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ASD	 	 Analytical spectral devices
AISA	 	 �Airborne imaging spectrometer for applications
AVIRIS	 	 �Airborne visible/infrared imaging spectrom­

eter sensor
CHRIS PROBA	 �Compact High Resolution Imaging Spectro­

meter Project for On-Board Autonomy, 
Belgian Satellite

DHVIs	 	 �Derivative hyperspectral vegetation indices 
(DHVIs)

DNs	 	 Digital numbers
EnMAP	 	 �Environmental Mapping and Analysis 

Program, Genrman’s hyperspectral satellite 
mission

EO-1	 	 Earth Observing-1 satellite of NASA

GnyLi	 	 �A hyperspectral vegetation index involving 
5 hyperspectral narrow bands developed by 
Martin Gnyp Leon, Fei Li, and Georg Bareth 
et al.

HICO	 	 �Hyperspectral Imager for Coastal Oceans 
sensor, NASA’s Hyperspectral Imager for the 
Coastal Ocean (HREP-HICO)

HBSIs	 	 Hyperspectral biomass and structural indices
HNBs	 	 Hyperspectral narrow bands
HVIs	 	 Hyperspectral vegetation indices (HVIs)
HyspIRI	 	 �Hyperspectral infrared imager, next-genera­

tion hyperspectral sensor by NASA
MBHVI	 	 �Multiple band hyperspectral vegetation indices
MNF	 	 Minimum noise fraction
NASA	 	 �National Atmospheric and Space 

Administration
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OHNBs	 	 Optimum hyperspectral narrow bands
OMI	 	 �Ozone Monitoring Instrument onboard Aura 

satellite
PCA	 	 Principal component analysis
PRISMA		 �Hyperspectral Precursor and Application 

Mission or PRecursore IperSpettrale della 
Missione Applicativa of Italy

SCIAMACHY	 �Scanning Imaging Absorption spectroMeter 
for Atmospheric CartograpHY, hyperspec­
tral sensor onboard European Space Agencies 
(ESA’s) ENVISAT

SMA	 	 Spectral mixture analysis
SMT	 	 Spectral matching techniques
SVM	 	 Support vector machines
TBHVIs	 	 Two-band hyperspectral vegetation indices
VNIR	 	 Visible and nearinfrared (VNIR)
WSA	 	 Whole spectral analysis

9.1  Introduction

Remote sensing data are considered hyperspectral when the 
data are gathered from numerous wavebands, contiguously 
over an entire range of the spectrum (e.g., 400–2500 nm). Goetz 
(1992) defines hyperspectral remote sensing as “The acquisition 
of images in hundreds of registered, contiguous spectral bands 
such that for each picture element of an image it is possible 
to derive a complete reflectance spectrum.” However, Jensen 
(2004) defines hyperspectral remote sensing as “The simulta­
neous acquisition of images in many relatively narrow, con­
tiguous and/or non contiguous spectral bands throughout the 
ultraviolet, visible, and infrared portions of the electromagnetic 
spectrum.”
Overall, the three key factors in considering data to be hyper­
spectral are the following:

	 1.	 Contiguity in data collection: Data are collected contigu­
ously over a spectral range (e.g., wavebands spread across 
400–2500 nm).

	 2.	 Number of wavebands: The number of wavebands by itself 
does not make the data hyperspectral. For example, if 
there are numerous narrowbands in 400–700  nm wave­
lengths, but have only a few broadbands in 701–2500 nm, 
the data cannot be considered hyperspectral. However, 
even relatively broad bands of width, say, for example, 
30  nm bandwidths spread equally across 400–2500  nm, 
for a total of ~70 bands, are considered hyperspectral due 
to contiguity.

	 3.	 Bandwidths: Often, hyperspectral data are collected in 
very narrow bandwidths of ~1 to ~10  nm, contiguously 
over the entire spectral range (e.g., 400–2500 nm). Such 
narrow bandwidths are required to get hyperspectral sig­
natures. But one can have a combination of narrowbands 
and broadbands spread across the spectrum and meet the 
criterion for hyperspectral remote sensing.

In summary

Remote sensing data are called hyperspectral when the 
data are collected contiguously over a spectral range, pref­
erably in narrow bandwidths and in reasonably high num­
ber of bands.

Such a definition will meet many requirements and expec­
tations of hyperspectral data.

Hyperspectral remote sensing is also referred to as imag­
ing spectroscopy since data for each pixel are acquired in 
numerous contiguous wavebands resulting in (1) 3d image 
cube and (2) hyperspectral signatures. The various forms 
and characteristics of hyperspectral data (imaging spec­
troscopy) are illustrated in Figures 9.1 through 9.7. The dis­
tinction between hyperspectral and multispectral is based 
on the narrowness and contiguous nature of the measure­
ments, not the “number of bands” (Qi et al., 2012).

The overarching goal of this chapter is to provide an intro­
duction to hyperspectral remote sensing, its characteristics, data 
mining approaches, and methods of analysis for terrestrial appli­
cation. First, hyperspectral sensors from various platforms are 
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Figure 9.1  Tree spectra. Analytical Spectral Devices (ASD) FieldSpec 
JR spectroradiometer. Hyperspectral shape-based unmixing to improve 
intra- and interclass variabilities for forest and agro-ecosystem monitor­
ing. A detail of a 30-by-30 m image pixel of the virtual forest consisting 
of two species with a different structure, with 10% of the trees removed 
to include gaps in the canopy (a). An example of a virtual tree for the 
two species, used to build up the forest, is shown in (b), while the spec­
tral variability of the two species and the soil is given as well (c). (From 
Tits, L. et al., ISPRS J. Photogramm. Remote Sens., 74, 163, 2012.)
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noted. Second, data mining to overcome data redundancy is enu­
merated. Third, concept of Hughes’s phenomenon and the need to 
overcome it are highlighted. Fourth, hyperspectral data analysis 
methods are presented and discussed. Methods section includes 
approaches to optimal band selection, deriving hyperspectral 
vegetation indices (HVIs) and various classification methods.

9.2  Hyperspectral Sensors

Hyperspectral data (or imaging spectroscopy) are gathered 
from various sensors. These are briefly discussed in the follow­
ing text.

9.2.1  Spectroradiometers

The most common and widely used over last 50 years is hand-held 
or platform-mounted spectroradiometers. Typically, spectro­
radiometers gather hyperspectral data ~1 nm wide narrowbands 
over the entire spectral range (e.g., 400–13,500 nm). For example, 
Figure 9.1 illustrates the hyperspectral data gathered for Beech 
versus Poplar forests (Thomas, 2012; Tits et al., 2012; Zhang, 2012; 
Tanner, 2013) based on FieldSpec Pro FR spectroradiometer man­
ufactured by Analytical Spectral Devices (ASD). Data are acquired 
over 400–2,500 nm at every 1 nm bandwidth. Gathering spectra at 
any given location involved optimizing the integration time (typi­
cally set at 17 ms), providing foreoptic information, recording dark 
current, collecting white reference reflectance, and then obtaining 
target reflectance at set field of view such as 18° (Thenkabail et al., 
2004a). Data are either in radiance (W m−2 sr−1 µm−1) or reflec­
tance factor as shown in Figure 9.1 or in percentage.

