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ABSTRACT

Sorghum (Sorghum bicolor (L.) Moench) is the fifth most important cereal crop
globally. This C4 grass is grown in more than 80 countries mostly in tropical and sub-
tropical regions. After soil nutrient deficiencies, drought stress is the most important
abiotic constraint to sorghum production globally. Dry spells can occur at any stage of
the crop growth period. In sorghum, rapid premature leaf death generally occurs when
water is limiting during the grain filling stage. Therefore drought stress during the grain
filling period is referred as “post-flowering drought or terminal drought”. The plant
character associated with post flowering drought tolerance is called “stay-green”. Stay-
green is associated with functional green leaf area (GLA) during and after the grain
filling period. Stay-green in sorghum is associated with charcoal rot, lodging resistance
and superior ruminant quality. This complex trait is difficult to score.

Genetic mapping of QTLs associated with stay-green is an important step towards
developing drought tolerant hybrids. Different sources of stay-green have been identified
in sorghum. The most commonly used lines in breeding program are B35 and E36-1

-Different research groups independently developed QTL maps for stay-green
using different donor parents and marker systems. After identifying the consistent QTLs
markers, these can be tested through introgression of QTLs from their mapped sources
into sorghum elite breeding lines. This can be accomplished by cloning the genes
expressing QTLs and transferring these genes to recipient breeding lines or through
marker-assisted breeding (MAB) program, where QTLs are introgressed into elite



breeding lines using molecular markers MAB is the most appropriate technique when
traits are complex and difficult to score/measure like vield. abiotic stress tolerance, where
the genes contributing to QTLs expression have not yet been identified, and where plant
transformation systems are not well established

With the development of molecular tools and molecular genetic linkage maps for
plants, marker-assisted selection (MAS) has become much more broadly applicable
From the last decade, developing ability to transfer target genomic regions using DNA
markers resulted in extensive mapping experiments aimed at development of MAS

Molecular marker based genetic linkage map of sorghum has permitted the
identification of six QTLs for stay-green (post-flowering drought tolerance) in sorghum
line B35. This project aimed at transfer/introgression of thesc QTLs from B35 to
recurrent parents, ISIAP Dorado and R16. BC; and BC, generations from each recurrent
parent were genotyped with the markers linked to stay-green QTLs for foreground
selection and evenly distributed unlinked markers for background selection to speed the
recovery of recurrent parent genotype in genomic regions that are not associated with the
target stay-green QTLs. Genotypes with desired marker allele profiles were selected and
advanced to next generations. Further studies are necessary to confirm the introgression
of QTLs and expression patterns for stay-green by phenotypic evaluation of selected
genotypes.
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CHAPTER1

INTRODUCTION

1.1 IMPORTANCE OF SORGHUM

Sorghum [Sorghum bicolor (L.) Moench] is the 5" most important cereal crop
globally after wheat, maize, rice and barley (FAQ, 2003). This Cs grass is grown in more
than 80 countries, mostly in tropical and sub-tropical regions. The average annual area
sown amounts to 44 M ha. with an average annual grain production of 63 M tons and

average grain yield of 1.4 ton/ha (FAO, 2003).

Sorghum (2n=20) is an important target for plant genomics due to its adaptation
to harsh environments, diverse germplasm collection, and relatively small genome size.
The sorghum genome contains ca. 750 Mb of DNA, which is somewhat larger than that
of rice (430 Mb) but 3- to 4-fold smaller than that of maize (2400 Mb) (Arumuganathan

and Earle, 1991).

1.2 USES OF SORGHUM

Sorghum can be used both as human food as well as animal feed. Unleavened
bread can be prepared with flour ground from the grain. Beer is the common drink
prepared from sorghum grains, especially in Africa. Stems and foliage of sorghum can be
used as green chop, hay, silage,and pasture. Plant stems can be used as building material
and plant remains can be used as fuel. Sorghum can be grown as a border crop for large

fields.



13 TERMINAL DROUGHT TOLERANCE 2

After soil nutrient deficiency, drought stress is the most important abiotic
constraint for sorghum production globally (Haussman et al., 2003). Sorghum is well
adapted to semi-arid environments and regarded as the model crop for studying drought
tolerance among grass species. Drought spells can occur at any stage of the crop growth
period. The drought spell, which occurs at the grain filling stage, is being referred to as
“post-flowering drought or terminal drought”. Drought stress during and after flowering
may cause premature leaf senescence, which in turn may lead to stalk lodging, stalk rot

disease, and significant grain yield loses.

14  STAY-GREEN TRAIT

The plant character associated with tolerance to terminal drought stress is called
“stay-green”. Leaf senescence in plants is an internally programmed degeneration process
ultimately leading to plant death. It is triggered by internal and external signals. Drought
and environmental stress factors can induce the onset of leaf senescence (Nooden et al.,
1997). A typical phenomenon of leaf senescence is the loss of chlorophyll and
progressive decline in photosynthetic capacity, resulting in a deteriorated quality of
vegetables, ornamental plants, and turf grasses and poor yield and grain quality of crop
plants. Therefore any mechanism that postpones the onset of senescence and thus keeping

the plants green for a longer time can be beneficial to plant production.



The character responsible for delayed leave senescence is referred to as “stay-
green or delayed senescence or post-flowering drought tolerance™ (Xu et al., 2000). So
far S types of stay-green has been reported (Cha et al., 2002 and Thomas ef al., 2002).

o The onset of senescence is delayed; the progress of senescence is the same as in
wild type

o Senescence starts on schedule but is there after comparatively slow

o Chlorophyll is retained more or less indefinitely but senescence proceeds
normally

¢ Unlimited color retention when killing leaf by freezing, boiling or drying
(herbarium specimen), and

e Chlorophyll concentration in leaves high as compared to wild type, scnescence

normal.

The first two classes arc also referred to as “functional stay-green” and are
perhaps the result of alterations of gene expression involved in the onset of senescence
and the regulation of its rate of progress. Stay-green in other three classes is “cosmetic”,

the plants remain green for a prolonged period of time but lack photosynthetic activity.
1.4.1 Importance of stay-green in sorghum

Stay-green in sorghum is considered as a valuable trait, as it improves genotypes
adaptation to post-flowering drought stress. The trait is best expressed in environments in
which the crop is dependent upon stored soil moisture, where this is only sufficient to

meet part of the transpiration demand (Mahalakshmi and Bidinger, 2002). Plants



possessing the stay-green trait are photosynthetically active as compared to genotypes not 4
possessing this trait. The longevity and photosynthetic capacity of leaves are related to
their N, content, therefore it is important to determine the role of Ngin extending leaf

greenness in stay-green genotypes (Thomas and Rogers, 1990).

Because of the dual-purpose use of sorghum and the increased drought stress in
areas where sorghum is cultivated, stay-green is of increasing importance. The trait is
controlled by Quantitative Trait Loci (QTL) (Walulu er al., 1994). Identification of the
genetic factors involved in drought stress and subsequent transfer of these factors to elite
sorghum breeding lines lacking drought tolerance will provide a solid foundation to

improve the drought tolerance of these breeding lines.

1.4.2 Marker-assisted breeding for stay-green

Conventional breeding for quantitative traits 1s often an extremely slow and
laborious process and because of Genotype X Environment interactions, the results tend
to be location specific. The application of DNA markers and mapping technology
facilitates breeding for complex traits. After mapping QTLs for stay-green in a donor
parent, markers linked to the QTLs can be employed to transfer these QTLs from a
resistant/tolerant parent (donor parent) to a susceptible recipient parent (recurrent parent).
This process is also referred to as foreground selection in a marker-assisted breeding
(MAB) program, where the segment containing markers linked on either side of the
QTLs is transferred from a donor parent to susceptible parent. In addition, selection for

recurrent parent alleles at markers unlinked to the QTLs can be used during the MAB



program to hasten recovery of recurrent parent genotype in genomic regions that are not

involved with the target QTLs (background selection).

