26 
Bt I I .27 
con I 

Fp (0.05) 0.110 0.730 0.624 
*Figures in parentheses are Angular transformed values. DAl=Days after infestation 



In another bioassay, damage score ranged from 3.5 to 4.2 on transgenic lines, 

{rhile the non-transgenic plants of ICPL 88039 had a damage rating of 4.0. Plant Bt 1 1  . I9  

(3.5) suffered lower leaf damage than the non-transgenic ICPL 88039 (4.0) (Table 35). 

larval survival on transgenic plants varied from 66.7 percent on Bt 11.25 to 93.3 percent 

on Bt 4.1 I .  and larval survival on non-transgenic plants of ICPL 88039 was 70.0 percent. 

Larval weight at 4 days after infestation ranged from 0.290 to 0.645 mg on transgenic 

lines as against 0.526 mg on non-transgenic plants of ICPL 88039. Lower larval weight 

\+as recorded on Bt 11.19 (0.290 mg) as compared to non-transgenic ICPL 88039 (0.526 

mg). However, the differences were not significant. 

1.9 Oviposition preference of H, armigera moths towards transgenic and non- 
transgenic pigeonpea plants 

Oviposition preference of H. armigera moths towards transgenic pigeonpea was 

tested under no-choice, dual-choice and multi-choice tests. 

1.9.1 No-choice tests 

In T2 generation, 322.3 eggs were laid on the inflorescences of Bi transgenic ICPL 

88039 plants, while 305.3 eggs were laid on the inflorescences of non-transgenic plants 

(Table 36). In another test, 324.0 and 315.7 eggs were laid on the inflorescences of SBTl 

transgenic and non-transgenic plants of ICPL 87, respectively, and, the differences were 

not significant. In T3 generation, 408.0 and 399.7 eggs were laid on the inflorescences of 

transgenic ICPL 88039 with BI and ICPL 87 with SBTIgenes, as against 413.0 and 404.3 



Table 34: Relative susceptibility of leaves of transgenic pigeonpea plants (TI) to 
neonate larvae of H. armigera (2004) 

Genotype Line Damage Larval survival Larval weight (mg) 
rating ("/.I 4 DAI 

lCPL 88039 
lCPL 88039 
lCPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 

SE* 
LSD 

Bt 4.1 1 4.3 
Bt 11.17 4.2 
Bt 11.19 3.8 
Bt 11.22 5.0 
Bt 11.25 4.7 
Control 4.7 

0.2 
0.7 

Fp (0.05) 0.049 0.615 0.003 
*Figures in parentheses are Angular transformed values. DAI=Days afier infestation. 

Table 35: Relative susceptibility of leaves of transgenic pigeonpea plants (TI) to 
neonate larvae of H. armigera (2004) 

Genotype Line Damage Larval survival Larval weight (mg) 
rating (YO) 4 DAI 

ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
ICPL 88039 
SEf 
LSD 

Bt 4.11 4.2 
Bt 11.17 4.0 
Bt 11.19 3.5 
Bt 11.22 3.5 
Bt 11.25 3.7 

4.0 Control 
0.3 
NS 

Fp (0.05) 0.355 0.022 0.072 
'Figures in parentheses are Angular transformed values. DAl=Days after infestation. 



on the inflorescences of non-transgenic plants of ICPL 88039 and ICPL 87, 

respectively (Table 37). The differences were not significant. 

4.9.2 Dual-choice tests 

In TZ generation. 244.2 eggs \+ere laid on the inflorescences of transgenic plants 

of ICPL 87 nith SBTI genes. and 215.3 eggs on the inflorescences of non-transgenic 

plants (Table 38). Inflorescences of the transgenic and the non-transgenic plants of ICPL 

88039 recorded 202.8 and 201.0 eggs, and the difference between these two was not 

significant statistically. In T3 generation, 112.2 and 128.2 eggs were laid on the 

~nflorescences of SBTI transgenic ICPL 87 and non-transgenic lCPL 87 plants, 

respectively (Table 39). On transgenic ICPL 88039 and non-transgenic control, the 

numbers of eggs laid Mere 123.8 and 132.5, respectively. But the difference bas  not 

s~gnificant. Similarly in T4 generation, ICPL 88039 with BI and ICPL 87 with SBTI genes 

received 164.5 and 166.2 eggs, respectively. while the controls of ICPL 88039 and ICPL 

87 received 156.8 and i59.8 eggs (l'able 40). However. the differences were not 

s~gniticant. 

4.9.3 Multi-choice tests 

One Bt and one SBTI transgenic lines and the non-transgenic plants of ICPI. 

88039 and ICPL 87 were tested under multi-choice conditions. In T3 generation. 217.2 

eggs were laid on ICPL 87 with SBTI genes as against 195.6 eggs on the non-transgenic 

control. On lCPL 88039 with BI genes 198.6 eggs were laid as against 214.0 on the non- 

transgenic control (Table 41). However, the differences were not significant. Similarly, in 

Ts generation, lCPL 88039 with Bt and ICPL 87 with SBTI genes received 21 1.8 and 



219.5 eggs, respectively, as against 216.0 and 213.3 eggs on the non-transgenic controls, 

and the differences were not significant (Table 42). 

1.10 Feeding preference of neonate H. armigera larvae to transgenic and non- 
transgenic pigeonpea leaves 

Feeding preference of H armigera larvae among the transgenic and the non- 

transgenic plants was studied in dual-choice tests. When the leaves of BI transgenic and 

the non-transgenic plants of ICPL 88039 were offered to the neonate larvae, the leaf 

damage rating was 3.2 and 5.3, respectively (Table 43). However, weight of the larvae at 

3 days aAer infestation was more on the transgenic plant (0.633 mg) than on the non- 

transgenic plant (0.556 mg). The numbers of larvae (4.17) were more on the leaves of 

transgenic plants as compared to the leaves from non-transgenic plants (2.67). In another 

experiment, the leaf damage rating, the larval weights, and the number of larvae showed 

similar trend on the transgenic (3.3, 0.556 mg and 4.17) and non-transgenic plants (4.2, 

0.483 mg and 2.50). respectively. In dual-choice tests. the transgenic SBTl and the non- 

transgenic plants of ICPL 87 had a leaf damage rating of 4.8 and 3.4; larval weights of 

0490 and 0.667 mg, and 2.83 and 5.33 larvae per leaf, respectively. When the larvae 

\$ere offered BI transgenic ICPL 88039 and SBTI transgenic ICPL 87 leaves, the damage 

scores (5.8 and 2.0), larval weights (0.475 and 0.669 mg), and number of larvae (2.0 and 

3.83 larvae per leaf) did not differ significantly. In dual-choice tests, using the non- 

transgenic plants of ICPL 88039 and ICPL 87, the leaf damage ratings were 4.9 and 2.8, 

and the larvae weighed 0.462 and 0.588 mg, respectively. The number of larvae settling 

on each leaf was 2.33 and 4.67, respectively. 



Table 36: Oviposition preference of H. armigera moths towards transgenic (T*) and 
non-transgenic pigeonpeas under no-choice conditions (2002) 

Genotype No, of eggsiinflorescence 
ICPL-88039 Bt 322.3 (17.9) 
ICPL-87 SBTI 324.0 (18.0) 
ICPL-88039 Control 305.3 ( 1  7.5) 
ICPL-87 Control -- 315.7 (17.8) 
SEi- 0.4 
LSD NS 
Fp (0.05) 0.822 
*Figures in parentheses are \Ix+l transformed values. 

Table 37: Oviposition preference of H. armigera moths towards transgenic (T3) and 
non-transgenic pigeonpeas under no-choice conditions (2002 rainy season) 

Genotype No. of 
eggsiinflorescence 

ICPL-88039 Bt 408.0 (20.2) 
ICPL-87 SBTI 399.7 (20.0) 
ICPL-88039 Control 413.0 (20.4) 
ICPL-87 Control 404.3 (20.1) 

SEf 0.4 
LSD NS 
Fp (0.05) 0.923 
*Figures in parentheses are d x t l  transfornled values 



Table 38: Oviposition preference of H. armigera moths in dual-choice tests towards 
transgenic (T2) and non-transgenic plants of pigwnpea (2002) 

Genotype No. of eggslhvig SEf t-value Fp (0.05) 
Transeenic Non-transgenic 

SBTI ICPL 87 244.2 215.3 29.82 -0.97 0.378 

Bt ICPL 88039 202.8 201.0 6.97 0.26 0.803 

Table 39: Oviposition preference of H. armigera moths in dual-choice tests towards 
transgenic (T,) and  non-transgenic plants of pigeonpea (2002 rainy season) 

Genotype No. of eggsttwig SEk t-value Fp (0.05) 
Transgenic Non-transgenic 

SBTl ICPL 87 1 12.2 128.2 3.45 -4.63 0.006 

Bt ICPL 88039 123.8 132.5 3.81 -2.28 0.072 

Table 40: Oviposition preference of H, armigera moths in dual-choice tests towards 
transgenic (T4) and non-transgenic plants of pigeonpea (2003) 

Genotype No. of eggsttwig SE* t-value Fp (0.05) 
Transgenic Non-transgenic 

SBTl ICPL 87 166.2 159.8 7.23 0.88 0.421 

Bt ICPL 88039 164.5 156.8 4.24 1.81 0.130 



Table 41: Oviposition preference of H. armigera moths in multi-choice tests towards 
transgenic (T3) and non-transgenic plants of pigeonpea (2002 rainy season) 

Genotype No. of eggslinflorescence 
ICPL-87 SBTI 217.2 (14.8) 
ICPL-87 Contiol 195.6 (14.0) 
ICPL-88039 Bt 198.6 (14.1) 
ICPL-88039 Control 214.0 (14.6) 

SE+ 0.3 
LSD NS 
Fp (0.05) 0.220 
Figures in parentheses are i x + l  transformed values. 

