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Meso-scale catchments are often of great interest for water resources development and for development
interventions aimed at uplifting rural livelihoods. However, in Sub-Saharan Africa IWRM planning in such
catchments, and the basins they form part of, are often ungauged or constrained by poor data availability.
Regionalisation of a hydrological model presents opportunities for prediction in ungauged basins and
catchments. This study regionalises HBVx, derived from the conceptual hydrological model HBV, in the
semi-arid Mzingwane Catchment, Limpopo Basin, Zimbabwe. Fifteen meso-catchments were studied,
including three that were instrumented during the study. Discriminant analysis showed that the charac-
teristics of catchments in the arid agro-ecological Region V were significantly different from those in
semi-arid Region IV. Analysis of flow duration curves statistically separated sub-perennial catchments
from (sub-)ephemeral catchments. Regionalised parameter sets for HBVx were derived from means of
parameters from the sub-perennial catchments, the (sub-)ephemeral catchments and all catchments.
The parameter sets that performed best in the regionalisation are characterised by slow infiltration with
moderate/fast ‘‘overland flow’’. These processes appear more extreme in more degraded catchments. This
is points to benefits to be derived from conservation techniques that increase infiltration rate and from
runoff farming. Faster, and possibly greater, sub-surface contribution to streamflow is expected from
catchments underlain by granitic rocks. Calibration and regionalisation were more successful at the
dekad (10 days) time step than when using daily or monthly data, and for the sub-perennial catchments
than the (sub-)ephemeral catchments. However, none of the regionalised parameter sets yielded
CNS P 0.3 for half of the catchments. The HBVx model thus does offer some assistance to river basin plan-
ning in semi-arid basins, particularly for predicting flows in ungauged catchments at longer time steps,
such as for water allocation purposes. However, the model is unreliable for more ephemeral and drier
catchments. Without more reliable and longer rainfall and runoff data, regionalisation in semi-arid
ephemeral catchments will remain highly challenging.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Small to meso-scale catchments are often of great interest for
water resources development (e.g. Mazvimavi, 2003; Niadas,
2005; Nyabeze, 2005), for environmental planning (Walker et al.,
2006) and for development interventions aimed at uplifting rural
livelihoods (Ncube et al., 2010). In semi-arid areas of Sub-Saharan
Africa, rising water demand and the challenge of frequent droughts
creates a desire for water resources development and a require-
ment for integrated water resources management planning in or-
der to balance food security, other economic needs and the needs
ll rights reserved.

00, Mount Pleasant, Harare,
336740.
aternetonline.org (D. Love).
of the environment in the allocation and development of surface
water flows (Peugeot et al., 2003; Love et al., 2006). These chal-
lenges will grow worse with rising populations in most river ba-
sins, and the anticipated impacts of global warming leading to
increased water scarcity (Fung et al., 2011) and making the need
for IWRM planning more pressing.

However, many river basins suffer from limited data availability
and more limited process knowledge (Bormann and Diekkrüger,
2003; Ndomba et al., 2008). In developing countries, many basins
are ungauged (Mazvimavi et al., 2005). This lack of data constrains
planning and can be a stumbling block to conflict resolution among
users competing for scarce water resources (Nyabeze, 2000).
Prediction of discharge and other hydrological characteristics of
ungauged basins is therefore an important priority for water re-
sources management – as well as for hydrological science – and
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was adopted by the International Association of Hydrological Sci-
ences in 2002 as the Prediction of Ungauged Basins (PUB) research
agenda (Sivapalan et al., 2003).

One approach to address these challenges is regionalisation,
which provides methods to upscale small-scale (or meso-scale:
scale of approximately 101–103 km2; Blöschl and Sivapalan,
1995) measurements to a large scale (or basin or regional scale:
scale of >104 km2) model, or to outscale measurements from
gauged catchments to ungauged catchments. For the purposes of
hydrological modelling, key parameters to regionalise are those
that represent processes, such as flow response decay time, and
contribution of faster and slower flow to total discharge (Little-
wood et al., 2002; Troch et al., 2007). These parameters are essen-
tial for process-oriented simulation, which is important in order to
better understand the possible effects of different environmental
influences (Ott and Uhlenbrook, 2004; Johst et al., 2008). Addition-
ally, there is tension between adequate model parameterisation, in
order to address heterogeneities within and between catchments,
and rising model complexity and uncertainty (Beven, 1993; Lin
and Radcliffe, 2006; Marcé et al., 2008) – and the challenges that
limited data availability pose to the latter issues (Bormann and
Diekkrüger, 2003).

Model parameter sets are calibrated through a series of models
runs on catchments which have a long time series of data (Heuvel-
mans et al., 2004). Calibration can be against a single critical
parameter (e.g. Nyabeze, 2005) or multi-criteria calibration of a
parameter set (e.g. Seibert, 2000; Uhlenbrook and Leibundgut,
2002). Alternatively, a multivariate statistical approach can be
used to determine the relationships between biophysical catch-
ment descriptors and hydrological catchment parameters (e.g.
Chiang et al., 2002; Mwakalila et al., 2002). No single regionalisa-
tion procedure has been developed that yields universally accept-
able results (Ramachandra Rao and Srinivas, 2003) and all
regionalisation methods require reliable and long-term data series.
This can be problematic in semi-arid regions of Africa (Nyabeze,
2002; Mazvimavi, 2003), such as the Mzingwane Catchment, the
portion of the northern Limpopo Basin that lies within Zimbabwe,
in which 11 of the 30 secondary catchments are completely unga-
uged, there is high inter-annual and intra-annual variability in run-
off and many ephemeral tributary catchments (Nyabeze, 2002,
2005; Love et al., 2010a).

For river basins with many ungauged catchments, or with lim-
ited data availability, regionalisation represents one of the possible
approaches to addressing the lack of data required for planning
purposes. An alternative approach is to estimate model parameters
from catchment characteristics (Koren et al., 2004; Kapangaziwiri
and Hughes, 2008), although this also requires sufficient available
data.

The Mzingwane Catchment Council, the stakeholder-based stat-
utory authority for water resources planning in the catchment,
needs to balance different sectoral water requirements and issue
new water permits as demand changes and new areas are devel-
oped. For these purposes, an understanding of annual runoff is
needed (Mzingwane Catchment Council and Zimbabwe National
Water Authority, 2009). Given the data constraints of the Mzingw-
ane Catchment, it is helpful to be able to regionalise model param-
eters from better-understood catchments to poorly gauged and
ungauged tributaries.

