Departmental Progress Report-20 PULSE ENTOMOLOGY

6188960083

PULSE ENTOMOLOGY (PIGEONPEA) REPORT OF WORK

June 1985 - May 1986

International Crops Research Institute for the Semi-Arid Tropics Patancheru, Andhra Pradesh 502 324, India

CONTENTS

Pulse Entomology Staff List Purpose of this report Introduction Project: CP-124(85)IC BOST PLANT RESISTANCE TO INSECT PESTS IN CHICKPEA, PIGEONPEA AND ITS RELATIVES, SCREENING AND IDENTI- PICATION OF MECHANISMS Objectives Trials of 1985-86 Germplasm screening Testing of pigeonpea entomology selections at Patancheru and Hisar Testing of short duration selections - unsprayed Testing of short duration selections Testing of medium-duration selections Screening of disease resistant lines for insect pests resistance under pesticide free condition AICPIP collaborative trials 1985-86 Pest damage in wild relatives of pigeonpea Multilocation testing of entomology selections Pest incidence and damage to borer resistant and susceptible genotypes in sole and mixed situations Testing of borer resistant/susceptible cultivars in isolations Studies of mechanisms of resistance to Haliothis in laboratory and field Laboratory studies on oviposition preference of moths Studies on antibiosis to Heliothis larvae in laboratory Field studies of movement of Heliothis larvae Project: P-110(85)IC STUDIES ON THE PIGEONPEA PODPLY, MELANAGROMYIA ORTUBEA INCLUDING INVESTIGATIONS OF THE MECHANISMB OF HOST PLANT RESISTANCE	ir No	2.
Purpose of this report Introduction Project: CP-124(85)IC BOST PLANT RESISTANCE TO INSECT PESTS IN CHICKPEA, PIGEOMPEA AND ITS RELATIVES, SCREENING AND IDENTI- PICATION OF MECHANISMS Objectives Trials of 1985-86 Germplasm screening Testing of pigeones entomology selections at Patancheru and Hisar Testing of very short-duration selections - unsprayed Testing of short duration selections Testing of short duration selections Screening of long-duration selections Screening of disease resistant lines for insect pests resistance under pesticide free condition AICPIP collaborative trials 1985-86 Pest damage in wild relatives of pigeonpea Multilocation testing of entomology selections Pest incidence and damage to borer resistant and susceptible genotypes in sole and mixed situations Testing of borer resistant/susceptible cultivars in isolations Studies of mechanisms of resistance to Heliothia in laboratory and field Laboratory studies on oviposition preference of moths Studies on antibiosis to Heliothis larvee in laboratory Field studies of movement of Heliothis larvee Project: P-110(85)IC STUDIES ON THE PIGEONPEA PODPLY, MELANAGEOHISA OF BOST PLANT RESISTANCE	4	4
Introduction Project: CP-124(85)IC BOST PLANT RESISTANCE TO INSECT PESTS IN CHICKPRA, PIGEOMPEA AND ITS RELATIVES, SCREENING AND IDENTI- PICATION OF MECHANISMS Objectives Trials of 1985-86 Germplasm screening Testing of pigeonpea entomology selections at Patancheru and Hisar Testing of very short-duration selections at Patancheru and Hisar Testing of wort duration selections Testing of medium-duration selections Testing of medium-duration selections Screening of disease resistant lines for insect pests resistance under pesticide free condition AICPIP collaborative trials 1985-86 Pest damage in wild relatives of pigeonpea Multilocation testing of entomology selections Pest incidence and damage to borer resistant and susceptible genotypes in sole and mixed situations Studies of mechanisms of resistance to Heliothis in laboratory and field Laboratory studies on oviposition preference of moths Studies on antibiosis to Heliothis larvae in laboratory Field studies of movement of Heliothis larvae Project: P-110(85)IC STUDIES ON THE PIGEONPEA PODPLY, MELANAGROHYIA OMTURA INCLUDING INVESTIGATIONS OF THE MECHANISMS OF BOST PLANT RESISTANCE		•
Project: CP-124(85)IC BOST PLANT RESISTANCE TO INSECT PESTS IN CHICKPEA, PIGEONPEA AND ITS RELATIVES, SCREENING AND IDENTI- PICATION OF MECHANISMS Objectives Trials of 1985-86 Germplasm screening Testing of pigeonpea entomology selections at Patancheru and Hisar Testing of very short-duration selections - unsprayed Testing of short duration selections Testing of short duration selections Screening of disease resistant lines for insect pests resistance under pesticide free condition AICPIP collaborative trials 1985-86 Pest damage in wild relatives of pigeonpea Multilocation testing of entomology selections Pest incidence and damage to borer resistant and susceptible genotypes in sole and mixed situations Studies of mechanisms of resistance to Heliothig in laboratory and field Laboratory studies on oviposition preference of moths Studies on feeding preference of Heliothis larvae Studies of movement of Heliothis larvae in laboratory Field studies of movement of Heliothis larvae Project: P-110(85)IC STUDIES ON THE PIGEONPEA PODPLY, MELANAGROMYEA OF HOST PLANT RESISTANCE	ī	ī
<pre>Project: CP-124(85)IC HOST PLANT RESISTANCE TO INSECT PESTS IN CHICKPRA, PIGEONPEA AND ITS RELATIVES, SCREENING AND IDENTI- PICATION OF MECHANISMS Objectives Trials of 1985-86 Germplasm screening Testing of pigeonpea entomology selections at Patancheru and Hisar Testing of very short-duration selections - unsprayed Testing of short duration selections Testing of medium-duration selections Testing of long-duration selections Screening of disease resistant lines for insect pests resistance under pesticide free condition AICPIP collaborative trials 1985-86 Pest damage in wild relatives of pigeonpea Multilocation testing of entomology selections Testing of borer resistant and susceptible genotypes in sole and mixed situations Testing of borer resistant/susceptible cultivars in isolations Studies of mechanisms of resistance to Heliothim in laboratory and field Laboratory studies on oviposition preference of moths Studies on feeding preference of Heliothim larvae Studies on antibiosis to Heliothim larvae in laboratory Field studies of movement of Heliothim larvae Project: P-110(85)IC STUDIES ON THE PIGEONPEA PODPLY, MELANAGROHYIA OPTUSA INCLUDING INVESTIGATIONS OF THE MECHANISMS OF HOST PLANT RESISTANCE</pre>	_	
 BOST PLANT RESISTANCE TO INSECT PESTS IN CHICKPEA, PIGEONPEA AND ITS RELATIVES, SCREENING AND IDENTI- PICATION OF NECHANISMS Objectives Trials of 1985-86 Germplasm screening Testing of pigeonpea entomology selections at Patancheru and Hisar Testing of very short-duration selections - unsprayed Testing of short duration selections Testing of medium-duration selections Testing of disease resistant lines for insect pests resistance under pesticide free condition AICPIP collaborative trials 1985-86 Pest damage in wild relatives of pigeonpea Multilocation testing of entomology selections Pest incidence and damage to borer resistant and susceptible genotypes in sole and mixed situations Testing of borer resistant/susceptible cultivars in isolations Studies of mechanisms of resistance to <u>Beliothim</u> in laboratory and field Laboratory studies on oviposition preference of moths Studies on antibiosis to <u>Beliothim</u> larvae in laboratory Project: P-110(85)IC STUDIES ON THE PIGEONPEA PODPLY, <u>MELANAGROMYZA</u> OBTUSA NUCLUDING INVESTIGATIONS OF THE MECHANISMS OF BOST PLANT RESISTANCE 		
PIGEONPEA AND ITS RELATIVES, SCREENING AND IDENTI- PICATION OF MECHANISMS Objectives Trials of 1985-86 Germplasm screening Testing of pigeonpea entomology selections at Patancheru and Hisar Testing of very short-duration selections - unsprayed Testing of short duration selections Testing of long-duration selections Testing of long-duration selections Screening of disease resistant lines for insect pests resistance under pesticide free condition AICPIP collaborative trials 1985-86 Pest damage in wild relatives of pigeonpea Multilocation testing of entomology selections Pest incidence and damage to borer resistant and susceptible genotypes in sole and mixed situations Testing of borer resistant/susceptible cultivars in isolations Studies of mechanisms of resistance to Heliothis in laboratory and field Laboratory studies on oviposition preference of moths Studies on antibiosis to Heliothis larvae in laboratory Field studies of movement of Heliothis larvae Project: P-110(85)IC STUDIES ON THE PIGEONPEA PODPLY, MELANAGROMYZA OBTUSA INCLUDING INVESTIGATIONS OF THE MECHANISMS OF BOST PLANT RESISTANCE		
<pre>PICATION OF MECHANISMS Objectives Trials of 1985-86 Germplasm screening Testing of pigeonpea entomology selections at Patancheru and Hisar Testing of very short-duration selections unsprayed Testing of short duration selections Testing of long-duration selections Testing of long-duration selections Screening of disease resistant lines for insect pests resistance under pesticide free condition AICPIP collaborative trials 1985-86 Pest damage in wild relatives of pigeonpea Multilocation testing of entomology selections Pest incidence and damage to borer resistant and susceptible genotypes in sole and mixed situations Testing of metanisms of resistance to Heliothis in laboratory and field Laboratory studies on oviposition preference of moths Studies on feeding preference of Heliothis larvae Project: P-110(85)IC STUDIES ON THE PIGEONPEA PODPLY, MELANAGROMYZA OBTUGA INCLUDING INVESTIGATIONS OP THE MECHANISMS OF BOST PLANT RESISTANCE </pre>		
<pre>Objectives Trials of 1985-86 Germplasm screening Testing of pigeonpea entomology selections at Patancheru and Hisar Testing of very short-duration selections - unsprayed Testing of short duration selections Testing of long-duration selections Screening of disease resistant lines for insect pests resistance under pesticide free condition AICPIP collaborative trials 1985-86 Pest damage in wild relatives of pigeonpea Multilocation testing of entomology selections Pest incidence and damage to borer resistant and susceptible genotypes in sole and mixed situations Testing of borer resistant/susceptible cultivars in isolations Studies of mechanisms of resistance to <u>Heliothia</u> in laboratory and field Laboratory studies on oviposition preference of moths Studies on feeding preference of <u>Heliothis</u> larvae Studies on antibiosis to <u>Heliothis</u> larvae in laboratory Field studies of movement of <u>Heliothis</u> larvae Project: P-110(85)IC STUDIES ON THE PIGEONPEA PODPLY, <u>MELANAGROHYIA</u> OBTUSA INCLUDING INVESTIGATIONS OF THE MECHANISMS OF HOST PLANT RESISTANCE</pre>		
Trials of 1985-86 Germplasm screening Testing of pigeonpea entomology selections at Patancheru and Hisar Testing of very short-duration selections - unsprayed Testing of short duration selections Testing of medium-duration selections Testing of long-duration selections Screening of disease resistant lines for insect pests resistance under pesticide free condition AICPIP collaborative trials 1985-86 Pest damage in wild relatives of pigeonpea Multilocation testing of entomology selections Pest incidence and damage to borer resistant and susceptible genotypes in sole and mixed situations Testing of borer resistant/susceptible cultivars in isolations Studies of mechanisms of resistance to <u>Heliothis</u> in laboratory and field Laboratory studies on oviposition preference of moths Studies on feeding preference of <u>Heliothis</u> larvae Studies on feeding preference of <u>Heliothis</u> larvae Project: P-110(85)IC STUDIES ON THE PIGEONPEA PODPLY, <u>MELANAGROMYIA</u> OBTUBA INCLUDING INVESTIGATIONS OF THE MECHANISMS OF BOST PLANT RESISTANCE	2	2
Germplasm screening Testing of pigeonpea entomology selections at Patancheru and Hisar Testing of very short-duration selections - unsprayed Testing of short duration selections Testing of long-duration selections Testing of long-duration selections Screening of disease resistant lines for insect pests resistance under pesticide free condition AICPIP collaborative trials 1985-86 Pest damage in wild relatives of pigeonpea Multilocation testing of entomology selections Pest incidence and damage to borer resistant and susceptible genotypes in sole and mixed situations Testing of borer resistant/susceptible cultivars in isolations Studies of mechanisms of resistance to <u>Heliothim</u> in laboratory and field Laboratory studies on oviposition preference of moths Studies on antibiosis to <u>Heliothim</u> larvae in larvae Studies of movement of <u>Heliothim</u> larvae Project: P-110(85)IC STUDIES ON THE PIGEONPEA PODPLY, <u>MELANAGROMYZA</u> OBTUSA INCLUDING INVESTIGATIONS OF THE MECHANISMS OF HOST PLANT RESISTANCE	2	2
Testing of pigeonpea entomology selections at Patancheru and Hisar Testing of very short-duration selections - unsprayed Testing of medium-duration selections Testing of long-duration selections Screening of disease resistant lines for insect pests resistance under pesticide free condition AICPIP collaborative trials 1985-86 Pest damage in wild relatives of pigeonpea Multilocation testing of entomology selections Pest incidence and damage to borer resistant and susceptible genotypes in sole and mixed situations Testing of borer resistant/susceptible cultivars in isolations Studies of mechanisms of resistance to Heliothis in laboratory and field Laboratory studies on oviposition preference of moths Studies on antibiosis to Heliothis larvae in laboratory Field studies of movement of Heliothis larvae Project: P-110(85)IC STUDIES ON THE PIGEONPEA PODPLY, MELANAGROMYZA OBTUSA INCLUDING INVESTIGATIONS OF THE MECHANISMS OF HOST PLANT RESISTANCE	3	3
at Patancheru and Hisar Testing of very short-duration selections - unsprayed Testing of short duration selections Testing of long-duration selections Testing of long-duration selections Screening of disease resistant lines for insect pests resistance under pesticide free condition AICPIP collaborative trials 1985-86 Pest damage in wild relatives of pigeonpea Multilocation testing of entomology selections Pest incidence and damage to borer resistant and susceptible genotypes in sole and mixed situations Testing of borer resistant/susceptible cultivars in isolations Studies of mechanisms of resistance to Heliothis in laboratory and field Laboratory studies on oviposition preference of moths Studies on feeding preference of Heliothis larvae Studies on antibiosis to Heliothis larvae in laboratory Field studies of movement of Heliothis larvae Project: P-110(85)IC STODIES ON THE PIGEONPEA PODPLY, MELANAGROMYZA OBTUSA INCLUDING INVESTIGATIONS OF THE MECHANISMS OF HOST PLANT RESISTANCE	-	
Testing of very short-duration selections - unsprayed Testing of short duration selections Testing of medium-duration selections Screening of disease resistant lines for insect pests resistance under pesticide free condition AICPIP collaborative trials 1985-86 Pest damage in wild relatives of pigeonpea Multilocation testing of entomology selections Pest incidence and damage to borer resistant and susceptible genotypes in sole and mixed situations Testing of borer resistant/susceptible cultivars in isolations Studies of mechanisms of resistance to <u>Heliothis</u> in laboratory and field Laboratory studies on oviposition preference of moths Studies on feeding preference of <u>Heliothis</u> larvae Studies of antibiosis to <u>Heliothis</u> larvae in laboratory Field studies of movement of <u>Heliothis</u> larvae Project: P-110(85)IC STUDIES ON THE PIGEONPEA PODPLY, <u>MELANAGROMYZA</u> OBTUSA INCLUDING INVESTIGATIONS OF THE MECHANISMS OF HOST PLANT RESISTANCE		
unsprayed Testing of short duration selections Testing of medium-duration selections Testing of long-duration selections Screening of disease resistant lines for insect pests resistance under pesticide free condition AICPIP collaborative trials 1985-86 Pest damage in wild relatives of pigeonpea Multilocation testing of entomology selections Pest incidence and damage to borer resistant and susceptible genotypes in sole and mixed situations Testing of borer resistant/susceptible cultivars in isolations Studies of mechanisms of resistance to <u>Heliothis</u> in laboratory and field Laboratory studies on oviposition preference of moths Studies on feeding preference of <u>Heliothis</u> larvae Studies on antibiosis to <u>Heliothis</u> larvae in laboratory Field studies of movement of <u>Heliothis</u> larvae Project: P-110(85)IC STODIES ON THE PIGEONPEA PODPLY, <u>MELANAGROMYZA</u> OBTUSA INCLUDING INVESTIGATIONS OF THE MECHANISMS OF HOST PLANT RESISTANCE		
Testing of short duration selections Testing of medium-duration selections Testing of long-duration selections Screening of disease resistant lines for insect pests resistance under pesticide free condition AICPIP collaborative trials 1985-86 Pest damage in wild relatives of pigeonpea Multilocation testing of entomology selections Pest incidence and damage to borer resistant and susceptible genotypes in sole and mixed situations Testing of borer resistant/susceptible cultivars in isolations Studies of mechanisms of resistance to Heliothim in laboratory and field Laboratory studies on oviposition preference of moths Studies on feeding preference of Heliothim larvae Studies on antibiosis to Heliothim larvae in laboratory Field studies of movement of Heliothim larvae Project: P-110(85)IC STUDIES ON THE PIGEONPEA PODPLY, MELANAGROMYZA OBTUSA INCLUDING INVESTIGATIONS OF THE MECHANISMS OF HOST PLANT RESISTANCE	5	5
Testing of medium-duration selections Testing of long-duration selections Screening of disease resistant lines for insect pests resistance under pesticide free condition AICPIP collaborative trials 1985-86 Pest damage in wild relatives of pigeonpea Multilocation testing of entomology selections Pest incidence and damage to borer resistant and susceptible genotypes in sole and mixed situations Testing of borer resistant/susceptible cultivars in isolations Studies of mechanisms of resistance to Heliothia in laboratory and field Laboratory studies on oviposition preference of moths Studies on feeding preference of Heliothia larvae Studies on antibiosis to Heliothia larvae in laboratory Field studies of movement of Heliothis larvae Project: P-110(85)IC STUDIES ON THE PIGEONPEA PODPLY, MELANAGROHYZA OBTUSA INCLUDING INVESTIGATIONS OF THE MECHANISMS OF HOST PLANT RESISTANCE	6	6
Testing of long-duration selections Screening of disease resistant lines for insect pests resistance under pesticide free condition AICPIP collaborative trials 1985-86 Pest damage in wild relatives of pigeonpea Multilocation testing of entomology selections Pest incidence and damage to borer resistant and susceptible genotypes in sole and mixed situations Testing of borer resistant/susceptible cultivars in isolations Studies of mechanisms of resistance to Heliothim in laboratory and field Laboratory studies on oviposition preference of moths Studies on feeding preference of Heliothim larvae Studies on antibiosis to Heliothim larvae in laboratory Pield studies of movement of Heliothim larvae Project: P-110(85)IC STUDIES ON THE PIGEONPEA PODPLY, MELANAGROHYZA OBTUSA INCLUDING INVESTIGATIONS OF THE MECHANISMS OF HOST PLANT RESISTANCE	16	6
Screening of disease resistant lines for insect pests resistance under pesticide free condition AICPIP collaborative trials 1985-86 Pest damage in wild relatives of pigeonpea Multilocation testing of entomology selections Pest incidence and damage to borer resistant and susceptible genotypes in sole and mixed situations Testing of borer resistant/susceptible cultivars in isolations Studies of mechanisms of resistance to Heliothis in laboratory and field Laboratory studies on oviposition preference of moths Studies on feeding preference of Heliothis larvae Studies on antibiosis to Heliothis larvae in laboratory Pield studies of movement of Heliothis larvae Project: P-110(85)IC STUDIES ON THE PIGEONPEA PODPLY, MELANAGROMYSA OBTUSA INCLUDING INVESTIGATIONS OF THE MECHANISMS OF HOST PLANT RESISTANCE	18	8
<pre>insect pests resistance under pesticide free condition AICPIP collaborative trials 1985-86 Pest damage in wild relatives of pigeonpea Multilocation testing of entomology selections Pest incidence and damage to borer resistant and susceptible genotypes in sole and mixed situations Testing of borer resistant/susceptible cultivars in isolations Studies of mechanisms of resistance to Heliothia in laboratory and field Laboratory studies on oviposition preference of moths Studies on feeding preference of Heliothia larvae Studies on antibiosis to Heliothia larvae in laboratory Field studies of movement of Heliothis larvae</pre> Project: P-110(85)IC STUDIES ON THE PIGEONPEA PODPLY, MELANAGROMYEA OBTUSA INCLUDING INVESTIGATIONS OF THE MECHANISMS OF HOST PLANT RESISTANCE		
free condition AICPIP collaborative trials 1985-86 Pest damage in wild relatives of pigeonpea Multilocation testing of entomology selections Pest incidence and damage to borer resistant and susceptible genotypes in sole and mixed situations Testing of borer resistant/susceptible cultivars in isolations Studies of mechanisms of resistance to <u>Heliothis</u> in laboratory and field Laboratory studies on oviposition preference of moths Studies on feeding preference of <u>Heliothis</u> larvae Studies on antibiosis to <u>Heliothis</u> larvae in laboratory Pield studies of movement of <u>Heliothis</u> larvae Project: P-110(85)IC STUDIES ON THE PIGEONPEA PODPLY, <u>MELANAGROHYZA</u> OBTUSA INCLUDING INVESTIGATIONS OF THE MECHANISMS OF HOST PLANT RESISTANCE		_
AICPIP collaborative trials 1985-86 Pest damage in wild relatives of pigeonpea Multilocation testing of entomology selections Pest incidence and damage to borer resistant and susceptible genotypes in sole and mixed situations Testing of borer resistant/susceptible cultivars in isolations Studies of mechanisms of resistance to <u>Heliothis</u> in laboratory and field Laboratory studies on oviposition preference of moths Studies on feeding preference of <u>Heliothis</u> larvae Studies on antibiosis to <u>Heliothis</u> larvae in laboratory Field studies of movement of <u>Heliothis</u> larvae Project: P-110(85)IC STUDIES ON THE PIGEONPEA PODPLY, <u>MELANAGROMYZA</u> OBTUSA INCLUDING INVESTIGATIONS OF THE MECHANISMS OF HOST PLANT RESISTANCE	24	4
<pre>Pest damage in wild relatives of pigeonpea Multilocation testing of entomology selections Pest incidence and damage to borer resistant and susceptible genotypes in sole and mixed situations Testing of borer resistant/susceptible cultivars in isolations Studies of mechanisms of resistance to <u>Heliothia</u> in laboratory and field Laboratory studies on oviposition preference of moths Studies on feeding preference of <u>Heliothia</u> larvae Studies on antibiosis to <u>Heliothia</u> larvae in laboratory Field studies of movement of <u>Heliothia</u> larvae Project: P-110(85)IC STUDIES ON THE PIGEONPEA PODPLY, <u>MELANAGROMYZA</u> <u>OBTUSA</u> INCLUDING INVESTIGATIONS OF THE MECHANISMS OF HOST PLANT RESISTANCE</pre>	24	4
<pre>Multilocation testing of entomology selections Pest incidence and damage to borer resistant and susceptible genotypes in sole and mixed situations Testing of borer resistant/susceptible cultivars in isolations Studies of mechanisms of resistance to Heliothis in laboratory and field Laboratory studies on oviposition preference of moths Studies on feeding preference of Heliothis larvae Studies on antibiosis to Heliothis larvae in laboratory Field studies of movement of Heliothis larvae Project: P-110(85)IC STUDIES ON THE PIGEONPEA PODPLY, MELANAGROMYZA OBTUSA INCLUDING INVESTIGATIONS OF THE MECHANISMS OF HOST PLANT RESISTANCE</pre>	28	5
<pre>Pest Incidence and damage to borer resistant and susceptible genotypes in sole and mixed situations Testing of borer resistant/susceptible cultivars in isolations Studies of mechanisms of resistance to <u>Heliothis</u> in laboratory and field Laboratory studies on oviposition preference of moths Studies on feeding preference of <u>Heliothis</u> larvae Studies on antibiosis to <u>Heliothis</u> larvae in laboratory Field studies of movement of <u>Heliothis</u> larvae Project: P-110(85)IC STUDIES ON THE PIGEONPEA PODPLY, <u>MELANAGROMYZA</u> OBTUSA INCLUDING INVESTIGATIONS OF THE MECHANISMS OF HOST PLANT RESISTANCE</pre>	28	8
<pre>and susceptible genotypes in sole and mixed situations Testing of borer resistant/susceptible cultivars in isolations Studies of mechanisms of resistance to <u>Heliothis</u> in laboratory and field Laboratory studies on oviposition preference of moths Studies on feeding preference of <u>Heliothis</u> larvae Studies on antibiosis to <u>Heliothis</u> larvae in laboratory Field studies of movement of <u>Heliothis</u> larvae Project: P-110(85)IC STUDIES ON THE PIGEONPEA PODPLY, <u>MELANAGROMYZA</u> OBTUSA INCLUDING INVESTIGATIONS OF THE MECHANISMS OF HOST PLANT RESISTANCE</pre>		
Testing of borer resistant/susceptible cultivars in isolations Studies of mechanisms of resistance to <u>Heliothis</u> in laboratory and field Laboratory studies on oviposition preference of moths Studies on feeding preference of <u>Heliothis</u> larvae Studies on antibiosis to <u>Heliothis</u> larvae in laboratory Field studies of movement of <u>Heliothis</u> larvae Project: P-110(85)IC STUDIES ON THE PIGEONPEA PODPLY, <u>MELANAGROMYSA</u> OBTUSA INCLUDING INVESTIGATIONS OF THE MECHANISMS OF HOST PLANT RESISTANCE	20	٥
<pre>cultivars in isolations Studies of mechanisms of resistance to Heliothim in laboratory and field Laboratory studies on oviposition preference of moths Studies on feeding preference of Heliothim larvae Studies on antibiosis to Heliothim larvae in laboratory Field studies of movement of Heliothim larvae Project: P-110(85)IC STUDIES ON THE PIGEONPEA PODPLY, MELANAGROMYZA OBTUSA INCLUDING INVESTIGATIONS OF THE MECHANISMS OF HOST PLANT RESISTANCE</pre>	23	7
Studies of mechanisms of resistance to <u>Heliothis</u> in laboratory and field Laboratory studies on oviposition preference of moths Studies on feeding preference of <u>Heliothis</u> larvae Studies on antibiosis to <u>Heliothis</u> larvae in laboratory Pield studies of movement of <u>Heliothis</u> larvae Project: P-110(85)IC STUDIES ON THE PIGEONPEA PODPLY, <u>MELANAGROMYSA</u> OBTUSA INCLUDING INVESTIGATIONS OF THE MECHANISMS OF HOST PLANT RESISTANCE	▲2	2
Heliothis in laboratory and field Laboratory studies on oviposition preference of moths Studies on feeding preference of Heliothis larvae Studies on antibiosis to Heliothis larvae in laboratory Field studies of movement of Heliothis larvae Project: P-110(85)IC STUDIES ON THE PIGEONPEA PODPLY, MELANAGROMYZA OBTUSA INCLUDING INVESTIGATIONS OF THE MECHANISMS OF HOST PLANT RESISTANCE		
Laboratory studies on oviposition preference of moths Studies on feeding preference of <u>Heliothis</u> larvae Studies on antibiosis to <u>Heliothis</u> larvae in laboratory Field studies of movement of <u>Heliothis</u> larvae Project: P-110(85)IC STUDIES ON THE PIGEONPEA PODPLY, <u>MELANAGROMYZA</u> OBTUSA INCLUDING INVESTIGATIONS OF THE MECHANISMS OF HOST PLANT RESISTANCE	42	2
of moths Studies on feeding preference of <u>Heliothia</u> larvae Studies on antibiosis to <u>Heliothis</u> larvae in laboratory Field studies of movement of <u>Heliothis</u> larvae Project: P-110(85)IC STUDIES ON THE PIGEONPEA PODFLY, <u>MELANAGROMYZA</u> <u>OBTUSA</u> INCLUDING INVESTIGATIONS OF THE MECHANISMS OF HOST PLANT RESISTANCE		-
Studies on feeding preference of <u>Heliothis</u> larvae Studies on antibiosis to <u>Heliothis</u> larvae in laboratory Field studies of movement of <u>Heliothis</u> larvae Project: P-110(85)IC STUDIES ON THE PIGEONPEA PODFLY, <u>MELANAGROMYZA</u> <u>OBTUSA</u> INCLUDING INVESTIGATIONS OF THE MECHANISMS OF HOST PLANT RESISTANCE	42	2
<pre>larvae Studies on antibiosis to Heliothis larvae in laboratory Pield studies of movement of Heliothis larvae Project: P-110(85)IC STUDIES ON THE PIGEONPEA PODPLY, MELANAGROMYZA OBTUSA INCLUDING INVESTIGATIONS OP THE MECHANISMS OF HOST PLANT RESISTANCE</pre>		
Studies on antibiosis to <u>Heliothis</u> larvae in laboratory Field studies of movement of <u>Heliothis</u> larvae Project: P-110(85)IC STUDIES ON THE PIGEONPEA PODFLY, <u>MELANAGROMYZA</u> <u>OBTUSA</u> INCLUDING INVESTIGATIONS OF THE MECHANISMS OF HOST PLANT RESISTANCE	- 44	4
<pre>laboratory Field studies of movement of Heliothis larvae Project: P-110(85)IC STUDIES ON THE PIGEONPEA PODPLY, MELANAGROMYZA OBTUSA INCLUDING INVESTIGATIONS OF THE MECHANISMS OF HOST PLANT RESISTANCE</pre>		
Field studies of movement of <u>Heliothis</u> larvae Project: P-110(85)IC STUDIES ON THE PIGEONPEA PODFLY, <u>MELANAGROMYZA</u> <u>OBTUSA</u> INCLUDING INVESTIGATIONS OF THE MECHANISMS OF HOST PLANT RESISTANCE	44	4
larvae Project: P-110(85)IC STUDIES ON THE PIGEONPEA PODFLY, <u>MELANAGROMYZA</u> <u>OBTUSA</u> INCLUDING INVESTIGATIONS OF THE MECHANISMS OF HOST PLANT RESISTANCE		•
Project: P-110(85)IC STUDIES ON THE PIGEONPEA PODPLY, <u>MELANAGROMYZA</u> <u>OBTUSA</u> INCLUDING INVESTIGATIONS OF THE MECHANISMS OF HOST PLANT RESISTANCE	51	1
STUDIES ON THE PIGEONPEA PODPLY, <u>MELANAGROMYZA</u> <u>OBTUSA</u> INCLUDING INVESTIGATIONS OF THE MECHANISMS OF HOST PLANT RESISTANCE		
OBTUSA INCLUDING INVESTIGATIONS OF THE MECHANISMS OF HOST PLANT RESISTANCE		
OF HOST PLANT RESISTANCE		
Objectives	57	7
Dettern of podfly incidence in relation to		
Stost plant resistance	57	7

