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Abstract Ethylene-responsive factor (ERF) play an im-
portant role in regulating gene expression in plant devel-
opment and response to stresses. In peanuts (Arachis
hypogaea L.), which produce flowers aerially and pods
underground, only a few ERF genes have been identified
so far. This study identifies 63 ERF unigenes from
247,313 peanut EST sequences available in the NCBI
database. The phylogeny, gene structures, and putative
conserved motifs in the peanut ERF proteins were
analysed. Comparative analysis revealed the absence of
two subgroups (A1 and A3) of the ERF family in pea-
nuts; only 10 subgroups were identified in peanuts com-
pared to 12 subgroups in Arabidopsis and soybeans.
AP2/ERF domains were found to be conserved among
peanuts, Arabidopsis, and soybeans. Outside the AP2/

ERF domain, many soybean-specific conserved motifs
were also detected in peanuts. The expression analysis
of ERF family genes representing each clade revealed
differential expression patterns in response to biotic and
abiotic stresses. Overexpression of AhERF008 influenced
the root gravity of Arabidopsis, whereas overexpression
of AhERF019 enhanced tolerance to drought, heat, and
salt stresses in Arabidopsis. The information generated
in this study will be helpful to further investigate the
function of ERFs in plant development and stress
response.
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Introduction

Plant-specific TFs of the APETALA2/ethylene response fac-
tor (AP2/ERF) superfamily are defined by the presence of a
conserved AP2/ERF domain consisting of approximately 60
amino acid residues (Ohme-Takagi and Shinshi 1995; Nakano
et al. 2006). AP2/ERF transcription factors, which are
characterised by the presence of the AP2/ERF DNA-binding
domain, play significant roles in regulating plant biotic and
abiotic stress-responsive gene expression (Sakuma et al.
2002). AP2/ERF genes comprise a large superfamily that
has been divided into three groups (AP2, ERF, and RAV)
based on their sequence similarities and number of AP2/
ERF domains (Nakano et al. 2006). ERF family proteins
contain a single AP2/ERF domain and can further be divided
into two major subfamilies, namely, the CBF/DREB and the
ERF subfamilies (Sakuma et al. 2002). Genes in the CBF/
DREB subfamily have been observed to play an important
role in enhancing abiotic stress tolerance by recognising the
dehydration-responsive element (DRE) with a core motif of
A/GCCGAC (Yamaguchi-Shinozaki and Shinozaki 1994;
Thomashow 1999; Xu et al. 2011) and are involved in the
response to biotic stresses, such as pathogenesis, through the
recognition of the cis-acting element AGCCGCC, known as
the GCC box (Hao et al. 1998; Xu et al. 2011). The proteins of
the CBF/DREB and ERF subfamilies can be grouped into six
subgroups: A-1 to A-6 and B-1 to B-6, respectively (Sakuma
et al. 2002). The availability of genomic sequences has result-
ed in the identification of ERF family transcription factors in
various plant species, including Arabidopsis (Liu et al. 1998;
Nakano et al. 2006), rice (Cao et al. 2006), cotton (Huang et al.
2007; Jin and Liu 2008), soybeans (Zhang et al. 2008), toma-
toes (Sharma et al. 2010), cucumbers (Hu and Liu 2011), and
Chinese wild grapevine (Zhu et al. 2013). The roles of the
ERF and CBF/DREB proteins in the response to biotic and
abiotic stresses have also been extensively documented
(Gutterson and Reuber 2004; Agarwal et al. 2006; Mizoi
et al. 2012.). For example, Sub1A is an ERF-like protein that
confers tolerance to submergence and drought in rice by
affecting ethylene synthesis (Xu et al. 2006; Fukao et al.
2011). It has been observed that rice ERF proteins (namely,
SNORKEL1 and SNORKEL2) can trigger remarkable inter-
node elongation via gibberellins to avoid submergence
(Hattori et al. 2009). These proteins in Arabidopsis
(WIN1/SHN1), Medicago truncatula (WXP1/2), and rice
(WR1) induce the production of epidermal waxes when
overexpressed in plants (Aharoni et al. 2004; Broun et al.
2004; Zhang et al. 2005, 2007; Wang et al. 2012). Similarly,
ERF activators such as CBF1/DREB2A, DREB1A, and
OsDREB1F could enhance tolerance to salt, drought, and
low temperatures in both rice and Arabidopsis (Kasuga et al.
1999; Wang et al. 2008). Despite our understanding of the
potential role of DREBs/ERFs in improving crop stress

tolerance, the exact functions of the majority of the DREBs/
ERFs are still unknown. Therefore, identification and func-
tional characterisation of new DREB/ERF genes will provide
useful information on their potential role in peanuts, in which
only a few members of the ERF family have been
characterised.

