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ABSTRACT 

Pearl millet [Pennisetttm glatlcum (L.) R. Br.] is an important staple crop 

of the semi-arid regions of India and Africa. It is a dual-purpose crop grown both for its 

grain and fodderlstover. Crop residues provide the bulk of the livestock feed across South 

Asia, but their nutritive value is so low that farmers must supplement these with feed 

grains and other concentrates. Improving the nutritive value of the strawlstover and the 

efficiency of their use in mixed diets is an important option for increasing livestock 

production in the region. Genetic variation in the quality of pearl millet stover can be 

exploited to develop improved crop germplasm with stover of high nutritive value and 

good digestibility. In this context, marker-aided selection is found an ideal approach to 

transfer stover quality traits to elite genetic backgrounds through backcrossing with 

minimum linkage drag. To exercise marker-aided selection, a well-saturated molecular 

marker linkage map and tightly linked markers are a prerequisite. The first molecular- 

marker-based genetic linkage map of pearl millet was generated by Liu et al. (1994). That 



map consisted of 181 RFLP markers covering the 7 pearl millet chromosomes and 

spanning a genetic distance of a 303 cM, and has since been extended with AFLP and 

SSR markers (Breese et 01.. 2002; Qi et a[., submitted). A subset of these markers has 

subsequently been transferred to a series of different crosses that segregate for 

agronomically important traits. Quantitative trait loci have been mapped for downy 

mildew resistance (Jones et ul., 1995, 2002), drought tolerance and other genotype x 

environment interactions of grain and stover yield (Yadav et al., 2002, 2003, 2004) and 

for characters involved in domestication (Poncet el al., 2000,2002). 

ICRISAT and lLRl Scientists (Hash et al.. 2003) have attempted to map the QTL 

associated with stover quality as well as grain and stover yield and aspects of drought 

tolerance using the RFLP- and SSR-based linkage map of ICMB 841 x 8638. Testcross 

hybrids of 79 progenies from this population were evaluated for stover traits at ICRISAT, 

Patancheru. Stem sheath and blade fractions of stover samples taken from different parts 

of the plant were evaluated for a number of in vitro estimates of ruminant nutritional 

quality. Subsequent QTL analysis detected a putative major QTL for leaf blade quality 

from parental line 8638 (tiash el ab, 2003). This putative QTL has subsequently been 

partially introgressed into the genetic background of the more elite parent 8418 = ICMB 

841 by marker-assisted backcrossing. 

Genetic linkage maps have been developed in various pearl millet crosses and 

used to detect and map quantitative trait loci (QTLs) contributing to various traits 

including stover quality. Information on the position of QTLs relative to marker loci 



provides a basis for marker assisted selection (MAS) for quantitative traits. In crops like 

pearl millet, barley etc MAS is of particular interest for the development of genotypes 

stover quality, grain and malt quality etc because (I) thorough assessment of grain yield 

and quality traits is expensive and requires larger grain samples than are normally 

available in the early stages of a breeding program. (2) grain yield and quality traits are 

subject to considerable environmental variation and genotype x environment interaction. 

With MAS for QT1.s that affect grain and stover quality, pearl millet breeders 

could limit breeding populations to those progeny with the highest probability of having 

superior stover quality. Our objective is to assess whether marker-based selection could 

be effective in manipulating a QTL region in pearl millet breeding population in which 

the QTL region had originally been detected and mapped. 





CHAPTER I 

INTRODUCTION 

Pearl millet [Pennisetum glaucum (L.) R. Br.], is the 7' most important cereal 

crop gown globally and the 2nd most important cereal crop grown primarily for dual- 

purpose use (grain and fodderlstover) after sorghum. It is an important staple crop of the 

semi-arid regions of India and Africa. Pearl millet is primarily grown as a rainfed crop in 

the low rainfall zones of Sub-Saharan Africa and the Indian subcontinent. This crop is 

grown as part of smallholder crop-live stock production systems in the sub-humid. semi- 

arid and arid tropics and subtropics where most of the worlds poorest livestock producers 

and consumers are found. In India, the average annual area sown to pearl millet amounts 

to 9.5 M ha with an average annual grain production of 8.3 M ton and average grain yield 

of 880 kgiha (CMIE, Feb, 2004). 

Pearl millet is an important crop in plant genetic research due to its dual-purpose 

nature, its adaption to adverse climatic environments, and the diverse range of germplasm 

that has been collected and is available for exploitation to the plant breeders. The 

cultivated crop and its wild progenitor are diploid with seven pairs of large chromosomes 

and a haploid DNA content of 2.4pg. The genome size of pearl millet (P. glaucum) is 

around 2300 million base pairs of DNA, which is much larger and about 5 times than that 

of rice (430 M bp) and almost equal to the size of maize genome (2400 M bp). The 

genome size of pearl millet is also larger when compared to sorghum (750 M bp). 

(Arumuganathan and Earle, 1991). 

1 



Because of the dual-purpose nature of pearl millet and its adaptation to adverse 

climatic conditions, where livestock products often provide rural families with much of 

their cash income, stover quality is of increasing importance. Improving the nutritive 

value of the stover and the efficiency of its use in mixed diets is an important option for 

increasing the livestock productivity of any region. The word 'stover' refers to dry leaf 

and stem residues fed to livestock following harvest of grain crops. Although such crop 

residues provide the bulk of livestock feed across the world, their nutritive value is low so 

that farmers need to supplement them with feed grains and other concentrates. Genetic 

variation in pearl millet is being explored to develop improved crop germplasm with 

stover of higher nutritive value and good digestibility. Stover quality is reported to be 

controlled by Quantitative Trait Loci (QTL) (Hash el at., 2003). Hence, identification of 

genetic factors involved in stover quality and subsequent transfer of these factors to elite 

pearl millet breeding lines lacking the stover quality trait will provide a foundation to 

improve the stover quality of elite hybrid parental lines and ultimately elite hybrid 

cultivars themselves. 

To improve stover quality, marker-aided selection is expected to provide a 

powerful tool. Conventional breeding for quantitative traits is ofien an extremely slow 

and laborious process and because of genotype x environment interactions, the 

application of results from such breeding efforts tends to be location specific. The 

application of DNA markers and mapping technology facilitates breeding for complex 

traits. After mapping QTL for stover quality in the segregating progeny derived from the 

cross of a superior stover quality donor parent and an elite parent, markers linked to the 



QTL can be employed to transfer these QTL from the donor parent to a recipient parent 

(recurrent parent). This is particularly easy if the recipient parent is the elite parent of the 

mapping population used to originally identify the QTL. 

There are many types of DNA markers currently available for linkage mapping, 

QTL identification and marker assisted-breeding. Restriction Fragment Length 

Polymorphism (RFLP) markers identified by Southern hybridization were the first 

generation of reliable DNA-based markers. A second generation markers using 

Polymerase Chain Reaction (PCR) include, Random Amplified Polymorphic DNA 

(RAPD), Amplified Fragment Length Polymorphism (AFLP), Simple Sequence Repeats 

(SSR). Sequence Characterized Amplified Regions (SCAR), Single Nucleotide 

Polymorphism (SNP) markers and their many variants. Among them, the simple 

sequence repeats (SSR) markers, also called as microsatellites are widely used in applied 

plant breeding programs. SSR markers offer a potentially attractive combination of 

features that makes them useful as molecular markers in breeding programs. RFLP 

markers also have the same features except that they require large quantities of DNA and 

the process is slow, complex, and more expensive. A large number of SSR loci have been 

genetically mapped in several agronomically important species, including rice (Cho et al., 

1997), soyabean (Cregan et al,, 1999), sorghum (Taramino et al., 1997; Bhattramakki et 

al., 2000) and pearl millet (Qi et al., 2004). In most cases these SSR markers have been 

used to supplement linkage maps originally developed using RFLP markers, such as that 

originally reported for pearl millet by Liu et al. (1994). 
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In pearl millet, using RFLP and SSR-based genetic linkage map of a moderate- 

sized mapping population based on the cross ICMB 841 x 8638, ICRISAT and ILRl 

Scientists have attempted to map QTLs associated with grain and stover yield and aspects 

of drought tolerance (Hash el al., 2003). Some ruminant livestock feed quality-related 

attributes of leaf blade, leaf sheath and stem internode stover fractions corresponding to 

the penultimate leaf of the main stem were assessed in pearl millet stover produced from 

testcross hybrids of the (ICMB 841 x 863B)-based pearl millet mapping population, and 

a QTL associated with the digestibility of the leaf blade fraction was detected on linkage 

group 7. We aimed to tranfer this putative stover quality Q'TL to elite breeding line, 

producing pairs of near-isogenic lines for this QTL, in ordcr to better assess the potential 

utility of this QTL prior to its possible further transfer into the genetic backgrounds of 

other elite hybrid parental lines. The specific objectives of the present study are: 

to select among backcross progenies (BCsFIIBC4F2 pairs) for introgression of the 

linkage group 7 stover quality QTI. from donor 8639 into the genetic background 

of ICMB 841 based on linked RFLP and SSR markers. 

to minimize the linkage drag accompanying introgression of this QTL (the 863B 

allele is loosely linked to a QTL for reduced stover yield) by background selection 

for ICMB 841 marker genotypes in adjacent non-target regions of pearl millet 

linkage group 7 and on other linkage groups in which full recovery of the recurrent 

parent alleles has not been completed. 