1.5 DNA MARKERS IN SORGHUM

There are many types of DNA markers currently available, Restriction Fragment
Length Polymorphism (RFLPs, the first generation markers), and second-generation
markers using the Polymerase Chain Reaction (PCR), such as RAPDs (Randomly
Amplified Polymorphic DNA, AFLP (Amplificd Fragment Length Polymorphism), SSRs
(Simple Sequence Repeats), SCARs (Sequence Characterized Amplified Regions), SNPs
(Single Nucleotide Polymorphisms), etcetera. The use of molecular markers has become
widely accepted as a valuable tool for plant breeding programs as well as for evolutionary

and diversity studies.

One of the marker types widely applied in breeding programs arc the SSR markers,
also called microsatillites. SSR markers offer a potentially attractive combination of

features that make them useful as molecular markers in breeding programs

» Highly polymorphic in plants, hence highly informative
» Require small quantities of DNA, simple and inexpensive PCR-based assay
» Show a co-dominant inheritance

» Abundant and uniformly dispersed in both human and plant genomes.



Their high information content and other favorable characteristics make them
excellent genetic markers for many types of investigations including marker-assisted
breeding (MAB) and DNA fingerprinting of germplasm collections. A large number of
SSR loci have been genetically mapped in several agronomically important species, |
including rice (Cho et al., 1997) soybean (Cregan et al., 1999) and sorghum (Brown et

al., 1996; Taramino et al., 1997, Bhattramakki ef al., 2000; Kong ef al., 2000).
1.6  STAY-GREEN QTLs MAPPING AND MARKER-ASSISTED SELECTION

Different research groups identified genomic regions associated with the stay-
green trait in sorghum using different donor parents. Among the most commonly used
donor parents for stay-green are B35 and E36-1. Using the B35 line as a donor parent,
different groups independently identified six genomic regions associated with the stay-
green character. Because of the importance of stay-green,we aimed at the transfer of
these six stay-green QTLs into two recurrent parents, RI6 and ISIAP Dorado using
marker-assisted selection. Four different research groups have contributed to

identification of these stay-green QTLs from the B35 source line.



The objectives of the present study are

¢ Select ISIAP Dorado (abr. IsDo) BC4F; [((((IsDo x B35) x IsDo) x IsDo) x IsDo) x
IsDo] and BC3F; genotypes [selfed BC3F,: (((IsDo x B35) x IsDo) x IsDo) x IsDo]
and R16 BCsF; [((R16 x B35) x R16) x R16)x R16)] and BC4F, [(R16 x B35) x
R16) x R16)x R16) x R16)] genotypes with SSR markers linked to stay-green QTLs
(foreground selection).

¢ Identify genotypes with maximum recovery of recurrent parent genotype among the
foreground selected BC3F, and BC4F, genotypes using SSR markers unlinked to stay-
green (background selection).

¢ Self selected BC3F, genotypes to increase seed numbers for phenotypic evaluation
during rabi season 2003/2004.

¢ Selfing the selected ISIAP Dorado BC,F; genotypes.

¢ Backeross the selected R16 BC3F, genotypes.

¢ Backeross the selected R16 BC4F genotypes.



CHAPTER II

REVIEW OF LITERATURE



CHAPTER 11

REVIEW OF LITERATURE

This chapter gives a detailed literature overview of the different topics dealt with
in the study of marker-assisted selection of stay-green in sorghum (i.e., marker assisted

backcrossing of stay-green QTLs into elite sorghum lines).
2.1 STAY-GREEN CHARACTER - CHARACTERISTICS AND GENE ACTION

Walulu ef al. (1994) studied the mode of gene action for stay-green trait in
sorghum. F,; and F, backcrosses obtained from a cross between B35 (stay-green donor)
and Tx7000 (drought susceptible) were subjected to moisture stress at the grain filling
period in the field and rainout shelters. Stay-green was evaluated on an individual plant
basis using visual leaf and plant death scores. Their results suggested that a major gene
influences this stay-green trait in B35 that exhibits varied levels of dominant gene action
depending upon the environment in which the evaluation was made. The frequency

distributions of the field grown BC\F, population indicated complete dominance.

Tenkouano ef al. (1993) determined that non-senescence was regulated by
dominant and recessive epistatic interaction between two non-senescence inducing loci

and a third locus with modifying effects by studying the populations derived from a



diallele cross between two non-senescent resistant nbred lines (B35, SC599-11E) and
two senescent susceptible mbred Lines (BTx378, BTx673) They also showed that the
stay-green trait and charcoal rot resistance are not different manifestations of a single

trait, hence they should not be equated with each other

Thomas and Howarth (2000) studied the stay green trait physiologically by
measuring the progress of rate of senescence They classified the stay-green into five

types (A, B, C, D and E) Type A and B are more functional stay green types

Borrell and Hammer (2000) identified that in sorghum hybrids grown under
termnal water deficit, stay-green was viewed as a consequence of the balance between
mtrogen demand by the grain and mitrogen supply during gran filling Earher Sinclair
and Horie (1989) 1n maize and Muchow and Sinclair (1994) in sorghum demonstrated the

posttive correlation of photosynthetic capacity with specific leaf mtrogen (SLN)

Van Oosterom et al (1996), based on their study of diallel analysis of stay-green,
1dentified that the expression of heterosis for non-senescence as related to stay-green trait
was stable across the environments/experiments The inheritance of onset of senescence

was additive, but a slow senescence rate was dominant over a fast rate

Wanous et al (1991) reported that visual ratings for the percentage of values
under drought stress Xu et al (2000) measure the chlorophyll content with chlorophyll
meter (SPAD values) and a spectrophotometer method The SPAD value had a
sigmficant linear relationship with total leaf chlorophyll (R%=091) and with visual stay-

green rating (R?=0 82)



Akhtar et al. (1999) identified the marked difference in chlorophyll content
between wild type and gf of tomato (the green flesh (gf) mutant of tomato). Based on
differential expression studies using Festuca-Lollium stay-green mutants, Thomas et al.
(2002) identified a gene that is showing sequence similarities with UDPGP gene of
barley, which is tightly linked to stay-green trait. Borrell et al. (2000) identified that stay-
green hybrids produced 47% more post-anthesis biomass than their senescent counter

parts under terminal water deficit regimes.
2.2 CONSTRUCTION OF LINKAGE MAPS IN SORGHUM

Many research groups have been constructing genetic linkage maps for different
crops using different DNA based markers. Widely used marker types are RFLP markers
(Botstein et al., 1980), RAPDs (Williams et al., 1990), and SSRs (Bhattramakki et al.,
2000). These markers are reliable for detecting the polymorphism between the parental
lines permitting constl;uction of genetic linkage maps. Combinations of these markers are

also using for construction of maps.

Kong et al. (2000) constructed an integrated sorghum linkage map with RFLP and
SSR markers using Fs recombinant inbred lines (RILs) derived from the cross between
BTx623 and IS 3620C. The markers are distributed across the 40 linkage groups (LG) of

the sorghum genome, covering 1287.2 cM [Based on LOD > 5.0).

Bhattramakki ef al. (2000) extended this integrated SSR and RFLP linkage map

of sorghum. Most of the SSRs they used were developed from clones isolated from two

10



sorghum BAC libraries and three enriched sorghum genomic DNA (g DNA) libraries.
Very few were developed from the sorghum DNA sequences present in public databases.
323 RFLP probes and 313 SSR primer pairs were developed. Out of the SSRs, 165 (53%)
of the loci found to the polymorphic in a population composed of 18 diverse sorghum

lines [LOD score > 3.0].

Nearly every agronomic trait imaginable has been subjected to DNA marker
mapping and QTL analyses e.g., drought tolerance (Martin, 1989), seed hardness (Keim

et al., 1990), plant height (Lin er al., 1995) and yield (Stuber et al., 1987).

2.3 STAY-GREEN QTL MAPPING IN SORGHUM AND RICE

The conflict between the Mendelian theory of inheritance and the observation that
most traits in nature exhibit continuous variation was eventually resolved by the concept
that quantitative inheritance can result from segregation of multiple genetic factors,
modified by environmental factors. The theoretical basis of interpreting the association of
marker loci with QTL was obtained by Mather and Jinks (1971), Tanksley et al. (1982),
Soller and Beckmann (1983) and Edwards et al. (1987a,b). The theoretical basis for
identification of QTLs associated with individual marker loci has been studied by several
authors (Jayakar, 1970; McMillan and Robertson, 1974; Soller and Beckmann, 1990;
Edwards et al. 1987a,b; and Cowen, 1988). Like wise the use of flanking marker loci for
QTLs identification was suggested by Lander and Botstien (1989) and Knapp er al.