This study explores the challenges of regionalisation of widely-
used box models in semi-arid catchments. The main objective is to
regionalise one or more model parameter sets for the Mzingwane
Catchment using HBVx, a model developed from HBV (Bergström,
1992; Seibert, 2002) in a gauged field study catchment (Love
et al., 2010b). The regionalisation exercise will use field study data
and historic data from those gauged tributary catchments within
the national hydrological data network for which there is reason-
able data availability. The second objective is to determine
whether or not distinct groups of tributary catchments can be
identified and separate parameter sets regionalised for each group.
The third objective is to improve the understanding of catchment
behaviour and relate it to catchment characteristics.
2. Methods

2.1. Study area

The northern Limpopo Basin in Zimbabwe is a semi-arid area,
with rainfall varying from 360 mm a�1 in the south to 630 mm a�1

in the north (Love et al., 2010a). Rainfall is seasonal, controlled by
the Inter Tropical Convergence Zone and falling between October/
November and March/April (Makarau and Jury, 1997). Rainfall oc-
curs over a limited period of time, and often a large portion of the
annual rainfall can fall in a small number of events (Twomlow and
Bruneau, 2000).

Geologically, most of the catchment is underlain by the Zimba-
bwe Craton: mafic greenstone, Shamvaian clastics and Archaean
granitoid terrain. The south is underlain by Limpopo Belt Archaean
gneisses, and the south-west and far south-east by Karoo basalts,
intrusives and sediments. Alluvial deposits are present in the lower
reaches of most of the larger rivers (Bubye, Mwenezi, Mzingwane,
Shashe, Thuli and their larger tributaries (Chinoda et al., 2009). The
soils are mainly solonetz, cambisols, leptosols, luvisols, arenosols
and lixisols (Bangira and Manyevere, 2009). The Mzingwane Catch-
ment is covered mainly by a mixture of croplands, pastureland and
woodland.

Seventeen meso-catchments within the northern Limpopo Ba-
sin were selected on the basis of the following criteria: (i)
Availability of discharge data. (ii) Development: the selected catch-
ments were upstream of all major dams. (iii) Proximity to rainfall
station(s): less than 50 km distance. (iv) Catchment scale: area
61500 km2. (v) Catchment shape: the long axes of the selected
catchments were less than 50 km in length, measured from catch-
ment outlet to the most distant point on the watershed (Engeland
et al., 2006), in order to exclude long, narrow catchments liable to
be highly diverse. The selected catchments are shown in Fig. 1 and
their data sources in Tables 1 and 2. Characteristics of the catch-
ments are set out in Table 3. Fifteen catchments were used for cal-
ibration and regionalisation of model parameters and the other
two for blind regionalisation: evaluating the performance of the
regionalised parameter sets against catchments whose data had
not been previously used in calibration.
2.2. Data quality control

The quality of input data is of high importance since this influ-
ences both model performance and the parameter sets to be
regionalised. There is a minimum quantity of input data required
for model parameterisation and where input data is limited by
missing values, problems can be created as it has been shown that
where measurements are only available for some days, results may
differ significantly depending upon which days measurements are
available for (Seibert and Beven, 2009). The study areas have high
spatial and temporal variability in rainfall, and runoff (Love et al.,
2010a,b) which is likely to exacerbate this problem.

The time series were visually inspected, along with supporting
materials such as the station files. The following exclusions were
made for each station, in order to remove unreliable data: (i)
Where rainfall or discharge data was missing for 2 months or more,
the year was excluded. (ii) Where rainfall or discharge data was
missing for 2 weeks or more during the months of November to
April (rainy season), the year was excluded. (iii) Where a note



Fig. 1. Location of selected catchments and of the Zhulube Catchment, for which the HBVx model was developed from HBV (Love et al., 2010b). Inset: Location in southern
Africa.
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has been made in the station file that readings were unreliable (e.g.
due to siltation, security), the year was excluded. (iv) For dekad
time series (10 days), dekads containing one or more days with
missing rainfall or discharge data were excluded. (v) For monthly
time series, months containing six or more days with missing rain-
fall or discharge data were excluded.

2.3. Catchment classification

The catchments were classified into groups, for separate cali-
bration of the HBVx model parameters.

The first classification method was based upon a provisional
classification, made using the standard Zimbabwean agro-ecologi-
cal zones (Vincent and Thomas, 1960). The agro-ecological zona-
tion takes into account climatic factors and soil types. This
provisional classification was then refined by discriminant
analysis. This is a multivariate analysis procedure for testing the
statistical significance of a pre-existing (user-determined, not sta-
tistically-derived) classification. The canonical discriminant func-
tions that separate classes from each other are derived, using a
linear combination of the variables and the Mahalanobis distance
(Chiang et al., 2002; Gordon et al., 2004). The technique which
has proven effective in the classification of river basins, using
catchment characteristics as the variables and proposed groups
of catchments as the classes (Wiltshire, 1986; Chiang et al.,
2002). For this study, eight catchment characteristics were selected
to describe the main properties of the catchments, see Table 3
excluding the designation of agro-ecological region, which is the
subject of the classification.

The second classification method used was comparison on
monthly flow duration curves of the catchments using the Kol-
mogorov–Smirnov test. This is a non-parametric test used to fit
the cumulative distribution function of a sample to a distribution
function (Loucks and van Beek, 2005). A two sample Kolmogo-
rov–Smirnov test determines whether or not two sample groups
come from statistically different populations (Panik, 2005). It has
been used extensively in hydrology (Tate and Freeman, 2000; Nia-
das, 2005), including for the comparison of flow duration curves
(Kileshye-Onema et al., 2006).
2.4. HBVx model application

The HBV (Hydrologiska Byråns Vattenbalansmodell) family of
models, whilst developed and applied initially in Sweden, have also
been used in semi-arid and arid countries such as Australia, Iran
and Zimbabwe (Lidén, 2000; Lidén and Harlin, 2000; Oudin et al.,
2005; Masih et al., 2008). The HBVx model comprises HBV light
(Seibert, 2002) with an interception storage pre-processor (Love
et al., 2010b).

