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Weather Risk and Cropping Intensity: 
A Non-Stationary and Dynamic Panel Modeling Approach 

 

Aditya R. Khanal, Ashok K. Mishra, and Madhusudan Bhattarai 

 

Abstract 

Climatic conditions and weather play an important role in production agriculture. Using district 

level panels for 42 years from India and dynamic panel estimation procedure we estimate the 

impact of weather risk on cropping intensity. Our non-stationary and dynamic panel model 

results suggest that the impact of weather risk on cropping intensity, in rural India, is negative 

on short run, while it is positive on long run. Additionally, we found a negative effect of 

education on cropping intensity. Finally, in the long run, our results indicate positive effects of 

high yielding variety production and share of irrigated land on cropping intensity.  

   

Introduction 

Climatic variation influences agricultural production and hence it affects crop 

productivity and land use pattern. With population growth and increased challenges for food 

security, there has been increased human encroachment on uncultivated fallow and forestlands 

and shifting agriculture in developing countries—where majority of the population resides. 

Weather risk (also referred to weather variability) not only impacts human settlement but also 

puts a greater pressure on agricultural lands and agricultural production. Variability in weather 

may lead to variability in agricultural output and subsistence farming in developing countries in 

particular, as many rural households cultivate smaller holdings and mostly engage in farming to 

raise crops for households’ income and food consumption.  

Farmers in developing countries are classified as risk-averse agents (Rosenzweig and 

Binswanger 1992; Lamb 2002). In the absence of insurance and credit markets, farmers 

undertake ex-ante or ex-post activities to self-insure or to smoothen consumption. There is a 
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growing consensus among policymakers and scientists that weather variability influences the 

performance of agriculture and farmers need to adopt strategies to minimize their losses 

(Whinston et al., 1981; Rosenzweig and Perry 1994; Seo and Mendelson 2008; Taraz 2012). 

This is particularly true for rural farmers in developing countries where agricultural production is 

highly dependent on rainfall and sensitive to weather and adaptive capacities are low.  

Similarly, farmer’s behavior is affected by weather outcome and affecting cropping 

decisions. Farmers in most of the semi-arid regions solely rely on rainfall as a source of 

irrigation or moisture for crops; annual and seasonal rainfall patterns influence food crop choice 

among farmers in developing countries (Bezabih, Falco, and Yesuf, 2011; Bezabih and Falco 

2012). For example, subject to the expectation of high or low rainfall, farmers may alter types of 

crops or the area under cultivation. One prospect of weather risk or rainfall variability could be 

that it pushes farmers away from farming, inducing occupational shifts or migration to other 

areas. However, having fewer opportunities for other alternative income generating opportunities 

in the area, as may be the case in most of the rural villages, it is plausible that variability in 

rainfall induces farmers to allocate even more land area for different crop portfolio with the 

objective of loss minimization. In other words, subject to a higher variation in rainfall, farmers 

may diversify crops by bringing in more area under different crops such that the income risk is 

minimized by overall returns from non-sensitive crops while compensating for losses in sensitive 

crops.  

Land use, climatic variability and changes in agricultural productivity have been studied 

widely in developing countries (Masvaya, Mupangwa and Twomlow, 2008; Graef and Heigis, 

2001). However, literature falls short on assessing the impact of weather risk on cropping 

intensity. Additionally, the literature has failed to account for the spatial or temporal nature of 
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risk. It should be of paramount importance that both spatial and temporal phenomena (for 

example: climate changes over time, population growth, rural literacy, irrigation availability, 

availability of improved varieties etc.) to analyze weather risk in the short and long run. 

Utilization of the information in terms of both cross-sectional variation and time variation leads 

to better insights; panel data modeling approaches offer such better inferences. Moreover, 

policymakers may be interested in methods that mitigate farmer’s sensitivities towards reduction 

in weather risk, assessing the impact of climate change, stabilization of food supply, and to 

enhance agricultural production and income of farm families under weather adversities.  

Therefore, the objective of this study is to assess the impact of weather risk1 on cropping 

intensity. We use different class of non-stationary and panel data modeling techniques to 

examine the short-term and long-term relationships between weather risk and cropping intensity. 

To examine this relationship, we use district-level data compiled by the International Crops 

Research Institute for the Semi-Arid-Tropics (ICRISAT2) based on agricultural production and 

climatic information, 1966-2007, in rural villages of India.  

This paper contributes to the literature in several ways. First, the study uses data that is 

long (1966-2007) and has several significant changes in production agriculture, policies, and 

weather. Our short- and long- term analysis enables researchers to infer about the impact of 

weather risk on cropping intensity in short- and long- runs. For example, inferences from 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1Weather risk in this study is measured by variability in rainfall, a major source of weather risk. 
2The International Crops Research Institute for the Semi-Arid-Tropics (ICRISAT) is a non-profit agricultural 
research organization headquartered in Patancheru (Hyderabad, Andhra Pradesh, India) with several regional centers 
(Niamey (Niger), Nairobi (Kenya)) and research stations Bamako (Mali), Bulawayo (Zimbabwe). It was founded in 
1972 by a consortium of organizations convened by the Ford and the Rockefeller Foundations. Its charter was 
signed by the FAO and the UNDP. 
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short-run analysis may serve as a base for further studies in food crop-portfolio choices, and 

income management by farming households not only in developing countries but also in 

developed countries. Inferences from long-run behavior contribute to the literature by adding 

further insights in farmers’ adaptation to mitigate climate change, an issue that gets wide 

attention in recent literature (Rosenberg and Perry 1994; Mendelsohn and Dinar 1999; Macous, 

Premand and Vakis, 2012). Second, the paper embraces a comprehensive procedure in empirical 

analysis by applying static and dynamic panel data models. The paper proceeds as follows. 