CHAPTER I1 

REVIEW OF LITERATURE 

Livestock rearing can provide a pathway out of poverty through improvements to 

household nutrition, cash income, asset building and employment (Mclntire el nl., 1992; 

Sansoucy et al., 1995; de Haan et al., 1999). It is highly probable that by exploiting the 

opportunities represented by the increasing demand for livestock products in developing 

countries (Delgado et ul., 1999), that even higher benefits can accrue for poverty 

reduction from livestock in years to come. In many parts of the developing world, and 

especially in South Asia. West Africa and the East African Highlands, livestock 

productivity is closely linked to the quantity and quality of available fodder, much of 

which is sourced from food crops. These seasonally available fodders are generally 

inadequate in quantity and quality, particularly in rain-fed systems and during extended 

dry seasons, presenting a serious constraint to livestock productivity (Renard, 1997). 

Most of the livestock keepers are resource poor crop-livestock farmers with very limited 

access to arable land and water conditions that limit allocation of arable land exclusively 

for the purpose of fodder production (Renard, 1997). Declining and deteriorating 

common property resources further reduce access to fodder aggravating the nutritional 

deficit and reducing livestock productivity. 

The pressure from the increased human population, intensifying cropping systems 

and greater crop-livestock integration has translated into farmers increasingly requiring 

crops that provide not only good grain or pod yields but also more reliable and better 



6 
quality fodder. Whether in South Asia (Kelly et al.,  1996, Undenvood et al., 2000, Rama 

Devi et al., 2000), West Africa (Singh el al., 2003) or East Africa (Desta et al.,  2000; 

Romney el al., 2003), the demand expressed by crop-livestock farmers for improved 

food-feed crops is well documented. By combining the gains from selection for grain, 

pod and forage components, food-feed crops can contribute to improved resource use and 

systems efficiencies that will help alleviate fodder constraints without additional demands 

on scarce agricultural resources such as arable land and water, since these are in any case 

required inputs for grain and pod production. Furthermore, the delivery of food-feed crop 

technologies to farmer's field can be greatly aided by short deliver pathways since the 

private and ~ u b l i c  players in the seed industry are developing at an encouraging rate in 

South Asia (Govila et ul., 1997; Hall and Yogand, 2000) and elsewhere. 

As a consequence, the International Crop Research lnstitute for the Semi-Arid 

Tropics (ICRISAT) and the International Livestock Research Institute (ILRI) have 

implemented collaborative research on the genetic improvement of fodder value of food- 

feed-crops, with emphasis on sorghum and pearl millet, which are important crops for the 

rural poor. The research has demonstrated the existence of significant genetic variation 

for fodder quality traits and it has identified cultivars that provide superior stover quality 

and quantity without detriment to grain yield. 

2.1 Importance of pearl millet stover 

Pearl millet is the most drought tolerant of all domesticated cereals. It can yield 

under seasonal rainfall as low as 200-250mm (Bidinger and Hash, 2004) making it the 

only reliably productive cereal in the driest rain-fed regions of the arid and semi-arid 



tropics. Nearly 70 per cent of Indian pearl millet area (>9 million hectares) is sown to 

hybrid seed with most of this purchased by farmers with land holdings of less than five 

hectares (Govila el al., 1997; Talukdar el al., 1999). In addition to pearl millet's role as 

major source of calories in human food in areas in which it is widely grown, its stover 

constitutes a major component of ruminant rations in marginal production environments, 

particularly during the dry season when green fodderlgrazing resources are limited. The 

nutritional quality of millet stover is relatively poor however, and supplies are often 

inadequate, both of which are linked to the low productivity of livestock in smallholder 

crop-livestock systems in these environments (Renard, 1997) 

Practices that might improve stover yields and stover quality, such as higher 

applications of nitrogen (currently averaging only 5-20 kg/ha, as both manure and 

mineral fertilizer) are considered very risky for farmers to adopt in such highly 

unpredictable, drought-prone environments. The best option for increasing the 

availability and quality of crop residues appears to be genetic improvement of both these 

characteristics in currently available cultivars. Such cultivars, which have 

characteristically been bred only for a high grain yield, are considered by farmers to have 

an inferior stover quality, in comparison to adapted, but lower yielding, traditional 

landraces (Kelly el al., 1996). Considering the growing demand for more and better 

quality fodder for livestock, pearl millet improvement programs need to become 

multidimensional, targeting the whole plant rather than one single trait. 



23 Genetic variation for stover quality 

Wide variation for stover quality parameten has been documented in few studies. 

Blummel et al. (2003) investigated the ruminant nutritional quality o f  six prominent 

cultivars o f  pearl millet grown under low (9 kgha) and high (90 kgha) nitrogen fertilizer, 

in similar feeding trials with bulls to those of sorghum. Stover organic maner digestibility 

in bulls varied among genotypes from 40.1 to 48.1 per cent and from 45.3 to 51.3 per 

cent under high and low fertilizer application, respectively. Daily digestible organic 

matter intake also differed. Despite these differences among cultivars, no cultivar had 

suficient stover quality (at either fertilizer level) when fed without supplementation, to 

meet animal maintenance requirements, as all estimated changes in live weight o f  bulls 

were negative. In addition, estimated changes in live weight in bulls and grain yield 

genotypes tended to be inversely associated (P<0.1), suggesting that simultaneous 

improvement o f  both grain yields and animal performance may be difficult to achieve. 

These data also showed that fertilizer application did not necessarily improve pearl millet 

stover quality. 

These initial conclusions were re-evaluated in a recent, more comprehensive 

study involving a greater number (30) o f  more genetically variable genotypes of pearl 

millet (divided equally among arid zone landraces, improved open-pollinated varieties 

and high yielding hybrids), which were grown at three vely different locations in India 

(Gwalior, Nagaur and Patanche~). Genotypes differed significantly for biomass, grain 

and stover yields, and for stover nutritional quality characteristics. The range in genotype 

means for stover digestibility was significant (39 to 42%), but smaller than that in the 



initial experiment, but the range in digestible stover yields was large (900 to 1800 kgha), 

due to a large range in stover yield. Digestible dry matter intake (estimated by a 

combination of Near Infrared Reflectance Spectroscopy (NIRS), laboratory traits and in 

vivo experimentation with sheep) ranged from 25 to 32 gikg ~ ~ ~ ' ' l d ,  which was both 

larger than that in the initial study and overall significantly higher with sheep than bulls. 

Heritability for all stover quality and yield traits were of same order as that for grain yield 

(0.6 to 0.7), which was sufficiently high to the expected useful progress from selection 

for improved stover quality traits. 

In summary, this study indicated that there were useful and heritable genetic 

variation in important stover quality traits in pearl millet, and a high degree of 

independence between stover fodder value and grain yield over a wide range of 

genotypes and evaluation environments confirming that there is an opportunity to 

improve both traits in breeding programs. With nearly 70 per cent of the Indian pearl 

millet area sown to modem hybrids, the improvement in the quantity andor nutritional 

quality o f  the stover of these hybrids could make a significant impact on livestock 

productivity in millet growing areas. In response to this opportunity, lCRlSAT and lLRl 

have initiated research on dual purpose top-cross hybrids, generated from both p i n  and 

dual purpose pollinators and fodder-type male sterile lines, to provide private hybrid seed 

industry with improved parental lines that convey higher stover quality without 

sacrificing grain and stover yield (Blummel and Rai, 2004). 



2 3  Mokenlar breeding of pearl millet 

23.1 RFLP marken and Linkage m a p  in pearl millet 

In recent times, the use of molecular marker technology for the genetic 

improvement of pearl millet has made some headway, and pearl millet has been elevated 

to the status of a molecular crop thanks to a series of collaborative projects involving 

John lnnes Centre (JIC) and ICRISAT supported by the Plant Sciences Research 

Programme of the UK's Department for International Development (Breese et ul., 2002). 

The first genetic map of pearl millet was generated by Liu ct al. (1994). The map 

contained 181 Restriction Fragment Length Polymorphism (RFLP) marker loci and 

spanned a genetic distance of 303 cM. Currently, the map contains 242 loci and spans 

473 cM. The difference in length is mainly due to the addition of 12 distally located 

markers. A subset of these markers has subsequently been transferred to a series of 

different crosses that segregate for agronomically important traits. 

Recently, genetic linkage maps of four different pearl millet crosses have been 

integrated to develop a consensus map of about 353 RFLP (220 homologous and 133 

heterologous RFLP markers) and 65 SSR markers (Qi et al., 2004). An interesting feature 

of the genetic maps of pearl millet is the extreme localization of recombination towards 

the chromosome ends. The concentration of mapped markers in centrotneric regions, 

reflecting an unequal distribution of recombination, was first observed in the early 

molecular maps of wheat (Chao et a/., 1989) and has since been seen in several species 

(Devos et al., 1992; Qi el al., 1996; 'Tanksley et al., 1992), but it appears to be extreme in 

pearl millet. Physical mapping of one such region on linkage group I revealed a physical 
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mapping to genetic distance ratio of <I2 kbicM (F.K. Padi and K.M. Devos, 

unpublished). This unequal distribution of recombination appears to be largely cross- 

independent, and will have consequences for the transfer of traits from donor to elite 

pearl millet germplasm. 

The integration of markers previously mapped in other grass species has provided 

the anchor points to align the pearl millet linkage groups to other cereal genetic maps, 

including the cereal model, rice. Although the pearl millet genome appears to be 

relatively highly rearranged relative to rice, regions of colinearity between the two 

species can be clearly identified (Devos el ul., 2000). 'These now form a framework for 

exploitation of the rice genomic sequence as a source of new markers and candidate 

genes underlying traits in pearl millet. 