The interception pre-processor calculates daily reference evap-
oration using the Hargreaves formula (Allen et al., 1998), and po-
tential evaporation at catchment level derived using mapped
land use and crop coefficients (Table 4). Daily interception was
then calculated following De Groen and Savenije (2006) with a
threshold interception storage of 5 mm. However, if the amount
of rainfall intercepted was more than could be evaporated on that
day, some moisture will remain in interception storage until the
next day, thus decreasing the available volume of interception
storage for that day (Love et al., 2010b).

The interception pre-processor operates as the first routine in
HBVx, and is followed by the standard set up of HBV light: a soil
moisture routine and a runoff generation routine with two reser-
voirs (Fig. 2). The soil moisture routine is governed by the non-lin-
ear function b, which computes the amount of infiltration water
that goes into runoff generation, and the maximum soil moisture
storage FC (mm), which is similar to field capacity. The runoff gen-
eration routine comprises an upper, fast-reacting reservoir, and a
lower, slow-reacting reservoir. Flow of water from these reservoirs
into runoff is governed by the linear storage coefficient (K0, K1, K2)
and overflow from the upper storage (Q0) based upon exceedance
of the threshold storage volume UZL (mm). The parameters used
in the model are explained in Table 5.

Given the limited rainfall data available, it was not worthwhile
to subdivide the catchments into subcatchments – the greater the
extent to which a model is distributed, the finer the resolution re-
quired on input data series such as rainfall (Lin and Radcliffe, 2006).

The parameter ranges are shown in Table S1 (Supplementary
material), and were selected based on experience in application
of HBV in other catchments and on field observations (e.g. Uhlen-



Table 1
Selected catchments and data availability.

Catchment, abbreviation used
in Fig 1

Area
(km2)

Mean annual unit runoff
(mm a�1)

Days of flow
(d a�1)

Discharge time
series

Rainfall
station

Temperature
station

Radiation
station

B11 Ncema 218 94 186 1951–2003 Bulawayo Bulawayo Bulawayo
Esigodini

B15 Lumeni 267 74 201 1952–2005 Mbalabala Bulawayo Bulawayo
B26 Sansukwe 189 7 44 1955–1997 Mphoengs West Nicholson West

Nicholson
1984–2005

B30 Mzingwane-Mzinyathini 448 138 146 1959–1980 Bulawayo Bulawayo Bulawayo
1998–2000 Esigodini

MRS
B39 Mpopoma 91 29 112 1959–1980 MRS Bulawayo Bulawayo

1988–2000 MNP
B56 Thuli 645 64 250 1965–1998 Kezi West Nicholson West

Nicholson
Mbalabala
MNP

B60 Inyankuni 194 49 99 1965–2004 Esigodini Bulawayo Bulawayo
Mbalabala

B61 Inyali 49 32 88 1965–1999 Esigodini Bulawayo Bulawayo
Mbalabala

B64 Ingwizi 712 50 23 1988–1997 Marula West Nicholson West
Nicholson

Mphoengs
B74 Jama 75 25 87 1968–2005 Esigodini, Bulawayo Bulawayo

Fort Rixon
B78 Zgalangamante 49 36 68 1969–2005 Kezi Kezi West

Nicholson

B80 Maleme 523 33 126 1970–2004 MNP Kezi Bulawayo
B83 Mtsheleli 363 83 197 1970–2004 MNP Kezi Bulawayo
B90 Mtetengwe 1500 14 45 1975–1976 Beitbridge West Nicholson West

Nicholson
1983
1987–1990
2003–2005

M27 Mnyabezi 27 22 2.3 7 2006–2008 a West Nicholson West
Nicholson

MSH Mushawe 220 50 205 2006–2008 a West Nicholson West
Nicholson

UBN Upper Bengu 7 0.9 5 2006–2008 a West Nicholson West
Nicholson

Zhulube 30 77 57 2006–2008 a West Nicholson West
Nicholson

MRS = Matopos Research Station; MNP = Matopos National Park; a = catchments instrumented during this study – see Table 2.

Table 2
Instrumentation installed in field study site catchments.

Catchment Discharge stations Climate stations

M27 Mnyabezi 27 Dam and limnigraph 7 catch gauges Class A
evaporation pan

MSH Mushawe Bridge and limnigraph 17 catch gauges Class A
evaporation pan

UBN Upper Bengu Dam and limnigraph 8 catch gauges Class A
evaporation pan

Zhulube Composite gauge
(V-notch and broad crest)

14 catch raingauges Class A
evaporation pan
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brook et al. 1999; Uhlenbrook and Leibundgut, 2002; Love et al.,
2010b). This is considered preferable to unguided automatic cali-
bration which can give preposterous parameter values in semi-arid
catchments (Lidén, 2000).

The time series for the selected catchments were each calibrated
at three time steps: daily, dekad (10 days) and monthly. Prior to
each run, the model was initialised in order to better represent ini-
tial conditions (Noto et al., 2008). Initialisation was for 1 year (daily
time step), 1.5 years (dekad) or 2 years (monthly). Calibration was
carried out using 20,000 runs of the genetic algorithm method (Sei-
bert, 2000). The genetic algorithm calibrations were repeated sev-
eral times to confirm that similar parameter sets were derived
from each calibration. The selected objective functions were the
Nash–Sutcliffe Coefficient (CNS) and mean volume error (dVd)

CNS ¼ 1�
Pn

i¼1ðQ obs;i � Qsim;iÞ2
Pn

i¼1ðQ obs;i � Q obsÞ2
ð1Þ

dVd ¼
365�

Pn
i¼1ðQ obs;i � Q sim;iÞ

n
ð2Þ

where Qobs (mm d�1) is the observed discharge, Qsim (mm d�1) the
simulated discharge and n the number of time steps i (days – or
dekads or months) in the simulation.

2.5. Regionalisation

The parameters sets which were developed during the calibra-
tion processes were used to develop regionalised parameter sets



Table 3
Selected catchment characteristics used in discriminant analysis.