Podfly incidence in some promising selections Podfly incidence in podfly resistance select-	60
long from Patancheru in comparison with long-	6 1
duration cultivars at GWALLOF	04
BOST plant characters in relation to poorly	60
resistance	00
Podfly avoidance studies	08
Search for attraction for adult podfly	70
Project: CP-123(85)IC	
STUDIES LEADING TO INTEGRATED PEST MANAGEMENT ON	
PIGEONPEA AND CHICKPEA INCLUDING THE AUGMENTATION	
OF NATURAL CONTROL ELEMENTS	
Objectives	73
Tests on different regimes of insecticide use	
in short-duration pigeonpeas	73
Preliminary attempts to relate <u>Heliothis</u>	
larval numbers to pod damage	79
Consumption rate of flowers, young seeds and	
mature seeds by <u>Heliothis</u> larvae	80
Test of Heliothis virus (NPV) on pigeonpea	
(AICPIP Collab, trial)	80
Tests with the egg parasite, Trichogramma	
spp. on <u>H.armigera</u>	80
Dreinet (D. 100/06) (C.	
Project: (P~122(05))(
STUDIES OF HELIOTHIS POPULATIONS TO SUPPORT THE PEST	
MANAGEMENT PROGRAMS, AND TO REAR <u>HELIOTHIS</u> FOR	
EXPERIMENTS	
Objectives	84
General	84
COLLABORATIVE STUDIES	
Studies on pigeonpea nodule fly, <u>Rivellia</u>	
<u>angulata</u> (Pulse Agronomy collaboration)	85
Survey for offseason survival of <u>Heliothis</u> para-	
sites in farmers fields (RMP collaboration)	87
Meteorological Observation at ICRISAT	
(June 4, 1985 to June 3, 1986)	89

PULSE ENTOHOLOGY STAFF 1985-86 AND COLLABORATING SCIENTISTS

ENTOHOLOGISTS

Dr.W.Reed Dr.agr.S.S.Lateef Dr.S.Sithanantham Dr.D.R.Dent (Intern up to Dec 1985)

RESEARCH ASSOCIATES

Mr.V.R.Bhagwat Mr.M.A.Ghaffar Mr.V.Rameshwar Rao Mr.C.P.Srivestava (on study leave)

SECRETARY

Mr.Y.Murali Krishna

COLLABORATORS

BREEDERS

Dr.D.G.Faris Dr.K.B.Saxena Dr.K.C.Jain Dr.S.C.Gupta

AGRONOMISTS

Dr.C.Johansen Dr.J.V.D.K.Kumar Rao Dr.Y.S.Chauhan

-

CROPPING ENTOMOLOGISTS

Dr.A.B.S.King Dr.C.S.Pawar FIELD/LABORATORY ASSISTANTS

Mr.K.V.Prasada Rao Mr.Y.Satyanarayana Mr.M.Abid Bussain Mr.Gugen Ram (Hisar)

FIELD/LABORATORY ATTENDANTS

Mr.Mohd. Khaja Mr.K.V.Skaria Mr.P.J.Reddy Mr.N.Narsimloo Mr.L.Mohan Mr.Moinuddin

DRIVER-CUM-GENERAL ASSISTANT

Mr.G.Pama Pao

GERMPLASM BOTANIST.

Dr.M.H.Mengesha Dr.P.Remanandan

PATHOLOGISTS

Dr.Y.L.Nene Dr.M.V.Reddy Dr.M.P.Haware

BIOCHEMISTS

Dr.R.Jambunathan Dr.Umaid Singh

PLANT PROTECTION

Mr.S.K.Pal

AICPIP

Dr.J.N.Sachan, Principal Investigator (Entomology), Directorate of Pulses, ICAR, Kanpur, UP, India.

COLLABORATCES ABROAD

Prof. Heimz Rembold, Max-Planck Institute for Biochemistry, Munich, West Germany.

Dr.B.F.Nesbitt, TDRI, UK.

This report has been prepared to share the information that we have gathered in this year, with other scientists who have an interest in pigeonpea improvement.

THIS IS NOT AN OFFICIAL PUBLICATION OF ICRISAT AND SHOULD NOT BE CITED

In this year the volume of data collected has expanded to an extent that it is no longer practical to print it all. Thus, is not cape: commaries of the data are provided. Anyone with an interest in the more detailed data should contact us for further information.

- ii -

INTRODUCTION

In the 1985 rainy season rainfall was below average, particularly in August and September, however it was fairly well distributed so the crops grew moderately well in the early stages but long-duration genotypes were drought affected in their reproductive stages.

The pod borer (<u>Heliothis armigera</u>), which is the major pest of pigeonpea was much less abundant in the 1985/86 season than in previous years at ICRISAT Center. The populations increased as usual in August/September and the short-duration pigeonpea that flowered then was severely damaged. But, from then onwards the populations, which we monitor by counts on the crops and in pheromone and light traps, were much lower than expected. In most years the <u>Heliothis</u> populations on our farm reach a peak in November/December but our moth catches over that period in 1985 were the lowest in our 10 years' records and our medium-duration pigeonpea suffered much less damage than usual.

Of the other lepidopteran pests, the leaf webber (<u>Cydia critica</u>) was more common than usual at ICRISAT Center but relatively rare at Hisar in northern India. There, almost all of the flower and pod webbing that occurred was caused by <u>Maruca testulalis</u>. This pest was also seen to be very common on pigeonpea grown experimentally in Thailand.

The podfly (Melanagromyza obtusa), which is the second most damaging pest of pigeonpea throughout India, built up to large damaging populations in our long-duration genotypes, particularly at The hymenopteran pest (Tanaostigmodes cajani) was again a Gwalior. major pest on our research farm but rare in farmers' fields. The unusually dry rainy season provided ideal conditions for the sucking Aphis craccivora was very common on the seedlings and several pests. species of pod sucking bugs, particularly Clavigralla gibbosa, caused substantial crop damage from September onwards. The blister beetle (<u>Mylabris pustulata</u>) was very common on ICRISAT Center from August through November and we received reports from several areas of India that this pest destroyed many of the flowers of pigeonpea and other legumes. The bruchids (Callosobruchus spp) were common in the pods, particularly where harvesting was delayed and were, as usual, the main pests in the stored pigeonpea.

The jewel beetle (<u>Sphenoptera indica</u>), whose larva tunnels below the bark at the base of the stem and promotes a prominent gall was evident in several fields. An unusually heavy infestation by the red spider mite (<u>Schizotetranychus cajani</u>) developed in a field where we had applied soil insecticides in an attempt to control the nodule damaging fly (<u>Rivellia angulata</u>). This outbreak may have been a result of natural enemy destruction and served as yet another warning that insecticide use may promote unusual pest attacks.

Project: CP-124(85)IC HOST PLANT RESISTANCE TO INSECT PESTS IN CHICKPEA, PIGEONPEA AND ITS RELATIVES, SCREENING AND IDENTIFICATION OF MECHANISMS

Objectives

- (a) Identification of the sources of insect resistance/ tolerance in germplasm, wild relatives, breeders' material. Selecting of material combining insect and disease resistance, compensation for pest damage and greater yield under farmers' conditions.
- (b) Refining the screening techniques.
- (c) Multilocation testing of selections in India and other countries in collaboration with national programs.
- (d) Studies on mechanisms of pests resistance excluding podfly and on biochemical aspects in collaboration with biochemists at ICRISAT and Max-Planck Institute, Munich.

Trials of 1985-86

During this year we resumed screening of the new accessions of germplasm. Simultaneously, emphasis was given to the large scale screening and testing of the materials developed by our breeders from crosses incorporating pest and disease resistant parents. Further testing of the medium-duration and long-duration maturing selections was also undertaken.

Several trials were conducted under low input conditions on the pesticide free Vertisol blocks - BUS-8C and BUS-5E at ICRISAT Center and also at the HAU-farm, Hisar (field No.19, 0.25 ha). We also tested borer resistant and susceptible genotypes in no choice situations in isolation blocks - RL-25B & C, Q-5 & RUS-6A, BUS-25B & BM-26C and on BS-10 & BS-3A at ICRISAT Center. Crop growth was good in most of these blocks. Irrigation was given to the plots in the Alfisol area to ensure a good plant stand.

Sprayed/unsprayed comparison trials of promising selections in different duration groups were grown on BIL-6A. The sprayed plots were treated with endosulfan, which was directed mainly against <u>B.armigera</u> attacks from flowering onwards. Dimethoate was also applied on the long-duration genotypes to reduce podfly infestation. An area of 2.82 ha was covered under this project at Patancheru. In addition pest resistance breeding material was planted on 4.78 ha in unsprayed fields (BUS-7A, B, 11B and BM-16A) at Patancheru.

The pests, B.armigera, Cydia critica, Mylabris pustulata, Clavigralla gibbosa and Dolicoris indicus caused severe damage to flowers and pods of the very short-duration and short-medium-duration cultivars and a drastic reduction in seed yields in most of the cultivars was recorded. At Hisar, leaf webbing insects, <u>Cydia</u> <u>critica</u>, and <u>Maruca testulalis</u> caused substantial damage to extra short duration cultivars.

In some selected trials intensive counts of pests were made from flowering onwards. At maturity we harvested pods from all the trials and pest damage assessment were recorded from pod samples. Prom some trials we collected the pods for damage assessment in two pickings, one from the first flush, which had been largely destroyed by H.armigera and the second from the compensatory or ration flush. Pod samples were separated and counted according to the damaqe characteristics. Plant and plot yields of dry seeds were weighed after threshing. As the task of pod sorting and counting for pest damage assessment is laborious and require semi-skilled people for long periods, we resorted to visual scoring in most of the breeders' material planted in BUS-area. In these tests selections which were looking good (with lower rating for pests damage) and giving higher yields were advanced for further testing and the remaining lines were discarded.

Germplasm screening

We resumed the screening of pigeonpea germplasm in this year, having shelved such testing in 1984/85. A set of 560 new long-duration accessions, including the lines for which no data could be obtained in previous trials, were sown in a pesticide free block BUS-5A on 26 June 1985. The plots, each of five hills, were grouped in blocks of 25 entries each including check cultivars of the relevant duration group. Each block was bordered with infestor rows that had been sown 10 days earlier, these included a mixture of Pant A-1, Pusa Ageti, T-21 and ICP-1. The check entry was NP(WR) 15.

At maturity individual plants were selected for reduced susceptibility to the major pests and high yielding characters. Later, the pods were collected from one plant, randomly selected from each entry and pod damage assessments were made. We obtained useful results from 466 entries. Out of these, 21 individual plants were selected for further testing in replicated trials in the rainy season of 1986/87.

There was severe borer and bug damage in these long-duration accessions, which were mostly from East African countries. Poor growth and slow plant development was observed in the initial stage of development, later the plants grew on well but the pod setting was generally poor.

Testing of pigeonpea entomology selections at Patancheru and Hisar

In previous years' trials we selected pigeonpea genotypes of different durations from the germplasm, from breeders materials and from the pathologists' disease resistant selections which showed reduced susceptibility and tolerance to the lepidopteran borers (mainly <u>B.armigera</u>) and to podfly (<u>M.obtusa</u>). These selections were tested in pesticide free blocks and the best were again advanced for further testing for checking their consistency in performance. Such selections were again grown in trials as shown in the Table 1 and tested and screened during rainy season 1985-86 at Patancheru and Hisar.

Table 1: List of trials with selections of pigeonpea of differing durations conducted at Patancheru and Hisar during the rainy season 1985/86.

Sele	ection groups	No. of Reps entries	. Expt. design
I	Testing of very short-duration selections (Unsprayed)		
	At ICRISAT Center, Patancheru (BUS-8C):		
1. 2.	Single plant selections (SPS) Selections from Patancheru and Hisar	16 2 12 2	Lattice RBD
	At HAU-farm, Hisar (Field No.19):		
3.	Selections from Patancheru and Hisar	12 2	RBD
II	Testing of short duration selections		
	At ICRISAT Center (BUS-8C unsprayed, BIL-6A sprayed/unsprayed):		
4 . 5. 6. 7.	SPS from promising lines Selections from Patancheru and Hisar Selections from Patancheru and Hisar Promising bulks sprayed/unsprayed comparison	16 2 16 3 16 3 7 2	Lattice Lattice Lattice Split plot
	At HAU-farm Hisar (Field No.19)		
8. 9.	Selections from Patancheru and Hisar Selections from Patancheru and Hisar	12 3 15 3	RBD Lattice
III	Testing of medium-duration selections		
	At ICRISAT Center (BUS-5E unsprayed, BIL-6A sprayed/unsprayed):		
10.	SPS from promising lines	16 2	Lattice

Sele	ection groups	No. of entries	Reps.	Expt. design
11.	SPS from short-medium-duration pro- mising lines	28	2	Lattice
12.	Selection bulks of short-duration material	9	4	BLS
13.	Selections from medium-duration lines	9	3	Square Lattice
14.	Medium-long-duration selection bulks	9	3	Square Lattice
15.	Medium-long-duration promising bulks sprayed/unsprayed comparison	18	2	Split block
IV	Testing of long-duration selections			
	At ICRISAT Center (BUS-5E unsprayed, BIL-6A sprayed/unsprayed):			
16.	Selections from long-duration material	30	3	Rectangular
17.	Long-duration promising bulks - sprayed/unsprayed comparison	15	2	Split block

The summarized data from these trials are presented in Tables 2 to 13. These tables include details of the characters for which the entries were selected in 1984 and 1985 rainy season with the abbreviations as follows:

L = Low; M = Moderate; H = High; B = Borer damage (mainly by <u>Heliothis armigera</u>); Pf = Podfly damage; H (as second letter) = Hymenopteran damage; LT = Low total pod damage; T = Tolerance to pest complex; Y = Yield; R = Recovery (compensation); SM = Sterility mosaic disease; W = Wilt disease; R (with disease) = Resistant; S = Susceptible. For growth habit: DT = Determinate; NDT = Indeterminate; SDT = Semi determinate.

I. Testing of very short-duration selections - unsprayed

At ICRISAT Center, Patancheru (BUS-8C):

A trial at Patancheru of the progenies of 14 single plant selections with two check cultivars was planted at Patancheru in a 2 replication - lattice design on 25 June 1985, using plots of 3 rows of 4 m with 37.5 x 20 cm spacing. Pest damage was recorded during the flowering and podding stage and further observations and selections were made at maturity. Out of these, 7 entries were selected and advanced for further testing. A few single plant selections were also advanced for the next season's trial.

In another trial with selections from Patancheru and Hisar, 12 entries were grown on 5 rows of 4 m (with 37.5 x 20 cm spacing) in a 3 replication - lattice. The harvesting of 6 plants, randomly selected, was undertaken in two pickings, (on 18 October and on 2 December The results of pod damage assessments and the mean sample 1985). yields of both the pickings and the final plot yields are furnished in Table 2. There was high insect damage, particularly of Heliothis sp. and pod sucking bugs in the first flush. In the second picking hymenopteran pest damage was surprisingly high, which resulted in low total plot yields. No selection outyielded the check Pant Al, and there were no significant differences among the yields of the entries. However, there were significant differences among the borer damage percentages recorded from the first pick and among the hymenopteran damage percentages in the second pick.

Some selections were made on the basis of their reduced susceptibility to borers. ICPL-316 was found to be least attacked by hymenopteran pest in both the pickings. The entries which gave better yields than UPAS-120 were also advanced for further testing.

At Hisar, HAU-farm (field No.19):

The same selections, as tested in Patancheru, were also sown at the HAU-farm, Hisar on an unsprayed block. In this trial 12 entries were planted on 5 rows of 4 m with close spacing, in a 3 replication lattice design on 12 July 1985. Pods from 6 plants per plot were collected (only once) for pests damage assessments. The total plot yields were ascertained from an area of 3.6 sg.m. There was moderate <u>Heliothis</u> damage to pods, but podfly and hymenopteran incidence was low and no significant difference were detected. At harvest, very good seed yields were obtained, particularly in entries, ICPL-84044, ICPL-84052, Pant Al and in DA-6. Many cultivars out-yielded the check UPAS-120, but only two gave greater yields than Pant A-1 (Table 3).

II Testing of short-duration selections

At Patancheru, unsprayed trials and sprayed/unsprayed comparison:

At ICRISAT Center, we grew progenies from 14 single plant selections from short-duration pigeonpea lines with 2 checks in a two-replication lattice under pesticide free conditions on block BUS-8C. At maturity, following visual observations, 4 selections were advanced for further testing and the remaining entries were discarded because of the severity of pest damage and poor yields.

We also tested 16 entries in a triple lattice on BUS-8C. In this trial the selections which showed reduced susceptibility in the past 3 to 4 years in our tests were included and a comparison was made with the standard checks. In this test late-flowering genotypes showed less damage by borers and produced greater yields, except for PPE-45-2. Among the early flowering group, entry 82-HO9-12 produced high yields with a moderate pest attack (Table 4). Table 2: Results of testing very short-duration pigeonpea selectionns in pesticide free conditions at ICRISAT Center on BUS-8C, during the rainy season, 1985/86. Plot size: 5 rows of 4 m (37.5 cm x 20 cm); Net plot harvested: 3.94 sq.m.

			Chara	Ро	Pod damage mean(%)			Mean
Entries	habit*	50%	cters 1984*	Borer	Podfly	Hmn.	Total	sample yield (6 pts)
Ist picking	<u>on 18-</u>	10-1	985		•			
ICPL-84019	DT	40	Sels. from	69.3	0.4	19.0	79.6	3.4
ICPL-316	DT	46	n19al #	65.9	0.8	12.1	74.5	1.1
ICPL-84018	DT	51		47.1	0.2	15.9	58.7	11.0
UPAS-120 (check)	SDT	53	•	34.1	0.6	32.9	59.6	13.7
ICPL-84044	NDT	56		43.0	0.8	21.7	63.6	9.0
ICPL-84052	NDT	56		32.3	1.2	39.6	66.2	10.7
ICPL-84040	NDT	56	•	31.9	0.2	38.0	62.3	3.0
DA-6	NDT	58	LB	28.4	0.6	47.4	67.1	9.0
Pant Al (check)	SDT	58	-	49. 7	0.5	20.9	62.3	11.2
ICPL-187-1-	1 NDT	62	LB,H¥	35.7	2.7	24.0	58.2	12.2
ICPL-269	SDT	63	LB	26.3	2.3	33.8	53.3	12.1
ICPL-4	DT	86	LB,LPf, HY	,48.9	0.2	22.3	66.4	7.0
Trial mean SE of mean CV% LSD at p<0.	± 05			42.7 4.41 16 13.49	0.9 (1.72)* 80	27.3 * 5.79 40	64.3 5.17 13	8.6 4 72

	Growth	rowth DP		Pod damage		mean(%)		Nean san-	Yield ka/ba
Entries	habit*	50%	cters 1984*	Borer	Podfly	Ban.	Total	yield (6 pts)	(final har- vest)
IInd pickin	<u>ig on 2-</u>	12-1	985						
ICPL-84019	DT	40	Sels. from	20.5	1.1	48.6	64.5	24.3	320
ICPL-316	DT	46	Hisar	30.6	0.4	25.5	53.7	21.5	320
ICPL-84018	DT	51	•	23.6	0.2	53.7	71.3	16.4	400
UPAS-120 (check)	SDT	53	•	14.7	1.3	51.4	62.1	33.1	610
ICPL-84044	NDT	56	•	25.0	1.9	40.0	60.1	22.7	510
ICPL-84052	NDT	56	•	12.1	1.1	75.5	82.1	31.4	640
ICPL-84040	NDT	56	•	16.7	2.0	50.4	63.7	29.8	530
DA-6	NDT	5 8	LB	18.0	0.9	73.5	81.4	26.1	550
Pant Al (check)	SDT	58	-	15.9	1.0	42.6	55 .9	38.7	770
ICPL-187-1-	1 NDT	62	LB,HY	11.6	1.1	70.2	77.3	33.5	680
ICPL-269	SDT	63	LB	15.4	0.7	57.4	67.4	20.3	500
ICPL-4	DT	86	LB,LPf, HY	,13.0	0.6	48.1	56.3	39.1	620
Trial mean SE of mean CV% LSD at p<0.	± 05	*** *** *** *** *		18.1 2.94 30	1.0 (1.73)** 65 -	53.1 6.17 19 18.86	66.3 4.46 11 13.64	28.1 3.88 28	540 77 24

* For abbreviations see page 5.
 ** Arcsin √* transformation was used for the analysis of data. Figures in parentheses are the transformed values.

