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Acronyms and Definitions

ASD	 	 Analytical	spectral	devices
AISA	 	 	Airborne	imaging	spectrometer	for	applications
AVIRIS	 	 	Airborne	visible/infrared	imaging	spectrom

eter	sensor
CHRIS	PROBA	 	Compact	High	Resolution	Imaging	Spectro

meter	 Project	 for	 OnBoard	 Autonomy,	
Belgian	Satellite

DHVIs	 	 	Derivative	 hyperspectral	 vegetation	 indices	
(DHVIs)

DNs	 	 Digital	numbers
EnMAP	 	 	Environmental	 Mapping	 and	 Analysis	

Program,	 Genrman’s	 hyperspectral	 satellite	
mission

EO1	 	 Earth	Observing1	satellite	of	NASA

GnyLi	 	 	A	 hyperspectral	 vegetation	 index	 involving	
5	 hyperspectral	 narrow	 bands	 developed	 by	
Martin	Gnyp	Leon,	Fei	Li,	and	Georg	Bareth	
et	al.

HICO	 	 	Hyperspectral	 Imager	 for	 Coastal	 Oceans	
sensor,	NASA’s	Hyperspectral	Imager	for	the	
Coastal	Ocean	(HREPHICO)

HBSIs	 	 Hyperspectral	biomass	and	structural	indices
HNBs	 	 Hyperspectral	narrow	bands
HVIs	 	 Hyperspectral	vegetation	indices	(HVIs)
HyspIRI	 	 	Hyperspectral	 infrared	 imager,	nextgenera

tion	hyperspectral	sensor	by	NASA
MBHVI	 	 	Multiple	band	hyperspectral	vegetation	indices
MNF	 	 Minimum	noise	fraction
NASA	 	 	National	 Atmospheric	 and	 Space	

Administration
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OHNBs	 	 Optimum	hyperspectral	narrow	bands
OMI	 	 	Ozone Monitoring Instrument onboard Aura 

satellite
PCA	 	 Principal	component	analysis
PRISMA		  Hyperspectral	 Precursor	 and	 Application	

Mission	 or	 PRecursore	 IperSpettrale	 della	
Missione	Applicativa	of	Italy

SCIAMACHY	 	Scanning	Imaging	Absorption	spectroMeter	
for	 Atmospheric	 CartograpHY,	 hyperspec
tral	sensor	onboard	European	Space	Agencies	
(ESA’s)	ENVISAT

SMA	 	 Spectral	mixture	analysis
SMT	 	 Spectral	matching	techniques
SVM	 	 Support	vector	machines
TBHVIs	 	 Twoband	hyperspectral	vegetation	indices
VNIR	 	 Visible	and	nearinfrared	(VNIR)
WSA	 	 Whole	spectral	analysis

9.1 Introduction

Remote	 sensing	 data	 are	 considered	 hyperspectral	 when	 the	
data	 are	 gathered	 from	 numerous	 wavebands,	 contiguously	
over	an	entire	range	of	the	spectrum	(e.g.,	400–2500 nm).	Goetz	
(1992)	defines	hyperspectral	remote	sensing	as	“The	acquisition	
of	images	in	hundreds	of	registered,	contiguous	spectral	bands	
such	 that	 for	 each	 picture	 element	 of	 an	 image	 it	 is	 possible	
to	 derive	 a	 complete	 reflectance	 spectrum.”	 However,	 Jensen	
(2004)	 defines	 hyperspectral	 remote	 sensing	 as	 “The	 simulta
neous	 acquisition	 of	 images	 in	 many	 relatively	 narrow,	 con
tiguous	and/or	non	contiguous	spectral	bands	 throughout	 the	
ultraviolet,	visible,	and	infrared	portions	of	the	electromagnetic	
spectrum.”
Overall,	 the	 three	key	 factors	 in	considering	data	 to	be	hyper
spectral	are	the	following:

	 1.	 Contiguity in data collection:	Data	are	collected	contigu
ously	over	a	spectral	range	(e.g.,	wavebands	spread	across	
400–2500 nm).

	 2.	 Number of wavebands:	The	number	of	wavebands	by	itself	
does	 not	 make	 the	 data	 hyperspectral.	 For	 example,	 if	
there	 are	 numerous	 narrowbands	 in	 400–700  nm	 wave
lengths,	but	have	only	a	few	broadbands	in	701–2500 nm,	
the	 data	 cannot	 be	 considered	 hyperspectral.	 However,	
even	 relatively	 broad	 bands	 of	 width,	 say,	 for	 example,	
30  nm	 bandwidths	 spread	 equally	 across	 400–2500  nm,	
for	a	total	of ~70	bands,	are	considered	hyperspectral	due	
to	contiguity.

	 3.	 Bandwidths:	 Often,	 hyperspectral	 data	 are	 collected	 in	
very	 narrow	 bandwidths	 of	 ~1	 to	 ~10  nm,	 contiguously	
over	 the	entire	 spectral	 range	 (e.g.,	 400–2500 nm).	Such	
narrow	bandwidths	are	required	to	get	hyperspectral	sig
natures.	But	one	can	have	a	combination	of	narrowbands	
and	broadbands	spread	across	the	spectrum	and	meet	the	
criterion	for	hyperspectral	remote	sensing.

In	summary

Remote	 sensing	 data	 are	 called	 hyperspectral	 when	 the	
data	are	collected	contiguously	over	a	spectral	range,	pref
erably	in	narrow	bandwidths	and	in	reasonably	high	num
ber	of	bands.

Such	a	definition	will	meet	many	requirements	and	expec
tations	of	hyperspectral	data.

Hyperspectral	remote	sensing	is	also	referred	to	as	imag
ing	spectroscopy	since	data	for	each	pixel	are	acquired	in	
numerous	contiguous	wavebands	resulting	in	(1)	3d	image	
cube	and	 (2)	hyperspectral	 signatures.	The	various	 forms	
and	 characteristics	 of	 hyperspectral	 data	 (imaging	 spec
troscopy)	are	illustrated	in	Figures	9.1	through	9.7.	The	dis
tinction	between	hyperspectral	and	multispectral	is	based	
on	the	narrowness	and	contiguous	nature	of	the	measure
ments,	not	the	“number	of	bands”	(Qi	et al.,	2012).

The	 overarching	 goal	 of	 this	 chapter	 is	 to	 provide	 an	 intro
duction	to	hyperspectral	remote	sensing,	its	characteristics,	data	
mining	approaches,	and	methods	of	analysis	for	terrestrial	appli
cation.	 First,	 hyperspectral	 sensors	 from	 various	 platforms	 are	
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Figure 9.1 Tree	spectra.	Analytical	Spectral	Devices	(ASD)	FieldSpec	
JR	spectroradiometer.	Hyperspectral	shapebased	unmixing	to	improve	
intra	and	interclass	variabilities	for	forest	and	agro	ecosystem	monitor
ing.	A	detail	of	a	30by30	m	image	pixel	of	the	virtual	forest	consisting	
of	two	species	with	a	different	structure,	with	10%	of	the	trees	removed	
to	 include	gaps	 in	the	canopy	(a).	An	example	of	a	virtual	 tree	 for	 the	
two	species,	used	to	build	up	the	forest,	is	shown	in	(b),	while	the	spec
tral	variability	of	the	two	species	and	the	soil	is	given	as	well	(c).	(From	
Tits, L.	et al.,	ISPRS J. Photogramm. Remote Sens.,	74,	163,	2012.)
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noted.	Second,	data	mining	to	overcome	data	redundancy	is	enu
merated.	Third,	concept	of	Hughes’s	phenomenon	and	the	need	to	
overcome	it	are	highlighted.	Fourth,	hyperspectral	data	analysis	
methods	are	presented	and	discussed.	Methods	section	includes	
approaches	 to	 optimal	 band	 selection,	 deriving	 hyperspectral	
vegetation	indices	(HVIs)	and	various	classification	methods.

9.2 Hyperspectral Sensors

Hyperspectral	 data	 (or	 imaging	 spectroscopy)	 are	 gathered	
from various	sensors.	These	are	briefly	discussed	in	the	follow
ing	text.

9.2.1 Spectroradiometers

The	most	common	and	widely	used	over	last	50 years	is	handheld	
or	 platformmounted	 spectroradiometers.	 Typically,	 spectro
radiometers	gather	hyperspectral	data	~1 nm	wide	narrowbands	
over	the	entire	spectral	range	(e.g.,	400–13,500 nm).	For	example,	
Figure	 9.1	 illustrates	 the	 hyperspectral	 data	 gathered	 for	 Beech	
versus	Poplar	forests	(Thomas,	2012;	Tits	et al.,	2012;	Zhang,	2012;	
Tanner,	2013)	based	on	FieldSpec	Pro	FR	spectroradiometer	man
ufactured	by	Analytical	Spectral	Devices	(ASD).	Data	are	acquired	
over	400–2,500 nm	at	every	1 nm	bandwidth.	Gathering	spectra	at	
any	given	location	involved	optimizing	the	integration	time	(typi
cally	set	at	17	ms),	providing	foreoptic	information,	recording	dark	
current,	collecting	white	reference	reflectance,	and	then	obtaining	
target	reflectance	at	set	field	of	view	such	as	18°	(Thenkabail	et al.,	
2004a).	Data	are	either	 in	radiance	(W	m−2	sr−1 µm−1)	or	reflec
tance	factor	as	shown	in	Figure	9.1	or	in	percentage.

9.2.2 Airborne Hyperspectral Remote Sensing

Airborne	hyperspectral	remote	sensing	platform	is	the	next	most	
common	hyperspectral	data,	which	has	a	history	of	over	30 years.	
The	 most	 common	 is	 the	 airborne	 visible/infrared	 imaging	

spectrometer	 (AVIRIS)	 by	 NASA’s	 Jet	 Propulsion	 Laboratory	
(JPL).	As	an	imaging	spectrometer,	AVIRIS	gathers	data	in	614
pixel	swath,	in	224	bands,	over	400–2500 nm	wavelength.	The	
data	 can	 be	 constituted	 as	 image	 cube	 (e.g.,  Figure  9.2;	 [Guo	
et al.,	2013]).	Figure	9.2	shows	hyperspectral	imaging	data	gath
ered	 by	 AVIRIS	 over	 an	 agricultural	 area.	 The	 hyperspectral	
signatures	 of	 tilled	 versus	 untilled	 lands	 of	 corn	 and	 soybean	
farms	as	well	as	few	other	crops	are	illustrated	by	Guo	et al.	2013	
(Figure	9.2).	 Spectral	 reflectivity	of	notill	 corn	fields	 is	high
est	in	the	red	(around	680 nm).	In	contrast,	grass/pasture	and	
woods	are	highest	around	680 nm,	and	reflectivity	is	highest	for	
these	land	covers	in	the	nearinfrared	(NIR;	760–900 nm).	The	
healthy	 grass/pasture	 and	 woods	 also	 absorb	 heavily	 around	
960–970 nm	range.	There	are	many	other	unique	features	that	
can	even	be	observed	qualitatively	by	someone	trained	in	imag
ing	spectroscopy.