Catchment B11 B15 B26 B30 B39 B60 B61 B74 B78 B80 B83 B90 M27 MSH UBN Source

Rainfall: long term
mean (mm a�1)

621 627 484 605 592 627 627 627 455 586 586 360 417 552 320 Mean annual rainfall for full
time series of that station. Data
from Department of
Meteorological Services, except
for M27, MSH, UBN,
instrumented during study

Rainfall: standard
deviation (mm a�1)

198 211 269 210 216 196 211 196 229 208 208 219 82 – 14 Standard deviation of annual
rainfall for full time series of
that station. Data from
Department of Meteorological
Services, except for M27, MSH,
UBN, which were instrumented
during study

Geology: fraction
granitoid (–)

0.50 0.50 0.80 0.50 1.00 0.20 0.50 0.95 0.60 1.00 1.00 0.00 1.00 1.00 1.00 1:250 000 Limpopo Basin GIS in
Chinoda et al. (2009)

Soil: fraction lixisols (–) 0.30 0.30 0.00 0.50 0.00 0.40 0.15 0.05 0.10 0.00 0.00 0.00 0.00 0.00 0.00 1: 250 000 Limpopo Basin GIS
in Bangira and Manyevere
(2009)

Land cover: fraction
forest (–)

0.05 0.05 0.00 0.20 0.25 0.05 0.00 0.00 0.00 0.40 0.30 0.80 0.60 0.13 0.00 Mapped from false colour
composite (bands 3, 4 and 5) of
Landsat scenes:
path170row074 dated 23 04
2000, path170row075 dated 03
12 2000, path171row074 dated
01 09 2001, path171row075
dated 01 11 2001

Land degradation:
fraction of land
degraded (–)b

0.05 0.05 0.50 0.30 0.00 0.00 0.00 0.10 0.50 0.03 0.05 0.10 0.40 0.00 1.00

Land tenure: fraction
communal land (–)a

0.00 0.50 1.00 0.40 0.00 0.00 0.00 0.00 0.50 0.05 0.10 0.30 1.00 1.00 1.00 Mapped from 1:250 000 series,
Surveyor General of Zimbabwe
(1996)

Topography: mean slope
(%)

9 9 12 9 5 11 11 12 12 9 9 11 12 23 12 FAO Terrasat media of terrain
slopes, derived from GTOPO30
(CPWF, 2006)

Agro-ecological region
(–)

IV IV V IV IV IV IV IV V IV IV V V V V Vincent and Thomas (1960): V
is the drier areas, less suitable
for dryland cropping than IV

a Excludes unsettled areas.
b Land is considered degraded where vegetation cover appears absent on Landsat image (excludes fields).

Table 4
Crop coefficients used for different land cover types, varying by season. For cultivated land, values for maize in East Africa (FAO, 2008) were used.

Land cover, this
study

South African
equivalent

January February March April May June July August September October November December

Woodland: highveld Woodland
(indigenous tree/
bush savanna)a

1.14 1.14 1.14 1.14 1.00 1.00 1.00 1.00 1.07 1.14 1.14 1.14

Woodland: mopane Mopani veldb 0.74 0.74 0.71 0.57 0.54 0.47 0.43 0.50 0.57 0.64 0.69 0.71
Mixed grassland and

woodland
Mixed bushveldb 1.00 1.00 0.93 0.86 0.71 0.64 0.57 0.64 0.79 0.93 0.93 1.00

Mixed grassland and
woodland
(degraded)

Veld in poor
conditionc

0.79 0.79 0.79 0.64 0.29 0.29 0.29 0.29 0.43 0.57 0.71 0.79

Wetland Wetland grassesc 1.14 1.14 1.14 1.00 0.86 0.71 0.57 0.57 0.57 0.71 0.86 1.00
Rocky hills Veld/rock 50–100%

rockc
0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43

Source: aJewitt, 1992; bSchulze and Hohls, 1993; cSchulze et al., 1995. The original crop coefficients were derived for use with pan evaporation data (Schulze et al., 1995).
These were converted for use with reference evaporation data by dividing the original crop coefficient with the pan coefficient (taken as 0.7).
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for HBVx: the means for each parameter of the values generated
from calibration of the ephemeral catchments (Group A), sub-
ephemeral catchments (Group B) and sub-perennial catchments
(Group C), at daily, dekad and monthly time steps (see Table 7
for definitions).

The three best-performing regionalised parameter sets were
then applied blindly to two catchments (B56 and B64) which had
not been used in the classification and calibration exercises. This
exercise could not be extended to more catchments, as the remain-
ing catchments had been eliminated as having insufficient data
quality.
2.6. Uncertainty of input data

The uncertainty in the model that may arise due to variability of
rainfall data has been discussed. The sensitivity of catchment rain-
fall, the major input to the model, to spatial variability of rainfall
within a catchment was evaluated using the 10% elasticity index
(e10) suggested by Cullmann and Wriedt (2008):
e10 ¼
Out1 � Out0

0:1� Out0
ð3Þ



Fig. 2. Schematic diagram of the HBVx model structure, after Love et al. (2010b).
Parameters and variables are explained in Table 5. PERCAll parameters mm d�1,
except D (mm), UZL (mm), FC (mm), b (–), and MAXBAS (–). Fluxes are shown in
bold and other model parameters in italics.

Table 5
Parameters used in HBVx.

Parameter Narrative Unit Comment

P Precipitation mm
d�1

Derived from rainfall
stations using Thiessen
polygons

Si Interception storage Mm Capacity = D = 5 mm
E Soil evaporation and

transpiration
mm
d�1

Daily total evaporation less
interception flux

I Interception flux mm
d�1

Peff Effective rainfall mm
d�1

Rainfall less interception
flux

FC Maximum soil moisture
storage

mm

LP Threshold below which
actual evaporation does
not reach potential
evaporation due to
moisture stress.. This is
given as ratio (soil
moisture divided by FC)

–

b Non-linear function
partitioning the amount of
infiltration water going to
runoff generation and the
amount going to soil
moisture

–

toRGR Moisture transferred to
runoff generation routine

mm
d�1

UZL Threshold for start of
overland flow

mm

Q0 Overland flow mm
d�1

Controlled by coefficient K0

(–)
Q1 Discharge from saturated

soil or shallow
groundwater

mm
d�1

Controlled by coefficient K2

(–)

PERC Percolation mm
d�1

Flux from fast-reacting
upper reservoir (saturated
soil or shallow
groundwater) to lower
reservoir (deep
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where Out0 is the initial catchment rainfall being studied and Out1 is
the catchment rainfall after the value for one rainfall station has
been increased or decreased by 10% (both were done).
groundwater)
Q2 Discharge from deep

groundwater
mm
d�1

Controlled by coefficient K2

(–)
Qc Total discharge from

catchment
mm
d�1

Qc = Q0 + Q1 + Q2

MAXBAS Routing parameter d Set at 1.0
3. Results

3.1. Observed flows

The high inter-annual variability in runoff can be seen in Fig. 3,
especially in the more arid catchments B26, B78 and B90. A com-
parison of catchment area with runoff coefficient shows a clear
negative relationship (Fig. 4).

