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insight about the minimum number of locations required to achieve robust estimates of yield gaps at
larger spatial scales is essential because data collection at a large number of locations is expensive and
time consuming. In this paper we describe an approach that consists of a climate zonation scheme supple-
mented by agronomical and locally relevant weather, soil and cropping system data. Two elements of this
methodology are evaluated here: the effects on simulated national crop yield potentials attributable to
missing and/or poor quality data and the error that might be introduced in scaled up yield gap estimates
due to the selected climate zonation scheme. Variation in simulated yield potentials among weather
stations located within the same climate zone, represented by the coefficient of variation, served as a
measure of the performance of the climate zonation scheme for upscaling of yield potentials.

We found that our approach was most appropriate for countries with homogeneous topography and
large climate zones, and that local up-to-date knowledge of crop area distribution is required for selecting
relevant locations for data collection. Estimated national water-limited yield potentials were found to be
robust if data could be collected that are representative for approximately 50% of the national harvested
area of a crop. In a sensitivity analysis for rainfed maize in four countries, assuming only 25% coverage
of the national harvested crop area (to represent countries with poor data availability), national water-
limited yield potentials were found to be over- or underestimated by 3 to 27% compared to estimates
with the recommended crop area coverage of >50%. It was shown that the variation of simulated yield
potentials within the same climate zone is small. Water-limited potentials in semi-arid areas are an
exception, because the climate zones in these semi-arid areas represent aridity limits of crop production
for the studied crops. We conclude that the developed approach is robust for scaling up yield gap estimates
from field, i.e. weather station data supplemented by local soil and cropping system data, to regional and
national levels. Possible errors occur in semi-arid areas with large variability in rainfall and in countries
with more heterogeneous topography and climatic conditions in which data availability hindered full
application of the approach.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

A major route to meet the estimated increase in future food

demand of 60% by the year 2050 (Alexandratos and Bruinsma, 2012)

is to derive more agricultural production from existing agricul-

tural land. This can be accomplished by reducing the gaps between
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et al., 2013). For irrigated systems, the theoretically possible yield
(vield potential, Y) is defined as the yield of an adapted crop culti-
var when grown without water and nutrient limitations and biotic
stress effectively controlled, i.e. yield is determined by prevailing
radiation, temperature and atmospheric [CO,], and cultivar char-
acteristics (Evans, 1993). For rainfed, or partially irrigated systems,
Y is estimated based on water-limited yield potential (Y ). Yy is
defined similarly as Y, but yields can be limited by water supply
and distribution during the crop growth period, as well as field
and soil properties that determine plant-available soil water avail-
ability. The greatest opportunities for production increases can
be found in areas where average farmers’ actual crop yields are
less than 70% of their (water-limited) yield potential, as average
national yield begin to plateau when they reach 75-85% of their
yield potential due to socio-economic constraints (Cassman, 1999).

Several methodologies have been proposed and applied to
estimate Y, and Yy and subsequently Y. Van Ittersum et al.
(2013) compared several methodologies and concluded that the
application of crop growth models allows for the most robust esti-
mation of Y, and Yy,. The advantage of crop models is that, if
calibrated and validated adequately, they are able to reproduce
genotype x environment x management (G x E x M) interactions,
and, therefore, capture spatial and temporal variations in Y, and
Yw, while other methodologies fail to do so.

In addition to adequate model calibration and validation,
Grassini et al. (2015) highlight that the quality of Y analyses is
influenced strongly by the quality of the model input data, includ-
ing weather, soil, and crop management, as well as estimates of
actual yield.

To increase global food production one important task is to
identify regions where large increases in food production are still
feasible. This can be achieved with help of accurate, quantitative
and spatially explicit estimates of Yg, thus considering the spa-
tial variation in environmental conditions and the farming systems
context in which crops are produced. Robust and spatially explicit
Y, and Yy, estimates can then be used as input to economic models
to assess food security at different spatial scales, and for optimizing
land use or to effectively prioritize research and policy interven-
tions in order to close Yg (Van Ittersum et al., 2013). Depending
on the planned interventions or the economic model employed,
Yg analyses need to be carried out at spatial scales ranging from
field, to sub-national, and national spatial scales. Yy assessments for
specific farmer’s fields can help, for example, to plan site-specific
management interventions, while quantitative information on Yg
at sub-national and national levels can support development of
region- and national policies, interventions and evaluation of sce-
narios for optimizing food security and conservation of natural
resources.

Several global data sets exist with weather (e.g. CRU (Mitchell
and Jones, 2005)), soil (e.g. ISRIC-WISE (Batjes, 2012)), and crop
management data (e.g. MIRCA2000 (Portmann et al., 2010)). These
datasets cover the entire terrestrial surface using a defined gridded
structure with a certain spatial resolution, assuming homogeneous
conditions within each gridcell. To cover areas suitable for crop cul-
tivation, data manipulation of some kind is required, e.g. kriging,
because data do not exist or are not publicly available at all loca-
tions. Thus, global gridded weather datasets are typically based
on data from weather stations, interpolated to locations with-
out measurements, also in regions with low station density (see
e.g. Hijmans et al., 2005). These global databases have been uti-
lized to estimate Y, and Yy, for the entire terrestrial land area (e.g.
Rosenzweig et al., 2014). Other studies indicate, however, that the
use of interpolated or modelled weather data can lead to consider-
able errors in crop model outcomes, due to the nonlinear equations
used in crop growth models that represent important processes for
crop growth and yield formation (Baron et al., 2005; Van Bussel