Peanuts (Arachis hypogaea L.) grow in more than 100
countries throughout the world and serve as an important
source of oil and protein. Aside from its importance in agri-
culture and food security, the peanut is also a plant species that
produces flowers aerially but buries the recently fertilised
ovules into the soil to produce pods underground. Peanuts
are comparatively more tolerant to various stresses than most
other related plant species. Ethylene is a key signalling mol-
ecule that regulates a variety of developmental processes and
stress responses in plants (Philosoph-Hadas et al. 2005; Buer
et al. 2006; Licausi et al. 2013). Studies focused on the
ethylene transduction pathway in peanuts would be useful to
better understand pod development and the peanut plant’s
superior stress tolerance. Although six ERF family transcrip-
tion factor genes (AhERF1–6) were cloned and their expres-
sion levels during abiotic stress in peanuts were analysed
(Chen et al. 2012), their functions remain unknown. There-
fore, the present study focused on acquiring additional infor-
mation regarding the AP2/ERF superfamily in peanuts using
the peanut ESTs in the NCBI database, which resulted in the
identification of 63 members in this superfamily (including 24
DREB subfamily and 39 ERF subfamily members). Further-
more, phylogenetic and protein motif structural analyses of
the ERF and CBF/DREB subfamilies were also conducted
along with the expression profiling of all of the peanut ERF
genes. Additionally, the biological function of an ERF gene
AhERF019 was investigated in transgenic Arabidopsis.

Materials and methods

Sequence data and data processing

A total of 247,313 expressed sequence tags (ESTs), which
were used as the primary sequence data set, were retrieved
from the NCBI website (http://www.ncbi.nlm.nih.gov/nucest)
on 20 September 2012. The Transeq program from the
EMBOSS package was used to translate the DNA sequences
into protein sequences. Based on the HMMER user’s guide
(http://hmmer.wustl.edu/; Version 2.3.2; Oct 2003), the
Hmmpfam program was used to annotate various domains
in the query sequence followed by the use of the Hmmfetch
program to retrieve an HMM as a seed model from an HMM
database, including the AP2/ERF domain. Finally, the
Hmmalign program was used to align multiple ESTsequences
to the seed profile HMM to obtain EST sequences containing
the AP2/ERF domain. We sequenced the target
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complementary deoxyribonucleic acid (cDNA) clone in our
cDNA library and performed a PCR using one primer com-
plementary to the library vector and another primer comple-
mentary to the target gene using our yeast two-hybrid cDNA
library as a template. We also executed a blast search with our
transcriptome data to identify any missing sequences of the
ERF genes that did not have a full-length CDS. To confirm the
full-length genes, primers were designed as shown in ESM
Table 1. To clone the full-length genes, total RNA was
reverse-transcribed using the SuperScript™ II Reverse Tran-
scriptase (Invitrogen, USA). The full-length open reading
frame (ORF) was confirmed by sequencing more than three
clones. The soybean gene data set was downloaded from the
DFCI Soybean Gene Index (http://compbio.dfci.harvard.edu/
tgi/cgi-bin/tgi/gimain.pl?gudb=soybean).

Alignment, phylogenetic analysis, and motif detection

All similarity searches were executed using the BlastN,
BlastX, or BlastP tools at the NCBI database and MEGA
5.1. Conserved domain searches were performed against the
conserved domain database at NCBI (http://www.ncbi.nlm.
nih.gov/Structure/cdd/wrpsb.cgi?). A phylogenetic tree was
constructed with the aligned peanut AP2/ERF protein se-
quences using MEGA 5.1 and the neighbour-joining (NJ)
method with the following parameters: Poisson correction,
pairwise deletion, and bootstrapping (1,000 replicates; ran-
dom seed). Motif detection was performed using MEME
(http://meme.sdsc.edu/meme/meme.html) (Bailey et al.
2006).

