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Abstract. Foxtail millet (Setaria italica (L.) P. Beauv.) is an ideal crop for changing 

climate and stressed environments due to its short duration, high photosynthetic 

efficiency and a good level of resistance to pest and diseases. Soil salinization is on the 

rise with 23% of the global cultivated land already being affected. Foxtail millet can be a 

potential crop for salt affected soils with its high level of tolerance to salinity. The foxtail 

millet core collection (n=156) was screened in a soil saturated once with 100 mM NaCl 

and a non-saline control in 2008 and a subset (n=84) in 2009 in a partly-controlled 

environment using Alfisol (clayey-skeletal, mixed, iso-hyperthermic family of Udic 

Rhodustalfs with sandy clay loam to clay type neutral soils) to identify the best salt 

tolerant germplasm. Plants were grown in pots and protected from rains. The salinity 

response was measured as grain yield per pot. Genotype and salinity × genotype 

interaction effects were significant for most traits, and there was a large range of yield 

and biomass variation across the accessions. Salinity delayed panicle emergence and 

maturity, and reduced shoot biomass by 24 to 41% and grain yield by 7 to 30%. Salinity 

did not reduce harvest index. Among the plant components stem biomass was reduced 

most by salinity. There was a large range of variation in grain yield and other traits 

among the genotypes in the saline pots. The yield loss by salinity was associated with 

duration of crop growth and grain yield loss was highest in the early maturing accessions. 

All the accessions were grouped into five groups based on grain yield under saline 

conditions, and the top, most highly tolerant, group had 13 accessions. The salinity 

tolerant accessions can be useful parents once their performance is confirmed under 

saline field conditions.  

 

Additional keywords: abiotic stress, grain yield, salinity, shoot biomass, panicle harvest 

index 
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Introduction 

Foxtail millet (Setaria italica (L.) P. Beauv.) is one of the world’s most important ancient 

crops with its domestication in China dating back to 8700 years (Lu et al. 2009). It is 

widely cultivated in Asia, Europe, North America, Australia and North Africa for grain or 

forage (Austin 2006). Poor seedling establishment, need for hand weeding, inadequate 

breeding effort for improvement (Ahanchede et al. 2004) and limited utilization of 

genetic variability for the development of improved cultivar are the causes for its low 

yield (Vetriventhan et al. 2012). Foxtail millet has attracted international research 

attention due to its high drought tolerance, photosynthetic efficiency, nutritional values 

and health benefits (Liu et al. 2011). With a small diploid genome (400 Mb; Bennetzen et 

al. 2012), C4 carboxylase pathway and short duration, foxtail millet has become a model 

system for studying biofuel crops and comparative genomics among the grasses (Wang et 

al. 2010; Bennetzen et al. 2012). Foxtail millet is considered to be an ideal crop for the 

changing climate due to its short duration, high photosynthetic efficiency, nutritional 

richness and low incidence of pest and diseases (Vetriventhan et al. 2012). The changes 

foreseen under climate change scenarios are the changes in the pattern of rainfall, rather 

than the quantum, leading to long spells of drought and spells of water-logging of the 

soils. The advantage of this crop species is that it can mature and yield with a single pre-

sowing precipitation (Dwivedi et al. 2012). 

 

Global estimates, dating back two decades, indicate a constant increase in salt affected 

soils. It was estimated that the cultivated area, have already been affected by about 23% 

by salinity and 37% by sodicity (Tanji et al. 1990). Also the usual course of salinity 

increase in intensely irrigated cropping systems and the transient dry land salinity 

threatens crop production; necessitating identification of both crop species that can 

tolerate the soil salinity/alkalinity the best and an understanding of the genetic variation 

within each species for tolerance to saline conditions. Foxtail millet can be a potential 

crop for salt affected soils due to its high level of tolerance to salinity (Maas 1985) and 

the salt ‘escape’ potential due to its short growing duration. 

To understand the extent of variation in the germplasm, core collections were 

considered ideal as these are subsets representing the diversity of the entire collection 

consisting of about 10% of the entire collection. A core collection of foxtail millet with 

155 accessions representing the entire collection of 1474 accessions using the data on 
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taxonomic and qualitative traits was developed by Upadhyaya et al. (2008). 