etal, 2011; Van Wart et al., 2013a; Challinor et al., 2015). In addi-
tion, datasets describing global cropping patterns at a coarse scale
(e.g.Portmann et al., 2010) do not capture the large complexity and
spatial variability of observed cropping patterns. Thus, although
these global studies may give valuable insight about spatial trends
of estimated Y), and Yy, and resulting Y across the globe, results for
specific locations obtained from these global analyses are prone
to large errors (Van Ittersum et al., 2013). Given this situation,
achieving more accurate estimates of Y and Y,y at specific locations
requires location-specific data with agronomic relevance to the
production environment at that location (e.g. weather station data
supplemented with soil and actual farm management data around
this weather station). This approach can be defined as a “bottom-up
approach” in which estimates at larger scale emerge from upscaling
results at the smaller scale (adapted from Van Delden et al., 2011).
The challenge when using a bottom-up approach is how Yg esti-
mates based on location-specific input data can be used to obtain
Y estimates for larger spatial areas. Hence, insight about the min-
imum number of locations required to achieve robust estimates of
Y at larger spatial scales is essential because data collection at a
large number of locations is expensive and time consuming due to
logistical, financial and/or technical constraints.

The first aim of this paper is therefore to present a protocol
for scaling up location-specific yield potential estimates. This pro-
tocol forms the basis for upscaling in the Global Yield Gap Atlas
(www.yieldgap.org), a project in which Y are estimated for major
cereal crops and associated cropping systems in the world with
local-to-global precision and relevance. The protocol includes a
description of how to select representative locations for Yy esti-
mates and a description of the spatial framework utilized for scaling
up location-specific Y estimates to larger spatial scales. The sec-
ond aim of this paper is to assess the performance of this protocol in
two ways: (1) how well the protocol performs in countries with dif-
ferent topography (Burkina Faso (homogeneous flat) and Ethiopia
(heterogeneous topography)) in terms of required spatial cover-
age, and spatial coverage achieved for eight other African countries
using the protocol, and, (2) the impact on simulated national water-
limited yield potentials due to missing and/or poor quality data, as
well as the error that might be introduced in scaled-up yield poten-
tial estimates due to the selected climate zonation scheme used for
upscaling (see Van Wartetal.,2013c).Issues related to datarequire-
ments and adequate data sources for location-specific Yg estimates
are discussed in a companion paper (Grassini et al., 2015).

2. The Global Yield Gap Atlas protocol for upscaling

To use location-specific Y, and Y, as a basis for Y, and Yy, esti-
mations at larger spatial scales, it is essential to increase the extent
of these location-specific Y, and Y, estimates. Extent is defined in
this context as the area for which the Y}, and Y,, simulations were
carried out (Bierkens and Finke, 2000). In the Global Yield Gap Atlas
increasing the extent has been done with help of linear aggregation,
i.e. calculating the weighted arithmetic mean of all location-specific
simulations that fall within a certain area (Heuvelink and Pebesma,
1999). The efficiency of this aggregation can be improved by strat-
ifying the area of interest (Brus, 1994).

Location-specific data required for crop models to simulate
Yy and Y, are only available for a limited number of locations
(Ramirez-Villegas and Challinor, 2012). In the present study it
is therefore described how to optimize selection of locations for
Y analyses following the underpinning principle that a reason-
able number of locations should be selected that best represent
how a given crop is produced in terms of production area with
similar weather, soils, and cropping system. Next, the spatial frame-
work for aggregation is described. It is used to define the spatial
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boundaries for robust aggregation of location-specific Yy estimates,
making use of a climate zonation scheme supplemented by guide-
lines for selecting the location of data collection (see Fig. 1 for a
schematic overview). A similar approach has previously also been
applied by, among others, Wolf and Van Diepen (1995) and Wang
et al. (2009) to assess climate change impacts on maize yields
in Europe and farming systems performance at catchment and
regional scales, respectively.

Aggregation from location to
CZand from CZ to country

Stratification Identification of
in climate locations for
zones (CZ)  data collection

Simulation of Yp and Yw

Fig. 1. Schematic overview of the Global Yield Gap Atlas upscaling protocol (after
Ewert et al., 2011).

2.1. Site selection

Robust Yy analyses should account for variations in weather
conditions across years. This can only be achieved if high qual-
ity location-specific weather data for at least 10, but preferable
at least 15 years are available (Van Wart et al., 2013b; Grassini
et al., 2015). Consequently, our site selection was guided by the
location of existing weather stations, to make full use of available
weather data, especially in Sub-Saharan Africa where weather sta-
tions providing data with sufficient quality and quantity are scarce
(Ramirez-Villegas and Challinor, 2012; Thornton et al., 2014).

Weather stations with sufficient data quality and quantity,
mainly operated by national meteorological services, were selected
by using the geospatial distributions of harvested areas of the
crops of interest, which were derived from the global spatial pro-
duction allocation model (SPAM2000; You et al., 2006, 2009).
SPAM2000 provides gridded data (5arcmin resolution, approx-
imately 10 x 10km at the equator) on annual harvested area
averaged for years around 2000 for 20 major staple crops, for rain-
fed and irrigated water regimes. For each grid, we calculated the
harvested area of rainfed crops as the sum of the harvested area
reported for three input systems, i.e. subsistence, low, and high,
while the harvested area of irrigated crops was taken directly as
given in the SPAM2000 database. SPAM2000 was selected because
it applies a consistent methodology using available data on har-
vested crop area from different sources (e.g. FAOSTAT, 2014 and
national statistics) to derive global spatially disaggregated har-
vested area maps. In the Global Yield Gap Atlas for specific cases
where area for a specific crop has expanded substantially or moved
into new areas since year 2000 and reliable sub-national statis-
tics on crop harvested area were available, SPAM2000 data was
replaced by these data (e.g. sugarcane in Brazil and soybean in
Argentina).