9.2.2  Airborne Hyperspectral Remote Sensing

Airborne hyperspectral remote sensing platform is the next most 
common hyperspectral data, which has a history of over 30 years. 
The most common is the airborne visible/infrared imaging 

spectrometer (AVIRIS) by NASA’s Jet Propulsion Laboratory 
(JPL). As an imaging spectrometer, AVIRIS gathers data in 614-
pixel swath, in 224 bands, over 400–2500 nm wavelength. The 
data can be constituted as image cube (e.g.,  Figure  9.2; [Guo 
et al., 2013]). Figure 9.2 shows hyperspectral imaging data gath­
ered by AVIRIS over an agricultural area. The hyperspectral 
signatures of tilled versus untilled lands of corn and soybean 
farms as well as few other crops are illustrated by Guo et al. 2013 
(Figure 9.2). Spectral reflectivity of no-till corn fields is high­
est in the red (around 680 nm). In contrast, grass/pasture and 
woods are highest around 680 nm, and reflectivity is highest for 
these land covers in the near-infrared (NIR; 760–900 nm). The 
healthy grass/pasture and woods also absorb heavily around 
960–970 nm range. There are many other unique features that 
can even be observed qualitatively by someone trained in imag­
ing spectroscopy.

Another frequently used airborne hyperspectral imager is the 
Australian HyMap. It has 126 wavebands over 400–2500  nm. 
The data captured by HyMap are illustrated in Figure 9.3 
(Andrew and Ustin, 2008). Typical characteristics of healthy 
vegetation for certain species is obvious as described earlier 
for wavelengths centered in red and NIR. In contrast, the soil 
and the litter have comparable spectra, with litter having higher 
reflectivity than soil in NIR and SWIR bands. Water absorbs 
heavily in NIR and SWIR, and hence the reflectivities are very 
low or zero (Figure 9.3).

9.2.3  Spaceborne Hyperspectral Data

In the year 2000, NASA launched the first civilian space­
borne hyperspectral imager called Hyperion onboard Earth 
Observing-1 (EO-1) satellite. Hyperion gathers data in 242 bands 
spread across 400–2500  nm. Each band is 10  nm wide. Of the 
original 242 Hyperion bands, 196 are unique and calibrated: 
bands 8 (427.55  nm) to 57 (925.85  nm) from the visible and 
near-infrared (VNIR) sensors, and bands 79 (932.72 nm) to 224 
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Figure 9.2  Corn-till. AVIRIS Indian Pines data set: (a) 3D hyperspectral cube and (b) the scaled reflectance plot. (From Guo, X. et al., ISPRS 
J. Photogramm. Remote Sens., 83, 50, 2013.)
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(2395.53 nm) from the SWIR sensors (Thenkabail et al., 2004b). 
The redundant and uncalibrated bands are in the spectral range: 
357–417, 936–1068, and 852–923 nm. The 196 bands are further 
reduced to 157 bands after dropping bands in atmospheric win­
dows: 1306–1437, 1790–1992, and 2365–2396 nm ranges, which 
show high noise level (Thenkabail et al., 2004b).

From year 2000 to 2014, Hyperion has acquired ~64,000 
images spread across the world (Figure 9.4) that are now freely 
available from the U.S. Geological Survey’s (USGS) EarthExplorer 
and Glovis portals. Each image is 7.5 km by 185 km with a pixel 
resolution of 30 m. The data cubes composed from these images 
allow us to derive hyperspectral signature banks of various land 
cover or cropland themes (e.g., Figure 9.4). Figure 9.5a illustrates 
two Hyperion images acquired over California as well as a num­
ber of hyperspectral signatures of major crops gathered using 
ASD field spectroradiometer.

9.2.4  Unmanned Aerial Vehicles

Hyperspectral sensors are increasingly carried onboard unmanned 
aerial vehicles (UAVs; Colomina and Molina, 2014). The UAVs are 
fast evolving as widely used remote sensing platform. A wide array 
of UAVs (e.g., Figure 9.5b) are currently used to carry hyperspec­
tral sensors as well as many different types of sensors.

9.2.5  Multispectral versus Hyperspectral

Whereas multispectral broadband data-acquired from sensors 
such as the Landsat ETM+ only offer few possibilities, in contrast 
Hyperion offers many possibilities for visualizations and quantifi­
cation of terrestrial earth features (e.g., Figure 9.6). In Figure 9.6, 
depiction of different false color composites (FCCs) of Hyperion 
(e.g., RGB: 843, 680, 547 nm; or RGB: 680, 547, 486 nm, and so on) 
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and comparison with FCC of Landsat ETM+ bands 4, 3, 2 clearly 
demonstrate, even by visual observation, the many possibilities that 
exist with Hyperion. For example, a seven-band Landsat will pro­
vide 21 unique indices (7 × 7 = 49 indices − 7 indices on the diago­
nal of the matrix divided by 2 since the values above and below 
the matrix are transpose of each other). In contrast, 157-band clean 
Hyperion data (after reduced from original 242 bands by eliminat­
ing bands in atmospheric windows and uncalibrated bands) allow 
for 12,246 unique indices (157 × 157 = 24,640 indices—157 indices 
on the diagonal of the matrix divided by 2 since the values above 
and below the matrix are the transpose of each other).

9.2.6 � Hyperspectral Data: 3D Data 
Cube Visualization and Spectral 
Data Characterization

One quick way to visualize the hyperspectral data is to cre­
ate 3D cubes as illustrated by an EO-1 Hyperion data in Figure 
9.7. The 3D cube basically is a data layer stack of 242 bands over 

400–2500 nm. Looking through this stack, when there is same 
color along the bands 1–242, it indicates less diversity in data. The 
spectral regions with significant diversity are in different color 
(e.g., red versus cyan in Figure 9.7). Hyperion digital numbers 
(DNs) are 16-bit radiances and are stored as 16-bit signed integer, 
which are then converted to radiances using a scaling factor pro­
vided in the header file, then to at-sensor reflectance, and finally 
to ground reflectance (see Thenkabail et  al., 2004b). So, a click 
on any pixel will give reflectances in 242 bands, which is then 
plotted as hyperspectral signature (e.g., Figure 9.6) and analyzed 
quantitatively.

9.2.7 � Past, Present, and Near-Future 
Spaceborne Hyperspectral Sensors

Hyperspectral sensors are of increasing interest to the remote 
sensing community given its their natural inherent advan­
tages over multispectral sensors (Qi et  al., 2012; Thenkabail 
et al., 2012a). As a result, we are seeing a number of spaceborne 

Figure 9.6  Hyperion images displayed in a number of different combinations of false color composites (FCCs) (e.g., wavebands centered at 
843, 680, 547 nm, which are NIR, red, green as RGB FCC) and compared with classic RGB 4, 3, 2 (NIR, red, green) FCC combination of Landsat 
ETM+ data on top left. Unlike multispectral data, hyperspectral data offer numerous different opportunities to depict, quantify, and study the 
Planet Earth.
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hyperspectral imagers for Ocean, Atmosphere, and Land (Table 
9.1). These include (Table 9.1) NASA’s Hyperion, HyspIRI, OMI, 
HICO, German’s EnMap, Italy’s PRISMA, ESA’s SCIAMACHY, 
and CHRIS PROBA (Miura and Yoshioka, 2012; Ortenberg, 
2012; Qi et al., 2012). There are also current initiatives from pri­
vate industry in the commercial sector, like that from Boeing to 
launch hyperspectral sensors. The spatial, spectral, radiometric, 
and temporal characteristics of some of the key ocean, atmo­
spheric, and land observation spaceborne hyperspectral data are 
provided in Table 9.1.

