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Abstract: Next generation se-
quencing (NGS) technologies are
being used to generate whole
genome sequences for a wide
range of crop species. When com-
bined with precise phenotyping
methods, these technologies pro-
vide a powerful and rapid tool for
identifying the genetic basis of
agriculturally important traits and
for predicting the breeding value of
individuals in a plant breeding
population. Here we summarize
current trends and future prospects
for utilizing NGS-based technolo-
gies to develop crops with im-
proved trait performance and in-
crease the efficiency of modern
plant breeding. It is our hope that
the application of NGS technolo-
gies to plant breeding will help us
to meet the challenge of feeding a
growing world population.

This article is part of the PLOS

Biology Collection ‘‘The Promise of

Plant Translational Research.’’

Introduction

In 2012, the world population exceeded

7 billion people and is expected to

continue growing. To feed this growing

population and meet rising expectations

regarding food quality, food production

must increase by an estimated 70% by

2050 [1]. Recent abrupt climatic changes

[2] make stable food production even

more difficult and put pressure on fragile

environments. There is, therefore, an

urgent need to accelerate crop breeding

improvements and to implement new

management strategies that together can

achieve sustainable yield increases without

further expanding farmland or damaging

the environment [3].

To meet these challenges, scientists are

developing new and more efficient breed-

ing strategies that integrate genomic

technologies and high throughput pheno-

typing to better utilize natural and induced

genetic variation. Rapid developments in

next generation sequencing (NGS) tech-

nologies over the last decade have opened

up many new opportunities to explore the

relationship between genotype and phe-

notype with greater resolution than ever

before. As the cost of sequencing has

decreased, breeders have begun to utilize

NGS with increasing regularity to se-

quence large populations of plants, in-

creasing the resolution of gene and

quantitative trait locus (QTL) discovery

and providing the basis for modeling

complex genotype-phenotype relationships

at the whole-genome level.

Specialized plant genetic stocks, such as

bi-parental and multi-parent mapping

populations, mutant populations, and im-

mortalized collections of recombinant lines

(Figure 1), have been generated to facili-

tate mapping and gene function analysis

via association studies and QTL mapping

(Box 1) in several crop species. Knowledge

about the identity and map location of

agriculturally important genes and QTL

provides the basis for parental selection

and marker-assisted selection (MAS) in

plant breeding. Alternatively, genotypic

and phenotypic datasets on training pop-

ulations (TP; Box 1) can be used to

develop models to predict the breeding

value of lines in an approach called

genomic selection (GS). We discuss both

approaches later in this Essay.

NGS technologies have been available

for a number of years and are widely used

for de novo sequencing, whole genome

sequencing (WGS), whole genome re-

sequencing (WGRS), genotyping by se-

quencing (GBS) (Box 1), and transcrip-

tome and epigenetic analysis [4]. They are

also used as the basis for developing fixed

SNP genotyping arrays that typically

consist of a set of well-distributed genic

and non-genic SNPs. NGS strategies are

now being improved by third generation

sequencing (TGS) technologies (Box 2).

TGS technologies can generate longer

sequence reads in a shorter time and at

even lower costs per instrument run.

Collectively, NGS technologies have been
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used to sequence a range of plant species’

genomes, mapping populations, and

breeding lines. Their use has helped to

broaden the plant research agenda over

the last decade, and to shift from a focus

on only one or two model species to a

much wider range of plant species today.

NGS technologies have also directly im-

pacted the kind of plant science research

that is undertaken in both the basic and

translational research arenas.

Understanding the complex relation-

ship between genotypic and phenotypic

variation lies at the heart of the study of

genetics and is also critically important to

applications in plant breeding. Yet there is

a considerable gap between the informa-

tion that is available on model species

about the genes and QTLs that underlie

plant phenotypes and the integration of

this information into applied plant im-

provement. In part, this gap is due to the

geneticists’ desire to simplify the genetic

background (by using ‘‘wild-type’’ or

‘‘reference’’ populations that do not cap-

ture the complex genotype 6 genotype

interactions in materials used by the

breeding community), and minimize envi-

ronmental ‘‘noise’’ (by using carefully

controlled environments that do not cap-

ture the complexity of real-world environ-

mental variation) to study the function of

genes at a mechanistic level. The use of

NGS for gene discovery in diverse species

and populations, and as a foundation for

large-scale modeling in both basic plant

genetics and applied plant breeding, is

helping to bridge the gap.