23.2 Microsatellite markers for pearl millet 

The genetic tools for marker-assisted breeding of pearl millet are now in place 

and available for anyone to use in improving pearl millet hybrids and to extend the 

economic lifespan of elite hybrid parental lines. However, application of these 

discoveries is hampered by the limited availability of repeatable, polymorphic PCR- 

compatible markers in pearl millet. Although ICRISAT and its partners have successfully 

demonstrated the use of RFLP markers in the transfer of downy mildew resistance and 

enhanced terminal drought tolerance. these markers are too labor-intensive and high cost 

for applied use, as well as having potential health and environmental hazards. Thus RFLP 



markers are not considered suitable for large-scale genotyping applications in an applied 

plant breeding program. 

For plant breeding applications, PCR-compatible markers based on microsatellites 

or simple sequence repeats (SSRs) are often considered the most appropriate. SSRs 

typically provide single-locus markers, which are often co-dominantly inherited and 

characterized by hypervariability, abundance and reproducibility. tlowever. development 

of SSR markers is expensive as it requires a substantial investment in DNA sequencing. 

To date, circa 100 SSR markers are available for use in pearl millet (Qi et a/., 2001; 

Allouis er al., 2001; Budak et al., 2003; Qi et ul.. personal communication), but a much 

larger number is required for their application in plant breeding. Therefore, development 

of additional SSR markers is a valuable objective for the pearl millet research 

community. 

In the past, SSRs have been expensive to develop and this has largely limited their 

application to the more commercially imponant crops. Enrichment protocols have been 

used to reduce these costs by focusing sequencing efforts on DNA clones that are likely 

to conlain a particular repeat motif (e.g., Budak el al., 2003). Recently however, an 

alternative source of microsatellites has been utilized. Discovery of microsatellites in 

Expressed Sequence Tags (ESTs) provides the opportunity to develop SSR markers in a 

simple and direct way, i.e., by electronic searches (data mining) of EST databases. 

Exploitation of this source of SSR markers is obviously limited to the species for which 

EST sequence information is available. This specific approach was first attempted in rice 



(Miyao et al., 1996) and has subsequently been reported from many other crops including 

pearl millet (Senthilvel et al., 2004). 

23.3 QTL mapping for stover quality: 

QTL mapping has become an important tool in understanding responses to many 

traits contributed or controlled by many genes. It provides a means to dissect complex 

phenotypic characters such as drought tolerance, yield, stover quality. height and allows 

the identification of molecular markers linked to desirable QTLs, so that these can be 

directly used in Marker-Assisted Selection (MAS). QTL for dlsease resistance (Jones ef 

al., 1995, 2002), drought tolerance (Yadav et al., 2002, 2004) llowering time and grain 

and stover y~eld (Yadav et a / ,  2003) and characters involved in domesticarion (Poncet ef 

al., 2000,2002) have been mapped in pearl millet. 

An attempt has also been made to identify QTL associated with stover yield and 

quality parameters in pearl millet in a mapping population involving the cross between 

ICMB 8418 and 8638 (Hash eta/. ,  2003). The linkage map was constructed based RF1.P 

and SSR genotypic data on 160 F2 individuals. Linkage groups were named according to 

common anchor markers with the map of Liu et a/. (1994). The genetic map length and 

distribution of markers for this population was comparable to the consensus map of pearl 

millet (Devos ei al., 2000) and to other maps published for this species (Jones et ul.. 

1995; Yadav et al., 2002). Using this map, the stover yield QTLs were identified on 

linkage group 2, 5 and 7 and were unaffected by Genotype x Environment interaction. 

Only one genomic region associated with stover yield (mapping on LG6) was 



significantly affected by GxE interaction. Genomic regions associated with stover yield 

also co-mapped with the regions associated with grain yield and harvest index (Yadav ef 

a[., 2002) but parental alleles associated with increased effects on these traits having 

reducing effects on stover yield. This further clarified that these genomic regions 

contributed to increased grain yield by their effects on increased partitioning of 

assimilates from stover to the filling grains under stress conditions. 

QTL mapping of stover yield and quality parameters revealed several stover yield 

QTL, but none appeared to be independent of flowering time and/or plant height QTL 

that are normally expected to be associated with stover, grain and biomass yield. 

However, it has proven difficult to detect statistically significant QTL for in vitro 

measurements associated with ruminant nutritional quality. Some reasons for this include 

the relatively low operational heritability of the in virro measurements (due to pan of the 

in vilro measurements have been conducted on only a portion of the available field 

replicates) and due to the small numbers of mapping population progenies (79) used in 

the field trial. 

The best putative QTL initially detected for in virro measures. has been for gas 

production from the leaf blade fraction of the stover, which maps to the top of LG7 of 

8638, and accounts for about 20 per cent of the observed variation for this trait in 

mapping population progeny hybrids produced with only one of the hvo testers. In order 

to identify more QTL for stover quality traits, it will probably be necessary to move over 

to NIRS-based predictions of quality component traits from scans of ground stover 



samples (in order to assess all samples from all field replicates), and to use larger 

numbers of mapping population progenies in order to allow detection of statistically 

significant QTL that account for more modest portions of the observed phenotypic 

variation. This increase in effective mapping population size will probably require that 

we use only one tester. 

23.4 Marker assisted b d i g  

Selection of a genotype carrying desirable gcnc or gene combination via linked 

marker(s) is called marker-aided selection (MAS). Breeders practice marker aided 

selection when an important trait. that is difficult to assess, is tightly linkcd to another 

Mendelian trait, which can be easily scored. Most traits of agronomic importance, 

including yield, nutritional quality and stress tolerance, are quantitatively inherited 

(Allard, 1960; iiallauer and Miranda. 1988). The ability to manipulate genes responsible 

for quantitative traits is a prerequisite for sustained improvement of crop plants. In lhis 

context, MAS has been advocated as a useful tool for rapid genetic advance in case of 

QTI, (Lande and 'Thompson, 1990; Knapp, 1994, 1998). Gimelfarb and Lande (1995) 

presented detailed analysis of the relationship between genetic markers and QTI. in the 

process of MAS. 

Mohan et a[. (1997) suggested that MAS could be used to pyramid major genes 

including disease and insect resistance genes, with the ultimate goal of producing the 

crop cultivars with more desirable traits. A study conducted by Eathington et ul. (1997) 

assessed the usefulmss of marker-assisted effects estimated from early generation 
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testcross data for predicting later generations testcross performance. Witcombe and Hash 

(2000) have described how multiple resistance gene pyramids can be used practically to 

strategically deploy resistance genes. 

MAS appears particularly promising when dominant alleles at QTL are present 

and linked in coupling phase when compared to phenotypic selection (Van Berloo and 

Stam, 1998). The advent of molecular marker techniques has had a large impact on 

quantitative genetics. Marker based methods applied to segregating population have 

provided with a means to locate QTL to chromosomal regions and to estimate the effects 

of QTL allele substitution (Lander and Botstein, 1989). In backcross breeding program, it 

has been shown that MAS can be effective in reducing linkage drag and optimizing 

population sizes, by selecting against the donor genome except for alleles to be 

introduced from donor. 

Hospital el al. (1997) used the computer simulations to study the efficiency of 

MAS based on an index combining the phenotypic value and molecular score of 

individuals. They observed that in the first generation the ratio of relative efficiency (RE)  

of expected efficiency of MAS over the expected efficiency of purely phenotypic 

selection generally increases when considering 1) the larger population size 2) lower 

heritability values of the trait and 3) high type-1 error risk of the regression. These studies 

over the successhl generations of the rate of fixation of QTL shows that the higher 

efficiency of MAS on QTL with large effects in early generation is balanced by a higher 

rate of fixation of unfavorable alleles at QTL with small effects in later generations. This 



explains why MAS may become less efficient than phenotypic selection in long-term 

process. MAS efficiency therefore depends on the genetic determination of that trait. 

The eficiency of MAS was generally reduced with increasing the distance 

between the markers. So, optimal distance recommended between two adjacent markers 

is about 5-IOcM. The efficiency of marker-assisted selection is less eflicient than the 

phenotypic selection in long-term process (Hospital ot ul., 1997). 

Knapp (1998) presented the estimates of probability o f  selecting one or more 

superior genotypes by MAS to estimate its cost cfliciency relative to phenotypic 

selection. The frequency of' superior genotypes among the selcctcd progcny increases as 

the selection intensity increases. Charmet el a/ .  (1999) studied the accuracy of QTL 

location determination greatly affects selection efficiency. MAS for QTI. have staned to 

be applied to the genetic improvement of quantitative character in several crops such as  

tomato (I.owson el nl., 1997: Bernacchi el ul., 1998). maize (Graham el ul., 1997). and 

barley (Han et ul.. 1997; Toojinda eta/ . ,  1998). 

Hospital and Charcosset (1997) determined the optimal position and number of 

marker loci for manipulating QTL in foreground. Further, they investigated the 

combination of foreground and background selection in QTI. introgression. Openshaw 

(1994) determined the population size and marker density required in background 

selection. Frisch et al. (1999) determined the number of marker data points (MDP) 

required in background selection, size of the population and compared a two-stage 



selection procedure (one background and one fore ground selection). with alternative 

selection procedures (one foreground and two or three background selection steps). They 

concluded that as the number of  selection processes increases, the number o f  MDP 

required decreases. 

Moreau el al. (2000) evaluated the relativc eficiency of  MAS in the first cycle of  

selection through an analytical approach taking into account the effcct of  experimental 

design (population size. number of  trials and replicationitrial) on QTI, detection. They 

concluded that expected economic returns of MAS conlpared to the phctiotypic selection 

decreases w ~ t h  the cost of  genotyping. 