Plant materials, stress treatments, and real-time PCR analysis

The peanut line ‘06-4104’ (bearing the characteristics of high
oil content and high resistance to bacterial wilt) was used in
this study for expression analysis. Ralstonia solanacearum
strain 2C1 was isolated from wilted peanut samples from the
Hubei province (China). R. solanacearum was cultured at
200 rpm at 28 °C in PSA medium (200 g potato, 20 g sucrose,
3 g beef extract, 5 g tryptone, and 1 L of double-distilled H2O)
and homogenised in sterile 10 mM MgCl2 for 36 h, with a
calculated cell density of 108 cfu/mL [optical density at
600 nm (OD600) = 0.8].

Plant treatments were performed at six fully expanded leaf
stages. After seed germination, the seedlings were
transplanted in sandy soil in growth chambers at 28 °C with
a 14/10-h light/dark cycle. Flowering plants were used for
tissue-specific expression analyses. Stress treatments were
performed as follows: (1) the roots of the seedlings were
immersed in water containing 200 mM NaCl for salt stress;
(2) the seedlings were placed in a 4 °C growth chamber for
cold treatment; (3) the root systems of intact plants were
washed gently with water to remove soil and then placed on

filter paper for rapid dehydration to induce drought stress; (4)
seedlings were subjected to ABA, SA, Me-JA, and ET treat-
ments by spraying with 100 μM ABA dissolved in 0.01 %
ethanol, 100 μM SA in water, 100 μM JA in 0.01 % ethanol,
and 100 μM ACC in water, respectively; and (5) the roots of
the seedlings were immersed in an R. solanacearum suspen-
sion to promote R. solanacearum infection.

After exposure to one of these five stressors, peanut seed-
lings were harvested at various time points (0, 3, 6, 9, 12, 15,
18, 24 h), frozen in liquid nitrogen, and kept at –80 °C until
further analysis. Total RNAwas isolated from these samples at
various time points with an RNA extraction kit (Tiangen
Biotech, Beijing, China) according to the manufacturer’s in-
structions. Poly(A) + RNA was used as the template for
synthesis of the initial cDNA strands using reverse transcrip-
tase (Invitrogen). Gene-specific primers (ESM Table 1) were
designed to avoid any conserved regions. The specific primer
pair (5′-TAAGAACAATGTTGCCATACAGA-3′ and 5′-
GTTGCCTTGGATTATGAGC-3′) for peanut actin was used
as an internal control, and real-time PCR were performed
using the Bio-Rad IQ5 tHERMAL cycler.

Plant transformation and stress tolerance analysis
of transgenic Arabidopsis plants

AhERF008 and AhERF019were introduced into the Xba I and
BamH I restriction endonuclease sites of the pCAMBIA1307
(a derivative of pCAMBIA1300 carrying the 2*CaMV 35S
promoter and the OCS terminator) vector to overexpress these
genes using the primers listed in ESM Table 1. The vectors
were then transformed into Arabidopsis Col-0 via the
Agrobacterium tumefaciens-mediated floral dip method
(Clough and Bent 1998). Transgenic plants were grown in
soil under a 14/10-h light/dark cycle at 22/20 °C and 60 %
relative humidity. Transformed lines were selected by growing
them on one-half Murashige and Skoog (MS) agar plates
containing 40 μg/mL hygromycin under similar growth con-
ditions. Homozygous T3 progenies, which were bred from a
T2 population segregated into three hygromycin-resistant in-
dividuals to one hygromycin-sensitive individual, were used
for phenotypic analysis. Arabidopsis Col-0 was used as the
wild-type control for comparison. Seeds harvested from both
homozygous transgenic plants carrying AhERF008/
AhERF019 (OE lines) and Arabidopsis Col-0 were surface-
sterilised, placed on plates of MS medium containing 0.5 %
phytagel, and kept at 4 °C for 3 days to break dormancy. These
plants were then transferred to growth chambers under a 14/
10-h light/dark cycle at 22 °C and 70 % humidity. Five-day-
old seedlings from the MS medium plates were transferred to
either regular MS plates or MS plates containing 200 mM
NaCl and 325 mMmannitol and incubated at 22 °C with a 14/
10-h light/dark cycle for certain day to record the phenotypic
data. For heat stress, transgenic seedlings that were grown in
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the 90-cmMS solid plates for 14 days were incubated at 42 °C
for 3 h and recovered at 22 °C for 1 week. All of the afore-
mentioned experiments were conducted in triplicate to obtain
reliable results.