Another	frequently	used	airborne	hyperspectral	imager	is	the	
Australian	 HyMap.	 It	 has	 126	 wavebands	 over	 400–2500  nm.	
The	 data	 captured	 by	 HyMap	 are	 illustrated	 in	 Figure	 9.3	
(Andrew	 and	 Ustin,	 2008).	 Typical	 characteristics	 of	 healthy	
vegetation	 for	 certain	 species	 is	 obvious	 as	 described	 earlier	
for	wavelengths	centered	 in	red	and	NIR.	 In	contrast,	 the	soil	
and	the	litter	have	comparable	spectra,	with	litter	having	higher	
reflectivity	 than	 soil	 in	 NIR	 and	 SWIR	 bands.	 Water	 absorbs	
heavily	in	NIR	and	SWIR,	and	hence	the	reflectivities	are	very	
low	or	zero	(Figure	9.3).

9.2.3 Spaceborne Hyperspectral Data

In	 the	 year	 2000,	 NASA	 launched	 the	 first	 civilian	 space
borne	 hyperspectral	 imager	 called	 Hyperion	 onboard	 Earth	
Observing1	(EO1)	satellite.	Hyperion	gathers	data	in	242	bands	
spread	 across	 400–2500  nm.	 Each	 band	 is	 10  nm	 wide.	 Of	 the	
original	 242	 Hyperion	 bands,	 196	 are	 unique	 and	 calibrated:	
bands	 8	 (427.55  nm)	 to	 57	 (925.85  nm)	 from	 the	 visible	 and	
nearinfrared	(VNIR)	sensors,	and	bands	79	(932.72 nm)	to	224	
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Figure 9.2 Corntill.	AVIRIS	Indian	Pines	data	set:	(a)	3D	hyperspectral	cube	and	(b)	the	scaled	reflectance	plot.	(From	Guo,	X.	et al.,	ISPRS 
J. Photogramm. Remote Sens.,	83,	50,	2013.)
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Figure 9.3 Reflectance	spectra	derived	from	HyMap	imagery	of	the	dominant	species	at	(a)	Rush	Ranch,	(b)	Jepson	Prairie,	and	(c)	Consumes	
River	Preserve.	These	spectra	were	used	as	training	end	members	for	the	mixturetuned	matched	filtering	(MTMF).	(From	Andrew,	M.E.	and	
Ustin,	S.L.,	Remote Sens. Environ.,	112,	4301,	2008.)
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(2395.53 nm)	from	the	SWIR	sensors	(Thenkabail	et al.,	2004b).	
The	redundant	and	uncalibrated	bands	are	in	the	spectral	range:	
357–417,	936–1068,	and	852–923 nm.	The	196	bands	are	further	
reduced	to	157	bands	after	dropping	bands	in	atmospheric	win
dows:	1306–1437,	1790–1992,	and	2365–2396 nm	ranges,	which	
show	high	noise	level	(Thenkabail	et al.,	2004b).

From	 year	 2000	 to	 2014,	 Hyperion	 has	 acquired	 ~64,000	
images	spread	across	 the	world	(Figure	9.4)	 that	are	now	freely	
available	from	the	U.S.	Geological	Survey’s	(USGS)	EarthExplorer	
and	Glovis	portals.	Each	image	is	7.5 km	by	185 km	with	a	pixel	
resolution	of	30	m.	The	data	cubes	composed	from	these	images	
allow	us	to	derive	hyperspectral	signature	banks	of	various	land	
cover	or	cropland	themes	(e.g.,	Figure	9.4).	Figure	9.5a	illustrates	
two	Hyperion	images	acquired	over	California	as	well	as	a	num
ber	 of	 hyperspectral	 signatures	 of	 major	 crops	 gathered	 using	
ASD	field	spectroradiometer.

9.2.4 Unmanned Aerial Vehicles

Hyperspectral	sensors	are	increasingly	carried	onboard	unmanned	
aerial	vehicles	(UAVs;	Colomina	and	Molina,	2014).	The	UAVs	are	
fast	evolving	as	widely	used	remote	sensing	platform.	A	wide	array	
of	UAVs	(e.g.,	Figure	9.5b)	are	currently	used	to	carry	hyperspec
tral	sensors	as	well	as	many	different	types	of	sensors.

9.2.5 Multispectral versus Hyperspectral

Whereas	 multispectral	 broadband	 dataacquired	 from	 sensors	
such	as	the	Landsat	ETM+	only	offer	few	possibilities,	in	contrast	
Hyperion	offers	many	possibilities	for	visualizations	and	quantifi
cation	of	terrestrial	earth	features	(e.g.,	Figure	9.6).	In	Figure	9.6,	
depiction	of	different	 false	color	composites	 (FCCs)	of	Hyperion	
(e.g.,	RGB:	843,	680,	547 nm;	or	RGB:	680,	547,	486 nm,	and	so	on)	

850350

Re
�e

ct
an

ce
 (%

)

50

40

30

Legend

Corn-late vegetative

EO-1 Hyperion

30
°S

60
°S

0°
30

°N
60

°N

30
°S

60
°S

0°
30

°N
60

°N

180°W 120°W 60°W 0° 60°E 120°E 180°E

180°W 120°W 60°W 0° 60°E 120°E 180°E

Irrigated croplands
Rainfed croplands
Non-croplands

20

10

0

Re
�e

ct
an

ce
 (%

)

50
Mixed crops (122)
Cotton 1: late vegetative (176)
Rice 1: pod formation (155)
Corn: tasselling (112)
cassava (56)
Wheat: late vegetative (134)
Cropland Fallows (47)

40

35

30

25

20

15

10

5

0
428 529 631 733 834 933 1034 1134 1235 1336 1437

Wavelength (nm)

Re
�e

ct
an

ce
 (%

)

1538 1639 1740 1841 1942 2042 2143 2244 2345

40

30

20

10

0

1350
Wavelength (nm)

Wheat, critical

Barley, late vegetative

Typical hyperspectral data cube containing 100s of
Hyperspectral Narrowbands (HNBs)

~64,000 Hyperion images of the world from 2000 to 2013.

Rice, senescing

1850 2350

850350

Re
�e

ct
an

ce
 (%

)

40

3,400 1,700 3,400
km

0
S

N

EW 35

25
30

15
20

10
5
0

1350
Wavelength (nm)

1850 2350

16 9:52

850350 1350
Wavelength (nm)

1850 2350

Re
�e

ct
an

ce
 (%

) 50

40

60

30

20

10

0
850350 1350

Wavelength (nm)
1850 2350

Figure 9.4 EO1	Hyperion	is	the	first	spaceborne	civilian	hyperspectral	sensor	that	was	launched	in	year	2000	and	has	so	far	acquired	~64,000	images	
of	the	world	(see	the	area	covered	by	Hyperion	images	marked	in	red	on	global	image).	Each	image	is	7.5 km	by	185 km,	has	242	bands	over	400–2500 nm.	
A	single	such	image	data	cube	is	shown	in	the	center	with	spectral	signatures	derived	from	the	Hyperion	sensor	shown	for	few	land	cover	themes.	Typical	
ASD	spectroradiometer	gathered	hyperspectral	data	of	crops	are	shown	in	photos.	The	gaps	in	ASD	hyperspectral	data	are	in	areas	of	atmospheric	win
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and	comparison	with	FCC	of	Landsat	ETM+	bands	4,	3,	2	clearly	
demonstrate,	even	by	visual	observation,	the	many	possibilities	that	
exist	with	Hyperion.	For	example,	a	sevenband	Landsat	will	pro
vide	21	unique	indices	(7	×	7	=	49	indices	−	7	indices	on	the	diago
nal	of	 the	matrix	divided	by	2	since	 the	values	above	and	below	
the	matrix	are	transpose	of	each	other).	In	contrast,	157band	clean	
Hyperion	data	(after	reduced	from	original	242	bands	by	eliminat
ing	bands	in	atmospheric	windows	and	uncalibrated	bands)	allow	
for	12,246	unique	indices	(157	×	157	=	24,640	indices—157	indices	
on	the	diagonal	of	the	matrix	divided	by	2	since	the	values	above	
and	below	the	matrix	are	the	transpose	of	each	other).

9.2.6  Hyperspectral Data: 3D Data 
Cube Visualization and Spectral 
Data Characterization

One	 quick	 way	 to	 visualize	 the	 hyperspectral	 data	 is	 to	 cre
ate	3D	cubes	as	illustrated	by	an	EO1	Hyperion	data	in	Figure	
9.7.	The	3D	cube	basically	is	a	data	layer	stack	of	242	bands	over	

400–2500 nm.	Looking	 through	 this	 stack,	when	 there	 is	 same	
color	along	the	bands	1–242,	it	indicates	less	diversity	in	data.	The	
spectral	 regions	 with	 significant	 diversity	 are	 in	 different	 color	
(e.g.,	 red	 versus	 cyan	 in	 Figure	 9.7).	 Hyperion	 digital	 numbers	
(DNs)	are	16bit	radiances	and	are	stored	as	16bit	signed	integer,	
which	are	then	converted	to	radiances	using	a	scaling	factor	pro
vided	in	the	header	file,	then	to	atsensor	reflectance,	and	finally	
to	 ground	 reflectance	 (see	 Thenkabail	 et  al.,	 2004b).	 So,	 a	 click	
on	 any	 pixel	 will	 give	 reflectances	 in	 242	 bands,	 which	 is	 then	
plotted	as	hyperspectral	signature	(e.g.,	Figure	9.6)	and	analyzed	
quantitatively.

9.2.7  Past, Present, and Near-Future 
Spaceborne Hyperspectral Sensors

Hyperspectral	 sensors	 are	 of	 increasing	 interest	 to	 the	 remote	
sensing	 community	 given	 its	 their	 natural	 inherent	 advan
tages	 over	 multispectral	 sensors	 (Qi	 et  al.,	 2012;	 Thenkabail	
et al.,	2012a).	As	a	result,	we	are	seeing	a	number	of	spaceborne	

Figure 9.6 Hyperion	images	displayed	in	a	number	of	different	combinations	of	false	color	composites	(FCCs)	(e.g.,	wavebands	centered	at	
843,	680,	547 nm,	which	are	NIR,	red,	green	as	RGB	FCC)	and	compared	with	classic	RGB	4,	3,	2	(NIR,	red,	green)	FCC	combination	of	Landsat	
ETM+	data	on	top	left.	Unlike	multispectral	data,	hyperspectral	data	offer	numerous	different	opportunities	to	depict,	quantify,	and	study	the	
Planet	Earth.
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hyperspectral	imagers	for	Ocean,	Atmosphere,	and	Land	(Table	
9.1).	These	include	(Table 9.1)	NASA’s	Hyperion,	HyspIRI,	OMI,	
HICO,	German’s	EnMap,	Italy’s	PRISMA,	ESA’s	SCIAMACHY,	
and	 CHRIS	 PROBA	 (Miura	 and	 Yoshioka,	 2012;	 Ortenberg,	
2012;	Qi	et al.,	2012).	There	are	also	current	initiatives	from	pri
vate	industry	in	the	commercial	sector,	like	that	from	Boeing	to	
launch	hyperspectral	sensors.	The	spatial,	spectral,	radiometric,	
and	 temporal	 characteristics	 of	 some	 of	 the	 key	 ocean,	 atmo
spheric,	and	land	observation	spaceborne	hyperspectral	data	are	
provided	in	Table	9.1.