Table 42: Oviposition preference of H, armigera moths in multi-choice tests towards 
transgenic (TI) and non-transgenic plants of pigeonpea (2003) 

Genotype No. of 
eggsiinflorescence 

ICPL-87 SBTI 219.5 (14.7) , . 
ICPL-87 Control 216.0 (14.7) 
ICPL-88039 Bt 21 1.8 (14.5) 
ICPL-88039 Control 213.3 (14.6) 
S E i  0.2 
LSD NS 
Fp (0.05) 0.899 
*Figures in parentheses are t'xt l transformed values. 



Table 43: Feeding preference of neonate larvae of armigera towards leaves of 
transgenic and non-transgenic pigeonpea plants in dual-choice tests (2002 
rainy season) 

4 

1 

0.254 0.111 0.064 
Bt SBTI Bt 1 SBTI 

Larval weight (mg) 3 DAI , No. of larvae 

i . i ~ l u e  

I@ 05) 

I n1 (1  0 5 )  

Damage rating 
Bt 

ICPL 88039 
Bt 

ICPL 88039 

I 

9.3 -1.91 -2.61 
b (0 05) 0.001 0.114 0.048 

Control 
ICPL 88039 

-438 I 1.08 
0.007 I 0.329 I 

0.153 1 0.539 

Control 
ICPL 88039 

I 

Control 
ICPL 88039' 

Control 
ICPL 88039 

Bt 
ICPL 88039 

1.28 
0.258 

SBTI 
ICPL87 

0.129 

Bt 
ICPL 88039 

Bt 
ICPL 88039 

Control SBTI Control 
ICPL87 1 ICPL87 ICPL87 

SBTI 
ICPL87 

Control Bt 
ICPL 88039 ICPL 88039 

I 

Control 
ICPL 88039 

I 

Control 
ICPL87 ~ 

Control Control 

Control 
ICPL 88039 

Control 
ICPL 87 ICPL 87 ICPL 88039 

Control 
ICPL 88039 

I 

Control 
ICPL 87 

I 



4.11 Growth and development of H. armigera on artificial diet impregnated with 
lyophilized transgenic pigeonpea plant parts 

4.11.1 On artificial diet impregnated with lyophilized leaves 

The larval weight of H armigera at 10 days after infestation on artificial diet 

impregnated with lyophilized leaves of transgenic pigeonpea ranged from 80.1 mg on 

SBTI 7.5.2.1 to 98.2 mg on SBTI 7.5.2.3 as compared to 81.7 and 83.4 mg on diets with 

the non-transgenic plants of ICPL 88039 and ICPL 87, respectively (Table 44). Larvae 

reared on standard diet weighed 97.6 mg. None of the transgenic plants showed 

s~gnificant effect on the larval weights as compared to the non-transgenic plants. The 

larbal period lasted for 22.9 to 25.6 days on the transgenic lines, while on the non- 

transgenic plants of ICPL 88039 and ICPL 87, it was 22.5 and 22.4 days, respectively. 

I he duration of the larvae reared on the standard artificial diet lasted for 22.1 days. The 

larbae reared on Bt-1.2.1.2 (24.4 d), Bt-1.2.1.4 (25.0 d), SBTI 7.5.2.1 (25.6 d), and SBTI 

7.5.2.3 (24.5 d) had prolonged larval development period than those reared on diet with 

non-transgenic plants. The larval survival ranged from 70.0 to 83.3 percent on the 

transgenic lines as compared to 76.7 and 70.0 percent on the non-transgenic plants of 

lCPL 88039 and ICPL 87, respectively. 

The pupal weights on the transgenic lines varied from 31 1.4 to 352.6 mg 

Compared to 338.7 to 339.7 mg on non-transgenic plants of ICPL 88039 and ICPL 87. On 

the standard artificial diet, the pupae weighed 310.6 mg. Pupal period varied from 16.5 to 

18.4 days on the transgenic lines as compared to 17.0 to 18.5 days on the non-transgenic 





plants ([CPL 88039 and ICPL 87) and 17.9 days on standard artificial diet. The 

percentage adult emergence ranged from 60.0 to 70.0 percent on the transgenic lines as 

compared to 66.7 and 63.3 percent on the non-transgenic plants of ICPL 88039 and ICPL 

87, respectively. On the standard artificial diet, pupation and adult emergence were 86.7 

and 70.0 percent, respectively. There were no adverse effects of transgenic plants on 

growth and development of H armigera. 

4.11.2 On artificial diet impregnated with lyophilized flowers 

The weight of H armigera larvae at 10 days after infestation on artificial diet 

impregnated with lyophilized flowers of transgenic pigeonpea ranged from 27.0 mg on Bt 

1.2.1.2 to 29.0 mg on Bt 1.2.1.3 as compared to 29.1 and 28.5 mg on diets with 

Iyophilized flowers of non-transgenic plants of ICPL 88039 and ICPL 87. respectively 

(Table 45). Larvae reared on standard diet weighed 92.0 mg. None of the transgenic 

plants showed a significant reduction in larval weight as compared to the non-transgenic 

plants. The duration of larval period lasted for 25.2 to 27.0 days on the transgenic lines. 

and 25.7 to 26.0 days on the non-transgenic ICPL 88039 and ICPL 87. Larval period on 

the standard artificial diet lasted for 24.7 days. 

The pupal weights varied from 252.9 to 295.1 mg compared to 314.5 mg on 1CPL 

88039 and 317.2 mg on ICPL 87 non-transgenic plants. On the standard diet, the pupal 

weight was 291.8 mg. The pupal period varied from 20.7 to 24.0 days on the transgenic 

lines as compared to the non-transgenic plants of ICPL 88039 (23.7 d) and ICPL 87 (21.0 

d) and on the standard diet (20.7 d). The percentage pupation ranged from 73.3 to 83.3 





percent on the transgenic lines as compared to 83.3 percent pupation on the non- 

transgenic plants of ICPL 88039 and ICPL 87, respectively. The percentage adult 

emergence ranged from 63.3 to 80.0 percent on the transgenic lines as compared to 80.0 

and 73.3 percent on the non-transgenic plants of ICPL 88039 and ICPL 87, respectively. 

On the standard diet. pupation and adult emergence were 86.7 and 80.0 percent. 

respcctively, tlowcver, the differences were not significant. 

4.11.3 On artificial diet impregnated with lyophilized pods 

'She weight of H. armigera larvae at 10 days after infesting the neonate larvae on 

artiticial diet impregnated with Iyophilized pods of transgenic pigeonpea ranged from 

22.2 mg on Bt 1.2.1.4 to 30.7 mg on Bt 1.2.1.3 as compared to 39.5 mg on diet ~vith pod 

po\bder of non-transgenic plants of ICPL 88039 (Table 46). Larvae reared on standard 

d~et wcighed 66.9 mg. There was a significant reduction in larval weight on Bt 1.2.1.4 

(22.2 mg) as compared to the non-transgenic ICPL 88039 plants. The duration of the 

larval period lasted for 21.3 to 24.0 days as compared lo 23.4 days on ICPL 88039 and 

21.7 on standard artiticial diet. 

The pupal weights varied from 237.5 to 341.4 mg in diet with pod powder from 

transgenic plants as compared to 316.4 mg on non-transgenic control and 338.3 mg on 

standard artificial diet. The pupal weight on Bt 1.2.1.3 (3 16.4 mg) showed a significant 

reduction as compared to that on the control plants. Pupal period varied from 18.8 to 19.0 

days on the transgenic lines as compared to 18.9 days on non-transgenic control ICPL 

88039, and 18.1 days on standard artificial diet. The percentage pupation ranged from 



Table 46: Development and survival of H. armigera on artificial diet impregnated with lyophilized pod powder of putative 
transgenic pigeonpeas (2003) 

Genotype Line Larval weight Larval period Pupal weight Pupal period Pupation Adult 
(rng) 10 DAI (days) (md (days) (%) emergence (%) 

1CPL 88039 Bt-1.2.1.2 24.1 21.3 341.4 18.8 76.7 (61.2) 
ICPL 88039 Bt-1.2.1.3 30.7 24.0 237.5 18.8 86.7 (68.9) 
ICPL 88039 Bt-1.2.1.4 22.2 23.0 277.8 19.0 80.0 (63.4) 
ICPL 88039 Control 39.5 23.4 316.4 18.9 73.3 (59.0) 
Standard diet Control 66.9 21.7 338.3 18.1 76.7 (6 1.9) 

SE 5.1 0.3 16.4 0.4 4.4 
LSD 16.7 1.1 53.6 NS NS 
Fp (0.05) 0.002 0.002 0.009 0.502 0.331 

*Figures in parentheses are Angular transformed values. DAI= days afler initiation of the experiment. 