Genomics-Assisted Breeding

Here we discuss two main types of

genomics-assisted breeding [5]: (1)

MAS and (2) GS. MAS, which includes

marker-assisted back-crossing (MABC;

Box 1), uses molecular markers that map

within specific genes or QTLs known to be

associated with target traits or phenotypes

to select individuals that carry favorable

alleles for traits of interest (and/or to

discard those that do not). GS, on the

other hand, uses all available marker data

for a population as predictors of breeding

value. Specifically, GS integrates marker

data from a training population with

phenotypic and, when available, pedigree

data collected on the same population to

generate a prediction model. The model

outputs genomic estimated breeding val-

ues (GEBVs) for all genotyped individuals

within a breeding population [6]. The

GEBVs serves as a predictor of how well a

plant will perform as a parent for crossing

and generation advance in a breeding

pipeline, based on the similarity of its

genomic profile to other plants in the TP

that are known to have performed well in

the target environment(s). Before the

prediction model can be applied to a

breeding population, the accuracy of the

model is generally tested using cross-

validation on subsets of the training

population. Once validated, the model

can be applied to a breeding population

where GEBVs are calculated for all lines

for which genotypic information is avail-

able, and their phenotypic performance is

predicted solely on the basis of that

genotypic information.

The advantage of genomics-assisted

breeding is that genotypic data obtained

from a seed or seedling can be used to

predict the phenotypic performance of

mature individuals without the need for

extensive phenotypic evaluation over years

and environments. The use of genomics-

assisted breeding, in both MAS and GS,

allows for more selection cycles and

greater genetic gain per unit of time.

While some phenotyping is still advanta-

geous to validate performance prior to

further crossing or variety release, and in

the case of GS, to maintain or increase the

accuracy of prediction models as the

breeding population evolves, extensive

multi-location field trials become unnec-

essary in every generation.

Over the past several decades, as the

process of selecting plants for breeding has

shifted from an almost complete reliance

on phenotyping to an increasing reliance

on some level of genotyping-based meth-

ods, the number of markers used for

selection has steadily increased. This has

been made possible by NGS technologies

Figure 1. Role of NGS in genomics-assisted breeding. NGS occupies a critical position in a genomics-assisted breeding pipeline; it helps
improve the speed and precision of trait mapping to identify genes and QTLs that are the targets of MAS, and it underlies the ability to calculate
GEBVs based on genome-wide prediction that predict the breeding value of individuals in a breeding population using GS.
doi:10.1371/journal.pbio.1001883.g001
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that have augmented the speed, through-

put, and cost effectiveness of genome-wide

genotyping. Previously, marker data were

expensive and laborious to generate, and

marker-assisted breeding strategies were

constrained by the number of markers that

could efficiently be assayed. As a result,

only markers in critical genomic regions

were utilized to predict the presence or

absence of agriculturally valuable traits. By

contrast, the use of NGS technologies

provides genome-wide marker coverage at

a very low cost per data point, allowing us

to assess the inheritance of the entire

genome with nucleotide-level precision.

In the context of genomics-assisted

breeding applications, both MAS and GS

have benefited tremendously from NGS

technologies. The resolution of most basic

and translational studies is no longer

limited by our ability to genotype large

populations, but rather by the high cost

and low throughput of phenotyping strat-

egies for traits of interest and in environ-

ments relevant to plant breeding [7,8]. As

a result, breeders are looking for ways to

leverage genotypic information, which is

relatively fast, cheap, and easy to generate,

to inform them about the phenotypic

potential of their materials. Both MAS

and GS are attempts to do that, and they

each have different strengths and limita-

tions. The utility of each depends on the

genetic architecture and heritability of the

trait(s) involved, the diversity of genetic

backgrounds managed in the breeding

program, the number of generations that

a breeding population is removed from the

original mapping or training population,

and the overall organization and bioinfor-

matics capabilities of the breeding pro-

gram.