3.2. Catchment classification

Discriminant analysis of the catchment classification by agro-
ecological region shows a strong statistical basis for separating
the catchments into those in Region IV and Region V (Table 6).
The variables that form the strongest basis for the classification
are the standard deviation of the annual rainfall and the land cover.

Two sets of flow duration curves were prepared for the selected
catchments: monthly flow normalised against catchment area
(unit flow, mm month�1) (Fig. 5a) and monthly flow normalised
against mean monthly flow (–) (Fig. 5b).

Visual inspection of the flow duration curves (Fig. 5) suggests
three groups (Table 7). The three Group A catchments are all in
the drier south of the study area (Fig. 1) – and correspond to Group
2 of the discriminant analysis (Table 5), that is, the catchments in
Region V. The three Group C catchments are in the central northern
area, but there are also Group B catchments in that area.

The significance of these groups was tested using the Kolmogo-
rov–Smirnov test (Table 8). This confirmed the group of sub-peren-
nial catchments (C) as a statistically different population from the
ephemeral (A) and sub-ephemeral catchments (B) and the com-
bined group AB (A + B). Groups A and B are not statistically differ-
ent from each other, although this result may reflect the small
sample size in Group A (n = 3).
3.3. Calibration

The results of the calibration exercise are shown in Table 9. Cal-
ibration at a daily time step produced results CNS > 0.3 in only one
catchment. The best results were obtained at a dekad time step,
with six of the 13 catchments yielding CNS > 0.4 and nine yielding
CNS > 0.3. This included all of the catchments in Groups B and C.
Performance at a monthly time step was better than at a daily time
step but not as good as at the dekad time step. There was no con-
sistent difference in the values of parameters generated through
the autocalibration (available in Supplementary material) between
the different groups, except for generally low FC values for Groups
B and C.

Model performance was compared with several catchment
characteristics. Higher CNS values were associated with the more
perennial catchments (R = 0.40, negative correlation of perfor-
mance to days of now flow), but the best correlation was with
the proportion of degraded land in a catchment (R = 0.59, negative



Fig. 3. Mean and standard deviations of unit flows (mm a�1) for the selected catchments, full time series available.
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correlation). Other catchment descriptors compared to model per-
formance did not show correlation.

The proportion of degraded land was found to be positively cor-
related to the fast runoff coefficient, often interpreted as overland
flow K0 (from the parameter sets developed during calibration; see
Supplementary material) at a daily time step (R = 0.45) but not cor-
related with the intermediate runoff coefficient, K1, and the slow
runoff coefficient, K2 (R = �0.18, R = �0.23, respectively). These
are often interpreted as discharge from shallow groundwater and
deep groundwater, respectively.

The proportion of the catchment underlain by granitoid was
found to be positively correlated to the coefficients for flow from
the two sub-soil reservoirs K1 and K2 (from the parameter sets
developed during calibration; see Supplementary material) at a
daily time step (R = 0.49 for K1; R = 0.43 for K2) but not to the coef-
ficient for ‘‘overland’’ flow from the soil box (R = 0.21 for K0).



Table 6
Results of discriminant analysis of catchment characteristics.

Main results

Groups 2
Variables 8
Cases 15
Group 1 (Region IV) B11, B15, B30, B39, B60, B61, B74, B80, B83
Group 2 (Region V) B26, B78, B90, M27, MSH, UBN
Wilk’s Lambda 0.03267 (0 = perfect discrimination)

Tolerance of variables
Variable Tolerance (0 = completely redundant)
Geology 0.151
Soil 0.223
Land cover 0.356
Degradation 0.253
Rainfall mean 0.264
Rainfall standard deviation 0.452
Tenure 0.283
Slope 0.281
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Fig. 5. Monthly flow duration curves for the selected catchments, using (a) unit flow (m
values normalised to the mean for that catchment.
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3.4. Regionalisation

The parameter sets used in regionalisation are shown in Table
10. The performance of each of these sets is shown in Table 11.
The three field study catchments gave very poor results through-
out, probably due to the short time series (1 or 2 years).

The parameter set which performed best was ‘‘dekadBC’’, with
43% of the series giving CNS > 0.3. The second best was ‘‘monthlyBC’’,
with 36% of the series giving CNS > 0.3. The third set was ‘‘monthly-
ABC’’, with 29% of the series giving CNS > 0.3. All of these parameter
sets have low values for b, PERC 1 and moderate values for K1 and
FC. This is indicative of relatively slow infiltration and percolation
with moderate to fast ‘‘overland flow’’.

Blind regionalisation gave mixed results (Table 12), with each
parameter set giving CNS > 0.3 for only one of the two catchments
at a given time step. Performance is better for B56, the less arid
catchment.

The sensitivity of catchment rainfall to spatial variability is
clearly shown in Table 13: a 10% change in rainfall of one rainfall
station has a substantial effect on catchment rainfall. On a daily
% 50% 60% 70% 80% 90%
e discharge is exceeded

B78 B90 B30
B60 B61 B74
B11 B15 B83

 A                  Group B            Group C

0% 50% 60% 70% 80% 90%
e discharge is exceeded

B78 B90 B30 B39 B60

B74 B80 B11 B15 B83

            Group B                  Group C

onthly discharge values normalised by catchment area) and (b) monthly discharge



Table 7
Catchment classification based on monthly flow duration curves.

Group Characteristic flow duration curve Catchments

A Ephemeral catchments with few low flows,
giving curves with no significant increase in
percentage exceedance time for discharge below
0.1 mm month�1 or below 10% of the mean –
suggestive of flash floods

B26, B78, B90

B Sub-ephemeral catchments with some discharge
occurring between 30% and 60% of the time

B30, B39, B60,
B61, B74, B80

C Sub-perennial catchments, with some discharge
occurring for more than two-thirds of the time

B11, B15, B83
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time step, the effect can be extreme if rainfall is only reported from
one station. This can also be seen in Fig. 6: the gauge at E Nyathi
recorded heavy rainfall on 8 January, but the other gauges in the
catchment recorded heavy rainfall the following day. Had only
three or less gauges been used to represent rainfall in the
Table 8
Results of the Kolmogorov–Smirnov test on monthly flow distribution, using Ca from Step

Case Test statistic (monthly flow) Test statistic (unit flow) Ka at 0.1

A vs. B 0.278 0.278 0.369
A vs. C 0.559 0.504 0.509

B vs. C 0.428 0.443 0.353

AB vs. C 0.562 0.547 0.326

Table 9
Calibration of the HBVx model using the genetic algorithm of Seibert (2000); reasonable m
are given in italics.