(1998).

11
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The development of molecular marker technologies and the use of these markers
in quantitative trait loci has become a powerful approach for the studying the genetic and
phenotypic basis of complex traits (Edward et al., 1987a and b; Paterson et al., 1988). If
individual genetic components associated with a complex trait can be identified, then
research can focus on the function of each locus independently without the confounding
effects of other segregating loci (Yang er al., 1995). The complex expression of drought
tolerance makes this trait difficult to study using traditional genetic and physiological
methods. Use of molecular markers and QTL analysis of drought tolerance in lines grown
in replicated and carefully induced drought environments may lead to a better

understanding of this trait (Tuinistra et at., 1996).

Lander and Botstein (1989) described a set of analytical methods that modify and
extend the classical theory for mapping QTLsand that are implemented in the computer
software package Mapmaker/QTL. They provided explicit graphs that allow experimental
geneticists to estimate‘, in any particular case, the number of progeny required to map
QTLsunderlying a quantitative trait. Detecting marker-QTL associations can be carried
out by means of likelihood ratio tests that involve the use of a pair of markers bracketing
a QTL, a procedure termed “interval mapping” (Knapp et al., 1990 and Lander and
Botstein, 1989) although simpler approaches are possible (Haley and Knott, 1992;

Thoday, 1961 and Weller, 1987).

Tuinstra et al. (1996) identified QTL associated with post-flowering drought

tolerance in sorghum using 98 RILs derived from the cross between Tx7078 (pre-



flowering tolerant, post-flowering susceptible) and B35 (pre-flowering susceptible, post-
flowering tolerant). This population was genotyped using 150 RAPD and 20 RFLP
markers and its linkage map was constructed using Mapmaker/Exp. Mapmaker/QTL was
then used to merge marker and phenotype data sets. They identified 6 genomic regions
specifically associated with pre-flowering drought tolerance and also mapped 8 additional
regions generally associated with yield or yield components under fully irrigated

conditions.

Tuinstra et al. (1997) identified genomic regions (QTLy associated with post-
flowering drought tolerance and for potentially related components of grain development.
They used 98 RILs as a mapping population derived from the cross between Tx7078 and
B35. They identified 13 genomic regions associated with one or more measures of post-
flowering drought tolerance. Two QTLswere identified with major effects on grain yield

and “stay-green” under post-flowering drought.

Crasta ef al. (1999) developed a linkage map using 142 RFLP markers. They used
a set of 96 Fe.7 RILs obtained from the cross between B35 and Tx430. These RILs were
evaluated for post-flowering drought tolerance and maturity. Simple interval mapping
identified seven stay-green QTLs and two maturity QTLs. Out of seven, 3 major QTLs
(SGA, SGD and SGG) contributed to 42% of phenotypic variability (LOD 9.0) and 4
minor QTLs(SGB, SGI.1, SGI.2 and SGIJ) significantly contributed to an additional 25%

of phenotypic variability in stay-green ratings.

Tao et al. (2000) evaluated 160 RILs, derived from the cross between QL 39 and

QL 41, as a segregating population for genome mapping and stay-green evaluation. They

13



used 118 additional markers including 17 SSRs and 101 RFLP markers which are
mapped on to the same linkage map previously developed (Tao ef al., 1998) by using
same RIL population. In total they identified 5 genomic regions associated with stay-

green.

Xu et al. (2000) mapped the QTLsthat control the stay-green and chlorophyll
content in sorghum by using the F7 RIL as a mapping population derived from the cross
B35 x TX 7000. They identified the four Stg QTLslocated on 3 linkage groups. Stg! and
S1g2 QTLs are located on LG A, other two Stg QTLslocated on LG D and LG J,
respectively. They identified that two stay-green QTLs,Stg! and 2 controlled 13-20% and
20-30% of phenotypic variability for this trait. Also identified the 3 QTLsfor chlorophyll
content (chll, chi2 and chi3) explaining 25-30% of the phenotypic variability. Stg1 and
Stg2 regions also contain the genes for key photosynthetic enzymes, heat shock proteins

and an ABA-responsive gene.

Subudhi et al. (2000) determined the consistency of QTLscontrolling stay-green in
sorghum across genetic backgrounds and environments. They evaluated the RIL mapping
population from the cross B35 x Tx7000. The map of B35 x Tx7000 population (Xu et
al., 2000) was expanded by the additional 91 more markers (RFLP, SSR and RAPD
markers). They mapped 4 stay-green QTLs and identified that they have partial
similarities in case of LG A and LG B of B35 x Tx7000 population and B 35 x Tx7078
population (Tuinstra ef al., 1997). The nomenclature of that stay-green QTL such as Stgl,

Stg2, Stg3 and Stg4 was adopted from Xu et al., (2000).
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Kebede er al. (2001) identified the genomic regions associated with post-
flowering drought tolerance (stay-green) using F; RILs population derived from the cross
8C56 x Tx7000 with RFLP markers. The linkage map for this RIL population covers
1355 cM of the sorghum genome and consists of 144 loci. Nine QTlLslocated on 7 linkage
groups were detected for stay-green in several environments using the method of
composite interval mapping. They also identified the 3 QTLspresent on the LG A, LG G
and LG J were consistence across the stress environments. They also conducted the
comparative mapping studies, showing that two stay-green QTLsidentified in their study
corresponded to stay-green QTL regions in maize. In addition to this, 3" and 4" QTlsare
also responsible for lodging tolerance and pre-flowering drought tolerance, respectively,

were detected.

Cha et al. (2002) mapped stay-green QTLsin rice using the phenotypic and
molecular markers. They mapped the stay-green mutant [sgr ()] locus to the long arm of
chromosome 9 between RFLP markers RG662 and C985 at 1.8- and 2.1-cM intervals,
respectively. They identified no difference on the photosynthetic activity was observed
between the stay-green mutant and yellowing wild-type leaves, indicating that senescence
is proceeding normally in the mutant leaves and the mutation affects only the rate of

chlorophyll degradation during leaf senescence.

Sanchez et al. (2002) identified four QTLs associated with stay-green in sorghum
using a RIL population derived from the cross B35 x Tx7000 with RAPD, SSRs and
RFLP markers. Four major QTLs were consistently identified in all field trials and

accounted for 53.5% of the phenotypic variance.
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Haussmann et al. (2003) developed a QTL map for stay-green in sorghum using
two recombinant inbred populations (RIP1 and RIP2) using E36-1 as a donor parent for
stay-green. The mode of gene action for stay-green in their investigation ranged from
purely additive to over dominance. Three QTlson LG A, E and G were common to both
RIP1 and RIP2. So these QTL could be potential candidates for transfer of stay-green
into locally adapted materials. These findings provided the opportunity to transter of

QTL effectively from the selected donor parents to the recurrent parents.

Stay-green QTLs mapped by different rescarch groups were summarized in the

table 1 and 2.

24  MARKER-ASSISTED SELECTION (MAS)

An important area in which molecular biology is being applied to transfer of traits
from donor parent to recurrent parent is marker-assisted selection (MAS). MAS has been
advocated as a useful tool for rapid genetic advance in case of QTL (lande and
Thompson, 1990; Knapp, 1994,1998). Gimelfarb and Lande (1995) presented detailed

analysis of the relationship between genetic markers and QTLsin the process of MAS.

Mohan et al. (1997) concluded that MAS could be used to pyramid major genes
including disease and insect resistance genes, with the ultimate goal of producing the
crop cultivars with more desirable traits. A study conducted by Eathington et al. (1997)
assessed the usefulness of marker-assisted effects estimated from early generation

testcross data for predicting later generations testcross performance.