Results

Identification of unigenes possessing an AP2/ERF domain
in peanut

After conducting comprehensive analysis of 247,313 ESTs, a
total of 63 unigenes that contained only one AP2/ERF do-
main(s) were identified. Details regarding the identified
unigenes in the present study are shown in ESM Tables 2
and 3. All 63 unigenes identified were further classified into
two subgroups based on the similarity of the amino acid
sequences of the AP2/ERF domains. A total of 24 unigenes
encoding CBF/DREB-like proteins were assigned to the CBF/
DREB subfamily, whereas 39 unigenes encoding ERF-like
proteins were assigned to the ERF subfamily. All 63 unigenes
of the ERF family containing a complete AP2/ERF domain
were further analysed and are referred to as AhERF001 to
AhERF063 (ESM Tables 2 and 3).

Phylogenetic comparison of ERF factors from peanuts
and soybeans

Zhang et al. (2008) compared the ERF factors from Arabidopsis,
soybeans, and rice (Oryza sativa) and found that the AP2/ERF
domains were conserved among these three plants. Outside the
AP2/ERF domain, the majority of the motifs were conserved
among Arabidopsis, soybean, and rice. Zhang et al. (2008) also
identified several soybean-specific conserved motifs. To analyse
the phylogenetic relationships of the peanut ERF family,multiple
alignment analyses of the amino acid sequences of the 63 peanut
and 98 soybean ERF proteins were performed as described by
Zhang et al. (2008) (ESM Fig. 1) because peanuts and soybeans
belong to the Leguminosae family. Residues Arg27, Gly31,
Ala39, Ala40, Asp44, and Gly52 were completely conserved
among the 161 proteins in both species (ESM Fig. 2). Addition-
ally, more than 90 % of the ERF family members contain Gly5,
Arg7, Arg9, Trp11, Gly12, Glu17, Ile18, Arg19, Trp29, Leu30,
Ala42, Ala46, Ala47, Ala55, Asn59 Phe60, and Pro61 residues.
Based on an alignment, an NJ phylogenetic tree was generated
with bootstrap analysis (1,000 replicates). As shown in ESM
Fig. 1 and ESM Fig. 3, the phylogenetic tree divided the ERF
family proteins from soybeans into 12 subgroups, designated as
A-1 to A-6 and B-1 to B-6, in accordance with the classification
described by Zhang et al. (2008). However, subgroups A-1 and
A-3, which are present inArabidopsis and soybeans, were absent
in peanuts, with 24 DREB subfamily members and 39 ERF

subfamily members in peanuts. The number of ERF subfamily
members was almost twice that of DREB subfamily members.

Conserved motifs outside of the AP2/ERF domain in peanuts

The conserved motifs of ERF family proteins in both peanuts
and soybeans were investigated using MEME, and the results
are listed in ESMTable 4. The majority of the members within
the same group shared one or more motifs outside the AP2/
ERF domain (ESM Figs. 4 and 5). Some of the conserved
motifs identified in the Arabidopsis and soybean ERF families
were also examined in the AhERF unigenes. For example, the
ERF-associated amphiphilic repression (EAR) motif was
identified in members of subgroup A-5 as the CMA-5-2 motif
and in members of subgroup B-1 as the CMB-1-3 motif in
both Arabidopsis and soybeans (ESM Fig. 6 and ESM
Table 4). The MCGGAII/L motif, which was normally desig-
nated as CMB-1-1 and was identified as a transcriptional
activation domain (Liu et al. 1999), was also found in peanuts
(ESM Fig. 5 and ESM Table 4). Zhang et al. (2008) reported
that there were some soybean-specific motifs in the ERF
family upon comparison of soybean ERF factors with those
in Arabidopsis. For example, the CMA-6-10 motif in sub-
group A-6, the CMB-1-4 motif in subgroup B-1, and the
CMB-2-2 motif in subgroup B-2 were identified in peanuts
as CMA-6-9, CMB-1-4, and CMB-2-4 (ESM Fig. 7), respec-
tively. The BlastP analysis with the motif sequence
QNFIGFEQ fromAhERF022 in the NCBI database identified
several ethylene-responsive transcription factors from
Medicago truncatula (Accession No. XP_003615022,
XP_003638785, ACJ83281) and Cucumis sativus (Accession
No. XP_004142609, XP_004163671), indicating that these
motifs might be specific to legumes.