76.7 to 86.7 on the transgenic lines as compared to 73.3 and 76.7 on the non-transgenic 

control, ICPL 88039 and standard artificial diet respectively. Adult emergence ranged 

from 66.7 to 76.7 percent on the transgenic lines as compared to 63.3 percent on the non- 

transgenic plants of ICPL 88039 and 70.0 percent on standard artificial diet respectively. 

However,  he differences were not signifi cant. 

4.12 Adaptation of H. armigern to food from transgenic pigeonpea 

4.12.1 Effect of consumption of food from transgenic pigeonpea plants for 5 days on 
survival and  development of H. nrmigern 

Larval weights at 5 days after infestation ranged from 2.8 mg on SRTl 7.5.2.3 to 

7.6 mg on SBTl 7.5.2.1 on the transgenic plants as compared to 5.0 and 9.5 mg on the 

non-transgenic plants of ICPI. 88039 and ICPL 87, respectively (Table 47). Only on 

St3 1'1 7.5.2.3 (2.8 mg) there was a significant reduction in larval weight as compared to 

non-transgenic ICPL 87. After transferring those larvae on to the standard artificial diet, 

the larval weights at 8 days after infestation ranged from 182.2 mg on SBTl 7.5.2.3 to 

324.9 nig on SBTl 7.5.2.1 as compared to 251.8 and 379.4 mg on the non-transgenic 

plants of ICPL 88039 and ICPL 87, respectively. Ho\bever, the differences were not 

significant. The duration of the larval development lasted for 18.7 to 21.3 days on 

transgenic lines, while on the non-transgenic plants of ICPL 88039 and lCPL 87, the 

duration was 19.2 and 18.0 days, respectively. There were no significant differences in 

larval duration 

The pupal weights on the transgenic lines varied from 325.5 to 332.7 mg as 

compared to 343.4 and 360.2 mg on non-transgenic plants of ICPL 88039 and ICPL. 87, 





respectively. Pupal period varied from 16.3 to 16.6 days on the transgenic lines as 

to 16.3 and 17.1 days on the non-transgenic plants of ICPL 88039 and ICPL 

87,  respectively. The adult emergence was 74.7 to 83.5 percent on the transgenic lines 

and 77.8 and 86.3 percent on the non-transgenic plants of ICPL 88039 and ICPL 87. 

rcspectivelq. However, the differences were not significant. 

1.12.2 Effect of transgenic pigeonpea plants on survival and development of H. 
armigero larvae 

In the larvae fed on transgenic plants till pupation, the larval heights at 5 days 

after infestation ranged from 2.0 mg on Bt 1.2.1.2 to 7.0 mg on SBTI 7.5.2.1 as compared 

to 4.1 and 6.3 mg on the non-transgenic plants of lCPL 88039 and ICPL 87, respectively 

(Table 48). The larval weights were signiticantlq lower on plants Bt 1.2.1.2 (2.0), SBTI 

7.5.2.5 (1.3) and SBTl 7.5.2.3 (4.4 mg) compared to the larvae reared on non-transgenic 

plants. At 13 days after infestation, the larval weights ranged from 24.7 to 65.9 mg on 

transgenic plants compared to 64.5 and 65.9 mg on the non-transgenic plants of ICPL. 

88039 and lCPL 87, respectively. However. the differences were not significant. The 

larval duration ranged from 23.7 to 28.7 days on the transgenic lines compared to 23.0 

and 24.3 days on the non-transgenic plants of ICPL 88039 and ICPL 87. respectively. 

The larvae reared on Bt 1.2.1.2, SBTI 7.5.2.1 and SBTI 7.5.2.3 had a longer larval period 

(27.0 to 28.7 days) compared to those reared on the non-transgenic plants (23.0 to 24.3 

days). 

The pupal weights of the larvae reared on the transgenic lines varied from 260.8 

to 328.3 mg compared to the non-transgenic plants of ICPL 88039 (220.2 mg) and ICPL 





87 (277.0 mg). The pupal weights were greater in larvae reared on Br transgenic lines 

comparcd to the larvae reared on non-transgenic plants of ICPL 88039. Pupal duration 

~aried from 13.0 to 15.0 days on the transgenic lines as compared to 16.3 and 14.3 days 

on the non-transgenic plants of ICPL 88039 and ICPL 87, respectively. The adult 

emergence was 75.9 to 83.5 percent on the transgenic lines and 78.7 and 79.6 percent on 

tlie non-transgenic plants of ICPL 88039 and ICPL 87, respectively. However. the 

differences were not significant. 

In another experiment. the larval weight at 3 days after infestation ranged from 

1.1 to 2.0 mg on the transgenic plants as compared to 1.4 and 1.8 mg on the non- 

transgenic plants of ICPL 88039 and ICPL 87, respectively (Table 49). Weights of larvae 

\rere significantly lower when reared on SBTl 7.5.2.1 (1.1 mg) and SBTI 7.5.2.3 (1.2 

mg) compared to the larvae reared on non-transgenic plants. At 7 days after infestation, 

the larval weights ranged from 29.6 to 50.2 mg on the transgenic plants as compared to 

26.3 and 51.4 mg on the non-transgenic plants of ICPL 88039 and ICPL 87. respectively. 

I.arval weights were lower (1.1 to 1.2 mg) when reared on SBTI 7.5.2.1 and SBTl 7.5.2.3 

as compared to the non-transgenic plants. At I0 days after infestation, the larval weights 

on SBTl 7.5.2.3 (77.6 mg) and SBTI 7.5.2.1 (141.8 mg) were also significantly lower as 

compared to that on the non-transgenic control. ICPL 87 (196.1 mg). At 12 days after 

infestation. only SBTl 7.5.2.3 (147.2 mg) had significantly lower larval weight as 

compared to the non-transgenic control ICPL 87 (350.9 mg). The larval period ranged 

rrom 23.7 to 25.3 days on the transgenic lines as compared to 22.3 and 24.2 days on tile 

non-transgenic plants, lCPL 88039 and ICPL 87, respectively. The larvae reared on Bt 



Table 49: Effect of transgenic (T4) pigeonpeas on growth and development of H. armigera (2003) 

Genotype Line Larval weight (mg) Larval period Pupal weight Pupal period Adult emergence 

3 DA1 7 DAI lODAI 12 DA1 (days) (mg) (days) (%I 
ICPL 88039 Bt-1.2.1.2 2.0 46.2 223.4 300.4 24.7 290.9 14.5 78.7 (62.6) 
ICPL 88039 Bt-1.2.1.3 
ICPL 88039 Bt-1.2.1.4 
ICPL 87 SBTI-7.5.2.1 
ICPL 87 SBTI-7.5.2.3 
ICPL 88039 Control 
ICPL 87 Control 

SE* 
LSD 
Fp (0.05) 0.016 0.002 <0.001 <0.001 0.015 0.322 0.983 0.552 
* Figures in parentheses are Angular transfomed values. DAl=Days after initiation of experiment. 



1.?.1.3, Bt 1.2.1.2, SBTI 7.5.2.3 and SBTI 7.5.2.1 had significantly longer larval durat~on 

(24.2 to 25.3 days) compared to the larvae reared on the non-transgenic plants. 

The pupal weights on the transgenic lines varied from 251.6 to 313.1 mg 

compared to 259.1 and 293.1 mg on the non-transgenic plants of ICPL 87 and ICPL 

88039. respectively. Pupal period varied from 14.2 to 14.8 days on the transgenic lines as 

compared to 14.7 and 14.8 days on the non-transgenic plants of ICPL 88039 and ICPL 

87. respectively. The adult emergence was 76.9 to 84.5 percent on the transgenic lines 

and 82.6 and 80.5 percent on the non-transgenic controls, ICPL 88039 and ICPL 87, 

respectively. However, the differences were not significant. 

4.12.3 Consumption, digestion and utilization of food by the third-instar larvae of H. 
urmigera on transgenic pigeonpea plants 

The consumption of food per unit of body height of larva (CI) varied from 2.04 to 

9.55 on transgenic plants compared to 3.47 on ICPL 88039 and 2.26 on ICPL 87 (Table 

50). However, none of the transgenic lines showed a significant reduction in amount of 

food consumed by the third-instar larvae. Approximate digestibility (AD) ranged from 

55.82 to 96.85 percent on the transgenic lines as compared to 77.70 and 70.43 percent on 

non-transgenic plants of ICPL 88039 and ICPL 87, respectively. Howe>er, none of the 

transgenic lines showed a significant effect on approximate digestibility. The larvae fed 

on Bt 1.2.1.2.8 (12.89%) had a significantly lower efficiency of conversion of ingested 

food into body matter (ECI) than those fed on the pods of non-transgenic plants of ICPL 

88039 (24.93%). Similarly, the larvae fed on SBTI 7.5.2.1.1 (13.00%) and SBTl7.5.2.1.2 

(13.37%) had lower efficiency of conversion of ingested food into body matter than the 



larvae fed on the pods of non-transgenic plants of ICPL 87 (24.79%). The efficiency of 

conversion of digested food into body matter (ECD) was lower in the larvae fed on Bt 

1.2.1.2.8 (10.54%), SBTI 7.5.2.1.2 (10.21%) and SBTl 7.5.2.1.1 (10.84%) compared to 

the larvae fed on the pods of non-transgenic plants of ICPL 88039 (14.98%) and ICPL 87 

(17.52%). 