Gene and QTL Discovery

The application of MAS in plant

breeding is predicated on prior knowledge

about major-effect genes and QTLs that

serve as the targets of selection. NGS

technologies have proven useful in identi-

fying these loci in diverse populations. In

the following section, we discuss various

approaches to gene and QTL discovery

where the use of NGS enhances the

efficiency and resolution of the mapping

process.

Genome-Wide Association Studies
Genome-wide association studies

(GWAS; Box 1) utilize association map-

ping, also known as linkage disequilibri-

um (LD) mapping, to map QTLs by

taking advantage of historic LD to

identify statistically significant pheno-

type-genotype associations (Figure 1).

GWAS have been successfully performed

in several crop plants, including maize

[9–12], rice [13–15], wheat [16], soybean

[17], sorghum [18], and foxtail millet

[19]. The use of NGS in the context of

GWAS makes it possible to genotype

larger populations of plants with a higher

density of markers than was previously

possible, and this contributes directly to

Box 1. Glossary

Bulked segregant analysis (BSA): This approach identifies molecular markers
associated with a trait of interest by genotyping DNA extracted from bulked
samples of individuals at the trait’s phenotypic extremes.

Genome-wide association studies (GWAS): These studies utilize collections
of diverse, unrelated lines that are genotyped and phenotyped for traits of
interest, and statistical associations are established between DNA polymorphisms
and trait variation to identify genomic regions where genes governing traits of
interest are located.

Genotyping-by-sequencing (GBS): A highly multiplexed genotyping system
involving DNA digestion with different enzymes and the construction of a
reduced representation library, which is sequenced using an NGS platform. It
enables the detection of thousands of SNPs in large populations or collections of
lines that can be used for mapping, genetic diversity analysis, and evolutionary
studies.

Marker-assisted back-crossing (MABC): In this form of marker-assisted
selection, a genomic locus (gene or QTL) associated with a desired trait is
introduced into the genetic background of an elite breeding line through several
generations of backcrossing.

Multi-parent advanced generation inter-cross (MAGIC): A type of multi-
parent population developed from four to eight diverse founder lines, generated
to increase the precision and resolution of QTL mapping because of the larger
number of alleles and recombination events compared to bi-parental mapping
populations.

Nested association mapping (NAM): NAM combines advantages of linkage
and association mapping and eliminates disadvantages of both; it takes into
consideration recent and historical recombination events, facilitating high
resolution mapping.

Quantitative trait locus (QTL): A genomic region encompassing one or more
genes that accounts for a portion of the variation of a complex quantitative trait,
identified by phenotyping and genotyping a segregating population followed by
statistical analysis.

Recombinant inbred line (RIL): An immortal mapping population consisting
of fixed (inbred) lines in which recombination events between chromosomes
inherited from two inbred strains are preserved. RILs are generated by crossing
two divergent parents followed by several generations of inbreeding to achieve
homozygosity.

Sequence-based mapping (SbM): An approach requiring deep sequencing
(56to 86genome coverage) of two DNA pools derived from individuals from the
phenotypic extremes of a segregating population, to identify candidate genes
associated with a phenotype of interest.

Training population (TP): A genotyped and phenotyped reference breeding
population used to develop a model to predict genomic-estimated estimate
breeding values for Genomic Selection (GS).

Whole genome re-sequencing (WGRS): A strategy to sequence an individual
genome where short sequence reads generated by NGS are aligned to a reference
genome for the species, providing information on variants, mutations, structural
variations, copy number variation, and rearrangements between and among
individuals, based on comparison to the reference genome.
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increased mapping resolution. With larger

populations, more recombination break-

points are identified, defining the position

of candidate genes with higher precision.