Section 2 presents a review of literature related to climate, weather, and rainfall variability in 

relation to agriculture and also discusses review of methodological perspectives. Section 3 

discusses about data and methodology. Section 4 provides results and discussion. Section 5 

concludes.  

2. Literature Review 

A wide variety of literature in crop sciences and agronomy, development economics, and 

agricultural economics have discussed the issue of weather and climatic conditions and it impact 

on production agriculture (for example, Rosenzweig and Parry 1994; Seo and Mendelsohn 2008; 

Taraz 2012; Bezabih and Falco 2012; Traore et al. 2013; Graef and Haigis 2001). For example, 

Traore et al. (2013) investigated the effect of climate and weather on production of cotton, 

soybean and groundnut using long-term experimental data from 1965-2005 in Southern Mali. 

They found a negative effect of maximum temperature and total seasonal rainfall in cotton yield, 

while corn yield was positively correlated with rainfall in relatively drier locations. In another 

agronomic study Graef and Haigis (2001) found that the rainfall variability resulted in yield loss 

for millet in semi-arid areas in Niger. They reported two major strategies at the farm level that 

farmers practice—firstly, cultivate fields in different locations within the village district and 
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secondly, sow as much as area as possible. Both of these strategies result in increased cultivated 

area over total cultivable area—in other words, higher cropping intensity or higher land use 

intensity for crops. 

Form a global perspective, Rosenzweig and Parry (1994) sought to understand the 

potential impact of climate change on world food supply. They conclude that vulnerability to 

changes in weather and climate is different between developed and developing countries. They 

suggest an interdisciplinary research on biophysical and socio-economic aspects to explore the 

sensitivity and mitigation towards climate change. Additionally, weather and climatic factors 

influence crop choices. For example, Lamb (2002) investigated the impact of weather risk on 

crop choices in some of the villages in India and found that crop choices were indeed influenced 

by weather risks3. It should be pointed out that land allocation across different crops is an 

important decision under weather risk because crops differ widely in terms of yield variability 

arising from fluctuation in weather (Lamb 2002).  

Recall that variability in rainfall is an important source of uncertainty in agricultural 

production decisions. Bezabie, Falco, and Yesuf (2011) used household and plot-specific 

longitudinal data from Ethiopia to analyze riskiness of crops and household’s decision on crop 

choices. They found that level of riskiness of crop portfolios are partly motivated by both annual 

and seasonal rainfall variability and moisture sensitive crops. Household behavior suggested that 

they chose less moisture-sensitive crops in times of rainfall shortages and combine risky and 

less-risky crops in case of greater variability in rainfall. Therefore, once can conclude that in 

response to rainfall variability, farmers are more likely to select less risky crops with less return; 

crop selection and crop management practices are ex-ante practices towards mitigating rainfall 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3	   Weather	  risk	  in	  measured	  by	  variability	  in	  the	  start	  date	  of	  monsoon	  season,	  with	  at	  least	  20	  mm	  of	  rainfall,	  after	  
June	  1st.	   	  
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risk (Bezabih, Falco, and Yesuf, 2011; Bezabih and Falco, 2012). Finally, Seo and Mendelsohn 

(2008) investigated South American farmers’ adaptation to climate change. Analyzing the crop 

choice among seven most popular crops under different environmental conditions across the 

landscape, they concluded that the farmers adjust crop choice and hence area under those crops 

to fit their local climate conditions. They also indicated a possibility of crop switching. However, 

cross-sectional data did not capture switching over time.  

While crop choices, crop mix, production diversifications are ex-ante risk management; 

income diversification through off-farm labor supply is explained as major ex-post adjustment. 

These studies relate crop production and weather risk with household specific behavior, human 

capital, and household’s economic conditions. For example, Dercon (1996, 2000) examined poor 

households’ use of risk‐management and risk‐coping strategies and crop choices in Tanzania. 

Choosing a less risky crop portfolio, mostly likely behavior of poor households, leads to 

substantial low income—resulting from low returns form the crop portfolio. Even with low 

returns, households choose low risk crops because they are not able to find jobs in nonfarm 

sectors (Dercon, 1996).   