9.2.8  Data Normalization Hyperspectral Data

We illustrate the hyperspectral data normalization taking the case 
of Hyperion data. The DNs of the Hyperion level 1 products are 
16-bit radiances and are stored as 16-bit signed integers. The DNs 
were converted to radiances (W m−2 sr−1 µm−1) using an appropri­
ate scaling (e.g., for a Hyperion image dated March 21, 2002, fac­
tor: 40 for visible and VNIR, and 80 for SWIR). However, users 
should check the header file of the image they work with to deter­
mine the exact scaling factor for their image.
Radiance (W m−2 sr−1 µm−1) for VNIR bands = DN/40
Radiance (W m−2 sr−1 µm−1) for SWIR bands = DN/80
Radiance to at-sensor top of atmosphere reflectance is then cal-
culated using

	 Reflectance (%) = n
π

θ
λ

λ

L d

ESUN cos S

2

where, TOA reflectance (at-satellite exoatmospheric reflectance)
Lλ is the radiance (W m−2 sr−1 µm−1)
d is the earth-to-sun distance in astronomic units at the 

acquisition date (see Markham and Barker, 1987)
ESUNλ is the irradiance (W m−2 sr−1  µm−1) or solar flux 

(Neckel and Labs, 1984)
θs is the solar Zenith angle

Note: θs is solar Zenith angle in degrees (i.e., 90° minus the sun 
elevation or sun angle when the scene was recorded as given in 
the image header file).
Atmospheric correction methods include (1) dark object sub­
traction technique (Chavez, 1988), (2) improved dark object 
subtraction technique (Chavez, 1989), (3) radiometric normal­
ization technique: Bright and dark object regression (Elvidge 
et al., 1995), and (4) 6S model (Vermote et al. 2002). Readers with 
further interest in this topic are referred to Chapters 4 through 8 
in Remotely Sensed Data Characterization, Classification, and 
Accuracies and Chander et al. (2009).

9.3 � Data Mining and Data Redundancy 
of Hyperspectral Data

Data mining is one of the critical first steps in hyperspectral 
data analysis. The primary goal of data mining is to eliminate 
redundant data and retain only the useful data. Data volumes 

are reduced through data mining methods such as feature 
selection (e.g., principal component analysis (PCA), deriva­
tive analysis, and wavelets), lambda-by-lambda correlation 
plots (Thenkabail et al., 2000), minimum noise fraction (MNF) 
(Green et  al., 1988; Boardman and Kruse, 1994), and HVIs 
(e.g., Thenkabail et  al., 2014). Data mining methods lead to 
(Thenkabail et al., 2012b) (1) reduction in data dimensionality, 
(2) reduction in data redundancy, and (3) extraction of unique 
information.

It is a well-known fact that wavebands adjacent to one 
another (e.g., 680 nm versus 690 nm or 550 nm versus 560 nm) 
are often highly correlated for a given application. In various 
research papers, Thenkabail et al. (2000, 2004a,b, 2010, 2012b, 
2014), Numata (2012), and Thenkabail and Wu (2012) showed 
that in a large stack of 242 bands in a Hyperion data, typically 
~10% of the wavebands (~20 bands) are very useful in agri­
cultural cropland or vegetation studies. It means for any one 
given application (e.g., agriculture), a large number of bands 
are likely to be redundant. So, the goal of the data mining is to 
identify and eliminate redundant bands. This will help elimi­
nate unnecessary processing of redundant data, at the same 
time retaining the optimal power of hyperspectral data. This 
process is of great importance at a time when “big data” are the 
norm of the times.

However, eliminating redundant bands needs to be done 
with considerable care and expertise. What is redundant for one 
application (e.g., agriculture; [Yao et al., 2011]) may be critical for 
another application (e.g., geology).

Data mining requires merging of different disciplines such 
as digital imagery, pattern recognition, database, artificial 
intelligence, machine learning, algorithms, and statistics. 
There are various models of data mining. The generic concept 
of data mining is illustrated in Figure 9.8 (Lausch et al., 2014). 
Figure 9.9 (Lausch et  al., 2014) shows data mining model 
applications for studies in soil clay content and soil organic 
content.

9.4 � Hughes’ Phenomenon and 
the Need for Data Mining

If the number of bands remains high, the number of observa­
tions required to train a classifier increases exponentially to 
maintain classification accuracies, which is called Hughes’s 
phenomenon (Thenkabail and Wu, 2012). For example, 
Thenkabail et al. (2004a, b) used 20 Hyperion bands to clas­
sify five crop types and achieve an accuracy of 90%. Relative to 
this, the seven-band Landsat data provided only an accuracy 
of 60% in classifying the same five crops. However, the num­
ber of observation points (e.g., ground data) to train and test 
the algorithms will be exponentially higher for the Hyperion 
data relative to Landsat data because larger numbers of bands 
are involved with Hyperion. So, one needs to weigh the higher 
classification accuracies achieved using greater number of 
bands versus the resources required to gather exponentially 
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higher number of observation (e.g., ground data) required to 
train and test the algorithms. So, higher accuracy by as much 
as 30% using 20 hyperspectral narrowbands (HNBs) when 
compared with seven-band Landsat will justify the greater 
number of ground data required. However, beyond 20 bands, 
increase in accuracy per increase in wavebands becomes 
asymptotic (e.g., Thenkabail et  al., 2004a,b, 2012b). These 
studies, for example, show that when 40 Hyperion bands were 
used, the classification accuracies increased only by another 
5% (from 90% with 20 bands to 95% with 40 bands). Here 
using 20 additional Hyperion bands (from 20 to 40) cannot 
be justified since the ground observation needed to train and 
test the algorithm will also increase exponential for 40 bands 
relative to 20. So, the key aim is to balance the higher clas­
sification accuracies with an optimal number of bands such 
as 20 instead too few or too many (e.g., 7 or 40). By doing so, 
we achieve a number of goals:

	 1.	 Increased classification accuracies with optimal number 
of bands.

	 2.	 Significantly reduced data redundancies with optimal 
number of bands.

	 3.	 Overcoming Hughes’s phenomenon by using optimal 
number of bands (e.g., 20) in which observation data 
(ground data) to train and test the algorithms will be kept 
to reasonable levels.

9.5 � Methods of Hyperspectral 
Data Analysis

Hyperspectral data analysis methods are broadly grouped under 
two categories (Bajwa and Kulkarni, 2012):

	 1.	 Feature extraction methods
	 2.	 Information extraction methods

Under each of the earlier two categories, specific unsupervised 
and supervised classification approaches exist (Figure 9.10) 
(Bajwa and Kulkarni, 2012; Plaza et al., 2012). Methods of classi­
fying vegetation classes or crop types or vegetation species using 
HNBs are discussed extensively in this chapter and include unsu­
pervised classification, supervised approaches, spectral angle 
mapper (SAM), artificial neural networks, and support vector 
machines (SVMs), multivariate or partial least square regressions 
(PLSR), and discriminant analysis (Thenkabail et al., 2012a).
Fundamental philosophies of hyperspectral data analysis 
involve two approaches:

	 1.	 Optimal hyperspectral narrowbands (OHNBs) where 
only a selective number of nonredundant bands are used 
(e.g., ~20 off Hyperion OHNBs are used).

	 2.	 Whole spectral analysis (WSA) where all the bands in the 
continuum (e.g., all 242 Hyperion bands in 400–2500 nm) 
are used.

Data mining-system (DM-S)

Iterative
process

Knowledge

Validation phaseTest phaseTraining phase

Trainings
data

Reference
value

Test
data

Reverence
value

Validation
data

Reference
value

Data
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Data
postprocessing

Determined qualityEvaluation

Estimated
value

+ (–1)
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Error

Feature selection
and extraction

Classifier
application

Data
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Data
preprocessing

Feature selection
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Data
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and extraction
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Data

Figure 9.8  Data mining 1. Data mining and linked open data—New perspectives for data analysis in environmental research. Data mining 
process with the data mining system (DM-S) in the phases: (1) training phase, (2) test phase, and (3) validation phase. The data mining process 
works in a comparable way in all types of data mining types like text mining or web mining (changed according to Fayyad et al., (1996) and Tanner 
(2013). (From Lausch, A. et al., Ecol. Model., 2014.)
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9.6  Optimal Hyperspectral Narrowbands

Determining wavebands that are optimal for different studies 
requires a thorough study of these subjects. For example, the impor­
tance of the wavebands for different studies such as vegetation, geol­
ogy, and water are all different. So, determining optimal OHNBs 
requires subject knowledge and considerable experience working 
with hyperspectral data. Based on the synthesis of the extensive 
studies conducted by Thenkabail et al. (2000, 2002, 2004a,b, 2012, 
2013, 2014), the OHNBs for agriculture and vegetation studies are 
established and presented in Table 9.2. Each of these HNBs is iden­
tified for their importance in studying one or more of vegetation 
and crop biophysical and biochemical characteristics. Most of these 
bands are also very distinct from one another; so none of them are 
redundant. Using some combination of these bands will help better 
quantify the biophysical and biochemical characteristics of vegeta­
tion and agricultural crops (Alchanatis and Cohen, 2012; Pu, 2012). 
In the following sections and subsections, we will demonstrate how 
these HNBs are used in classifying, modeling, and mapping agri­
cultural croplands and other vegetation.