A recent study in countries with relatively uniform topography
indicated that 40-50% of the national harvested crop area should
be covered to achieve a robust estimate of Y, and Y, at the national
level (Van Wart et al., 2013b). To comply with this finding and
the principle of using representative locations for most dominant
weather-soil-cropping systems, the following steps were carried
out for each country-crop combination:

(1) Circular buffer zones with a 100 km radius were drawn around
each identified weather station and clipped by country and cli-
mate zone border (see Section 2.2 for more details about the
climate zonation).

(2) The SPAM2000 crop-specific harvested area, for a given water
regime, was summed for each climate and buffer zone.

(a) Per country climate zones were identified which contain >5% of
the total national harvested crop area of the specific crop-water
regime, further referred to as designated climate zones (DCZs).

(b) We identified all weather stations located within the DCZs that
contain >1% of national harvested area for the crop in question
within their buffer zone and checked their data quality (see
Grassini et al., 2015 for more information about this quality
check).

(c) Next an iterative process was carried out of:

(i) ranking selected weather stations, according to their
clipped harvested crop area within their buffer zones;

(ii) selecting the weather station with greatest harvested area;
selected weather stations are further referred to as refer-
ence weather station (RWS);

(iii) removing weather stations that are located within the
same DCZ and closer than 180km to the selected RWS,
to avoid double counting of crop area, and re-ranking the
remaining weather stations; and

(iv) repeating i-iii above until total harvested area in buffer
zones of selected RWS reached 50% of the national har-
vested area for the targeted crop-water regime.

(d) If, after achieving 50% coverage, there was a DCZ that did not
contain a selected RWS, the highest ranked weather station
within that DCZ was selected (again, having >1% of national
harvested area to qualify).

(e) If, after selecting among weather stations within DCZs, there
was still less than 50% coverage, we selected among weather
stations located in other climate zones with <5% of national crop
area (again, having >1% of national harvested area to qualify).

(f) If, after step 2e, there was still less than 50% coverage
of the crop-water regime, locations for so-called hypothet-
ical weather stations (also further referred to as RWS, and
with circular buffer zones with a 100 km radius) were deter-
mined in DCZs. Their location was determined with help of
the Focal Statistics toolbox of the ESRI ArcMAP software, by
selecting locations in DCZs with the largest cropping area
density within their 100 km around the location (excluding
locations situated closer than 180km to a RWS). To derive
weather data for hypothetical RWS, accompanying gridcells
were selected from the gridded TRMM dataset (Simpson et al.,
1996; http://trmm.gsfc.nasa.gov/) and gridded NASA POWER
database (Stackhouse, 2014; http://power.larc.nasa.gov/).

2.2. Climate zonation scheme used for upscaling

Consistent with the weather station locations guiding site selec-
tion within a country, a climate zonation scheme was used as the
basis for upscaling from the RWS buffer zone to larger spatial scales.
Location-specific Y, and Y, estimates for the buffer zones were
scaled up to climate zones and subsequently to the national level
(Fig. 1).

The utilized climate zonation scheme (Global Yield Gap Atlas
Extrapolation Domain (GYGA-ED, Fig. 2 shows the zones for Sub-
Saharan Africa)) was selected based on a recent study in which
six agro-climatic and agro-ecological zonation schemes were com-
pared for their homogeneity of climatic variables within delineated
climate zones (Van Wart et al., 2013c). In addition, the number of
zones required to cover a large proportion (80%) of the crop-specific
global harvested area of major food crops was considered. After
evaluation of these two criteria it was concluded that the GYGA-ED
approach was most suited for scaling up location-specific Y, and
Yy estimates (Van Wart et al., 2013c).

The GYGA-ED climate zonation is based on a matrix of three
climatic variables relevant for crop production: (i) growing degree
days (base temperature of 0°C, divided into 10 classes), (ii) arid-
ity index (ratio of mean annual precipitation to annual potential
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High
seasonality

Wet Warmer

Low
seasonality

Fig. 2. The Global Yield Gap Atlas climate zonation scheme for Sub-Saharan Africa, black dots indicate locations of RWSs used for Y, assessments in ten countries.

evapotranspiration, divided into 10 classes) and (iii) temperature
seasonality (standard deviation of monthly average temperatures,
divided into 3 classes). Only land on which at least one of the 10
major food crops is grown (the sum of the major food crops >0.5% of
the gridcell area) was considered for the classification of the three
variables (using the SPAM2000 database; You et al., 2006, 2009). In
265 of the 300 possible climate zones major foods are grown (see
for more details Van Wart et al., 2013c).

2.3. Additional data collection within buffer zones

Within the circular buffer zones with a 100 km radius around
the RWSs the most prominent soil type x cropping system combi-
nations for the different water regimes (rainfed and/or irrigated)
were collected. Focussing on the buffer zones gave the opportunity
to simulate existing soil type x cropping system combinations, this
facilitated evaluation of the simulations.