Catchment Group Daily

CNS (–) dVd (mm a�1)

B26 Sansukwe A 0.14 4
B90 Mtetengwe A �0.01 4
UBN Upper Bengu A �7.77 �9
MSH Mushawe A 0.32 505
M27 Mnyabezi 27 A �64.41 �48
B78 Zgalangamante A �0.28 �35
B30 Mzingwane-Mzinyathini B � �
B39 Mpopoma B 0.30 65
B60 Inyankuni B �0.10 �42
B61 Inyali B 0.15 �20
B74 Jama B 0.23 13
B80 Maleme B 0.12 �24
B11 Ncema C � �
B15 Lumeni C 0.24 �54
B83 Mtsheleli C 0.13 �19
Group C C � �

Table 10
Parameter sets used in regionalisation. See Fig. 2 for the meaning of the parameters.

Parameter set Origin FC (mm) LP (–

dailyA Mean of catchments’ setsa, excludes B78 150.0 0.7
dailyBC Mean of catchments’ sets, excludes B39, B74 150.0 0.7
dekadA Mean of B78, B90 catchments’ sets 118.4 0.7
dekadBC Mean of B60, B80 catchments’ sets 125.0 0.7
dekadBC2 Mean of catchments’ sets: rest of group BC 10.0 0.7
dekABC Mean of catchments’ sets 78.3 0.7
monthlyBC Excludes B60, B80 10.0 0.7
monthlyABC Mean of catchments’ sets 53.3 0.7

a Catchment set: The parameter set for a given catchment associated with the best ob
catchment (as is the case for the catchments not instrumented in
this study), the catchment rainfall could easily have been incor-
rectly estimated on either day.
4. Discussion

4.1. Catchment classification

Comparison of the results of the discriminant analysis of catch-
ment characteristics (Table 6) and the Kolmogorov–Smirnov test
on the flow duration curves (Table 8) suggests that the agro-eco-
logical region classification (Vincent and Thomas, 1960) can be re-
lated to catchment flow characteristics. The lack of statistical
support for the separation between sub-ephemeral and ephemeral
catchments (Groups A and B; Table 8) could be due to the small
sample size of Group A or could be suggest a limitation to agro-
ecological region classification as a predictor of catchment
hens (1974).

0 significance level Result

No difference
Different populations (for monthly flow normalised to
mean only)
Different populations (for both monthly flow normalised
to mean and unit flow)
Different populations (for both monthly flow normalised
to mean and unit flow)

odel results (CNS P 0.4) are given in bold and marginal model results (0.3 P CNS > 0.4)

Dekad Monthly

CNS (–) dVd (mm a�1) CNS (–) dVd (mm a�1)

0.29 4 0.60 �12
0.12 0 0.12 0
0.38 0 � �
0.20 348 � �
0.80 0 � �
0.21 �16 0.15 �7
� � 0.13 19
0.35 �3 0.16 56
0.30 2 0.28 2
0.44 �6 0.41 1
0.58 �2 0.31 5
0.42 2 0.47 �3
� � 0.52 �1
0.66 2 0.61 10
0.42 3 0.36 1
� � 0.50 4

) b (–) PERC (mm d�1) UZL (mm) K0 (d�1) K1 (d�1) K2 (d�1)

5.00 2.50 83.1 0.7711 0.0589 0.0003
1.55 2.50 99.9 0.5000 0.0550 0.0001
1.89 0.46 93.6 0.6575 0.1992 0.0019
1.50 0.50 95.0 0.6000 0.3000 0.0001
1.25 0.40 15.0 0.7500 0.3000 0.0010
2.02 0.66 66.7 0.7184 0.2313 0.0013
1.00 0.37 64.6 0.6422 0.3000 0.0020
1.04 0.41 79.5 0.6465 0.2963 0.0012

jective functions during calibration (Table 8 and Supplementary material).



Table 11
Results of regionalisation of the HBVx model; reasonable model results (CNS P 0.4) are given in bold and marginal model results (0.3 P CNS > 0.4) are given in italics. The use of ‘‘�’’ denotes that a catchment was not regionalised against
a particular parameter set, either due to insufficient data at that time step of the parameter set being inapplicable, e.g. parameter sets derived exclusively from Group A catchments were not regionalised to Group C catchments.

Catchmenta Group Daily time step Dekad time step

dailyA dailyBC dekadA dekadBC dekadBC2 dekABC

CNS (–) dVd (mm a�1) CNS (–) dVd (mm a�1) CNS (–) dVd (mm a�1) CNS (–) dVd (mm a�1) CNS (–) dVd (mm a�1) CNS (–) dVd (mm a�1)

B26 Sansukwe A 0.03 �11 � � 0.04 15 � � � � 0.01 20
B90 Mtetengwe A �0.02 5 � � �0.00 2 � � � � �0.01 4
B78 Zgalangamante A �1.20 �21 � � 0.02 �53 � � � � �0.05 �60
B30 Mzingwane-Mzinyathini B � � � � � � � � � � � �
B39 Mpopoma B � � 0.09 84 � � 0.02 98 0.30 35 �0.01 93
B60 Inyankuni B � � �0.10 �41 � � 0.26 18 �1.04 �108 0.21 10
B61 Inyali B � � 0.14 �23 � � 0.24 10 �0.23 �121 0.16 15
B74 Jama B � � 0.12 40 � � 0.21 88 0.48 �32 0.16 79
B80 Maleme B � � 0.11 �25 � � 0.40 15 �1.91 �97 0.28 11
B11 Ncema C � � � � � � � � � � � �
B15 Lumeni C � � 0.24 �56 � � 0.53 27 �0.10 �121 0.46 1
B83 Mtsheleli C � � 0.11 �27 � � 0.35 22 �0.75 �100 0.29 1

Catchment Group Monthly time step

groupA groupB groupC monthlyBC monthlyABC

CNS (–) dVd (mm a�1) CNS (–) dVd (mm a�1) CNS (–) dVd (mm a�1) CNS (–) dVd (mm a�1) CNS (–) dVd (mm a�1)