Table 9.2 shows that over 400–2500  nm range of the spec­
trum, there are 28 bands (e.g., ~12% of the 242 Hyperion bands 
in 400–2500 nm range) that are optimal in the study of agri­
culture and vegetation. However, the redundant bands here 
(i.e., agriculture and vegetation applications) may be very 
useful in other applications such as geology (Ben-Dor, 2012). 
For example, the critical absorption bands for studying min­
erals like biotite, kaolinite, hematite, and others are shown in 
Table 9.3. Unlike the vegetation and cropland bands, the HNBs 
required for mineralogy are quite different (Vaughan et  al., 
2011; Slonecker, 2012).

The earlier fact clearly establishes the need to determine 
OHNBs that are application specific.

9.7  Hyperspectral Vegetation Indices

One of the most common, powerful, and useful form of feature 
selection methods for hyperspectral data is based on the calcula­
tion of HVIs (Clark, 2012; Colombo et al., 2012; Galvão, 2012; 
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Figure 9.9  Data mining 2. (a, b) Data mining and linked open data—New perspectives for data analysis in environmental research. 
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Gitelson, 2012a,b; Roberts, 2012). The HVIs achieve two impor­
tant goals of hyperspectral data analysis:

	 1.	 Compute many specific targeted HVIs to help model bio­
physical and biochemical quantities.

	 2.	 Reduce the data volume (mine the data) to eliminate all 
redundant bands for a given application.

There are several approaches to deriving HVIs. These are briefly 
presented and discussed.

9.7.1 � Two-Band Hyperspectral 
Vegetation Indices

The two-band hyperspectral vegetation indices (TBHVIs) are 
defined as follows (Thenkabail et al., 2000):

	
TBHVI

R R

R R
ij

j i

j i

=
−( )
+( ) 	 (9.1)

where, i, j = 1 … N, with N = number of narrowbands. Hyperion 
242 bands offer the possibility of 29,161 unique indices (242 * 242 = 
58,564 − 242 = 58,322 divided by 2 resulting in C242

2 = 29,161; 
−242 because the values on the diagonal of matrix of 242 * 242 
are unity, divided by 2 because the values above the diagonal of 
the matrix and below the diagonal of matrix are transpose of one 
another). However, as defined in Section 9.2.3, only 157 of the 242 
Hyperion bands are useful after removing the wavebands in the 
atmospheric windows and those that are uncalibrated. This will 
still leave C157

2 = 12,246 unique TBHVIs.
Any one of the crop biophysical or biochemical quantity 

(e.g., biomass, leaf area index, nitrogen) is correlated with each 
one of the 12,246 TBHVIs (Stroppiana et al., 2012; Zhu et al., 
2012). This will result for each crop variable (e.g., biomass) a 

total of 12,246 unique models, each providing an R-square. 
Figure 9.11 shows the contour plot of 12,246 R-square values 
plotted for (1) rice crop wet biomass with TBHVIs (Figure 
9.11; above the diagonal) and (2) barley crop wet biomass 
with TBHVIs (Figure 9.11, below the diagonal). The areas 
with “bull’s-eye” are regions of rich information having high 
R-square values, whereas the areas in gray are redundant bands 
with low R-square values. Based on these lambda (λ1) versus 
lambda (λ2) plots (Figure 9.11), the optimal waveband centers 
(λ) and widths (Δλ) are determined (Table 9.2). Table 9.2 shows 
the optimal wavebands (λ), wavebands centers (λ), and widths 
(Δλ) based on numerous studies (Thenkabail et al., 2000, 2002, 
2004a,b, 2012, 2013, 2014), and a meta-analysis of these studies.

9.7.1.1  Refinement of Two-Band HVIs

Further refinement of each of the two-band HVIs (TBHVIs) is 
possible by computing (1) soil-adjusted versions of TBHVIs and 
(2) atmospheric corrected versions of TBHVIs. Interested read­
ers can read more on this topic at Thenkabail et al. (2000).

9.7.2 � Multi-Band Hyperspectral 
Vegetation Indices

The multi-band hyperspectral vegetation indices (MBHVIs) are 
computed as follows (Thenkabail et al., 2000; Li et al., 2012):

	
MBHVI a Ri ij j

j 1

N

=
=
∑ 	 (9.2)

where
MBHVIi is the crop variable i
R is the reflectance in bands j (j = 1 − N with N = 242 for 

Hyperion)
a is the coefficient for reflectance in band j for ith variable
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Figure 9.10  Hyperspectral data analysis methods. (From Bajwa, S. and Kulkarni, S.S., Hyperspectral data mining, Chapter 4, in Thenkabail, 
P.S., Lyon, G.J., and Huete, A., Hyperspectral Remote Sensing of Vegetation, CRC Press/Taylor & Francis Group, Boca Raton, FL/London, U.K./New 
York, 2012, pp. 93–120.)
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Table 9.2  Optimal (Nonredundant) Hyperspectral Narrowbands to Study Vegetation and Agricultural Cropsa, b, c

Waveband 
Number (#) 

Waveband 
Range (λ) 

Waveband 
Center (λ) 

Waveband 
Width (Δλ) Importance and Physical Significance of Waveband in Vegetation and Cropland Studies 

A. Ultraviolet
1 373–377 375 5 fPAR, leaf water: fraction of photosynthetically active radiation (fPAR), leaf water content

B. Blue bands
2 403–407 405 5 Nitrogen, Senescing: sensitivity to changes in leaf nitrogen reflectance changes due to pigments 

is moderate to low. Sensitive to senescing (yellow and yellow green leaves).
3 491–500 495 10 Carotenoid, Light use efficiency (LUE), Stress in vegetation: Sensitive to senescing and loss of 

chlorophyll\browning, ripening, crop yield, and soil background effects

C. Green bands
4 513–517 515 5 Pigments (Carotenoid, Chlorophyll, anthocyanins), Nitrogen, Vigor: positive change in 

reflectance per unit change in wavelength of this visible spectrum is maximum around this 
green waveband

5 530.5–531.5 531 1 Light use efficiency (LUE), Xanophyll cycle, Stress in vegetation, pest and disease: Senescing and 
loss of chlorophyll\browning, ripening, crop yield, and soil background effects

6 546–555 550 10 Chlorophyll: Total chlorophyll; Chlorophyll/carotenoid ratio, vegetation nutritional and fertility 
level; vegetation discrimination; vegetation classification

7 566–575 570 10 Pigments (Anthocyanins, Chlorophyll), Nitrogen: negative change in reflectance per unit 
change in wavelength is maximum as a result of sensitivity to vegetation vigor, pigment, and N.