Per buffer zone, the three prevalent soil types were selected.
In countries where there is availability of high-quality soil maps
with functional soil properties (e.g. Argentina) these were used.
If no high-quality soil maps with functional soil properties were
available the global soil database ISRIC-WISE was utilized (Batjes,
2012). From the ISRIC-WISE soil database the three main map units
(each comprising up to eight soil units) were selected. Selection
was based on the coverage of harvested crop-specific area by a
given soil map unit within the RWS buffer zone. Soil units from the
selected map units were selected until achieving 50% area coverage
for each selected map unit, after discarding those soils that are
likely not suitable for long-term annual crop production or that
account for a very small fraction of the crop harvested area (see
Grassini et al., 2015, for the definition of non-suitable soil types).

Information about the most commonly used cultivars (in terms of
length of growing season in days) and their sowing dates for the
crop in question were obtained from local agronomic experts (see
Grassini et al.,, 2015, for more detail). Together with the weather
data, this information was used to estimate location-specific Yj
and/or Yy, by simulation.

2.4. From weather station to climate zone to country

Four aggregation steps were required to derive long-term Y,
and Yy, at RWS level: by soil type (only for Yy, ), by crop intensity
(e.g. how often a crop is grown on a certain field during the same
year), by cropping system (i.e. when cultivars with different matu-
rity were simulated for the same RWS, e.g. early and late maturity
sorghum), and by year.

To obtain the yield per crop cycle, the weighted average of the
individual simulations per soil type i (Y, simulation, Was calculated
as follows:

n .
Zi:l Yy simulation; X SOllweight,»
n i
2_iz1Soilweigh,

(1)

Y cropcycle =

where n is the number of soil types and Soilyeigh; is the harvested
area of soil type i.

To obtain the yield per cropping system, the average of the indi-
vidual crop cycles was calculated, all cycles have the same weight,
because we assume that within a cropping system all cropland has
the same cropping intensity (single, double or triple cropping):

z
Zi:l Yy crop cycle;
z

(2)

Yw cropping system =
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where z is the number of crop cycles, e.g. two in the case of maize-
maize.

To derive the yield per year, the weighted average of all indi-
vidual cropping systems was calculated, the weight of the systems
was defined with help of the harvested area per system as reported
by local agronomists:

k
Z,‘=1 Y cropping system; X Areacropping system;
kA
i1 Areacropping system;

where k is the number of cropping systems, e.g. two in the case
of the use of early and late maturity maize within the same RWS
buffer zone.

To get the yield per station, the average of all years was calcu-
lated:

(3)

Yw year =

Zf=1 YW year;
p
where p is the number of years (at least 10 years, see Grassini et al.,

2015).
One additional aggregation step was required to derive long-
term Yp, Yw, and Y at climate zone level:

(4)

Yw station =

q
Zi:l Y station; % Areagws buffer zone;
q
Zi:1AreaRWS buffer zone;

where q is the number of RWSs within the climate zone and
Areagws buffer zone; 1S the harvested area in buffer zone i.

Afinal aggregation step was required to derive long-term Yp, Yy,
and Yy at country level:

(5)

Yw climate zone =

s
Zi:l Y climate zone; X Areaciimate zone;
g
Zi=1Areaclimate zone;

where s is the number of climate zones within the country and
Aredgjimate zone; iS the harvested area per climate zone i.

(6)

YW country =

3. Methods to assess the upscaling protocol

Performance of the protocol was assessed by: (1) evaluating the
influence of the spatial coverage of harvested area by RWS buffer
zones on national Yy, and (2) assessing the selected climate zona-
tion scheme to upscale Y, and Y), estimates at RWS scale to larger
spatial scales.

3.1. Application and spatial coverage

The first phase of the Global Yield Gap Atlas project focussed
on ten countries in Sub-Saharan Africa: Mali, Burkina Faso, Ghana,
Niger, Nigeria, Ethiopia, Kenya, Tanzania, Uganda, and Zambia.
Only cereal crops (maize, sorghum, millet, rice, wheat) with a total
national harvested area of >100,000 ha (area threshold applied sep-
arately to rainfed and irrigated production) were evaluated. Maize
was simulated with the crop growth model Hybrid-Maize (Yang
et al., 2006), sorghum, millet, and wheat with WOFOST version
7.1.3 (release March 2011) (Wolf et al., 2011; Supit et al., 2012),
and rice with ORYZA2000 (Bouman et al., 2001; Van Oort et al.,
2014, 2015).

To test how well the protocol could be applied in these ten
countries, it was evaluated to what extent we could comply with
the protocol. This assessment was performed for rainfed sorghum
in two countries with contrasting topography and climate zone
size: Burkina Faso (homogeneous flat and large climate zones) and
Ethiopia (heterogeneous topography and small climate zones), for
Yw. In addition, the uncertainty in the estimated Y, at national
level for rainfed maize in four contrasting countries (Burkina Faso,

Ghana, Uganda, and Kenya) due to harvested area coverage was
evaluated. We focused on Y,, because we expected the Y, at
national level to be more sensitive to the harvested area covered
than the national Y. First, the area-weighted Y, at the national
scale was calculated by incrementally adding all estimated Y,,’s
per RWS, which were sorted based on the harvested area within
their buffer zone, from large to small. Second, to test the effect on
the national Y, estimate of a smaller harvested area covered by the
RWS buffer zones, a random selection from all estimated Y,’s at
RWS level was carried out, till at least 25% coverage of the national
harvested area was reached by the RWS buffer zones, i.e. half of the
required coverage. From these randomly selected Yy,’s the national
Y, was calculated. This selection process was carried out 10 times.
The difference between the highest and lowest of these 10 national
Yw’s was calculated, as an indication of the robustness of the Yy, at
national level with a smaller coverage.