In another experiment. the consumption index on the pods varied from 14.54 to 

17.03 on transgenic plants compared to the larvae fed on the pods of non-transgenic 

plants of lCPL 88039 and ICPL 87 (15.59 and 18.05) (Table 51). Larvae fed on SBTI 

7.5.2.1 (CI 15.93) showed a significant reduction in CI compared to the larvae fed on 

pods of the non-transgenic plants of ICPL 87 (18.05). Approximate digestibility ranged 

from 53.91 to 65.54 percent in larvae fed on pods of transgenic lines as compared to 

58.24 and 56.40 percent in the larvae fed on non-transgenic plants of ICPL 88039 and 

ICPL 87, respectively. The ECI on the pods of the transgenic lines ranged from 21.78 to 

24.96 percent compared to 25.49 and 21.95 percent in larvae fed on the pods of non- 

transgenic plants of ICPL 88039 and ICPL 87, respectively. However, none of the 

transgenic lines showed a significant reduction in AD and ECI by the third-instar larvae 

The ECD on the pods of the transgenic lines ranged from 6.18 percent on SBTI 7.5.2.5 to 

13.39 percent on Bt 1.2.1.4 compared to 9.49 and 8.67 percent on the pods of non- 

transgenic plants of ICPL 88039 and lCPL 87, respectively. 



Table 50: Consumption and utilization of pods of transgenic (Ts) pigeonpeas by the 

- - third-instar larvae of H. armigera (2003 rainy season) 
(;enotype Line CI AD ECI ECD 
ICPL 88039 Bt-1.2.1.2.4 3.53 87.82 18.83 15.77 
[CPL 88039 81-1.2.1.2.8 9.55 96.85 12.89 10.54 
ICPL 88039 Bt-1.2.1.3.8 3.35 77.63 18.63 17.71 
ICPL 87 SBTI-7.5.2.1 . I  4.81 91.90 13.00 10.84 
ICPL 87 SBTI-7.5.2.1.2 5.28 94.32 13.37 10.21 
ICPL 87 SB'I'I-7.5.2.3.8 2.73 82.32 23.40 18.23 
lCPL 87 SBTI-7.5.2.5.8 2.04 56.82 29.67 22.25 
ICPL 88039 Control 3.47 77.70 24.93 14.98 
lCPL 87 Control 2.26 70.43 24.79 17.52 
SEI 0.75 4.83 2.35 1.73 
LSD 2.15 13.82 6.71 4.95 
Fp (0.05) <0.001 <0.001 <0.001 <0.001 
*CI = Consumption index. AD = Aoproximate digestibility. ECI = Efficiency of . . 
conversion of ingested food into body matter. ECE) = ~ f f i c i e n c ~  of conversion of 
d~gested food into body matter. 

Table 51: Consumption and utilization of pods of transgenic (Ts) pigeonpeas by the 
third-instar larvae of H. ormigera (2004 rainy season) 
Genolype Line C I A D  ECI ECD 

ICPL 88039 Bt-1.2.1.2 15.26 57.64 24.96 7.29 
ICPL 88039 Bt-1.2.1.3 14.54 53.91 24.18 10.28 
lCPL 88039 Bt-1.2.1.4 16.31 63.27 23.75 13.39 
lCPL 88039 Bt-2.1.1.1 16.07 60.19 23.75 7.65 
lCPL 87 SBTI-7.5.2.1 15.93 55.49 24.07 9.46 
lCPL 87 SBT1-7.5.2.3 17.03 61.68 24.19 8.56 
ICPL 87 SBTI-7.5.2.5 16.44 65.54 21.78 6.18 
ICPL 88039 Bt-1.2.1.3.8 15.75 62.7 1 24.08 10.1 1 

~CPL 88039 Control 15.59 58.24 25.49 9.49 
[CPL 87 Control 18.05 56.40 2 1.95 8 . 6 7  
SE* 0.68 3.59 1.17 1.21 
LSD 1.91 NS NS 3.44 
FP (0.05) 0.044 0.362 0.448 0.013 
*CI =Consumption index. AD = Approximate digestibility. ECI = Efficiency of 
conversion of ingested food into body matter. ECD = Efficiency of conversion of 
dlgested food into body matter. 



4.13 Molecular characterization for the presence of insecticidal genes and their 
expression in advanced generations of transgenic plants 

1.13.1 Polymerase Chain Reaction 

Molecular analysis of TO generation putative transgenic pigeonpea plants 

transformed with pHs 723: Bt and pHs 737: SBTI binary vectors containing BI crylAb 

and SBTI, respectively h a s  performed earlier using polymerased chain reaction (PCR) 

and Southern blotting techniques. PCR was found to be one of the rapid and effective 

~echnique which can be used routinely for testing of transgenic plants. The progeny of 

t\+enty individual transgenic (To generation) pigeonpea plants were analyzed by PCR for 

the amplification of coding region of nptll gene fragment of 700 bp. The PCR products 

were resolved on 1.2% agarosc gel. Except Bt-1, Bt-2, Bt-5, Bt-8 and Bt-9 lines, all the 

transgenic lines were segregated accordingly Mendelian ratio (3:l) in T I  generation 

(Table 52). With respective to Bt crylAh plants and SBTI plants amplification of 700 bp 

fragment specific to nprll gene was observed (Fig 8). Insect bioassays were conducted 

only for the plants that showed positive amplification. Plants that were found promising 

in insect bioassay studies were advanced to T! generation. All the plants in each 

generation were subjected to PCR analysis and only positive plants were retained for 

insect bioassays with H armigera. Similarly, the plants were advanced till the T:: 

generation and at every generation PCR analyses were performed for the presence of 

transgenes and retained the positive plants for bioassay. 



Table 52: Inheritance o f  npt I 1  gene in  TI generation of  transgenic pigeonpea plants 

PCR analysis o f  npf I 1  gene 3: 1 
Genotype Number Of Number of  plants 'Iant No' plants tested 

segregation 

PCR + ve PCR - ve X' value 

ICPL 88039 Bt-l 
ICPL 88039 Bt-2 
ICPL 88039 Bt-3 
ICPL 88039 Bt-4 
ICPL 87 Bt-5 
ICPL 88039 Bt-6 
ICPL 88039 Bt-7 
ICPL 88039 Bt-8 
ICPL 88039 Bt-9 
ICPL 88039 Bt-I0 
ICI'L 88039 SRTI-I 
ICPL 88039 SBTI-2 
ICPL 88039 SBTI-3 
ICPL 88039 SBTI-4 
ICPL 87 SBTI-5 
ICPL 87 SBTI-6 
ICPL 87 SBTI-7 
ICPL 87 SBTI-8 
ICPL 87 SBTI-9 
ICPL 88039 SBTI-I0 1 I 11 0 3.67 
*Significant at 5% probability at I degrees of freedom, where tabulated X' value is 3.841. 









4.13.3 Southern blot technique 

Gene integration in the nuclear genome of  the transgenic plants was verified 

through Southern blot analysis. Southern blot hybridization for c ty lAb  gene was 

performed in the genomic DNA of 8 randomly selected TI  PCR positive plants. The DNA 

aas digested with flindlll to provide two restrictions within the plasmid DNA to 

facilitate the release o f  c y l A h  gene. The blot uas probed with non-radio AlkphosR- 

labeled 2172 bp PCR amplified c y l A b  gene fragment in which 6 plants (Bt 1.2, Bt 2.1. 

Bt 3.2, Bt 6.2, B t  7.2, and Bt 8.1) showed the gene integration (Fig l I ) .  





Discussion 



CHAPTER V 

DISCUSSION 

Genetically protected crops are rapidly bccoming an imponant component of 

ln~egrated pest management. and se\eral researchers have demonstrated the advantages 

of growing transgenic crops for insect management (liilder and Boultcr, 1999; 

13ambawale el u l ,  2004). 7'0 derive the maximum benefit out of transgenic technology, it 

19  imperative to have thorough understanding of the insect response to the insecticidal 

proteins, temporal and spatial expression of insecticidal proteins in the transgenic plants 

(Tliarma el u l .  2001). The ideal transgenic technolog> should be commercially xiable. 

snvironmentally benign, easy to use in diverse agro-ecosystems, and should have a wide 

\psctrum of activity agalnst the target insect pests. It should also be harmless to the 

natural cneniics, target the sites in insects that have developed resistance to the 

~onvcntional insccticidcs and preferably produce acute rather than chronic effects on the 

target insects (Sharma ef a1 , 2004). 