With this background. ICRISA'I' has initiated the marker-assisted introgression of 

a pearl millet stover quality QTL using the KF1.P and SSK markers. For ruminant 

nutritional quality of  stover fractions, the marker-assisted backcross transfer of  the 

putative leaf blade gas QTL from LC7 of 8638 (Hash et ul., 2003) to ICMR 841 is in 

progress and it is now advanced lo BC4FL and BCjFl progenies. Each generation 

progenies were analysed using SSRs and RFLP markers flanking the QTL to find 

whether the gene has been introgressed or not. 





CHAPTER rn 

MATERIALS AND METHODS 

3.1 Plant material 

A set of  20 pearl millet (Pennisetunt glaucum) BC4F2 and BCsFi families 

(consisting of about 25 plants each) derived from crosses between donor parent 8638 and 

recurrent parent ICMB 841 were analysed for marker-assisted introgression of a putative 

stover quality QTL. The schematic diagram of the backcrossing is given in Figure 1. 

Donor parent 863B was bred at ICRISAT-Patancheru by direct selfing and 

selection within a sample oflniadi landrace material from Togo. It has large grain size 

(and associated broader leaf blades, thicker stems, and thicker panicles), drought 

tolerance, downy mildew resistance, and stover quality. It was originally selected based 

on its combination of agronomic preference and superior combining ability for terminal 

drought tolerance. 

The recurrent parent ICMB 841 is also an agronomically superior seed parent 

maintainer line genotype with good combining ability for grain and stover yield and it is 

the seed parent maintainer line of several popular dual-purpose hybrids released in India. 

Compared to 863B, ICMB 841 has smaller seed size (and associated narrower leaf 

blades, thinner panicles, and thinner stems), and has poorer combining ability fo1 

terminal drought tolerance, but has similar plant height and flowering time. 

19 
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Some ruminant livestock feed quality-related attributes o f  leaf blade, leaf sheath 

and stem internode stover fractions corresponding to the penultimate leaf o f  the main 

stem were assessed in pearl millet stover produced from testcross hybrids of the (ICMB 

841 x 863B)-based pearl millet mapping population, and a QTL associated with the 

digestibility o f  the leaf blade fraction was detected on linkage group 7 (Hash ct al., 2003) 

for which drought tolerance QT1,s were reported recently by Yadav rr ul.  (2004). 

3.2 DNA extraction 

Seeds o f  backcross progeny from selected individuals and the parents were sown 

in the field. Staggered sowing was employed to ensure co-flowering o f  the recurrent 

parent and backcross progenies. DNA from the BC& and R C J  populations was 

extracted from about 15 days old seedlings as per the following protocols. 

3.2.1 Small scale DNA extraction 

Small quality o f  DNA from a large number o f  samples was extracted following 

the protocol described by Mace et a1 (2003). The steps involved are described below. 

Preparation 

Steel balls (2 per extraction tube). pre-chilled at -20°C for about 30 minutes, 

were added to the extraction tubes which were kept on ice. 

3% CTAB buffer (3% wiv CTAB, 1.4M NaCI, 20mM EDTA, l0OmM Tris- 

HCI, pH 8.0, 0.1 7% P-mercaptoethonol) was pre-heated in 65°C water bath 

before start o f  sample collection. 



Six inches long leaf strips were collected (final weight 30-40mg) from one- 

week-old seedlings cut in to pieces ( Imm in length). These cut leaf were 

transferred to the extraction tubes. 

Grinding and extraction 

4 5 0 ~ 1  o f  pre-heated 3% CTAB buffer was added to each extraction tube 

containing learsample. 

Grinding was carried out using Sigma CcnoGrinder at 500 strokesiminute 

for 5 minutes. 

Grinding was repeated until the color o f  solution hecomes pale green and 

cut leaf was sufficiently macerated. 

AAer grinding. the tube box was fixed in a locking device and ~ncubated at 

t65"C in a water bath for 10 minutes with occasional manual shaking. 

Solvent extraction 

4 5 0 ~ 1  o f  chloroform - iso-amylalcohol (C:IAA=24:I) mixture was added to 

each tube and the samples were centrifuged at 6200 rpm for I 0  minutes. 

After centrifugation the aqueous layer was transferred to a fresh tube 

(approximately 300~1) 

In i t ia l  DNA precipitation 

To each tube containing aqueous layer, 0.7 volume (approximately 210~1) 

o f  cold (kept at -20°C) isopropanol was added, then solution was carefilly 

mixed and the tubes were kept at -20°C for 10 minutes. 

The samples were centrifuged at 6200 rpm for 15 minutes. 
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The supernatant was decanted under and pellets were allowed to air dry 

(minimum 20 minutes). 

RNase treatment 

In order to remove RNA 200~1  o f  low salt TE buffer and 30mg of RNasc 

(stock 10 mg/pl) were added to the each tube containing dry pellet and 

mixed properly. 

'The solution was incubated at 37°C for 30 minutes. 

Solvent extrsction 

AAer incubation, 200~1  o f  phenol -- chlorofoni - iso-amylalcohol (IAA) 

mixturc (25:24:1) was added to each tube carefully mixcd and centrihged at 

5000 rpm for 10 minutes. 

The aqueous layer was transferred to the liesh tubcs and the step was 

repeated with the chloroform - IAA mixture. 

DNA precipitation 

. ro the tubes containing aqueous layer 1 5 ~ 1  (approximately l1 l0 '~  volume) 

3M Sodium acetate and 300~1  (2 vol) 100% ethanol was added and 

subsequently placed in freezer for 5 minutes. 

Following incubation, the box with tubes was ccntrifuged at 6200 rpm for 

15 minutes. 

Ethanol wash 

Afler centrifugation, supernatant was carefully decanted and to the pellets 

200~1  o f  70% ethanol was added followed by centrifugation at 5000 rpm for 5 minutes. 

Jaswant S. Kanwar Library 



Final reaulpeasion 

Pellets obtained by carefully decanting the supernatant and allowed to air 

dry for one hour. 

Completely dried pellets were resuspendcd in IOO~l of 'T,(,El buffer and 

kept at room temperature to dissolve completely. 

Dissolved DNA samples were kept in +4"C. 

By this method, we could extract DNA from 96 samplcs at time in a single day. 

However, the DNA could be used only for SFR analysis since the conccntration was too 

less to be used in RFLP analysis. For R1:I.P analysis DNA was extracted lion1 5g leaf 

samples. 

3.2.2 Large scale DNA Extraction 

Extraction 

5 g of plant sample (young pearl millet leaves) %as weighed on a piece of 

aluminium foil and dipped in liquid nitrogen. 

The frozen sample was transferred to the pre-cooled mortar and ground into 

a fine powder. 

Powder was transferred into a 50 ml plastic conical tube containing 15-20 

ml of ' S '  buffer (pre-heated), mixed gently and incubated in 65'C water 

bath for about 45 minutes. 
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50pl of proteinase K was added to the tubes and incubated in water bath at 

65°C for 40 minutes (tubes mixed at intervals of 5 minutes) 

Equal volume of equilibrated phenol was added and centrifuged at 5000 rpm 

for 15 minutes in a refrigerated centrifuge. 

The top aqueous layer was transferred into a new tube. To that, 20 ml of 

phenol - chloroform (1 :I) was added and centrifuged at 5000 rpm for I5 

minutes. 

The top aqueous layer was removed and an equal volume of chloroform - 

iso-amyl alcohol (24:l) was added and centrifuged. 

The top aqueous layer was removed and transferred to a ncw tube and an 

equal volume of cold isopropanol was added . 

With the help of a glass hook, the DNA was spoolcd out and transferred into 

a 15 ml polypropylene tube and washed three times with Iml of 70% 

ethanol and air-dried. 

. 'The DNA pellet was dissolved in 2.5-3 ml of T5"Elo depending on thc size. 

30p1 of RNase (10 mgiml) was added to the DNA solution and incubated at 

4'C or at room temperature overnight 

PuM~cation 

After overnight incubation, the RNase treated samples were incubated at 

37°C for 30 minutes. 

Equal volume of phenol (2.5-3 ml) was added, mixed and centrifuged at 

5000 rpm for 5 minutes. 



The supernatant was collected into another glass tube and equal volume o f  

phenol - chloroform (] : I )  was added and centrifuged at 5000 rpm for 5 

minutes. 

The top aqueous layer was removed and an equal volume of  chlorofon 

(chloroform - iso-amyl alcohol, 24:l) was added to that. I t  was centrifuged 

for 5 minutes at 5000 rpm. 

The aqueous layer was collected in a new tube added with 1 1 1 0 ~  volume of 

3M sodium acetate (pH 5.2) and an equal volume o f  cold isopropanol. 

The DNA was spooled out with a glass hook into a 1.5 ml eppendorf tubc 

and washed with l m l  of 70% ethanol. 

The DNA pellet was rcsuspended in TI,,EI (400-500~1) depending on the 

size o f  the pellet. 

3.23 DNA quality and quantity check 

The DNA quality was chccked using I %  agarose gcls. For checking the quality, 

I p l  o f  DNA was mixed with 1p1 o f  orange dye and 8p1 of distilled water and loaded onto 

1% agarose gel. The gel was run for 10 minutes, after which the quality was checked 

under UV. A DNA smear indicates poor quality whereas an intact and clear band 

indicates good quality DNA. Samples of poor quality were re-extracted. The quantity of 

DNA was tested using spectrophotometer. 