3.2. Assessment of the climate zonation scheme

The described protocol is based on the assumption that for the
purpose of crop growth modelling weather data from RWSs are rep-
resentative for the climate zone in which they are located. To test
this assumption, we selected climate zones in the U.S., Germany,
and Western Africa that have, at least, three RWSs located within
their borders. For the evaluation of the climate zonation scheme,
Yy and Yy, were simulated with the crop growth simulation model
WOFOST version 7.1.3 (release March 2011) (Wolfetal.,2011; Supit
et al.,, 2012), for maize in the U.S., winter wheat in Germany, and
sorghum in Western Africa. Per climate zone crop management and
soil data were kept constant. The variation in simulated Y, and
Yw among RWSs located within the same climate zone served as
a measure of the performance of the climate zonation scheme for
upscaling of Y, and Y.

3.2.1. Input data description

Weather data for the U.S. originated from the National Oceanic
and Atmospheric Association (NOAA), and Global Summary of
the Day (GSOD). Stations were only selected when they were
located in climate zones with >10,000 ha of rainfed maize (using
the SPAM2000 database; You et al., 2006, 2009). Weather data
for Germany originated from the German Meteorological Service
(Deutscher Wetterdienst). Only stations with publically available
data were utilized. In addition, for both the U.S. and Germany, only
stations that had sufficient data available in the period 1997-2011
were selected (i.e. per year no more than 20 consecutive days
and 10% of the days could be missing for each important weather
variable). Missing data were substituted using linear interpola-
tion between available dates. Weather data for Western Africa
were collected within the Global Yield Gap Atlas project and origi-
nated from national meteorological services complemented with
propagated data, i.e. gridded weather data corrected with help
of a few years of measured weather data (see Van Wart et al,,
2015; Grassini et al., 2015). Data from the period 1998-2007 were
used. For all three countries/regions incident solar radiation was
obtained from NASA POWER agro climatology solar radiation data,
which were available on a 1° x 1° global grid (Stackhouse, 2014;
http://power.larc.nasa.gov/).

Per climate zone the most prevailing soil type with respect
to harvested area of the crop of interest, was selected from the
global gridded ISRIC-WISE soil database. One representative crop
emergence date and the dominant cultivar were selected per
climate zone for simulation of Y, and Yy,. Crop management data
for maize in the U.S. were allocated to the stations based on the
geographical location of the stations. For stations with a latitude
<37° the emergence date was estimated to be at day of year (DOY)
60, for stations with latitudes between 37° and 42° at DOY 91, for
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stations with latitudes >42° at DOY 121. Based on the emergence
day temperature sum requirements were allocated to the stations,
giving stations with emergence days at DOY 60 the largest and
stations with emergence days at DOY 121 the smallest temper-
ature requirements. When a climate zone crossed the latitude
thresholds, per climate zone the dominant emergence dates and
temperature requirements were selected. Crop management data
for Western Africa and Germany originated from country experts;
again per climate zone the dominant cultivar temperature sum
requirements and emergence dates were selected.

3.2.2. Comparison of simulated yields within climate zones

To assess the degree of agreement between the simulated yields
within a climate zone, first the simulated long-term average yield
was calculated for each RWS. Next the coefficient of variation (CV,
%) was calculated per climate zone:

cv =22 » 100% 7)
Mez

with o, the standard deviation and i, the average of the long-

term average yields across RWSs located within the same climate

zone.

4. Results: Performance of the Global Yield Gap Atlas
upscaling protocol

4.1. Application and spatial coverage

4.1.1. Sensitivity of the estimated national Yy, to harvested area
covered

Estimates of Yy, at a national level for maize changed little after
reaching the threshold of 50% coverage of the national harvested
area by the RWS buffer zones for the four tested countries (Bur-
kina Faso, Ghana, Uganda, and Kenya) (Fig. 3). For Burkina Faso
the national Y,, estimate was even robust (i.e. at most a deviation
of 5% of the national Y,, estimate based on all RWS buffer zones)
after reaching 16% coverage. The required coverage for robust Yy,
estimates for Ghana, Uganda and Kenya was 49%, 52% and 44%,
respectively.

By randomly selecting Y,y estimates at the RWS level until at
least 25% of the national harvested area was covered, a situation
could be mimicked in which RWS buffer zones were selected with
smaller harvested area coverage and a smaller total coverage of
the harvested area was reached. Area-weighted national Yy, esti-
mates were calculated for each selection. In comparison to national
Yy estimates based on the recommended coverage (approximately
50%), the national Yy,’s based on less coverage were under- or over-
estimated with at most 3% in Burkina Faso, 5% in Ghana, 10% in
Uganda, and 27% in Kenya. The results showed that the possible
error in Yy, at the national level due to a small coverage of national
harvested area was greatest in countries with a large range in sim-
ulated Yy, (Fig. 3, range in red triangles, e.g. Kenya).

4.1.2. Burkina Faso and Ethiopia as case studies

To illustrate the applicability of the described protocol, results
for water-limited sorghum for two countries, contrasting with
respect to topography, are described in detail: Burkina Faso
(Table 1) and Ethiopia (Table 2).