B26 Sansukwe A 0.35 �34 � � � � � � 0.48 �16
B90 Mtetengwe A �0.69 1 0.02 4 �0.08 5 0.08 0 �0.08 1
B78 Zgalangamante A 0.15 �10 �0.18 �26 �0.12 �20 �0.19 �28 0.13 �11
B30 Mzingwane-Mzinyathini B � � 0.12 75 0.11 82 0.12 51 0.05 89
B39 Mpopoma B � � 0.10 93 0.07 99 0.11 80 0.01 96
B60 Inyankuni B � � 0.11 �23 � � 0.04 �48 0.28 �6
B61 Inyali B � � 0.33 �31 � � 0.30 45 0.28 �4
B74 Jama B � � 0.30 50 � � 0.30 24 0.19 66
B80 Maleme B � � 0.03 �30 0.15 �16 �0.07 �47 0.45 �6
B11 Ncema C � � � � 0.51 27 0.51 �20 0.37 26
B15 Lumeni C � � � � 0.61 1 0.53 �49 0.50 �3
B83 Mtsheleli C � � 0.46 13 0.09 12 �0.11 �49 0.30 �12

a Excludes field catchments UBN, MSH and M27 which had short time series.
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Table 12
Results of blind regionalisation against catchments not used in deriving parameter
sets.

Parameter set dekadBC monthlyBC monthlyABC

Catchment Timestep CNS

(–)
dVd

(mm a�1)
CNS

(–)
dVd

(mm a�1)
CNS

(–)
dVd

(mm a�1)

B56
Thuli

Daily �0.85 �19 �9.9 �138 �2.82 �75

Dekad 0.11 33 �0.15 �135 0.30 2
Monthly �0.15 35 0.34 10 0.17 23

B64
Ingwizi

Daily �49 �85 �245 �248 �110 �160

Dekad �0.10 �1 �55 �100 �9.8 �45
Monthly 0.38 �4 �13 �38 �0.78 �15

Table 13
Local sensitivity of catchment rainfall to spatial variability, demonstrated using
station E Nyathi for catchment M27 and station Esigodini for catchment B30.

Catchment
and
measurement

10% Decrease in
rainfall at selected
station

10% Increase in
rainfall at
selected station

Selected station
excluded from
computation

M27
Daily, 08/01/

2008
�1.00 1.00 �10.00

Daily, 09/01/
2008

0.00 0.00 �0.01

B30
Mean annual

rainfall
�0.36 0.36 �0.01
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behaviour. The distinction between sub-perennial (Group C) and
(sub-)ephemeral catchments (Groups A and B; Table 7),
based upon the flow duration curves, was statistically supported
(Table 8).

4.2. Model performance

During both calibration (Table 9) and regionalisation (Table 11),
model performance was poor at a daily time step, with the excep-
Fig. 6. Daily rainfall recorded from the six rainfall gauges in the Mnyabezi 27 research ca
dekad (10 day period) of 2008. Total fluxes for the dekad are given in the key.
tion of the catchments instrumented during this study. The poor
performance at a daily time step can be explained by two factors:
First, the measurement day for runoff is 00:00–23:59 of the same
day while the measurement day for rainfall is 08:00–07:59 of the
next day. However, most rainfall in Zimbabwe occurs in thunder-
storms (Mazvimavi, 2003), which generally occur in the afternoon,
which should minimise the impact of this error.

Second, rainfall in Zimbabwe shows high spatially variability
(Mugabe et al., 2007; Unganai and Mason, 2002), which means that
the available climate stations may under-represent or over-repre-
sent rainfall which occurs in a given catchment, especially the lar-
ger ones, and especially at a daily time step (Mazvimavi, 2003). For
many of the catchments, the only available rainfall data comes
from gauges outside, but adjacent to, the catchment. Spatial vari-
ability is not as great at a dekad time step, as can be seen from
the totals in Fig. 6. Whilst a monthly time step will average out
the spatial heterogeneity in rainfall data, it has the disadvantage
that size and shape of discharge peaks are lost as discharge events
lasting 1 or 2 days are averaged across the month. This variability
is associated with uncertainty in catchment rainfall from a coarse
network (Table 13).

Neither of these two factors applied to the catchments instru-
mented during this study as the measurement day was the same
for rainfall and for runoff (08:00–07:59 of the next day) and the
instrumented catchments had between 7 and 17 rainfall stations.

The sub-perennial catchments are easier to simulate with the
selected box model than the (sub-)ephemeral catchments. This
was also the case for the blind regionalisation, where the less arid
and less ephemeral catchment was simulated better. This could be
related to the fact that flow in ephemeral catchments is highly un-
equally distributed in space and time (Lange, 2005). Ephemeral
catchments have more threshold processes and many more dis-
crete flow events, with large, short-term variations in discharge,
which are more difficult to simulate (Johst et al., 2008). Further-
more, the information content for a given length of time series is
more limited for ephemeral catchments (Woolridge et al., 2003).

The arid zone environment thus imposes constraints to the util-
ity of the HBVx model. The more continuous the discharge, i.e. few-
er events and lower variation of (sub-)perennial catchments, the
more suitable for simulation with HBVx. A large part of the chal-
tchment (M27) and daily discharge recorded from the catchment outlet for the first
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lenge is being able to make satisfactory quantification of catch-
ment rainfall (Hughes, 1995). This is likely similar with other con-
ceptual box models.

4.3. Implications for semi-arid zone hydrology

The strong negative correlation between model performance
and proportion of the catchment which is degraded suggests a
strong influence of land degradation on flow processes. The fact
that the proportion of degraded land is positively correlated to
the fast runoff ‘‘overland flow’’ coefficient K0 but not to the
other flow coefficients suggests that land degradation can be
linked to more rapid flow, especially overland flow. This is likely
to largely be through the effect of loss of vegetation facilitating
a fast response. Similar findings were made, for instance, by
Lange and Leinbundgut (2003) in the Sahel, where land degrada-
tion was associated with decreased infiltration and increased
overland flow. Rapid and more episodic flow events tend to be
more discrete and thus more difficult to simulate with a box
model.