Broadly, the major investigations in these studies and a common literature on climatic 

conditions and production agriculture can be explained under three major aspects. First, crop 

production and yield are affected by weather conditions; second, weather and climatic factors 

influence crop choice in general; third, farmers tend to adjust/adapt towards weather risk through 

management practices in production (such as crop portfolio choice) or through ex-post income 

diversification activities. While adapting towards risk, factors shaping farmers’ behavior such as 

household economic conditions, human capital etc. also play an important role.  
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Though the aspects of weather risk, climate change, agricultural production and 

adaptation has been discussed in variety of disciplines, concrete evidences based on responses 

through farming behavior requires careful attention. However, most of the studies mentioned 

above use cross-sectional or aggregate level data. Note that cross-sectional studies and/or 

aggregate level time-series studies focused on specific regions may lack generalization. Solid 

evidences to back-up theory or strong empirical study to provide a different perspective on 

weather risk, crop choice, and cropping intensity is lacking in the literature. Secondly, above 

studies have not investigated cropping intensity (cropped area/total cultivable area). Third, to 

better understand about farmer’s adjustment behavior in response to weather risk, it is important 

to consider short- medium- and long- term effects of weather risk on cropping intensity. Thus, 

the literature falls short of concrete empirical evidences that can be generalized. Moreover, due 

to possibilities of multi-dimensional factors such as agricultural system, behavioral responses, 

and constraints due to weather and other dimensions of risk, the adjustments to weather risk is 

more an empirical question that requires careful attention. Our study aims to fill this gap in 

empirical literature by providing an evidence of short- and long-run responses to weather risk 

and farmer’s behavior using a panel data set, that account for temporal and spatial aspects, from 

1966-2007, in 115 district in India. 

Conceptual Model 

We consider a model of land allocation for cropping decision (acreage decision) of a farm 

household. Consider a simple income-leisure utility function of a farm household. The farm 

household maximizes the utility function subject to production and time constraints, where utility 

is a function of farming household’s income (𝜋) and leisure (𝑙).  

𝑈 = 𝑈(𝜋 𝐹,𝑂 𝑒 , 𝑙)       (1) 
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We simplify the model with only two potential sources of income, farm income (F) 

and/or the income from off-farm jobs (O). We further assume that education is the major 

determinant of off-farm earning decisions, O= O(e) and 𝜕𝑂(.)
𝜕𝑒

> 0;  i.e., farm households with 

more educated members in the households are more likely to chose off-farm works in rural areas 

over farming. Farm household’s profit function from agriculture is considered as: 

𝐹 = 𝑃 ∗ 𝑄 𝐴, 𝐿! ,𝐾,𝜙 − 𝐶(𝑄, 𝑟)     (2) 

where C(.) represents cost function and Q(.) represent concave production function of a farm 

household. P is price of farm output and r is the vector of input prices. Labor and capital inputs 

for production are represented as 𝐿!, and K, respectively. 𝐿!   is allocated on the basis of total 

time by: 𝑇 = 𝐿! + 𝐿! + 𝑙, where T represents total time, 𝐿!   is labor provided for farm 

production, 𝐿! and l represent off-farm labor supply from household and leisure, respectively. 

Land acreage allocation for the agricultural production is represented by  𝐴, with possibility of 

acreage allocations for 𝑖 = 1, 2,… . 𝑗 crops such that 𝐴 = 𝐴!! . 𝜙 represents the vector of 

other exogenous variables influencing production. For fixed capital and labor inputs (usually in 

short-run), land allocation is a major input for total crop production. However, in long run there 

could be adjustment in factors.  

Now we introduce weather variability and some exogenous factors that influence total 

land allocation decisions for crops. Assuming that the total cultivable (total available land for 

use) as G, a measure 𝑆! =
!  (!!)
!

, represents the cropping intensity or share of cropped area (total 

cropped area over total cultivable area). Let 𝐶! represent weather risk or variability in weather. 

Now we represent the weather risk augmented model in equation 3: 

𝐹 = 𝑃 ∗ 𝑄 𝑆! 𝐶! , 𝐿! 𝐶!   ,𝐾,𝜙 − 𝐶(𝑄, 𝑟)      (3) 
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Cropping intensity decisions can represent two scenarios of farmer behavior. First, more 

intensity of cropping, i.e., allocate more total acreage under crop as a response towards weather 

variability—diversifying the crop portfolio towards response of risk perhaps including more 

acreages under less risky crops. 𝜕(𝑆𝐴 𝐶𝑣 )
𝜕𝐶𝑣

> 0 implies such behavior. Second, lower intensity of 

cropping, i.e., allocate less acreage under agricultural crops when weather variability is 

increased. 𝜕(𝑆𝐴 𝐶𝑣 )
𝜕𝐶𝑣

< 0 may imply that the farmer moves away from cropping. In the nutshell, 

we can assume that the households with potential higher off-farm opportunities may move away 

from farming when weather variability is higher—perhaps households with more educated 

members, i.e., we expect 𝜕!
! !!
𝜕!!

< 0 in equation 3 and 𝜕!(!)
𝜕!!

> 0 in utility function in equation 

1. 

Econometric Method 

Equation 3 can be transformed to derive the empirical model. Empirically, we estimate 

the short-term and long-term sensitivity of cropping intensity to rainfall variability as follows. 

𝑆!!,! = Γ𝐶!!,! + 𝛽𝑋!" + 𝛼! + 𝜀!"        (4) 

𝑆!!,! represents cropping intensity in the district i in year t. Our main variable of interest, rainfall 

variability in district i in year t is represented as 𝐶!!,!. 𝑋!" includes exogenous control variables 

that may affect cropping intensity, such as share of rural literates in the district, share of 

cultivators in total population, productivity of high yielding variety, availability of agricultural 

labor, net irrigated area over total cultivable area etc. 𝛼! is useful in controlling district-level 

fixed effects. 