In parallel to developments in NGS

technologies, specialized mapping popu-

lations have also been developed that

significantly enhance the power and

efficiency of GWAS. Nested association

mapping (NAM; Box 1) populations were

first developed for maize as a way of

taking advantage of both historic and

recent recombination events. This devel-

opment was important to minimize the

density of markers required by GWAS

while taking advantage of the high allele

richness, high mapping resolution, and

high statistical power of association map-

ping [20,21]. The NAM approach is

similar in principle to the use of multi-

parent advanced generation inter-cross

(MAGIC; Box 1) populations, which are

used to shuffle the genetic background

among a set of diverse parental lines and

increase recombination, and consequently

the mapping resolution of QTL. Both

types of population have been successfully

developed and used to identify QTLs for

a number of traits in diverse crop species

[22–27].

High Resolution Genetic Mapping
and Candidate Gene Identification

NGS-based approaches, including

sequencing-based mapping (SbM; Box 1),

can be used in combination with bulked

segregant analysis (BSA; Box 1) and

modifications thereof to help speed the

identification of candidate genes [28]. In

BSA, DNA is extracted from plants at the

extremes of the phenotypic distribution for

a given trait, and samples from several

plants at each of the extremes are pooled

together and used to identify the genomic

region(s) underlying the trait [29].

NGS-based approaches that involve

whole genome sequencing can improve

the power of BSA and are being widely

used in many plant species today [30–37].

MutMap is a method based on WGRS of

pooled DNA samples from the phenotypic

extremes of a segregating population

derived from a cross between a mutant

of interest and the progenitor wild type

line. Abe and colleagues [30] utilized this

strategy to identify causal SNPs in a gene

(OsCAO1) for the pale green leaf mutant in

rice, and results were validated transgeni-

cally. In a related study, MutMap-Gap,

was used to identify a major gene

responsible for blast resistance, Pii, in rice

where the resistance trait was associated

with the presence of a nucleotide-binding

site-leucine rich repeat (NBS-LRR) gene

in a gap, that is, a structurally variable

genomic region, where the resistance gene

was not present in the reference genome

used for WGRS alignment [37]. A similar

approach, known as QTL-Seq, involves

WGRS on bulked DNA samples from the

phenotypic extremes of a population of

recombinant inbred lines (RILs) (Box 1) or

F2 individuals derived from inter-varietal

crosses. The QTL-Seq strategy was used

to identify QTLs for seedling vigour and

partial resistance to blast disease in rice

[36]. The QTLs were validated on the

basis of classical QTL mapping studies,

but the population sizes used to make the

bulks (20–50 individuals each) were not

large enough to provide gene-level resolu-

tion.

In another example, Xu and colleagues

[38] re-sequenced 246 RILs of soybean

and evaluated the lines for root knot

nematode (RKN, Meloidogyne incognita) re-

sistance to identify the gene(s) underlying a

QTL for RKN resistance. RKN disease is

difficult to evaluate phenotypically, but

can cause up to 90% loss of susceptible

soybean cultivars [39]. Identifying the

genomic region(s) associated with RKN

resistance was useful for developing resis-

tant genotypes. Compared to previous

marker systems, NGS is very efficient for

map-based gene discovery because it

simultaneously performs SNP discovery,

SNP validation, and SNP genotyping in a

mapping or mutant population. The work

by Xu and colleagues [38] illustrates how

NGS can also help resolve issues related to

genome duplication in a complex, palaeo-

polyploid species like soybean.

TILLING/Eco-TILLING by Sequencing
Targeting-induced local lesions in ge-

nomes (TILLING) is a reverse genetics

approach for the rapid discovery and

mapping of induced causal mutation

responsible for traits of interest (Figure 1).

Eco-TILLING is a method that uses

TILLING techniques to identify natural

mutations in individuals [40]. TILLING

populations have been developed for

several crop plants, such as rice [41,42],

wheat [43,44], sorghum [45], oat [46],

Brassica [47], chickpea and pearl millet

(http://www.icrisat.org/bt-gene-discovery.

htm), and used to identify useful alleles. To

identify rare mutations in rice and wheat,

Tsai and colleagues [48] developed a new

approach called ‘‘TILLING-by-Sequenc-

ing,’’ in which target genes were amplified

from pooled templates representing 768

individuals per experiment and then

Box 2. Innovations in Sequencing Technologies

In addition to classical Sanger sequencing methodology, a range of sequencing
technologies have become available in recent years. These technologies are being
used to sequence the genomes of a number of crops. Here we provide a brief
update on these technologies and their use in sequencing the genomes of key
plant species.