The transgenic pigeonpea plaits cawing  UI c q  /Ah and .soj,hc.un fr)p.~in inhihilor 

genes were evaluated for resistance to the pod borer, Hclico~erpu armigera (Hubner). 

lnscct bioassay5 using different plant parts such as leaves, flowers, and pods of transgenic 

pigconpea to assess their effect on the growth and development, ovipositional and 

reeding preferences, adaptation of If, urn~igera to transgenic pigeonpea and molecular 

characterization for presence of insecticidal genes were conducted and findings of these 

studies are discussed in this chapter. 



5.1 Evaluation of transgenic pigeonpea with Bacillus thuringiensis (Bt) cg1lAb 
and soybean trypsin inhibitor (SBTI) genes fur resistance to H. armigera 

In bioassays using the transgenic pigeonpea leaves, lot of variation in the 

pcrtbrmance of segregating individual plants in terms of damage rating. larval sunrival 

and larval weight was obsenjed. 11 total of 10 lines (Bt 1.2, Bt 2.1, Rt 3.2. Bt 6.2, Bt 7.2, 

Ht 8 1, SDT1 1.2, SBTT 2.5, SBTI 4.3, and SBTI 7.5) showed lower leaf damage, lanal 

>ur\ival and larval weight5 compared to the non-transgenic plants in T I  generation. In T: 

?cneration. leaf damage was s~gnificantly lower (2.3 to 2.5) on Bt 1.2.1. Bt 2.1.1, SBTl 

7 5 3. SBTl 7.5.2, and SBTI 7.5.3. The larvae fed on the leaves of Bt 2.1.1, SBTI 2.5.1, 

SB'I'I 7.5.2, and SBTI 7.5.3. SBTl 7.5.4 weighed significantly lo\\er (0.256 to 0.296 mg) 

as compared to those fed on non-transgenic plants (0.347 to 0.402 mg) (Table 8). In T3 

generation. plants of SBT1 2.5.1.4. SBTI 2.5.1.2. Bt 2.1.1 3, Bt 1.2.1.2. SBTI 7.5.2.6 and 

SBTI 7.5.2.5 suffered signilicantly lower leaf damage (1.3 to 2 0) (Table 9). Larval 

wights were significantly lower on the inflorescences of Bt 1.2.1.2. SBTl 2.5.1.5, and 

SBTI 7.5.2.1 (2.18 to 3.33 mg) (Table I?) and on pods of Bt 1.2.1.3. Bt 1.2.1.2. Bt 

1.2.1.3. Bt 2.1.1.1. SBTl 2.5.1.2. SBTI 2.5.1.6, SBTl 2.5.l.3, SBTl 7.5.2.3 and SBTl 

7 5.2.5 (3,87 to 23.73 mg) as co~nparcd to the non-transgenic plants (Table 13). In '1.4 

Generation, leaf damage and Innsal \\.eights were significantly lower on Ut 1.2.1.2.4, Bt 

1.2.1.2.8, Rt 1.2.1.2.6. Bt l.?.I.3.1. Bt 12.1.2.5. Bt 1.2.1.3.8. Bt 1.2.1.2.1. SBTI 

75.2.1.1. SBTI 7.5.2.5.9, SBTl 7.5.2.5.3, SBTl 7.5.2.1.2, and SBTI 7.5.2.1.3 as 

cornpared to that on non-transgenic plants (Table 15). While on the flowers of Bt 

?.1.1.1 . I .  Bt 1.2.1.3.1, and Bt 1.2.1.3.2 significantly lower larval sunrival and l w a l  

"eights were recorded as compared to that on non-transgenic plants (Table 16). 



Several researchers studied the efficacy of transgenic plants based on different 

parameters. In transgenic potato, neonate lanae of tobacco homworm consumed 

s~gnificantly less leaf area (0.61 cm2) as compared to the untransformed potato plant 

(1.86 cm') (Cheng et al., 1992). The maximum mortality of Plurella xylosrellu (L.) lan.ae 

fed on leaf discs of transgenic cauliflower was 85.7 percent after 48 h (Chakrabarthy er 

(11. 2002). C'rylAb-transgenic rice plants showed enhanced insecticidal activity against 

?ello\+ stem borer. Scirpophaga incertullus (Walker) with mortality rates reaching upto 

100 percent in bioassay with cut stems (Wu er 01, 1997a). Similarly. Lynch el a/. (1999) 

repofled that crj,l..lh transgenic sweet corn hybrids were highly resistant to leaf and silk 

feeding by neonate. 3- and 6-day old Helico~erpa zea (Boddie) larvae. 

'I'he present studies have clearly revealed that the levels of CrylAb endotoxin or 

SBTI toxic proteins present in the transgenic pigeonpea plants from the beginning of the 

crop growqh were not sufficient to cause significant deterrent effect on leaf feeding. larval 

surbival and larval weight of H armigeru. As a result, some plants though showed 

resistance to H urmigeru resulting in lower leaf damage, larval sunival and weight. 

owing to the low expression of the transgenes, the resistance could not be manifested in 

their progenies in subsequent generations. Thus, there was considerable variation in the 

performance of the progenies of plants that were identified promising in earlier screening 

studies. Benedict el al. (1992. 1993. 1996) attributed the differences in the growth and 

survlval of tobacco budworm to somaclonal variations andlor positional effects on crj1.4 

gene expression. 



The larvae gained more weight when fed on flowers rather than leaves may be 

due to very low toxin levels in flowers or due to higher protein content in flowers. In 

pigeonpea. the adults of H urmigeru lay their eggs mostly on inflorescence and the first- 

and second-instar lanrae feed primarily on flower buds, and later on switch over to pods 

(Green et 01.. 2002). Because of this feeding nature, the H urmigeru larvae are able to 

avoid the leaves.  here the toxin concentrations are high. This present finding of weight 

gain by the larvae when fed on flowers is in concurrence with the observations of 

Greenplate er 01. ( I  998) who attributed the sunrival of H i eu  lanae on B/ cotton to their 

ability to avoid high concentrations of CrylAc during early instars by feeding within 

blooms. where the expression of the toxin is low. Similarly, Zoerb er 01. (2003) stated 

that Osrrlniu nubiluii.\ (Hubner) larvae survived on exposure to sublethal doses of 

CrylAb B/ toxin and also exploited plant tissues that did not express the toxin. Further, 

Wan er 01. (2005) noticed low-level expression of Br toxin in the ovule and boll of 

transgenic cotton. GK19 enabling the survival of pink bollworm that feeds on these 

tlssues. Gore el ul (2001) reported that bollwornls survived on floral bodies of transgenic 

cotton than on other plant parts due to loher expression of the protein and/or due to lower 

levels of secondary plant chemicals in flowers. Any research effort that would result in 

higher expression of Br or SBTl toxins in pigeonpea flowers would be of greater value, so 

that the vulnerable stage of the insect can be effectively targeted and this is exactly 

missing in the progenies of transgenic pigeonpea lines as observed in the present study. 



In the contained field experiment during 2003, with transgenic (T4 generation) 

pigeonpeas, no differences in larval sun~ival were observed even after 10, 15 and 20 days 

after infestation. Though pigeonpea lines, Bt 1.2.1.4 and SBTI 7.5.2.1 suffered 

significantly lower pod damage compared to their non-transgenic plants, there were no 

s~gnitlcant differences in locule damage and y~eld (Table 19). 

Further probing of transgenic pigeonpea progenies in T5 generation revealed no 

differences betheen the transgenic and non-transgenic plants in the number of eggs and 

lanae. though lower locule and pod damage were observed on Bt 1.2.1.3.8 and SBTI 

7 5.2.1 .I plants as compared to non-transgenic plants (Table 24). 

Detached leaf and inflorescence bioassay studies involving Bt I .2. I .3. Bt I .2.1.3, 

and SBTI 7.5.2.1 lines conducted during 2003. revealed significantly lower l m a l  

weights on transgenic progenies than the larvae fed on non-transgenic plants, the weights 

gained by jrd instar larvae on pods of transgenic plants were not significantly different. 

Further, evaluation under net house conditions showed that the differences among the 

transgenic and non-transgenic plants were not significant in terms of larval survival, pod 

damage and locule damage and yields. 

Simultaneous contained field evaluation studies on the transgenic pigeonpea 

plants also revealed that the expression of transgenes was not adequate to offer resistance 

to H armigera. There could be several reasons for low-level of expression of the toxic 

proteins. Secondary metabolites present in pigeonpea plants may possibly synergize or 



antagonize the activity of the toxin genes as is the case of cotton. wshere the terpenoids 

enhanced the activity of cryldb-engineered cotton against Heliothrs rirescens (F.) (Sachs 

'$1 a/.. 1996). Greenplate (1999) also opined that the precise relationship between levels of 

CrylAc and bioactivity in the plant is likely to be influenced by the non-BI plant factors 

and en\'ironmental factors at the micro le\,el. Benedict et ul. (1996) attributed the 

reduct~on in endotoxin expression to excessive soil moisture and >egetative growth. 

Sachs el a1 (1998) and Greenplate (1999) suggested that en\ironmental factors have a 

strong influence on the level of BI expression and stability. In addition. Adamczyk and 

Sunierford (2001) opined that parental background had a stronger impact on the 

expression of crylAc gene than the environment. 