D. Red bands
8 676–685 680 10 Biophysical quantities and yield: leaf area index, wet and dry biomass, plant height, grain yield, 

crop type, crop discrimination

E. Red-edge bands
9 703–707 705 5 Stress and chlorophyll: Nitrogen stress, crop stress, crop growth stage studies
10 718–722 720 5 Stress and chlorophyll: Nitrogen stress, crop stress, crop growth stage studies
11 700–740 700–740 700–740 Chlorophyll, senescing, stress, drought: first-order derivative index over 700–740 nm has 

applications in vegetation studies (e.g., blue-shift during stress and red-shift during healthy growth)

F. Near infrared (NIR) bands
12 841–860 850 20 Biophysical quantities and yield: LAI, wet and dry biomass, plant height, grain yield, crop type, 

crop discrimination, total chlorophyll
13 886–915 900 20 Biophysical quantities, Yield, Moisture index: peak NIR reflectance. Useful for computing crop 

moisture sensitivity index, NDVI; biomass, LAI, Yield.

G. Near infrared (NIR) bands
14 961–980 970 20 Plant moisture content Center of moisture sensitive “trough”; water band index, leaf water, biomass;

H. Far near infrared (FNIR) bands
15 1073–1077 1075 5 Biophysical and biochemical quantities: leaf area index, wet and dry biomass, plant height, grain 

yield, crop type, crop discrimination, total chlorophyll, anthocyanin, carotenoids
16 1178–1182 1080 5 Water absorption band
17 1243–1247 1245 5 Water sensitivity: water band index, leaf water, biomass. Reflectance peak in 1050–1300 nm

I. Early short-wave infrared (ESWIR) bands
18 1448–1532 1450 5 Vegetation classification and discrimination: ecotype classification; plant moisture sensitivity. 

Moisture absorption trough in early short wave infrared (ESWIR)
19 1516–1520 1518 5 Moisture and biomass: A point of most rapid rise in spectra with unit change in wavelength in 

SWIR. Sensitive to plant moisture.
20 1648–1652 1650 5 Heavy metal stress, Moisture sensitivity: Heavy metal stress due to reduction in Chlorophyll 

Sensitivity to plant moisture fluctuations in ESWIR. Use as an index with 1548 or 1620 or 
1690 nm.

21 1723–1727 1725 5 Lignin, biomass, starch, moisture: sensitive to lignin, biomass, starch Discriminating crops and 
vegetation.

J. Far short-wave infrared (FSWIR) bands
22 1948–1952 1950 5 Water absorption band: highest moisture absorption trough in FSWIR. Use as an index with any 

one of 2025, 2133, and 2213 nm Affected by noise at times.
23 2019–2027 2023 8 Litter (plant litter), lignin, cellulose: litter-soil differentiation: moderate to low moisture 

absorption trough in FSWIR. Use as an index with any one of 2025, 2133, and 2213 nm
(continued )
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The process of modeling involves running stepwise linear 
regression models (e.g., using MAXR algorithm in Statistical 
Analysis System (SAS, 2009) with any one biophysical or bio­
chemical variable (e.g., biomass) as dependent variable and the 
numerous HNBs as independent variables (e.g., 157 of the 242 
useful bands of Hyperion). In this modeling approach, we will 
get the best one-band, two-band, three-band, and so on to best 
n-band model. The best one-band model is the one in which the 
biomass (taken as example) has highest R-square value with a 
single band out of the total 157 Hyperion HNBs. Then, we obtain 
the best two-band model, in which two HNBs provide a best 
R-square value with biomass. Similarly, the best three-band, 
best four-band, and best n-band (e.g., all 157 Hyperion bands) 
models are obtained, even though, theoretically, all 157 bands 
can be involved in providing a 157-band biomass model that is 
usually meaningless due to over-fitting of data. However, a plot 
of R-square values (y-axis) versus the number of bands (x-axis) 
will show us when an increase in R-square values with the addi­
tion of wavebands becomes asymptotic. Alternatively, we can 
also consider additional bands, when there is at least an increase 
of 0.03 or higher in R-square value when additional bands are 
added. So, the approach we can use is to look at one-band model 

and see its R-square. Then, when two-band model increases 
R-square value by at least 0.03 (a threshold we can set), then con­
sider the two-band model; otherwise, retain the one-band model 
as final. At some stage, we will notice that addition of a band 
does not increase R-square value by more than 0.03. Typically, 
we have noticed that anywhere between 3 and 10 HNBs explain 
optimal variability in most agricultural crop and vegetation 
variables. Beyond these 3–10 bands, the increase in R-square per 
increase in band is insignificant or asymptotic. However, which 
3–10 bands within 400–2500 nm will, often, vary is based on the 
type of crop variable.
Through MBHVIs, we can establish the following:

	 1.	 How many HNBs are required to achieve an optimal 
R-square for any biophysical or biochemical quantity?

	 2.	 Which HNBs are involved in providing optimal R-square?
	 3.	 Through this process, we can determine which are impor­

tant HNBs and which are redundant. However, the best 
approach to achieve this is by a study conducted for many 
crops, involving several crop variables, and based on data 
from multiple sites and years. Table 9.2 provides one such 
summary.

Table 9.2 (continued )  Optimal (Nonredundant) Hyperspectral Narrowbands to Study Vegetation and Agricultural Cropsa, b, c

Waveband 
Number (#) 

Waveband 
Range (λ) 

Waveband 
Center (λ) 

Waveband 
Width (Δλ) Importance and Physical Significance of Waveband in Vegetation and Cropland Studies 

24 2131–2135 2133 5 Litter (plant litter), lignin, cellulose: typically highest reflectivity in FSWIR for vegetation. 
Litter- soil differentiation

25 2203–2207 2205 5 Litter, lignin, cellulose, sugar, starch, protein; Heavy metal stress: typically, second highest 
reflectivity in FSWIR for vegetation. Heavy metal stress due to reduction in Chlorophyll

26 2258–2266 2262 8 Moisture and biomass: moisture absorption trough in far short-wave infrared (FSWIR). A point 
of most rapid change in slope of spectra based on land cover, vegetation type, and vigor.

27 2293–2297 2295 5 Stress: sensitive to soil background and plant stress
28 2357–2361 2359 5 Cellulose, protein, nitrogen: sensitive to crop stress, lignin, and starch

Sources:	Modified and adopted from Thenkabail, P.S. et al., Remote Sens. Environ., 71, 158, 2000; Thenkabail, P.S. et al. (2002); Thenkabail, P.S. et al., Remote 
Sens. Environ., 90, 23, 2004a; Thenkabail, P.S. et al., Remote Sens. Environ., 91, 354, 2004b; Thenkabail et al. (2012, 2013); Thenkabail, P.S. et al., Photogramm. 
Eng. Remote Sens., 80, 697, 2014.

a	Most hyperspectral narrowbands (HNBs) that adjoin one another are highly correlated for a given application. Hence from a large number of HNBs, these 
non-redundant (optimal) bands are selected.

b	These optimal HNBs are for studying vegetation and agricultural crops. When we use some or all of these wavebands, we can attain highest possible classi­
fication accuracies in classifying vegetation categories or crop types.

c	 Wavebands selected here are based on careful evaluation of large number of studies.