SSR markers linked to the putative QTL for pearl millet stover quality were used 

for foreground selection to identify the individuals presumed to have the 8638 donor 

parent allele in the target region (foreground selection). Donor parent alleles for the 

foreground markers indicate the presence of the stover quality QTL allele from the donor 

parent. However, the tighter the markers are linked to the QTL, the greater the chance 

that the QTL in between both markers has been transferred. However, in thc end 

phenotypic testing of the final products of the marker assisted breeding, exercise will 

need to be performed in order to confirm the transfer of this stover quality Q'TI,. At the 

same time, recurrent parent alleles for the markers unlinked to the target stover quality 

QTL have been used to select those individuals with minimal linkage drag (background 

selection). The RFLP markers flanking the stover quality QTL were used in foreground 

selection to ascertain the allele present at the putative stover quality QTL to allow 

selection of the individuals probably having the donor parent alleles in this genomic 

region. RFLP markers were not used for background selection. 

The genetic linkage map of pearl millet cross ICMB 841 x 8638 and the position 

of stover quality QTL is shown in Figure 2. The SSR and RFIP markers selected for 

genotype screening are given in Table 5. 
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Table 5: The SSR and RFLP markers selected for genotype screening. 

Generation Number of Linkage group/ Marken screened 
Individuals Targeted QTL 
Screened 

BC5FI 17 (individuals 1.G- 1 to LG-7 

o f  family bulked) 

Xpsmp 2273 

Xpsmp 2201, Xpsmp 223 I .  

Xpstnp 2225, Xpsmp 2059 

Xp.snlp 2267 

*~.srnp 2076, Xpsmp 2084 

Xpsmp 2202 

Xpsmp 2270, Xpsmp 22 13 

Xpsmp 201 3. Xp.~nrp 2040, 

Xpsnrp 2043, Xp.smp 2019 

Xpsnrp 2027 

Same as listed ahove 

BC4F2 21 1.G-7lStover Xpsnr 7 18, Xpsnr269. 

Quality QTI. Xpsm 618, Xpsm 526 

BC5FI 33 1,G-7iStover Xp,\nt 71 8, Xpsnl 269, 

Quality QTI,  Xpsnl 61 8, Xpsm 526 

Note: Xpsmp are SSR markedprimers and Xpsm are RFLP probes 



33.1 SSR enalysii 

33.1.1 PCR amplification 

PCR was performed in 96-well plates using the SSR primer pairs (Table I )  in a 

Perkin Elmer (Norwalk Conn.) DNA thennocycler. The reactions were performed in 

volumes lOpl and the PCR reaction mixture contains IOmM Tris-HCI (pH 8.3). 50mM 

KCI, long o f  DNA, 2 pmol o f  forward and reverse primers, ImM MgC12. 0.2mM of  each 

dNTP and 0.SU of lirq DNA polymerase. The PCR program consisted of initial 

denaturation for 5 minutes at 94'C and then denaturation for 45 seconds at 94'C. 

annealing at 58 to 61°C for 45 seconds, and extension at 72°C for 45 seconds with 35 

cycles. The last PCR cycle was followed hy a linal extension o f  5 nlinutes at 72'C to 

ensure amplification to equal length o f  both DNA strands. 

33.1.2 Electrophoresis 

The PCK products were separated on 6% non-denaturing Polyacrylamidc Gel 

Electrophoresis (PAGE) and the products were resolved using silver staining procedure. 

To the PCR product, 2p1 o f  loading dye (Orange red t I D T A  + NaCl + (ilyccrol) was 

added. From these mixture, 2pI o f  sample was loaded onto the 6% non-denaturing 

PAGE. The gel was prepared using 52.51111 o f  doubled distilled water, 7.5ml o f  IOX TBE 

buffer, 15ml of acrylamide: bis-acrylamide (29:l) solution, 450~1 o f  ammonium 

persulphate and 100p1 of TEMED. Along with the samples, IOObp marker (Song 1 PI)  

was also loaded in the first and last lane o f  the gel to ensure proper sizing o f  amplified 
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PCR fragments. The gel was Nn at 6 0 M 5 0  V of constant power in 0.5X TBE buffer for 

3 hours using a Bio-Rad sequencing gel apparatus. 

After running of PAGE gels for required time, the gels were silver stained and 

the sequential steps involved in silver staining were: 

The gel was placed in the following solutions with continuous shaking 

k water for 5 minutes 

2. 0.1% CTAB solution for 20 minutes (2 g in 21 of water) 

2. 0.3% ammonia solution for I5 minutcs (261111 of 25% a~nlnonia in 21 of 

water) 

>. 0.1% silver nitrate solution for 15 minutes (21: of silvcr nitrate + 81n1 ol' 

1M NaOIi in 21 of water and neutralize with ammonia solution till the 

solution becomes colorless) 

2. Developer (30g of sodium carbonate t 400 p1 of fbrmaldchyde in 21 of 

water) till clear products were visible 

AAer developing ofthe bands, gels were rinsed in water for I minute and placed in fixer 

(301111 glycerol in 21 ofwater) for few minutes. 

After silver staining ofthe PAGE gels, the si7e (base pairs) of the intensely 

amplified specific bands or alleles for each SSR marker was estimated bascd on their 

migration relative to the 100 bp DNA ladder (fragments ranging from 100 bp to 1000 bp) 

and presence or absence of parental alleles were scored. 



3.33 RFLP Analysis 

3.33.1 Digestion of genomic DNA: 

Around 23 pg of genomic DNA was digested using appropriate restriction 

enzymes and the digestion reaction was set up according to the following protocol: 

DNA (1 Pg/Pl) - 23 p1 

I OX buffer - 3 pl 

Bovine Serum Albumin - 3 p1 

Restriction enzyme (25  units) - 0.6 p1 

Sterile distilled water was added to make up the total reaction volume to 30 p1 and Mixed 

by pulse centrifugation was incubated at 37°C for overnight 

3.3.2.2 Electrophoresis of digested genomic DNA and Southern blotting 

The restriction enzyme digested DNA samples were separated on 1% agarsose gel 

using 1 X I'AE buffer for 4-5 hours at IOOV and the following steps were followed for 

southern transfer of digested DNA into a nylon membrane. 

Ethidium bromide was removed as much possible by soaking the gel in 

sterile distilled water (SDW) 

Then the gel was depurinated by soaking the gel in 0.25 N HCI for 15 

minutes to allow more efficient transfer of larger DNA fragments. 

The blotting sheets were cut to the size of the gel. 

Hybond N t  nylon membrane and 3-4 sheets of Whatman 3MM filter paper 

were also cut to the size of the agarose gel 
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A bridge in a glass tray was made using a bit tough sponges. Wicks were 

made with 2-3 sheets of Whatman 3MM filter paper and soaked in 0.4 N 

NaOH. 

Glass tray was filled with 0.4 N NaOH and the agarose gel was placed on 

top of Whatman 3MM filter paper bridge. 

Then nylon membrane was carefully placed on the top of the gel in an 

inverted position so that fragments are near to the nylon membrane. 

Thin glass rod or pipette was rolled to remove the air bubbles between the 

gel and the membrane. 

Two Whatman 3MM filter paper sheets cut to size were placed on the 

membrane after soaking in 0.4 N NaOH. 

A stack of blotting paper shects which were cut to size of the gel were 

placed on top of Whatman 3MM filter paper. 

After placing the blotting sheets, it was ensured that there was no direct 

contact between blotting sheets and 0.4 NaOH except through the gel. 

A glass plate of appropriate size on top of the blotting paper stack was 

placed and a weight of 0.5 kg was placed on the glass plate to make the 

transfer uniform across the gel. 

The setup was left overnight and the stack of blotting sheets were removed 

the next day 

Nylon membrane was carefully removed with the help of forceps. 

Then it was washed in 2X SSC for 15 minutes. Dried and wrapped in 

SaranwrapQ and kept in cold till use. 
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The complete transfer was ensured by soaking the gel in ethidium bromide 

and viewing under UV light. 

33.23 Southern Hybridization: 

Before the filterslblots can be probed with specific nucleic acid molecules, it is 

necessary to pre-treat them with carrier DNA that effectively blocks any naked DNA 

binding sites exposed on the membrane surfaces. This prevents non-specific binding of 

the probe on the entire blot. The following steps were followed for Hybridization of 

specific probes to the sample DNA: 

I ml of salmon sperm DNA (ssDNA) was taken in a 1.5 ml eppendorf and 

kept at 90°C for 5 minutes for denaturation 

Place the heat denatured salmon sperm DNA on ice immediately. 

The blots were placed in hybridization bottles and 3WO ml of distilled water 

was added. 

The bottles were kept in oven at 65°C for rotation for 5 minutes and after 5 

minutes distilled water was removed and 20-30 ml of prehybridisation 

solution was added. 

1 ml of salmon DNA solution (denatured) was added and kept in hybridization 

oven for 3 hours at 6 5 O C  if the blot was an old blot and 6 hours if it was a new 

blot. 



Rpdiorctive labeling of P m h  

5 p1 of DNA fragment to be used as probe was taken in an eppendorf tube. 

20 p1 of sterile distilled water (SDW), 0.5 p1 of Hindlll-digested A DNA 

(control DNA) was added, mixed and spinned. 

a The probe along with SDW and control DNA was incubated at +9O0C for 

5 minutes to denature and immediately chilled on ice for 5 minutes. 

Then the following reagents are added, 

IOX labeling buffer - 5 p1 

dNTPs - 6 pl 

Klenow enzyme - I pI 

[a- 3 2 ~  ] dATP - 2 pl 

Mixed and spinned before incubating. 

And incubated at 37°C for more than an hour. 

Hybridization 

$11 of 0.2M EDTA (pH 8.0) and 145~1  SDW was added to the incubated 

sample. 