9.2.8 Data Normalization Hyperspectral Data

We	illustrate	the	hyperspectral	data	normalization	taking	the	case	
of	Hyperion	data.	The	DNs	of	the	Hyperion	level	1	products	are	
16bit	radiances	and	are	stored	as	16bit	signed	integers.	The	DNs	
were	converted	to	radiances	(W	m−2	sr−1 µm−1)	using	an	appropri
ate	scaling	(e.g.,	for	a	Hyperion	image	dated	March	21,	2002,	fac
tor:	40	for	visible	and	VNIR,	and	80	for	SWIR).	However,	users	
should	check	the	header	file	of	the	image	they	work	with	to	deter
mine	the	exact	scaling	factor	for	their	image.
Radiance	(W	m−2	sr−1 µm−1)	for	VNIR	bands	=	DN/40
Radiance	(W	m−2	sr−1 µm−1)	for	SWIR	bands	=	DN/80
Radiance to at-sensor top of atmosphere reflectance is then cal-
culated using

 Reflectance (%)	=	 n
π

θ
λ

λ

L d

ESUN cos S

2

where,	TOA	reflectance	(atsatellite	exoatmospheric	reflectance)
Lλ	is	the	radiance	(W	m−2	sr−1 µm−1)
d	 is	 the	 earthtosun	 distance	 in	 astronomic	 units	 at	 the	

acquisition	date	(see	Markham	and	Barker,	1987)
ESUNλ	 is	 the	 irradiance	 (W	 m−2	 sr−1  µm−1)	 or	 solar	 flux	

(Neckel	and	Labs,	1984)
θs	is	the	solar	Zenith	angle

Note:	θs	is	solar	Zenith	angle	in	degrees	(i.e.,	90°	minus	the	sun	
elevation	or	sun	angle	when	the	scene	was	recorded	as	given	in	
the	image	header	file).
Atmospheric	 correction	 methods	 include	 (1)	 dark	 object	 sub
traction	 technique	 (Chavez,	 1988),	 (2)	 improved	 dark	 object	
subtraction	 technique	 (Chavez,	 1989),	 (3)	 radiometric	 normal
ization	 technique:	 Bright	 and	 dark	 object	 regression	 (Elvidge	
et al.,	1995),	and	(4)	6S	model	(Vermote	et al.	2002).	Readers	with	
further	interest	in	this	topic	are	referred	to	Chapters	4	through 8	
in	 Remotely Sensed Data Characterization, Classification, and 
Accuracies	and	Chander	et al.	(2009).

9.3  Data Mining and Data Redundancy 
of Hyperspectral Data

Data	 mining	 is	 one	 of	 the	 critical	 first	 steps	 in	 hyperspectral	
data	analysis.	The	primary	goal	of	data	mining	is	to	eliminate	
redundant	data	and	retain	only	the	useful	data.	Data	volumes	

are	 reduced	 through	 data	 mining	 methods	 such	 as	 feature	
selection	 (e.g.,	 principal	 component	 analysis	 (PCA),	 deriva
tive	 analysis,	 and	 wavelets),	 lambdabylambda	 correlation	
plots	(Thenkabail	et al.,	2000),	minimum	noise	fraction	(MNF)	
(Green	 et  al.,	 1988;	 Boardman	 and	 Kruse,	 1994),	 and	 HVIs	
(e.g.,	 Thenkabail	 et  al.,	 2014).	 Data	 mining	 methods	 lead	 to	
(Thenkabail	et al.,	2012b)	(1)	reduction	in	data	dimensionality,	
(2)	reduction	in	data	redundancy,	and	(3)	extraction	of	unique	
information.

It	 is	 a	 wellknown	 fact	 that	 wavebands	 adjacent	 to	 one	
another	(e.g.,	680 nm	versus	690 nm	or	550 nm	versus	560 nm)	
are	often	highly	correlated	 for	a	given	application.	 In	various	
research	papers,	Thenkabail	et al.	(2000,	2004a,b,	2010,	2012b,	
2014),	Numata	(2012),	and	Thenkabail	and	Wu	(2012)	showed	
that	in	a	large	stack	of	242	bands	in	a	Hyperion	data,	typically	
~10%	 of	 the	 wavebands	 (~20	 bands)	 are	 very	 useful	 in	 agri
cultural	 cropland	 or	 vegetation	 studies.	 It	 means	 for	 any	 one	
given	 application	 (e.g.,	 agriculture),	 a	 large	 number	 of	 bands	
are	likely	to	be	redundant.	So,	the	goal	of	the	data	mining	is	to	
identify	and	eliminate	redundant	bands.	This	will	help	elimi
nate	 unnecessary	 processing	 of	 redundant	 data,	 at	 the	 same	
time	 retaining	 the	 optimal	 power	 of	 hyperspectral	 data.	 This	
process	is	of	great	importance	at	a	time	when	“big	data”	are	the	
norm	of	the	times.

However,	 eliminating	 redundant	 bands	 needs	 to	 be	 done	
with	considerable	care	and	expertise.	What	is	redundant	for	one	
application	(e.g.,	agriculture;	[Yao	et al.,	2011])	may	be	critical	for	
another	application	(e.g.,	geology).

Data	mining	requires	merging	of	different	disciplines	such	
as	 digital	 imagery,	 pattern	 recognition,	 database,	 artificial	
intelligence,	 machine	 learning,	 algorithms,	 and	 statistics.	
There	are	various	models	of	data	mining.	The	generic	concept	
of	data	mining	is	illustrated	in	Figure	9.8	(Lausch	et al.,	2014).	
Figure	 9.9	 (Lausch	 et  al.,	 2014)	 shows	 data	 mining	 model	
applications	 for	 studies	 in	 soil	 clay	 content	 and	 soil	 organic	
content.

9.4  Hughes’ Phenomenon and 
the Need for Data Mining

If	the	number	of	bands	remains	high,	the	number	of	observa
tions	required	to	train	a	classifier	increases	exponentially	to	
maintain	classification	accuracies,	which	 is	called	Hughes’s	
phenomenon	 (Thenkabail	 and	 Wu,	 2012).	 For	 example,	
Thenkabail	et al.	(2004a,	b)	used	20	Hyperion	bands	to	clas
sify	five	crop	types	and	achieve	an	accuracy	of	90%.	Relative	to	
this,	the	sevenband	Landsat	data	provided	only	an	accuracy	
of	60%	in	classifying	the	same	five	crops.	However,	the	num
ber	of	observation	points	(e.g.,	ground	data)	to	train	and	test	
the	algorithms	will	be	exponentially	higher	for	the	Hyperion	
data	relative	to	Landsat	data	because	larger	numbers	of	bands	
are	involved	with	Hyperion.	So,	one	needs	to	weigh	the	higher	
classification	 accuracies	 achieved	 using	 greater	 number	 of	
bands	versus	the	resources	required	to	gather	exponentially	
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higher	number	of	observation	(e.g.,	ground	data)	required	to	
train	and	test	the	algorithms.	So,	higher	accuracy	by	as	much	
as	 30%	 using	 20	 hyperspectral	 narrowbands	 (HNBs)	 when	
compared	 with	 sevenband	 Landsat	 will	 justify	 the	 greater	
number	of	ground	data	required.	However,	beyond	20	bands,	
increase	 in	 accuracy	 per	 increase	 in	 wavebands	 becomes	
asymptotic	 (e.g.,	 Thenkabail	 et  al.,	 2004a,b,	 2012b).	 These	
studies,	for	example,	show	that	when	40	Hyperion	bands	were	
used,	the	classification	accuracies	increased	only	by	another	
5%	 (from	 90%	 with	 20	 bands	 to	 95%	 with	 40	 bands).	 Here	
using	20	additional	Hyperion	bands	(from	20	to	40)	cannot	
be	justified	since	the	ground	observation	needed	to	train	and	
test	the	algorithm	will	also	increase	exponential	for	40	bands	
relative	 to	20.	So,	 the	key	aim	is	 to	balance	 the	higher	clas
sification	accuracies	with	an	optimal	number	of	bands	such	
as	20	instead	too	few	or	too	many	(e.g.,	7	or	40).	By	doing	so,	
we	achieve	a	number	of	goals:

	 1.	 Increased	 classification	 accuracies	with	 optimal	 number	
of	bands.

	 2.	 Significantly	 reduced	 data	 redundancies	 with	 optimal	
number	of	bands.

	 3.	 Overcoming	 Hughes’s	 phenomenon	 by	 using	 optimal	
number	 of	 bands	 (e.g.,	 20)	 in	 which	 observation	 data	
(ground	data)	to	train	and	test	the	algorithms	will	be	kept	
to	reasonable	levels.

9.5  Methods of Hyperspectral 
Data Analysis

Hyperspectral	data	analysis	methods	are	broadly	grouped	under	
two	categories	(Bajwa	and	Kulkarni,	2012):

	 1.	 Feature	extraction	methods
	 2.	 Information	extraction	methods

Under	each	of	 the	earlier	 two	categories,	 specific	unsupervised	
and	 supervised	 classification	 approaches	 exist	 (Figure	 9.10)	
(Bajwa	and	Kulkarni,	2012;	Plaza	et al.,	2012).	Methods	of	classi
fying	vegetation	classes	or	crop	types	or	vegetation	species	using	
HNBs	are	discussed	extensively	in	this	chapter	and	include	unsu
pervised	 classification,	 supervised	 approaches,	 spectral	 angle	
mapper	 (SAM),	 artificial	 neural	 networks,	 and	 support	 vector	
machines	(SVMs),	multivariate	or	partial	least	square	regressions	
(PLSR),	and	discriminant	analysis	(Thenkabail	et al.,	2012a).
Fundamental	 philosophies	 of	 hyperspectral	 data	 analysis	
involve	two	approaches:

	 1.	 Optimal	 hyperspectral	 narrowbands	 (OHNBs)	 where	
only	a	selective	number	of	nonredundant	bands	are	used	
(e.g.,	~20	off	Hyperion	OHNBs	are	used).

	 2.	 Whole	spectral	analysis	(WSA)	where	all	the	bands	in	the	
continuum	(e.g.,	all	242	Hyperion	bands	in	400–2500 nm)	
are	used.