Table 1: Summary of recent stay-green mapping studies

Reference | Populati | Parents Test sites LGs | Length | Number of
on incM QTlsfor
stay-green
Tuinstra er | 98 RIL | B35 2 E in Mexico | 17 1580R |6
al. (1997) TX7078 | and Arizona,
irrigated and post-
flowering drought
Crasta ef|96RIL | B35 4 E in Texas 14 |1602K |7
al. (1999) TX430
Xu et al.|98RIL |B35 5 E in Texas 10 (837H |4
(2000) Tx7000
Subudhi e {98 RIL | B35 2 E in Texas|10 |? 5
al. (2000) Tx7000 | added to Xu et al.
Kebede er| 125RIL | SC56 S E in Texas and | 10 1355K |9
al. (2000) Tx7000 | Kansas
Tao et al.|152RIL | QL41 | SEin Australia | 14 1871U |5
(2000) QL 39

(E = Environments; LG = Linkage Groups; R = Recombination frequency; K, H
Kosambi and Haldane functions, respectively; U = Mapping function not indicated; ? :
Map length not indicated)

Table 2: Comparison of linkage group names (Haussmann et al., 2003) with other
stay-green mapping studies.

Reference

Linkage Groups

Haussmann et al.
(as Bhattramakki et al., 2000)

Tuinstra et al. (1997)

Tao et al. (2000)

Crasta et al. (1999), Xu et al. (2000),

ABCDEFGHII

FBG? DKE

CBAFIJGI

77

EDH

G DACEI B HFI

Subudhi et al. (2000), Kebede et al, (2000)




MAS can be used to pyramid several resistance genes into a single host genotype.
Where hybrid cultivars are possible, Witcombe and Hash (2000) have described how
multiple resistance gene pyramids can be used practically to strategically deploy
resistance genes in potentially more durable manner than has been previously practiced.
The frequency of genotypes having resistance alleles at several loci increase greatly in
both seed parent and hybrid when the overall frequency of resistance alleles in maintainer

line increases.

2.4.1 Efficiency of marker-assisted selection

Hospital et al. (1997) used computer simulations to study the efficiency of MAS
based on an index combining the phenotypic value and molecular score of individuals.
They observed that in the first generation the ratio of relative efficiency (RE) of expected
efficiency of MAS over the expected efficiency of purely phenotypic selection generaliy
increases when considering 1) the larger population size 2) lower heritability values of
the trait and 3) high type-I error risk of the regression. These studies over the successful
generations of the rate of fixation of QTL shows that the higher efficiency of MAS on
QTLswith large effects in early generation is balanced by a higher rate of fixation of un
favorable alleles at QTLswith small effects in later generations. This explains why MAS
may become less efficient than phenotypic selection in long-term process. MAS

efficiency therefore depends on the genetic determination of that trait.

The efficiency of MAS was generally reduced with increasing the distance

between the markers. So, optimal distance recommended between two adjacent markers
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is about 5-10 cM (Hospital er al., 1997). The efficiency of marker-assisted selection is
less efficient than the phenotypic selection in long-term process (Hospital et al., 1997).

Knapp (1998) presented the estimates of probability of selecting one or more
superior genotypes by MAS to estimate its cost efficiency relative to phenotypic
selection. The frequency of superior genotypes among the selected progeny increases as
the selection intensity increases. Van Berloo and Stam (1998) assessed effectiveness of
MAS compared to phenotypic selection showing that MAS appears partially promising
when dominant allele are present at QTLsand linked in coupling phase. Uncertainty in
estimated QTL map positions reduces the benefits of MAS.

Young (1999) pointed out that despite innovations like better marker systems and
improved genetic mapping strategies, most marker associations are not successfully
robust for successful MAS. Charmet et al. (1999) studied the accuracy of QTIs location
determination greatly affects selection efficiency. MAS for QTLshave recently started to
be applied to the genetic improvement of quantitative character in several crops such as
tomato (Lowson er al., 1997, Bernaclhi et al., 1998), maize (Graham et al., 1997) and
barley (Han et al., 1997; Toojinda et al., 1998).

Hospital and Charcosset (1997) determined the optimal position and number of
marker loci for manipulating QTLs in foreground. Further, they investigated the
combination of foreground and background selection in QTLs introgression. Openshaw
(1994) determined the population size and marker density required in background
selection.

Frisch et al. (1999) determined the number of marker data points (MDP) required
in background selection, size of the population and compared a two-stage selection
procedure (one background and one foreground selection), with alternative selection

procedures (one foreground and two or three background selection steps). They
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concluded that as the number of selection processes increases, the number of MDP
required decreases.

Moreau ef al. (2000) evaluated the relative efficiency of MAS in the first cycle of
selection through an analytical approach taking into account the effect of experimental
design (population size, number of trials and replication/trial) on QTls detection. They
concluded that expected economic returns of MAS compared to the phenotypic selection

decreases with the cost of genotyping.

Because of the benefits of MAS, we aimed the transfer the stay-green QTLsinto
elite sorghum lines (R16 and ISIAP Dorado) through MAS using SSR markers

(Bhattramakki et al., 2000).
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CHAPTER 111

MATERIALS AND METHODS

3.1 PLANT MATERIAL

BC;F, (7 populations) and BC4F, (7 populations) derived from crosses between
ISIAP Dorado and B3S; BCsF, (9 populations) ana BC4F, (8 populations) population
derived from crosses between R16 and B35. In all these populations, B35 is the donor
parent for stay-green QTIs and ISIAP Dorado and R16 are the recurrent parents. [Figure

1(a) and 1(b) showing an overview of the backcrossing program].

3.2 SHORT DESCRIPTION OF PARENTAL LINES USED IN THE

BACKCROSS PROGRAM
3.2.1 B35

BC1 derivative of IS 12555, a durra race sorghum germplasm accession of
Ethiopian origin. It is well characterized for “stay-green” drought tolerance; different
research groups have identified a number of QTIs in mapping populations derived from
crosses involving this source of the stay-green trait (Crasta et al., 1999; Xu et al., 2000;
Subudhi et al., 2000, Sanchez et al 2002). Genetically quite divergent from recurrent

parents, which facilitates its to use in marker-assisted breeding programs. Agronomically
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Figure 1(a). Scheme for transfer of stay-green QTLs into elite sorghum lines by
marker-assisted backerossing

Recurrent parent — ISIAP Dorado

(Donor)

B35 3 ISIAP Dorado
(Recurrent parent)

‘ Fy X ISIAP Dorado ‘

!

‘ BCF; X ISIAP Dorado

| D] ?
[ BC,F, X ISIAP Dorado
I

l BC3F, X ISIAP Dorado ‘

Selfi f BC3F

Genotyping
with the

selected

markers

Selfing of BC3F;

BC3F; progeny
homozygous for
introgressed stay-
green QTL(s)

MAS

“Encouraging Results”



Figure 1 (b): Scheme for transfer of stay-green QTLs into elite sorghum lines by
marker-assisted selection:

Recurrent parent — R16

B3S ~ Rlio
(Donor) (Recurvent parent)

Fi X Rl16

BC,F; X R16
: MAS

MA

n

Genotyping
with sclected

markers W

Genotyping

with selected
markers

“Encouraging results”

Jaswant S. Kanwar Library
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diverged from elite Asian African and | atin American sorghum lines Potentially  yield

resistant

3.2.2 ISIAP Dorado

Dwarf plant drought-sensitive 1improved cultivar of ICRISAT origin having
large hard white grain that has been released and/or cultivated in I Salvador Mexico

Paraguay, and Egypt

3.2.3 Ri16

This 1s a highly senescent rabi-adapted breeding line of Indian onigin

3.3 DNA EXTRACTION

Seeds of backcross progeny from selected individuals were sown individually 1n
small pots At the same time seeds of the recurrent parental lines were sown Staggered
sowing was employed to ensure co-flowering of the recurrent parent and backcioss
progentes Therefore recurrent parent seed was also sown a week before and after the

sowing of backcross progentes

DNA from the BC;F, BCiF, and BC4F, populations was extracted from one-
week-old seedlings by using a modified CTAB method (Mace ef a/  2004) DNA was

further punfied by RNase digestion followed by extraction with phenol/chloroform/iso-
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amylalcohol and ethanol precipitation. A 96 well plate mimi DNA extraction was

employed.

3.3.1 96 well plate mini DNA extraction

A. Preparation

1. Steel balls (2 per extraction tube), pre-chulled at -20°C for about 30
munutes, were added to the extraction tubes which are kept on ice.