The objectives of this study were to characterize the core collection of foxtail 

millet germplasm for its response to salinity stress and to identify a few highly tolerant 

and sensitive accessions for use in improvement of salinity adaptation of foxtail millet. 

 

Materials and Methods 

Plant growth, treatment conditions, sowing dates and genetic material 

Plants were grown in pots filled with soil that was either left untreated (non-saline 

treatment) or treated with NaCl (saline treatment) in an open-air facility that was 

protected only when necessary from rain by a movable rain-out shelter. Experiments 

were undertaken over two years at the International Crops Research Institute for the 

Semi-Arid Tropics (ICRISAT) headquarters in Patancheru, Andhra Pradesh, India 

(17°32' N. 78°16' E, altitude: 546 m above sea level). The plants were sown on 12 May 

2008 and 2 June 2009, and harvested as and when matured.  

The  pots (27 cm diameter), containing 11 kg of Alfisol, were buried in plots spaced 0.45 

× 0.35 m apart such that the pot rim was in level with the outside soil surface to avoid 

direct solar heating of the pots. These Alfisols were clayey-skeletal, mixed, iso-

hyperthermic family of Udic Rhodustalfs with sandy clay loam to clay type with neutral 

soils with a CEC of 160-440 mmol kg-1 dry soil, pH of 6.9, CEC:clay ratio of 0.29 and 

EC of 0.1 mM (El-Swaify et al. 1984). The soil was taken from the top 10 cm at the 

ICRISAT farm and was fertilized with di-ammonium phosphate (DAP) and muriate of 

potash at a rate of 200 mg kg
-1

 soil each. In both 2008 and 2009, half of the pots were 

artificially salinized by applying a dose of 1.08 g NaCl kg
-1

, equivalent to applying a 100 

mM solution of NaCl in sufficient volume (2.035 L) to wet the Alfisol precisely to field 

capacity (19.7% w/w). A salt concentration of 100 mM NaCl was chosen for this 

screening as this was similar to the one used in some successful previous studies with 

sorghum (Maas 1985; Francois et al. 1984; El-Haddad and O’Leary 1994; Igartua et al. 

1995) and recently for foxtail millet causing a plant biomass loss of 37% (Islam et al. 

2011). The remaining pots received tap water containing no significant amount of NaCl 

in the same quantities to bring them to field capacity. 

The saline treatment was applied as two half doses at sowing and 12 days after 
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sowing to more realistically represent a field situation than a single application 

(Krishnamurthy et al. 2011). After the salt application and for the remaining crop cycle, 

pots were watered with tap water and maintained close to a range of 60-90% field 

capacity (determined gravimetrically using a subset of pots with a gradient of plant 

canopy size) to avoid an increase in the salt concentration in the soil solution. The base of 

the saline treatment pots were sealed to avoid salt leakage, while the pots of the non-

saline treatment had holes to allow drainage. Availability of initial pot plus soil weight 

and the water it held helped to cross check, if required, and thus over-watering of all pots 

was avoided. This method had yielded consistently good results both in pulses and 

cereals (Krishnamurthy et al. 2011; Srivastava et al. 2006, 2008). 

In 2008 about 12 and in 2009 about 20 seeds were planted in each pot and were 

thinned to two plants per pot before 12 days after sowing. This accommodated 12.7 

plants m
-2

.  The experiments were planted in a 40 × 4 alpha lattice (incomplete block 

design) with three replications in 2008, and in a 42 × 2 alpha lattice with five replications 

in 2009 with two salinity levels (saline and non-saline). In 2008, 155 entries of the foxtail 

millet accessions of the core collection along with five more (ISe 375, -376, -1468, -1470 

and -1541) control accessions known to be agronomically superior among the whole 

germplasm collection were tested. But in 2009, only 80 accessions and four checks that 

were tested in 2008 were included. The selection of 80 accessions was on the basis of 

extreme contrasts in salinity yields as top (n=10), bottom (n=5) and a whole spectrum of 

reaction (n=35) as well as for their early flowering (n=10) and high yields in non-saline 

field trials (n=20) in 2008,  
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Weather 

There was a constant decrease in maximum daily temperature from near 40°C at 2008 

sowing to near 30°C at the end of the experiment (Table 1). The minimum temperature 

also showed similar pattern of decrease. The first four weeks of 2008 was relatively 

warm with less precipitation, high pan evaporation and low relative humidity compared 

to 2009 as this was sown 20 days early in the season (12 May). Also, there were major 

and frequent rains in 2009 after the 2 June sowing. Maximum temperature range in the 

growing season was 23.0-40.1C in 2008 and 25.9-38.8C in 2009, and minimum 

temperature range was from 19.8-27.4C in 2008 and 20.4-27.6C in 2009. 