Data mining-system (DM-S)

Iterative
process
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Validation phaseTest phaseTraining phase

Trainings
data
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Test
data

Reverence
value

Validation
data
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Data
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Figure 9.8 Data	mining	1.	Data	mining	and	linked	open	data—New	perspectives	for	data	analysis	in	environmental	research.	Data	mining	
process	with	the	data	mining	system	(DMS)	in	the	phases:	(1)	training	phase,	(2)	test	phase,	and	(3)	validation	phase.	The	data	mining	process	
works	in	a	comparable	way	in	all	types	of	data	mining	types	like	text	mining	or	web	mining	(changed	according	to	Fayyad	et al.,	(1996)	and	Tanner	
(2013).	(From	Lausch,	A.	et al.,	Ecol. Model.,	2014.)
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9.6 Optimal Hyperspectral Narrowbands

Determining	 wavebands	 that	 are	 optimal	 for	 different	 studies	
requires	a	thorough	study	of	these	subjects.	For	example,	the	impor
tance	of	the	wavebands	for	different	studies	such	as	vegetation,	geol
ogy,	and	water	are	all	different.	So,	determining	optimal	OHNBs	
requires	subject	knowledge	and	considerable	experience	working	
with	 hyperspectral	 data.	 Based	 on	 the	 synthesis	 of	 the	 extensive	
studies	conducted	by	Thenkabail	et al.	(2000,	2002,	2004a,b,	2012,	
2013,	2014),	the	OHNBs	for	agriculture	and	vegetation	studies	are	
established	and	presented	in	Table	9.2.	Each	of	these	HNBs	is	iden
tified	for	their	importance	in	studying	one	or	more	of	vegetation	
and	crop	biophysical	and	biochemical	characteristics.	Most	of	these	
bands	are	also	very	distinct	from	one	another;	so	none	of	them	are	
redundant.	Using	some	combination	of	these	bands	will	help	better	
quantify	the	biophysical	and	biochemical	characteristics	of	vegeta
tion	and	agricultural	crops	(Alchanatis	and	Cohen,	2012;	Pu,	2012).	
In	the	following	sections	and	subsections,	we	will	demonstrate	how	
these	HNBs	are	used	in	classifying,	modeling,	and	mapping	agri
cultural	croplands	and	other	vegetation.

Table	 9.2	 shows	 that	 over	 400–2500  nm	 range	 of	 the	 spec
trum,	there	are	28	bands	(e.g.,	~12%	of	the	242	Hyperion	bands	
in	400–2500 nm	range)	 that	 are	optimal	 in	 the	 study	of	 agri
culture	 and	 vegetation.	 However,	 the	 redundant	 bands	 here	
(i.e.,	 agriculture	 and	 vegetation	 applications)	 may	 be	 very	
useful	 in	 other	 applications	 such	 as	 geology	 (BenDor,	 2012).	
For	 example,	 the	 critical	 absorption	 bands	 for	 studying	 min
erals	 like	biotite,	kaolinite,	hematite,	and	others	are	 shown	 in	
Table	9.3.	Unlike	the	vegetation	and	cropland	bands,	the	HNBs	
required	 for	 mineralogy	 are	 quite	 different	 (Vaughan	 et  al.,	
2011;	Slonecker,	2012).

The	 earlier	 fact	 clearly	 establishes	 the	 need	 to	 determine	
OHNBs	that	are	application	specific.

9.7 Hyperspectral Vegetation Indices

One	of	the	most	common,	powerful,	and	useful	form	of	feature	
selection	methods	for	hyperspectral	data	is	based	on	the	calcula
tion	of	HVIs	(Clark,	2012;	Colombo	et al.,	2012;	Galvão,	2012;	
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Figure 9.9 Data	 mining	 2.	 (a,	 b)	 Data	 mining	 and	 linked	 open	 data—New	 perspectives	 for	 data	 analysis	 in	 environmental	 research.	
Airborne	hyperspectral	AISAEagle/HAWK	remote	sensor	mounted	on	Piper,	(c)	CIRimage	from	hyperspectral	sensors	of	the	AISAEAGLE/
HAWK	(AISADUAL)	400–2500 nm	with	data	cube,	367	spectral	bands	with	2	m	recorded	ground	resolution,	date	of	recording	Mai	2012	
with	a	Piper,	Region	Schäfertal—Bode	Catchment,	(d)	Spectral	curve	of	ground	truth	sampling	points	for	soil	and	vegetation	in	the	test	site.	
(e)	Spectral	intensity	curves	of	imaging	hyperspectral	data,	(f)	data	mining	model,	(g)	application	of	the	best	data	mining	model	on	airborne	
hyperspectral	 image	data	 for	quantification	and	recognition	of	organic	content	patterns,	and	(h)	pattern	of	clay	content.	(From	Lausch,	A.	
et al.,	Ecol. Model.,	2014.)
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Gitelson,	2012a,b;	Roberts,	2012).	The	HVIs	achieve	two	impor
tant	goals	of	hyperspectral	data	analysis:

	 1.	 Compute	many	specific	targeted	HVIs	to	help	model	bio
physical	and	biochemical	quantities.

	 2.	 Reduce	 the	data	volume	(mine	 the	data)	 to	eliminate	all	
redundant	bands	for	a	given	application.

There	are	several	approaches	to	deriving	HVIs.	These	are	briefly	
presented	and	discussed.

9.7.1  Two-Band Hyperspectral 
Vegetation Indices

The	 twoband	 hyperspectral	 vegetation	 indices	 (TBHVIs)	 are	
defined	as	follows	(Thenkabail	et al.,	2000):

	
TBHVI

R R

R R
ij

j i

j i

=
−( )
+( ) 	 (9.1)

where,	i,	j	=	1	…	N,	with	N	=	number	of	narrowbands.	Hyperion	
242	bands	offer	the	possibility	of	29,161	unique	indices	(242 * 242 =	
58,564	 −	 242	 =	 58,322	 divided	 by	 2	 resulting	 in	 C242

2 =	 29,161;	
−242	because	the	values	on	the	diagonal	of	matrix	of	242	*	242	
are	unity,	divided	by	2	because	the	values	above	the	diagonal	of	
the	matrix	and	below	the	diagonal	of	matrix	are	transpose	of	one	
another).	However,	as	defined	in	Section	9.2.3,	only	157	of	the	242	
Hyperion	bands	are	useful	after	removing	the	wavebands	in	the	
atmospheric	windows	and	those	that	are	uncalibrated.	This	will	
still	leave	C157

2 =	12,246	unique	TBHVIs.
Any	 one	 of	 the	 crop	 biophysical	 or	 biochemical	 quantity	

(e.g.,	biomass,	leaf	area	index,	nitrogen)	is	correlated	with	each	
one	of	the	12,246	TBHVIs	(Stroppiana	et al.,	2012;	Zhu	et al.,	
2012).	This	will	 result	 for	 each	crop	variable	 (e.g.,	biomass)	 a	

total	 of	 12,246	 unique	 models,	 each	 providing	 an	 Rsquare.	
Figure 9.11	 shows	 the	contour	plot	of	12,246	Rsquare	values	
plotted	 for	 (1)	 rice	 crop	 wet	 biomass	 with	 TBHVIs	 (Figure	
9.11;	 above	 the	 diagonal)	 and	 (2)	 barley	 crop	 wet	 biomass	
with	 TBHVIs	 (Figure	 9.11,	 below	 the	 diagonal).	 The	 areas	
with	“bull’seye”	are	regions	of	rich	 information	having	high	
Rsquare	values,	whereas	the	areas	in	gray	are	redundant	bands	
with	 low	 Rsquare	 values.	 Based	 on	 these	 lambda	 (λ1)	 versus	
lambda	(λ2)	plots	(Figure	9.11),	the	optimal	waveband	centers	
(λ)	and	widths	(Δλ)	are	determined	(Table	9.2).	Table	9.2	shows	
the	optimal	wavebands	(λ),	wavebands	centers	(λ),	and	widths	
(Δλ)	based	on	numerous	studies	(Thenkabail	et al.,	2000,	2002,	
2004a,b,	2012,	2013,	2014),	and	a	metaanalysis	of	these	studies.

9.7.1.1 Refinement of Two-Band HVIs

Further	refinement	of	each	of	the	twoband	HVIs	(TBHVIs)	is	
possible	by	computing	(1)	soiladjusted	versions	of	TBHVIs	and	
(2)	atmospheric	corrected	versions	of	TBHVIs.	Interested	read
ers	can	read	more	on	this	topic	at	Thenkabail	et al.	(2000).

9.7.2  Multi-Band Hyperspectral 
Vegetation Indices

The	multiband	hyperspectral	vegetation	indices	(MBHVIs)	are	
computed	as	follows	(Thenkabail	et al.,	2000;	Li	et al.,	2012):

	
MBHVI a Ri ij j

j 1

N

=
=
∑ 	 (9.2)

where
MBHVIi	is	the	crop	variable	i
R	 is	 the	 reflectance	 in	bands	 j	 (j	=	1	−	N	with	N	=	242	 for	

Hyperion)
a	is	the	coefficient	for	reflectance	in	band	j	for	ith	variable
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Figure 9.10 Hyperspectral	data	analysis	methods.	(From	Bajwa,	S.	and	Kulkarni,	S.S.,	Hyperspectral	data	mining,	Chapter	4,	in	Thenkabail,	
P.S.,	Lyon,	G.J.,	and	Huete,	A.,	Hyperspectral Remote Sensing of Vegetation,	CRC	Press/Taylor	&	Francis	Group,	Boca	Raton,	FL/London,	U.K./New	
York,	2012,	pp.	93–120.)
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Table 9.2 Optimal	(Nonredundant)	Hyperspectral	Narrowbands	to	Study	Vegetation	and	Agricultural	Cropsa,	b,	c

Waveband	
Number	(#)	

Waveband	
Range	(λ)	

Waveband	
Center	(λ)	

Waveband	
Width	(Δλ)	 Importance	and	Physical	Significance	of	Waveband	in	Vegetation	and	Cropland	Studies	

A.	Ultraviolet
1 373–377 375 5 fPAR,	leaf	water:	fraction	of	photosynthetically	active	radiation	(fPAR),	leaf	water	content

B.	Blue	bands
2 403–407 405 5 Nitrogen,	Senescing:	sensitivity	to	changes	in	leaf	nitrogen	reflectance	changes	due	to	pigments	

is	moderate	to	low.	Sensitive	to	senescing	(yellow	and	yellow	green	leaves).
3 491–500 495 10 Carotenoid,	Light	use	efficiency	(LUE),	Stress	in	vegetation:	Sensitive	to	senescing	and	loss	of	

chlorophyll\browning,	ripening,	crop	yield,	and	soil	background	effects

C.	Green	bands
4 513–517 515 5 Pigments	(Carotenoid,	Chlorophyll,	anthocyanins),	Nitrogen,	Vigor:	positive	change	in	

reflectance	per	unit	change	in	wavelength	of	this	visible	spectrum	is	maximum	around	this	
green	waveband

5 530.5–531.5 531 1 Light	use	efficiency	(LUE),	Xanophyll	cycle,	Stress	in	vegetation,	pest	and	disease:	Senescing	and	
loss	of	chlorophyll\browning,	ripening,	crop	yield,	and	soil	background	effects

6 546–555 550 10 Chlorophyll:	Total	chlorophyll;	Chlorophyll/carotenoid	ratio,	vegetation	nutritional	and	fertility	
level;	vegetation	discrimination;	vegetation	classification

7 566–575 570 10 Pigments	(Anthocyanins,	Chlorophyll),	Nitrogen:	negative	change	in	reflectance	per	unit	
change	in	wavelength	is	maximum	as	a	result	of	sensitivity	to	vegetation	vigor,	pigment,	and	N.