In our study, equation 4 is estimated using panel data. Broadly, two types of panel data 

models have been discussed in literature—firstly, the models with large cross-sectional units but 
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small time-span (large N, smaller (or fixed) T), and secondly, models with larger time span as 

well as larger cross-sectional units (larger N, larger T). The former types of panel model require 

pooling individual groups and allowing only the intercepts to differ across the groups. On this 

extreme, we can estimate the fixed effects model in which the time series data for each group are 

pooled and only the intercepts are allowed to differ across the groups4. However, if the slope 

coefficients are not identical, these estimators could result in misleading inferences. Previous 

studies have found that the assumption of homogeneity of parameters across group is often 

inappropriate (Phillips and Moon, 2000; Baltagi 2005; Pesaran, Shin, and Smith, 1999).  

In recent years, there has been a growing interest in cases, such as sets of countries, 

regions or industries, where there are fairly long time-series for a large N. The second approach 

can be utilized in estimation of non-stationary or co-integrated panel models where heterogeneity 

in parameters is allowed across groups. Econometric methods for non-stationary panels are 

applied in many empirical studies. Some recent studies, for example, include—Narayan et al. 

(2010); Mark and Sul (2003); Costantini and Martini (2009); Onel (2012).  

Persaran, Shin, and Smith (1997, 1999) present techniques to estimate non-stationary 

dynamic panels in which the parameters are heterogeneous across groups—the mean-group 

(MG) and pooled mean group (PMG) estimators. With MG estimator, the intercepts, slope 

coefficients, and error variances are all allowed to differ across groups. The PMG estimator, on 

the other hand, combines both pooling and averaging. This allows the intercept, short run 

coefficients, and error variances to differ across the groups but constraints the long run 

coefficients to be equal across group. Pesaran, Shin, and Smith (1999) have developed maximum 

likelihood methods to estimate these parameters (Blackburne III and Frank, 2007).  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4For detail description of panel data models, we refer to Baltagi (2005).  
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Bangake and Eggo (2010) estimated long run relationships using MG, PMG, and 

dynamic OLS models to study international capital mobility in African countries using 37 

African countries from 1970 to 2006. Frank (2005) used MG and PMG models to study income 

inequality and economic growth relations in the long-term.   

In this paper, we presented the results of both classes of panel data models (first, models 

for fixed T and large N and second, models for large T and large N). Assuming fixed T and large 

N, we presented results of static fixed effect (FE) models, static random effect (RE) models, and 

first difference (FD) models. For the second-class or co-integrated models, we presented 

regressions applying dynamic OLS (DOLS) regression, dynamic fixed effects (DFE) regression, 

and MG and PMG model estimations. MG and PMG models (Persaran, Shin, and Smith (1997, 

1999)) are estimated to assess the long run and short run effects of rainfall variability in cropping 

intensity.  

Data 

This study uses data set collected by International Crop Research Institute for Semi-arid 

Tropics (ICRISAT) in India. Our sample includes data for 115 districts from 1966 to 2007 for 5 

states Andra Pradesh (AP), Madhya Pradesh (MP), Maharastra (MH), Karnataka (KT), and 

Hariyana (HR). Figure 1 shows five States and their location on Indian map. Meso dataset of 

ICRISAT has compiled district-level information on different climatic and land-use variables 

such as annual and June-July rainfall, soil-type, irrigated acreage, high yielding varieties 

production area. Additionally, information on rural and urban population, farming population, 

rural and urban agricultural labors, and number of literates in rural population are available 

through different modules of ICRISAT meso dataset.  
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Table 1 presents variable definitions and summary statistics in raw form (i.e, summary of 

district-time data points). In total we have 4,782 district and time observations were used in our 

analysis. We calculated district-level cropping intensity as the ratio of total cropped area to total 

available area for cultivation (excluding area for non-agricultural uses, buildings, etc.). Average 

cropping intensity is 0.627 with standard deviations of 0.267. This indicates that around 63% of 

the total cultivable area has been allocated for agricultural production of the crops in a district. 

The cropping intensity pattern for each district is represented in figure 2. Overall, figures suggest 

a slightly increasing trend in most of the districts over time. Rainfall variability, indicator of 

weather risk is measured by the coefficient of variation of the annual rainfall. Coefficient of 

variation is a unit-less measure and has been used in other studies as a measure of variability or 

risk (see, Mishra and Goodwin 1997; Bezabih et al., 2011). Average rainfall variability was 0.537 

with standard deviation of 0.051. Rainfall variability is measured on a yearly basis. Figure 3 

represents rainfall variability plots in each district and over time. 

Cultivator share is the share of total cultivators (farmers) in total district population. In 

another perspective, this measure indicates the number of many famers that are available to 

cultivate in the district population. Surprisingly, this is only about 16% compared to the total 

district population. Agricultural labor availability is calculated as the ratio of total agricultural 

labor available in the district to total cultivators. Labor availability variable with mean of 0.865 

indicates that agricultural labor availability per cultivator was around 86%. However, relatively 

higher standard deviation of 0.623 indicates that the district-time labor availability has higher 

variation across time and space. Another variable of interest is the literacy rate in the rural areas. 

Our rural literate share variable is the ratio of rural literate population to total literate (rural and 
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urban) population in the district. On an average, rural literate population is around 66% of the 

total literate population in the district.  