The correlation between the fraction of a catchment underlain
by granite and the ‘‘groundwater’’ flow coefficients K1 and K2 com-
pares well to the findings by Longobardi and Villani (2008) that
geology is the major factor affecting baseflow and by Mwakalila
et al. (2002) that granitic catchments generate greater baseflow
than other catchments.

Further research should test these findings against detailed soil
moisture and water table levels. Woolridge et al. (2003) recom-
mend use of soil moisture data as a more information-rich time
series than discharge for the calibration of hydrological models in
ephemeral catchments. However, in southern Zimbabwe such data
is far scarcer than the limited rainfall and discharge data sets. Gi-
ven the high variability in soil moisture content that is typical of
semi-arid catchments (Gómez-Plaza et al., 2001) the utility of this
measure for calibration is likely to be limited to experimental
catchments.

The clear negative relationship between catchment size and
runoff coefficient (Fig. 4), indicates that smaller catchments are
more efficient in converting rainfall into runoff. This is not related
to rainfall, as the smaller catchments (Table 1) are evenly-distrib-
uted between higher rainfall and lower rainfall areas (Table 3).
Such a scale effect was also observed in studies of micro-catch-
ments (below 1.5 km2) in both humid to sub-humid environ-
ments (Cerdan et al., 2004; Castro et al., 1999; van de Giesen
et al., 2000; Didszun and Uhlenbrook, 2008) and arid to semi-arid
environments (Cantón et al., 2001; Joel et al., 2002). At the micro-
catchment scale, factors such as spatially variable infiltration and
the length of the slope (distance of overland flow before entry of
runoff into a stream) control what proportion of site runoff is dis-
charged from that scale as runoff and what proportion is redis-
tributed to become soil moisture (van de Giesen et al., 2000). At
the meso-catchment scale of this study, processes after runoff
generation must operate upon the streams in order to result in
the scale relationship observed, for example the re-infiltration
of water from streams into groundwater or infiltration or evapo-
ration losses in wetlands. Because of this scale relationship,
upscaling parameters from smaller to large catchments, even
nested catchments� is complex and can lead to over-estimation
of the effects of a given phenomenon (such as erosion) that is
measured at a smaller scale when upscaled to a larger catchment
or basin.

4.4. Implications for river basin management

The HBVx model could be used to predict flows in some unga-
uged basins, although application outside the study area would
require calibration to the new basin. As both the regionalisation
and blind regionalisation have shown, it cannot be used reliably
to predict flows in ephemeral or more arid basins.

The finding that the more degraded catchments are associated
with faster flows (likely overland flow) has important implications
for flood response management. From this perspective, catchment
restoration could potentially play an important role in flood man-
agement, by decreasing faster flows and decreasing overland flow.

There are also important implications for setting up hydrocli-
matic networks in the semi-arid environment. Establishing a net-
work of rainfall stations that has a sufficient density to ensure
that aggregated rainfall at catchment level is representative is
likely to be costly – especially considering that such a network
would only record a few events per year in the more arid catch-
ments. In cases where budgetary constraints prevent a sufficiently
dense rainfall measurement network being established it is also
essential to fully exploit remote sensing. Observations from an
insufficient number of measuring stations will give uncertain re-
sults, leading to unrealistic management decisions – unless the le-
vel of uncertainty is clearly understood. In such cases the PUB
approach represents a better scientific basis for hydrological study
and for river basin management. However, the best results are
likely to be obtained from remote sensing combined with a fe
ground stations.

The parameter sets that performed best in the regionalisation
exercise are suggestive of slow infiltration and percolation with
moderate to fast overland flow, which is in line with the general
process understanding of such catchments (e.g. Mugabe et al.,
2007). These processes appear more extreme in the more degraded
catchments. This suggests that rainwater utilisation could be im-
prove through (i) in-field soil water conservation techniques that
increase the rate of infiltration and percolation, such as mulching
(Mupangwa et al., 2007), and (ii) micro-catchment or runoff farm-
ing and supplementary irrigation (Ncube et al., 2009) to capture
overland flow from areas adjacent to fields. This is particularly
important in the degraded catchments that have faster overland
flow. Faster, and possibly greater, sub-surface contribution to
streamflow is expected from catchments underlain by granitic
rocks.

5. Conclusions

Analysis of flow duration curves allowed separation of the sub-
perennial catchments (Group C) from the (sub-)ephemeral catch-
ments (Groups A and B). This distinction could not be demon-
strated statistically. However, this could be due to the small
sample size of Group A or could suggest a limitation to agro-eco-
logical region classification as a predictor of catchment behaviour.

Modelling at a daily time step using data from the national
hydrological and meteorological networks is not practical for
hydrological modelling, due to sparse coverage and the errors dis-
cussed above. The two causes are inter-linked and have implica-
tions for hydroclimatic network design. Even at a coarser time
scale (dekad or monthly), none of the parameter sets regionalised
could produce model performance better than CNS = 0.3 for half of
the catchments studied. The best-performing parameter sets pro-
duced mainly negative volume errors (dVd), which are conservative
for water resource modelling and water allocation but problematic
for flood prediction. The regionalisation of the HBVx model carried
out in this study of the Mzingwane Catchment is thus only partially
successful. This could perhaps be improved by incorporating the
possibility for negative volume into the lower storage box SL in or-
der to simulate groundwater levels falling below the riverbed
(Lidén, 2000). This would be an alternative to the approach
followed in this study of restricting the flow coefficient from that
box (K2) to very low values.
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The best performance was obtained at the dekad and monthly
time steps, although evaluation by blind regionalisation was lim-
ited by data availability. The longer time steps (rather than daily)
suggest that the model offers more to longer term water resources
(and water allocation) planning than to process hydrology. This
also presents an opportunity for coupling HBVx with the spread-
sheet-based water balance model WAFLEX, for which an alluvial
groundwater module has been developed that performs best at
the dekad time step (Love et al., 2010c). The HBVx model thus does
offer some limited assistance to river basin planning in semi-arid
basins, particularly for predicting flows in ungauged catchments
at longer time steps. However, the model is unreliable for more
ephemeral and drier catchments.

Ultimately, without more reliable rainfall and runoff data with
longer time series, regionalisation in semi-arid ephemeral catch-
ments will remain highly challenging. Data availability, at the
appropriate scale and the appropriate density, remains a major
challenge in the semi-arid zone, both to river basin management
and to accurate regionalisation between catchments. For rainfall
data, combining remotely-sensed data with ground stations may
be the way forward.
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