Table 9.3  Subpixel Mineral Mapping of a Porphyry Copper Belt Using EO-1 Hyperion Data

Hyperion Band (#) Wavelength (nm) Feature Minerals Mineral Characteristic 

210, 217 2254, 2324 Absorption Biotite Potassic-biotitic alteration zone
205 2203 Absorption Muscovite and illite Al–OH vibration in minerals with muscovite deeper absorption than illite
201, 205 2163, 2203 Absorption Kaolinite Al–OH vibration
14, 79, 205 487, 932, 2203 Absorption Goethite
14, 53, 205 487, 884, 2203 Absorption Hematite
79211205 932, 2264, 2203 Absorption Jarosite
201 2163 Absorption Pyrophyllite Al–OH and Mg–OH
218 2335 Absorption Chlorite Al–OH and Mg–OH

Source:	 Adopted and modified from information in manuscript by Hosseinjani Zadeh, M. et al., Adv. Space Res., 53, 440, 2014.
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These MBHVIs take advantage of the key absorption and reflec­
tive portions of the spectrum (e.g., Figure 9.12; [Gnyp et al., 2014]). 
Taking advantage of four HNBs, two reflective (900 and 1050 nm) 
and two absorptive (955 and 1220 nm), Gnyp et al. constitute an 
MBHVI (Equation 9.1). In their paper, Gnyp et al. (2014) clearly 
demonstrate the significantly higher R-square values provided 
by such a multiband HVIs when compared with other two-band 
HVIs (e.g., in Figure 9.13, GnyLi has a much higher R-square value 
relative to other indices). Interesting and maybe noteworthy that 
while the typical saturation effect (lack of sensitivity) at higher 
biomass amounts is still present, it is evidently somewhat less 
severe with GnyLi than the others (except REP but it has lower r2). 
Also, research by Thenkabail et  al. (2004a, b), Mariotto et  al. 
(2013), and Marshall and Thenkabail (2014) has demonstrated 
that anywhere between 3 and 10 HNBs involved in multiband 
HVIs explain greatest variability in modeling various biophysical 
and biochemical quantities for various agricultural crops.

However, it needs to be noted that the specific band centers 
and band widths are not as definitive as shown in Figure 9.12 or/
and Equation 9.1. This is because, with crop type and crop grow­
ing conditions, the specific reflective maxima (900 and 1050 nm) 

and reflective minima (955 and 1220 nm) shown in Figure 9.12 
and Equation 9.1 can vary. For example, the moisture absorp­
tion maxima can be at 750, 760, 770, or 780  nm (Thenkabail 
et al., 2012, 2013) or can be at 755 nm as shown in Figure 9.12 
and Equation 9.1. As a result, we performed meta-analysis of a 
number of papers to come with the recommendations of HNB 
centers and HNB widths (Table 9.2) that are optimal for use in 
HVI computations across crops and vegetation.

	
GnyLi

R R R R

R R R R
=

+
900 1050 955 1220

900 1050 955 1220

× ×
× ×

− 	 (9.3)

9.8 �The Best Hyperspectral Vegetation 
Indices and Their Categories

Based on extensive research over the last decade (Thenkabail et al., 
2000, 2002, 2004a,b, 2012, 2013, 2014), six distinct categories of 
two-band TBHVIs (Table 9.4) are considered most significant and 
important in order to study specific biophysical and biochemi­
cal quantities of agriculture and vegetation. Author recommends 
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that in future, researchers use these HVIs, derived using HNBs, 
for their studies to quantify and model biophysical and biochemi­
cal quantities of various agricultural crops and vegetation of dif­
ferent types. The values of two such indices are illustrated. These 
are (1) hyperspectral biomass and structural index 1 (HBSI1; 
Thenkabail et al., 2014), derived using the Hyperion bands cen­
tered around 855 and 682 nm (each with 10 nm width), is applied 
to an agricultural area to determine biomass (Figure 9.14); and (2) 
photochemical reflectance index (PRI) for stress detection (e.g., 
Figure 9.15; Middleton et al., 2012). The importance of wavebands 
in computing the indices for various biophysical and biochemi­
cal is illustrated in Figure 9.16. Reader is encouraged to compare 
Figure 9.15 with Table 9.4 and Table 9.2 for better understand­
ing of HNBs (Table 9.2), HVIs (Table 9.4), and their importance 
(Figure 9.16) in studies pertaining to crops and vegetation.

9.9  Whole Spectral Analysis

A number of chapters discuss the usefulness and utility of 
using whole spectra (e.g., continuous and entire spectra over 
400–2500 nm) for analysis using such methods as PLSR, wavelet 
analysis, continuum removal, SAM, and spectral matching tech­
niques (SMTs) (Thenkabail et al., 2012).

9.9.1  Spectral Matching Techniques

SMTs (Thenkabail et al., 2007) involves the following:

	 1.	 Ideal or target spectral library creation: Collecting ideal or 
target spectra (e.g., specific crops, specific species, specific 
mineral) and creating a spectral library.

	 2.	 Class spectra collection.
	 3.	 Matching class spectra with ideal spectra to identify and 

label classes.

The principal approach in SMT is to match the shape or the 
magnitude or (preferably) both to an ideal or target spectrum 
(pure class or “end member”). Thenkabail et al. (2007) proposed 
and implemented SMT for multitemporal data illustrated later 
(Figure 9.17). The qualitative pheno-SMT approach concept 
remains the same for hyperspectral data (replace the number 
of bands of temporal data with the number of hyperspectral 
bands).

The quantitative SMTs consist of (Thenkabail et al., 2007) (1) 
spectral correlation similarity—a shape measure; (2) spectral 
similarity value—a shape and magnitude measure; (3) Euclidian 
distance similarity—a distance measure; and (4) modified spec­
tral angle similarity—a hyper angle measure.

9.9.2 � Continuum Removal through Derivative 
Hyperspectral Vegetation Indices

The derivative hyperspectral vegetation indices (DHVIs) are 
computed by integrating index over a certain wavelength (e.g., 
600–700 nm or 700–760 nm). The equation is

Table 9.4  Hyperspectral Vegetation Indices or HVIs

Band 
Number (#) 

Hyperspectral 
Narrowband (λ1) Bandwidth (Δλ1) 

Hyperspectral 
Narrowband (λ2) 

Bandwidth 
(Δλ2) 

Hyperspectral Vegetation 
Index (HVI) 

Best Index Under Each 
Category 

1. Hyperspectral biomass and structural indices (HBSIs) (to best study biomass, LAI, plant height, and grain yield)
HBSI1 855 20 682 5 (855 − 682)/(855 + 682) HBSI: Hyperspectral biomass 

and structural indexHBSI2 910 20 682 5 (910 − 682)/(910 + 682)
HBSI3 550 5 682 5 (550 − 682)/(550 + 682)

2. Hyperspectral biochemical indices (HBCIs) (pigments like carotenoids, anthocyanins as well as Nitrogen, chlorophyll)
HBCI8 550 5 515 5 (550 − 515)/(550 + 515) HBCI: Hyperspectral 

biochemical indexHBCI9 550 5 490 5 (550 − 490)/(550 + 490)

3. Hyperspectral Red-edge indices (HREIs) (to best study plant stress, drought)
HREI14 700 − 740 40 First-order derivative integrated over red-edge. HREI: Hyperspectral red-edge 

indexHREI15 855 5 720 5 (855 − 720)/(855 + 720)

4. Hyperspectral water and moisture indices (HWMIs) (to best study plant water and moisture)
HWMI17 855 20 970 10 (855 − 970)/(855 + 970) HWMI: Hyperspectral water 

and moisture indexHWMI18 1075 5 970 10 (1075 − 970)/(1075 + 970)
HWMI19 1075 5 1180 5 (1075 − 1180)/(1075 + 1180)
HWMI20 1245 5 1180 5 (1245 − 1180)/(1245 + 1180)

5. Hyperspectral light-use efficiency index (HLEI) (to best study light use efficiency or LUE)
HLUE24 570 5 531 1 (570 − 531)/(570 + 531) HLEI: Hyperspectral light-use 

efficiency index

6. Hyperspectral lignin cellulose index (HLCI) (to best study plant lignin, cellulose, and plant residue)
HLCI25 2205 5 2025 1 (2205 − 2025)/(2205 + 2025) HLCI: Hyperspectral lignin 

cellulose index

Sources:	Modified and adopted from Thenkabail, P.S. et al., Photogramm. Eng. Remote Sens., 80, 697, 2014.
Note:	 Also see wavebands in Table 9.2 used to derive these indices.
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where
i and j are band numbers
λ is the center of wavelength

The process of obtaining DHVI value for 600–700 nm is as fol­
lows: (1) DHVI1 = lambda 1 (e.g., λ1 = 600 nm) versus lambda 
2 (e.g., λ2 = 610 nm). The difference in the reflectivity of these 
two bands is then divided by their bandwidth (ΔλI = 10  nm) 
and (2) DHVI2 = the process is repeated for lambda 1 (e.g., λ1 
= 610 nm) versus lambda 2 (e.g., λ2 = 620 nm). The difference 
in reflectivity of these two bands is then divided by their band­
width (ΔλI = 10 nm) and (3) DHVIn = so on to lambda 1 (e.g., 
λ1 = 690 nm) versus lambda 2 (e.g., λ2 = 700 nm). The difference 
in reflectivity of these two bands is then divided by their band­
width (ΔλI = 10 nm). Finally, add DHVI1, DHVI2, and so on to 
DHVIn to get single an integrated DHVI value over the entire 
600–700 nm range.