D.	Red	bands
8 676–685 680 10 Biophysical	quantities	and	yield:	leaf	area	index,	wet	and	dry	biomass,	plant	height,	grain	yield,	

crop	type,	crop	discrimination

E.	Rededge	bands
9 703–707 705 5 Stress	and	chlorophyll:	Nitrogen	stress,	crop	stress,	crop	growth	stage	studies
10 718–722 720 5 Stress	and	chlorophyll:	Nitrogen	stress,	crop	stress,	crop	growth	stage	studies
11 700–740 700–740 700–740 Chlorophyll,	senescing,	stress,	drought:	firstorder	derivative	index	over	700–740 nm	has	

applications	in	vegetation	studies	(e.g.,	blueshift	during	stress	and	redshift	during	healthy	growth)

F.	Near	infrared	(NIR)	bands
12 841–860 850 20 Biophysical	quantities	and	yield:	LAI,	wet	and	dry	biomass,	plant	height,	grain	yield,	crop	type,	

crop	discrimination,	total	chlorophyll
13 886–915 900 20 Biophysical	quantities,	Yield,	Moisture	index:	peak	NIR	reflectance.	Useful	for	computing	crop	

moisture	sensitivity	index,	NDVI;	biomass,	LAI,	Yield.

G.	Near	infrared	(NIR)	bands
14 961–980 970 20 Plant	moisture	content	Center	of	moisture	sensitive	“trough”;	water	band	index,	leaf	water,	biomass;

H.	Far	near	infrared	(FNIR)	bands
15 1073–1077 1075 5 Biophysical	and	biochemical	quantities:	leaf	area	index,	wet	and	dry	biomass,	plant	height,	grain	

yield,	crop	type,	crop	discrimination,	total	chlorophyll,	anthocyanin,	carotenoids
16 1178–1182 1080 5 Water	absorption	band
17 1243–1247 1245 5 Water	sensitivity:	water	band	index,	leaf	water,	biomass.	Reflectance	peak	in	1050–1300 nm

I.	Early	shortwave	infrared	(ESWIR)	bands
18 1448–1532 1450 5 Vegetation	classification	and	discrimination:	ecotype	classification;	plant	moisture	sensitivity.	

Moisture	absorption	trough	in	early	short	wave	infrared	(ESWIR)
19 1516–1520 1518 5 Moisture	and	biomass:	A	point	of	most	rapid	rise	in	spectra	with	unit	change	in	wavelength	in	

SWIR.	Sensitive	to	plant	moisture.
20 1648–1652 1650 5 Heavy	metal	stress,	Moisture	sensitivity:	Heavy	metal	stress	due	to	reduction	in	Chlorophyll	

Sensitivity	to	plant	moisture	fluctuations	in	ESWIR.	Use	as	an	index	with	1548	or	1620	or	
1690 nm.

21 1723–1727 1725 5 Lignin,	biomass,	starch,	moisture:	sensitive	to	lignin,	biomass,	starch	Discriminating	crops	and	
vegetation.

J.	Far	shortwave	infrared	(FSWIR)	bands
22 1948–1952 1950 5 Water	absorption	band:	highest	moisture	absorption	trough	in	FSWIR.	Use	as	an	index	with	any	

one	of	2025,	2133,	and	2213 nm	Affected	by	noise	at	times.
23 2019–2027 2023 8 Litter	(plant	litter),	lignin,	cellulose:	littersoil	differentiation:	moderate	to	low	moisture	

absorption	trough	in	FSWIR.	Use	as	an	index	with	any	one	of	2025,	2133,	and	2213 nm
(Continued	)
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The	 process	 of	 modeling	 involves	 running	 stepwise	 linear	
regression	 models	 (e.g.,	 using	 MAXR	 algorithm	 in	 Statistical	
Analysis	 System	 (SAS,	 2009)	 with	 any	 one	 biophysical	 or	 bio
chemical	variable	(e.g.,	biomass)	as	dependent	variable	and	the	
numerous	HNBs	as	 independent	variables	(e.g.,	157	of	 the	242	
useful	bands	of	Hyperion).	In	this	modeling	approach,	we	will	
get	the	best	oneband,	twoband,	threeband,	and	so	on	to	best	
nband	model.	The	best	oneband	model	is	the	one	in	which	the	
biomass	 (taken	 as	 example)	 has	 highest	 Rsquare	 value	 with	 a	
single	band	out	of	the	total	157	Hyperion	HNBs.	Then,	we	obtain	
the	 best	 twoband	 model,	 in	 which	 two	 HNBs	 provide	 a	 best	
Rsquare	 value	 with	 biomass.	 Similarly,	 the	 best	 threeband,	
best	fourband,	and	best	nband	(e.g.,	all	157	Hyperion	bands)	
models	are	obtained,	even	 though,	 theoretically,	 all	157	bands	
can	be	involved	in	providing	a	157band	biomass	model	that	is	
usually	meaningless	due	to	overfitting	of	data.	However,	a	plot	
of	Rsquare	values	(yaxis)	versus	the	number	of	bands	(xaxis)	
will	show	us	when	an	increase	in	Rsquare	values	with	the	addi
tion	 of	 wavebands	 becomes	 asymptotic.	 Alternatively,	 we	 can	
also	consider	additional	bands,	when	there	is	at	least	an	increase	
of	0.03	or	higher	 in	Rsquare	value	when	additional	bands	are	
added.	So,	the	approach	we	can	use	is	to	look	at	oneband	model	

and	 see	 its	 Rsquare.	 Then,	 when	 twoband	 model	 increases	
Rsquare	value	by	at	least	0.03	(a	threshold	we	can	set),	then	con
sider	the	twoband	model;	otherwise,	retain	the	oneband	model	
as	 final.	 At	 some	 stage,	 we	 will	 notice	 that	 addition	 of	 a	 band	
does	not	increase	Rsquare	value	by	more	than	0.03.	Typically,	
we	have	noticed	that	anywhere	between	3	and	10	HNBs	explain	
optimal	 variability	 in	 most	 agricultural	 crop	 and	 vegetation	
variables.	Beyond	these	3–10	bands,	the	increase	in	Rsquare	per	
increase	in	band	is	insignificant	or	asymptotic.	However,	which	
3–10	bands	within	400–2500 nm	will,	often,	vary	is	based	on	the	
type	of	crop	variable.
Through	MBHVIs,	we	can	establish	the	following:

	 1.	 How	 many	 HNBs	 are	 required	 to	 achieve	 an	 optimal	
Rsquare	for	any	biophysical	or	biochemical	quantity?

	 2.	 Which	HNBs	are	involved	in	providing	optimal	Rsquare?
	 3.	 Through	this	process,	we	can	determine	which	are	impor

tant	HNBs	and	which	are	 redundant.	However,	 the	best	
approach	to	achieve	this	is	by	a	study	conducted	for	many	
crops,	involving	several	crop	variables,	and	based	on	data	
from	multiple	sites	and	years.	Table	9.2	provides	one	such	
summary.

Table 9.2 (continued ) Optimal	(Nonredundant)	Hyperspectral	Narrowbands	to	Study	Vegetation	and	Agricultural	Cropsa,	b,	c

Waveband	
Number	(#)	

Waveband	
Range	(λ)	

Waveband	
Center	(λ)	

Waveband	
Width	(Δλ)	 Importance	and	Physical	Significance	of	Waveband	in	Vegetation	and	Cropland	Studies	

24 2131–2135 2133 5 Litter	(plant	litter),	lignin,	cellulose:	typically	highest	reflectivity	in	FSWIR	for	vegetation.	
Litter	soil	differentiation

25 2203–2207 2205 5 Litter,	lignin,	cellulose,	sugar,	starch,	protein;	Heavy	metal	stress:	typically,	second	highest	
reflectivity	in	FSWIR	for	vegetation.	Heavy	metal	stress	due	to	reduction	in	Chlorophyll

26 2258–2266 2262 8 Moisture	and	biomass:	moisture	absorption	trough	in	far	shortwave	infrared	(FSWIR).	A	point	
of	most	rapid	change	in	slope	of	spectra	based	on	land	cover,	vegetation	type,	and	vigor.

27 2293–2297 2295 5 Stress:	sensitive	to	soil	background	and	plant	stress
28 2357–2361 2359 5 Cellulose,	protein,	nitrogen:	sensitive	to	crop	stress,	lignin,	and	starch

Sources:	Modified	and	adopted	from	Thenkabail,	P.S.	et al.,	Remote Sens. Environ.,	71,	158,	2000;	Thenkabail,	P.S.	et al.	(2002);	Thenkabail,	P.S.	et al.,	Remote 
Sens. Environ.,	90,	23,	2004a;	Thenkabail,	P.S.	et al.,	Remote Sens. Environ.,	91,	354,	2004b;	Thenkabail	et al.	(2012,	2013);	Thenkabail,	P.S.	et al.,	Photogramm. 
Eng. Remote Sens.,	80,	697,	2014.

a	Most	hyperspectral	narrowbands	(HNBs)	that	adjoin	one	another	are	highly	correlated	for	a	given	application.	Hence	from	a	large	number	of	HNBs,	these	
nonredundant	(optimal)	bands	are	selected.

b	These	optimal	HNBs	are	for	studying	vegetation	and	agricultural	crops.	When	we	use	some	or	all	of	these	wavebands,	we	can	attain	highest	possible	classi
fication	accuracies	in	classifying	vegetation	categories	or	crop	types.

c	 Wavebands	selected	here	are	based	on	careful	evaluation	of	large	number	of	studies.