2. 3% CTAB buffer (3%w/v CTAB, 1.4 M NaCl, 20mM EDTA, 100mM
Tns-Hel, pH 8.0, 0.17% B-mercaptoethonol) was pre-heated n 65°C water
bath before start of sample collection.

3. Six inches long leaf strips were collected (final weight 30mg) from one-
week-old seedlings cut mn to pieces (Imm n length). These strips were
transferred to the extraction tubes.

B. Grinding and extraction

1. 450pl of pre-heated 3% CTAB buffer was added to each extraction tube
containing leaf sample.

2. Grinding was carried out using Sigma GenoGrinder at 500 strokes/minute
for 2 minutes.

3. Grinding was repeated until the color of solution becomes pale green and
leaf strips were sufficiently macerated.

4. After grinding, the tube box was fixed in a locking device and incubated at

65°C 1n a water bath for 10 minutes with occasional manual shaking.



C Solvent extraction

1

450l of Chloroform Iso-amyl alcohol (C IAA=24 1) mixture was added
to each tube and the samples were centrifuged at 6200 rpm for 10 minutes
After centrifugation the aqueous layer was transferred to a fresh tube

(Approximately 300pul)

D Imtial DNA precipitation

1

To each tube contaiming aqueous layer, 0 7 volume (approximately 210pl)
of cold (kept at -20°C) 1sopropanol was added, then solution was carefully

mixed and the tubes were kept at —20°C for 10 minutes

2 The samples were centrifuged at 6200 rpm for 15 minutes

3 The supernatant was decanted under a fume-hood and pellets were

allowed to air dry (mimimum 20 minutes)

E RNase treatment

1

In order to remove RNA 200ul of low salt TE buffer and 30ug of RNase
(stock 10mg/ml) were added to the each tube containing dry pellet and

mixed properly

2 The solution was incubated at 37°C for 30 minutes

F Solvent extraction

1

After incubation, 200l of Phenol Chlorofom IAA mixture (25 24 1) was
added to each tube carefully mixed and centrifuged at 5000rpm for 10
minutes

The aqueous layer was transferred to the fresh tubes and the step was

repeated with the chloroform IAA mixture



G. DNA precipitation
1. To the tubes containing aqueous layer 15pl (approximately 1/10™ volume)
3M Sodium acetate and 300l (2 vol) 100% ethanol was added and
subsequently placed in freezer for S minutes.

2. Following incubation tubes were centrifuged at 6200 rpm for 15 minutes.
H. Ethanol wash
1. After centrifugation supernatant was carefully decanted and to the pellets
add 200ul of 70% ethanol followed by centrifugation at 5000 rpm for 5
minutes.
I.  Final re-suspension
1. Pellets obtained by carefully decanting the supernatant and allowed to air
dry for one hour.
2. Completely dried pellets were resuspended in 100ul of T\oE; buffer and
kept at room temperature to dissolve completely.

3. Dissolved DNA samples were kept in 4°C.

34  CHECKING DNA QUALITY AND DNA CONCENTRATION

The DNA quality was checked using 1.2% ready-made agarose gels (Amersham

Biosciences). 1 pl of DNA solution was mixed with the 1 pl of orange dye and 8 ul of

distilled water and loaded in to 1.2% ready to run agarose gel. The gel was run for 10
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minutes after which the quality was checked under UV A smear of DNA ndicated poor
quahty whereas a clear band indicated good quality Samples of poor quality were re
extracted (Figure 4)

The DNA concentration was assessed using Spectrafluor Plus Spectrophotometer
by staining DNA with Picogreen™ (1/200 dilution) Based on the Relative Fluorescence
Units (RFU) values and using the standard graph (Figure 2), DNA concentrations were

calculated The DNA was diluted to a final concentration of 2 Sng/pl

DNA concentration = 2 7827340 002019*RFU

3.5 SELECTION OF THE MARKERS

SSR markers linked to QTLs for stay green [Figure 3(b)] were used for
foreground selection to select the individuals presumably having the donor allele
(foreground selection) Foreground markers indicate the presence of stay green QTLs
However, the tighter the markers are hinked to the QTIs, the greater the chance that the
QTLs 1n between both markers has indeed been transferred (assessment outside the scope
of this project, planned for rab: season 2003/2004) Therefore, phenotypic testing of the
final products of this MAB exercise needs to be performed in order to confirm the
transfer of the target stay-green QTIS. At the same time selected the markers unlinked to
stay-green have been used to select those individuals with minimal drag of non target
genomic regions from the stay-green donor parent B35 (background selection) [Table
3(a), (b) and 4] Figure 3(a) showing the consensus map of stay-green QTLs in B35

donor parent



Figure 2. Standard graph showing the correlation between RFU and
DNA concentration.
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Figure 3(a): Consensus map of Stay-green QTLs in B35 donor parent.

Stay-green consensus QTL map of B35
LgA LgB LgC LgDLgELgFLgG LgH Lgl LgJ

Stgl
& ‘ |Stg4|
Stg3

Figure 3(b): SSR markers linked to consensus stay-green QTLs mapped in donor
parent B35,
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3.6 AMPLIFICATION OF SSR MARKERS

PCR reactions were conducted in 384 wells plates in a PE 9700 Perkin Elmer
(Norwalk Conn.) DNA thermocycler. The reactions were petformed in volumes of Sl
using four different PCR protocols (appendix 1) and a touchdown PCR program.
Reaction mixture contains 10mM Tris-HCI (pH 8.3), 50mM KCl, 1.25-2.5 ng of DNA,
2pm of forward and reverse primer, Imm MgCly, 80-100um of each dNTP and 0.1 units
of Taq DNA polymerase. The touch down PCR program consisted of initial denaturation
for 15 minutes at 94°C and then [10 cycles of denaturation for 10 seconds at 94°C,
annealing at 61-52°C for 20 seconds, the annealing temperature for each cycle is reduced
with 1°C, and extension at 72°C for 30 seconds], 35 cycles [denaturation for 10 seconds
at 94°C, annealing at 54°C for 20 seconds and extension at 72°C for 30 seconds]. The last
PCR cycle is followed by a 20 minutes extension at 72°C to ensure amplification to equal

length of both DNA strands.

If the parents showing the polymorphism more than 5 bp, then PCR products were
separated on 6% non-denaturing PAGE (Poly Acrylamide Gel Electrophoresis) gels and
silver stained using the modified procedure developed by Kolodny (1984). If the
polymorphism between the parents is less than 5 bp, then PCR products were separated in
capillary electrophoresis using ABI Prism 3700 (Perkin Elmer). For this purpose

fluorescent-labeled primes were used (Figure 5). (Table 5(a) and (b)).
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Table 5(a): List of markers screened on PAGE and ABI Prism

Recurrent Parent R16
Product size I
Marker B35 R16 |PAGE/ABI
Xt-7 221 219 |ABI
Xt-57 246 241  |PAGE
Xt-47 300 290 |PAGE
Xt-43 144 162 |PAGE
Xt-40 131 137 |PAGE
Xt-34 330 369 |PAGE
Xt-33 223 229 |ABI
Xt-31 220 218 |ABI
Xt-298 202 222 |PAGE
Xt-296 262 264 ABI
Xt-295 167 173  |PAGE
Xt-289 280 330 |PAGE
Xt-285 237 240 |ABI
Xt-248 212 200 |PAGE
Xt-230 195 208 |PAGE
Xt-23 183 181 |PAGE
Xt-225 173 184 |PAGE
Xt-21 168 172  |ABI
Xt-20 204 181 PAGE
Xt-141 151 133 |PAGE
Xt-100 103 106 |ABI
Xg-84 210 193 |PAGE




Table 5(b): List of markers screened on PAGE and ABI Prism

Recurrent Parent ISIAP Dorado

Product size
Marker B35  ISIAP Dorado| PAGE/ABI

Xixt296 170 172|ABI

Xtxp34 330 365|PAGE
Xtxp285 235 220[PAGE
Xtxp114 150 145|PAGE
Xtxp65 140 130]PAGE
Xtxp100 96 100|ABI

Xtxp207 201 235|PAGE
Xtxp31 220 200{PAGE
Xtxp40 160 162|ABI

Xtxp295 165 175|PAGE
Xtxp210 200 210|PAGE
Xixp15 220 215|PAGE
Xixp23 183 174|PAGE
Xixp56 374 543]ABI

Xgap84 196 217|PAGE
Xtxp21 170 175|PAGE
Xtxp88 103 122|PAGE
Xtxp33 225 230|PAGE
Xtxp12 130 150]PAGE
Xtxp230 195 210|PAGE
Xtxp20 205 215|PAGE
Xixp06 130 105|PAGE
Xtxp298 202 184| PAGE
Xtxp25 132 150|PAGE
Xtxp289 280 300|PAGE
Xtxp248 210 260{PAGE
Xtxp57 245 255|PAGE
Xixp141 150 145|PAGE
Xtxp149 171 167|ABI

36



37
37  NON-DENATURING PAGE

(POLY ACRYLAMIDE GEL ELECTROPHORESIS)

1 pl of loading dye (orange red + EDTA + NaCl + Glycerol) was added to 3 ul of

PCR product. From these mixture, loaded the 2 pl of sample into the 6% non-denaturing

PAGE gel.