Indicator of irrigation facility and production of high yielding varieties (HYV) are 

captured by two variables— share of irrigated cropped area over total cropped area and total 

HYV production per total cultivated area total cropped area and net irrigated area in the district 

over total cropped area. Irrigation variable suggests that only 19% of the area in the district is 

irrigated and HYV production per cultivable area in district is around 0.23. 

Results and Discussion 

Panel regressions for fixed T and Large N 

Table 2 presents panel regressions commonly used for models with smaller T component 

and large N component. Typically, household panel data with large cross-section but small time 

span are commonly estimated through these models. Small T panel models usually rely on fixed 

or random effect models or combinations. These models assume fixed T, and 𝑁−→ ∞, 

asymptotically. First column in table 2 reports for pooled ordinary least squares (POLS) 

regression. Second and third columns show fixed effects and random effects regression 

estimations, respectively. Serial correlation test suggests a presence of serial correlation in both 

POLS and fixed effects models. This finding leads us to estimate a generalized estimating 

equation (GEE) model. GEE population average model allows for unrestricted system 

heteroskedasticity. In the fourth column, we estimated first difference (FD) model. In all models, 

rainfall variability and share of HYV production significantly impact cropping intensity. Share of 

irrigation area is significant in all but GEE regression. Coefficient estimates from GEE 

regression suggest that a 10% increase in rainfall variability decreases cropping intensity by 

0.5%. A plausible explanation could be that subject to higher rainfall variability, farmers intend 
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to move away from agriculture and perhaps choose to diversify income through other sources, 

perhaps with off-farm and non-agricultural works.  

Unlike rest of the estimates presented in Table 2, FD regression relates a change (first 

difference) in cropping intensity variable with changes (first difference) in independent variables. 

Results show that a 1% increase in change in rainfall variability from previous year results a 

decrease in change in cropping intensity by 1.6%. Taking results from the GEE and FD models 

together, our results show that risk has a negative effect on cropping intensity and is decreasing 

over time. The positive effect of share of HYV production on cropping intensity, on the other 

hand, is increasing over time. For example, 10% increase in the share of HYV crop, changes 

cropping intensity by 0.1%.  

However, one must be cautious in infering relationships from our aggregate district level 

data using large N and small T panel models presented in Table 2. Large N and small T panel 

models require pooling individual groups and allow only the intercepts to differ across groups. 

By the nature of our data, we have much longer time span (T) along with substantial 

cross-sectional groups. As indicated in previous studies, homogeneity of slope parameters, the 

assumption of large N and small T, is often inappropriate for case where we have large T and 

large N (Pesaran and Smith 1995; Phillips and Moon 2000; Baltagi 2005). Asymptotic of large T 

and large N dynamic panel models is different from traditional large N and small T dynamic 

panels (Baltagi, 2005). With increase in time observations inherent in large N and large T 

dynamic panels is non-stationarity that needs to be addressed. Therefore one needs to test for 

non-stationarity using stationary, unit root, and cointegration tests. Next, we proceed to panel 

non-stationary and unit root, and co-integration tests.  
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Panel Unit Root and Stationarity Tests 

There are many options for panel stationary and unit root tests. Hardi (2000) has 

developed several residual-based Lagrange multiplier tests for heteroscadasic and serially 

dependent error processes with a null hypothesis of trend stationary. Table 3 presents results of 

stationarity tests for each variable. Test provides the evidence that variables of our interest are 

non-stationary in level form but stationary in the first difference form.  

 With respect to a null hypothesis, no cointegration, both Pedroni (1995, 2004) and Kao 

(1999) tests for panel data are commonly used in literature. The Pedroni (1995, 2004) test is 

based on pooled type tests, while Kao (1999) test is based on augmented Dicky-Fuller (ADF) 

type test applicable to panel data. Based on these test results, results show a rejection of null 

hypothesis in majority of test results based on Pedroni (1995, 2000) and rejection of null 

hypothesis using Kao (1999) test. Therefore, we conclude the variables of interest are 

cointegrated and the variables of the interest are cointegrated implying that one should use 

non-stationarity dynamic panel modeling approach. Next, we estimate non-stationary, 

cointegrated dynamic panel models appropriate for large T and large N.   

Non-stationary and dynamic panel models for large N and large T 

 We estimated short-term and long-term associations of cropping intensity with rainfall 

variability and other variables of interest using cointegrating regressions suitable for 

non-stationary dynamic panel models. These estimates assume both N and T approach infinity 

asymptotically. Table 4 presents results of these models. First column, table 4, of the table 

presents dynamic OLS (DOLS) regression results suggesting that there is a long term association 

of cropping intensity with rainfall variability, share of cultivators, share of HYV crop production, 

and share of irrigated area. The effects of all these variables are positive and significantly 
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different from zero at the 5% level of significance or higher. The DOLS has a remarkably high 

R-square 0.972 suggesting that the model explains cropping intensity very well in long run. 

DOLS results suggest that 10% change in rainfall variability increases cropping intensity by 3%. 

The long-term effect of a 10% change in share of cultivator, share of HYV crop production, and 

share of irrigated areas increase change in cropping intensity by 0.7%, 0.1%, and 0.9%, 

respectively.  