For the sorghum simulations in Burkina Faso ten RWSs, located
in four climate zones, were used for the Y, analysis (Table 1). Each
of these RWS buffer zones included at least 4.4% of the national
harvested area of rainfed sorghum in Burkina Faso and in total
73% of the national harvested area was covered. The associated cli-
mate zones covered 96% of national harvested sorghum area. The
Yy at the country level showed a spatial variability (expressed as
CV, based on the long-term simulated Y,, at RWS level) of 27%.

In Ethiopia, 24 RWSs were used for sorghum simulations,
located in 16 climate zones (Table 2). A significant part of the
selected RWSs (10 out of 24) covered >1% of the national harvested
rainfed sorghum area in Ethiopia. In total 27% of the national har-
vested area was included in these RWS buffer zones. The associated
climate zones covered 64% of the national harvested area. The Yy, at
country level showed a spatial variability (expressed as CV, based
on the long-term simulated Y,, at RWS level) of 39%.

4.1.3. Coverage achieved following the protocol: Western versus
Eastern Africa

Coverage of national harvested area by selected RWSs in each
country (Table 3) and associated climate zones (Table 4) for eight
additional countries in Sub-Saharan Africa displayed the same
trend, as observed for Burkina Faso and Ethiopia (Tables 1 and 2).
In Western Africa cereal growing areas, a region with relatively
homogenous topography, only 13% of the country-crop combina-
tions had one or more RWS buffer zones with <1% of the national
harvested area selected by the protocol for simulation of Yy,,. By
contrast, in Eastern Africa, a region with a more heterogeneous
topography, 76% of selected RWS included <1% of national sorghum
area (Table 3).

In Western Africa, the selected RWS buffer zones covered at least
50% of the national harvested area in 12 of 23 country-crop combi-
nations versus 5 out of 21 country-crop combinations for East Africa
(Table 3). Despite the difference in coverage by RWS buffer zones
in Western and Eastern Africa, total coverage of national harvested
area by the selected climate zones was remarkably similar between
Western and Eastern Africa, on average 78% and 62%, respectively
(Table 4), and thus much larger than coverage by RWS buffer zones,
which highlights the importance of climate zone performance as
assessed in Section 4.2.

4.2. Performance of the climate zonation scheme

To test the assumption that weather data from a selected station
are representative for the climate zone in which it is located, 28
zones in the U.S,, and eight zones in both Germany and Western
Africa with at least three RWSs (Table 5) were selected.

Overall, agreementin simulated Y, among stations located in the
same climate zone was large in all three studied countries/regions
(agreement expressed as CV, Eq. (7), Fig. 4a, Table 5). In general,
for all three countries/regions the most important climate zones
with respect to harvested crop area, showed the smallest CV. Dis-
crepancies were only large for a few zones, which often had small
production areas (<1%) and large topographical variation and are
less suitable for crop production, e.g. the zones in Germany with
CV >30%.

For all countries/regions the area-weighted CV of the simulated
Yw was greater than the CV of Y, (Table 5). In the U.S. and Western
Africa clear spatial trends in the CV of Yy, were visible (Fig. 4b): in
Western Africa the CV increased towards the north, and in the U.S.
itincreased towards the west which are both relatively harsh crop
production environments due to relatively large aridity values.

5. Discussion
5.1. Performance of the Global Yield Gap Atlas upscaling protocol

In general, our bottom-up protocol for yield gap estimation was
more applicable, in terms of compliance with the defined crite-
ria (>50% coverage of the national harvested area), in countries
with less topographic heterogeneity (e.g. in Western Africa). Less
topographic heterogeneity resulted in larger climate zones and
consequently, clipping of RWS buffer zone borders by climate zones
was less frequent, which resulted in larger harvested area per buffer
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Fig. 3. Estimated national Y,, for maize as influenced by the number of used RWS (solid black circles) and associated percentage of harvested total crop area used to simulate
Yw (open circles). Range of simulated Y,, at all RWSs are shown by the open red triangles.

zone. In countries with strong topographic heterogeneity and large
altitude ranges (mainly in Eastern Africa), climate zones were con-
siderably smaller and it was more difficult to identify a RWS in
each climate zone that was representative for the crop and coun-
try of interest. To make full use of the available weather data in
such countries, weather stations were also selected in climate zones
where the crop is not or hardly grown according to SPAM2000.
After consultation with local experts, we concluded that the
SPAM2000 maps (spatially disaggregated distribution of crops
averaged for years around 2000) may be obsolete with regards to
the current distribution of harvested area for many of the studied
crops. For example, in Eastern Africa the harvested area of maize has
increased by 50% between 2000 and 2013, and in Western Africa by
75% (FAOSTAT, 2014). These changes in crop area and likely also dis-
tribution, explain to some degree why it was not possible to comply
with the crop area coverage criterion for all country-crop combina-
tions, as crop management data, required to run the models, could
not be collected in regions where the crop is no longer grown (e.g.
sorghum or millet replaced by maize). Moreover, the consulted
experts provided additional management data, valid for regions
that were not selected based on the SPAM2000 maps but are cur-
rently important growing areas. Following the recommendations of

these local experts, Y and Yy, were also simulated for these addi-
tional regions. Toinclude these yield estimates in the scaled up yield
estimates SPAM2000 harvested area was used, due to lack of more
recent quantitative information on crop harvested areas, leading to
an underestimation of the importance of these regions in scaling up.
Possible errors in national yield potentials due to inaccurate land
use maps were shown before by Folberth et al. (2012), who found
that a crop area map that was too coarse with regard to where
irrigated and rainfed maize is grown in the U.S., resulted in inac-
curate yield estimates at national scale. Like others (e.g. See et al.,
2015), we therefore stress the importance of continuous updating
and improving crop distribution maps such as SPAM2000 in order
to increase the accuracy of Yy at large spatial scales.