Thus. series of studies with transgenic pigeonpea lines including screening of 

segregating progenies in different generations, contained ficld evaluation and bioassay 

studies conclusively established that the levels Cry1 Ab endotoxin or SBTl toxic proteins 

In the available transgenic pigeonpea lines were not sufficient and stable to resist H. 

ornugeru damage. 

5.2 Oviposition and feeding preferences of H. armigera on transgenic and non- 
transgenic plants 

5.2.1 Oviposition preference 

Oviposition behaviour of H urmigern moths on transgenic pigeonpea was studied 

with no-choice, dual-choice and multi-choice tests. No differences were observed in the 

number of eggs laid on the intlorescences of the transgenic pigeonpea plants from 

different generations containing crylAb or SBTI genes compared with the non-transgenic 
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indicating that CryIAb or SET1 did not deter the adults from egg laying. This 

c o t ~ o b ~ r a t C ~  the earlier observations that the oviposition behaviour of H arm~gera moths 

was independent of the presence of transgenes (Macintosh er al.. (1990); Orr and Landis. 

(1997); Ramachandran er a1 (1998h); Parker and Lunrell (1998); Hall (2000): Roof el al. 

(2001 )). 

5.2.2 Feeding preference 

In dual-choice feeding przferencc tcsts, the leaf damage, larval weights and the 

number of larvae did not differ significantly between transgenic and non-transgenic 

control plants. It is perceived that the toxin levels present in the leaves of transgenic 

plants could not inhibit the feeding by the lan,ae. In contrast, Ebora c.r 01. (1994) showed 

that leaf discs from transgenic potato plants were less preferred than those from 

untransformed plants by third-instar corn borer. 0 nubilalis after 24 h of exposure. 

Gould e! a1 (1991) observed that tobacco budnrorm larvae were able to detect and a\oid 

high levels of B rh~rringien~i.c toxins in diet. Bollworm larvae have been found to detcct 

and aboid B, rhuringiensis proteins in meridic diets containing purified B fhuringlensis 

proteins (Akin er al.. 2001). and lyophilized transgenic plant tissues (Greenplate er a l ,  

1998; Gore el a/.. 2005). Increased movement and dispersal of tobacco buduorm lan~ae 

were observed on transgenic cotton lines (Benedict el 01.. 1992, 1993; Parker and 

Luttrell. 1999). Bollworm lanrae were found to avoid B rhuringiensis proteins in 

transgenic cotton (Gore er al.. 2002; Zhang et ul.. 2004) and selectively feed more on the 

non-transgenic cotton. 



The findings that ' armigera larvae equally preferred transgenic and non- 

,ransgenic pigeonpea plants for feeding further confirmed the results of earlier trials that 

lcveIs of C q l A b  endotoxin and SBTI toxin proteins in transgenic pigeonpea lines are 

awefully low and inadequate to cause perceptible changes in insect behaviour and 

development. 

5.3 Growth and  development of H. armigera on artificial diet impregnated with 
lyophilized transgenic pigeonpea plant parts 

Studies were conductcd to understand the impact of prolonged exposure of H 

t ~ ~ . r ~ i i ~ r r o  to transgenics through artificial d ~ e t   nipr reg nation. In confnrmity with earlier 

findings, the l a r ~ a l  weights of H trrmigeru at 10 days after infestation on artificial diet 

lmpregnared with Iyophili~ed lea\es of transgenic pigeonpea lines was not signiticantly 

difccrcnt from the weights of the larvae grown on diets with leaves of non-transgenic 

plants. In contrast, Williams er a / .  (1098) observed significant mortalit) and reduced 

iteights of surviving If zea lanae when fed on lyophilized leaf and silk tissue from BI 

corn hybrids incorporated into artificial diet. Ilowever, in the oresent studies, the lanae 

reared on Bt 1.2.1.2. Bt 1.2.1.1. SBTl 7.5.2.1, and SBTl 7.5.5.3 had prolonged l m a l  

developmental period compared to those reared on diet with control plants (Table 14).  

Similar increase in larval developmental period was reported for beet armyworm. 

Spodopfera exiglra (1-lubner) (Staple rt ti/ , 1997), fall army\yom. Spodopieru/rug~erda 

(J. E. Smith) (Adamczyk et a/., 1998). and soybean looper, Pseudoplusia rncludens 

(walker) (Muhammad el a/.. 2001) when fed on Bt cotton. 



Similarly, no adverse effects of transgenic plants were found on larval weight, 

larval duration. pupal weight, pupal period and the percentage pupation and adult 

emergence of H nrmigero when fed on artificial diet impregnated with lyophilized 

flo\vers. However. there was a significant reduction in lanal weight at I0 days after 

infesting the neonate larvae on artificial diet impregnated with lyophilized pods of Bt 

1.2.1.4 as compared to the larvae grown on diet containing pods from non-transgenic 

plants. But. the pupal weight was lower on Bt 1.2.1.3 (Table 46). The larval duration, 

pupal duration. the percentage pupation and adult emergence were not significantly 

different. 

There were no adverse effects of transgenic pigeonpea plants on growth and 

dc~clopn~ent of H urmigerci in terms of pupal weight. pupal period and the percentage 

adult emergence. Soybean trypsin inhibitor in artificial diet affected the growth and 

digestive physiology of H arnligeru (Johnston i.1 ul.. 1993; Wang er al., 1995) and 

.Spodoprera lirura (F.) (McManus and Burgcss. 1995). Homer er al. (1003) indicated that 

the effects of CtylAh toxin in h4ON81O corn extended to the pre-pupal and pupal stages 

of M zea resulting in lower moth emergence. 

Lack of variations in larval and pupal weight, duration, and adult emergence on 

artificial diet impregnated with l>opllilized flowers or pods of transgenic pigeonpea 

plants, further confirmed that the toxin levels in flowers and pods were too low to cause 

ally adverse effect on growth and development of H armigeru. 



5.4 Adaptation of H. armigera larvae to transgenic pigeonpea 

5.4.1 Effect of consumption of food from transgenic pigeonpea plants for five days 
on survival and development of H. armigera 

Studies were undertaken to find out how the H armigera larva fed for long period 

on transgenic pigeonpea plants behaves on transfer to non-transgenic plant food. Larvae 

ied on transgenic plants for 5 days, we~ghed significantly lower on SBTl 7.5.2.3 

compared to that on the non-transgeni~ ICPL 87 (Table 47) However, after the larvae 

\\ere transferred to the standard artificial diet. no difference was observed in the larval 

\vcights. It was evident that. though the lanae were affected by toxin initially, they 

recovered fully when transferred to normal diet. In support of the present findings, 

Sts\r.art cr a/. (2001) reported lower mortalin. of the second-instar bollworm larvae 

placed on different parts of Bollgard I1 plants for 48 h. then transferred to diet. However, 

lar\al period, pupal weight. pupal period and adult emergence on the transgenic 

pigconpea lines were not significantly affected. 

5.4.2 Effect of transgenic pigeonpea plants on survival and development of H. 
urnrigera larvae 

Studies were conducted to k n o ~  the impact of prolonged exposure of H armigera 

lanrae to transgenic pigeonpea plants, Transgenic pigeonpea plants namely Bt 1.2.1.2. 

SRTl 7.5.2.5 and SRTl 7.5.2.3 showed significant reduction in l m a l  weight at 5 days of 

feeding as compared to non-transgenic plants, but the differences were not noticed at 13 

days of continuous feeding indicating larval adaptation to the transgenic plants 

Panicularly under low levels of toxin expression and the inherent ability of the larvae to 

recover (Table 48). Similar behaviour was reported uith tobacco budworms when 



c~posed  continuously to BI-endotoxins (Dulmage. 1976). According to Martinez-Ramirez 

,I ul (1 999) the resistant larvae could repair (or substitute) more readily the Bt damaged 

cells while, Liao et a1 (2002) stated that armigera was more tolerant to B 

fhuringiensis insecticidal proteins than Helicoverpupuncrigera Wallengren. 

Further, the larvae reared on Bt 1.2.1.2. Bt 2.1.1.1 and SBTl 7.5.2.3 had longer 

developmental period which is in agreement with Omer et a1 (1997) who reported 

rcduced larval weight and prolonged larval and pupal development times in S exigua due 

lo sublethal feeding on transgenic petunia. Also. prolonged developmcnt and decreased 

lanal heights wcrc obsened with :ru larvae surviving sublethal exposure to 

cndotoxins of BI cotton (Sims er 01.. 1996; Meyers el ul.. 1997: Brickle et al., 2001) 

Pupal weights were higher on Bt transgenic lines due to extended feeding period 

of the l n a e .  However, no significant differences were obsened in pupal period and 

adult emergence. Similaly. Ramachandran er ul (1998b) observed no differences in 

lanal survival, pupation. pupal height, and adult emergence of P q.lostella, between 

transgenic and non-transgenic canc~la Ilouever. Br corn Lvas found to cause a steady 

mortality of H l ea  larvae during de~elopment. resulting in 15 to 30  percent survival to 

the prepupal stage and reducing overall adult emergence by 65 to 95 percent compared to 

the non-Bt corn (Storer et a/., 2001). Liu er 01 (1999; 2001) also reported the adverse 

cffects of Bt cotton on the developmental rate, pupal weights, and fecundity of pink 

bollworm. 