Then the contents were mixed, spinned and kept at 90°C for 5 minutes and got 

down to room temperature immediately by placing on ice. 

Half volume of pre-hybridization solution was taken out and the contents 

containing the radioactive substance was added to the bottles containing the 

blots. 



The hybridizing bottles were then placed in the hybridization oven for over- 

night rotation at 65°C (-16 hrs). 

Waahing 

AAer overnight rotation of the blots in the hybridization oven at 65'C, the 

radioactive solution was removed from the hybridizing bottles. 

The blots were washed with 65-80 ml of solution I containing 20X SSC and 

20% SDS, lOOml and 25ml respectively, (make up the volume to IL) 

The blots were kept in hybridiiation oven at 165°C for 15 minutes to remove 

the excess hybridization buffer. 'The blots were washed with solution I twice. 

Solution 1 was discarded and 65-80 rnl of solution I 1  (10ml 20X SSC, 25ml 

20% SDS, and make up the volume to I L) was added. 

The blots were Kept in oven for 15 minutes for rotation and solution I1 was 

discarded. 'Then the blots were washed with distilled water finally. 

The blots were collected carefully and laid on top of a filter paper to dry or 

can be dried by keeping them in hybridization oven. 

Autoradiography 

After drying the radioactivity was tested by the monitor. The blot was marked 

for orientation. Then the blot was exposed to X-ray film cassette with high 

intensifying screens. 

The cassettes containing the blots were kept at -80°C for varying periods 

depending on the radioactive counts present on the blots as determined by 

Geiger Muller (GM) counter. 



Stripping 

The process of removing the radioactive probes from the blots is called 

stripping. The blots are washed with the stripping solution about 3 4  times to 

remove the labeled probe. Stripping solution contains 2Sml of 20X SSC, and 

Sml of 20% SDS in IL of water. 

3.4 Data collection and selection of genotypes 

The bands on the gels were scored for the presence of parental alleles. The 

individuals showing banding pattern of donor parental type (863B) was scored as ' A '  and 

recurrent parental type (ICMB 841) was scored as 'B'. The heterozygotes having both 

parental alleles were scored as '11'. 

SSRs analysis was done using a set of 16 primers in both background and 

foreground selection and RFLP analysis was performed using 4 enzyme-probe 

combinations, which were linked with the putative stover quality QTL to identify the 

introgression of the target region in the backcross progenies. BCsF, progenies segregating 

1 : I  for heterozygosity and BC4F2 segregating1 :2:1 for marker alleles in the vicinity of the 

putative leaf blade gas QTL from donor 8638 were selected based on SSR and RFLP 

marker genotype data. 

The progenies were also tested for the presence of ICMB 84 1 SSR marker alleles 

for the non-target region of linkage group 7 and a set of SSR markers from other linkage 
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groups. The selected plants were selfed I backcrossed and advanced to next generation, in 

which individuals having homozygous 863B genotype in the target region will be 

identified and multiplied (by selfing) prior to being evaluated for their stover quality 

parameters. 





CHAPTER IV 

RESULTS 

4.1 Quality and quantity of DNA 

The quality of the DNA extracted by both small and large scale extraction 

methods was good. The intactness of genomic DNA after agarose gel electrophoresis is 

shown in Plate 1 and Plate 2. The ODZBO,,~ measured by spectrophotometer was 

in the range of 1.52 to 1.8 indicating the purity of the DNA. The DNA concentration was 

in the range of 300 to 400ngIpl (Plate 1) in small scale extraction whereas it was in the 

range of 1.3 to 3.4~&1 (Platc 2) in Maxi-prep extraction. All DNA samples were 

normalized to a final concentration of 5ng/pl for SSR analysis and Ipgipl for RFLP 

analysis. 

4 3  SSR genotyping 

A set of 16 polymorphic SSR markers were screened on 165 progenies of both 

BCdF2 (148 individuals) and BC#l (17 bulks) to detect the segregating populations in 

these progenies by running the PCR amplified products on 6% PAGE gels. Progenies 

were selected for SSR analysis based on uniformity for the phenotypic characters of the 

recurrent parent like a prohsely haity leaf blade, which is governed by the recessive gene 

hl, which maps to pearl millet linkage group 6 (C.T. Hash, unpublished). 

Eleven SSR markers representing LC I to 6 were used for background selection. 

It was found that all the progenies were homozygous for the alleles from the recurrent 



Plate I :  Iutaclrress crf DNA and concet~lraiitm ul'I3TP e~tracled (snrall 
%ci~lc) IW4A (.%fb#h-40t~il~pJ) 
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parent at most of these loci, and hence scored "B", as expected based on marker data 

generated in earlier generations of the backcrossing program (Satish Kumar, 

unpublished). This recovery of recurrent parent background in regions unlinked with the 

target region is subjected to foreground selection. In this case, background marker 

genotyping was performed primarily to confirm that theoretical expectations were being 

met and that no inadvertent outcrossing had occurred in the most recent generation of 

selfing and backcrossing [Table 1. (a) & (b)]. Except for linkage group 2 (LG2), [Table 2. 

(a)], the recurrent parent alleles were fully recovered in all of the progenies evaluated. 

flowever, parts of 1.G2 seem to still be segregating with 2 SSR markers and with the 

other 2 markers on LG2. the recurrent parent alleles have been fully recovered [Table 2. 

(b)]. Based on this data, the individuals hornozygous for the recurrent parent allele (i.e., 

those scored "B") are selected and RFLP analysis nas  done for those genotypes. 

Foreground selection was also done using primers for 5 SSR marker loci mapping 

to pearl millet 1.G7. These 5 markers showed the segregating patterns in the ratio of 1 :I 

(A:H) for the BCsF, populations and 1:2:1 (A:H:B) for the BCIF? populations. It clearly 

indicated that PCR amplification using SSR primer pairs, followed by silver staining of 

PAGE-separated amplification products provides an effective way to screen the 

segregating populations and select the progenies for further analysis. Amplification for 

the primers Xpsmp 2043 and 2040 are shown in Plate 3 and 4 and genotyping data of SSR 

primers Xpsmp 2027 and Xpsmp 2019 are given in Table 3.  (a) & (b). Based upon the 

SSR data generated, I 14 out of the 165 progenies were selected for further analysis. 



Table 1: Backgmnd selection by SSRn markem 

(a) Scoring chart for the primer Gsmp 2273 (LGl) 

@) Scoring chart for the primer 9 s m p  2084 (LG-4) 

342(33) / B  / - / B I B  I B  I ~ B  / B  /-B-/B 1-B 1 B  B I B  I B  ( B  ( B  
- B B B B B B - B B B B B B B B -  

* Xpsmp are SSR Primers and LG represents Linkage Group 
* 'B' scored for 8418 allele (Recurrent Parent) 

9.L 



Table 2: Background selection by SSRa markem 

(a) Seoring chart for the primer Gsmp 2201 (LG2) 

@) Scoring chart for the primer Xpsmp 2231 (LG-2) 

* Xpsmp are SSR Primers and LG represents Linkage Group 
* 'B' scored for 841B allele, 'A' for 8638 allele and 'H' for Heterozygote 

342(33) B 
- 

- 
B 

B 
B 

B 

B  

B  

B  

B  

B 

B  

B  

B  

B  

B  

B 

B  

B  

B  

B 
B I B  

B I B  

- I B  

B I B  

B I B  
B I - -  



Plate 3: PAGE gel fur SSR ltiarkrr Xpv~rp  2043 for ail H1'J1:2 8 
H('51;1 progcnirc ( a  total of 105 genotjpes) 



Table 3: Foreground selection by SSR marken 

(a) Scoring cbart for the primerxpsmp 2027 (LG7) 

@)Scoring chart for the primer Xpsmp 2019 (LG-7) 

* Xpsmp are SSR primers and LG represents the Linkage Group. 
'A' scored for 8638 (donor allele), 'B' for 841B (recurrent allele) 
and 'H' for heterozygote. 



43. RFLP genotrping 

Ninety-three individuals from 17 BCsFl families (the plants of each family were 

bulked for SSR analysis) and 21 individuals from BC4F2 populations were selected for 

further RFLP analysis as RFLP loci Xpsrn718 and Xpsm269 flank the putative QTL target 

region and there were no polymorphic SSR loci available that had previously been 

mapped to this portion of pearl millet LG7. 

Genomic DNA extracted from the individuals selected based on SSR marker data 

was first digested with restriction enzymes Hindlll, Drat, EcoRI and EcoRV for Southern 

blotting and hybridization. Smears were obtained when the digested samples were 

subjected to agarose gel electrophoresis in TAE buffer, indicating proper digestion of 

DNA samples by each of the restriction enzymes [Plate 5. (a), (b), (c) & (d)]. 

After Southern blotting of the gels by the capillary method, Hybond N+ 

membrane blots containing the DNA fragments were labelled with PCR-amplified probes 

PgPSM7l8, PgPSM269, PgPSM618, and PgPSM526, which when probed against 

electrophoretically-separated digests of particular restriction enzymes detect loci mapping 

to pearl millet LG7. Autoradiography of the blots revealed that the BC5Fl individuals are 

segregating in a I:] ratio for the heterozygous condition (scored " H )  and homozygosity 

for the recurrent parent ICMB 841 allele (scored "B") [Plate 61. The subset of BC4F2 

individuals that were subjected to RFLP analysis were observed to be segregating for the 

heterozygous condition (scored "H") and homozygosity for the donor parent 8638 allele 

(scored "A"). 