The analysis to assess the performance of the selected climate
zonation scheme showed that the CV of simulated Y), resulting from
RWSs located within the same climate zone is small. In environ-
ments with favourable rainfall patterns for crop growth, such as
the southern parts of Western Africa, CV of simulated Y, was also
small. By contrast, in semi-arid areas (e.g. central parts of the U.S.
and northern parts of Western Africa, representing aridity limits
of production for a given crop species and with large variability in
rainfall), the CV of simulated Y,, was rather large (approximately

Table 1
Water-limited sorghum yields and coverage of the national harvested area in Burkina Faso per reference weather stations (RWS) selected by the upscaling protocol.
RWS % Coverage of national % Coverage of national Yy (tha™1)
harvested area by harvested area by
buffer zone climate zone RWS Climate zone Country
Bogandé 8.4 39.1 4.4 43 4.8
Ouahigouya 9.7 43
Boromo 8.6 34.6 5.3 53
Dédougou 9.0 5.5
Fada Ngourma 8.7 4.6
P6 8.0 6.1
Dori 5.1 11.6 3.0 3.5
Hypothetical station 1 5.4 3.9
Bobo-Dioulasso 4.4 11.2 7.7 6.5
Gaoua 5.5 5.5
National total 73 96
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Table 2
Water-limited sorghum yields and coverage of the national harvested area in Ethiopia per reference weather stations (RWS) selected by the upscaling protocol.
RWS % Coverage of national % Coverage of national Yy (tha™)
harvested area by harvested area by
buffer zone climate zone RWS Climate zone Country
Dire Dawa 3.0 13.41 3.0 5.6
Harar 3.1 8.3
Kobo 0.1 2.8
Melkassa 0.8 52
Shire Endasilasse 3.8 5.5
Hypothetical station 1 3.5 5.6
Jijiga 0.4 10.72 2.3 2.3
Assosa 1.5 7.09 79 74
Gondar 0.2 4.1
Kombolacha 0.1 5.29 3.9 8.1
Woliso 0.9 9.7
Wolkite 1.1 7.4
Hypothetical station 2 0.6 5.00 5.9 5.9
Ambo 13 4.26 7.5 7.5
Gelemso 14 3.83 8.5 8.5
Haramaya 1.2 291 8.0 8.0
Nekemte 0.9 2.68 6.3 6.3
Bahir Dar 0.0 233 5.1 5.1
Mekele 1.4 1.84 2.6 2.6
Ayira 0.8 1.68 8.1 8.1
Butajira 0.5 1.34 6.0 6.0
Gore 0.2 1.28 9.6 9.6
Pawe 0.2 0.25 53 53
Shambu 0.1 0.20 10.2 10.2
National total 27% 64%

Table 3

Percentage of national harvested area covered by buffer zones of the selected RWS in ten African countries, when following the protocol as much as possible. In parentheses
the percentage of selected RWS that cover <1% of national harvested area, blank cells indicate that this country/crop combination had less than 100,000 ha (criteria to be

simulated).
Country/crop Rainfed maize (%) Rainfed wheat (%) Rainfed sorghum (%) Rainfed millet (%) Rainfed rice (%) Irrigated rice (%)
Mali 35(0) 35(13) 51(38) 57 (0) 59 (0)
Niger 54 (0) 51(0) 17 (0)
Burkina Faso 61 (0) 73 (0) 75 (0) 48 (0) 59 (0)
Nigeria 27 (44) 39(0) 34 (0) 25 (0) 25(0)
Ghana 56 (0) 74 (0) 75 (0) 40 (0) 22 (0)
Ethiopia 22 (68) 26 (25) 27 (64) 26 (65)
Kenya 49 (29) 28 (43) 31(67) 27 (50)
Uganda 61(7) 65 (18) 68 (9) 53 (33)
Tanzania 30 (44) 44 (0) 45 (0) 55(9) 16 (0) 13(0)
Zambia 26 (55) 18 (57) 34(0)

Table 4

Percentage of national harvested area covered by the selected climate zones in ten African countries when following the protocol as much as possible. In parentheses the
percentage of selected climate zones that cover <5% of national harvested area, blank cells indicate that this country/crop combination had less than 100,000 ha (criteria to

be simulated).

Country/crop Rainfed maize (%) Rainfed wheat (%) Rainfed sorghum (%) Rainfed millet (%) Rainfed rice (%) Irrigated rice (%)
Mali 59(0) 81(25) 96 (25) 83 (0) 84 (0)
Niger 97 (0) 94 (0) 71 (50)
Burkina Faso 75 (0) 96 (0) 99 (0) 65 (0) 90 (0)
Nigeria 65 (50) 78 (22) 79 (38) 46 (17) 53(17)
Ghana 87 (0) 90 (0) 90 (0) 55 (0) 57 (0)
Ethiopia 58 (64) 52 (44) 64 (75) 45 (83)
Kenya 56 (60) 36 (50) 53 (60) 49 (50)
Uganda 77 (14) 74 (14) 76 (0) 78 (0)
Tanzania 72(29) 51(25) 74 (20) 78 (0) 41 (50) 37(0)
Zambia 85 (20) 90 (0) 50 (0)

Table 5

Number of selected climate zones, number of selected RWS per climate zone, and the area-weighted CV (among RWS) for Y, and Y,, within each zone.