Column 2 of table 4 shows the results of dynamic fixed effects (DFE) model. DFE has 

similar coefficient estimates as DOLS except that it suggests one additional variable affecting 

cropping intensity. Results show that share of rural literates is negatively cropping intensity in 

long-term. A 10% increase in change in share of rural literate results in a 1.6% reductions in 

cropping intensity in the long-term.   

Allowing for the heterogeneity of parameters across groups, Pesaran, Shin, and Smith 

(1997, 1999) have developed two important techniques to estimate non-stationary dynamic panel 

models: The mean group (MG) and pooled mean group (PMG) estimators. The MG estimator 

relies on estimating N-time series regressions and averaging the coefficients, whereas the PMG 

estimator relies on a combination of pooling and averaging the coefficients (Pesaran and Smith 

1995; Pesaran, Shin, and Smith 1999). These estimation techniques have been applied to 

empirical studies (Freeman 2000; Frank 2005). Column 3 and column 4 of our results in table 4 

present mean-groups (MG) and poled mean groups (PMG) regression, respectively. MG results 

suggest a positive 0.5% growth in cropping intensity as a result of 1% increase in change in 

weather variability while PMG estimator suggests a positive effect of around 0.2%. Additionally, 

PMG result suggest a negative long term effect of share of rural literates and a positive effect of 
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share of irrigated area on cropping intensity. A 10% growth in share of rural literates is 

associated with a 1.8% reduction in change in cropping intensity.  

 We conducted a Hausman test to compare which model is more suitable among DFE, 

MG, and PMG. Test results are presented in table 5. Our two sets of Hausman test suggest that 

DFE model is preferred over MG model and PMG model is preferred over MG model. Overall, 

DFE and PMG model estimates suggest a positive long-term effect of growth in rainfall 

variability, a negative long-term effect of growth in share of rural literates, and a positive effect 

of a growth in share of irrigated area. A positive effect of rainfall variability suggests for the 

portfolio or crop mix diversification behavior of farmers that we have discussed as one of the 

possibilities in our conceptual model—i.e., increase in cropped area (perhaps with higher 

allocated areas for less risky crops) when subjected to higher variability in rainfall. This may 

seem dubious at first glance because one assumes that there is a more likely chance of moving 

away from farming and diversify income through alternative off-farm jobs when farming 

becomes riskier—resulting a lower cropping intensity due to weather risk. However, the scenario 

of peasant farmers in rural areas may be different from this assumption because they may have 

less opportunity for alternative practices and continue farming. A positive relation is plausible. 

Farmers with low or no outside opportunities, the response towards weather risk is to crop more 

areas in different locations and with different crops (crop mix).  

A negative effect of share of rural literate share variable in the district could be explained 

through education and off-farm labor supply relations established in farm household literature. 

Increased education in rural area increases off-farm work opportunities for the educated; this 

may induce farmers to move away from farming and towards off-farm work that is often less 

variable and parameters. Increase in share of HYV to total cropped area is an indication of 
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adoption of improved varieties and progressive farming. Higher HYV production pattern 

increases cropping intensity as more people are attracted by higher yield in crops and increased 

returns and thus aim to expand farming or attracted towards farming. A positive effect of a 

growth in share of irrigated area on growth in cropping intensity is as expected. With irrigation 

facilities, farmers are better able to reduce the impact of rainfall variability and thus able to 

stabilize production and income from farming. This enables existing farmers to expand cropping 

areas, increasing economies of scale.  

Finally, we also examined the long-term effect of rainfall variability and cropping 

intensity using DFE, MG, and PMG estimators in state-wise regression for 3-states. Results are 

shown in table 6. A positive effect of rainfall variability is also confirmed in state-wise 

regression indicating robustness of our findings.  

Summary and Conclusion 

Weather and climatic conditions play an important role in agricultural production. 

Variability and risks associated with climate and weather in an area not only influence farmer’s 

decision on cropping intensity and pattern but may also influence the decision to farm in the first 

place. This paper presents empirical evidence on a relationship between cropping intensity and 

weather variability using a panel of 115 districts in India over the 1966 to 2007 period. We 

presented results using different panel data methods used in the literature. Rather than 115 

cross-sections with 5 or 6 time periods, as is common in most of the prior panel data studies, we 

are able to compile a sample that is large in both cross-sections and time-periods (N=115, T=42) 

and enables us to implement a more suitable non-stationary cointegrated dynamic panel model 

for large T and large N. 
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Results indicate a positive long-term association between rainfall variability on cropping 

intensity. The positive relation is quite strong and robust among all different panel data 

models—dynamic OLS, dynamic FE, mean group, and pooled mean group estimation 

techniques. The findings are significant and consistent even with the inclusion of numerous 

additional regressors. Additionally, our results suggest that the indicator of higher education in 

the district is negatively associated with cropping intensity while indicators of irrigation facilities 

and share of high yielding variety production positively influence cropping intensity. 