Although. the insecticidal activity of Bt and SBTI expressed in transgenic 

pigeonpea plants did not cause significant retardation in growth of the larvae, a slight 

delay in pupation was observed. The sub-lethal effects of these toxins also resulted in 

larval-pupal intermediates and malformed adults. Sublethal effects of CrylAb in 

MON810 corn resulted in prolonged l a n d  and prepupal development. smaller pupae. 

and reduced fecundity in H zea (Horner el a/. .  2003). Gupta er al. (2002) also obsenrsd 

similar effects uith winged bean protease inhibitors on growth and development of H 

armigera. 

5.1.3 Consumption, digestion and utilization of food by the third-instar larvae of 
H. armigera on transgenic pigeonpea plants 

The H arnligera larvae exhibited lower efficiency of conversion of ingested food 

Into body matter (ECI) and the efficiency of conversion of digested food into body matter 

(ECD) when fed on Bt 1.2.1.2.8. SBTI 7.5.2.1.1 and SBTI 7.5.2.1.2 compared to the 

lanae fed on the pods of non-transgenic plants (Table 50). Houever. approximate 

digestibility (AD) and consumption of food per unit of body we~ght of 1m.a (CI) were 

no1 significantly different. Sareen el a1 (1983) observed decrease in CI and GR of lanae 

of S lirura in a dose-dependent manner, with neonates fed with green gram leaves treated 

with B thuringiensis. Similarly. Gupta and Rana (1991) also reported a decrease in GR. 

('1. ECD and ECI of Spilosonm ohliqua (Walker) \\'hen neonates fed on leaves of 

soybean treated with R. th~rrrnglensis var. thuringientis at 0.001 to 10 percent 

concentration. In insects surviving B thuringiensis var. kurstaki treatment in their third 

instar, food absorption efficiency (AD) was slightly higher than in control. However, it 

was compensated by reduced metabolic efficiency (ECD) in treatment as compared to 



control (Gujar el a / . ,  2001). Wang el a1 (2004) indicated that the Bf  maize expressing 

CrylAb protein significantly restrained the feeding, food consumption and utilization by 

the 51h instar I m a e  of !Myfhimna separata (Walker), while higher approximate 

digestibility was due to restrained digestive function by the larvae as a result of Bf  protein 

intoxication. 

Significant toxic effccts were not noticed on growth and development of H 

rrrn~igera on transgenic plants except slight delay in pupation, formation of larval-pupal 

~ntermediates and malformed adults. Mortality of H arm~gera larvae was not observed, 

cxcept for some growth inhibition on transgenic tobacco expressing a giant taro protease 

inhibitor (GTPI) suggesting an adaptive mechanism in H arm~gera that elevates the 

levels of other classes of proteinases to compensate tqpsin activity inhibited by dietary 

proteinase inhibitors (Wu el ul.. 1997b). It has been demonstrated that S exigua and 

Lepiinotursu decemlineulu Say adapted to plant Pls by producing inhibitor-insensitive 

proteinases (Bolter and Jongsma, 1995; Jongsma el a/.. 1995). Ashok el 01.. (1998) 

~ndicatcd that the pod borer l anae  were able to degrade defensive proteinase inhibitors of 

chickpea by production of inhibitor-insensitive proteinases and by secretion of 

protelnases that digest proteinase inhibitors. Patankar c f  a / .  (2001) showed that H 

urn~igeru larvae were able to overcome the effects of various plant PIS by altering midgut 

composition after ingestion. Similar observations were recorded for Agrotis ipsilon 

(Hufnagel) and H zea by Mazumdar-Leighton and Broadway (2001). Any delay in 

prepupal development could have a major impact, because an extended prepupal period 



could increase exposure to natural enemies and abiotic factors, and also result in pupal 

and adult deformities affecting the subsequent generations of the insect. 

5.5 Molecular characterization for insecticidal genes in transgenic plants 

Molecular analysis of progeny of twenty individual transgenic (To generation) 

pigeonpea plants was done analyzed by Polymerase chain reaction (PCR) for the 

amplification of coding region of nptII gene fragment of 700 bp. Except Bt-I, Bt-2, Bt-5. 

Bt-8 and Bt-9 lines. all the transgenic lines were segregated according to Mendelian ratio 

(;:I) in TI  generation (Table 52). With respect to Bt crylAh plants and SET1 plants 

amplification o r 7 0 0  hp fragment specific to npiIl gene was observed. Plants that were 

lbund promising in insect bioassay studies were advanced to next generation. All the 

plants in each generation till the Ti generation were subjected to PCR analysls and only 

positlve plants were retained for insect bioassays with H armigeru. Polymerase chain 

reaction analyses for the presence of the nptII gene indicated that the transgenes were 

successfully inherited through five generations. 

Southern blotting analysis also confirmed the presence of cr,vlAh transgene. Gene 

integration in the nuclear genome of the transgenic plants was verified through Southern 

blot analysis. Southern blot hybridization for cryIAb gene was performed in the genomic 

DNA of 8 randomly selected TI  PCR positive plants in which 6 plants (Bt 1.2, Bt 2.1. Bt 

3.2, Bt 6.2, Bt 7.2, and Bt 8.1) confirmed the gene integration. 



RT-PCR of the cDNA of randomly selected PCR positive plants from TI  

rcneration and Tz generation showed the amplification of the 700 hp fragment of nptlI 

gene. confirming the gene expression at RNA level. 

Leaves, flowers and pods were assayed through ELISA to quantify the Bt toxins 

In the transgenic pigeonpea. The C y l A b  protein levels varied from 0.07 to 0.126 ngig 

tiesh leaf tissue. However, ELISA tests indicated that the amounts of Cr).IAb protein 

present in the transgenic pigeonpea plants wcre very low. some times that cannot be 

detectable. 

Successful integration of a transgene into the plant genome does not automatically 

result in expression. Higher level of expression of transgenes in II' urmigera preferred 

plant parts such as flowers and pods is always desirable. However, successful expression 

of an introduced gene in plants was largely dependent on the promoter, leader sequences, 

3' non-coding sequences, the presence of potential volunteer plant regulating sequences, 

codon frequency, the stucture of the mRNA, and the gene product (Perlak el al., 1990). 

Variations in expression levels anlong individual lines. are presumably due to position 

cffects. The position of the transgene with respect to neighboring genes may affect 

functional transcription of the transgenr such that transgene expression may be enhanced 

or reduced (Chan el al., 1996; Jay el al., 1998). Presence of multiple copies of transgene 

also results in post-transcriptional silencing of transgene (Kooter el al., 1999). Finnegan 

el ul. (1998) demonstrated that part of the decline in crylAc expression was related to 

reduction in the levels of mRNA production. Jay el a1 (1998) demonstrated that 



undesirable interactions with mRNA stability and polyadenylation mechanisms could 

severely limit Br toxin gene cxpression in higher plants. 

Plant structures such as terminal leaves express more S-endotoxin than flowers 

(Greenplate. 1999: Adamczyk el 01, 2001a). Bt corn (Event 176) hybrids expressed high 

levels of Ctyl Ab toxin in green plant ussue and pollen. but extremely low levels in the 

s ~ l k  and kernels (Koziel er a/ . .  1993), on which second generation 0. nubilalis larvae 

have been shown to survi\'e (Siegfried er a/., 2001). Khan er a/ .  (2001) reported that 

monocot derived Ubi promoter expressed a Br gene in a dicot plant in an effective 

manner to render the transformed plants highly resistant against H urmigera. 

From the present investigations, i t  is inferred that the transgenic pigeonpea plants 

enrrking / ? I  r,),I;lh and SBTI genes did not offer adequate level of resistance to H. 

orrnrgeru However. evidence is lacking to substantiate the present findings against 

ifelicoverpu pod borer on pigeonpea though reports against this insect on several other 

host crops are available. In support of the present findings, C q l  Ac protein b a s  the most 

potent toxin against neonate Ianae of H. armigcra than Cryl Aa and CrylAb (Kranthi et 

[ I /  2001, Chandrashehar er crl 2005) Gujar and Mohan. (2000) found that the C p I A b  
- 

endotox~n of B ihurrngrenrl~ subsp kur\tukl was 16-fold less t o x ~ c  to neonate lanae of 
- 

If G&rgera than the HD-1 endotox~n Also. transgenic tobacco expressing h ~ g h  level of 

SBTI falled to reslst H armigrra (hand1 er a l .  1999) lndlcat~ng that SBTl IS not a 

suitable candidate gene for de\'eloping insect resistant transgenic plants. Nevertheless. 

cr.vlAb gene offered higher level of resistance to H. zea (Lynch el a/. ,  1999) and 0 



nuhilalis (Burkness et a l ,  2001) in transgenic sweet corn, Scirpophugu incrrtulus 

(Walker) (Wu el a/. .  1997a) and Cnaphulocrosis medinalis (Guenee) (Ye et al., 2003) in 

transgenic rice, and Leaucinodes orbonalis (Guenee) (Kumar et al., 1998) in transgenic 

brinjal. Contrarily, effective control of H armigera was reported in crylAh transgenic 

tomato (Jansens el al., 1992; Kumar and Kumar, 2004) and potato (Chakrabarti r t  al., 

1000). Besides, the transgenic plants with low or sub-lethal levels of toxins couldn't 

afford adequate levels of resistance to H armigera Hence, researchers should funher 

concentrate to develop transgenic pigeonpea plants that express higher Iebels of toxin to 

achleve resistance against H. armigera. In pigeonpea another emerging problem. pod 

~ e b b e r ,  Maruca vitratu (Geyer) also should be taken into consideratiun while developing 

transgenic pigeonpea plants. 