Table 3: Results of testing very short-duration pigeonpea selections in an RBD (3 reps.) grown in pesticide free conditions at Hisar, during the rainy season, 1985/86. Plot size: 5 rows of 4 m; Net plot harvested: 3.6 sq.m.

		Chara-	Pods	Pod	damage	mean (%)	Nean	
Cultivars/ lines	50 1	cters 1984*	per pt. (18)pts. sampled	Borer	Pod- fly	Total	sample yield g	Yield kg/ha
ICPL-84019	51	LPf	62	30.9	2.2	33.1	74.3	1590
ICPL-84018	53	LPf	39	32.6	1.6	34.2	62.7	1820
ICPL-316	60	LPf	86	29.0	3.2	32.0	102.2	2030
ICPL-4	60	LB,LPf HY	, 65	23.3	1.3	24.5	73.3	2270
Pant A-1 (check)	65	LPf	81	16.6	1.5	18.0	110.0	2720
ICPL-84052	65	LB,LT, HY	73	14.1	3.4	17.4	125.4	3000
ICPL-84040	68	LPf	63	25.2	0.7	25.9	99. 5	1810
UPAS-120 (check)	6 8	LPf	47	15 .9	2.1	17.4	58.7	1910
ICPL-84044	70	НҮ	71	18.7	4.1	22.8	165.2	3160
DA-6	70	LB,LPf	111	23.3	1.6	24.7	152.4	2500
ICPL-187-1	71	LB,LPf LT	, 98	11.3	1.4	12.6	161.0	2460
ICPL-269- EB	73	LB,LT	103	12.5	2.0	14.5	158.5	2010
Trial mean SE of mean CV% LSD at p<.(±)5			21.1 3.81 31 11.05	2.09 (1.56) 35	23.1 3.94 30 11.43	111.9 17.7(27 51.3	2272 273 21 3791.1

* For abbreviations see page 5. ** Arcsin $\sqrt{3}$ transformation was used for the analysis of data. Figures in parentheses are the transformed values.

ייז	3 reps	(lattice sq	uare);	Net plot	harvest	ed: 9 so	<u>д</u> .п.
				Pod damag	e mean (•)	*******
lines	50%	1984	Borer	Podfly	Bymn.	Total	kg/ha
PUSA-35	66	НҮ	32.2	0.6	21.9	55.6	430
ICPL-314	67	LB	25.2	0.7	23.8	48.3	370
ICPL-1	69	LPf	31.2	1.2	27.3	54.4	380
PUSA-33	6 9	LPf,LT	31.6	1.8	14.8	44.1	470
ICPL-186	69	LPf,LT	26.9	1.1	26.5	51.2	390
ICPL-20	72	LB, LPf, LT	47.8	1.2	14.6	57 .9	300
ICPL-269	72	LB, LPf	39.9	2.3	26.1	60.8	360
ICPL-6	72	LB, LPf	35.7	2.1	16.8	49.5	550
82-H-18-1	72	LB, LPf, HPf	45.8	2.9	19.8	63.3	350
ICPL-288	72	НУ	51.5	3.4	25.2	74.7	330
82-H09-12	72	LB,HY	26.9	1.5	48.0	71.5	650
82-H03-18	82	LB, LPf, HPf	53.3	1.6	35.3	76.3	580
ICP-7203-E1	87	HY, LT, LPf	14.0	2.8	9.6	24.4	1190
S-80	93	LPf,HY	10.4	2.2	28.8	39.3	1050
P-6410-E1	101	LB	9.6	5.5	54.9	64.2	790
PPE-45-2	114	LB	10.0	0.8	44.9	53.6	240
Trial mean	. 18. 19. 19. 19. 19. 19. 19. 19.		30,9	2.0	27.4		527
Efficiency	l over l	RBD	79.0	100.0	100.0	102.3	88.4
SE of mean	<u>+</u>		5.12	(1.24)*	* 7.81	5.79	101
CV&			29	28	49	18	32
LSD at $p < .0$)5		14.84	(3.61)*	* 22.65	16.79	293

Table 4: Testing of short-duration pigeonpea selections (from Patancheru and Bisar) at ICRISAT Center, Patancheru during the rainy season 1985/86 on BUS-8C. Plot size: 3 rows of 4

* For abbreviations see page 5.
 ** Arcsin -√% transformation was used for the analysis of data Figures in parentheses are the transformed values.

In another trial on BIL-6A, we compared short-duration genotypes in sprayed and unsprayed plots. Seven genotypes including a common check were grown on large plots (12 rows of 9 m) in a split-plot design In this experiment 5 sprayings of endosulfan 35% EC, one of trial. monocrotophos and 2 of dimethoate were applied, mainly against Borer damage was not high in this block, but the Heliothis. hymenopteran pest was very active in damaging the pods. There was some reduction of borer damage to pods by the endosulfan sprays, but no significant increase in yields was observed. The results of pod damage by different pests and yields of the cultivars tested are furnished in Table 5. In this trial our low borer selections showed less borer damage than the susceptible and check cultivars. No entry showed a high level of resistance to pest attack. The borer damage was low and it was confounded with a high level of hymenopteran pest attack.

At Hisar

Two trials with 12 and 14 short-duration selections were conducted under unsprayed conditions in field No.19 at the HAU-farm, Hisar. These entries were sown in plots of 5 rows of 4 m in an RBD with 3 replicates. In the first trial, one replication block was affected by salinity, so only the data from 2 reps. were taken for comparison and analyses. In general, pest caused damage was low in these trials, but yields were high for most entries. Pusa 33, ICPL 288 and 82-H09-12 gave greater yields than the checks. Some entries were again selected for further testing and confirmation of results. The details of pests damage and yields of these selections are furnished in Tables 6 and 7.

In the 14 entry short-duration selections trial only five entries matured at the expected time, so the yield comparisons were made on the sample yields.

We also grew breeders' promising lines of short duration for pest susceptibility studies under unsprayed conditions, on plots of 1 row of 4 m. A total of 37 entries were planted in 2 replications in an RBD trial. Plant growth was good in all the entries and there was very good podding in most selections. We assessed pod damage in pods collected from 2 plants per plot at maturity and plot yields were recorded from net plots of 1.8 sg.m. The pest damage and yield data are furnished in Table 8.

At the pod swelling stage we also observed and scored all the lines for pest damage and some single plant selections were also made. A few selections particularly H-77-216, ICPL-8332 and ICPL-314, showed low pod borer damage. The podfly incidence was low in the early maturing genotypes. In the small plot comparisons ICPL-186 produced the greatest yield of 5120 kg ha-1, but ICPL-316 produced a yield of less than 1000 kg ha-1 due to severe borer damage to pods. Only three lines produced more than the standard check (UPAS-120). The selections from this trial will be tested again in a replicated trial next year.

Table 5: Co un Ce 2	mparison of der unspraye nter, during (split plot)	pigeo ed and g the r ; Net p	onpea p spraye ainy se lot har	oromising d condit: ason 198 vested:	bulks (: ions on 1 5/86. En 60 sg.m.	short BIL-6A, tries:	duration) ICRISAT 7; Reps.:
Cultivar	Chara-	DF 503	Po	d damage	t (mean)		Yield kg/ba
	1984*		Borer	Podfly	Hymn.	Total	
Unsprayed							
ICP-909 Sehore-197 1918 (IG) T-21 ICP-7203 PPE-82 PPE-45-2	LB,LPf LB,LT,WT LB,HY HB,HH HB,HY LBS LB	81 82 83 83 88 102 105	6.0 8.8 8.0 9.1 17.2 7.7 3.6	9.4 8.1 6.4 18.5 11.0 7.2	41.2 19.7 38.7 41.3 10.6 39.3 45.8	55.6 35.5 51.1 54.8 45.4 55.8 55.3	1690 1740 1420 1260 1870 1520 1300
Mean			8.6	9.5	33.8	50.5	1540
Sprayed							
ICP-909 Sehore-197 1918 (IG) T-21 ICP-7203 PPE-82 PPE-45-2	LB, LPf LB, LT, WT LB, HY HB, HH HB, HY LBS LB	81 81 83 88 102 105	4.1 9.6 6.9 6.1 5.8 5.0 2.3	6.2 3.4 3.1 4.6 13.0 9.0 8.4	54.0 17.2 42.1 38.6 14.4 47.1 39.6	60.5 32.8 51.2 47.6 36.4 58.7 49.5	1250 1710 1500 1350 1910 1470 1350
Mean			6.2	6.8	36.2	48.1	1510
Effect of m	ain treatment	<u>(inse</u>	<u>cticide</u>	protect	ion)		
SE of mean CV%	±		1.58 30.2	0.19 3.3	2.38 9.6	0.67 1.9	76 7
Effect of s	ub-treatment	<u>(culti</u>	var)				
SE of mean CVN	±		1.54 41.6	1.28 31.4	4.78 27.3	3.92 15.9	99 13
Effect of i	nteraction						
SE of mean	<u>+</u> Main Sub		2.18 2.57	1.81 1.69	6.76 6.70	5.55 5.18	140 151

* For abbreviations see page 5.

Page 13

			Pods	Pod d			
Cultivars/ Lines	50 \	l984*	per pt (12)pts. sampled	Borer	Podfly	Total	kg/ha
PUSA-35	69	НҮ	62	6.2	3.8	10.0	2200
82-H03-18	69	HB, HY, LPf	109	15.5	0.5	16.1	1680
UPAS-120 (Check)	70	-	87	11.8	5.1	16.9	3130
ICPL-288	72	LB, LT, HY	75	10.7	6.6	17.2	3590
ICPL-269	75	HY	67	10.9	4.0	14.9	2060
ICPL-314	75	HY	99	8.8	12.3	21.1	2530
ICPL-2•	75	LB,LT,HY	134	5.6	9.4	14.9	2400
ICPL-1	78	LB,LT,HY	107	7.3	7.0	14.1	2530
PUSA-33	80	HY	9 7	11.5	2.4	13.9	3890
ICPL-6(Check)	85	-	144	3.4	3.7	7.1	2420
ICPL-186	87 [.]	НҮ	122	1.8	7.4	9.2	2480
82-8-18-1	9 0	НУ	88	12.3	4.9	17.2	2210
Trial mean SE of mean <u>+</u> CV%			80° 00° 00° 00° 00° 00° 00° 00° 00° 00°	8.8 (2.73) 23.3	5.6 **(2.93) 32.4	14.4 ** 3.2 31.6	2593 2 524 29

Table 6: Results of testing short-duration pigeonpea selections in an RBD trial (2 reps.) grown in pesticide free conditions at Hisar, during the rainy season 1985/86. Plot size: 5 rows of

* For abbreviations see page 5. ** Arcsin 🗸 transformation was used for the analysis of data. Figures in parentheses are the transformed values.

Page 14

Table 7:	Result: (3 rep: the rai harves:	s of te s) grow iny sea ted: 4.	sting short-du m in pesticide son 1985/86. 86 sq.m.	e free co Plot sig	selection onditions ze: 5 row	s in an 1 at Hisa s of 4 m	RBD trial r, during ; Net plot
				Pod di	anage mea	n (t)	Mean
Cultivars/ Lines	/	50 \	Characters 1984*	Borer	Podfly	Total	yield g(6 pts)
82-HP-179	0	65	ну	29,8	6.8	36 .6	83
P-6410-E1		81	LB	12.7	16.3	28. 9	188
ICP-909-E (LB-Chec	1 k)	84	LB,HY	5.6	18.7	24.2	216
S-80		88	LB,HY	8.0	19.1	27.1	221
82-H09-12		92	НУ	4.5	14.2	18.8	208
ICPL-342		92	LB	6.0	24.8	30 .7	118
ICPL-8354		97	НУ	4.0	21.9	25 .9	74
ICPL-8401	6	98	НУ	10.4	26.2	36 .6	56
ICPL-8400	5	100	НҮ	6.8	25.0	31.8	100
ICPL-8400	1	104	НХ	6.4	34.3	40.7	55
ICPL-8400	3	105	НХ	11.5	20.2	32.0	48
PDA-5-3EB		107	LB	6.2	24.8	31.0	150
ICPL-345		110	LB	9.3	35.3	44.6	133
ICPL-8401	1	111	НХ	10.6	19.6	30.2	133
Trial mea SE of mea CV% LSD at p<	n n ± 0.05			9.4 (3.41) 35.3 (9.88)	21.9 ** 4.08 32.2 **11.83	31.4 4.03 22.2 11.69	127.3 24.4 33.1 70.6

* For abbreviations see page 5.
 ** Arcsin -/% transformation was used for the analysis of data.
 Figures in parentheses are the transformed values.

during Plot:	the rainy 1 row of 4	<pre>season, 1985 m (1.8 sq.m.)</pre>	/86. Entrie	s: 37; Reps.: 2;
	Pod dama	ige percentage	(mean)	
	Borer	Podfly	Total	
ICPL-186	14.5	3.3	17.8	5120
H-77-216	4.7	2.0	6.8	4840
ICPL-84059	12.2	4.8	16.9	4760
UPAS-120 (check)	6.1	4.5	10.4	4520
ICPL-84050	22.9	5.4	28.5	4230
ICPL-8311	36.2	2.6	38.8	3860
ICPL-84030	24.3	3.7	28.0	3790
ICPL-8327	14.7	2.0	16.7	3530
ICPL-84023	24.7	3.0	27.7	3480
ICPL-292	17.1	6.9	24.1	3400
ICPL-8329	13.8	14.0	27.8	3190
ICPL-84055	19.9	4.1	23.9	3160
ICPL-317	31.8	4.5	36.2	2950
ICPL-8322	22.1	8.4	30.5	2810
ICPL-84052	21.0	4.2	25.2	2770
ICPL-84029	12.9	10.0	22.9	2690
ICPL-8332	5.8	4.5	10.3	2640
ICPL-8316	15.6	6.5	22.1	2610
ICPL-84026	21.2	5.0	20.2	2600
ICPL-84056	32.0	4.3	30.9	2390
ICPL-84020	43.0	3.4 C 0	40.4	2300
ICPL-151	21.8	5.0	20.0	2100
ICPL-84031	3/.5	D .9	43.4	2130
ICPL-0402/	40.4		20.1	2030
	10.7	4.4	20.1	2030
ICPL-04042	2/.9		23.0	1950
1CPL-0320	24.0		12 9	1890
1CFL-314	2.7	4,9	20.2	1870
1CPL-209	22.7	24	42.3	1840
1CPL-0300	33.3	2.5	43.3	1800
ICPL-8321	40.J 25.3	7 0	32 4	1770
1CPL-0321	23.3 A7 A	7.0	50 7	1720
	31 8	11 0	A2 9	1720
ICPL-A	50.3	6 R	55.0	1210
TCPL-RADIO	45 Q	1 R	47.7	1110
ICPL-316	53.7	4.2	57.5	970
Trial mean	25.3	5.0	30.3	2710
SE mean ±	(3.35)*	(2.89)*	5.51	400
CV ł	16	34	25	21

Table 8: Breeders' promising lines for pest susceptibility at Hisar

* Arcsin $\sqrt{3}$ transformation was used for the analysis of data. Figures in parentheses are the transformed values.

III Testing of medium-duration selections

Within this group, selections of a wide range of days to flowering were tested in trials of short-medium and medium-long duration types with relevant checks.

Seed from 14 single plant selections from the previous year were sown in BUS-5E with two checks, in a two replication lattice trial in plots of 2 rows of 4 m (rows 75 cm apart). Observations and plot selections were made at maturity in both the replications. Pod samples were collected from selected plots and from check entries for pests damage assessments. Out of 14 selections tested, only 5 bulks were advanced for testing on large plots.

In another lattice trial, 28 entries including 3 checks of mediumlong duration were sown on plots of 3 rows of 4 m, in two replicates. In this trial moderately high borer damage was observed and podfly incidence was not severe on the basis of visual observations, particularly on reduced susceptibility and high yield, 4 lines were advanced for further tests. The pod damage assessment data of these entries are not furnished here, as this was a preliminary test.

In another BLS-trial we tested 9 short-medium duration selections under unsprayed conditions on plots of 3 rows of 4 m replicated four times. Six plants samples were taken at maturity for pod damage assessments. For yield comparisons, 9 sq.m. plots were harvested. Borer damage was moderately high and high podfly damage, ranging from 27 to 45%, was recorded. Only one selection PBNA 53, gave a significantly greater yield than the check cultivar BDN-1. Three more selections, including ICP-1903-El also produced higher yields than the check (Table 8). With the BLS analyses we obtained a higher efficiency of 109 to 127% over RBD in the case of borer damage %, hymenopteran damage and yield (Table 9).

The medium-duration selections, which were tested in the previous 2-3 years, were grouped in medium and medium-long duration groups and tested in two separate triple lattice square trials with check BDN-1 in one on BUS-8C and C-11 in the other on BUS-5E. The crop growth was good in the beginning, but at the flowering and pod setting stage there was a shortage of soil moisture, due to the long drought period. This water stress caused poor pod setting and seed development particularly in late maturing genotypes. The borer damage ranged from 16 to 39% and podfly damage from 2.6 to 29.7%. Hymenopteran damage was low, except for one entry (DA-15) in which 32% pod damage by this pest was recorded. Only 3 genotypes in the medium duration group and one in medium-long-duration group produced greater yields than the checks, but statistical analyses showed no significant difference among the cultivars.

We recorded greater efficiency (104 to 213%) in the mediumduration trial on square lattices over RBD for the pest damage variables, except for hymenopteran pod damage and yield. However, in the other square lattice trial with medium-long-duration material Table 9: Results of testing short-medium duration selections under unsprayed conditions during the rainy season, 1985/86 at BUS-5E, ICRISAT Center. Plot size: 3 rows of 4 m (BLSD); Net plot harvested: 9 sq.m.; Harvested on: 5 Feb 1986.

••••••••••••••••••••••••••••••••••••••	00	Chassa	1	•)			
lines	50 x	cters*	Borer	Podfly**	Bymn.	Total	kg/ha
BDN-1 (Check)	119	LH	43.2	34.8	1.6	74.8	700
ICP-909-E1	119	LB,LPf	23.9	27.4	18.1	66.2	550
20 (105)	128	-	42.1	30.9	5,4	72.9	410
MTH-1	129	HY	28.6	34.4	7.6	63.8	890
PBNA-53	129	LB,HY	23.7	44.6	5.5	67.9	1110
ICP-1903-E1	132	LB,HY	20.6	35.3	22.3	67.1	830
JNAM-421	132	-	33.0	34.6	5.1	67.5	700
ICPL-84060	132	-	26.1	45.6	21.9	77.8	660
MTH-5	136	LT,HY	18.6	35.6	9.3	61.3	870
Trial mean SE of mean <u>+</u> CV% LSD at p<.05 Effiency % over	RBD		28.8 2.61 18 7.60 127	35.9 3.48 19 10.14	10.8 2.45 46 7.13 109.0	68.8 2.62 8 7.62 74.0	744 83 22 242 115

* For abbreviations see page 5.

****** Data analysed as RBD.

there was a lower efficiency (72 to 95%) over RBD (Tables 10 and 11). Some entries, particularly the disease resistant selections, were selected for further testing.

Sprayed/unsprayed comparison

On BIL-6A at ICRISAT Center, we tested 18 promising selection bulks (including BDN-1 and C-11 checks) on plots of 12 rows of 4 m in a two replication split block trial under sprayed and unsprayed conditions. The crop growth was good in all the entries, but plant stand was poor in cultivar ICP-7035 plots, where many of the large seeds failed to germinate, due to lack of moisture in soil at the time of sowing.

In this trial we applied 3 sprays of endosulfan, one of monocrotophos and two of dimethoate, mainly against <u>Heliothis</u> and podfly. There was a good protection against <u>Heliothis</u> in the sprayed block and podfly incidence was also reduced, but hymenopteran pest damage increased considerably. Most of the genotypes produced very good yields and there was some increase due to protection against pests, but no selection produced yields as good as BDN-1. Genotypes, ICP-3328, ICP-10531, ICP-1903 and PPE-88 showed tolerance to pest attack. The pest damage assessment results and yields of the selections tested are furnished in Table 12.

IV. Testing of long-duration selections

Unsprayed trial at Patancheru (BUS-5E)

The long-duration genotypes do not produce good yields in south India. They are better suited to the north Indian conditions. This year, because of scanty rains, the late varieties suffered from drought stress, that resulted in poor pod setting and seed development. We obtained good comparisons of pest susceptibility in the selections of the long-duration genotypes from disease resistant material from AICPIP-lines and from our pest tolerant mixture bulks.

We grew 30 entries in a generalized lattice design, in plots of 3 rows of 4 m, with three checks under pesticide free conditions. In this trial one entry failed to produce pods, and so was deleted from the analysis. Lepidopteran borer damage ranged from 17% to 42% (Table 13). Some genotypes showed a low level of podfly incidence and they were selected for further testing. The susceptible entries showed 20 to 35% podfly damage in pods. All the selections and checks produced low yields, the maximum being 370 kg/ha in one of our wilt resistant selection. We selected some lines showing multiple disease and pest resistance from this trial.

Testing of long-duration promising bulks - sprayed/unsprayed comparison

On block BIL-6A, we grew 15 bulks of the long-duration group under sprayed/unsprayed conditions in a two replicate split-block trial, in plots of 12 rows of 9 m. Half of the trial was protected from borer

Table 10: Testing of pigeonpea selections (from Patancheru and Hisar) of medium-duration on BUS-8C, ICRISAT Center during the rainy season 1985/86. Plot size: 3 rows of 4 m; Reps.: 3 (Lattice square); Net plot harvested: 9 sq.m.

- • • •			Po	d damage i	nean (%)		24-14
Cultivars/	DF	Chara-				Banna Bahal	
lines	50%	Cters*	BOLEL	POGILÀ	aymn.	TOTAL	Kg/na
GS-1	107	LH,LPf, LT	25.8	2.6	1.1	28.7	650
BDN-1 (Check)	109	LPf,LH	26.9	3.8	1.2	32.2	710
ICPL 345	113	LB	23.2	18.9	3.3	43.9	560
PDA-5-3EB	115	LB	16.1	16.3	6.5	36.9	460
ICP-1903-E1-2EB	122	LB	20.7	7.8	7.0	33.4	520
ICPL-342	126	LB,LH, LT	18.2	12.9	2.3	32.8	670
ICPL-84016	127	LH	21.6	10.2	1.3	35.2	650
ICPL-84003	128	LH	33.6	12.2	1.2	44.8	530
ICPL-84005	128	LB, HY	19.6	11.3	2.0	32.5	720
ICPL-8354	132	HY	23.0	5.6	3.3	31.3	600
ICPL-84011	131	LB,LH, HY	20.9	11.5	1.4	33.8	740
ICPL-84071	134	HPf	33.5	9.5	1.3	41.6	450
ICPL-84001	136	LH,HY	24.7	5.9	1.3	31.1	700
ICPL-227	139	LB	19.7	21.1	4.2	43.6	520
ICPL-8363	139	LPf	31.4	8.3	1.4	40.9	480
ICPL-335	146	lpf,Hy	26.7	9.7	2.9	38.4	770
Trial mean			24.1	10.5	2.6	36.3	608
SE of mean +			3.05	1.60	(1.95)	**2.50	97
CV1			22	27	10	12	28
LSD at p<0.05			8.79	4.61	(5.62)	**7.21	-
Efficiency & ove	r RBD		104.2	213.4	83.5	185.5	99

* For abbreviations see page 5.

** Arcsin 1/8 transformation was used for the analysis of data. Figures in parentheses are the transformed values.

Table 11: Testing under uns size: 3 sq.m.	of selectio prayed cond rows of 4 m	itions, , tripl	medium-1 ICRISAT e lattice	ong-dura Center (; net pl	ition p (BUS-5E) .ot harv	igeonpea . Plot ested: 9
		Po	d damage	mean (%)	r din tan an din tan din tan	*
	DF 50%	Borer	Podfly	Hymn.	Total	Yield kg/ha
82 HP-1363-3EB	93	39.1	16.9	19.8	66.8	50
C-11 (Check)	124	29.8	29.7	6.9	60.8	360
KWR(1)JBR-SW20	154	20.1	25.0	11.8	53.2	370
ICP-7946-E1	154	30.1	8.4	1.5	39.2	170
PI-395272-SWe	157	21.8	11.4	10.0	42.5	220
PI-394954-SW10	157	15.4	27.8	13.1	52.4	280
DA-15	161	22.6	19.9	32.0	66.8	130
ICP-8102-5-810	161	18.0	27.3	10.5	52.7	250
ICP-6443 (Check)	161	28.3	15.8	12.1	52.8	300
Trial mean SE of mean ± CV% LSD at p<0.05 Efficiency % over R	BD	25.0 4.15 29 12.40 77.2	20.2 5.51 47 74.8	13.1 (3.48) 30 (10.38) 74.8	54.1 * 7.68 25 * - 71.5	240 73 54 - 81

* $Arcsin \sqrt{V}$ transformation was used for the analysis of data. Figures in parentheses are the transformed values. Table 12: Comparison of pigeonpea promising bulks (medium-duration) under unsprayed and sprayed conditions on BIL-6A, ICRISAT Center, during the rainy seaon 1985/86. Entries: 18; Reps.: 2 (split block); Net plot harvested: 22.5 sq.m.