Second/next generation sequencers (SGS/NGS)

NGS technologies have enabled the whole genome sequencing (WGS) of several
plant species and the re-sequencing of multiple genotypes [98,99]. Two NGS
approaches, de novo assembly and reference-based assembly, are employed for
assembling short sequence reads into longer contigs. The sequencing of more
plant genomes is expected as sequencing technologies become cheaper [4,100].

Third generation sequencing (TGS)

The TGS approaches increase sequencing rates, throughput, and read lengths,
ultimately decreasing sequencing costs and lowering the complexity of sample
preparation. The current TGS technologies include: Ion Torrent’s (Life Technol-
ogies) technology, a sequencer that uses semi-conductor technology to create a
high-density array of micro-machined wells that carry out sequencing-by-
synthesis, although it still requires PCR amplification of the DNA template and
termination events, which limit read length to that of current NGS systems;
Heliscope Single Molecule sequencer, which performs single molecule sequenc-
ing (SMS) [101,102], the read lengths are 32 nucleotides long and no PCR
amplification is required; Single-Molecule Real-Time (SMRT) sequencer performs
sequencing by synthesis and overcomes many of the shortcomings of NGS [103],
and produces maximum read lengths of 10,000 bp, enabling de novo assembly,
however, the raw read error rates can be over 5%; Oxford Nanopore sequencing
technology, which employs nanopore sequencing technology and a portable
gene-sequencing device for use with GridION and MiniION single molecule
sequencers, it offers 50–100 kb read length at 4% error rate.
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sequenced using NGS technology, leading to

the discovery of novel rare mutants. Eco-

TILLING, has also been used to identify

novel variants of flowering related genes in

sugar beet accessions [49], variants for a fatty

acid desaturase gene in an olive (Olea europaea)

collection [50], a reduced height (Rht)-1 gene

in wheat [51], a drought tolerance transcrip-

tion factor in rice [52], and genes associated

with salinity stress tolerance in rice [53]. In

the future, we envision that the use of Eco-

TILLING and related approaches will enrich

the gene pools of many crop species by

identifying useful variants that have only

rarely been used in modern crop improve-

ment programs.

Marker-Assisted Selection as a
Breeding Practice

The oldest and most widely used type of

genomics-assisted breeding is MAS. Identi-

fying a gene or genomic region (QTL) that is

responsible for a trait of interest is only an

initial step in using MAS in a crop

improvement program. Once found, the

next step is to introgress the identified gene

or genomic region(s) into an adapted crop

line(s) using markers to identify the offspring

that carry the most favorable combination of

alleles. Both genotyping arrays and NGS

approaches have been successfully used to

introgress target loci into elite varieties to

improve performance [54].

Simply inherited traits commonly tar-

geted for MAS include disease and insect

resistance, abiotic stress tolerance, and

grain quality. MAS is particularly valu-

able for introgressing recessive alleles,

pyramiding genes with overlapping phe-

notypic effects, for traits that are not

expressed until late in plant development

and traits that are difficult or expensive to

phenotype [55]. MAS is used for both

inbred and hybrid variety development

[56–63]. In some crops, traits that are

expected to have complex inheritance

have been associated with major-effect

QTLs that can be immediately targeted

for MAS. Examples include ‘‘grain yield’’

and ‘‘yield under drought’’ in rice [64–

66], biomass accumulation in Triticale

[67], and drought tolerance in chickpea

[68].

Choice of Genotyping Platform
Fixed SNP genotyping arrays may be

preferred to NGS technologies if they can

achieve higher throughput at a lower cost

per sample, or if they are specially

designed to target high value functional

alleles for traits of interest if a breeding

program lacks the informatics support that

would be required to decipher NGS

information in a timely way. The density

of SNPs on an array is typically less than

the SNPs assayed by NGS, but the

selection of array-based SNPs can be

optimized for particular breeding applica-

tions. The reliability, turn-around-time,

ease of information retrieval, as well as the

cost of a genotyping assay and relationship

to the service provider(s) are critical to a

breeder where decisions about which

individuals to advance to the next gener-

ation rely on timely access to genotypic

information.