With an opportunity to choose alternative income generating activities such as off-farm 

jobs, a positive effect of weather risk on cropping intensity may seem dubious because when 

farming is risky, people may move away from farming. However, the scenario of peasant 

households in rural areas and subsistence farming could be different in that they have fewer 

off-farm alternatives. Instead, in this case a response towards weather risk would be to diversify 

crop mix and increase the allocated areas for less risky crops, that will intend to have stabilized 

quantity of food produced and income generated. This latter behavior results in increase in 

cropping intensity. However, we have not tested for crop specific area allocations in this study 

and warrants for further extension. Other limitations of this study may come from a district-level 

aggregate data. A micro-level crop-specific data on cropping intensity and pattern will be more 

helpful to verify this behavior. Further, land quality and land type variables may also help in 

providing better insights. 
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Table 1: Descriptive Statistics of the variables in raw form, 1966 to 2007, India  

Variable definition Mean Standard 

Deviation 

Cropping intensity (Total cropped area over total available cultivable area) 0.627 0.267 

Rainfall variability (Coefficient of variation of total annual rainfall)  0.537 0.051 

Cultivator share (Share of total cultivators (farmers) in total population) 0.159 0.059 

Agricultural labor availability (Total agricultural labor population over total 

cultivators population)  

0.865 0.623 

Rural literate share (Share of rural literate population over total literates) 0.664 0.160 

HYV production (High yielding variety production over gross cropped area) 0.228 0.181 

Irrigated area share (Net irrigated area over total cropped area) 0.190 0.145 

Total observations 4782  
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Table 2: Panel models for fixed T, Large N (dependent variable: cropping intensity, in log) 
 Pooled 

OLS  
Random 
effects 
GLS  

Fixed effects 
(within) 

estimation 

Generalized 
Estimating 

Equation (GEE)  

First 
Difference 
(FD) model 

Rainfall variabilitya  0.091 0.105** 0.105** -0.048** -0.158** 
 (1.47) (4.00) (3.93) (-2.55) (-8.58) 
Cultivator sharea  -0.100 0.025 0.025 0.007 0.015 
 (-0.48) (0.76) (0.75) (0.34) (0.51) 
Ag. Labor availabilitya  -0.012 0.0014 0.002 0.012 0.021 
 (-0.12) (0.08) (0.07) (1.08) (1.02) 
Rural literate sharea  0.023 -0.003 -0.003 0.015 -0.003 
 (0.13) (-0.09) (-0.09) (0.82) (-0.10) 
HYV productiona  0.032* 0.016** 0.015** 0.006** 0.013** 
 (1.79) (2.70) (2.61) (2.18) (4.16) 
Irrigated area sharea  0.043 0.090** 0.090** 0.013 -0.043* 
 (0.97) (5.96) (5.81) (1.43) (-1.71) 
Constant -0.542 -0.240** -0.237** -0.506**  
N 4025 4025 4025  3785 
Serial Correlation 
Test (H0: no serial 
correlation)  

Reject null  
 t= 262.10 
 (p<0.000) 

 Reject null  
t= 17.65  
(p< 0.000) 

 Reject null  
t = -10.33  
(p< 0.000) 

Fraction of 
individual-specific 
variation (ρ) 

 0.935 0.933   

a Variables are in log; t statistics in parentheses; * p < 0.1, ** p < 0.05 
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Table 3: Stationary, unit root and Co-integration tests for panel data 
Hardi (2000) Stationary Tests for Panel Data Hardi z-statistic Heteroskedastic 

consistent 
z-statistic 

Stationary test on variables in level form   
H0: log of rainfall variability is stationary 30.14** 29.36** 
H0: log of cropping intensity is stationary 30.93** 28.13** 
H0: log of rural literate share is stationary 19.17** 14.87** 
H0: log of rural cultivators share is stationary 19.21** 15.99** 
H0: log of high yielding variety production per cultivable 
area is stationary 

33.74** 32.84** 

H0: log of availability of agricultural rural labor is stationary 12.08** 12.06** 
H0: log of share of irrigated area is stationary 42.16** 37.08** 

 
Stationary test on variables in first difference form   
H0: first difference of rainfall variability is stationary -7.25 (p=0.99) -7.21 (p=0.99) 
H0: first difference of cropping intensity is stationary -2.73 (p= 0.97) 5.13** 
   
Co-integration Tests Pedroni (1995) Kao (1999) 
H0: No integration, Ha: Common AR coefficient (within 
dimension) 

  

Panel v-statistic -34.82 (p=1.00)  
Panel rho-statistic -0.16 (p=0.43)  
Panel PP statistic -14.06** (p<0.00)  
Panel ADF statistic -8.09** (p<0.00) -1.98** (p=0.02) 
H0: No integration, Ha: Individual AR coefficient (between 
dimension) 

  

Group rho statistic 3.12 (p= 0.99)  
Group PP-statistic -19.95** (p<0.00)  
Group ADF statistic -7.34** (p<0.00)  
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Table 4: Long run effects, non-stationary panel models for large N and large T (dependent 
variable: cropping intensity, in log) 
 Dynamic 