	Chara-	D F	Pod	damage t	(mean)		Yield
Cultivar	1984*	508	Borer	Podfly	Bymn.	Total	Kg/na
Unsprayed							
PPE-88 BDN-1 (Check) ICP-1811-E3 GS-1 ICPL-84060 ICP-1691 ICP-3328 ICP-1903 ICP-10466 ICP-4070 APAU-2208 ICP-7035 ICP-10531 ICP-7941-E1 C-11(Check) ICP 1-6 ICP-7946-E1 ICP-8134-1	LBS HB LB,LT,HH LB,LH,LT HY HB LB,LT,HY LB,MPf,HY LB,HPf,LW LB LB,LT,HY LB,HH MB HB,LPf HB,HY HB LB,LPf,HY LB,HY,HPf	104 115 118 124 124 124 124 124 124 124 124 124 124	5.3 15.9 10.2 15.2 5.8 11.3 13.2 13.4 16.3 11.3 17.2 17.6 17.7 21.1 17.9 17.4 25.6 30.2	10.1 12.2 16.7 12.8 21.1 25.1 20.3 20.2 25.9 18.8 11.6 12.4 20.7 16.2 23.4 26.7 14.4 30.7	44.8 17.8 34.8 9.9 41.2 14.2 34.3 34.3 34.3 29.6 37.2 23.0 24.1 14.7 16.7 20.2 27.6 13.4 22.4	55.9 42.6 57.3 36.3 61.6 46.4 59.0 60.6 62.2 61.5 47.3 48.1 48.2 50.0 54.6 65.0 49.9 70.9	1130 2320 2080 2110 1790 1750 1960 1810 1800 1210 1950 910 1270 1560 2020 1460 1080 890
Mean <u>Spraved</u>			15.7	18.8	25.5	54.3	1620
PPE-88 BDN-1 (Check) ICP-1811-E3 GS-1 ICPL-84060 ICP-1691 ICP-3328 ICP-1903 ICP-10466 ICP-4070 APAU-2208 ICP-7035 ICP-10531 ICP-7941-E1 C-11(Check) ICP 1-6	LBS HB LB,LT,HH LB,LH,LT HY HB LB,LT,HY LB,MPf,HY LB,HPf,LW LB LB,LT,HY LB,HH MB HB,LPf HB,HY HB	104 115 118 124 124 124 124 124 124 124 124 124 124	3.1 5.1 4.4 6.9 4.8 3.4 4.7 6.5 3.4 8.0 6.3 8.9 8.0 7.1 4.5 8.6	7.9 8.6 9.6 9.8 13.3 15.7 11.5 8.4 17.1 19.7 7.4 11.6 7.9 7.3 19.9 17.3	42.5 11.6 25.4 9.1 36.3 11.4 27.4 35.4 23.8 24.6 17.3 19.5 18.2 16.3 21.9 28.3	51.2 24.6 37.5 24.5 50.3 29.0 41.3 47.5 41.0 47.7 29.3 37.1 32.1 29.6 43.5 51.3	1090 2730 2570 2350 1930 1970 1970 1600 1980 1610 1160 600 1270 2220 2440 1560

Cultivar	Chara-	DF	Po	Yield			
	1984*		Borer	Podfly	Bymen.	Total	
ICP-7946-E1 ICP-8134-1	LB,LPf,HY LB,HY,HPf	139 148	6.5 10.5	4.7 19.3	7.7 20.1	18.2 46.4	1500 1 49 0
Nean			6.1	12.0	20.0	37.9	1780
Effect of Mai (Insecticida)	n treatment protection	2					
SE of mean <u>+</u> CV%			0.53 28	1.25 25	4.25 18	1.84 8	60 17
Effect of Sub (Cultivar)	treatment						
SE of mean ± CV%			1.54 20	1.76 17	4.08 24	4.6 7 14	288 24
Effect of Int	eraction						
SE of mean ±	Main Sub		2.17 2.17	2.59 2.81	4.6 0 6.2	5.01 5.30	322 324

* For abbreviations see page 5.

Table 13: Testing of long-duration pigeonpea selections under pesticide free conditions on BUS-5E, ICRISAT Center during the rainy season 1985/86. Plot size: 3 rows of 4 m; Reps.: 3 (general lattice); Net plot harvested: 9 sq.m. Pod damage mean (%) DF Chara- ---- Yield Entry 50% cters* Borer 'Podfly Hymn. Total kg/ha ICP-7337-4-6-1-2-2-S1•169LB, HY13.720.327.856.6PR-3639-E1-2EB169LPf, LH33.46.26.144.4ICP-5172-5-2-2-1-S1•169LB, LH,18.221.55.744.6 250 150 160

 ICP-3172-3-2-1-310
 IOS LIS, LR, TO.2
 21.5
 5.7
 64.6

 LT
 LT
 ICP-3176-5-E1-4Eb
 169 LH, HPf 27.2
 35.1
 1.9
 63.3
 1

 ICP-7176-5-E1-4Eb
 169 LH
 36.4
 20.3
 5.6
 58.8
 1

 ICP-11804-E3-2EB
 169 LPf
 21.4
 9.8
 43.1
 64.5
 1

 ICP-11368-E3-2EB
 173 LPf, LT
 26.2
 6.9
 8.1
 40.2
 1

 ICP-9168-WR-E1
 173 LB, HY
 20.3
 21.1
 18.1
 55.0

 Bahar (check)
 173 LB, HY
 27.3
 19.4
 11.7
 58.8

 PR-3696-E1-2EB
 173 LH
 31.2
 9.0
 4.4
 44.9

 PI-397731-S30-2EB
 177 LPf, LT
 26.4
 9.5
 5.2
 40.2

 ICP-4769-E1-2EB
 177 LPf
 30.8
 11.0
 34.4
 67.3

 NP-(WR) (Check)
 177 LPf
 27.2
 9.7
 15.2
 49.0

 PI-394954-SWI0-WI0-WB
 177 LT
 23.1
 13.9
 8.8
 44.6

 DA-13
 177 HB
 41.9
 2.5
 3. LT 150 40 160 180 200 370 340 100 190 190 190 190 120 200 280 150 40 110 160 LT

 DA-2
 181 LB
 16.9
 19.2
 36.6
 64.4

 PI-394571-S40-2EB
 181 HH
 25.2
 8.5
 40.9
 65.8

 ICP-5151-1-1-1-2-2-EB
 183 LH
 27.8
 21.4
 3.8
 53.9

 ICP-4745-2-E8-5EB
 183 LH
 31.5
 15.9
 1.5
 47.4

 PR-4908-E1-2EB
 183 LPf
 23.8
 11.3
 47.8
 69.7

 T7-(Check)
 183 27.6
 21.2
 12.0
 61.4

 Banda paleru
 183 HY
 23.0
 17.4
 21.2
 57.0

 170 150 150 110 160 220 260 26.914.316.354.41804.493.613.954.8647284141144212.8210.3211.2713.88135 Trial mean SE of mean ± CVN LSD at p<0.05

In the unsprayed treatment borer damage was low but the podfly incidence was high. The results of pod damage assessments and yields are reported in Table 14. It is evident from the table that there was no appreciable reduction in pest damage by sprays and no increase in yields of the earlier flowering entries. In this trial no entry showed any appreciable level of tolerance to pests attacks and the insecticide were found insufficient to reduce the pest damage levels.

Screening of disease resistant lines for insect pests resistance under pesticide free condition

Earlier, our pathologists have screened our selections having reduced susceptibility/tolerance to pests in their wilt and sterility mosaic resistance screening nurseries for 2-3 years. From these they have selected some single plants showing disease resistance to an acceptable level. This year the seed from these single plant selections were supplied to us for confirming their pests resistance under pesticide free conditions. We sowed these selections on BUS-8C at the end of June 1985 on plots of 2 rows of 4 m, in two-replication lattices.

In this trial only a few entries were of medium-duration, the others were very late in flowering. Damage by both the major pests was low and yields were also very poor, except for six entries which produced more than the common check ICP-6443 (Table 15). Some of the entries showed reduced susceptibility to borers and podfly, these were selected and advanced for further testing in the coming season.

AICPIP collaborative trials 1985-86

Under the varietal testing programme of the All India Coordinated Pulses Improvement Project (AICPIP), we received 8 arhar (pigeonpea) genotypes in EXACT, 15 in EACT, 8 in ACT-1, 12 in ACT-2 and 8 cultivars in ACT-3 trials for testing their susceptibility to pests at ICRISAT Center during rainy season 1985-86. These genotypes were tested on the Vertisol blocks BUS-5E and 8C, where no pesticides were applied, and no irrigation was given. The sowings of these trials were completed on June 27, 1985 on plots of 5 rows of 4 m in 3 replication RBD trials, with plant to plant spacing of 37.5 x 20 cm in EXACT and EACT trials and 75 x 30 cm in the other trials. No fertilizers were applied.

Pod damage assessments were carried out in the laboratory after collecting all pods at maturity from 6 plants, harvested at random from each plot. The plot yields were determined from net plots of 3.94 sq.m. in the extra early maturity trials and 7.88 sq.m. in ACT 1 to 3 trials. Table 14: Comparison of pigeonpea promising bulks (long-duration) under unsprayed and sprayed conditions on BIL-6A, ICRISAT Center, during the rainy season 1985/86. Entries: 15; Reps.: 2 (split block); Net plot harvested: 60 sq.m.

Cultivar	Chara- cters	DF 50%	Pod damage & (mean)				Yield kg/ba
	1984+		Borer	Podfly	Hymn.	Total	
Unsprayed							
PPE-83	LB, LPf	143	14.6	25.8	20.5	55.4	730
ICP-7337-2-540	HH, HPf	149	25.7	33.6	28.4	73.6	470
PPE-36-2	LB, HPf, HH	149	24.2	19.1	29.9	62.4	880
PPE-84	LBS, LPf	151	34.2	20.5	23.8	66.6	890
PPE-87	LPFS	151	25.1	17.5	20.0	55.5	1010
ICP-3615-E1	LB, HY	151	34.8	20.0	18.4	63.4	910
PPE-37-3	LB,LPf	151	28.7	26.2	25.9	67.4	700
ICP-7176-5	LB,HY	151	29.1	26.5	20.7	66.5	770
ICP-6443	LB,LPf	155	28.1	18.8	31.7	66.5	1040
ICP-8127-E3	HPf,HH	155	30.7	19.4	25.8	63.0	570
ICP-8094-2-52	LB,LPf	155	26.8	17.4	32.5	62.6	780
ICP-8102-5	LB, LPf,	160	32.7	11.2	31.0	62.8	820
1CP-3940-E1	SMR LB	160	29.2	25.7	18.7	62.5	930
TCP-7537-E1	LB.LPf	160	30.9	17.7	31.1	64.5	540
T-7	HB	179	22.3	18.3	26.2	57.3	660
Mean			27.8	21.2	25.6	63.3	780
Sprayed							
PPE-83	LB, LPf	143	8.4	19.8	22.7	47.3	670
ICP-7337-2-540	HH,HPf	151	20.0	20.0	25.3	56.1	310
PPE-36-2	LB, HPf, HH	150	18.4	17.1	32.0	58.1	580
PPE-84	LBS, LPf	151	30.1	21.7	19.5	61.3	570
PPE-87	LPFS	149	14.6	19.8	17.7	48.1	1080
ICP-3615-E1	LB,HY	151	19.5	16.7	23.5	53.2	740
PPE-37-3	LB,LPf	153	12.5	23.3	26.0	54.0	810
ICP-7176-5	LB,HY	152	36.8	20.8	18.9	65.0	850
ICP-6443	LB,LPf	152	18.2	18.3	25.0	55.1	970
ICP-8127-E3	HPf,HH	155	20.7	17.9	31.2	59.9	720
ICP-8094-2-52	LB,LPf	155	18.0	18.4	31.5	59.6	930
ICP-8102-5	LB, LPf, SMR	157	21.9	14.0	27.5	55.3	1000
ICP-3940-E1	LB	160	20.4	20.0	22.8	55.5	980

Cultivar	Chara-	DF	Poo	Pod damage & (mean)				
	1984*	504	Borer	Podfly	Bymn.	Yield kg/ha Total 67.9 640 65.9 750 57.5 770 1.56 20 6 20		
ICP-7537-E1	LB,LPf	160	30.1	15.8	35.7	67 .9	640	
T-7	HB	179	27.4	24.5	30.7	65.9	750	
Mean			21.1	19.2	26.0	57.5	770	
Effect of mai.	n treatment	lina	ecticide	protectio	<u>(ac</u>			
SE of mean ± CVN			0.61 20	0.34 16	1.07 16	1.56 6	20 20	
Effect of sub	treatment	(cult	iyar)					
SE of mean ± CVN			2.31 13	2.31 16	2.15 12	2.70 9	112 29	
Effect of int	eraction							
SE of mean ±	Main Sub		3.38 3.32	2.81	3.0 3.10	4.05 3.84	158 15	

* For abbreviations see page 5.

Table 15: Results of testing disease resistant lines for pest susceptibility under pesticide free conditions during the rainy season 1985/86 on BUS-8C, ICRISAT Center. Plot size: 2 rows of 4 m; Reps.: 2 (lattice square); Net plot harvested: 6 sq.m.

	******	Poć	damage	pean (1)	
Cultivar/lines	DF 50%	Borer	Podfly	Hymn.	Total	Yield kg/ha
PPE-45-2-7B (check)	108	19,7	21.8	5.5	46.8	310
BDN-1 (check)	108	27.3	13.6	5.7	44.2	270
PI-3615-E1-3EB-1-1-8Be	115	25.6	9.0	5.6	41.4	310
C-11 (check)	122	28.0	13.1	3.1	43.2	280
ICP-8595-E1-2EB-1-1-1-8B0	123	16.3	20.6	2.6	38.8	190
ICP-394440-EB-2EB-1-5Be	123	22.3	18.9	4.8	45.4	550
ICP-1903-E1-7EB (check)	123	7.0	15.6	9.6	30.9	290
ICP-6831-S10-SB0	156	10.8	4.8	3.5	21.1	450
ICP-8583-E1-2-EB-1-1-SB0	161	18.6	17.5	2.4	41.6	240
ICP-8689-E1-2EB-1-1-1-5B0	171	24.0	13.5	1.8	39.0	270
PI-396588-EB-2EB-1-1-5B0	171	23.8	15.0	8,3	46.2	160
ICP-10659-810-880	171	10.3	12.5	11.8	34.6	330
GW-3-4EB-510-580	171	34.1	12.5	1.2	50.0	250
ICP-8325-E1-3EB-1-1-5B0	175	17.7	19.6	10.4	44.6	550
PI-397731-2-1-SB9	175	21.4	19.5	8.1	47.8	390
1CP-7198-510-580	175	17.1	21.8	4.8	46.9	250
ICP-4769-S10-SB0	175	18.4	12.1	11.0	44.9	290
ICP-8301-1-2-2-1-5Be	179	19.8	28.5	14.9	55.9	180
ICP-8860-5-1-SBe	179	24.7	12.0	5.2	42.1	270
PI-397275-1-S10-SB0	179	31.6	11.7	2.0	44.7	410
PI-397677-1-S10-SB0	179	25,9	13.7	0.8	37.7	250
ICP-8094-2-1-810-680	179	19.8	6.6	2.3	32,8	190
ICP-5036-S10-SB	179	17.6	16.4	4.7	41.7	430
ICP-7176-5-E1-1-1-1-SB0	183	49.0	7.5	11.8	66.8	100
ICP-8135-1-1-2-1-SB0	183	28.5	12.7	9.1	49.6	150
ICP-8128-2-3-2-2-1-5Be	183	15.4	19.4	17.5	53.4	290
PI-397731-3-1-SBe	183	19.4	14.3	10.3	46.0	140
PI-394571-2-SB0	183	17.0	22.1	11.0	48.1	190
PI-394571-3-1-SBp	183	13.6	11.3	6.0	33.2	120
PI-394571-4-1-880	183	26.3	9.0	1.4	36.6	160
PI-394571-5-1-SB0	183	14.1	11.0	12.1	42.0	180
ICP-6443 (check)	183	22.4	14.8	2.0	38.8	320
ICP-4886-510-580	183	16.1	19.0	5.2	38./	160
ICP-8102-2-S16-EB (check)	183	26.7	17.7	5.4	48.9	230
P1-396986-1-510-580	187	17.0	11.2	/./	45.2	120
ICP-8130-E1-2EB-1-1-1-8Be	187	22.1	34.5	5.8 	0U.Y	140
Trial mean		21.4	15.4	6.5	43.6	260
SE of mean ±		4.98	3.34	(3.48)	**6.17	66
CVN -		33	31	36	20	36
LSD at p<0.05		14.3	9.7	10.1	-	192
Efficiency & over RBD		79.3	112.7	9.96	93.3	108

* Arcsin /% transformation was used for the analysis of data Figures in parentheses are transformed values. The plot yields were low in most of these trials, largely because of severe sucking bug infestation in the extra-early cultivars and because of water stress in other trials. This year because of lack of rains there was very rapid maturity in the crop and pod setting and seed filling was poor. There was severe borer damage in the short- and medium-duration entries, but the borer incidence declined in the late flowering ones. Hymenopteran damage was high in the early flowering genotypes. An increase in the podfly incidence was noticed in the medium and long-duration entries. The results of the pod damage assessments and yields are furnished in Tables 16 to 20.

In the EXACT, no entry gave a significantly higher yield than the check UPAS-120 and there were no significant differences between the entries for mean percentage of borer damage and podfly damage. ICPL-269 in EACT showed the least damage by borers and produced the greatest yield. The determinate genotypes suffered most damage due to lepidopteran pests in this trial. Some entries showed less damage caused by the hymenopteran pest (Table 17).

Better yields were recorded in the ACT-1 in which all the entries were indeterminate. Some genotypes showed less pod damage caused by borers and the hymenopteran. Among these, CORG-5 was outstanding in seed yield with moderate damage by borers. No significant differences in yields were detected among the entries in this trial.

In ACT-2 and ACT-3, MRG-66 and ICPL-66 showed least .damage by borers and produced the greatest yields. Some entries from these trials were selected for further testing on the basis of their reduced susceptibility to different pests and greater yields.

Pests damage in wild relatives of pigeonpea

As in previous years, we grew the following wild relatives of pigeonpea this year (in block BUS-BC) under pesticide free conditions on 3 rows of 4 m.

Atylosia scarabaeoides A.lineata A.platycarpa A.cajanifolia Rhynchosia bracteata

In the beginning the plant growth was very good and many pods were produced by <u>A.platycarpa</u> and <u>A.scarabaeoides</u>. Later, the plant growth was severely affected by drought and no pods could be harvested from the other species which flowered later. We harvested pods from <u>A.platycarpa</u> in two picks and from <u>A.scarabaeoides</u> only once. Pod damage assessments were made in the sampled pods and the pest damage data are furnished in the Table 21.

Multilocation testing of entomology selections

I. In collaboration with the Indian National Program (AICPIP):

Table 16: Results of testing EXACT (AICPIP) pigeonpea cultivars for pest susceptibility under pesticide free conditions on BUS-8C at ICRISAT Center, Patancheru, during the rainy season 1985. Plot size: 5 rows of 4 m (37.5 x 20 cm); Reps.: 3 RBD; Net plot harvested: 3.94 sq.m.

		D F	Po	•)			
Cultivar/lines	habit*	DF 50%	Borer	Podfly	Bymn.	Total	Yield kg/ha
H.81-1	DT	46	34.1	0.3	32.1	60.8	130
AL-1	DT	49	47.7	0.5	30.7	69.5	190
P-851	NDT	51	38.5	0.6	17.5	54.4	410
ICPL-8306	DT	52	33.3	0.3	31.7	60.5	320
TAT-10	SDT	57	36.3	1.2	24.5	58.6	390
UPAS-120 (Check)	SDT	57	41.9	1.5	8.6	49.8	320
ICPL-317	DT	57	45.8	0.6	9.4	54.6	390
AL-101	SDT/NDT	57	37.9	0.5	20.3	51.5	300
Trial mean SE of mean <u>+</u> CV%			39.4 4.95 22	0.7 (1.22)* 52	21.9 * 4.38 35	57.5 5.21 16	306 39 22

* For abbreviations see page 5. ** Arcsin $\sqrt{5}$ transformation was used for the analysis of data. Figures in parentheses are transformed values.

Table 17: Results of testing EACT (AICPIP) pigeonpea cultivars for pest susceptibility under pesticide free conditions on BUS-8C at ICRISAT Center, Patancheru, during the rainy season 1985/86. Plot size: 5 rows of 4 m (37.5 x 20 cm); Reps.: 3 RBD; Net plot harvested: 3.94 sq.m.

			Pod	l damage	mean (1		·	
Cultivar/lines	Growth habit*	DF 50 N	Borer	Podfly	Hymn.	Total	Yield kg/ha	
Sweta-2	DT	63	75.7	1.1	4.3	79.8	130	
AL-13	SDT	63	37.5	1.6	18.9	54.6	270	
UPAS-120 (Check)	SDT	63	49.2	1.5	9.0	58.0	200	
AL-57	SDT	63	34.7	1.8	13.1	48.0	310	
AL-56	SDT	63	41.1	1.1	23.1	58.0	240	
Pant-Al (Check)	SDT	63	55.3	0.9	11.2	62.6	140	
ICPL-8327	SDT	63	51.0	2.1	4.5	57.2	250	
TAT-10	SDT	63	35.5	1.4	29.1	61.8	240	
ICPL-317	DT	64	44.0	0.6	8.9	52. 7	350	
H-82-26	SDT	65	58.8	0.3	15.0	69.4	230	
MTH-6	DT	65	46.1	0.9	34.1	72.7	250	
ICPL-151	DT	68	58.3	2.1	12.2	68.9	260	
ICPL-269	SDT	69	22.6	4.1	9.6	36.3	610	
GUAT-82-53	DT	96	64.4	1.3	17.4	78.5	60	
GUAT-82-85	DT	99	26.6	0.8	54.3	76.9	40	
Trial mean SE of mean <u>+</u> CV%			46.7 6.13 23	1.45 (1.77) 51	17.7 (5.74) 43	62.4 6.38 18	238 79 57	

* For abbreviations see page 5.

Table 18: Results of testing ACT 1 (AICPIP) pigeonpea cultivars for pest susceptibility under pesticide free conditions on BUS-8C at ICRISAT Center, Patancheru, during the rainy season 1985/86. Plot size: 5 rows of 4 m (75 x 30 cm); Reps.: 3 RBD; Net plot harvested: 7.88 sq.m.

C] b i wa a /] i a a a	Crowbb	DE	Po	d damage	mean (•)	Viald
Cultivar/lines	habit*	50%	Borer	Podfly	Hymn.	Total	kg/ha
1 CDI - 1 96				, , ,			£20
1040-100	NUI	0/	22.3	dayo da	21.0	40.4	020
Pant-A-103	NDT	69	33.2	1.4	26.3	58.7	530
Pant-A-102	NDT	69	41.1	1.5	18.2	57.8	520
Pant-A-104	NDT	6 9	33.8	2.2	9.2	46.4	560
T-21 (Check)	NDT	7 9	36.7	2.3	17.3	54.4	640
CORG-5	NDT	85	26.9	2.2	9.5	37.1	970
PF-14	NDT	88	14.9	1.9	21.1	36.2	710
PT-20	NDT	92	18.4	2.9	39.4	56.1	720
Trial mean SE of mean <u>+</u> CV%		960 Sin an 455 Sib an .	28.4 3.09 19	2.1 (1.25)* 27	20.3 *(3.20) 21	49.1 **3.70 13	658 89 23

* For abbreviations see page 5.

** Arcsin -/ transformation was used for the analysis of data. Figures in parentheses are the transformed values.
Table 19: Testing of pigeonpea ACT 2 entries of AICPIP for pest susceptibility under pesticide free conditions at ICRISAT Center, Patancheru, during the rainy season, 1985/86. Plot size: 5 rows of 4 m (75 x 30 cm); Reps.: 3 (RBD) on BUS 5E; Date sown: 26 June 1985; Net plot harvested: 7.878 sq.m.

			Poo)	******		
Cultivar/lines	Growth habit*	DF 50%	Borer	Podfly	Hymn.	Total	kg/ha
C-11 (CH)	NDT	125	46.8	18.0	2.9	63.9	240
AKT-6	SDT	125	38.4	14.9	0 .9	53.2	390
AKT-1	SDT	125	45.6	13.1	3.2	60.1	130
PT-22	SDT	126	46.6	15.6	6.4	65.8	190
ICPL-332	SDT	131	26.2	23.9	15.1	59.4	240
MRG-66	SDT	131	18.5	33.5	15.7	58.9	420
MTH-11	SDT	131	27.2	30.6	1.7	53.9	340
MTH-9	NDT	133	33.4	27.8	2.1	60.6	360
MTH-8	NDT	135	32.0	24.9	0.8	53.1	350
G-78-3	NDT	135	38.3	39.6	0.2	76.2	190
AGS-478	SDT	138	27.5	19.6	3.3	47.7	290
MTH-5	NDT	138	37.6	20.4	3.2	57.2	340
Trial mean SE of mean <u>+</u> CV%			34.8 5.05 25	23.5 3.74 28	4.62 (2.98) 51	59.2 *4.91 14	291 75 45

* See abbreviations page 5.

** Arcsin $\sqrt{1}$ transformation was used for the analysis of data. Figures in parentheses are transformed values.

Table 20: Testing of pigeonpea ACT 3 entries of AICPIP for pest susceptibility under pesticide free conditions at ICRISAT Center, Patancheru, during the rainy season, 1985/86. Plot size: 5 rows of 4 m (75 x 30 cm)-RBD on BUS 8C; Date sown:27 June 1985; Net plot harvested: 7.878 sq.m.