P1,ite 5: Digestion of'(.enomic I)NA b! Kcstriction Irnlvntek 

(a)  Digestion bg Nir~dlll 







4.4 Marker-assisted Selection of backcross progenies 

Based on both WLP and SSR data sets [Table 41, it was observed that the 

markers linked to stover quality QTL present on the seventh linkage group are still 

segregating in the BCsFz and BCsFl populations. The individuals scored " H  or "A" for 

loci on LG7 (foreground selection) and "B" for loci on all other linkage groups 

(background selection) were selected and have been advanced to the next generation by 

selfing (BC4F2 and BCsF, individuals) andlor backcrossing (BCsFI individuals only), and 

their derivatives will be evaluated for stover quality parameters by conducting in vivo and 

in vitro feeding trails on ruminant livestock. 

Table 5: 'She SSR and RFLP markers selected for genotype screening of 

generation BC4F2 and BCSF I. 



Table 4: Selected SSR genotype data and RFLP dab on LC7 for both BC4FZ sod 
BC5Pl progenies (114 genotypes) 

~ b l e  4: SahCbd SSRWnolyp. dab and WLP d I b  on LG-7 lor b& BClFZand BCdFq proptnbs(if40e-s) 
!RNa S.M. R.D.  D m =  

m ua ma 2u1 rwo ua ma m urn 2270 zla n8 rn lor3 rn ria rou lor# QI rpro 
5 1 3 1 3 . . 1 B B B B B B B B B . B  B H C B B B B C  

2 313-2 

3 1 8 - 1 0  H B B H B  B B B  H H  H . 0  B B B B  
316-2 
316-3 
318-4 
318-5 
318-6 

3 2 0 . 1 B H B B H B B B B H H  B H H H H B B B  
320-2 
320-3 
320.4 
320-6 
320-1 



iSRM. S . k  R . k  - - - -  
t m u o r t u s u r r ~ u n ~ 6 ~ c w n m n r o u n n t  ta morrmnt roumoacm 

1 4 5 2 3 2 2 - 1 - B B B B B B B B B B  B H H H H B B B  
53 322-2 
54 3222 
55 322-4 
56 322-5 
57 322-6 
58 322-7 
59 322-8 
60 322-8 
61 322-10 
62 32L11 
63 322-12 
Y 322-13 
65 322-14 
66 322-15 
67 322-18 
66 322-17 

1 5 6 9 3 2 3 - i B B H 7 B B B B B B H B  B H B B B B B B  
70 323-2 
11 323-3 
72 323-4 
73 323-5 
74 323-6 
75 323.7 

324.12 
324-14 
324-15 
324-16 

3 2 5 ~ 1 B H B B B B B B B B B  B H H B B B B B  
325-2 
325.3 
325-4 

3 1 9 - l B H H 1 B H B B B B H H  B H H H H H H B  
319-2 
319.3 
319-5 
319-6 
318-7 

- 



9 5 3 2 < 8 B B B B B B B B B B B  H H B B B B B B  

S U 3 3 0 - 1 B B B B B B B B B H B  H H B B B B B B  
9 7 3 3 0 . 4 B A B A A B B B B H 9 B  B H B H B B B B  
9 8 3 3 0 - 1 5 B A B B B B B B B B B  B H B B B - B B  

8 9 3 3 2 - 1 3 B B H B B B B B B B B  A H H H H - H H  
l W 3 3 2 - 1 4 B B A B B B B B B B B  A - A H A A A H  

1 0 1 3 3 L D B B B B B B B B B H B  . B  B  B  B  B  B  B  
1 0 2 3 3 8 - 2 0 B B B B B B B B B B B  A - B H B B B B  
1 0 3 3 3 8 - 2 1 B B B A B B B B B B B  A - A H A A B A  
1 M 3 3 8 - 2 2 B B B B B B B B B B B  H - B B B B B B  
1 0 5 3 3 8 . 2 4 B . B B B B B B B B B  H - B B B B B B  
1 0 6 5 3 8 - 2 5 B B B B B B B B B B B  A - A H A A B B  

1 0 7 N 0 - 1 B B B B B B B B B H B  B - A B B B B B  
1 0 8 3 4 0 - 2 B B B B B B B B B H B  0 - A B B B B B  
l W 3 4 0 - 6 B A B B B B B B B B B  - -  B  B  B  B  B  B  
1 1 0 3 4 0 _ 1 4 B A B B B B B B B B B  B - B B B B B B  
1 1 1 3 4 0 _ 1 7 B A _ B B B B B B B B  B - A B B B B B  

1 1 2 3 4 2 - 1 9 B H B B B B B B B - B  H - B H A A B B  
1 1 3 3 4 2 - 1 5 B B B B B B B B B . B  A ' - A H H H B -  
1 1 4 3 4 2 _ 1 7 B B B B B B B B B H B  0 - A H H H B H  

Note: Probe Xpsm 718 was not scored as it was not polymorphic. 

841B Homoggote - 'B' allele 

8638 Homozygote - ' A '  allele 

Heterozygote - 'H' allele 



Table 5: The SSR and RF'LP markers selected for genotype screening. 

Generation Number of Linkage group1 Markers screened 
Individuals Targeted QTL 
Screened 

BC4F2 148 LG- I 

LG-2 

BCSFI 17 (individuals LG-l to LG -7 

of family bulked) 

Xpsmp 2273 

Xpsmp 220 1, Xpsmp 223 1, 

Xpsmp 2225, Xpsmp 2059 

Xpsmp 2267 

Xpsmp 2076, Xpsmp 2084 

Xpsmp 2202 

Xpsmp 2270, Xp.~mp 22 1 3 

Xpsmp 2013, Xpsmp 2040, 

Xpsmp 2043, Xpsmp 20 19, 

Xpsmp 2027 

Same as listed above 

BC4F2 21 LG-7lStover Xpsm 7 18, Xpsm269, 

Quality QTL Xpsm 618, Xpsm 526 

BCSFI 93 LG-7IStover Xpsm 7 18, Xpsm 269, 

Quality QTL Xpsm 61 8, Xpsm 526 

Note: @smp are SSR markedprimers andXpm are RFLP probes 





CHAPTER V 

DISCUSSION 

Stover constitutes a major component o f  ruminant rations in marginal production 

environments, particularly during the dry season when green fodder I grazing are limited. 

Low productivity o f  livestock in smallholder crop-livestock systems in these 

environments is due in part to the limited quantity and low nutritional quality o f  the 

available stover (Renard, 1997). The best option for increasing the availability and 

quality o f  crop residues appears to be genetic improvement o f  both these characteristics 

in locally adapted cultivars. 

To date, limited attention has been made by cereal breeders to either the quantity 

or quality o f  the stover, despite the high value placed on this component o f  the crop by 

farmers in crop-livestock systems. This study attempted to redress this problem by 

focusing on genetically improving the yield and quality o f  stover, while maintaining the 

grain yield and other important agronomic traits o f  maintainer line (ICMB 841) of well 

adapted, farmer-accepted hybrids by exploiting the available molecular marker tools in 

backcross breeding programme. 

Molecular markers can increase the efficiency of the breeding process in several 

ways. Flanking markers can be used to identify the backcross lines that are heterozygous 

for target genome regions. Advancing only these selected lines wi l l  also have the effect 

o f  reducing linkage drag (Young and Tanksley, 1989; Tanksley and Nelson, 1996). 



Single-copy or low-copy markers with defined map locations, such as RFLPs and SSRs, 

are ideal for this step. Molecular markers could also increase the efficiency of 

backcrossing by allowing for selection of genotypes with maximum percentage of the 

recurrent parent genome. 

With marker-assisted selection (MAS), we could introgress the putative stover 

quality QTL (associated with leaf blade digestibility) allele from the donor parent 8638 

to the recurrent parent ICMB 841. At present this marker-assisted backcrossing program 

is at a stage where it has now been advanced up to the BCdFj and BC5F2/BC6Fl seed 

generations based on the SSR and RFLP genotypic data generated on BChF] / BCSFI in 

this study. Depending upon the SSR and RFLP genotyping data of the immediate 

progenitor progenies of these generations, several of the families will be advanced 

further. Marker genotype, especially for the RFLP foreground markers, are being taken 

into consideration during selection of genotypes to be advanced. These markers linked to 

the putative stover quality gas QTL from the donor 8638 were used for foreground 

selection; that is, the genotypes scored ''A'' or "H" at these loci on the seventh linkage 

group are being selected. The markers unlinked to the QTL were used for background 

selection, (i.e., individuals and progenies scored " B  on all other linkage groups have 

been selected). 

The presence of "B" genotypes for background markers (SSRs) and "A" andlor 

"Hn genotypes for foreground markers (both SSRs and RFLP) ensures the recovery of 

recurrent parent genome ICMB 841 recombined with the 8638 stover quality QTL allele 



introgressed. Genotypes meeting the above criteria wi l l  be selected, and seed o f  the next 

generation (selfed and/or backcrossed) sown for further generation advance. Genotypes 

scored "B" for all background as well as foreground markers in this next wi l l  be selected 

for use as near-isogenic controls when the selected homozygous QTL introgression lines 

are evaluated. 

The number of markers used for background screening will be decreased in each 

successive backcross generation because once the recurrent parent allele has been fixed at 

any given non-target locus, i t  is not necessary to continue screening at that locus in 

subsequent generations as the locus will remain homozygous for the rest o f  the breeding 

program (Morris et al., 2003). 