OLS 
Dynamic FE Mean Group 

(MG) regression  
Pooled Mean 
Group (PMG) 

regression 
Long-run coefficients    
Rainfall variabilitya 0.301** 0.316** 0.509** 0.182** 
 (6.25) (5.64) (2.83) (5.74) 
Ag. Labor availabilitya -0.011 0.024 -2.577 0.014 
 (-0.72) (0.71) (-1.28) (0.80) 
Rural literate sharea -0.04 -0.156** -2.708 -0.178** 
 (-1.28) (-3.75) (-0.73) (-6.84) 
Cultivator sharea  0.065** 0.106* -3.463 0.043* 
 (2.89) (1.84) (-1.15) (1.77) 
HYV productiona 0.012** -0.010 0.936 0.003 
 (2.28) (-1.21) (1.02) (0.85) 
Irrigated area sharea 0.089** 0.074** -0.145 0.108** 
 (8.89) (2.81) (-0.77) (20.07) 
Adjustment factor (∅)  0.375** 0.636** 0.358** 
  (8.70) (15.63) (10.27) 
Adjusted R2 0.972    
Short-run coefficients     
D.Rainfall variabilitya  -0.041** 0.017 -0.053** 
  (-2.78) (0.69) (-3.07) 
D.Ag.Labor availabilitya  -0.017 -0.343 -0.282 
  (-1.02) (-1.47) (-1.20) 
D.Rural literate sharea  0.035 -0.395 -0.440* 
  (1.17) (-1.50) (-1.68) 
D.Cultivator sharea  -0.033 -0.699 -0.640 
  (-1.11) (-1.59) (-1.54) 
D.HYV productiona  0.002 0.003 -0.003 
  (0.45) (0.39) (-0.33) 
D.Irrigated area sharea  -0.057* -0.073* -0.071** 
  (-1.71) (-1.87) (-2.12) 
Constant  0.016 1.586 0.082** 
  (0.37) (0.89) (2.60) 
N   1812 1812 
a Variables are in log; D. refers to first difference; t statistics in parentheses; * p < 0.1, ** p < 0.05 
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Table 5: Hausman test results for model choice between FE, MG, PMG models 
Hausman test Hypothesis Chi-square 

Statistics  
Conclusion  

Comparison between 
MG and Dynamic FE 

MG estimator is consistent 
under null and alternative 
FE is inconsistent under 
alternative, efficient under null 
 

2.59 
(p >chi2 = 
0.86) 

FE model, efficient 
under null, is 
preferred over MG 
model 

Comparison between 
MG and PMG 
regression 

MG estimator is consistent 
under null and alternative 
 
PMG estimator is inconsistent 
under alternative, efficient 
under null 

0.00 
(p > chi2 = 
1.00) 

PMG estimator, the 
efficient estimator 
under the null 
hypothesis, is 
preferred 
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Table 6: Long run effects using non-stationary panel models, state-wise regressions 
 Dynamic FE Mean Group (MG) Pooled Mean Group (PMG) 
State: Andra Pradesh (AP)    
Rainfall variabilitya 0.388** 1.045** 0.289** 
 (4.47) (2.48) (3.94) 
Ag. Labor availabilitya 0.043 -1.370 0.025 
 (0.48) (-0.65) (0.46) 
Rural literate sharea -0.130** 1.390 -0.083 
 (-2.02) (1.29) (-1.37) 
Cultivator sharea 0.172* -1.144 0.178** 
 (1.70) (-0.39) (2.46) 
HYV productiona -0.006 -0.011 0.018** 
 (-0.51) (-1.01) (2.78) 
Irrigated area sharea -0.125** -0.032 -0.128** 
 (-2.58) (-0.23) (-5.70) 
Adjustment factor (∅) 0.402** 0.712** 0.397** 
 (8.03) (11.17) (7.65) 
N  658 658 
State: Hariyana (HP)    
Rainfall variabilitya 0.314** 0.234** 0.288** 
 (2.78) (2.86) (3.03) 
Ag. Labor availabilitya 0.134 -13.49 -0.019 
 (1.46) (-1.00) (-0.38) 
Rural literate sharea -0.002 -25.80 -0.045 
 (-0.01) (-0.94) (-0.54) 
Cultivator sharea 0.0742 -20.54 -0.108** 
 (1.22) (-0.99) (-2.16) 
HYV productiona 0.124* 6.856 0.028 
 (1.85) (1.01) (0.92) 
Irrigated area sharea -0.020 -1.364 0.087** 
 (-0.46) (-1.04) (2.28) 
Adjustment factor (∅) 0.463** 0.622** 0.293** 
 (3.72) (4.85) (2.12) 
N  259 259 
State: Maharastra (MH)    
Rainfall variabilitya 0.271** 0.158 0.140** 
 (2.92) (1.32) (4.17) 
Ag. Labor availabilitya 0.035 -0.488 0.021 
 (0.77) (-0.71) (0.98) 
Rural literate sharea -0.272** 0.479 -0.237** 
 (-3.89) (0.52) (-6.68) 
Cultivator sharea 0.163** -0.538 0.068** 
 (2.38) (-0.57) (2.00) 
HYV productiona 0.005 0.0358** 0.001 
 (0.51) (2.68) (0.14) 
Irrigated area sharea 0.111** 0.106** 0.114** 
 (4.46) (2.55) (21.23) 
Adjustment factor (∅) 0.349** 0.580** 0.383** 
 (5.25) (10.13) (7.50) 
N  895 895 
a Variables are in log; t statistics in parentheses; * p < 0.1, ** p < 0.0 
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Figure 1: India map showing study area 
	  

	  

Note: Study area is denoted by green color 
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Figure 2: Cropping intensity pattern over years in different districts, 1966 to 2007, India 
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Figure 3: Rainfall variability over years in different districts, 1966-2007, India 
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