			 Do				
Cultivar/lines	Growth	DF		Yield			
	habit*	50%	Borer	Podfly	Bymn.	Total	kg/ha
DA-8	NDT	89	22.9	16.1	4.7	42.0	180
ICP-6443 (CH)	SDT	156	14.5	21.5	3.8	38.8	290
Bahar	NDT	175	24.3	32.2	5.8	57.4	190
T-7 (CH)	SDT	175	25.1	17.1	2.3	42.9	150
DA-15	SDT	177	24.3	18.6	12.1	52.6	220
ICPL-360	NDT	177	33.5	10.1	4.0	45.4	150
ICPL-366	NDT	177	19.1	26.3	0.4	44.7	320
PDA-10	SDT	177	16.5	27.6	4.0	47.4	220
Trial mean SE of mean <u>+</u> CV%			22.5 5.26 41	21.2 4.41 36	4.7 (2.84) 45	46.4 ** 5.50 21	214 46 37

* For abbreviations see page 5. ** Arcsin 1/1 transformation was used for the analysis of data. Figures in parentheses are transformed values.

Table 21: Pod damage by insects in wild relatives of pigeonpea
(Atylosia spp.) under pesticide free conditions at
ICRISAT Center on BUS-8C, during the rainy season 1985-86.Wild speciesPick
Harves-
tedPods/
Pt(6
Sompta
Borer Pod-
fly
led)Pod damage mean (%)
Pod damage mean (%)
Pod damage mean (%)AtylosiaI
30-9-8530-9-85
4242
64
31.264
1.80.5
0.5
0.533.5
0.4
28.3AtylosiaI
20-11-8520-11-85
53171
3.63.6
0.1
48.652.3
21.3

Page 35

Entomologists at various locations cooperated in testing our promising selections at different centers in India. The Principal Investigator (Entomology) suggested trials of the pigeonpea selections of different durations from ICRISAT and other centers and distributed the seeds of these to locations in North, South and Central India. From ICRISAT, we supplied the following selections:

Yery short duration selections	Short duration selections
ICPL-20	PPE-45-2
ICPL-1	ICP-7349-1-540-5EB
ICPL-6	Sehore-197-5EB
ICPL-288	ICP-909-E1-5EB TT-6
Medium duration selections	Late duration selections
BDN-2	ICP-7946-E1-6EB

BDN-2	ICP-7946-E1-6EB
BDN-7	AS-71-37
ICPL-84060	ICP-7176-18-E2-EB
ICP-1903	ICP-4745-2-6EB
ICP-3328	ICP-2-3EB
ICP-4070	ICP-8127-E1-5EB

These selections together with selections from other stations and relevant checks were tested at Pantnagar, Varanasi, Hisar, Sehore, Badnapur and Rahuri. The results of these trials were summarised by the Principal Investigator (Entomology), Directorate of Pulses Research (ICAR), Kanpur, in their report of 1985/86. The pod damage assessment results and yields of our selections tested at different locations are furnished in Table 22.

In this multilocation testing program there was no uniformity in the recording of pests damage or yield results. Attempts were made by the Principal Investigator to conduct these tests in a uniform manner by keeping the uniformity in plot size, design of experiment and collection and presentation of data. At some locations entomologists reported difficulties in land availability and technical help; such problems led the variability in data and their presentation.

With the available information, it is evident that some selections are not performing uniformly well all the locations. Some are obviously specific to some regions in their performance. The best performing lines from different location are mentioned below.

ICPL-1	Low borer	at	Badnapur
ICPL-84060	Low borer	at	Badnapur
PPE-45	Low borer	at	Badnapur
	Low borer and high yield	at	Rahuri
ICPL-6	Low borer and high yield	at	Hisar
ICP-7946	Low podfly	at	Sehore
DA-2	Low podfly, low borer	at	Varanasi
	and high yield		

Page 36

Table 22: Resulting of testing pigeonpea promising selections at different centers in India by the AICPIP-entomologists during rainy season, 1985/86. -------------Borer Pod- Total Yield Borer Pod- Total Yield Pigeonpea fly PD% Kg/ha fly PD% kg/ha Selections Pantnagar Bisar. ---------_ _ _ _ _ Extra early 12.2 9.3 8-77-216 NT 1790 NT ICPL-1-3EB NT

 ICPL-1-32B
 NI
 NI
 NI

 ICPL-20-3EB
 21.2
 18.0
 39.3
 6.2
 15.3
 2207

 ICPL-6-3EB
 29.0
 20.0
 48.7
 NR
 4.6
 17.0
 NR
 2295

 ICPL-288-3EB
 28.8
 29.3
 58.3
 11.7
 22.0
 676

 TAT-10-3EB
 22.4
 22.5
 44.8
 12.6
 2.2
 1680

 Pant Al Check
 24.5
 30.5
 55.8
 12.1
 13.2
 2227

 UPAS-120 Check
 20.5
 24.3
 45.3
 7.2
 3.3
 1226

 LSD at p<.05 2.51 9.10 NS Entries in the 7 · trial 6 Badnapur ------Extra early H-77-21640.114.551.9660ICPL-1-3EB6.82.610.0102ICPL-20-3EB28.79.536.2634ICPL-6-3EB34.210.843.0418ICPL-288-3EB27.116.139.1152TAT-10-3EB33.116.143.1649Pant Al Check44.812.555.8497UPAS-120Check56.67.562.8412 LSD at p<.05 10.97 342 Entries in the trial 9

Pigeonpea Selections	Borer	Pod- fly	Total PD%	Yield Kg/ha	Borer	Pod- fly	Total PD%	Yield kg/ha
		Rahur	i -			Badna	pur	
Barly								
PPE-45-2-7B ICP-7349-1-540-	11.8	11.4		. 1160	13.1	6.0	18.3	172
5EB	12.9	13.9		944	17.9	18.0	30.8	190
Sehore 197-5EB	15.3	11.5	NR	819	16.8	5.4	21.9	157
T21 check	12.5	20.1		512	18.7	10.8	28.1	502
ICP-909-E1-5EB	13.1	10.8		682	20.4	8.1	25,9	447
11-0	23.5	20.7		207				
LSD at p<.05	5.3	3.10		NS		والله حليك منتبر ميريد حليك الله	8.02	84.0
trial		6					5	
		Hisar				Pant	nagar	
Early								
PPE-45-2-7B	8.9	32.9		1928	15.2	25.8	41.7	
ICP-7349-1-540- 5EB	6.3	23.5		2266	15.6	26.3	50.1	
Sehore 197-5EB	14.4	14.0	NR	2018	14.8	24.9	40.7	NR
T21 check	7.2	15.5		2600	9.7	34.3	44.0	
ICP-909-E1-5EB TT-6	5.7	20.0		1306	11.2	40.6	51.9	
LSD at p<.05	4.63	3.92		17 Main 1989 Alan Alim Alan Alim Alim	NS	NS	NS	
Entries in the trial		5				5		

Pigeonpea Selections	Borer	Pod- fly	Total PD%	Yield Kg/ha	Borer	Pod- fly	Total PD%	Yield kg/ha
		Sehor	e			Varan	asi	
Mid and late								
ICPL-84060 C-11 Check ICP-1903 ICP-3328-E1-6EB	18.0 16.3 10.7 19.3	40.0 30.0 29.7 30.0	NR	NR		N	T	
ICP-4070-E1-6EB ICP-7946-E1-6EB	10.7	36.0 21.0						
AS-71-37 ICP-7176-18-E2-5EB ICP-4745-2-6EB NP(WR)151 check MA-2-3EB ICP-8127-E1-5EB Bahar Check	32.3	38.7 NT			62.3 60.0 52.0 33.7 51.3 49.0	37.5 32.1 25.6 14.3 26.7 23.3	NR	1892 2162 2235 3200 2026 1449
LSD at p<.05 Entries in the trial		7					10	684
		Badna	pur 				·	
Mid and late								
BDN-1 BDN-2 BDN-7 ICPL-84060 C-11 Check ICP-1903 ICP-3328-E1-6EB	30.4 20.1 13.5 8.7 14.9 16.6 18.5	6.6 8.9 10.9 10.9 8.6 13.9 12.3	36.0 27.5 24.3 19.4 22.8 27.9 30.1	453 462 402 313 97 95 70				
LSD at p<.05 Entries in the trial		7	NS	151				

NT = Not tested; NR = Not recorded.

Pao	•	39
	-	

MJ-2	- Do -	at	Varanasi
ICP-8102-81	Low podfly and	at	Varanasi
IP-8094	Low podfly	at	Varanasi

II Collaboration with Department of Agriculture, Andhra Pradesh

In collaboration with Astt. Director of Agriculture, Vikharabad Taluk, four selections: ICP-909-EB, ICPL-84060, BDN-1 and BDN-2 were tested by Dr.S.Sithanantham in two farmers' fields at Gundarpally, Vikharabad, with no pesticide application. The selections ICPL-84060 and BDN-2 performed well and produced higher yields than the others. BDN-2 showed a high level of borer damage, but still produced the greatest yield. We intend to continue this type of testing in farmers' fields in collaboration with the Department of Agriculture.

Pest incidence and damage to borer resistant and susceptible genotypes in sole and mixed situations

To examine the problem of plant to plant variation in pest damage within the same genotype and also in mixed genotype populations, we compared PP-45-2 (resistant) and ICP-7203 (susceptible) again this year in an attempt to confirm the previous year's observations. These selections were grown (a) separately in plots of 8 rows of 9 m (75 x 75 cm spacing), and (b) in alternating rows and (c) as alternating plants within rows, in similar sized plots in 3 replications-RBD on BUS-8C wih no pesticide application.

In all the combinations of both selections, we tagged 14 plants for insect counts and pod damage assessments. Only one count of eggs and larvae were made after flowering, and pods were harvested at maturity in only one picking (on 6 Jan 1985). The summarised data are presented in Table 23. At the time of pest counts <u>Heliothis</u> egg laying and larval infestations were low, so resulting in poor data for the comparison.

The pod damage assessment data confirmed our earlier observations that the pest damage on the susceptible plants in general showed a decrease when they are grown in mixtures with the resistant plants (Fig.1). It can be seen that the differences in percent pod damage between resistant and susceptible plants were reduced when these were in close proximity.

This alternating resistant and susceptible plants treatment is similar to the situation that will occur in segregating breeding progenies. To overcome this problem we have suggested that our breeders should sow segregating populations, intended for pest resistance selection, at wider spacings. A spacing that would prevent the plants from touching each other would also reduce the larval migration from plant to plant. Table 23: The percentage of pods damaged by different pests in resistant (PPE-45-2) and susceptible (ICP-7203) cultivars grown in differing proximities to each other at ICRISAT Center, 1985/86 (unsprayed spacing 75 x 75 cm).

Genotypes	••••••••••••••••••••••••••••••••••••••	Po	d damage	(t) p	ean	Sample	
	Proximities	Borer	Podfly	Bymn.	Total	(14 pts)	
PPE-45-2	Plots	18.8	1.9	38.3	55.8	218	
PPE-45-2	Alternate rows	19.7	1.4	30.3	49.3	262	
PPE-45-2	Alternate plants	20.8	1.8	25.5	45.7	254	
Estimated CV%	SE ±	1.02 9	0.24 24	2.03 11	1.41 5	18.2 13	
ICP-7203	Plots	31.7	2.5	2.2	36.9	442	
ICP-7203	Alternate rows	24.3	4.0	3.4	31.9	414	
ICP-7203	Alternate plants	19.2	6.0	3.1	29.8	464	
Estimated CVN	SE ±	2.37 16	0.91 38	1.07 64	2.40 13	28.9 11	

Fig.1: Borer damage to pods of PPE45-2 (resistant) and (CP-7203 (susceptible) cultivars in plots, alternate rows and alternate plants under unsprayed situations, 1985/86.

Fage 42

Testing of borer resistant/susceptible cultivars in isolations

This year we tested a <u>Heliothis</u> resistant (ICP-1903-El) and a <u>Heliothis</u> susceptible (ICP-1691-El) selection in isolations separately on plots of 16 rows of 15 m under unsprayed conditions. These isolation blocks were on two soil types, Alfisol and Vertisol and were distributed all over the farm. These isolations provided no choice situation to the different pests. The two in replication type of blocking (resistant/susceptible) cultivars were distributed randomly among the four different locations.

For pests damage assessments, pods were collected from 10 plants from each plot. The results of these assessments are presented in Table 24. In all these blocks plant growth was good, except for BS-10 where germination was delayed due to lack of water. In the BS-blocks flowering in these cultivars was found to be a few days earlier. Borer damage (mainly <u>Heliothis</u>) was low in all the isolations. The susceptible selection showed slightly more damage by <u>Heliothis</u>. Podfly damage was substantially greater in ICP-1903.

The isolation blocks on ICRISAT-farm are not ideal, in size or location for pests resistance studies. However, it is very difficult to have good managable isolations in farmers fields where other host plants will be available for <u>Heliothis</u> to feed on.

Studies of mechanisms of resistance to Heliothis in laboratory and field

We conducted oviposition preference tests and antibiosis studies (larval feeding tests) in our laboratory and studied the performance of cultivars under sprayed and unsprayed situations in the field (to record the tolerance), in efforts to study the mechanisms of <u>Heliothis</u> resistance in borer-resistant genotypes.

In the field we also tried to ascertain the moth preference for oviposition on resistant and susceptible selections and larval retention on these. Plant to plant movement of the larvae was also recorded in some field studies.

For the assessment of chemicals that are found on and in the podwalls that may affect resistant/susceptibility, we are collaborating with the scientists at Max-Planck Institute, Munich, West Germany.

Laboratory studies on oviposition preference of moths

In our laboratory, oviposition preference studies were conducted with some of our borer-resistant and susceptible genotypes of short and medium duration and with a selection from an intergeneric cross. In an attempt to see whether we can accelerate our screening of the germplasm and breeding material, we raised seedlings of the test material in our nethouse and at 15 days old the seedlings were exposed to moths for oviposition in cages. In a number of replicated tests, Table 24: Testing of pigeonpea resistant and susceptible genotypes for pest reactions in no choice situation under unsprayed conditions at ICRISAT Center, during rainy season 1985/86 on different blocks. Net plot barvested: 72 sq.m.

	******	****	*****						
			Perc	ent po	d damag	e (nea			
Cultiver	Block	DF 503	Borer	Pod-	Bymn.	Bru- chid	Total	Sample yld(10 pts)g	Plot yld kg/ha
ICP-1903	RL-25B	106	9.1	5.7	30.5	1.4	43.1	545.0	650
	RUS-6A	106	5.1	9.0	2.4	1.2	17.6	790. 0	1140
	BM-26	106	5.1	10.5	10.9	1.1	26.9	422.1	500
	BS-3C	102	9.8	28.7	5.7	2.2	44.1	635.4	1440
Nean		105	7.3	13.5	12.4	1.5	32.9	598.1	933
ICP-1691	RL-25C	106	11.8	6.6	10.9	0.9	29.0	723.6	1110
	Q-5	106	10.7	2.8	0.8	0.7	14.8	1203.0	1840
	BUS-23B	106	5.5	2.7	3.3	0.5	11.8	364.8	620
	BS-10	100	9.0	3.8	7.7	0.4	20.2	446.7	870
Mean		105	9.3	4.0	5.7	0.6	19.0	684.5	1110
SE of mea CVS	in ±		0.99 24	3.87 89	3.35 74		3.06 24	93.9 29	195 38

We found more egg laying on the seedlings of susceptible cultivars. However, significant differences in egg laying was noticed only in seedlings of short-duration selections. The seedlings of the intergeneric cross 1918(IG) was found to be a preferred host for Heliothis moths (Table 25).

In the second set of trials, flowering twigs (10-15 cm in length) from the resistant and susceptible selections were used for oviposition tests in laboratory. These twigs were collected from the pesticide-free plots in the BUS-area. Several tests were conducted with only one resistant and one susceptible test plant (flowering twig) of similar maturity. In general it was recorded that moths preferred the genotypes that were known to be susceptible and the standard checks for oviposition. Many eggs were also laid on the cage surfaces. It is evident, from the data shown in Table 24, that resistance in our selections is partly due to oviposition nonpreference of the moths.

Studies on feeding preference of Heliothis larvae

Fresh flowers and green pods collected from the resistant and susceptible genotypes were used for feeding preference studies in our laboratory.

In 13 cm petri-dishes, 2-3 flowers of a resistant and a susceptible genotype were placed near the edge of the dish, opposite each other. A second instar larva was released in the center of the petri-dish. The larval movement in search of the food was recorded at different intervals. Later, 24 hrs after the larva was introduced, the extent of damage caused to the flowers was scored. A rating of 1-9 for severity of damage was given. Similarly, tests were also conducted with green pods collected from the resistant and susceptible genotypes. The damage ratings, from means of 4 replications are furnished in Table 26. The results showed that there was a clear preference for the pods of susceptible cultivars and a high damage rating was found in the susceptible checks. Larval preference and a high damage rating was found in the flowers of susceptible cultivars of test groups 2 and 3 of Table 26. No difference in larval preference was detected when flowers of ICP-7203 and C-11 were compared.

Studies on antibiosis to Heliothis larvae in laboratory

Development of <u>Heliothis</u> larvae on green seeds and pods of pigeonpea genotypes:

In an attempt to detect antibiosis in our borer resistant selections, PPE-45-2, ICP-909, ICP-1903, ICPL-84060 and 1918 (IG), we reared newly hatched larvae of <u>Heliothis</u> on the green seeds and pods collected from these selections and a comparison was made of the development of larvae on the same type of food collected from the borer susceptible genotypes and check cultivars. Larvae in individual glass tubes (2.5 x 7.5 cm) were placed in the incubator at 28 ± 1 C. In all these tests, 21 larvae were used for the development and weight loss studies. In these tests larval mortality, comparison of weights of larvae after 10 Table 25: Oviposition preference by <u>Beliothis armigers</u> so the on seedlings and flowering twigs of pigeonpea genotypes in the laboratory at ICRISAT, 1985/86.

	Tes	t-1	Te	Test-2		st-3	Egg	
Genotypes tested	Total eggs laid	Eggs laid (mean)	Total eggs laid	Eggs laid (mean)	Total eggs laid	Eggs laid (mean)	no. means of tests	
I Studies with	15 days	old men	dlings	<u>(5 -repli</u>	cation s	ach)		
Set-1	2-1-	86	17=1	-86	27-1	-86		
PPE-45 (R) ICP-7203 ICP-909 T-21 Other surfaces	22 25 35 45 587	4 5 7 0 117	62 89 8 150 473	12 18 2 30 95	119 298 132 256 235	24 60 26 51 47	14 28 12 30 86	
SE of mean ± CV8		13.8 108		11.2 80		7.2 39	6.9 46	
<u>Set-2</u>	27=2	-86	14=	3-86	21-3	-86		
ICP-1903(R) BDN-1 ICP-1691 ICPL-84060 Other surfaces	64 223 91 156 184	13 45 18 31 37	133 212 266 198 427	27 42 53 40 85	178 153 263 226 198	36 31 53 45 40	25 39 41 39 54	
SE of mean ± CV%		14.4 112		22.2 101		13.7 75	9. 3 52	
Set-3	14=3	-86	21=:	3-86	4-4-	86		
C-11 1918(IG) Other surfaces	237 179 209	47 36 42	184 249 113	37 50 32	283 316 158	57 63 32	47 50 35	
SE of mean ± CV%		13.8 74		14.9 84		12.0 53	7.9 40	

	Ter	st-1	Tes	t-2	Te	st-3	Egg
Genotypes tested	Total eggs laid	Eggs laid (mean)	Total eggs laid	Eggs laid (mean)	Total eggs laid	Eggs laid (mean)	Deans of tests
II <u>Studies with</u> pods in 3 rep	<u>flower</u> ; plicatio	ing twige	(4"-6")	having	buds, i	lovers a	nd
Set-1	21-10-	85	24-10	-85	7-11	-85	
PPE-45(R) ICP-7203 Other surfaces	195 444 701	65 148 234	208 177 148	69 59 49	236 185 79	79 62 26	71 90 103
SE of mean ± CV%		18.8		21.3 62		30.7 96	13.4 26
Set-2	2 4 =2	10-85	31-10	- 85	7=11	-85	
ICP-1903(R) ICP-1691 Other surfaces	87 365 227	29 122 76	17 9 161 215	60 54 72	250 730 200	83 243 67	57 140 71
SE of mean <u>+</u> CV%		5 4.9 126		19.7 55		63.3 84	26.2 51
Set-3	7=12	1-85	14-11	-85	22=2	1-85	
BDN-1 ICP-1903(R) Other surfaces	458 116 85	153 39 28	262 270 98	87 90 33	156 142 105	52 47 35	97 59 32
SE of mean ± CV%		6.9 16		40.3 100		16.5 64	14.1 39
Set=4	7=1)	-85	14=11	-85	22=1	1-85	
ICP-909 ICP-1691 Other surfaces	185 561 198	62 187 66	196 548 200	65 183 67	137 282 40	46 94 13	58 155 49
SE of mean <u>+</u> CV%		35.6 59	* * * * * * * * *	20.5 34		3.0 10	13.1 26

*****	Tes	st-1	Tes	t-2	Tes	t-3	Egg
Genotypes tested	Total eggs laid	Eggs laid (mean)	Total eggs laid	Eggs laid (mean)	Total eggs laid	Eggs laid (mean)	no. means of tests
Set-5	15-1	1-85	21-1	1-85	26-1	1-85	
C-11	417	139	263	88	209	70	99
1918(IG) Other surfaces	271 38	90 13	247 59	82 20	289 283	96 94	90 42
	• •			•		•••	
SE of mean ± CV%		32.0 69		26.9 74	*	12.7	7.6 17
Set-6	<u>9-1-</u>	-86	17-1	-86	27-2	-86	
PPE-45(R)	165	33	140	28	368	74	50
ICP-7203	142	28	277	55	357	71	52
ICP-909(R)	105	21	60	12	428	86	40
T-21	182	56	47	9	283	57	41
Other surfaces	159	32	59	12	283	57	33
SE of mean ± CV%		12.6 82	* an de an an de an de an	9.5 91	* * * * * *	12.6 41	5.5 29
Set-1	10-1	280	17-2	-80	24=2	-86	
ICP-1903(R)	492	98	200	40	227	45	61
BDN-1	563	113	387	77	329	66	85
ICP-1691	253	51	285	57	359	72	60
ICPL-84060 (R)	184	37	210	42	211	42	40
Other surfaces	33	8	53	11	281	56	25
SE of mean <u>+</u>		25.4		17.5	میں میں میں میں میں میں	15.0	10.9
CV &		93		86		60	45
Set-8	17=1	-86	30-1	-86	21-2	-86	
(-1)	216	A 2	04	10	1 2 2	36	33
1918(TG)	221	45	126	17 25	251	50	47
Other surfaces	401	80	107	21	301	60	54
		• • • • • • • • • • • •					
SE OI mean ± CV%		10.4 58		82		54	33

Table 26: Feeding preference of <u>Heliothis armidera</u> larvae in pigeonpea flowers and pods in laboratory during 1985/86 (each test replicated 4 times). On flowers On green pods No.of Duration Mean(4) PL* No.of Duration Mean(4) PL* Pigeonpea tests of obse- damage tests of obse- damage cond- rvation scor- cond- rvation scor-cted (dates) ing cted (dates) ing (n=) (1-9) (n=) (1-9) PPE-45-2(R)16-7/10/852.75(2)57/11/851.95(4)ICP-72032.00(2)21/11/854.35(16) 1.27 0.66 SE of mean + 107 CVN 42 ICP-1903(R) 2 23/10/85 2.88 (3) 2 18/11/85 1.13 (1) 25/10/85 4.88 (5) **21/11/85 4.2**5 BDN-1 (7) 0.750 SE of mean + 0.418 39 CV& 31 ICPL-84060(R) 1 24/10/85 2.88 (2) 2 21/11/85 2.75 (3) 26/10/85 4.50 (6) 26/11/85 3.75 (5) ICP-1691 ____ 1.84 0.95 SE of mean + 58 100 CVł ICP-1918(IG) 2 29/10/85 4.13 (5) 2 21/11/85 2.75 (3) 26/11/85 3.63 (5) 31/10/85 3.88 (3) C-11 1.82 1.40 SE of mean + **9**1 88 CVŧ

> * PL = Position of larvae in tests. Damage rating 1-9 (1 = no damage; 9 = severe damage)

days of feeding seeds and pods collected from resistant and susceptible sources, number of pupae survived and their weights were ascertained. These data are summarised in Table 27.

In these tests, larval survival was poor on seeds alone. Pupal survival was also poor in tests with ICP-1903, ICPL-84060 and 1918(IG). A low larval weight was recorded in the green seeds tests from ICP-1903, ICPL-84060 and 1918(IG). In green pod tests differences in larval and pupal weight loss were not obvious and so require further testing.

Development of Heliothis larvae on powdered whole seeds and dhals of resistant and susceptible genotypes

During the period when fresh food is not available for antibiosis studies on <u>Heliothis</u> larvae, we utilized powdered whole seeds and dhal for larval development studies, by mixing these as main ingredient of the semi-synthetic diet. The components of our semi-synthetic diet used for these antibiosis tests are as follows:

Flour of test material	75.0	g	
Ascorbic acid	1.17	g	Agar agar 4.31 g
Methyl-4-hydroxybenzoate	0.75	g	Water 202.5 ml
Sorbic acid	0.37	g	
Aureorycin	1.87	ġ	(This quantity of media will
Linseed oil	3.0	ml	be sufficient to feed 50-60
Vitamin sol.	2.5	ml	larvae)
Yeast tablets	1.20	g	
Water	127.5	ml	

A small block of the semi-synthetic diet was placed in sterilised rearing tubes of $(7.5 \times 2.5 \text{ cm})$ dia closed with a cotton plug. One newly hatched larva was carefully released in each tube. A number of larvae were tested on different test diets. The tubes with the diet and larvae were kept in plastic trays randomly arranged in replication groups and placed in a Percival incubator at 28 ± 1 C and 60 ± 58 R.H. with 12 h light. These tubes were checked daily for larval mortality and pupation. Pupal weight was ascertained a day after pupation. Larval period, pupal period, pupal weight and pupal survival were recorded in all tests.