The DHVIs can be derived over various wavelengths such 
as 400–2500  nm, 500–600  nm, 600–800  nm, and any other 
wavelength you find useful for the particular application. 
There are opportunities to further investigate the signifi­
cance of DHVIs over different wavelengths for a wide array 
of applications.

9.10  Principal Component Analysis

Another common, powerful, and useful feature selection 
method for hyperspectral data analysis is PCA. The PCA per­
forms following functions:

	 1.	 Reduces data volumes: This happens since the PCA gen­
erates numerous principal components (PCs) (as many 
as the number of wavebands), but the first few PCs 
explain almost all the variability of data. The first PC 
(PC1) explains the highest, followed by the other. Since 
each PC is constituted based on the information from 
all the bands (e.g., PC1 = factor loading for band 1 * 
band 1 reflectivity  + ⋯ +   factor loading for band n * 
band n reflectivity), the PCs have the power of hyper­
spectral bands, but does not have all the redundancy of 
the same.

	 2.	 Provides a new single band of information (e.g., PC1, PC2), 
each of which (e.g., PC1) actually has the information 
derived from all the HNBs. These new bands of informa­
tion (e.g., PC1) can then be used to classify an area (e.g., to 
establish crop types) or used to model crop biophysical or 
biochemical quantities.

	 3.	 The power of PCs can be used to discriminate crop types, 
or land cover themes, or species (e.g., Figure 9.18).
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Figure 9.14  Spatial depiction of a hyperspectral biomass and structural index 1 (HBSI1) as applied to an agricultural area. One of the HVIs 
(HBSI1) in mapping wet biomass for a study area using Hyperion hyperspectral data. The red area in the z-scale can be stretched further to show 
better biomass variability with change in HBSI1. For example, HBSI1 0.4 = 0.53 and HBSI 0.6 = 1.16, HBSI1 0.8 = 2.56, and HBSI1 = 5.62. The 
current stretch does not adequately show these differences (as much of the higher end is in red). However, if we stretch between HBSI1 from 0.4 
to 1.0, then the biomass differences in this HBSI1 range, which is 0.53–5.62, will show up in better contrast. The relationship between HBSI1 and 
biomass is nonlinear due to saturation of indices at the higher end of the biomass. However, this saturation is much lower for hyperspectral index 
like HBSI1 when compared to broadband NDVI.
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Figure 9.15  Assessing structural effects on photochemical reflectance index (PRI) for stress detection in conifer forests. PRI512, PRI570, and 
NDVI obtained from the AHS airborne sensor from three study areas of Pinus nigra with different levels of stress: SN1, SN2, and SN3. At the bot­
tom of each image, two zoom images of a central plot, one pixel based displaying 1 × 1 and 3 × 3 resolutions and the other at object level. Note: PRI512 
is a normalized index involving a waveband centered at 512 and 531 nm, whereas PRI570 is a normalized index involving a waveband centered at 
570 and 531 nm. Airborne hyperspectral scanner (AHS) (Sensytech Inc., currently Argon St. Inc., Ann Arbor, MI) acquiring 2 m spatial resolution 
imagery in 38 bands in the 0.43–12.5 μm spectral range. (From Hernández-Clemente, R. et al., Adv. Space Res., 53, 440, 2011.)
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9.11 � Spectral Mixture Analysis 
of Hyperspectral Data

Hyperspectral data have great ability to distinguish specific objects 
based on their unique signatures. For example, wheat versus barley 
crops are distinguished based on the spectral reflectivity in two 
HNBs, each of 10 nm wide, and centered at 687 and 855 nm (e.g., 
Figure 9.19). However, often, we find multiple objects or classes 
within a pixel. In situations like that, we will need to perform spec­
tral mixture analysis (SMA) and an independent component anal­
ysis, in order to unmix the spectral signatures within each pixel.

The reference spectra for SMA are derived from “end mem­
bers” (e.g., Figure 9.20). Once all the materials in the image are 

identified, then it is possible to use linear or nonlinear spec­
tral unmixing to find out how much of each material is in each 
pixel.

The concept of unmixing hyperspectral data is illus­
trated by showing Hyperion unmixing of (1) vegetation frac­
tional cover in Figure 9.21 and (2) minerals in Figure 9.22. 
Subpixel mineral mapping of a porphyry copper belt using 
EO-1 Hyperion data in Figure 9.23 involved mineral spec­
tra extracted from Hyperion compared to convolved spectra 
from field samples and reference library spectra (Figures 9.20 
and 9.21; Hosseinjani Zadeh et  al., 2014). Extensive discus­
sions on linear and nonlinear SMAs can be found in Plaza 
et al. (2012).
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Figure 9.16  Importance of various portions of hyperspectral data in characterizing biophysical and biochemical quantities of crops and 
vegetation.
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9.12  Support Vector Machines

SVMs are a machine learning supervised classification 
approach. Unlike the feature selection approach, data dimen­
sionality is not an issue here. Any number of bands can be 
used. The process involves supervised training of classes, 
based on sufficient and accurate knowledge of the class (e.g., 
ground data), where one can use all or some of the hyper­
spectral bands to train the algorithm. Once the algorithm is 
sufficiently trained, it can be run on rest of the data to gather 
the same class occurring in other areas. Figure 9.24a shows 
the classification performed using all 272 AISA hyperspectral 
bands based on SVM algorithm. In Figure 9.24b, the same 
classification is performed using only 51 of the most impor­
tant AISA hyperspectral bands. Results of the 51-band clas­
sification output (Figure 9.24b) are comparable to 272-band 
classification output (Figure 9.24a) in most areas; there is 
significant uncertainty in the northern portion of the image. 

Studies have shown that by using only 1% of training pixels per 
class, almost 90% overall classification accuracies are obtained 
using SVM methods (Bajwa and Kulkarni, 2012; Ramsey III 
and Rangoonwala, 2012).