The gel was prepared using

52.5ml of doubled distilled water

7.5ml of 10 X TBE buffer

15ml of Acrylamide: Bis-acrylamide (29:1) solution
450p! of Ammonium Per Sulphate (APS) and

100p! of TEMED.

75ml total

Along with the samples, 100 bp marker (50 ng/ul) was also loaded in the first and
last lane of the gel to ensure proper sizing of amplified PCR fragments. Most of the
markers used allowed clear differentiation of donor and recurrent parent alleles. The gel
was run at 550 V of constant power in 0.5 x TBE buffer for 3 hours using a Bio Rad gel

sequencing apparatus.
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3.7.1 Silver staining

After running of PAGE gels for required time, the gels were developed by silver

staining.

Sequential steps involved in silver staining

The gel was placed in

>

»

water for 5 minutes.

0.1% CTAB solution for 20 minutes (2 g in 2 lit of water)

0.3% ammonia solution for 15 minutes. (26 ml of 25% ammonia solution
in 2 lit of water)

0.1% silver nitrate solution for 15 minutes (2g of silver nitrate + 8 ml of
IM NaOH in 2 lit of water and add ammonia solution up to the solution
becomes colorless)

water for few seconds

Developer (30 g of Sodium carbonate + 400pl of Formaldehyde in 2 lit of

water)

After developing the bands gels were rinsed in water for 1 minutes and placed it

in fixer (30 ml Glycerol in 2 lit of water) for a few seconds. Continuous shaking is

required throughout the silver staining procedure.

After silver staining of the PAGE gels, the size (base pair) of the intensely

amplified specific bands or alleles for each SSR marker was estimated based on its
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migration relative to the 100 bp DNA ladder (fragments ranging from 100 bp to 1000 bp)

and presence or absence of parental alleles were scored
3.8 DATA COLLECTION AND ANALYSIS
3.8.1 Scoring of the gels

The bands in the gels were scored as A, B, H, OFF and “—* based on their
pattern compared with those of the parents. “A” was defined as the presence of allele
from the recurrent parent (SIAP Dorado/R16), “B” was defined as the presence of allcle
from B35, “H” was defined as the heterozygous (presence of both recurrent and donor
parent alleles), “OFF” was defined as an allele from neither from donor parent nor from

the recurrent parent allele and “—* was a missing sample.
3.8.2 Data analysis
Data was analyzed by Graphical Genotyper (GGT)
A graphical representation of molecular marker data is an important tool in the
process of selection and evaluation of plant material. The GGT computer program (Ralph

van Berloo, 2001) enables representation of molecular marker data by simple

chromosome drawings in several ways.



3.83 Viewing the graphical genotypes

When a GGT data set has been constructed it can be opened by GGT. Several
linkage groups can be opened simultaneously. GGT draws a graphical representation of
the data in two ways
A) Arranged by linkage group and

B) Arranged by individual.

The differences between these two drawing modes are schematically drawn. The
‘by linkage group’ viewing mode is sclected by default. This will show the first linkage
group of all individuals next to each other. It is possible to display only a subset of the

population.

The other mode for viewing graphical genotypes is ‘by individual’. This mode is
useful when several linkage groups of one plant or line need to be viewed together. Per
individual, all linkage groups that have been opened are displayed next to each other,

resulting in a partial or complete overview of a particular individual genome.

When the data indicate that a crossover event has occurred in between two
markers, the exact location of the crossover is unknown. GGT uses the most probable
position for the crossover, exactly in the middle of the two markers, to change the color-
coding. Caution should be taken when interpreting crossover events, especially
crossovers qccurring between markers that are positioned at large distances from each

other.
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3.84  Selection

In ‘Linkage Group’ viewing mode, it is possible to specify a desired (marker)
genotype for several linkage groups. Only the graphical genotypes of individuals that
match this genotype are drawn and a list of these individuals is presented. Selection is
done by demanding specific markers to carry an allele of the desired genotypes. In this

way a population can be screened very efficiently for regions of interest.

3.9 RECOMBINATION FREQUENCIES

Kosambi’s map function (Kosambi., 1944)
It is possible to calculate the recombination fraction if we know the map distance
between the markers.
3.9.1 Expected recombination fraction
p =1/2(1-¢%)
Where
p = observed recombination fraction
d = map distance between two markers in Morgans

39.2 Observed recombination fraction

Number of recombinants

Crossing over %=
Total number of individuals screened

1% of crossing over = 1 map unit in centi Morgans

After calculating the crossing over %, it is converted to map units and recombination

fractions were calculated using Kosambi’s function.
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CHAPTER IV

RESULTS

4.1 CHECKING THE DNA CONCENTRATION

After isolating the DNA, the samples were loaded into 1.2% ready-made agarose
gel for testing the DNA quantity and quality, along with the standards. If the bands were
clear, this indicate the good quality of the DNA. If they showed a smear, DNA was re-
extracted from those individuals. DNA concentrations were assessed with the
Spectrafluor Plus Spectrophotometer using Picogreen™. Figure 4 shows the quality, and

gives an indication of the quantity, of DNA of BC4F; R16 plate 1.

Likewise DNA quality and quantity was assessed for all generations and dilutions

were made accordingly to reach final concentrations of 2.5 ng/pl.

PCR was done with selected primers for both foreground and background
selection for allgenerations [Table 3 (a)&(b)]. After the PCR reaction was completed,
PCR products were loaded onto 6% PAGE gels. Following electrophoresis and silver

staining, the bands were scored as compared to the parental alleles.



Fig 4: DNA quality testing in 1.2% ready to run agarose gel of BC,F, R16
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Figure 5: Graphical representation (Chromatogram) of the marker Xtxp225 for
BC,F, R16 analysed through ABI Prism 3700.
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42  R16 RECURRENT PARENT 44

For recurrent parent R16, a total of 15 foreground and 15 background markers
were screened (Table 4). In the BC;F, generation a total of 9 populations and in the
BC4F, generation a total of 8 populations were genotyped. Figure 6(a & b) shows the
amplified PCR products of Xtxp2/0 and Xtxp298/Xtxp34 on 6% PAGE gel for the

generations BC3F) R16 and BC,F, R16, respectively.

4.3  ISIAP DORADO RECURRENT PARENT

For recurrent parent ISIAP Dorado, a total of 17 foreground markers and 14
background markers were selected for screening (Table 4). In both BCiF; and BC4F,
generations, a total of 7 populations were screened. Figure 7(a and b) shows the amplified
PCR products of the markers Xtxp2l0/Xtxp34 and Xtxp230/X1xp289 for generations

BCsF; and BC4F), respectively.

Tables 6, 7, 8 and 9 show the results (partial scoring sheet) obtained for the SSR
markers present on linkage group A, B and C (foreground and background markers).
Figures 8 (a) and (b), 9 (a) and (b), 10 (a) and (b) and 11 (a) and (b) showing the
Graphical Genotyper overview of segregation of SSR markers and selected individuals in
respective generation.