For confirming the role of some chemicals present in the seed coat of pigeonpea, we also treated the seeds before they are powdered, as follows.

- a) For removing the polyphenols present in the seed coat, about 200 g whole seeds were boiled in distilled water for 40 min.
- b) For removing the amylase inhibitors, the whole seeds were soaked in 10% sodium bicarbonate solution for 16 h.

Later, these seeds were dried, powdered and mixed in the diet as mentioned above.

Table 27:	Developi pods of Center,	ment o [pige 1985-8	f <u>Hel</u> onpea 6.	<u>iothis</u> genotyp	larvae on es in the	green s laborat	eeds an ory at	nd green ICRISAT
Pigeonpea genotypes	Dt of lar- vae rele- ased 1985	No. of larvae survi ved out of 21	Mean larv- al per- iod (d)	SE	Mean larval mass g	SE	Mean pupal mass g	SE
Tests with	greed a	seeds of	f <u>pige</u> i	onpea			•	
PPE-45-E2 ICP-7203 ICP-909 T-21 (check	21/10	4 7 1 3	17 17 18 19	±0.66 ±0.50 ±1.33 ±0.77	0.186 0.271 0.344 0.158	±0.082 ±0.062 ±0.164 ±0.095	0.323 0.293 0.313 0.278	±0.018 ±0.014 ±0.036 ±0.021
ICP-1903 BDN-1 ICP-1691 ICPL-84060 C-11(check 1918(IG)	20/11	11 3 9 6 9 2	18 17 17 17 18 18	±0.34 ±0.65 ±0.38 ±0.46 ±0.38 ±0.80	0.166 0.241 0.241 0.203 0.178 0.231	±0.033 ±0.063 ±0.037 ±0.045 ±0.037 ±0.037	0.274 0.295 0.245 0.276 0.275 0.247	± 0.010 ± 0.020 ± 0.011 ± 0.014 ± 0.011 ± 0.024
Tests with	green g	ods of	pigeo	opea				
PPF-45-E2 ICP-7203 ICP-909 T-21(check	14/10	18 15 18 16	19 19 19 20	±0.35 ±0.39 ±0.35 ±0.37	0.167 0.106 0.179 0.141	±0.018 ±0.019 ±0.018 ±0.019	0.299 0.336 0.321 0.325	±0.008 ±0.008 ±0.008 ±0.008
ICP-1903 BDN-1(chec ICP-1691 ICPL-84060 C-11(check 1918 (IG)	11/11 k)	5 16 8 5 5 2	19 20 21 19 21 22	± 0.76 ± 0.42 ± 0.60 ± 0.76 ± 0.76 ± 1.20	0.218 0.141 0.103 0.211 0.115 0.073	$\begin{array}{c} \pm 0.030 \\ \pm 0.017 \\ \pm 0.024 \\ \pm 0.030 \\ \pm 0.030 \\ \pm 0.048 \end{array}$	0.295 0.336 0.300 0.333 0.277 0.332	$\begin{array}{c} \pm 0.019 \\ \pm 0.010 \\ \pm 0.015 \\ \pm 0.019 \\ \pm 0.019 \\ \pm 0.030 \end{array}$

During this year we conducted two tests, one with untreated whole seeds and dhal of a resistant genotype with a brown seed coat (ICP-1903), compared with a borer susceptible genotype PPE-50 (brown seeds) and ICP-1691 (white seeds), L-550 (kabuli chickpea) standard media was used as the check in all these tests.

Another test was conducted with the whole seeds and dhal of the above mentioned genotypes, but with the addition of treated seeds (for a) and b) as mentioned above) as separate treatments. The data on larval survival, larval period, pupal survival and pupal weights are furnished in Table 28.

In these tests it was evident that <u>Heliothis</u> larval development was normal and healthy with a high number of surviving larvae in the chickpea based diet (L-550). The diet with powdered dhal of resistant and susceptible cultivars was also found to be good for larval development, but some difference in larval survival and pupal weight were detected between the resistant and susceptible cultivars. But, large differences existed in the whole seed treatment of resistant and susceptible cultivrs. When the ground whole seeds were used as a main ingredient in the diet media, larvae took a very long time (50 to 70 days) to reach the pupation stage when compared to those in dhal and L-550 check treatments (19 to 27 days). These differences are illustrated in Fig.2.

In the tests with treated seeds, all larvae died in all the treatments in which the diets were made from whole seeds, except for the treatment incorporating the whole seed of the susceptible genotype, where some survival and development was recorded, both in the whole seeds boiled treatment and also in seeds soaked with sodium bicarbonate treatment. These tests indicated that strong antibiosis to <u>Heliothis</u> exists in the seed coats of some pigeonpea cultivars. More antibiosis was expressed in the brown seeded, borer-resistant genotypes. The chemicals which are present in the seed coat and responsible for antibiosis could not be removed either by boiling or by soaking in sodium bicarbonate solution. We will study such antibiosis in further tests.

Field studies of movement of Heliothis larvae

A trial using two sets of short and short-medium duration pigeonpea selections, that were known to have a wide range of susceptibilities to <u>Heliothis</u>, was laid out in an RBD with 3 replicates on a pesticide free block BUS-8C. This trial was sown on June 24, 1985. The experimental plots were of 2 rows of 9 m each with a plant to plant spacing of 1.5 x 1.0 m. Weekly counts of the <u>Heliothia</u> eggs and larvae were made on five tagged plants per row in each trial. One row in each plot was left undisturbed, while the plants on the adjacent rows were brushed carefully to remove all the eggs and larvae after taking counts. Four such counts were taken soon after flowering of the test entries. Pod damage was assessed on the tagged plants of unbrushed and brushed rows after harvest. The results of pests counts and pest damage percentages are summarised in Table 29.

Table 28:	Deve: conta susce	lopment aining eptible	of H powe genot	liot lered ypes	<u>his</u> pi in	armiger geonpea the lab	A la Se orat	eds/dha ory dur	artific l of 1 ing 1985	cial diet resistant/ 5/86.
P.pea geno- types	1*	2	3	4	 5 	6	7	8	9	10
I Tests	with d	ihal/who	le se	ads	untr	ested				
ICP-1903 ICP-1903 PPE-50 PPE-50 ICP-1691 ICP-1691 L-550 ICP-1903 PPE-50 PPE-50 ICP-1691 ICP-1691 ICP-1691 L-550 (check)	Dhal WS Dhal WS Dhal WS Dhal WS Dhal WS Dhal WS WS	18 Jul 1985 14 Sep 1985	32 32 32 32 32 32 32 32 50 50 50 50 50 50	12 3 11 0 7 11 20 45 1 46 1 37 30 46	25 70 25 0 27 50 21 23 52 27 65 25 51 20	± 1.47 ± 2.95 ± 1.54 ± 1.93 ± 1.54 ± 1.54 ± 1.14 ± 0.72 ± 4.83 ± 0.71 ± 4.83 ± 0.79 ± 0.88 ± 0.71	15 14 16 0 14 15 16 17 22 16 9 16 12 15	± 0.57 ± 1.14 ± 0.60 ± 0.75 ± 0.60 ± 0.44 ± 0.27 ± 1.81 ± 0.27 ± 1.81 ± 0.30 ± 0.33 ± 0.27	0.305 0.192 0.340 0.341 0.230 0.334 0.266 0.107 0.241 0.101 0.249 0.195 0.282	$\pm 0.0098 \\ \pm 0.0197 \\ \pm 0.0103 \\ \pm 0.0129 \\ \pm 0.0103 \\ \pm 0.0076 \\ \pm 0.0059 \\ \pm 0.0065 \\ \pm 0.0072 \\ \pm 0.0059 $
II Tests	with	whole s	eeda	trea	ted	and dha	1			
Borer	resi	stant (b	IOWD	seed	<u>8)</u>					
ICP-1903	WS WSB WSS Dhal	10 Apr 1986	12 12 12 12	0 0 11	- - 16	- - ±1.11		- - ±0.49	- - 0.303	- - <u>+</u> 0.0103
Borer	SUSC	eptible	(pror	id se	eds)					
PPE-50	WS WSB WSS Dhal		12 12 12 12	0 0 0 10	- - 16	- - - ±1.17	- - 11	- - - ±0.51	- - 0.331	- - - ±0.0108
Borer	SUSCI	eptible	(whit	<u>e se</u>	eds)					
ICP-1691	WS WSB WSS Dhal		12 12 12 12	0 7 1 7	- 27 20 17	- ±1.39 ±3.69 ±1.39	- 9 8 11	+0.61 +1.62 +0.61	- 0.307 0.302 0.308	+0.0130 +0.0343 +0.0130
L-550 check	WS		12	9	15	<u>+</u> 1.23	10	<u>+</u> 0.54	0.358	±0.0114

r.pea geno- types 	1•	2	3	4	5	6	7	8	9	10
Borer	resis	<u>tant (b</u>	TOAD 8		8					
ICP-1903	WS		25	0	-	-	-			-
	WSB		25	0	-		-	-	-	
	WSS	17 Apr	25	0	-	-	-	-	-	-
	Dhal	1986	25	8	17	±0.80	10	±0.92	0.283	± 0.0160
Borer	SUSCE	ptible	lbrown	89	eds)					
PPE-50	WS		25	0	-	-	-	-	-	_
	WSB		25	ō		- •	-	-	-	 ,
	WSS		25	Ō	-	-	-	-	-	-
	Dhal		25	12	17	±0.65	10	±0.75	0.303	± 0.0131
Borer	SUBCE	ptible	lwhite	: 8.6	eds)					
ICP-1691	WS		25	0	-	-	-	-	-	-
	WSB		25	2	24	+1.60	13	+1.83	0.281	+0.0320
	WSS		25	1	18	+2.27	12	+2.58	0.362	±0.0453
	Dhal		25	14	19	$\frac{1}{2}0.61$	11	+0.69	0.270	±0.0121
L-550			25	14	14	±0.61	11	±0.69	0.302	±0.0121

WS = Whole seeds untreated; WSB = Whole seeds boiled in water for 40 minutes; WSS = Whole seeds soaked in 10% sod. bicarb. sol. for 16 hours.; Dhal = Cotyledons only - seed coat removed.

H. ARMIGERA DEVELOPMENT ON SEMI SYNTHETIC MEDIA

July 18 to August 23, 1985

and seen

ICP 1903

need PPE 51 (Rosistant Susceptible)

Standard media L 550 (Chickpea)

Page 55

Table 29: Studies on pigeonpea resistance/escape mechanisms in unbrushed and brushed comparison under unsprayed conditions (rainy season 1985/86). Entries: 6; Reps.: 3; Date sown: 24-6-1985.

	DE	Chara-	Total count	of 4 8, 3	Pod	damag	je mean	(1) S	Sample yield	
Pigeonpea	501	cters*	Eggs	Larvae	Borer	Pod- fly	Hymn.	Total	g 	
On unbrushed rows	5			•						
ICP-909-E3-6EB ICP-7203-E1-7EB PPE-45-2-7B ICP-10466-E1-7EB ICP-1691-E1-7EB ICP-1903-E1-7EB	88 89 108 127 127 129	LB HB LB HB LB	22 7 13 30 38 25	29 56 16 35 88 21	55.3 53.7 30.9 49.7 71.7 49.8	1.6 1.8 2.5 4.7 1.9 3.5	20.2 2.4 29.8 12.7 5.3 22.7	72.6 59.9 61.1 63.2 77.1 69.7	82 164 160 95 56 78	
SE of mean ± CV% LSD at p<0.05			5.2 40 15.7	7.4 32 22.3	9.72 33 -	(1.17) 22 (3.5)	** 3.8 43 * 11.7	8 7.41 19 -	28.8 47 -	
<u>On brushed</u> rows										
ICP-909-E3-6EB ICP-7203-E1-7EB PPE-45-2-7B ICP-10466-E1-7EB ICP-1691-E1-7EB ICP-1903-E1-7EB	88 88 108 127 127 129	LB HB LB HB LB	13 6 12 30 28 24	32 35 11 33 76 16	41.5 35.3 30.6 50.3 51.8 47.6	2.2 1.2 3.2 5.8 4.1 3.9	19.5 4.9 29.8 13.9 8.4 22.6	60.4 44.1 59.8 67.9 60.7 70.2	143 203 147 93 124 75	
SE of mean <u>+</u> CV% LSD at p<0.05			6.3 58 -	9.2 47 27.7	6.42 26 - ((1.4) 24 (4.2)*1	* 4.6 48 13.9	3.91 11 11.8	18.6 25 55.9	

* For abbreviations see page 5. ** Arcsin $\sqrt{2}$ transformation was used for the analysis of data.

Counts from the plants that were cleared of eggs and larvae after each count showed that there must have been substantial dispersal of larvae from row to row for the counts of larvae (including large larvae) on these plants were almost as great as those on the plants in the rows from which eggs and larvae were not removed. This indicates that larvae have an opportunity to demonstrate plant preference at least as far as neighbouring plants are concerned.

The borer damage on the two borer susceptible genotypes (ICP-7203 ishort duration) and ICP-1691 [medium duration]) were generally greater than on the resistant selections, particularly in the unbrushed rows. The differences in numbers of eggs were related to the time of flowering and there is no clear differences between the oviposition on resistant and susceptible selections of the short duration group. There were far more larvae on the susceptible selections than on the resistant of both the duration groups. This confirms the results of our earlier tests.

Page 56

Project: P-110(85)IC

STUDIES ON THE PIGEONPEA PODPLY, <u>MELANAGROMYSA</u> OBTUBA INCLUDING INVESTIGATIONS OF THE MECHANISMS OF HOST PLANT RESISTANCE

Objectives

To supplement the current knowledge of the biology of podfly. To study the ecology including factors influencing the fluctuations of populations across areas and years. To study the mechanisms of host plant resistance. To develop our knowledge of the potential elements of practical management of this pest.

Pattern of Podfly Incidence in Relation to Host Plant Resistance.

To understand the pattern of podfly incidence as influenced by host plant resistance, we conducted a field trial with two pairs of podfly 'resistant' and 'susceptible' genotypes in an RBD trial with 6 replications in plot of 12 rows of 4 metres (75 cm between rows and 30 cm between plots) in BIL-6A at ICRISAT Center, sown in June 1985.

The phenology of the plants was recorded as days (from sowing) to bud initiation, early flowering, 50% flowering, early podding, mid podding and 70% maturity (Table 30).

The pattern of oviposition was recorded (in random samples of 50 partly mature pods per plot) by counting eggs per pod, eggs per locule and eggs per "infested" locule. At 2 weeks after this sampling, swollen (mature, green) pods were sampled in the same manner in each plot, to record the number of larvae and pupae of podfly per pod. The ratio of egg per pod to that of larvae and pupae per pod was also calculated as an index of apparent survival from egg to larval/pupal stages. At harvest, 10 random plants were harvested from each plot and the total pods per plant was recorded on these. From these plants loo pods were randomly sampled for assessing the podfly damage on a pod and seed basis.

Data on the phenology (Table 30) indicated no significant difference in days to flowering or podding between the resistant and susceptible genotypes. However, days to 70% maturity were significantly less in the resistant genotypes. In an earlier study, we had found that the pod development duration did not differ significantly between resistant and susceptible genotypes. In the present season study resistant genotypes completed their podding more synchronously than the suceptible ones and so minimised the overall duration susceptibility for fresh infestation. We should ascertain the role of such a trait among more genotypes.

We chose one pair of resistant and susceptible genotypes and recorded the eggs laid in 50 randomly chosen young pods and counted the larvae/puparia in 50 mature pods collected in the same plots 1 and 2 weeks later (Table 31)

		No. of	days taken	from se	owing to	
Genotype	Bud ini- tiation	Early flower- ing	50% flo- wering	Early podd- ing	Mid podd- ing	70% matu- rity
ICP-4941 (LPf)	128	133	140	146	157	192
ICP-7337-2 (HPf)	135	141	147	152	164	214
ICP-8102-5 (LPf)	145	150	155	163	175	217
ICP-8595 (HPf)	143	148	154	156	168	223
Overall compariso groups of cultive	n between	less and		ptible		
Resistant	137	141	147	154	166	204
Susceptible	139	145	150	154	166	218
SF (n.)	2.1	1.9	1.8	1.8	2.0	2.8
CVN	5.3	4.7	4.2	4.1	4.2	4.7
Sig.	NS	NS	NS	NS	NS	S

Page 58

Table 31: Podfly oviposition and apparent survival pattern (different parameters) in a resistant and susceptible pair of genotypes at 3 periods, ICRISAT Center, rainy season, 1985-86.

Per- iod	Cult- ivar	No.of eggs/ pod	No.of eggs/ locule	No.of eggs/ infes- ted locule	<pre>% pods with eggs</pre>	% locules with eggs	No.of larvae/ pod	No.of pupae/ pod	Egg/ larva+ pupa ratio
P1	Cl C2 Mean	0.37 1.70 1.04	0.095 0.394 0.245	1.12 1.26 1.19	24.7 67.3 46.0	8.5 31.4 19.9	0.09 0.38 0.24	0.09 0.48 0.28	2.25 2.03 2.14
P2	Cl C2 Mean	0.06 0.23 0.14	0.015 0.055 0.035	0.83 1.05 0.94	5.0 · 16.7 10.8	1.5 5.2 3.3	0.07 0.04 0.06	0.02 0.26 0.14	1.03 0.87 0.95
P3	C1 C2 Mean	0.06 0.40 0.23	0.017 0.100 0.059	0.68 1.05 0.87	4.3 25.0 14.7	1.6 9.5 5.6	0.01 0.22 0.12	0.02 0.15 0.09	3.0 1.32 2.16
Overa	al1								
	C1 C2	0.16 0.78	0.042	0.88	11.3 36.3	3.9 15.4	0.06	0.04 0.30	2.09
Effec	ct of	Main Tre	eatment	(Period))				
SE(m) CV% Sig(5) <u>+</u> 5%)	0.040 21 : Sig	0.001 22 : Sig	0. 09 0 22 NS	1 .91 20 Sig	0.88 23 Sig	0.031 56 Sig	0.026 37 Sig	0.731 102 NS
Effec	ct of	Sut Trea	atment	(Cultiva:	r)				
SE(m) CV% Sig(f) <u>+</u> 5%)	0.023 21 Sig	0.00 48 18 2 Sig	0.064 27 NS	1 .09 20 Sig	0.53 24 Sig	0.017 52 Sig	0.022 55 Sig	0.457 111 NS
Effec	ct of	Interac	tion (Pe	eriod x (Cultivar)			
SE(m) SE(m) Sig(+ M + S 58)	0.040 0.049 Sig	0.00 84 0.0116 Sig	0.111 0.119 NS	1.89 2.33 Sig	0.92 1.10 Sig	0.029 0.037 Sig	0.038 0.037 Sig	0.792 0.921 NS
Egg (Larva	Counts al Cou	: Pl nts: Pl	= 4 -12- = 18-12	-1985; 2-1985;	P2 = 11 - 12 P2 = 26 - 12	12-1985; 12-1985;	P3 = 18 P3 = 2-	-12-1989 1-1986.	5
Cl = Sig =	ICP-7 = Sign	941 (re: ificant	s.); C2 ; NS = !	= ICP-7: Not sign:	337-2 (su ificant.	s.); Rej،	plication	n = 6;	

It was clear, in all the three dates of sampling, that the overall number of eggs per pod or per locule was significantly less in the resistant genotype (Table 31). Purther, the percent pods or locules with podfly eggs was also clearly less in the resistant one. This indicated that the podfly limited its egg laying to fewer pods and locules in the resistant cultivar. However, the number of eggs laid per 'infested' locule (locule in which any egg was laid) did not differ between the resistant and susceptible genotype. This suggests that once the adult decides to deposit its egg into a locule, it does not regulate the numbers laid in the locule differentially between resistant and susceptible genotypes.

The podfly resistant genotype also had less larvae/pupae in mature pods (Table 31). However, the "apparent survival" (ratio of eggs in young pods to larvae plus pupae in mature pods) did not differ significantly between the genotypes. This indirectly indicates that the survival subsequent to hatching into larvae till pupation did not differ significantly between the genotypes and so antibiosis could not be detected in the resistant genotype.

While these studies were based on three sets of data in one pair of resistant and susceptible genotypes, we collected similar data in two counts on another pair of genotypes - ICP-8102-5-S1 (resistant) and ICP-8595-E1-E5 (susceptible). The trend of results was similar to those the former pair (Table 32). We also combined the results from these two pairs (Table 33) and ascertained that there was significant reduction in overall egg numbers per pod or locule, percent pods or locules with eggs, overall number of larvae or pupae per pod, but no significant influence of resistance on the number of eggs laid per infested locule nor on the apparent survival (ratio of eggs to larvae plus pupae).

At harvest, we recorded pods/plant and the damage caused by podfly on a pod and locule basis in the two pairs of resistant and susceptible genotypes (Table 34). In one of the pairs, there was nearly three times more pods in the resistant genotype. The percent pods and seeds damaged were significantly less in this pair as well as in the other pair in which podding (pods per plant) did not differ appreciably between the resistant and susceptible genotype. We intend to conduct studies which will further clarify the basis of resistance, by subjecting these genotypes to oviposition under no choice conditions, with a uniform ratio between pods and podfly adults in these studies. However, it is evident that oviposition non-preference rather than antibiosis is the major cause of resistance in the two comparisons studied here.

Podfly Incidence in Some Promising Selections

Twelve of the selections made by Dr.S.S.Lateef for podfly 'resistance' (9) and 'susceptible' (3) were chosen for study under unsprayed conditions. We had seeds of these selections from two sources (a) 'selfed' (by bagging) and (b) 'open pollinated' (no bagging). Each selection was sown in 12 rows of 4 meters (75 cm between rows; 25 cm

resistant and susceptible pair of genotypes at 2 periods, ICRISAT Center, rainy season, 1985-86. No.of No.of No.of No.of No.of Egg/ Per-Cult-eggs/ eggs/ with locules larvae/ pupae/ larva+ iod ivar pod locule infes- eggs with pod pod pupa ted eggs ratio locule ******

 1
 C1
 0.38
 0.11
 1.11
 25.7
 11.0
 0.22
 0.003
 2.16

 C2
 0.85
 0.24
 1.14
 44.7
 23.8
 0.33
 0.067
 2.14

 Mean
 0.61
 0.17
 1.13
 35.2
 17.4
 0.28
 0.035
 2.15

 2
 C1
 0.29
 0.08
 1.02
 20.3
 8.3
 0.05
 0.020
 7.16

 C2
 0.47
 0.14
 1.05
 35.0
 14.3
 0.24
 0.050
 1.69

 Mean
 0.38
 0.11
 1.03
 27.7
 11.3
 0.15
 0.035
 4.43

 Overall C10.340.101.0623.09.60.140.0124.66C20.660.191.1039.819.00.290.0581.91 Effect of Main Treatment (Period) SE(m) +0.0340.0120.0320.891.170.0210.00730.909CV%17207720245168Sig(5%)SigSigNSSigSigSigNSNS Effect of Sub Treatment (Cultivar) SE(m) ±0.0580.0120.0152.671.770.0210.00800.927CV%404352943357998Sig(5%SigSigNSSigSigSigSigSigNS Effect of Interaction (Period x Cultivar) SE(m) + M0.0820.0250.0213.772.500.0300.01131.310SE(m) + S0.0670.0210.0352.812.120.0300.01081.298Sig(5%)NSNSNSNSNSNSNSNSNS _____ Cl = Resistant (ICP 8102-5-S1); C2 = Susceptible (ICP 8595-E1-E5).Eqg counts: P1 = 18 - 12 - 1985; P2 = 26 - 12 - 1985. Larval counts: P1 = 2-1-1986; P2 = 9-1-1986.

Table 32: Podfly incidence pattern (different parameters) in a

Page 61

	rainy B	eason,	1903-00.					
Genotype	No.of eggs/ pod	No.of eggs/ locule	No.of eggs/ infes- ted locule	<pre>% pods with eggs</pre>	t locules with eggs	No.of larvae/ pod	No.of pupae/ pod	Egg/ larva+ pupa ratio
C1 C2 C3 C4	0.06 0.40 0.38 0.85	0.02 0.10 0.11 0.24	0.68 1.05 1.11 1.14	4.3 25.0 25.7 44.7	1.7 10.0 11.0 23.8	0.01 0.22 0.22 0.33	0.020 0.150 0.003 0.067	3.0 1.3 2.2 2.1
SE(m) <u>+</u> CV% Sig(5%)	0.070 40 Sig	0.021 44 Sig	0.110 27 Sig	2.81 28 Sig	2.08 44 Sig	0.031 38 Sig	0.019 76 Sig	1.10 125 NS
Comparison	n betwee	n less	and more	suscept	ible cul	tivars		
Res (LPf) Sus (HPf)	0.22 0.63	0.06 0.17	0.89 1.10	15.0 34.8	6.4 16.9	0.12 0.28	0.01 0.11	2.58 1.73
SE(m) <u>+</u> CV% Sig(5%)	0.072 60 S	0.022 65 S	0.089 31 NS	3.69 51 S	2.19 65 S	0.034 60 S	0.017 95 S	0.750 121 NS
Cl = ICP - CA = ICP - CP	7 94 1 (LP 8595 (HP	of); C2 of).	= ICP-7	337-2 (1	HPf); C3	= ICP-81	02-5 (L	Pf);
Signif	ficant;	NS = No	t signif	icant.				