Table 9.3 Subpixel	Mineral	Mapping	of	a	Porphyry	Copper	Belt	Using	EO1	Hyperion	Data

Hyperion	Band	(#)	 Wavelength	(nm)	 Feature	 Minerals	 Mineral	Characteristic	

210,	217 2254,	2324 Absorption Biotite Potassicbiotitic	alteration	zone
205 2203 Absorption Muscovite	and	illite Al–OH	vibration	in	minerals	with	muscovite	deeper	absorption	than	illite
201,	205 2163,	2203 Absorption Kaolinite Al–OH	vibration
14,	79,	205 487,	932,	2203 Absorption Goethite
14,	53,	205 487,	884,	2203 Absorption Hematite
79211205 932,	2264,	2203 Absorption Jarosite
201 2163 Absorption Pyrophyllite Al–OH	and	Mg–OH
218 2335 Absorption Chlorite Al–OH	and	Mg–OH

Source:	 Adopted	and	modified	from	information	in	manuscript	by	Hosseinjani	Zadeh,	M.	et al.,	Adv. Space Res.,	53,	440,	2014.
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These	MBHVIs	take	advantage	of	the	key	absorption	and	reflec
tive	portions	of	the	spectrum	(e.g.,	Figure	9.12;	[Gnyp	et al.,	2014]).	
Taking	advantage	of	four	HNBs,	two	reflective	(900	and	1050 nm)	
and	two	absorptive	(955	and	1220 nm),	Gnyp	et al.	constitute	an	
MBHVI	(Equation	9.1).	In	their	paper,	Gnyp	et al.	(2014)	clearly	
demonstrate	 the	 significantly	 higher	 Rsquare	 values	 provided	
by	such	a	multiband	HVIs	when	compared	with	other	twoband	
HVIs	(e.g.,	in	Figure 9.13,	GnyLi	has	a	much	higher	Rsquare	value	
relative	to	other	indices).	Interesting	and	maybe	noteworthy	that	
while	 the	 typical	 saturation	 effect	 (lack	 of	 sensitivity)	 at	 higher	
biomass	 amounts	 is	 still	 present,	 it	 is	 evidently	 somewhat	 less	
severe	with	GnyLi	than	the	others	(except	REP	but	it	has	lower r2).	
Also,	 research	 by	 Thenkabail	 et  al.	 (2004a,	 b),	 Mariotto	 et  al.	
(2013),	 and	 Marshall	 and	 Thenkabail	 (2014)	 has	 demonstrated	
that	 anywhere	 between	 3	 and	 10	 HNBs	 involved	 in	 multiband	
HVIs	explain	greatest	variability	in	modeling	various	biophysical	
and	biochemical	quantities	for	various	agricultural	crops.

However,	it	needs	to	be	noted	that	the	specific	band	centers	
and	band	widths	are	not	as	definitive	as	shown	in	Figure	9.12	or/
and	Equation	9.1.	This	is	because,	with	crop	type	and	crop	grow
ing	conditions,	the	specific	reflective	maxima	(900	and	1050 nm)	

and	reflective	minima	(955	and	1220 nm)	shown	in	Figure	9.12	
and	Equation	9.1	can	vary.	For	example,	the	moisture	absorp
tion	 maxima	 can	 be	 at	 750,	 760,	 770,	 or	 780  nm	 (Thenkabail	
et al.,	2012,	2013)	or	can	be	at	755 nm	as	shown	in	Figure	9.12	
and	Equation	9.1.	As	a	result,	we	performed	metaanalysis	of	a	
number	of	papers	to	come	with	the	recommendations	of	HNB	
centers	and	HNB	widths	(Table	9.2)	that	are	optimal	for	use	in	
HVI	computations	across	crops	and	vegetation.

	
GnyLi

R R R R

R R R R
=

+
900 1050 955 1220

900 1050 955 1220

× ×
× ×

− 	 (9.3)

9.8  The Best Hyperspectral Vegetation 
Indices and Their Categories

Based	on	extensive	research	over	the	last	decade	(Thenkabail	et al.,	
2000,	2002,	2004a,b,	2012,	2013,	2014),	six	distinct	categories	of	
twoband	TBHVIs	(Table	9.4)	are	considered	most	significant	and	
important	 in	 order	 to	 study	 specific	 biophysical	 and	 biochemi
cal	quantities	of	agriculture	and	vegetation.	Author	recommends	
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that	in	future,	researchers	use	these	HVIs,	derived	using	HNBs,	
for	their	studies	to	quantify	and	model	biophysical	and	biochemi
cal	quantities	of	various	agricultural	crops	and	vegetation	of	dif
ferent	types.	The	values	of	two	such	indices	are	illustrated.	These	
are	 (1)	 hyperspectral	 biomass	 and	 structural	 index	 1	 (HBSI1;	
Thenkabail	et al.,	2014),	derived	using	the	Hyperion	bands	cen
tered	around	855	and	682 nm	(each	with	10 nm	width),	is	applied	
to	an	agricultural	area	to	determine	biomass	(Figure	9.14);	and	(2)	
photochemical	 reflectance	 index	(PRI)	 for	stress	detection	(e.g.,	
Figure 9.15;	Middleton	et al.,	2012).	The	importance	of	wavebands	
in	computing	the	indices	for	various	biophysical	and	biochemi
cal	is	illustrated	in	Figure 9.16.	Reader	is	encouraged	to	compare	
Figure	 9.15	 with	 Table	 9.4	 and	 Table	 9.2	 for	 better	 understand
ing	of	HNBs	(Table	9.2),	HVIs	(Table	9.4),	and	their	importance	
(Figure	9.16)	in	studies	pertaining	to	crops	and	vegetation.

9.9 Whole Spectral Analysis

A	 number	 of	 chapters	 discuss	 the	 usefulness	 and	 utility	 of	
using	 whole	 spectra	 (e.g.,	 continuous	 and	 entire	 spectra	 over	
400–2500 nm)	for	analysis	using	such	methods	as	PLSR,	wavelet	
analysis,	continuum	removal,	SAM,	and	spectral	matching	tech
niques	(SMTs)	(Thenkabail	et al.,	2012).

9.9.1 Spectral Matching Techniques

SMTs	(Thenkabail	et al.,	2007)	involves	the	following:

	 1.	 Ideal or target spectral library creation:	Collecting	ideal	or	
target	spectra	(e.g.,	specific	crops,	specific	species,	specific	
mineral)	and	creating	a	spectral	library.

	 2.	 Class	spectra	collection.
	 3.	 Matching	class	spectra	with	ideal	spectra	to	identify	and	

label	classes.

The	 principal	 approach	 in	 SMT	 is	 to	 match	 the	 shape	 or	 the	
magnitude	or	 (preferably)	both	 to	an	 ideal	or	 target	 spectrum	
(pure	class	or	“end	member”).	Thenkabail	et al.	(2007)	proposed	
and	implemented	SMT	for	multitemporal	data	illustrated	later	
(Figure	 9.17).	 The	 qualitative	 phenoSMT	 approach	 concept	
remains	 the	 same	 for	 hyperspectral	 data	 (replace	 the	 number	
of	 bands	 of	 temporal	 data	 with	 the	 number	 of	 hyperspectral	
bands).

The	quantitative	SMTs	consist	of	(Thenkabail	et al.,	2007)	(1)	
spectral	 correlation	 similarity—a	 shape	 measure;	 (2)	 spectral	
similarity	value—a	shape	and	magnitude	measure;	(3)	Euclidian	
distance	similarity—a	distance	measure;	and	(4)	modified	spec
tral	angle	similarity—a	hyper	angle	measure.

9.9.2  Continuum Removal through Derivative 
Hyperspectral Vegetation Indices

The	 derivative	 hyperspectral	 vegetation	 indices	 (DHVIs)	 are	
computed	by	integrating	index	over	a	certain	wavelength	(e.g.,	
600–700 nm	or	700–760 nm).	The	equation	is

Table 9.4 Hyperspectral	Vegetation	Indices	or	HVIs

Band	
Number	(#)	

Hyperspectral	
Narrowband	(λ1)	 Bandwidth	(Δλ1)	

Hyperspectral	
Narrowband	(λ2)	

Bandwidth	
(Δλ2)	

Hyperspectral	Vegetation	
Index	(HVI)	

Best	Index	Under	Each	
Category	

1.	Hyperspectral	biomass	and	structural	indices	(HBSIs)	(to	best	study	biomass,	LAI,	plant	height,	and	grain	yield)
HBSI1 855 20 682 5 (855	−	682)/(855	+	682) HBSI:	Hyperspectral	biomass	

and	structural	indexHBSI2 910 20 682 5 (910	−	682)/(910	+	682)
HBSI3 550 5 682 5 (550	−	682)/(550	+	682)

2.	Hyperspectral	biochemical	indices	(HBCIs)	(pigments	like	carotenoids,	anthocyanins	as	well	as	Nitrogen,	chlorophyll)
HBCI8 550 5 515 5 (550	−	515)/(550	+	515) HBCI:	Hyperspectral	

biochemical	indexHBCI9 550 5 490 5 (550	−	490)/(550	+	490)

3.	Hyperspectral	Rededge	indices	(HREIs)	(to	best	study	plant	stress,	drought)
HREI14 700	−	740 40 Firstorder	derivative	integrated	over	rededge. HREI:	Hyperspectral	rededge	

indexHREI15 855 5 720 5 (855	−	720)/(855	+	720)

4.	Hyperspectral	water	and	moisture	indices	(HWMIs)	(to	best	study	plant	water	and	moisture)
HWMI17 855 20 970 10 (855	−	970)/(855	+	970) HWMI:	Hyperspectral	water	

and	moisture	indexHWMI18 1075 5 970 10 (1075	−	970)/(1075	+	970)
HWMI19 1075 5 1180 5 (1075	−	1180)/(1075	+	1180)
HWMI20 1245 5 1180 5 (1245	−	1180)/(1245	+	1180)

5.	Hyperspectral	lightuse	efficiency	index	(HLEI)	(to	best	study	light	use	efficiency	or	LUE)
HLUE24 570 5 531 1 (570	−	531)/(570	+	531) HLEI:	Hyperspectral	lightuse	

efficiency	index

6.	Hyperspectral	lignin	cellulose	index	(HLCI)	(to	best	study	plant	lignin,	cellulose,	and	plant	residue)
HLCI25 2205 5 2025 1 (2205	−	2025)/(2205	+	2025) HLCI:	Hyperspectral	lignin	

cellulose	index

Sources:	Modified	and	adopted	from	Thenkabail,	P.S.	et al.,	Photogramm. Eng. Remote Sens.,	80,	697,	2014.
Note:	 Also	see	wavebands	in	Table	9.2	used	to	derive	these	indices.
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i	and	j	are	band	numbers
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The	process	of	obtaining	DHVI	value	for	600–700 nm	is	as	fol
lows:	(1)	DHVI1	=	lambda	1	(e.g.,	λ1	=	600 nm)	versus	lambda	
2	(e.g.,	λ2 =	610 nm).	The	difference	 in	 the	reflectivity	of	 these	
two	 bands	 is	 then	 divided	 by	 their	 bandwidth	 (ΔλI	 =	 10  nm)	
and	(2) DHVI2 =	the	process	 is	repeated	for	 lambda	1	(e.g.,	λ1	
=	610 nm)	versus	 lambda	2	 (e.g.,	λ2	=	620 nm).	The	difference	
in	reflectivity	of	these	two	bands	is	then	divided	by	their	band
width	(ΔλI	=	10 nm)	and	(3)	DHVIn	=	so	on	to	lambda	1	(e.g.,	
λ1	=	690 nm)	versus	lambda	2	(e.g.,	λ2	=	700 nm).	The	difference	
in	reflectivity	of	these	two	bands	is	then	divided	by	their	band
width	(ΔλI	=	10 nm).	Finally,	add	DHVI1,	DHVI2,	and	so	on	to	
DHVIn	to	get	single	an	integrated	DHVI	value	over	the	entire	
600–700 nm	range.