Once the recurrent parent genome recovery is obtained for all markers outside the 

target stover quality QTL target region, the heterozygotes in which the QTL introgression 

is assumed to be present are selfed andlor backcrossed. The resulting BC,FI progenies 

wi l l  be genotyped to identify putative stover quality gas QTL introgression homozygotes, 

that are then multiplied by selfing and testcrossed for field evaluation o f  agronomic 

performance including grain and stover yield potential, tolerance to abiotic stresses, and 

resistance to pests and diseases. Stover harvested from these field trials will then be 

assessed by NIRS, in vifro, and in vivo methods for variation in stover quality characters 

including the ruminant digestibility o f  the leaf blade stover fraction. After testing, if the 

stover quality o f  the QTL introgression line and its hybrids are found significantly better 

than that o f  the near-isogenic controls, and at least as good as the original ICMB 841 and 
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its hybrids for other agronomically important traits, it can be released as a new hybrid 

parental line itself andlor can be used as an elite donor parent of the stover quality QTL 

for its introgression into other hybrid parental lines of pearl millet. 

The target of this study was to get early access to large straw samples of near- 

isogenic lines and hybrids for in vivo feeding trials that can be used to assess the utility of 

the two alleles at this putative QTL in terms of direct livestock performance measures 

like milk production and live weight gains, before applying marker-assisted selection in a 

large-scale breeding program to introgress the favorable allele into a range of elite pearl 

millet hybrid parental line backgrounds. Both phenotypic and genotypic characters of any 

quantitative trait should be taken into consideration for selecting an individual for that 

quantitative character. In this context, although the putative stover quality Q'SL is 

introgressed, further QTLs should be detcctcd or can be identified by moving over to 

NIRS-based predictions of stover quality component traits from scans of ground stover 

samples like digestibility, nutritive value, and crude protein content (CPC); and using 

larger numbers of mapping population progenies in order to allow detection of 

statistically significant QTLs. With this we can have an elite hybrid parental line having 

good stover quality and quantity without sacrificing grain yield and quality which is an 

important criteria of dual-purpose crops grown in crop-livestock production systems. 

The fact that QTI, mapping and Marker-Assisted Selection (MAS) technology is 

so challenging that is rapidly emerging as a powerful tool suitable for dealing with target 

traits that are expensive, difficult or time consuming to evaluate accurately in a plant 

breeding program. lntrogression of these quantitative traits not possible by conventional 



breeding practices and strategies is made possible by marker-assisted selection. These 

tools are the result of the melding together of Mendelian, molecular and quantitative 

genetics. Technology development, including automation, allele-specific diagnostics, 

and DNA chips, will make MAS approaches based on large-scale screening much more 

powerful and effective (Young, 1999). 





CHAPTER VI 

SUMMARY 

Pearl millet is the only reliably productive cereal in the driest rainfed parts of 

South Asia where integrated crop-livestock production systems are the norm. Improving 

the nutritive value of the strawlfodder and the efficiency of their use in mixed diets is an 

important option for increasing the livestock productivity of the region. 

Identification of genetic factors involved in stover quality which is controlled by 

quantitative trait loci (QTL) and subsequent transfer of these factors to elite pearl millet 

breeding lines allows to maximize adoption of improved material and application of 

DNA markers and mapping technology facilitates breeding for complex traits like stover 

quality. 

The research project focus primarily on use of marker-assisted backcrossing 

(MAB) to transfer quantitative trait loci (QTLs) for laboratory fodder quality traits shown 

to be highly predictable of weight gain in sheep fed on pearl millet stover. ICRISAT and 

ILRl scientists (Hash et al.) in collaboration have attempted to map this QTL associated 

with grain and stover yield and aspects of drought tolerance in pearl millet based on 

RFLP and SSR marker linkage map obtained from the mapping population of the cross 

ICMB 841 X 8638. QTL mapping of stover yield and quality parameters in pearl millet 

has revealed several stover yield QTLs (Hash et al., 2003) and the best putative stover 



quality QTL detected to date is for gas production from the in vitro digestion o f  ground 

stover samples. 

Each generation progenies in the marker assisted introgression o f  stover quality 

QTL (i.e.) BC4F2 and BCSFI, about 165 genotypes were analysed using polymorphic 

SSR markers and 114 individuals were analysed using RFLP markers flanking the QTL 

and away from the QTL were analysed by only SSR markers to know whether the 

recurrent parent is recovered or not (back ground selection) in the non-target region. 

Based on these SSRs and RFLP genotyping data, the individuals having 'H' or 'A' allele 

on the I,G7 and 'B' allele on all other linkage groups, LGI toLG6 were selected. And the 

selected progenies will be advanced by further selfing andlor backcrossing to next 

generation. 

The target o f  this study is to provide early access to large straw samples o f  near- 

isogenic lines (NIL) and their hybrids for in vivo trials to permit assessment o f  thc utility 

o f  this putative QTL in terms o f  livestock performance like milk production and live 

weight gains. Marker assisted backcross introgression o f  this putative stover quality QTL. 

wi l l  soon provide near-isogenic lines for such in vivo and in vitro assessments. Hybrids o f  

such lines wi l l  not only have high grain and stover yield potential and good resistance, 

but also increased stover quality in terms of its nutritive value for ruminant livestock 

without sacrificing grain yield. 
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APPENDIX 

(a) SSR MARKERS AND THEIR CHARACTERISTICS 

Marker LG Primer pair 
(FIR) 

PCR Repeat type PIC 
product and length value 

2273psmp 1 5' AAC CCC ACC AGT AAG TTG TGC TGC 3' 169 (GA)12 0.75 
5' GAT GAC GAC AAG ACC TTC TCT CC 3' 

2201 psmp 2 5' CCC GAC GTT ATG CGT TAA GTT 3' 364 (GT)6 0.69 
5'TCCATCCATCCATTAATCCACA3' 

2225psmp 2 5' CCG TAC TGA TGA TAC TGA TGG TT 3' 250 (GT)12 . 
5' TGG GAG GTA AGC TCA GTA GTG T 3' 

2231 psmp 2 5' TTG CCT GAA GAC GTG CAA TCG TCC 3' 300 (TG)lZGG(TA)4 0.65 
5' C i 7  AAT GCG TCT AGA GAG TTA AGT TG 3' 

2059psmp 2 5' GGG GAG ATG AGA PA4 CAC AAT CAC 3' I 19 (AC) I I 0.59 
5' TCG AGA GAG GAA CCT GAT CCT AA 3' 

2267psmp 3 5' GGA AGG CGT AGG GAT CAA TCT CAC 3' 241 (GA)16 0.79 
5' ATC CAC CCG ACG AAG GAA ACG A 3' 

2076psmp 4 5' GGA ATA GTA TAT TOG CAA AAT GTG 3' 161 (AC) 15 0.59 
3ATACTACACCTGTAAGCATTGTC3' 

2084psmp 4 5' AAT CTA GTG ATC TAG TGT GCT TCC 3' 245 (AC)42 0.80 
5' GGT TAG m GTT TGA GGC AAA TGC 3' 

2202psmp 5 5' CTG CCT GTT GAG AAT PA4 TGA G 3' 161 (GT)8 0 42 
S GTT CCG AAT ATA GAG CCC AAG 3' 

2270psmp 6 5' AAC CAG AGA AGT ACA TGG CCC G 3' 153 (GA)26 0.80 
5' CGA CGA ACA AAT TAA GGC TCT C 3' 

221 3psmp 6 5' CCC A M  AGA ACC ACA CCC AC 3' 
5' GTT GAT GCT ACT GCT CGT TTG 3' 

201 3psmp 7 5' GTA ACC CAC TAA CCC TTA CC 3' I53  (CT)19(GT)16 0.88 
5' GTA ACC CAC TAA CCC TTA CC 3' 

2027psmp 7 5' AGC AAT CCG ATA ACA AGG AC 3' 273 (GT)31 0.86 
5 AGC m GGA AAA GGT GAT cc 3' 



Marker LG Primer pair PCR Repeat type PIC 
(FIR) product and leu@ value 

2043psmp 7 5' TCA TAT TCT CCT GTC TAA AAC GTC 3' 192 (CA) 13(GA)6 0.62 
5' ACA AAT CGT ACA AGT TCC ACT C 3' 

201 9psmp 7 5' TGT GCC ACA GCT TGT TCC TC 3' 248 (CA)38 0.85 
5' CAA GCA GCC AGT TCC TCA TC 3' 

2040psmp 7 5' CAT TAC ACG TTT C i 7  CAA ACG C 3' 163 (CA)nd 0.67 
5' TCT TCG GCC TAA TAG CTC TAA C 3' 



@) DESCRIPTION OF NIJMERICALS IN TBE TABLE (S) 

Family P (17): 
There are a total of 17 BC5Fl families and each family has about 20-25 plants. 

The leaves of all plants in each family are collected and pooled (represented as 'P') for 
small scale DNA extraction. So each family DNA sample is named as I to 17 and SSRs 
analysis is done. 

Family 328(11): 
This is a BC4F2 family in which 11 plants are selected and small scale DNA 

extraction of all these 1 1 plants is done separately i.e not pooled for SSRs analysis. 

Family 330(20): 
This is a BC4F2 family in which 20 plants were selected for DNA extraction and 

SSRs analysis. 

Family 332(32): 
This family belongs to BC4F2 generation which has 32 plants. DNA is extracted 

from all the 32 individuals separately for SSRs analysis. 

Family 338(34): 
The family 338 belongs to BC41:2 generation in which 34 plants are present. 

Small scale DNA extraction (HTP method) SSRs analysis is done individually. 

Family 340(18): 
This is a BC4F2 family in which 18 plants are present and DNA is extracted for 

SSRs analysis. 

Family 342(33): 
The family 342 belongs to BC4F2 populationlgeneration in which 33 plants are 

selected for SSRs analysis. 
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