Table 33:	Podfly incidence	pattern (d:	ifferent	paramete	ers) in	resistant
	and susceptible rainy season, 19	genotypes 85-86.	(2 pairs) at	ICRISAT	Center,

Table 34: Podding and podfly incidence of two pairs of podfly 'resistant' and 'susceptible' genotypes of pigeonpea, ICRISAT Centre, rainy season, 1985-86.

Cultiver	Total	1 pod	damage*	\ seed	damage*	
	plant	Total	Podfly	Tota]	Podfly	
Pair-1						
ICP-7941 (LPf) ICP-7337-2 (HPf)	227 58	36.0 66.5	16.8 29.0	20.4 27.9	7.2 11.2	
Pair-2						
ICP-8102-5 (LPf) ICP-8595 (HPf)	130 120	50.3 55.7	17.3 32.5	22.5 29.1	6.8 14.6	
Overall comparison	between le	ess and i	more susce	ptible gro	ou p #	
Resistant (LPf) Susceptible (HPf)	178 89	43.2 61.1	17.1 30.8	21.5 28.5	7.0 12.9	
SE(m) <u>+</u> CV% Sig(5%)	13.4 35 S	3.77 25 S	1.61 23 S	1.87 26 S	0.80 28 S	

LPf = Resistant to podfly; HPf = Susceptible to podfly.

S = Significant; NS = Not significant.

* Based on 100 pods sample.

within row) and of these 6 rows each were subplots in which the two seed sources were randomly allocated. The trial consisted of 4 replications, with 12 selections as main plots, in a split-plot design and sown on 25 June 1986 in field BIL-6A.

We recorded the days to 50% flowering, to early podding and to 70% maturity in each subplot. It was found that there were no significant differences in these criteria between plots raised from 'selfed' and 'open pollinated' seeds of the same genotype.

From each of the plots we collected 100 pods at random at harvest and recorded the podfly damage on pod and seed basis, 100 seed mass and grain yield (Table 35). Except for 100 seed, there was no significant difference between samples from 'selfed' and 'open pollinated' seed progenies.

In addition, we chose from these, three pairs of "resistant" and "susceptible" genotypes of comparable flowering and maturity. In plots raised from selfed seeds of these genotypes, we collected 50 young pods at random on 20 Dec 1985 and recorded the percent pods or locules with eggs as well as the mean number of eggs per pod or locule. The data are summarised in Table 36. In **ea**ch pair, the percent pods or locules with eggs as well as the mean eggs per pod or locule were always less in the resistant genotype.

Podfly Incidence in Podfly Resistance Selections from Patancheru in Comparison with Long-Duration Cultivars at Gwalior

In this year, we laid out a trial incorporating 4 genotypes each of podfly resistant and susceptible genotypes selected at Patancheru, 4 standard check cultivars (Bahar, T-7, Gwalior.3 and NP(WR)-15) and 4 promising long duration selections from our breeders at Gwalior. All these (16) genotypes were grown in a split-plot design, the main plot treatment being insecticide sprayed (T1) and unsprayed (T2). There were four replications and the plots were 5 rows of 4 meters. The trial was sown (in field 325) at Gwalior on 13 July 1985. The sprayed plots received weekly sprays of dimethoate 0.07% from January 1986 onwards till all plots reached 70% maturity. We recorded the days taken to 50% flowering and 70% maturity in all the plots. At harvest we sampled 10 plants per plot at random for grain yield. We also sampled 100 random pods per plot for assessing the podfly damage on a pod and seed basis.

The insecticide treatment failed to control the podfly attacks, for the % seed damaged by podfly in the sprayed plots averaged 18% which was only slightly below the 21.5% recorded in the unsprayed plots. This may have been a result of poor coverage by the sprays (such large and dense plant growth is difficult to spray) and/or the rapid reinfestation by podfly into the sprayed plots by podfly emerging from the unsprayed plots.

The entomologist's selections from Patancheru flowered and podded from November, well before the locally adapted cultivars and breeders'

Table 35:	Podfly less (L grown f 1985/86	damage .Pf) and rom self	and gr rore (F ed and	ain yield Pf) susce open poll	in gen ptible inated	to pod: seeds,	of p fly, ICRISA	lgeonpea, in plants Center,
Genotype (days to maturity)		Seed	% pod damage		1 seed damage		100	Grain
	.,	Total	Podfly	Total	Podfly	mass (g)	kg/ha	
ICP-10531 (173)	(LPf)	Selfed Open Mean	32.5 27.5 30.0	9.5 13.0 11.3	15.8 14.6 15.2	3.8 4.5 4.1	5.7 5.5 5.6	790 790 790
ICP-6977 ((180)	LPf)	Selfed Open Mean	33.8 24.3 29.0	18.3 · 18.0 18.1	22.8 13.8 18.3	9.6 7.5 8.6	8.0 8.0 8.0	940 1000 970
ICP-7050 ((192)	LPf)	Selfed Open Mean	26.8 28.0 27.4	8.3 7.8 8.0	11.3 13.8 12.5	3.1 3.1 3.1	6.1 6.3 6.2	710 560 640
ICP-10466 (182)	(LPf)	Selfed Open Mean	34.5 36.0 35.3	17.8 20.8 19.3	18.2 16.7 17.4	6.7 7.8 7.2	6.1 6.9 6.5	1020 1020 1020
ICP-7941 ((191)	LPf)	Selfed Open Mean	29.5 22.8 26.1	11.3 7.3 9.3	15.8 13.8 14.8	3.8 3.0 3.4	5.0 5.9 5.4	1060 950 1000
ICP-7946 ((192)	(LPf)	Selfed Open Mean	19.5 24.3 21.9	4.3 9.3 6.8	9.1 15.8 12.4	1.4 3.8 2.6	5.6 5.8 5.7	970 1000 980
ICP-8102-5 (206)	(LPf)	Selfed Open Mean	61.0 56.8 58.9	21.5 19.5 20.5	24.5 26.2 25.4	8.5 7.6 8.1	9.2 9.9 9.5	700 750 720
ICP-3615 ((201)	LPf)	Selfed Open Mean	41.0 52.3 46.6	19.0 20.3 19.6	18.5 23.8 21.1	7.1 6.8 7.0	7.8 8.0 7.9	820 780 800
ICP-7176-5 (214)	(LPf)	Selfed Open Mean	52.5 49.5 51.0	23.0 21.3 22.1	23.9 24.1 24.0	8.7 7.6 8.2	8.5 8.5 8.5	800 770 780
ICP-5036 ((183)	HPf)	Selfed Open Mean	44.3 36.3 40.3	18.0 18.5 18.3	20.5 18.3 19.4	7.6 7.1 7.4	7.2 6.9 7.1	360 870 620

Page 66

Genotype	Seed	t pod damage		1 seed damage		100	Grain
(days to maturity)	type	Total	Podfly	Total	Podfly	seed mass (g)	yield kg/ha
ICP-8595 (HPf) (214)	Selfed Open Mean	57.3 54.8 56.0	35.0 27.5 31.3	26.1 27.9 27.0	13.7 10.2 12.0	8.0 8.0 8.0	770 850 810
ICP-8583 (HPf) (210)	Selfed Open Mean	65.0 57.3 61.1	26.8 23.8 25.3	24.9 23.2 24.1	11.9 9.6 10.7	7.0 7.5 7.3	620 850 730
Overall	Selfed Open	41.5 39.1	17.7 17.2	19.3 19.3	7.2 6.5	7.0 7.3	800 850
Effect of Main	Treatment	(Culti	var)				
SE (m) <u>+</u> CV% Sig		3.26 16 S	1.77 20 S	2.04 21 5	0.78 23 S	0.16 4 S	79 19 S
Effect of Sub 1	Greatment	(Seed T	ype)				
SE(m) <u>+</u> CV% Sig		1.20 21 NS	0.75 30 NS	0.81 29 NS	0.32 32 NS	0.06 6 S	19 16 NS
Interaction (Cu	ltivars X	Seed T	ype)				
SE (m) <u>+</u> Main SE (m) <u>+</u> Sub Sig(5%)		4.14 4.38 NS	2.61 2.56 NS	2.80 2.85 NS	1.11 1.11 NS	0.22 0.22 NS	65 92 S
****		*****	*****				

•

NS = Not significant; S = Significant.

Cultivar	DN 70%	No. of eggs/ pod	No. of pods with eggs	No. of eggs/ locule	<pre>b locules with eggs</pre>	% pod- fly pod damage	t pod- fly seed damage
Podfly resistan	11						
ICP-7050 ICP-8102-5 ICP-7176-5	192 207 214	0.10 0.61 0.56	7.0 38.0 28.0	0.03 0.18 0.16	2.8 16.4 13.4	8.3 21.5 23.0	3.1 8.5 8.7
Podfly suscept:	ible						
ICP-5036 ICP-8595 ICP-8583	183 214 211	0.17 0.88 0.60	11.0 43.5 37.0	0.05 0.25 0.18	4.6 20.9 15.7	18.0 35.0 26.8	7.6 13.7 11.9
Qverall compart	15 0D						
Resistant Susceptible		0.42	24.3 30.5	0.13 0.16	10.9 13.7	17.6 26.6	6.8 11.1
SE(m) <u>+</u> CV% Sig(5%)		0.091 65 NS	4.44 56 NS	0.026 64 NS	2.17 61 NS	2.66 42 5	1.04 40 5

S = Significant; NS = Not significant.

Page 67
selections. Although the overall numbers of podfly in the area low in the winter (November-January) the entomologists selections were heavily infested, presumably because they were the only hosts available at that time. The "resistant" selections showed only a slightly lower infestation by podfly (30% seed damage) than the "susceptible" selections (34% seed damage). The standard cultivars and breeders selections flowered and podded from February onwards at the same time as the bulk of the pigeonpea crop grown at Gwalior. At that time podfly populations were high, but when dispersed over the available crop they were diluted. Thus the seed damage by podfly in these later flowering genotypes averaged only ll% and the yields were 10 times greater than the unadapted entomologists' selections.

We learned several lessons from this trial which will enable us to improve our methodology in the future. Selection of podfly resistance at Patancheru cannot be directly and usefully transferred to Gwalior conditions unless the resistance is in a genotype that is adapted to the Gwalior conditions. We may be able to select for sources of resistance at ICRISAT Center, but it will be necessary to actually breed and select for resistance to podfly at Gwalior, where the climatic and podfly infestation conditions are very different to those at ICRISAT.

Bost Plant Characters in Relation to Podfly Resistance

In this year, we sampled the podwalls, young seeds, mature seeds and flowers of the following four pigeonpea genotypes to determine their protein and total soluble sugar contents (through the ICRISAT Biochemistry Unit).

ICP	7941	(Resistant)
ICP	8102-5	(Resistant)
ICP	7337-2	(Susceptible)
ICP	85 9 5	(Susceptible)

The samples were obtained from random collection in plots, separately from each of 4 replications in the trial that was grown in field BIL-6A for podfly resistance studies.

The results (Table 37) showed no significant relationship between resistance and protein content of the plant parts analysed. However, the resistant varieties had significantly higher levels of soluble sugars in the flowers and in mature seeds, but lower levels in the young seeds and in podwalls.

Similar biochemical analysis of podwalls during the previous two seasons (1983-84 and 1984-85) suggested a positive relationship between podfly infestation and total soluble sugar content of the podwall.

Podfly Avoidance Studies

During the previous year, Dr.S.S.Lal, Entomologist of the Project

Page 68

C		Prote	ein (%)		Total sugars (%)					
Cultivar	Flowers	Pod- walls	Young seeds	Mature seeds	Flower	s Pod- walls	Young seeds	Mature seeds		
ICP-7941 (LPf)	4.35	12.83	28.45	19.03	6.05	8.35	10.05	6.72		
ICP-7337-2	3.77	14.08	27.17	19.68	5.78	10.41	13.32	6.42		
(LPf)	3.65	12.97	26.63	19.62	.7.31	10.81	14.16	6.77		
ICP-8595 (HPf)	4.12	12.67	28.87	20.30	6.44	10.28	12.63	6.30		
SE(m) <u>+</u> CV% Sig(5%)	0.149 9 S	0.211 4 S	0.247 2 S	0.442 6 NS	0.142 5 S	0.286 7 S	0.506 10 5	0.148 6 NS		
Overall com	Derison	Detysed	resist	ant and	suscept	ible				
Low podfly High podfly	4.0 3.9	12.90 13.38	27.54 28.02	19.33 19.99	6.68 6.11	9.58 10.34	12.10 12.98	6.75 6.36		
SE(m) <u>+</u> CV% Sig(5%)	0.13 11 NS	0.208 6 NS	0.313 4 NS	0.3 5 NS	0.181 10 S	0.322 11 NS	0.543 15 NS	0.109 6 S		

Table 37: Summary of biochemical comparison of pigeonpea flowers, podwalls and seeds in relation to podfly susceptibility, ICRISAT Center, rainy season, 1985/86. Directorate of Pulses, AICPIP, Kanpur, expressed an interest in utilising genotypes which can avoid/reduce podfly damage by flowering and podding during Dec-Peb, when the pest activity in northern India is expected to be low. He sent us 10 of his preliminary selections (5 from cv. Bahar; 5 from others) for comparing with the standard check cultivars for podfly damage at Gwalior. Due to the limited quantities of seeds, these selections could not be sown with the locally adapted genotypes in the main trial, but were sown in a separate trial in an adjacent block on the same date, in plots of 2 rows of 4 meter. The experiment was in a split-plot design involving two main treatments sprayed (with dimethoate 0.07 - weekly) and non-sprayed in three replications.

Data were recorded on days to flowering and maturity, pod damage, seed damage and grain yield at harvest. The harvest estimates were made on 5 plants at random.

The range of days to flowering and podding in these 10 selections is summarised below, in comparison with the check genotypes grown in the adjacent block.

	Kanpur selections (10)	Standard long-duration checks (4)	
	* * * * * * * * * * * * * * * * *	****	
Days to 50% flowering	153-161	148-159	
Days to 70% flowering	271-276	260-267 -	
<pre>% pod damage by podfly</pre>	28-50	21-35	
% seed damage by podfly	12-26	12-26	
Grain yield/plant (unsp	147-327	55-109	

The Kanpur selections did not flower and pod earlier than the local standard checks, and so did not "avoid" the podfly build up. The mean yields per plant of the Kanpur selections were high, but this was largely because of a poor plant stand in most of the plots which resulted in the plants that survived having much more space in which to grow. The plot yields did not reflect the plant yield differences. However, some of the Kanpur selections did well at Gwalior.

The results for the main trial, described earlier, indicated that gentoypes flowering in the winter do not escape severe podfly damage, particularly where they are grown in small areas. We need to know more about podfly development and populations if we are to utilize such "avoidance" possibilities.

Search for Attractants for Adult Podfly

One of the major limitations in podfly research and field experimentation is the lack of a simple device to monitor the adult populations in the field. In previous seasons a range of possible attractants from different groups of substances were tested for their attractancy to adult podflies, but there was no distinct attraction seen in any. In a preliminary test, however, amonium sulphide was found promising.

In this year, we conducted a few more field attractancy tests with several substances including ammonium sulphide. The chosen substances (Table 38) were dispersed as aqueous solutions (20 ml) in plastic cups which had perforations on the upper half and in the lid to allow the vapour/aroma to disperse. The cups had a 1 cm thick sponge padding at the bottom to retain the solutions without spillage. A circular card board collar coated with Tanglefoot was placed around each cup so that flies attracted to the aroma would be caught on the surfaces. The traps were suspended at crop height from wires.

Eight traps were fixed at equal distances along the border of a pigeonpea crop. The adult podflies caught in each trap were recorded and removed at 3-4 day intervals and the trap positions were interchanged after each observation.

The results (Table 38) indicate that ammmonium sulphide traps caught nearly 8 times more podflies than the control traps. However, the catches, even in the ammonium sulphide traps, were low and inconsistent and did not appear to offer a satisfactory means of monitoring the podfly populations. We will continue our search for a means of monitoring the populations.

Substances tested		No. of p adults of per trap	podfly caught
Brown sugar solution	(20%)	0.17	(1.07)
Molasses solution	(20%)	0.42	(1.16)
Ethanol	(20%)	0.83	(1.31)
Ethanol	(50%)	0.42	(1.16)
Ammonium sulphide	(50%)	2.75	(1.8)
Yeast solution	(20%)	0.50	(1.20)
Honey solution	(20))	0.58	(1.23)
Control		0.33	(1.12)
SE (m) <u>+</u> CV% Sia.			(0.106) 29 S

Table 38: Podfly adult catches in sticky traps containing different substances, ICRISAT Center, rainy season 1985/86.

Figures in parentheses indicate the /X+l transformations.

S = Significant.

Project No.CP-123(85)IC STUDIES LEADING TO INTEGRATED PEST MANAGEMENT ON PIGEONPEA AND CHICKPEA INCLUDING THE AUGMENTATION OF NATURAL CONTROL ELEMENTS

Objectives

To develop information needed for implementing integrated pest management. To study the ways of augmenting natural control of the pests of pigeonpea and chickpea. To evaluate the combinations of pest management elements, including host plant resistance, cultural practices and pesticide use in field trials. To develop economic threshold. To assess potential pest problems. To evaluate the relative economic benefits of control practices and identify constraints if any on their adoption by farmers in close collaboration with national programmes, to help in ultimate adoption by farmers.

Tests on Different Regimes of Insecticide Use in Short Duration Pigeonpeas

During the previous season we initiated trials to assess the benefit caused by different regimes of insecticide use during flowering/podding in short duration pigeonpea. In general, it was found that 3-4 sprays could result in economic benefit to the crop in the first flush, while the use of insecticides for the second flush appeared uneconomical.

In this year, we repeated the trials as in last year, but restricted our studies to the effects of insecticide use during first flush, both at Patancheru and at Hisar.

At Patancheru, the trial consisted of two cultivars (ICPL 1 and ICPL 87) as main plots in a split plot design (sown in field BP-14C on 27 June 1985) with the following subtreatments:

T1 - 4 sprays (0,10,20 and 30 days after 50% flowering) T2 - 2 sprays (20 and 30 days after 50% flowering) T3 - 1 spray (20 and 30 days after 50% flowering) T4 - 1 spray (30 and 30 days after 50% flowering) T5 - Unsprayed check

The pod borers (mainly <u>Beliothis</u>) were the major targets for the insecticide use, but populations of borers were low in this season, as can be seen in the data recorded in Table 39. Much of the pod damage was caused by the hymenopteran pest and by sucking bugs and these pests were not controlled by the insecticide. The yields from the control plots averaged only 125 kg/ha (10%) less than those in the insecticide treated plots. Such a difference is unlikely to be economic. However, trials with such a design in which small plots of sprayed and unsprayed pigeonpea are adjacent may not reflect the benefits obtained from insecticide use on larger isolated plots.

Genotypes 1 ICPL-1 ICPL-87 Overall	T1 T2 T3 T4 T5 Mean T1 T2 T3 T4 T5	Total 26.7 39.3 29.7 47.3 36.5 35.9 35.0 27.5 34.3 23.5	Borer 6.0 9.0 10.0 11.8 11.3 9.6 5.3 7.0 9.3	I flush 1130 1160 1040 1200 970 1100 1320 1350	II flush 300 250 220 240 290 260 280
ICPL-1 ICPL-87 Overall	T1 T2 T3 T4 T5 Mean T1 T2 T3 T4 T5	26.7 39.3 29.7 47.3 36.5 35.9 35.0 27.5 34.3 23.5	6.0 9.0 10.0 11.8 11.3 9.6 5.3 7.0	1130 1160 1040 1200 970 1100 1320 1350	300 250 220 240 290 260 280
CPL-87 Overall	T2 T3 T4 T5 Mean T1 T2 T3 T4 T5	39.3 29.7 47.3 36.5 35.9 35.0 27.5 34.3 23.5	9.0 10.0 11.8 11.3 9.6 5.3 7.0	1160 1040 1200 970 1100 1320 1350	250 220 240 290 260 280
CPL-87 Overall	T3 T4 T5 Mean T1 T2 T3 T4 T5	29.7 47.3 36.5 35.9 35.0 27.5 34.3 23.5	10.0 11.8 11.3 9.6 5.3 7.0	1040 1200 970 1100 1320 1350	220 240 290 260 280
ICPL-87 Overall	T4 T5 Mean T1 T2 T3 T4 T5	47.3 36.5 35.9 35.0 27.5 34.3 23.5	11.8 11.3 9.6 5.3 7.0	1200 970 1100 1320 1350	240 290 260 280
CPL-87 Overall	T5 Mean T1 T2 T3 T4 T5	36.5 35.9 35.0 27.5 34.3 23.5	11.3 9.6 5.3 7.0	970 1100 1320 1350	290 260 280
CPL-87 Overall	Mean T1 T2 T3 T4 T5	35.9 35.0 27.5 34.3 23.5	9.6 5.3 7.0	1100 1320 1350	260 280
CPL-87 Overall	T] T2 T3 T4 T5	35.0 27.5 34.3 23.5	5.3 7.0	1 320 1350	280
Overall	T2 T3 T4 T5	27.5 34.3 23.5	7.0	1350	
Overall	T3 T 4 T5	34.3	a 2		180
Overall	T4 T5	11.7	3.3	1310	220
Overall	10	24 5) 0 9 7. 0	1240	200
)verall	Mean	30.9	8.4	1310	220
A G T G T T	ጥነ	30 0	5 6	1220	290
	<u>ም</u> ን	30.9	8.0	1260	210
	т. Т.	32.0	9.6	1170	220
	T4	35.4	11.8	1270	220
	T5	35.5	11.0	1110	260
enotype eff	ects				•
E (m) ±		0.56	1.07	58.3	15
¥V:		3	24	10	12
ig(5%)		S	NS	NS	NS
pray regime	effects				
SE (m) ±		2.67	1.81	40.7	13
SV &		23	57	10	16
Sig(5%)		NS	NS	S	S
interaction					
SE(m) <u>+</u> Mair)	3.78	2.56	57.6	19
$E(m) \pm Sub$		3.43	2.53	77.8	22
31g (58)		S	NS	NS	NS

Table 39. Effect of spray regimes on pest damage and grain yield in 2

(4 replications)

In another trial in field BIL-6A however, we grew the same two cultivars as subplots (22 rows of 4 metres) in a split-plot design with 'spray protection' and 'no protection' as the main plots in five replications. A total of 3 sprays (endosulfan) were given for the first flush. Similar spray protection was also given for the second flush. The results (Table 40) indicated a significant increase in yield (330 kg/ha) from the sprayed plots from the first flush. In the second flush, the spray treatments did not bring about any appreciable reduction in pod or seed damage. The overall yield levels were considerably lower than in many other fields probably because of the poor fertility/water status of the soil.

At Hisar, a trial on insecticide regimes was conducted with two cultivars (ICPL 1 and ICPL 151) in split-plot design with the following subtreatments in four replications:

T1	5 sprays	0,10,20,30,and 40 days after 50% flowering
T2	4 sprays	0,15,30 and 40 days after 50% flowering
ТЗ	3 sprays	0,20 and 40 days after 50% flowering
Т4	3 sprays	0,15 and 30 days after 50% flowering
T5	2 sprays	0 and 20 days after 50% flowering
т6 -	- Control (no	spray)

The subplots were of 6 rows of 4 meters with 30 cm between rows and 10 cm between plants. The insecticide sprays (monocrotophos 0.04%) were applied with knapsack sprayer at 500 litres of spray mix/ha.

The spray regimes resulted in a significant reduction in pod damage and increase in yield (Table 41). The greatest yields were obtained from the indeterminate ICPL 1 when sprayed at least 3 times to 40 days after flowering. The major pest in the trial was Beliothis armigera, Maruca testulalis was of little importance.

In another field trial conducted at Hisar we tested whether shortduration genotypes differed substantially in the extent of loss caused by pests. Five genotypes (Table 42) were sown in a split plot design with eight replications, the main plot treatments being T1 - 'spray protected' and T2 - 'non protected'. The plots were of 6 rows of 9 meters in T1 and 6 rows of 14 meters in T2. Sprays of decamethrin (DECIS 2.5E # 600 ml in 500 litres/ha) and monocrotophos (NUVACRON 40 EC # 500 ml in 500 litres/ha) were applied in alternate weeks from bud initiation till 70% maturity.

During each week from 50% flowering till 70% maturity, the damage caused by webbers (<u>Marupa/Cydia</u>) was visually rated on a 1-9 scale in the unsprayed plots (T2). At harvest, 20 plants were chosen at random and the pod damage as well as grain yield were recorded. The results (Table 42) indicated an overall improvement in pod set, especially in ICPL 4 (determinate). All five genotypes gave similar yield increases when the sprayed plots were compared with the unsprayed. ICPL 85024 gave the lowest yields in both treatments and was the most heavily damaged, both by borers and podfly in the untreated plots. Check ICPL

		I f	lush	II flush		
Treatment	Cultivar	t pod damage	Grain yield kg/ha	t pod darage	Grain yield kg/ha	
Protected	ICPL-1 ICPL-87 Mean	16.6 32.0 24.3	590 590 590	64.9 26.6 45.8	430 660 550	
Not-pro- tected	ICPL-1 ICPL-87 Mean	22.3 56.6 39.5	370 160 260	54.4 29.5 41.9	410 690 550	
Overall	ICPL-1 ICPL-87	19.5 44.3	48 0 370	5 9.6 28.0	420 670	
Treatment e	ffects					
SE (m) <u>+</u> CV% Sig(5%)		2.89 20 S	45 24 S	2.2 11 NS	46 19 NS	
Cultiyar ef	fects				•	
SE(m) <u>+</u> CV% Sig(5%)		1.7 17 S	37 27 NS	2.01 15 S	44 26 S	
Interaction	1					
SE(m) <u>+</u> Mai SE(m) <u>+</u> Sub Sig(5%)	n	2.41 3.35 S	52 58 NS	2.85 2.99 S	62 64 NS	

Table 40: Effect of insecticide use on pest damage and grain yield in two short duration pigeonpea genotypes grown on Vertisol (BIL-6A) at ICRISAT Center, rainy season, 1985/86.