SNP-genotyping arrays, constructed

from NGS datasets, have been developed

and used to augment breeding efficiency

in several crops, including maize (60 K

SNPs [69]), rice (44 K SNPs [14]; 6 K

SNPs [70]; 384 SNPs [71]), chickpea

(2,068 SNPs [72]; 96 SNPs [73]), pigeon-

pea (1,616 SNPs [74]; 48 SNPs [73]), and

groundnut (96 SNPs [75]).

Use of MAS in Interspecific
Populations

MAS and marker-assisted back-cross-

ing (MABC) have been valuable for

harnessing agriculturally valuable genes

and QTLs from wild or unadapted

genetic resources, particularly where the

phenotype of a wild accession offers little

or no insight about its potential value as a

breeding parent [76,77]. Prior to the

advent of DNA markers, it was extremely

cumbersome and inefficient to try to

select for recombinant offspring from

interspecific populations that carried the

favorable wild allele(s) of interest because

many unfavorable alleles that were also

inherited from the wild donor typically

masked the favorable phenotype. Geno-

mics-assisted breeding has dramatically

shifted the way breeders are able to work

with unadapted genetic resources. Exam-

ples can be found in wheat [78–80],

tomato [81], rice [13,59,64,82,83], maize

[57,84], barley [58], pigeon pea (http://

goo.gl/zrdICo), chickpea [85], and foxtail

millet [19].

NGS technology is vitally important as

a tool for characterizing plant genetic

resources globally. The vast majority of

accessions found in the world’s gene banks

are currently poorly characterized and as a

result, rarely used. An international effort

is underway to take advantage of the low

cost and high throughput of NGS, in

combination with appropriate databasing

of information, large-scale phenotyping,

and population development, to help

characterize gene bank materials and

provide a rational basis for their utilization

[86].

Overcoming Linkage Drag
Breeders using MAS to introgress a

favorable QTL allele from a wild or

unadapted donor parent into an elite,

adapted line often encounter the problem of

linkage drag. The transfer of a large QTL

region from a donor plant into a divergent

breeding line may introduce undesirable

phenotypic effects owing to the presence of

linked genes in the introgressed QTL region.

These linked genes often have nothing to do

with the target trait but can make the new

line unacceptable. NGS is vital for quickly

identifying the individuals that carry critical

recombination breakpoints that break the

linkage drag. In one example, NGS was used

to identify the recombinants to break linkage

between a favorable allele conferring rice

blast disease resistance and a deleterious gene

affecting grain quality [87] and in another

between a favorable allele conferring drought

tolerance in rice and an unfavorable allele for

tall plant stature [66]. Because the landraces

that served as the breeding donors carried the

favorable and the unfavorable alleles in

coupling, it took a concentrated effort and

deep sequencing within the target region on a

large segregating population to identify a

recombinant individual in which the linkage

had been broken. In such cases, if the causal

gene(s) and/or functional polymorphism(s)

for the favorable and/or the deleterious

trait(s) are known, the breeder can use that

information to guide the selection of individ-

uals that carry key recombination events to

minimize the effect of linkage drag. Once a

recombinant individual is identified, it be-

comes immediately useful as a donor in

breeding and may serve to introduce new

genetic variation into a breeding pipeline. In

the case of Fukuoka and colleagues [87], the

gene conferring blast disease resistance had

not been used in breeding because previous

attempts to introgress the resistance had been

plagued by the poor grain quality trait. Thus,

NGS can be extremely helpful to identify the

recombinants in breaking linkage drag and

liberating new forms of genetic variation for

use in breeding.