Expression profiles of peanut ERF genes in different tissues

Many important genes are selectively expressed in specific
tissues during various physiological and developmental pro-
cesses. Of the 247,313 peanut ESTs (A. hypogaea 178,490,
Arachis duranensis 35,291, Arachis ipaensis 32,787,
A. hypogaea subsp. fastigiata 745) analysed, 20.78 %
(51,403), 18.49 % (45,745), 8.34 % (20,628), and 2.3 %
(5,724) of the peanut ESTs were isolated from root, seed,
developing embryos, and gynophore, respectively. Thus, ap-
proximately 50 % of the studied EST set was isolated from
underground tissues. Our analysis found that among the 544
peanut ESTs that were shown to encode ERF factors, 36.03 %
(196), 23.52 % (128), 5.14 % (28), and 3.13% (17) were from
roots, seeds, developing embryos, and gynophores, respec-
tively. In total, 67.82 % of the verified ERF factors were from
underground tissues, indicating the important role of peanut
ERF factors in the development of underground tissues. To
investigate the detailed spatial transcript profiles of the peanut
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ERF genes, real-time PCR was used to detect the expression
patterns of all of the peanut ERF genes in the roots, stems,
leaves, gynophores, calyces, flowers, and seeds. The expres-
sion profiles of the 63 peanut ERF genes showed different
patterns of tissue-specific expression (Fig. 1). All 63 peanut
ERF genes except AhERF045 could be detected in different
tissues. A few of the peanut ERF genes observed showed high
expression levels in one or more tissues, but low expression in
others. For example, AhERF008 and AhERF037 showed
higher expression levels in the seed, but lower levels in the
other tissues. Similarly, AhERF004, AhERF012, AhERF030,
and AhERF036 were significantly expressed in the flowers.

Screening the stress-responsive genes by the expression
patterns of the 63 peanut ERF genes under different stresses

Peanuts are extensively grown in various environments where
several abiotic and biotic stresses could greatly affect their
productivity and seed quality. The primary abiotic factors
affecting peanut production include drought stress, salinity,
and extreme temperatures, whereas the major biotic con-
straints for peanuts include diseases caused by fungi, viruses,
bacteria, and nematodes. The phytohormones SA (salicylic
acid), JA (jasmonic acid), and ET (ethylene) play crucial roles
in biotic stress signalling upon pathogenic infection. Previous
reports indicated a significant predominant role of the A group
(CBF/DREB subfamily) of transcription factors in regulating
the abiotic stress response, whereas the B group (ERF sub-
family) is involved in biotic and/or abiotic stress responses.
The expression pattern of peanut ERF genes was investigated
in the present study using real-time PCR under various stress
conditions, including drought, salt, cold, high temperature,
submergence, ethylene, MeJA, SA, and ABA. The results
showed a response for all 63 genes to at least one of these
treatments. Of the 63 genes, 41 genes were related to high salt,
39 genes to drought, 38 genes to cold, 54 genes to heat stress,
30 genes to submergence, 31 genes to exogenetic ABA, 32
genes to ACC, 30 genes to MeJA, 21 genes to SA, and 23
genes to R. solanacearum stress treatments (ESM Table 5).
Peanuts are a summer crop and are normally subjected to heat
stress throughout their growth period; interestingly, we ob-
served that 51 of the 63 peanut ERF genes were induced by
heat stress. Seven genes, namely, AhERF005, AhERF007,
AhERF008, AhERF014, AhERF018, AhERF050, and
AhERF052, showed increased expression by 100-fold when
the plant was subjected to heat stress (Fig. 2).