Country/region and crop

Number of selected

Number of RWS

Area-weighted CV (%)

climate zones

Average per climate zone Minimum in a zone Maximum in a zone Yy Yw
U.S.—maize 28 6.8 3 25 5 19
Germany—winter wheat 8 5.6 3 8 4 8
Western Africa—sorghum 8 7.8 3 21 7 23
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Fig. 4. CV for (left to right) simulated Y, and simulated Y,, of RWSs located within the same climate zone, for (top to bottom): U.S. (maize), Germany (wheat), and Western

Africa (sorghum).

35%). These results show that the climate zonation scheme used in
the protocol is effective for scaling up Yy estimates at RWS level to
larger spatial scales with sufficient precision under most climate
conditions. The semi-arid areas are an exception and Y estimates
can here be prone to errors, especially if only a limited number of
weather stations is available per climate zone. In line with Thornton
et al. (2014) we therefore stress the importance of strengthen ini-
tiatives to publically unlock rainfall data and increase the number
of weather stations with publicly available data.

To our knowledge no other studies exist that evaluated the per-
formance of a climate zonation scheme as the basis for scaling up
location-specific crop growth simulation results. Yet recent stud-
ies, such as Nendel et al. (2013) and Zhao et al. (2015), have noted
the errors introduced when crop growth models are used with a
top-down approach that applies using input data at large spatial
scales. Due to differences in the studied regions with respect to
climatic conditions and applied methodologies, the value of direct
comparisons with our study is limited. Consistent with our find-
ings, however, Zhao et al. (2015) concluded that weather data with
high resolution should be used in regions with large spatial hetero-
geneity in weather data, which is a characteristic of the semi-arid
climate zones. Likewise, Nendel et al. (2013) concluded that crop

yields for a given region could be considerably underestimated if
spatial distribution of available weather data is poor for the area
under investigation.

5.2. Spatial coverage

Our evaluation of effect of the spatial coverage of the national
harvested area by the RWS buffer zones on the estimated national
Yw showed that the threshold of 50% coverage resulted in robust
maize Y, estimates at national scale. These results are in close
agreement to the findings of Van Wart et al. (2013b). In countries
in which a small range in Y, at RWS level was simulated (e.g. Bur-
kina Faso), coverage of 20% was sufficient to achieve a robust maize
Y, estimate at the national level. For approximately 40% of the
simulated country-crop combinations, at least 50% of the national
harvested area was covered by the RWS buffer zones, which thus
resulted in robust estimates of national Y,, for these country-crop
combinations. Due to missing data and inaccuracy of the harvested
crop area maps, a smaller coverage was attained for the other
country-crop combinations. However, for the large majority of the
country-crop combinations not reaching the 50% coverage, we were
still able to cover at least 25% of the national harvested area (20 out
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of 27). A coverage of only 25% could introduce some errors in the
scaled up Y, estimates, especially for countries in which the Y,
estimates at RWS level show a large range (e.g. maize in Kenya,
Fig. 3). However, the magnitude of that error was limited for maize
to 1tha~! for 3 out of the 4 studied countries. When considering
the coverage by climate zones, only for 5 out of 44 country-crop
combinations a coverage of less than 50% was attained. In combi-
nation with the demonstrated robustness of the climate zonation,
we conclude that in general the scaled-up Y, estimates at national
level are sufficiently accurate.

Recent research showed the uncertainty in global gridded crop
models for climate change impacts on agriculture (Rosenzweig
etal., 2014). The authors indicated this uncertainty was mainly due
to differences in structure and implementation of the applied crop
models and assumptions made about agricultural management,
e.g. input quantities. Uncertainties related to their applied scaling
methods, in which site-based crop models were run with global
gridded weather data, were not quantified nor discussed. The cur-
rent study could quantify the error and uncertainty in the national
scale results from the applied scaling methods. Hence, the upscal-
ing approach and analysis developed and described here could help
quantify such uncertainty for large-scale crop model studies.

To increase understanding about spatial variability within cli-
mate zones and scaled up Y, estimates based on the bottom-up
approach described in this paper, future work should focus on
variability in soil properties, especially properties influencing soil
water holding capacity and rooting depth, and their effects on
upscaled Y estimates. The issue of examining rainfall data char-
acteristics and effects of different rainfall data quality on results
also needs to be studied. Finally, increased efforts to collect and
make publicly available good quality weather, soil, and crop man-
agement data in regions with substantial harvested area that lack
these data would have large payoffs for improving quality of yield
gap estimates in SSA.

6. Concluding remarks

This study shows that the proposed protocol developed and
applied in the Global Yield Gap Atlas project is reasonably robust
for scaling up Y, estimates to regional and national levels based on
weather station data supplemented by local soil and cropping sys-
tem data. This conclusion was based on an evaluation of the climate
zonation scheme, which appeared to be accurate enough to achieve
robust Y estimates at larger spatial areas and sufficient coverage of
harvested crop area by the protocols for selecting weather stations.
Semi-arid areas with large variability in rainfall are an exception
and here scaled up water-limited yield gap estimates can be prone
to errors, especially if only a limited number of weather stations
is available per climate zone. In addition, in some heterogeneous
countries data availability hindered full application of the protocol,
leading to possible errors in the scaled up yield gap estimates.

We found that global crop area distribution maps are still a
source of error for selecting relevant locations for data collection
for Yg estimates. Continuous updating and improving of crop distri-
bution maps is essential, and should be complemented with local
up-to-date knowledge about crop area distribution.
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