Genomic Selection as a
Breeding Practice

As we have already discussed, GS does

not depend on prior knowledge about a

few, large-effect genes or QTL, and was

not feasible prior to the development of

genotyping technologies that provided

high throughput, low-cost, genome-wide

marker coverage. GS was originally devel-

oped for use in livestock breeding [6,88],

and is currently being applied to a wide

range of crops [89–95]. The efficiency

with which superior lines can be predicted
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through GS depends upon the genetic

relationship between the training popula-

tion and the breeding population, the

number of generations that separate them,

the type and number of markers used, the

accuracy of the phenotyping, and the

heritability of the trait(s) [90,91,96].

Where there is significant population

structure within breeding populations of

wheat and maize, pedigree information

has been found to account for a large

proportion of the prediction accuracy

[89]. Genome-wide marker information

can increase the prediction accuracy of the

models, particularly where the trait is

governed by many genes of small effect

that are widely distributed throughout the

genome. However, in many inbreeding

species and wherever a trait of interest is

governed by a few genes of large effect,

specific information about SNPs within or

near the target genes can enhance model

accuracy and the value of GS.

Combining Marker-Assisted and
Genomic Selection

Despite the obvious differences be-

tween these two approaches to geno-

mics-assisted breeding, there is much to

be gained by combining the strengths of

both approaches in the future. As

information becomes increasingly avail-

able about which genes and alleles

contribute to phenotypic variation in

important breeding populations, greater

weight can be given to specific poly-

morphisms that map within or very near

to major-effect genes in GS models,

which otherwise do a good job of

tracking genes of small effect. Thus

both approaches are critical as the plant

breeding community seeks to enhance

the productivity and sustainability of

crop production in the face of climate

change and increasing human demand.

Perspectives

The development of improved breed-

ing lines for commercial crop cultivation

has traditionally been a time consuming

and expensive task. With the deployment

of genomics-assisted breeding, the gen-

eration of such lines is destined to

become easier and faster, if also more

expensive in the short term. To meet the

demands of the human population and

increasing volatility of the climate, we

must accelerate the pace of our current

breeding practices and apply genomics-

based selection approaches.

Selection based on NGS allows marker

discovery, marker validation, and geno-

typing itself to occur simultaneously, as we

have discussed (Figure 1). The trend for

sequence-based genotyping to replace the

use of fixed marker arrays seems realistic,

particularly as the cost of sequencing

continues to fall, and is already happening

for diploid crops with relatively small

genome sizes (#1 GB), such as rice

(389 Mb), chickpea (738 Mb), sorghum

(818 Mb), and pigeonpea (833 Mb). For

polyploids and crops with larger genomes

(e.g., bread wheat, a hexaploid with a

17 Gb genome), fixed SNP arrays will

continue to be useful, particularly where

they assay gene-specific or genome-specific

markers that facilitate accurate mapping.

Nonetheless, it is likely that NGS-generat-

ed data, including the many forms of GBS,

will become the way of the future.

Currently, phenotyping is a major oper-

ational bottleneck that limits the power and

resolution of many kinds of genetic analysis.

We recognize the urgent need for high-

throughput, cost-effective, and precise

phenotyping methodologies that will un-

doubtedly involve digital image capture,

remote sensing, and many new forms of

information and communication technolo-

gies. To cope with the deluge of data

generated from NGS and more automated

phenotyping platforms, we need efficient

data analysis and decision support tools to

help breeders utilize that data in real time

to select superior lines for crossing. We also

need a massive reorganization of the way

young plant scientists are trained [97], the

way breeding programs are organized, and

data are shared. We must integrate training

across scientific fields, including genetics,

plant breeding, computer science, mathe-

matics, engineering, biometrics and bioin-

formatics, and to evolve new forms of

communication and professional organiza-

tion, so that genomics-assisted breeding can

achieve its potential.

Finally, we need to provide suitable

cultivars to farmers in a timely manner.

While NGS-based approaches are helping

improve the efficiency of breeding crops

adapted to specific environments, we

simultaneously need to provide farmers

with information about the availability of

new varieties about crop management

systems and marketing opportunities.

It is critically important that the efforts

of the plant breeding community be

fully integrated into the entire value chain

so they can be rapidly and effectively

deployed in farmers’ fields, and so the

fruits of genomics can ultimately reach

the people they are intended to

benefit.
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