The	DHVIs	can	be	derived	over	various	wavelengths	such	
as	 400–2500  nm,	 500–600  nm,	 600–800  nm,	 and	 any	 other	
wavelength	 you	 find	 useful	 for	 the	 particular	 application.	
There	 are	 opportunities	 to	 further	 investigate	 the	 signifi
cance	 of	 DHVIs	 over	 different	 wavelengths	 for	 a	 wide	 array	
of	applications.

9.10 Principal Component Analysis

Another	 common,	 powerful,	 and	 useful	 feature	 selection	
method	 for	 hyperspectral	 data	 analysis	 is	 PCA.	 The	PCA	 per
forms	following	functions:

	 1.	 Reduces data volumes:	This	happens	since	the	PCA	gen
erates	numerous	principal	components	(PCs)	(as	many	
as	 the	 number	 of	 wavebands),	 but	 the	 first	 few	 PCs	
explain	 almost	 all	 the	 variability	 of	 data.	 The	 first	 PC	
(PC1)	explains	the	highest,	followed	by	the	other.	Since	
each	 PC	 is	 constituted	 based	 on	 the	 information	 from	
all	 the	 bands	 (e.g.,	 PC1	 =	 factor	 loading	 for	 band	 1	 *	
band	1	reflectivity	  +	⋯	+	   factor	 loading	for	band	n	*	
band	 n	 reflectivity),	 the	 PCs	 have	 the	 power	 of	 hyper
spectral	bands,	but	does	not	have	all	the	redundancy	of	
the	same.

	 2.	 Provides a new single band of information	(e.g.,	PC1,	PC2),	
each	 of	 which	 (e.g.,	 PC1)	 actually	 has	 the	 information	
derived	from	all	the	HNBs.	These	new	bands	of	informa
tion	(e.g.,	PC1)	can	then	be	used	to	classify	an	area	(e.g.,	to	
establish	crop	types)	or	used	to	model	crop	biophysical	or	
biochemical	quantities.

	 3.	 The power of PCs	can	be	used	to	discriminate	crop	types,	
or	land	cover	themes,	or	species	(e.g.,	Figure	9.18).
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Figure 9.14 Spatial	depiction	of	a	hyperspectral	biomass	and	structural	index	1	(HBSI1)	as	applied	to	an	agricultural	area.	One	of	the	HVIs	
(HBSI1)	in	mapping	wet	biomass	for	a	study	area	using	Hyperion	hyperspectral	data.	The	red	area	in	the	zscale	can	be	stretched	further	to	show	
better	biomass	variability	with	change	in	HBSI1.	For	example,	HBSI1	0.4	=	0.53	and	HBSI	0.6	=	1.16,	HBSI1	0.8	=	2.56,	and	HBSI1	=	5.62.	The	
current	stretch	does	not	adequately	show	these	differences	(as	much	of	the	higher	end	is	in	red).	However,	if	we	stretch	between	HBSI1	from	0.4	
to	1.0,	then	the	biomass	differences	in	this	HBSI1	range,	which	is	0.53–5.62,	will	show	up	in	better	contrast.	The	relationship	between	HBSI1	and	
biomass	is	nonlinear	due	to	saturation	of	indices	at	the	higher	end	of	the	biomass.	However,	this	saturation	is	much	lower	for	hyperspectral	index	
like	HBSI1	when	compared	to	broadband	NDVI.
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Figure 9.15 Assessing	structural	effects	on	photochemical	reflectance	index	(PRI)	for	stress	detection	in	conifer	forests.	PRI512,	PRI570,	and	
NDVI	obtained	from	the	AHS	airborne	sensor	from	three	study	areas	of	Pinus nigra	with	different	levels	of	stress:	SN1,	SN2,	and	SN3.	At	the	bot
tom	of	each	image,	two	zoom	images	of	a	central	plot,	one	pixel	based	displaying	1	×	1	and	3	×	3	resolutions	and	the	other	at	object	level.	Note:	PRI512	
is	a	normalized	index	involving	a	waveband	centered	at	512	and	531 nm,	whereas	PRI570	is	a	normalized	index	involving	a	waveband	centered	at	
570	and	531 nm.	Airborne	hyperspectral	scanner	(AHS)	(Sensytech	Inc.,	currently	Argon	St.	Inc.,	Ann	Arbor,	MI)	acquiring	2	m	spatial	resolution	
imagery	in	38	bands	in	the	0.43–12.5	μm	spectral	range.	(From	HernándezClemente,	R.	et al.,	Adv. Space Res.,	53,	440,	2011.)
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9.11  Spectral Mixture Analysis 
of Hyperspectral Data

Hyperspectral	data	have	great	ability	to	distinguish	specific	objects	
based	on	their	unique	signatures.	For	example,	wheat	versus	barley	
crops	are	distinguished	based	on	 the	 spectral	 reflectivity	 in	 two	
HNBs,	each	of	10 nm	wide,	and	centered	at	687	and	855 nm	(e.g.,	
Figure	 9.19).	 However,	 often,	 we	 find	 multiple	 objects	 or	 classes	
within	a	pixel.	In	situations	like	that,	we	will	need	to	perform	spec
tral	mixture	analysis	(SMA)	and	an	independent	component	anal
ysis,	in	order	to	unmix	the	spectral	signatures	within	each	pixel.

The	reference	spectra	for	SMA	are	derived	from	“end	mem
bers”	(e.g.,	Figure	9.20).	Once	all	the	materials	in	the	image	are	

identified,	 then	 it	 is	 possible	 to	 use	 linear	 or	 nonlinear	 spec
tral	unmixing	to	find	out	how	much	of	each	material	is	in	each	
pixel.

The	 concept	 of	 unmixing	 hyperspectral	 data	 is	 illus
trated	by	showing	Hyperion	unmixing	of	(1)	vegetation	frac
tional	 cover	 in	 Figure	 9.21	 and	 (2)	 minerals	 in	 Figure	 9.22.	
Subpixel	 mineral	 mapping	 of	 a	 porphyry	 copper	 belt	 using	
EO1	 Hyperion	 data	 in	 Figure	 9.23	 involved	 mineral	 spec
tra	extracted	from	Hyperion	compared	to	convolved	spectra	
from	field	samples	and	reference	library	spectra	(Figures	9.20	
and	 9.21;	 Hosseinjani	 Zadeh	 et  al.,	 2014).	 Extensive	 discus
sions	 on	 linear	 and	 nonlinear	 SMAs	 can	 be	 found	 in	 Plaza	
et al.	(2012).
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Figure 9.16 Importance	 of	 various	 portions	 of	 hyperspectral	 data	 in	 characterizing	 biophysical	 and	 biochemical	 quantities	 of	 crops	 and	
vegetation.
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9.12 Support Vector Machines

SVMs	 are	 a	 machine	 learning	 supervised	 classification	
approach.	Unlike	the	feature	selection	approach,	data	dimen
sionality	 is	 not	 an	 issue	 here.	 Any	 number	 of	 bands	 can	 be	
used.	 The	 process	 involves	 supervised	 training	 of	 classes,	
based	on	sufficient	and	accurate	knowledge	of	 the	class	 (e.g.,	
ground	 data),	 where	 one	 can	 use	 all	 or	 some	 of	 the	 hyper
spectral	bands	 to	 train	 the	algorithm.	Once	 the	algorithm	 is	
sufficiently	trained,	it	can	be	run	on	rest	of	the	data	to	gather	
the	 same	 class	 occurring	 in	 other	 areas.	 Figure	 9.24a	 shows	
the	classification	performed	using	all	272	AISA	hyperspectral	
bands	 based	 on	 SVM	 algorithm.	 In	 Figure	 9.24b,	 the	 same	
classification	 is	 performed	 using	 only	 51	 of	 the	 most	 impor
tant	 AISA	 hyperspectral	 bands.	 Results	 of	 the	 51band	 clas
sification	 output	 (Figure	 9.24b)	 are	 comparable	 to	 272band	
classification	 output	 (Figure	 9.24a)	 in	 most	 areas;	 there	 is	
significant	uncertainty	 in	the	northern	portion	of	 the	 image.	

Studies	have	shown	that	by	using	only	1%	of	training	pixels	per	
class,	almost	90%	overall	classification	accuracies	are	obtained	
using	 SVM	 methods	 (Bajwa	 and	 Kulkarni,	 2012;	 Ramsey	 III	
and	Rangoonwala,	2012).

9.13  Random Forest and Adaboost Tree-
Based Ensemble Classification 
and Spectral Band Selection

Random	forest	and	Adaboost	are two	treebased	ensemble	clas
sifiers.	These	classifiers	serve	two	purposes:

	 1.	 Help	select	hyperspectral	bands	that	are	important	as	well	
as	those	that	are	redundant.

	 2.	 Classify	 hyperspectral	 data	 through	 decision	 treebased	
classifiers.
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Figure 9.17 Phenospectral	matching	technique	(SMTs).	In	SMTs,	the	class	temporal	profiles	(NDVI	curves)	are	matched	with	the	ideal	tempo
ral	profile	(quantitatively	based	on	temporal	profile	similarity	values)	in	order	to	group	and	identify	classes	as	illustrated	for	a	rice	class	in	this	fig
ure.	Illustration	of	doublecrop	(DC)	irrigation.	The	NDVI	spectra	of	the	four	classes	(C26,	C28,	C30,	and	C43)	of	DC	irrigation	are	“matched”	
with	ideal	spectra	(shaded	in	yellow)	for	the	same.	This	is	a	qualitative	illustration	of	SMTs.	For	quantitative	methods,	refer	to	Thenkabail	et al.	2007.
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This	approach	has	been	discussed	in	great	detail	by	Chan	and	
Paelinckx	(2008)	for	thorough	classification	of	detailed	eco
topes	using	hyperspectral	data	(Figures	9.25	and	9.26).	They	
gathered	extensive	hyperspectral	data	 for	 (Figure	9.25)	 (1)	6	
grassland	classes	and	(2)	10	tree	classes.	In	terms	of	accuracy	
performance,	 random	 forest	 and	 Adaboost	 are	 almost	 the	
same,	and	both	have	outperformed	a	neural	network	classifier	
(Chan	and	Paelinckx,	2008).	Both	feature	selection	routines,	
the	bestfirst	search	and	the	outofbag	ranking	index	under	