Overexpression of AhERF008 conferred root gravitropism
to transgenic Arabidopsis plants

The function of the peanut ERF factors has not been studied to
date; thus, AhERF008 from the A-4 subgroup was
overexpressed in Arabidopsis to verify its function. We

transferred the 5-day-old AhERF008 overexpressing and
wild-type seedlings to 90-cm plates containing MS medium.
After 2 weeks, we noticed that AhERF008 overexpressing
plants displayed reduced root gravitropism (Fig. 3), indicating
the involvement of AhERF008 in plant gravity. Because
AhERF008 was highly expressed in the peanut seed and
embryo, its role in peanut gynophore and seed development
requires further analyses.

Overexpression of AhERF019 increased tolerance to various
abiotic stresses in transgenic Arabidopsis

To understand the role of peanut ERF genes in plant abiotic
stress responses, the stress-inducible gene AhERF019 was
overexpressed in Arabidopsis under the control of the CaMV
35S promoter. Overexpression ofAhERF019 did not affect the
development of Arabidopsis (Fig. 4g). Upon analysis of the
AhERF019 transgenic plants for heat stress, the 3-week-old
plants were subjected to a temperature of 42 °C for 180 min,
and observations were recorded after 7 days. The results
showed that almost all of the leaves in the wild-type plants
were bleached, but there were only a few bleached leaves in
the transgenic lines (Fig. 4a, b). To investigate whether
AhERF019 was involved in osmotic stress responses,
AhERF019-transgenic and wild-type Arabidopsis were trans-
ferred to plates containing 325 mM mannitol. The growth of
the AhERF019 transgenic plant was more vigorous compared
to the wild type, as the relative root weight of the AhERF019
transgenic plants ranged from 63 to 95 %, whereas the wild-
type root weight was approximately 22 % (Fig. 4c, d), sug-
gesting that AhERF019 transgenic plants were more tolerant
to mannitol stress. For salt tolerance, significant phenotypic
differences between wild-type and transgenic plants were
observed after 10 day of stress. Leaves from the wild-type
plants gradually turned dark and lost their greenness; however,
leaves from the transgenic plants turned dark but maintained
their green colour (Fig. 4e, f). The survival rate of the trans-
genic plants ranged from 58 to 100 %, whereas the wild-type
plant survival was approximately 35 %, indicating that the
transgenic plants exhibited tolerance against salt stress.

Discussion

Peanuts are an important oil and food legume crop grown in
over 100 countries. Peanut plants cover 24 million hectares
worldwide, with a total production of 38 million tons in 2010
(FAOSTAT 2010). Unfortunately, their sustained production
is severely hampered by several biotic and abiotic stresses,
such as fungi, bacteria, viruses, insect pests, drought, salt, and
heat stress. It is estimated that 30% of the yield loss of peanuts
is due to various diseases and adverse physiological
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conditions (Nelson et al. 1989). Thus, identification and char-
acterisation of resistant genes in peanuts could provide insight
into their functions, which would facilitate their judicious use
in developing improved cultivars with higher resilience to
these crippling stressors. Ethylene response factor (ERF)

proteins play important roles in regulating the plant stress
response and development.

Nakano et al. (2006) systematically surveyed the gene
structure, phylogeny, and conserved motifs of the ERF gene
family in Arabidopsis and rice, but relatively few peanut ERF

Fig. 1 Tissue expression patterns of peanut ERF genes. Total RNAwas isolated from the peanut seed, gynophore, root, stem, leaf, calyx, and flower.
Total RNAwas reverse-transcribed into cDNA for use in real-time PCR analysis, with peanut actin as the control
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genes had been studied. To gain further knowledge regarding
the ERF family in peanuts, ESTs of the AP2/ERF superfamily
were identified from the NCBI EST database, including 63
members of the ERF family. Because we analysed the avail-
able peanut ESTs in the public domain, some ERF genes with
low expression levels or tissue-specific expression patterns

might have been missed in the present study, thus decreasing
the likely number of ERF family members in peanuts. Some
of the unigenes have high sequence similarities with registered
proteins in the NCBI database (Supplementary Table 6). For
example, AhERF002, AhERF008, AhERF011, AhERF014,
AhERF017, AhERF019, AhERF036, and AhERF044 encode