3 sprays for first flush; 3 sprays for second flush.

Table 41:	Effect of grad maturity, pod indeterminate duration pigeon	ded regi set, po (Cl) and pea at Hi	mes of d damag determin sar, rai	spray e and ate (C2) ny seaso	protectio grain yi genotype n, 1985/8	Page 77 n on crop eld in an s of short 6.
	Tractment	Total	۱ da	maged po	ds	Yield
		plant	Total	Borer	Podfly	
Cl	Tl	102	7.3	5.9	1.4	2500
	T2	104	5.6	4.8	1.0	2670
	** 3	80	10.8	7.6	3.0	2590
	* 4	81	16.9	10.4	6.5	2120
	T ^r	88	20.3	12.8	8.0	2090
		76	26.8	13.9	13.3	1000
	Mean	89	14.6 '	9.2	2.2	2310
C2	Tl	31	5.4	4.6	0.9	2230
	T.	●U 21	0.1	12	1.3	1960
		31	10.2	19 0	3.8	2210
		34	21 . 24 0	21 5	2.5	2060
	- D 	34	33 0	22 2	11.3	1760
	o M∩an	34	18.1	14.4	3.9	2130
	T 1	66	63	5.3	1.1	2370
vers	m)	~ ~ ~	6.9	5.8	1.1	2620
	n - Z	د د	13.6	10.4	3.3	2270
	. 4	60	19.3	14.2	5.1	2170
	4 5	6]	22.1	17.1	5.3	2070
	Τ6	54	29.9	18.1	12.3	1820
Effe t of	Main Treatment	Cultiva	r)			
SE/m ±		7.0	1.17	1.11	0.26	115
C775		23	14	19	11	10
5.5 281		S	NS	:	5	NS
Effect of	Sub-Treatment (Spray Re	gimes)			
ST SAFY 4		4.4	1.12	1.07	0.72	115
C		21	19	26	43	15
5.g *4		NS	S	S	S	S
refect f	Interaction (C)	111 18 1 X	Spray Pe	egimes)		
SE M' - M	fain	6.3	1.58	1.52	1.02	163
<u>उन्हर)</u> + S		9.1	1.8°	1.78	0 .9 7	188
5.9 (5		NS	● <i>* * ,</i>	S	NS	NS
	****		*****	· · · · · · · · · · · · · · · · · · ·	Not star	ificant
CI = ICPI	1; C2 = ICPL 15	>1; 5 = S	ignii cat	nt; NS ·	NOC BIGU	AG DARY.
TI = 5 5p	ave 0,10,20,30),40 DAF) Nr - m4 -	7 12 = 4	SPICYS	30 DAP1 -	
13 = 3 st	1500 U,20,40 D/	51 ; 4 = M6 - 104	n Phiak	ι - , , , , , , , , , , , , , , , , , ,	replicati	ons.
··· = 2 ::	TAYE (V,20 DAR)	, . u - NU	o har a k •	7		

Total & damaged pods Grain pods/ ----- yield pods/ ----- yield plant Borer Podfly kg ha-1 Treatment Cultivar 2.9 T1 C1 57 9.4 2260 63 31 94 C2 7.7 3.9 2540 3.9 C3 8.8 1570 C4 9.1 2.8 2620 74 7.7 3.4 3.4 C5 2460 64 8.5 2290 Mean

 54
 26.6

 45
 22.2

 29
 31.3

 64
 22.8

 T2 C1 5.7 1860 C**2** 5.8 1870 11.6 C3 1090 5.1 C4 1950 C5 55 24.9 7.3 1780 49 25.5 Mean 7.1 1710 5618.05414.93020.07915.9 Overall 4.3 C1 2060 C2 4.9 2210 7.8 C3 20.0 1330 C4 4.0 2290 C5 65 16.3 5.3 2120 • Effect of main treatment SE(m) + 3.8 1.88 0.53 67 31 29 CV& 19 9 Sig(5%) S S S S Effect of sub treatment (cultivar) SE(m) <u>+</u> 0.90 3.4 1.07 86 25 CV& 24 68 17 S Sig(5%) S S S Effect of interaction (treatment x cultivar) SE(m) <u>+</u> Main 4.8 1.27 1.51 121 2.31 $SE(\pi) \pm Sub$ 5.8 1.25 127 Sig(5%) S S NS NS T1 = Sprayed; T2 = Unsprayed. S = Significant; NS = Not significant. Cl = ICPL-316 (Det); C2 = ICPL-8318 (Det); C3 = ICPL-85024 (Det); C4 = ICPL-4 (Det-Check); C5 = ICPL-81 (Indet-Check)

Table 42: Crop maturity, pod set, pod damage and grain yield in five short duration pigeonpeas under sprayed and unsprayed situations at Hisar, Kharif, 1985/86.

(8 replications)

4 gave the greatest yields in both treatment. <u>Maruca</u> incidence in this trial was relatively low.

Preliminary Attempts to Relate Heliothia Larval Numbers to Pod Damage

With the objective of developing economic thresholds for <u>Heliothis</u> on this crop, we made preliminary attempts to study field methodology problems in relating <u>Heliothis</u> larval numbers to pod damage at harvest.

We grew large plots ICPL 1 (short duration - indeterminate) ICPL 87 (short duration - determinate) and ICPL 1-6 (medium duration indeterminate). We erected 9 x 3 m net cages in each of these plots. Plants in these cages were sprayed with dichlorvos (Nuvan) at the flower bud stage to knock down any pest infestation on the plants. Three days later young (3 day old) <u>Heliothis</u> larvae were released on the plants at the rate of 0, 2, 4 and 8 larvae per plant. Two weeks later when the released larvae should have completed their larval period all the plants were again sprayed with dichlorvos and from then onwards, weekly sprays were applied until maturity. At maturity the pods from each test plant (5 replicates for each genotype) were harvested and analysed for pod damage. The results are briefly summarized as follows.

			No.of	larva	e rele	eased.	/p1		94 944 955 955 955 955 955 955 955 955
			0	2	4	8	SF(m)	CVA	Sig
1.	Total pods per plart	ICPL 1 ICPL 87 ICP 1-6	46 53 31	39 41 28	58 55 33	76 36 29	9.3 7.6 14.9	38 37 111	NS NS
2.	Percent bored pods	IEPL 1 ICPL 87 ICP 1-6	34 73 33	82 94 57	77 88 72	95 99 70	8.5 5.2 11.4	26 13 44	Sig Sig NS
3.	Percent bored seeds	ICPI 1 ICPI 87 ICF 1-6	17 34 18	57 59 45	61 56 67	78 86 61	7.3 5.8 10.4	3] 22 49	Sig Sig Sig
4.	Grain yield (g/pl)	ICPL 1 JCPL 87 ICP 1-6	5.4 6.5 5.7].4 3.0 3.4	3.0 4.0 2.7	1.2 0.4 1.3	1.09 1.18 1.90	89 76 129	NS Sig NS

The substantial pod/seed damage observed in plants in which no larvae (0 per plant) were released, indicates that disinfestation was ineffective. This should be taken care of if we are to make progress in these studies, by suitable changes in the methodology.

Consumption Rate of Flowers. Young Seeds and Mature Seeds by Heliothis Larvae

In an effort to quantify the potential of <u>Beliothis</u> larvae to consume individual plant parts, we conducted a laboratory study. One-day-old larvae were used and there were three types of plant parts provided flowers alone, young seeds alone and green mature seeds alone. These three types of plant parts were fed to the larvae at two⁺ temperature regimes - 35 C (day): 30 C (night) and 25 C (day): 20 C (night). The plant parts were replaced daily by fresh material from the field.

In each test 15-40 replications were kept, but some mortality occurred during the test and the data were recorded per surviving larva per day.

The results showed the daily consumption increased with the age of the larvae. Although the per day consumption was reduced at the lower temperature regime, the larval duration was extended by up to 7 days and so the overall consumption during larval life was almost the same under both the temperature regimes. On an average each larvae consumed about 160 flowers or 100 young or 15 mature seeds during their development.

Test of Heliothis Yirus (NPM) on Pigeonpea (AICPIP Collab. Trial)

In the previous season, we conducted a field trial on the efficacy of <u>Heliothis</u> virus (NPV) as a part of AICPIP collaboration. In this year, we laid out a trial, as suggested by AICPIP, in RBD with 5 treatments (as in Table 43) in 4 replications, the plot size being 7 rows of 4 meters. The cultivar ICP 1-6 was used.

Heliothis larval populations in this trial were generally low, as the plant growth was poor. Although the pod/seed damage by borers (mainly <u>Heliothis</u>) was the least in plots with weekly sprays of NPV (500 LE/ha) plus jaggery (0.5%), the differences among the treatments were not significant. The yield differences were not significant.

Tests with the Egg Parasite, Trichogramma species on H.armigera

a) Laboratory tests:

Previously we found that pigeonpea is not a favoured host plant for <u>Trichogramma</u> spp. activity. In an attempt to determine whether genotypes of pigeonpea differ in their "friendliness" or otherwise to <u>Trichogramma</u> we undertook a series of laboratory tests. Four pairs of pigeonpea genotypes which are known to be 'resistant' and 'susceptible' to lepidopteran pod borers (mainly Heliothis) were chosen (Table 44). For each genotype (no choice Table 43: Effect of virus (NPV) spray on pod damage, seed damage and grain yield in pigeonpea, kharif 1985/86, ICRISAT Center*.

Treatment	s pod	damage	Grain
	By borer	By all pests	kg/ha
NPV 500 LE/ha weekly (3 sprays)	22.2 (28.0)	62.5 (52.3)	710
NPV 500 LE/ha + Jaggery weekly (3 sprays)	14.7 (22.3)	54.5 (47.8)	550
NPV 500 LE/ha First week Endosulfan (0.07%) next week - NPV 500 LE/ha again on third week	19.4 (25.1)	54.1 (47.5)	700
Endosulfan (0.07%) at interval of 2 weeks (2 sprays)	18.1 (25.1)	53.5 (47.0)	800
Control (no spray)	27.6 (31.6)	59.8 (50.7)	650
SE(m) <u>+</u> CV% Sig(5%)	(2.30) 17 (NS)	(3.]]) 13 (NS)	82 24 NS

NS = Not significant.

Figures in parentheses are transformed angular values.
* Date of sowing: June 24, 1985; Fd.: BIL6A; based on 2 samples of 10 plants each from 4 replications.

Table 44:	Tricbogramma susceptible study).	l eg pige	g pa: onpeas	rasitie at]	er on CRISAT	borer Centei	resi 198	stant and 5-86* (lab.
	,	Borer	Total	eggs c	bsvđ	• • • • • •	parasi	tism
Name of the	ne variety	Res/ sus.	Reps.	Flower	Pod	Flower	Pod	Overall
ICP-10466-	E3-7EB	Res	10	80	82	42.3 (39.0)	23.8 (24.7)	33.1 (31.8)
BDN1		Sus	10	64	93	32.2 (31.3)	10.7 (11.0)	21.4 (21.2)
		SE(m); CV% Sig(5)	± \$)					(4.43) 53 (NS)
ICP-1903-E	1-7EB	Res	10	93	104	30.7	4.0	17.4
ICP-1691-E	3-6EB	Sus	10	91	88	33.7 (32.5)	12.0 (14.1)	22.9 (23.0)
		SE(m) CV% Sig(5)	<u>+</u> 8)					(3.56) 54 (NS)
ICP-3328-E	C3-7EB	Res	15	246	244	72.3	67. 5	69.9 (57.5)
C-11		Sus	15	241	203	42.8 (39.5)	38.9 ⁻ (36.8)	40.8 (38.2)
		SE(m) CV% Sig(5%	<u>+</u> 8)					(3.04) 25 (S)
ICP-8134-1	- 54 -7EB	Res	15	207	208	27.7	9.]	18.4
T -7		Sus	15	246	231	(29.3) 18.7 (20.2)	(11.6) 3.5 (4.9)	(20.5) 11.1 (12.5)
		SE(m); CV% Sig(5)	<u>+</u> &)					(2.86) 6.7 (NS)

* Cultivars grown by Dr.S.S.Lateef. (Statistical analysis on split plot design with plant parts as sub treatments and cultivar groups as main treatment). Figures in parentheses are transformed values. test), there were 10-15 replications. In each replication, we kept a few flowering/podding terminals with about 20 eggs of <u>H.armigera</u> each on flowers and on young pods. Each plant terminal was kept inside a transparent polythene cage and several 1-day old adults of <u>Trichogramma chilonis</u> were released on these. The percent eggs survived and parasitised was recorded, after about 15 days.

The results indicated that i) under forced conditions, the extent of parasitism on flowers was greater than on pods and ii) the overall differences in parasitism of eggs were significant only in one out of the four pairs studied, - where eggs on ICP 3328 were more extensively parasitized than those on C-11.

b) Field trials:

In an attempt to determine if differences are obtainable among genotypes in egg parasitism in the open field situation, we sowed four genotypes, as below, in large plots (12 rows of 9 meters) in 6 replications in BUS-8B.

Low borer		ICP-10466-E3-5EB
High borer	-	PPE-50
Low hymenopteran	-	ICP-7175-5-E1-5EB
High hymenopteran	-	ICP-8606

During the flowering/podding period of these genotypes, we released the three species of <u>Trichogramma</u>, <u>T.chilonia</u>, <u>T.brasiliensis</u> and <u>T.pretiosum</u> each at weekly intervals at about 50,000 adults/ha/week in this trial at different sites. Sampling of eggs of <u>Heliothis</u> found on the four genotypes at 2-3 intervals during this release period indicated no parasitism by <u>Trichogramma</u>. These results, though disappointing, showed that releases of local and exotic <u>Trichogramma</u> species did not result in any useful parasitism across the range of pigeonpea genotypes studied.

Project: CP-122(85)IC STUDIES OF <u>HELIOTHIS</u> POPULATIONS TO SUPPORT THE PEST MANAGEMENT PROGRAMS, AND TO REAR <u>HELIOTHIS</u> POR EXPERIMENTS

Objectives

To monitor <u>Heliothis armigera</u> population throughout each year as eggs and larvae on the host plants and as moths in traps. To correlate the population fluctuations with the factors that are likely to influence them, such as climatic, natural enemies and crop changes. To determine the role of migration as a factor in population changes. To modify or develop a model for <u>Heliothis</u> populations and to attempt forecasts of infestations. To determine maximum threat period for <u>H.armigers</u> on our target crops in the specified locations and to arrive at sound pest management criteria. To build a bank of <u>Heliothis</u> data. To rear <u>Heliothis</u> for experiments.

General

We continued to collect and receive catch data from pheromone and light traps across the Indian sub-continent. Preliminary analyses of these data indicated very large variances both between traps and between nights, however these variances were reduced in the traps in the north of India. A Departmental Progress Report, Pulse Entomology (18) "Population studies of <u>Heliothis armigera</u> Hubner (Lepidoptera: Noctuidae) through the analyses and interpretation of light and pheromone trap catches and larval counts" summarized the work from 1983-85 and is available on request.

We expect to be able to correlate the trap data with factors likely to affect populations (climatic and crop) in analyses in our computers within the next two years.

In cooperation with the Tropical Development and Research Institute a major study involving radar tracking of <u>Heliothis</u> moths was initiated in November 1985. Unfortunately the very low populations of <u>Heliothis</u> in this year greatly hindered this initiative which was intended to determine whether the moths flew to the high altitudes indicative of long range migration. However, the radar and other equipment worked well and the exercise will be repeated in 1986 providing adequate populations of moths appear. A separate report by our TDRI entomologists will give more details of these studies.

We continued the rear <u>Heliothis armigera</u> on diet based upon kabuli chickpea flour. Various improvements were made to our facilities and methodology and in general we were more successful in the rearing. However, we are still not able to eliminate the occasional virus outbreak in our cultures and we also suffer from sporadic problems of sterility in some egg batches which we cannot explain. During the year our unit supplied eggs, larvae, pupae and moths for use in our laboratory and field experiments and to cooperating scientists outside ICRISAT.

COLLABORATIVE STUDIES

Studies on Pigeonpea Nodule Fly, Rivellia angulata (Pulse Agronomy Collaboration)

1) Field populations of adult Rivellia:

By keeping sticky traps, with and without fishmeal in three locations at the ICRISAT Center (BP2C, BIL2B and BUS8G), we recorded the catches of adult <u>Rivellia</u> weekly from June till the cessation of catches.

The catches in fishmeal traps showed two peaks, one in early August and the other at the end of August. As expected the catches in traps with fishmeal were far greater than in traps without fishmeal (Fig 3). It is possible that the two peaks represent two generations. Further studies are needed to confirm this speculation.

b) Pot culture test for creating nodule damage by caging adult Rivellia:

We conducted preliminary tests with pot grown pigeonpea plants (ICPL 81) to see if we could create different levels of nodule damage by altering the numbers of adults <u>Rivellia</u> females caged on individual plants, so that they laid differing amount of eggs, resulting in differing number of larvae that damage the nodules.

In a first trial with 5 reps. we obtained the following results.

2 5 10 Nodules damaged/pl. 5.6 8.2 13.0 2.05 51 N		SIG	
Nodules damaged/pl. 5.6 8.2 13.0 2.05 51 N			
	Nodules damaged/pl.	NS	
% damaged nodules 11.2 18.1 41.6 5.49 52 S	& damaged nodules	Sig	

Thus we found clear indications of the utility of adult releases in creating different levels of nodule damage.

A subsequent test with 4 doses did not lead to clear results due to heavy infestation occurring in the zero dose (no adults caged), indicating the need to disinfest the soil prior to such tests.

Fig3: Week, trap catches of adult <u>Pivellia angulata</u> (nogule fly) at IUPIDAT Center, Pigeonpea, rainy seasor 1985-86. (Mear of * locations - BP-20, Bil-28, and BUS-56) 600 -Than with Fishmea Trap without 540 · Fistmen (control) 480 420 360 . 300 240 180 120 60 · 0-2 3 5 6 August 7 10 ė ġ 12 13 14 11 0 1 4 September October___ -41

Page 8f

Survey for Offseason Survival of Heliothis Parasites in Farmers Fields (RMP Collaboration)

In collaboration with our RMP entomologist, we sampled <u>Heliothis</u> larvae on tomatoes and groundnuts in farmers fields in the offseason (April-September 1986) and incubated these for parasitism.

The results revealed (Table 45) <u>Campoletis</u> <u>chlorideae</u>, <u>Goniophthalmus halli</u>, <u>Carcelia illota</u> and <u>Ovomermis albicans</u> to be largely surviving on <u>Heliothis</u> in tomatoes and groundnut.

Table 45: Summary of offseason incidence of natural enemies of <u>Heliothis armigers</u> (farmers fields around ICRISAT survey) 1985.

Natural enemy	Month	Crop	% incidence	No. of hosts parasitised/ ha
Campoletis chlorideae	Apr	Tomato	4.2	389
Uchida	May	Tomato	0.7	123
	Jun	Tomato	2.6	. 36
	Jul	Tomato	0.0	0
	Aug	Tomato	0.0	0
	Sep	Tomato	4.7	258
Goniophthalmus halli Mes	Apr	Tomato	0.0	0
	May	Tomato	0.2	41
	Jun	Tomato	0.0	0
	Jul	Tomato	7.1	286
	Aug	Tomato	0.0	0
	Sep	Tomato	0.0	0
<u>Carcelia illota</u> Curran	Apr	Tomato	0.0	0
	May	Tomato	0.0	0
	Jun	Tomato	0.0	0
	Jul	Tomato	0.0	0
	Aug	Tomato	2.2	24
	Aug	G.nut	3.4	• 69
	Sep	Tomato	15.6	859
Ovomernis albicans (Seib)	Apr	Tomato	0.0	0
	May	Tomato	0.0	0
	Jun	Tomato	0.0	0
	Jul	Tomato	3.6	143
	Aug	Tomato	35.6	391
	Aug	G.nut	48.3	9 66
	Sep	Tomato	1.6	86

METEOROLOGICAL OBSERVATIONS AT ICRISAT JUNE 4, 1985 TO JUNE 3,1986 Source: Agroclimatology, FSRP, ICRISAT

Stå week	Dates	Month	Rain- fall in (mm)	Averaç temp. Max	ge C Min	Averaç humid: 0717	ge % ity 1417	Average wind velo- city (km/h)	Average sunshine (hr/day)	Average daily evapo- ration (mm/day
23	04-10	Jun	21.9	33.7	23.5	86.0	47.9	17.6	5.2	52.4
25 26	18-24	Jun	25.4	32.4	23.4	80.3 88.6	49.3	19.0	4.3	56.0
27 28	02-08 09-15	Jul Jul	27.3	31.6	22.2	85.4 82.3	52.7 49.6	18.5	6.6	52.2 49.8
29 30	16-22 23-29	Jul Jul	36.1 68.2	29.4	21.7 21.9	93.7 95.4	62.9 69.0	10.9 7.8	2.3	31.8 34.4
31 32	30-05 06-12	Aug Aug	41.0 9.2	28.4	21.8	88.9 85.7	69.4 57.9	14.5	3.6	28.6
33 34 35	13-19 20-26 27-02	Aug Aug Sep	9.4 15.8 7.0	29.0 31.6 30.8	22.4 23.0 22.7	80.3 81.3 83.9	53.4 58.3	10.3 7.5 7.3	5.0 7.0 6.8	33.9 42.1 39.8
36 37	03-09 10-16	Sep Sep	13.4	30.6	22.0 22.1	88.3 84.4	56.4	7.6	4.2 3.0	37.5
38 39	17-23 2 4 -30	Sep Sep	30.2	31.2 32.6	21.1 22.3	88.1 91.1	58.0 47.9	6.2 6.0	6.5 9.7	36.7
40 41 42	01-07 08-14	Oct Oct	80.4 11.4	29.1 29.1 30 A	21.8 20.8	94.1 93.9 80 4	75.6	11.5	3.9 6.4 8 7	28.2 25.8 38 1
43 44	22-28 29-04	Oct Nov	0.0	29.0 28.7	13.5 12.7	80.4	32.4 35.1	4.9	11.0	41.7
45 46	05-11 12-18	Nov Nov	0.0	29.3 28.8	17.7 12.0	86.9 77.0	45.3	7.3	8.8 9.8	34.3
47 48 49	19-25 26-02	Nov Dec Dec	0.0	29.9 28.2 28.5	12.0 12.2	73.3 77.3 73 7	25.4 28.4 29.1	5.9 7.6 5.5	10.4 10.5 8 4	38.2 40.0 33.8
50 51	10-16 17-23	Dec Dec	8.1 0.0	26.9	15.6	90.7 90.9	47.7 33.9	11.5	7.1 9.9	32.8 33.9
52 1	24-31 01-07	Dec Jan	0.0	29.4 27.8	13.0	80.7	31.4 26.0	6.1 6.3	10.2	40.3
2 3 4	08-14 15-21 22-28	Jan Jan Jan	53.0 0.0	27.4 23.3 28.9	14.1 13.1 13.9	90.0 96.0 93.6	37.0 58.3 33.0	9.2 8.7 8.9	6.8 10.3	35.1 24.2 38.7
5 6	29-04 05-11	Feb Feb	0.0	30.0 30.1	16.8	82.3 91.4	34.4	9.2 14.0	9.6 10.0	39.0 47.7
7 8	12-18 19-25	Feb Feb	39.2	29.9 29.9	18.1	96.1 90.9	41.6	11.6 9.4	9.4 10.1	40.8
9 10	26-04 05-11	Mar Mar	0.0	31.7	19.9	78.6	32.1	12.0	9.7	58.3

Std week	Dates	Month	Rain- fall in (mm)	Avera temp. Max	ge C Min	Avera humid 0717	g e % ity 1417	Average wind velo- city (km/h)	Average sunshine (hr/day)	Average daily evapo- ration (mm/day
••	12.10	Mar	• •	25 A	10 4	62 0		0 7	10 4	64 7
11	12-10	mai	0.0	32.4	13.4		<i>4</i> 1.1	6./	10.4	04./
12	19-25	mar	0.0	30.9	20.0	20.1	21.0	8.4	10.2	68.0
13	26-01	Apr	0.0	37.7	21.6	49.0	21.3	10.0	10.7	79.8
14	02-08	Apr	0.0	37.7	21.3	72.6	21.0	8.0	11.1	76.1
15	09-15	Apr	0.0	39.0	24.6	57.1	21.9	8.9	8.8	75.7
16	16-22	Apr	9.6	39.9	24.1	66.6	23.3	9.6	9.8	73.7
17	23-29	Anr	25.7	35.9	23.6	60.9	29.9	11.1	9.7	75.6
10	20-06	Masr		27 9	24 6	62 1	27.7	11 2	a 1	72 4
10	07 12	May	0.0	40 0	24.0	47 1	4/./	11.4	3.1	
19	07-13	may	0.0	40.3	23.2	4/.1	1/./	10.1	10.2	89.1
20	14-20	May	0.0	41.1	26.9	50.1	18.9	17.3	10.8	111.0
21	21-27	May	0.0	40.6	26.8	43.3	19.3	13.4	10.8	102.1
22	28-03	Jun	2.2	37,5	24.7	61.3	32.6	11.7	8.0	76.3