random	 forest,	 are	 successful	 in	 identifying	 substantially	
smaller	band	subsets	that	attained	almost	the	same	accuracy	
as	all	the	bands	(e.g.,	Figure	9.24;	Chan	and	Paelinckx,	2008).	
There	 are	 many	 approaches	 to	 selecting	 the	 spectral	 wave
bands	for	obtaining	best	classification results.	For	agriculture	
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Figure 9.18 Species	 soybeans.	 View	 angle	 effects	 on	 the	 discrimination	 of	 soybean	 varieties	 and	 on	 the	 relationships	 between	 vegetation	
indices	and	yield	using	offnadir	Hyperion	data.	Projection	of	the	Hyperion	discriminant	scores	of	the	three	soybean	varieties	in	the	(a)	forward	
and	(b)	backscattering	directions	for	different	years.	(From	Galvao,	L.S.	et al.,	Crop	type	discrimination	using	hyperspectral	data,	Chapter	17,	
in	Thenkabail,	P.S.,	Lyon,	G.J.,	and	Huete,	A.,	Hyperspectral Remote Sensing of Vegetation,	CRC	Press/Taylor	&	Francis	Group,	Boca	Raton,	FL/
London,	U.K./New	York,	2009,	pp.	397–422.)
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Figure 9.19 Differentiating	corn	 from	soybeans	using	 two	hyper
spectral	narrowbands.
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Figure 9.20 End	 member.	 Arid	 land	 characterization	 with	 EO1	
Hyperion	hyperspectral	data.	End	member	extraction	in	n	dimension	
visualizer	using	bands	3,	4,	and	5	of	the	minimum	noise	fraction	(MNF)	
transform	 Hyperion	 image.	 (From	 Jafari,	 R.	 and	 Lewis,	 M.M.,	 Int. J. 
Appl. Earth Obs. Geoinf.,	19,	298,	2012.)
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Figure 9.21 Unmixing	qualitative	assessment	of	Hyperion	unmixing	of	vegetation	fractional	cover.	Qualitative	validation	of	the	fractional	
cover	estimated	with	Hyperion	imagery.	Each	set	of	pictures	and	graphs	corresponds	to	one	of	12	sites	visited	from	May	16	to	19	and	August	29	to	
31,	2005.	The	left	graphs	show	the	reflectance	spectra	derived	from	Hyperion	images	for	the	April	(green	curve),	July	(black	curve),	and	September	
(blue	curve)	images	from	400	to	2400 nm.	The	right	graphs	show	the	position	of	each	spectrum	in	the	normalized	difference	vegetation	index	or	
NDVI	(xaxis)	(detecting	live,	green	vegetation)	and	cellulose	absorption	index	or	CAI	(yaxis)	(detecting	nonphotosynthetic	vegetation)	space	
from	April	to	September	(red	dots	and	line)	and	the	position	of	the	end	members	(black	lines).	The	derived	photosynthetic	vegetation	(fPV),	non
photosynthetic	vegetation	(fNPV),	and	bare	soil	(fBS)	are	shown	in	each	picture	and	are	critical	for	natural	resource	management	and	for	modeling	
carbon	dynamics.	(From	Guerschman,	J.P.	et al.,	Remote Sens. Environ.,	113,	928,	2009.)
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Figure 9.22 Mineral	mapping.	Subpixel	mineral	mapping	of	a	porphyry	copper	belt	using	EO1	Hyperion	data.	Mineral	spectra	extracted	from	
Hyperion	comparing	to	convolved	spectra	from	field	samples	and	reference	library	spectra.	(a)	Biotite	(Bio),	(b)	Muscovite	(Mu),	(c)	Illite	(Il),	(d)	
Kaolinite	(Kao),	(e)	Goethite	(Goe),	(f)	Hem	(Hem),	(g)	Jarosite	(Ja),	(h)	pyrophyllite	(Pyr),	and	(i)	Chlorite	(Ch).	Hyp	and	Lib	are	abbreviations	of	
Hyperion	and	Library,	respectively.	The	red	vertical	lines	indicate	locations	of	diagnostic	absorption	features.	(From	Hosseinjani	Zadeh,	M.	et al.,	
Adv. Space Res.,	53,	440,	2014.)
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Figure 9.23 Mineral	mapping.	Subpixel	mineral	mapping	of	a	porphyry	copper	belt	using	EO1	Hyperion	data.	Thematic	mineral	maps	using	
subpixel	mixture	tuned	matched	filtering	(MTMF)	method.	(a)	Final	classification	image	map	of	alteration	minerals	derived	from	MTMF	algo
rithm.	(b)	Sarcheshmeh	mine,	 (c)	Sereidun,	and	(d)	Darrehzar.	Bio,	Mu,	Il,	Kao,	Goe,	Hem,	Ja,	Pyr,	and	Ch	indicate	Biotite,	Muscovite,	 Illite,	
Kaolinite,	Goethite,	Hematite,	Jarosite,	pyrophyllite,	and	Chlorite,	respectively.	These	values	indicate	percentages	of	each	mineral	at	the	pixel.	For	
instance,	value	of	0.25	shows	that	25%	of	pixel	contains	the	selected	mineral.	(From	Hosseinjani	Zadeh,	M.	et al.,	Adv. Space Res.,	53,	440,	2014.)
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Lightning strike-damaged pine trees

Legend
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Sirex grey stage-damaged pine trees
Healthy pine trees
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Figure 9.24 SVM.	Detecting	Sirex	noctilio	grayattacked	and	lightningstruck	pine	trees	using	airborne	hyperspectral	data,	random	forest,	
and	support	vector	machine	classifiers.	Classification	maps	obtained	using	support	vector	machine	(SVM)	classification	algorithm,	all	(a)	and	the	
51	most	important	(b)	Airborne	Imaging	System	for	different	Applications	(AISA)	Eagle	spectral	bands.	The	AISA	image	spatial	resolution	was	
about	2	m,	and	there	were	272	spectral	bands	ranging	from	393.23	to	994.09 nm	(VNIR:	visible	nearinfrared)	with	bandwidths	between	2	and	
4 nm.	(From	AbdelRahman,	E.M.	et al.,	ISPRS J. Photogramm. Remote Sens.,	88,	48,	2014.)

K22130_C009.indd   228 6/10/2015   12:18:38 PM



229Hyperspectral Remote Sensing for Terrestrial Applications

0.6

(a)

0.5

0.4

Re
fle

ct
an

ce

0.3

0.2

0.1

0
0.4 0.6 0.8 1 1.2 1.4 1.6

Wavelength (μm)
1.8 2 2.2 2.4

b
hp
hpgh
hpgs
hpv
hx

(b)

0.6

0.5

0.4

Re
fle

ct
an

ce

0.3

0.2

0.1

0
0.4 0.6 0.8 1 1.2 1.4 1.6

Wavelength (μm)
1.8 2 2.2 2.4

f
gml
kj
kl
lh
p
q
sc
sp
v

Figure 9.25 Evaluation	of	Random	Forest	and	Adaboost	treebased	ensemble	classification	and	spectral	band	selection	for	ecotope	mapping	
using	airborne	hyperspectral	imagery.	Mean	spectrum	of	the	(a)	6	grassland	classes	and	(b)	10	tree	classes.	Notes:	b,	grassland,	arable	land;	hp,	
grassland,	species	poor	improved	grassland	(normally	more	homogenous	for	the	whole	parcel);	hpgh,	grassland,	seminatural	grassland;	hpgs,	
grassland,	species	rich	improved	grassland	(between	hpgh	and	hp);	hpv,	grassland,	grassland	with	patches	hp	and	either	patches	hpgs	or	hpgh;	
hx,	grassland,	grass	monocultures	(equal	to	arable	land	sown	with	grasses	of	one	or	more	years);	f,	tree/tall_veg,	deciduous	forest<comma>	domi
nated	by	beech	(Fagus	sp.);	gml,	tree/tall_veg,	plantation	of	deciduous	tree	species	other	than	beech,	oak,	alder,	and	poplar;	kj,	tree/tall_veg,	tall	
tree	orchard;	kl,	tree/tall_veg,	low	tree	orchard;	lh,	tree/tall_veg,	poplar	plantation;	p,	tree/tall_veg,	conifer	plantation;	q,	tree/tall_veg,	deciduous	
forest<comma>	dominated	by	oak	trees	(Quercus	sp.);	sp,	tree/tall_veg	sc,	scrubs	of	clearings	and	scrubs	on	abandoned	land;	sp,	tree/tall_veg,	
thorn	ticket;	v,	tree/tall_veg,Woodland	of	alluvial	soil<comma>	fens	and	bogs	(mostly	dominated	by	alder,	Alnus	sp.).	(From	Chan,	J.C.W.	and	
Paelinckx,	D.,	Remote Sens. Environ.,	112,	2999,	2008.)
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and	vegetation	studies,	one	could	use	various	combination	of	
band	selection	 (e.g.,	Table 9.5)	depending	on	 the	number	of	
bands	 one	 decided	 to	 use,	 classification	 accuracies	 desired,	
and	the	need	to	overcome	Hughes’s	phenomenon.

9.14 Conclusions

This	 chapter	 provides	 an	 overview	 of	 hyperspectral	 remote	
sensing	 for	 terrestrial	 applications.	 First,	 the	 chapter	 defines	
hyperspectral	remote	sensing	or	imaging	spectroscopy.	Second,	
characteristics	 of	 hyperspectral	 data	 acquired	 from	 three	

distinct	platforms	are	discussed:	(1)	groundbased	or	handheld	
or	 truckmounted	 spectroradiometers,	 (2)	 airborne,	 and	 (3)	
spaceborne.	Third,	the	needs	for	data	mining	to	eliminate	redun
dant	 bands	 are	 discussed.	 Various	 data	 mining	 methods	 are	
presented.	Fourth,	 the	 importance	of	understanding	Hughes’s	
phenomenon	and	approaches	 to	overcome	 the	same	are	high
lighted.	Fifth,	methods	of	hyperspectral	analysis	are	presented	
and	discussed.	These	methods	include	feature	extraction	meth
ods	 and	 information	 extraction	 methods.	 OHNBs	 best	 suited	
for	 agricultural	 and	 vegetation	 studies	 are	 determined	 from	
metaanalysis.	 HVIs,	 twoband	 and	 multiband	 versions,	 best	
suited	 for	 agricultural	 and	 vegetation	 studies	 are	 also	 deter
mined	 from	 metaanalysis.	 The	 WSA	 was	 performed	 through	
SMTs	and	continuum	removal	derivative	HVIs.	Hyperspectral	
image	 classification	 for	 land	 cover	 and	 species	 types	 was	 per
formed	 using	 such	 methods	 like	 SMA,	 SVMs,	 and	 treebased	
ensemble	classifiers	such	as	random	forest	and	Adaboost.
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Based	on	Number	of	Bands	Available	to	Classify	Crops	or	Vegetation
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Sources:	 Adapted	 and	 modified	 from	 Thenkabail,	 P.S.	 et  al.,	 2012,	 2013;	
Thenkabail,	P.S.	et al.,	Photogramm. Eng. Remote Sens., 80,	697,	2014.
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