Fig. 2 Expression patterns of peanut ERF genes under heat stress. Total RNAwas isolated from peanut seedlings exposed to 42 °C for the indicated
amount of time. Total RNAwas reverse-transcribed into cDNA for use in real-time PCR, with actin as the control
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proteins that share 100 % amino acid sequence identities with
registered peanut proteins (ESM Table 6). Therefore, the
unigenes of the ERF family acquired in this study reflect the
general status of ERF family members in peanuts and can be
subjected to further analyses.

The conserved motif analysis of the ERF family demon-
strated that most motifs were conserved in peanuts, soybeans,
Arabidopsis, and rice. Proteins within a subgroup that share
these conserved motifs are likely to have similar functions.
For example, the EAR motif is essential for gene repression
(Ohta et al. 2001; Yang et al. 2005). Zhang et al. reported that
there were soybean-specific motifs in the ERF family when
they compared soybean ERF factors with those inArabidopsis
such as the CMA-6-10 motif in subgroup A-6, the CMB-1-4
motif in subgroup B-1, and the CMB-2-2 motif in subgroup
B-2. Interestingly, these motifs were all found in peanuts
(ESM Fig. 7), suggesting that these motifs might be specific
to leguminous plants. The actual function of these motifs
requires additional study.

Plants have evolved many mechanisms to cope with a
range of environmental stressors. There are multiple stress
perception and signalling pathways, some of which are spe-
cific and others of which cross-talk at various stages. This
signalling crosstalk not only occurs in biotic stress signalling
but also in abiotic stress signalling (Kunkel and Brooks 2002;
Chinnusamy et al. 2004; Fujita et al. 2006). Recent studies
have revealed ERF subfamily transcription factors as

Fig. 3 AhERF008 conferred plant gravity. Five-day-old seedlings from
MS medium plates were transferred to 90 cmMS plates and incubated at
22 °C on a 14/10-h light/dark cycle for 14 days to record any phenotypic
changes

Fig. 4 AhERF019 increased
abiotic stress tolerance in
Arabidopsis. Five-day-old
seedlings from the MS medium
plates were transferred to MS
plates containing 200 NaCl and
325 mM mannitol and incubated
at 22 °C on a 14/10-h light/dark
cycle for 7 days to record any
phenotypic changes. For heat
stress, 14-day-old seedlings were
grown on horizontal MS solid
plates, and transgenic seedlings
were incubated at 42 °C for 3 h
and recovered at 22 °C for 1 week
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promising candidates for proteins involved in the crosstalk
between stress signalling pathways. The phytohormones SA,
JA, and ET play key roles in biotic stress signalling following
pathogen infection. ERF genes integrate different pathogens
and disease-related (i.e. ET, JA, and SA) signalling pathways
(reviewed by Gutterson and Reuber 2004). The SA signal
transduction pathway can act antagonistically with the ET/
JA pathway (Leon-Reyes et al. 2010a; b; An and Mou 2011),
whereas several ERFs are induced by SA, JA, or ET (Gu et al.
2000; Oñate-Sánchez and Singh 2002; Zhang et al. 2004; Seo
et al. 2010; Zarei et al. 2011). These results indicate that ERFs
can synergistically integrate the SA and the ET/JA pathways,
but not antagonise them to finely modulate the defence re-
sponse during a pathogen challenge. For example, the ethyl-
ene and jasmonate pathways converge in the transcriptional
activation of ethylene response factor 1 (ERF1), which regu-
lates the expression of a large number of genes that are
responsive to both ethylene and jasmonate. ERF1 acts down-
stream of the intersection between the ethylene and jasmonate
pathways, suggesting that this transcription factor is a key
element in the integration of both signals for the regulation
of defensive response genes (Solano et al. 1998; Lorenzo et al.
2003). Under biotic stress, the AP2/ERF transcription factor
ORA59 acts as the integrator of the JA and ET signalling
pathways and is the key regulator of JA- and ET-responsive
PDF1.2 expression (Pre et al. 2008; Zarei et al. 2011). ABA is
a phytohormone that is extensively involved in responses to
abiotic stresses such as drought, low temperature, and osmotic
stress. ABA also governs a variety of growth and develop-
mental processes, including seed development, dormancy,
germination, and stomatal movement. Some ERFs are activat-
ed by ABA (Qin et al. 2004; Wang et al. 2004; Zhang et al.
2004; Wan et al. 2011), indicating a cross-talk pathway be-
tween abiotic and biotic stress responses. Therefore, ERF
genes encode multifunctional factors that respond to multiple
stressors, integrate various signal transduction cascades, and
potentially play dual roles in abiotic and biotic stresses in
plants. In this study, the expression patterns of all the peanut
ERF genes under various stress treatments were analysed. The
abiotic stresses of drought, cold, heat, submergence, and high
salinity induced the expression of 30, 34, 51, 26, and 41
peanut ERF genes, respectively. Exposure to R. solanacearum
enhanced the expression of 21 peanut ERF genes. The expres-
sion of 9, 28, 24, and 21 peanut ERFs was induced by
treatments with SA, ET, JA, and ABA, respectively. The
ERF factors in peanuts may be related to elements involved
in the crosstalk between the stress signalling pathways, and
further studies on these ERF factors with regard to functional
genomics would aid in better understanding the precise role of
ERFs in plant development and stress response. Surprisingly,
30/63 (47.6 %), 34/63 (54 %), 51/63 (81 %), and 41/63
(65.1 %) of the peanut ERF genes are induced by drought,
cold, heat, and high salinity, respectively. Heat and drought