Conclusions 

The transgenic pigeonpea plants carrying Bf crylAb and soybean fr)p.rin inhlhiror 

penes were evaluated for resistance to H urmigera and the following conclusions are 

drawn from the investigations. 

i Le\els of Crq 1Ab endotoxin and SBTI toxic proteins in the transgenic pigeonpea 

plants are not sufficient to cause any perceptible detrimental effect on growth and 

development of 11. urmigera larvae. 

i Toxin levels of C n l A b  and SDTI in transgenic plants exhibited no effect on the 

ovipos~tion by the adults and could not substantially inhibit the feeding by the 

larvae. 

i Larval weight was unaffected when fed on artificial diet impregnated with 

Iyophilizcd leaves of transgenrc plants, except slight prolongation of larval period. 

i Prolonged exposure of H armigerrr larvae to transgenic pigeonpea plants 

indicated the I a r ~ a l  adaptation to the transgenic plants, because of low Iebels of 

toxin expression and the inherent ability of the larvae to recover. 

i The M urmigeru larvae exhibited lower efficienc! of conversion of ingested food 

into body matter (ECI) and efficiency of conversion of digested food into body 

matter (ECD) when fed on the pods of Bt 1.2.1.2.8, SBTI 7.5.2.1.1 and SBTl 

7.5.2.1.2. 

i All the transgenic lines except Bt-I, Bt-2. Bt-5, Bt-8 and Bt-9 lines. segregated 

according to Mendelian ratio (3 : l )  in Ti generation. 



i Polymerase chain reaction analyses for the presence of thc nptII gene indicated 

that the transgenes were successfully inherited through five generations. 

k Southern blotting also confirmed the presence of cryiAh gene In transgenic 

pigeonpea plants. 

i RT-PCR confirmed the gene expression at mRKA level in transgenic pigeonpea 

planls. 

i Enzyme Linked Immuno-Sorbent Assay indicated that the amounts of CryIAb 

protein present in the transgenic pigeonpea plants were very low and below 

detectable level. 





CHAPTER YI 

SUMMARY 

Genetically protected crops are rapidly becoming an important component of 

integrated pest management. and several researchers have demonstrated the advantages 

of growing transgenic crops for insect management. 

The transgenic pigeonpea plants carrying Bt cr),l.4h and soyhean trypsin inhibitor 

genes uere evaluated for resistance to the gram pod borcr. Helicoverpir urn7igerc1 

(Ilubner) under both laborator). and field conditions and molecular characterization for 

presence of insecticidal genes was also performed. 

The present investigations revealed lot of variations in thc performance of 

segregating individual plants in terms of damage rating. larval survival and l m a l  \\'eight. 

It was evident from the findings that the levels of CrylAb endotosin or SBTI toxic 

proteins present in the transgenic pigeonpea plants were not sufficient to cause significant 

deterrent effect on groulh and development of H armigera. Though some plants sho\\ed 

resistance to H urntigera in terms of lower leaf damage. lar\al surbival and weight, 

ouing to the low expression of the transgenes. the resistance could not be manifested in 

their progenies in subsequent generations. Thus, there was considerable variation in the 

performance of the progenies of plants that were identified promising in earlier screening 

studies. 



'The results also showed that the larvae gained more weight when fed on flowers 

rather than leaves may be due to very low toxin levels in flowers or due to higher protein 

content in flowers. Further. the contained field studies showed that the differences among 

the transgenic and non-transgenic plants were not significant in terms of number of 

larvae. pod damage and locule damage and yields, indicating low level expression of 

transgenes. In pigeonpea. the adults of H armigeru mostly lay their eggs on inflorescence 

and the first- and second-instar larvae feed primarily on flower buds. and later on switch 

o\er to pods. Due to this feed~r~g  nature, the H armigera larvae are able to avoid the 

leaves. where the toxin concentrations are high. 

Ovipos~tion behaviour of H armigera on transgenic pigeonpea was studied under 

no-choice, dual-choice and multi-choice caged conditions. Differences were not observed 

in the number of eggs laid on the inflorescences of the transgenic pigeonpea plants as 

compared lo the non-transgenic plants indicating that Cwl  Ab or SBTI did not deter the 

adults from egg laying. In dual-choice feeding preference tests. the leaf damage, larval 

weights and the number of larvae did not differ significant11 between transgenic and non- 

transgenic control plants. llence. it is perceived that the toxin levels present in the leaves 

of transgenic plants could not inhibit the feeding by the larvae. 

The weight &in by the larvae of H armigera, 10 days after infestation on 

artificial diet impregnated with lyophilized leaves of transgenic pigeonpea lines did not 

differ significantly from the weights of the larvae grown on diets with leaves of non- 

transgenic plants. However, prolonged larval developmental period was observed when 



the lanrae were reared on Bt 1.2.1.2, Bt 1.2.1.4, SBTI 7.5.2.1, and SBTl 7.5.2.3 as 

compared to those reared on diet with control plants. Similarly, no adverse effects of 

transgenic plants were found on larval weight, larval duration, pupal weights. pupal 

period, percent pupation and adult emergence of H urmigera when fed on artificial diet 

impregnated with lyophilized flowers or pods. 

An experiment was conducted to understand larval behaviour in absence of 

transgenic plant food. Larvae fed on the transgenic plants for 5 days. weighed 

significantly lower on SBTI 7.5.2.3 compared to that on the non-transgenic lCPL 87. 

Honever. after the Iamae here transferred to the standard artificial diet, no difference 

was observed In the l m a l  weights. Thus it was evident that. though the larvae were 

affected by toxin initially, they recovered fully when transferred to normal diet. 

Studies were also conducted to know the effect of prolonged exposure of H 

orniigcra lan.ae to transgenic pigeonpea plants. Transgenic pigeonpea plants namely Bt 

1 2 .1 2.  SBTI 7.5.2.5 and SBTI 7.5.2.3 showed signilicant reduction in l m a l  weight at 5 

days of feeding as compared to non-transgenic plants. but the differences were not 

noticed at 13 days of continuous feeding indicating the larval adaptation to the transgenic 

plants, particularly under low le\.els of toxin expression and the inherent ability of the 

Ianjae to recover. Although, the insecticidal activity of Bt and SBTI expressed in 

transgenic pigeonpea plants did no1 cause a significant retardation in growth of the lanrae. 

a slight delay in pupation was observed on plants, Rt 1.2.1.2, Bt 2.1.1.1 and SBTI 7.5.1.3. 



The H. urmigera larvae exhibited lower efficiency of conversion of ingested food 

into body matter (ECI) and efficiency of conversion of digested food into body matter 

(FCD) when fed on Bt 1.2.1.2.8, SBTI 7.5.2.1.1 and SBTI 7.5.2.1.2 as compared to the 

larvae fed on the pods of non-transgenic plants. However, approximate digestibility (AD) 

and consumption of food per unit of body weight of larva (CI) were not significantly 

different. 

All the transgenic lines except Bt-I, Bt-2. Bt-5, Bt-8 and Bt-9 lines. segregated 

according to Mendelian ratio (3:l)  in TI  generation. Polymerase chain reaction analyses 

was performed for all the plants in each generation till the 7'5  generation and only positi\e 

plants were retained for bioassays with H ormlgcru. PCR analyses for the presence of the 

y~t I1  gene indicated the successful inheritance of the transgenes through five generations. 

Southern blot hybridization for cr),i.4h gene was performed in the genomic DNA of 8 

randomly selected TI PCR positive plants in which 6 plants (Bt 1.2. Bt 2.1, Bt 3.2. Bt 6.2. 

Bt 7.2. and Bt 8.1) confirmed the gene integration. RT-PCR of the cDNA of randomly 

selected PCR positive plants from T I  and T2 generation showed the amplification of the 

700 bp fragment of nprlI gene. confirming the gene expression at RNA le\el. Leaves. 

flowers and pods were assayed through ELISA to quantify the Bt toxins in the transgenic 

pigeonpea. However. ELISA tests indicated that the amounts of CrylAb protein present 

in the transgenic pigeonpea plants were below the detection level. 



The present investigations revealed that the levels of toxins available in the 

transgen~c pigeonpea plants were not sufficient to offer resistance to H urmlgrru Hence, 

further research should be oriented to develop transgenic pigeonpea plants that express 

higher levels of toxin to achiete resistance against H armigeru 
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