9.13 � Random Forest and Adaboost Tree-
Based Ensemble Classification 
and Spectral Band Selection

Random forest and Adaboost are two tree-based ensemble clas­
sifiers. These classifiers serve two purposes:

	 1.	 Help select hyperspectral bands that are important as well 
as those that are redundant.

	 2.	 Classify hyperspectral data through decision tree-based 
classifiers.
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Figure 9.17  Pheno-spectral matching technique (SMTs). In SMTs, the class temporal profiles (NDVI curves) are matched with the ideal tempo­
ral profile (quantitatively based on temporal profile similarity values) in order to group and identify classes as illustrated for a rice class in this fig­
ure. Illustration of double-crop (DC) irrigation. The NDVI spectra of the four classes (C-26, C-28, C-30, and C-43) of DC irrigation are “matched” 
with ideal spectra (shaded in yellow) for the same. This is a qualitative illustration of SMTs. For quantitative methods, refer to Thenkabail et al. 2007.
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This approach has been discussed in great detail by Chan and 
Paelinckx (2008) for thorough classification of detailed eco­
topes using hyperspectral data (Figures 9.25 and 9.26). They 
gathered extensive hyperspectral data for (Figure 9.25) (1) 6 
grassland classes and (2) 10 tree classes. In terms of accuracy 
performance, random forest and Adaboost are almost the 
same, and both have outperformed a neural network classifier 
(Chan and Paelinckx, 2008). Both feature selection routines, 
the best-first search and the out-of-bag ranking index under 

random forest, are successful in identifying substantially 
smaller band subsets that attained almost the same accuracy 
as all the bands (e.g., Figure 9.24; Chan and Paelinckx, 2008). 
There are many approaches to selecting the spectral wave­
bands for obtaining best classification results. For agriculture 
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Figure 9.18  Species soybeans. View angle effects on the discrimination of soybean varieties and on the relationships between vegetation 
indices and yield using off-nadir Hyperion data. Projection of the Hyperion discriminant scores of the three soybean varieties in the (a) forward 
and (b) backscattering directions for different years. (From Galvao, L.S. et al., Crop type discrimination using hyperspectral data, Chapter 17, 
in Thenkabail, P.S., Lyon, G.J., and Huete, A., Hyperspectral Remote Sensing of Vegetation, CRC Press/Taylor & Francis Group, Boca Raton, FL/
London, U.K./New York, 2009, pp. 397–422.)
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Figure 9.20  End member. Arid land characterization with EO-1 
Hyperion hyperspectral data. End member extraction in n-dimension 
visualizer using bands 3, 4, and 5 of the minimum noise fraction (MNF) 
transform Hyperion image. (From Jafari, R. and Lewis, M.M., Int. J. 
Appl. Earth Obs. Geoinf., 19, 298, 2012.)
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Figure 9.21  Unmixing qualitative assessment of Hyperion unmixing of vegetation fractional cover. Qualitative validation of the fractional 
cover estimated with Hyperion imagery. Each set of pictures and graphs corresponds to one of 12 sites visited from May 16 to 19 and August 29 to 
31, 2005. The left graphs show the reflectance spectra derived from Hyperion images for the April (green curve), July (black curve), and September 
(blue curve) images from 400 to 2400 nm. The right graphs show the position of each spectrum in the normalized difference vegetation index or 
NDVI (x-axis) (detecting live, green vegetation) and cellulose absorption index or CAI (y-axis) (detecting non-photosynthetic vegetation) space 
from April to September (red dots and line) and the position of the end members (black lines). The derived photosynthetic vegetation (fPV), non­
photosynthetic vegetation (fNPV), and bare soil (fBS) are shown in each picture and are critical for natural resource management and for modeling 
carbon dynamics. (From Guerschman, J.P. et al., Remote Sens. Environ., 113, 928, 2009.)
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Figure 9.22  Mineral mapping. Subpixel mineral mapping of a porphyry copper belt using EO-1 Hyperion data. Mineral spectra extracted from 
Hyperion comparing to convolved spectra from field samples and reference library spectra. (a) Biotite (Bio), (b) Muscovite (Mu), (c) Illite (Il), (d) 
Kaolinite (Kao), (e) Goethite (Goe), (f) Hem (Hem), (g) Jarosite (Ja), (h) pyrophyllite (Pyr), and (i) Chlorite (Ch). Hyp and Lib are abbreviations of 
Hyperion and Library, respectively. The red vertical lines indicate locations of diagnostic absorption features. (From Hosseinjani Zadeh, M. et al., 
Adv. Space Res., 53, 440, 2014.)
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Figure 9.23  Mineral mapping. Subpixel mineral mapping of a porphyry copper belt using EO-1 Hyperion data. Thematic mineral maps using 
subpixel mixture tuned matched filtering (MTMF) method. (a) Final classification image map of alteration minerals derived from MTMF algo­
rithm. (b) Sarcheshmeh mine, (c) Sereidun, and (d) Darrehzar. Bio, Mu, Il, Kao, Goe, Hem, Ja, Pyr, and Ch indicate Biotite, Muscovite, Illite, 
Kaolinite, Goethite, Hematite, Jarosite, pyrophyllite, and Chlorite, respectively. These values indicate percentages of each mineral at the pixel. For 
instance, value of 0.25 shows that 25% of pixel contains the selected mineral. (From Hosseinjani Zadeh, M. et al., Adv. Space Res., 53, 440, 2014.)
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Figure 9.24  SVM. Detecting Sirex noctilio gray-attacked and lightning-struck pine trees using airborne hyperspectral data, random forest, 
and support vector machine classifiers. Classification maps obtained using support vector machine (SVM) classification algorithm, all (a) and the 
51 most important (b) Airborne Imaging System for different Applications (AISA) Eagle spectral bands. The AISA image spatial resolution was 
about 2 m, and there were 272 spectral bands ranging from 393.23 to 994.09 nm (VNIR: visible near-infrared) with bandwidths between 2 and 
4 nm. (From Abdel-Rahman, E.M. et al., ISPRS J. Photogramm. Remote Sens., 88, 48, 2014.)
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Figure 9.25  Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping 
using airborne hyperspectral imagery. Mean spectrum of the (a) 6 grassland classes and (b) 10 tree classes. Notes: b, grassland, arable land; hp, 
grassland, species poor improved grassland (normally more homogenous for the whole parcel); hpgh, grassland, semi-natural grassland; hpgs, 
grassland, species rich improved grassland (between hpgh and hp); hpv, grassland, grassland with patches hp and either patches hpgs or hpgh; 
hx, grassland, grass monocultures (equal to arable land sown with grasses of one or more years); f, tree/tall_veg, deciduous forest<comma> domi­
nated by beech (Fagus sp.); gml, tree/tall_veg, plantation of deciduous tree species other than beech, oak, alder, and poplar; kj, tree/tall_veg, tall 
tree orchard; kl, tree/tall_veg, low tree orchard; lh, tree/tall_veg, poplar plantation; p, tree/tall_veg, conifer plantation; q, tree/tall_veg, deciduous 
forest<comma> dominated by oak trees (Quercus sp.); sp, tree/tall_veg sc, scrubs of clearings and scrubs on abandoned land; sp, tree/tall_veg, 
thorn ticket; v, tree/tall_veg,Woodland of alluvial soil<comma> fens and bogs (mostly dominated by alder, Alnus sp.). (From Chan, J.C.-W. and 
Paelinckx, D., Remote Sens. Environ., 112, 2999, 2008.)
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and vegetation studies, one could use various combination of 
band selection (e.g., Table 9.5) depending on the number of 
bands one decided to use, classification accuracies desired, 
and the need to overcome Hughes’s phenomenon.

9.14  Conclusions

This chapter provides an overview of hyperspectral remote 
sensing for terrestrial applications. First, the chapter defines 
hyperspectral remote sensing or imaging spectroscopy. Second, 
characteristics of hyperspectral data acquired from three 

distinct platforms are discussed: (1) ground-based or handheld 
or truck-mounted spectroradiometers, (2) airborne, and (3) 
spaceborne. Third, the needs for data mining to eliminate redun­
dant bands are discussed. Various data mining methods are 
presented. Fourth, the importance of understanding Hughes’s 
phenomenon and approaches to overcome the same are high­
lighted. Fifth, methods of hyperspectral analysis are presented 
and discussed. These methods include feature extraction meth­
ods and information extraction methods. OHNBs best suited 
for agricultural and vegetation studies are determined from 
meta-analysis. HVIs, two-band and multi-band versions, best 
suited for agricultural and vegetation studies are also deter­
mined from meta-analysis. The WSA was performed through 
SMTs and continuum removal derivative HVIs. Hyperspectral 
image classification for land cover and species types was per­
formed using such methods like SMA, SVMs, and tree-based 
ensemble classifiers such as random forest and Adaboost.
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