are severe stressors that peanuts always encounter in the
summer during the flowering period; these stresses cause great
yield loss. Approximately 80 and 50% of the ERF genes were
induced by heat and drought stress, respectively, indicating
that many peanut ERF genes could be involved in the heat and
drought stress responses and might contribute to peanut heat
and drought stress adaption during the summer to produce a
stable yield.

The availability of the entire genome sequence of several
plant species has made it possible to confirm the relatively
well-conserved organisation of the AP2/ERF superfamily
with 147, 149, 202, 180, and 146 genes in Arabidopsis
thaliana, Vitis vinifera, Populus trichocarpa, Oryza sativa,
and Solanum lycopersicon, respectively, mostly represented
by the ERF family (Nakano et al. 2006; Zhuang et al. 2008;
Licausi et al. 2010; Zhuang et al. 2011; Pirrello et al. 2012).
The ERF subfamily has also been characterised in tobacco
(Park et al. 2001; Fischer and Droge-Laser 2004;),
Arabidopsis (Broun et al. 2004; Yang et al. 2005; Mehrnia
et al. 2013), peppers (Yi et al. 2004; Youm et al. 2008),
tomatoes (Zhang et al. 2009; Upadhyay et al. 2013), corn
(Chuck et al. 2002; Qin et al. 2004), and rice (Cao et al.
2006; Xu et al. 2011). Overexpression of some ERF genes
enhanced the plants’ resistance to biotic and abiotic stresses
(Berrocal-Lobo et al. 2002; Fischer and Dröge-Laser 2004;
Xu et al. 2011). Thus far, only a few ERF genes from this
subfamily have been isolated from peanuts. Several studies
have shown that different ERF genes in peanuts have different
expression patterns and transcription abundances during abi-
otic stress. Our results also showed that peanut ERF genes
respond to various abiotic and biotic stresses, indicating that
these peanut ERF genes may play different roles in different
stress conditions. As a stress-tolerant crop, peanuts develop by
producing flowers aerially and burying the recently fertilised
ovules in the soil to allow the fruit and seeds to mature
underground. Gravity perception and the gravitropic response
are essential for the completion of the reproductive cycle of
the plant. Recent studies showed that ethylene and ERF fac-
tors play an important role in plant gravity and root develop-
ment (Oliva and Dunand 2007). Ethylene and ERF factors are
also involved in peanut gynophore and seed development
(Chen et al. 2013). As an important oil and cash crop,
the seed size and seed number are crucial in peanut yield.
Our results showed that there are several root- and seed-
specific ERF genes that are highly expressed, and these
ERF factors might play an important role in root and seed
development.
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