44 RECOMBINATION FREQUENCIES

Recombination frequencies were calculated according to Kosambi's function

(Kosambi, 1944). Table 10 showing the recombination frequencies across the

generations.
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Figure 6(a): PAGE gel for SSR marker Xtxp210 for BCyF, R16 (96 genotypes)
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Figure 6(b): PAGE gel for the primer Xtxp298, Xtxp34 for BC4F; R16 (52 genotypes)
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Figure 7(a): PAGE gel for SSR marker pair Xtxp210/Xtxp34 for BC,F, ISIAP Dorado
(52 genotypes)

Marker alleles B35/ISIAP Dorado
Xtxp210 = 200/205 bp
Xtxp34 = 330/369 bp

ISTAP Dorado = A allele
B35 =B allele
Heterozygote =H allele

Figure 7(b): PAGE gel for SSR marker pair Xtxp230/Xtxp289 for BC4F, ISIAP Dorado
(96 genotypes)

Marker alleles B35/1 Dorado
Xtxp230 = 190/195 bp
Xtxp289 =290/295 bp

ISIAP Dorado = A allele
B35 =B allele
Heterozygote = H allele

16
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Figure 8(a): Graphical Genotyper overview of segregation of foreground and
background SSR markers in BC:F, R16. Indicated are selected genotypes for
backerossing [Population 2829]
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Figure 8(b): GGT overview of the segregation of SSR marker of four selected

BC3F; R16 individuals
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Figure 9(a): Graphical Genotyper overview of segregation of foreground and
background SSR markers in BC,F; R16. Indicated are selected genotypes for back-

crossing [Population 4431]
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Figure 9(b): GGT overview of the segregation of SSR marker of four selected BC,F,
R16 individuals (individual mode).
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Figure 10(a): Graphical Genotyper overview of segregation of foreground and
background SSR markers in BCF; Isiap Dorado. Indicated are selected genotypes for
back-crossing [Population 3750]
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Figure 11(a): Graphical Genotyper overview of segregation of foreground and
background SSR markers in BC,F, Isiap Dorado. Indicated are selected genotypes for
back-crossing [Population 3399]
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Figure 11(b): GGT overview of the segregation of SSR marker of four selected BC4F1
Isiap Dorado individuals [Population 3399]
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Table10: Recombinarion frequencies calculated across the
generations using Kosambi's map function

Recurrent parent R16
Recombination frequencies for marker pairs present on
sorghum linkage groups C and J

Marker interval Expected Observed recombination frequency
recombination frequency BC3F1 | BC4F1
Linkage group C
Xtx 34- Xtxp285 8.07 6.23 3.85
Xtxp34-Xtxp31 37.145 24157 29.265
Xixp34-Xtxp33 39.26 32.8 -
Xtxp285-Xtxp31 34.67 30.35 25.7
Xixp285-Xtxp33 37.2 30.35 -
Xtxp31-Xtxp33 8.25 24.157 -
Linkage group J
[Xtxp225-Xtxp23)| 12.85 328 | 17.8

Recurrent parent ISIAP Dorado
Recombination frequencies for marker pairs present on
sorghum linkage groups B and J

Marker interval Expected Observed recombination frequency
recombination frequency BC3F2 | BC4F1
Linkage group B
Xtxp56-Xgap84 8.25 - 14.05
Xixp56-Xtxp100 26.62 28.15 27
Xtxp56-Xtxp207 27.55 28.15 31.65
Xtxp56-Xtxp296 28.415 31.65 24.3
Xgap84-Xtxp100 22.01 28.15 27
Xgap84-Xtxp207] 23.01 28.15 29.44
Xgap84-Xtxp296 24.15 31.65 31.65
Xtxp100-Xtxp207 1.965 17.6 31.65
Ktxp100-Xtxp296 3.845 14.7 9.57
Kixp207-Xtxp294 1.965 11.45 35.238
Linkage group J
| Xtxp15-Xtxp225 7.565 - 21.29
Xtxp15-Xtxp23 18.44 18.99 33.53
(Xtxp225-Xtxp23 12.85 - 29.426
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CHAPTER V

DISCUSSION

Using marker-assisted selection, we are able to introgress genomic regions from
stay-green donor B35 to recurrent parents (ISIAP Dorado and R16) over two generations.
Markers linked to stay-green QTL regions to be transferred from donor B35 to recurrent
parents, ISIAP Dorado or R16 were used for foreground selection whereas unlinked
markers, evenly distributed over genomic regions to be retained of the recurrent parent,
were used for background selection. Based on the genotype data, individuals
heterozygous (BCsF,, BC.F, generation) or homozygous (BC3F; generation) for markers
spanning stay-green QTLs were selected during the first step of selection (foreground
selection). Among the selected individuals, those genotypes with minimal presence of
donor alleles unlinked to stay-green QTLs were selected during the second step

(background selection).

5.1  CRITERIA FOR SELECTING THE INDIVIDUALS

Markers, especially foreground markers, are taken into consideration for selection
of genotypes. The genotypes having ‘B/H’ allele for foreground markers and ‘A’ allele
for background markers are selected. ‘H' allele, in future, because of recombination it
may recover ‘A/B’ allele. Presence of ‘A’ allele for background markers and ‘B/H’ allele
for foreground markers ensures the recovery of recurrent parent genome (R16/ISIAP

Dorado) with stay-green trait. Genotypes meeting above criteria were selected and
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advanced to next generations. Genotypes showing ‘A’ allele for all (foreground and
background) markers were selected as control. In a population if a marker showing same
allele for all genotypes, one or two individuals meeting the selection criteria were

selected as representatives of the population.

For selected individuals, the markers showing ‘B/H’ allele and not amplified
markers during current generation were screened in the next generation. The markers
showing the ‘A’ allele for the markers are not tested in more advanced generations as
neither selfing or backcrossing are expected to change the genomic composition of these
regions in which recovery of recurrent parent genome has been accomplished with
respect to the particular marker. Once achieving the recurrent parent genome recovery for
all markers outside the targeted stay-green QTLs introgression regions, selected QTLs
introgression heterozygotes are selfed and the resulting BCnF, individuals marker
genotyped to identify QTLs introgression homozygotes, that are then multiplied by
selfing to provide seed for field-testing to evaluatc the stay-green character
phenotypically. After testing, if the stay-green QTLs introgression line is found
significantly better than the controls, it can be released as a new variety or itself used as

an elite donor of the terminal drought tolerance (stay-green) character.

52  RECURRENT PERENT R16
52.1 BC;F,R16

Out of 15 BCsF; individuals screened in population 2829 (as e.g.), 5 individuals
were selected and advanced to BC4F, [Figure8 (a) and (b)]. These genotypes were

targeted for QTLs Stg2, Stg3? Stg4? and StgB. Based on the genotyping results from 9
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populations (114 individuals), 33 individuals were selected and advanced to the next

generation [Table 11(a)]

5§22 BCF,R16

Out of 50 BC,F) individuals screened in population 4431 (as e.g.), 13 individuals
were selected and advanced to the next generation [Figure 9 (a) and (b)}. The genotypes
were targeted for QTLs Stgl, Stg2, Stg3? Stgd? and StgB. It is observed that markers
linked to the QTLs present on linkage group C are still segregating. So the sclected
individuals were also screened for markers, which are not linked to the QTL regions to
increase recovery of the recurrent parent genome in regions that do not contribute to the
stay-green trait. Likewise the individuals from all eight BC4F,populations (129
individuals) were screened and 34 selected individuals from all populations are advanced
to BCsF, [Table 11(a)].

5.3  RECURRENT PARENT ISIAP DORADO

5.3.1 BC,F; ISIAP Dorado

A total of 46 BC5F, individuals were screened from population 3750 (as e.g.), but
only three individuals were selected [Figure10 (a) and (b)]. And these were targeted for
QTLs Stgl, Stg2, Stg3? Stg4, and SigB. A total 7 populations consisting 356 individuals
were genotyped and advanced to the next generation by selfing (Table 11(b)). The selfed
seeds from selected BC3F, individuals were sown in the field for phenotypic evaluation
of the stay-green character during rabi season 2003/2004. This phenotypic evaluation is

expected to confirm the proper introgression of the target QTLs from the donor parent.
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53.2 BC,F, ISIAP Dorado

Out of 18 BC4F, individuals genotyped, 10 genotypes were selected from the
population 3399 (as e.g.), for QTLs Srgl, Stg2, Stg3? Stg4, and StgB [Figurell (a) and
(b)]. Total 7 populations consisting 68 individuals were genotyped and 28 individuals

were selected and advanced to the next generation for selfing [Table 11(b)).

54 RECOMBINATION FREQUENCIES

Recombination frequencies were calculated for two backcross generations of
recurrent parent R16 with selected genotypes (BC3F, and BC4F)) and recurrent parent
ISIAP Dorado with selected genotypes (BCiF; and BC4F)). For each generation, the
number of recombinants present was determined, the crossing-over percentage calculated
and the percentage converted into Kosambi’s map units (in ¢cM) (Kosambi, 1944). The
observed recombination frequencies were compared with the expected recombination
fractions. Expected recombination frequencies were calculated based on the distance
between the respective markers, using the linkage map developed by Bhattramakki et al

(2000), with the help of Kosambi’s map function (Table 10).

When the expected and calculated recombination frequencies are compared, it is
noticed that in general they are very similar. However there are a few differences; for
instance the distance between the markers Xtxp/00 and Xtxp207 present on the linkage
group B according to Bhattramakki et al. (2000) is 1 cM whereas the calculated distance
between these two markers based on the recombination frequencies is 20 cM for back-

cross generation BC3F; of ISIAP Dorado with selected genotypes. The reasons for



deviations between expected and observed frequencies might be the small population size
analyzed (causing sample bias) or the parents used in the breeding program
(Bhatttramakki et al. used the F; population derived from the BTx623 x 1$3620C for

developing the linkage map whereas we used BC; and BC, populations derived from the

cross B35 x ISIAP Dorado/R16).

5.5  EFFICIENCY OF MARKER ASSISTED SELECTION

Marker-assisted selection has the potential to greatly reduce the cost and time for
selecting desirable genotypes with traits of interest (Morris ef al., 2003). Marker-assisted
selection is more efficient and cost-effective than conventional selection for traits with a
low heritability and a high phenotypic trait effect (Hospital et al., 1997). Through MAS,
we advanced four generations within two years. When conventional breeding strategies
are applied, the advancement of four backcross generations with phenotypic selection for
the stay-green trait will take at least four years. Conventional breeding schemes feature
low costs during the research stage, but require longer time to complete, whereas MAB
features high cost during the research stage, but it takes less time to complete. Release
stage and adoption stages are assumed to be identical to those of conventional selection in
terms of cost as well as duration in case of MAS. From an economic point of view, the
advantage of MAS thus derives from the fact that the release and adoption stages move
forward in time. This suggests that MAS needs more initial investment but is worthwhile
because by accelerating the rate of varietal release, MAS generates large additional

economic benefits (Morris et al., 2003).
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The efficiency of MAS is generally reduced with increasing genetic distance
between the markers applied. Hospital et al. (1997), based on the simulation studies,
recommended an optimal distance between two adjacent markers of about 5-10 cM. We
observed that the frequency of recurrent genotypes among the selected progeny increases
as the selection intensity for recurrent genotypes increases, as reported by Knapp (1998).
Practically speaking, the number of markers that must be used decrcases in each
successive backcross generation (Table 12), because once the recurrent parent allele has
been fixed at any given non-target locus, it is not necessary to continue screening at the
locus in subsequent generations since the locus will remain homozygous for the rest of
the selection (Morris et al., 2003). Therefore in BC3;F, R16 on an average 27
markers/population were tested and in BC4F, R16 the number of markers were reduced to
10 markers/population. In BC3F, ISIAP Dorado, on an average 20 markers were screened
and reduced to 13 in BC4F, generation (Table 12). The decreasing number of markers
reflects the increasing percentage of recurrent parent that is fixed at each backcross
generation.

Table 12: List of no. of individuals and markers tested in each

generation
R16 ISIAP Dorado
Generation No. of markers/ No. of No. of No. of
population individuals | markers/population | individuals
BC/F, 13 19 13 33
BC,F, 15 140 16 190
BC3Fy 27 114 30 93
BC;F, - - 20 356
BC4F) 10 129 13 68

66



The fact that MAS technology is so challenging should not be a reason for
discouragement, but instead, a wake-up call for more ingenuity, better planning and
execution of marker-assisted breeding programs. MAS for quantitative traits is in an
important transition phase, and the field is on the verge of producing convincing results.
Technology development, including automation, allele specific diagnostics and DNA
chips, will make marker-assisted selection approaches based on large-scale screening

much more powerful and effective (Young, 1999).

5.6 RECOMMENDATIONS FOR THE FUTURE STUDY

Phenotyping of the stay-green behaviour for the selected individuals is nceded.
Introgression of any trait should be confirmed phenotypically after several generations of
genotyping. In this context, the selected genotypes in BC3F; ISIAP Dorado and R16 are
being evaluated for stay-green QTLs during rabi season 2003/2004. Fine mapping for
these stay-green QTLs is possible, once the presence of different stay-green QTLs is
phenotypically confirmed. ESTSs can be generated from this work for better understanding
of this complex trait. Comparative genome mapping will help us to study this trait in

other related cereals.
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CHAPTER VI

SUMMARY



SUMMARY

Sorghum is the fifth most important cereal crop globally after wheat, maize, rice
and barley. Sorghum, a C, grass, is grown in more than 80 countries mostly in tropical
and sub-tropical regions. In these regions, drought stress is perhaps the most important

abiotic constraint to sorghum production.

The stay-green trait allows the plant to literally stay green for a longer period
during unrelieved drought stress that occurs after flowering. The genotypes not having
this trait start senescence when exposed to drought stress. Stay-green allows the
continued accumulation of assimilates, resulting in higher yields under conditions of
post-flowering drought stress. Stay-green is the best-characterized component of terminal
drought tolerance available in sorghum. It has also been reported to be associated with
other traits like charcoal rot resistance (Tenkouano et al., 1993) and superior ruminant

quality of grain crop residues produced under conditions of terminal drought stress.

Putative QTLs for the stay-green trait, derived from source B35, have been
identified in six recently published studies (Tuinstra et al., 1997; Crasta et al., 1999; Xu
et al., 2000; Tao et al., 2000; Subudhi et al., 2000; and Sanchez et al., 2002). Using the
linkage map' developed by Bhattramakki et al. (2000) as a standard reference, the
ICRISAT sorghum breeding team identified six consensus genomic regions associated
with the stay-green trait from the B35 source. The identification of these consensus QTL

regions provided an opportunity for marker-assisted breeding (MAB) for introgression of

these stay-green QTLs from B35 to elite recurrent parents.

68



We aimed at transfer of QTLs from B35 to recurrent parents, ISIAP Dorado
(originally released in Central America) and R16 (a rabi-adapted breeding line of Indian
origin). Both recurrent parents have been advanced to BCi and BC, generations for
introgression of QTLs from the donor parent using SSR marker-assisted selection (MAS)
targeting the six consensus stay-green QTLs. In this study, all genotypes in two
generations from each recurrent parent were screened with foreground markers to
identify the individuals having the QTL alleles of our interest and also screened with
background markers to further select among these individuals at all other loci for

recurrent parent alleles. Selected individuals are advanced to the next generation.

Based on the number of recombinants observed between each pair of linked
markers, recombination frequencies were calculated. The expected and calculated
recombination frequencies were slightly different. Possible reasons for these deviations
are small population sizes of the segregating gencrations, small numbers of marker data
points studied, and mapping population specificity of recombination rates and map
distance (calculated map distance according to the number of recombinants observed)
varies greatly when compared with the distance reported between the respective markers
in the linkage map of Bhattramakki er al. (2000). Phenotyping studies are required to
confirm the introgression of the targeted stay-green QTLs from the B35 donor parent.
Further, fine mapping, ESTs generation from near-isogenic pairs, and comparative
genome mapping is possible for better understanding of the stay-green trait. These studies
could facilitate more efficiently exploiting QTLs for stay-green in a MAB program to

benefit global sorghum breeding efforts.
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