Measurements 

Days to panicle emergence, days to maturity, shoot biomass at maturity (g pot
-1

) 

including grains and grain yield at maturity (g pot
-1

) were measured in each year. Salt 

tolerance was primarily measured through the grain yield productivity under salinity. The 

harvest index was estimated as the percent ratio of grain yield as that of the total shoot 

biomass and the panicle harvest index as the percent ratio of grain biomass as that of the 

panicle biomass. Also the relative ratio of grain yield under salinity to that of control was 

used for assessing the salinity tolerance. 

 

Statistical analysis 

The replication-wise values of various traits in each salt environment were used for 

statistical analysis using ReML considering genotypes as random. Variance components 

due to genotypes (σ
2

g) and error (σ
2

e) and their standard errors, were determined. 

Environment wise best linear unbiased predictors (BLUPs) for the mini core accessions 

and controls were calculated. Heritability in a broad sense was estimated as h
2
= σ

2
g/(σ

2
g + 

(σ
2

e/r). The significance of genetic variability among accessions was assessed from the 

standard error of the estimate of genetic variance σ
2

g, assuming the ratio σ
2

g /SE (σ
2

g) to 

follow normal distribution asymptotically. 

For the pooled analysis, homogeneity of variance was tested using Bartlett’s test 

(Bartlett 1937) with year (environment) fixed, and the genotype (G) × environment (E) 

interaction as random. The variance due to genotypes (σ
2

g) and (G) × (E) interaction (σ
2

gE) 

and their standard errors were determined. The significance of the fixed effect of the year 

or saline treatment was assessed using the Wald statistic that asymptotically follows a χ
2 
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distribution. 

As seed yield of germplasm accessions under salinity across years had a significant 

interaction, their BLUPs were further grouped into various response groups for salt 

reaction by a hierarchical cluster analysis following Ward (1963). All statistical analyses 

were carried out using Genstat, Release 14.1 software (VSN International, 2011).  

 

Results 

Seedling emergence was delayed by two days under salinity (data not shown). It was 

observed visually that salinity delayed the development of nodal roots and the inability of 

seminal root to anchor the shoot leading to the lodging and the death of the seedlings. In 

previous pilot trials, it was observed that majority of the lodged plants never recovered 

and died leading to a single plant per pot or none in many cases. Despite this realization, 

in 2008 trial, there were a few single plant cases (n=12) that were not considered for the 

ANOVA and the means were presented only for 148 accessions. During the second year 

the targeted two plants were fully achieved by using about 20 seeds per pot and later 

thinning to two. 

Salt treatment significantly influenced all the traits except the harvest index and the 

panicle harvest index during 2008. Salinity × genotype interaction was also significant 

for all the traits in both the years (Table 2). Salinity delayed phenology. The delay was 

two days in panicle emergence and four days in maturity during 2008 and by four days 

for both panicle emergence and maturity in 2009 (Table 3). Total shoot biomass was 

reduced by 24% and 41% in 2008 and 2009, respectively. Similarly the grain yield was 

reduced by 7% in 2008 and by 30% in 2009. Salinity increased the harvest index by 7% 

only during 2009. Panicle harvest index was reduced by salinity substantially in 2008.  

The biomass of all the plant components (stem, leaf and panicle) was reduced by 

salinity (Fig. 1). But the stem biomass was the most reduced, accounting for 80% and 

58% of the total biomass loss in 2008 and 2009, respectively (Fig. 1A). Leaf biomass 

(Fig. 1B) and the panicle biomass (Fig. 1C) were the least reduced. 

There was a large range of variation among the accessions for the panicle 

emergence and maturity. These durations changed minimally across the salinity 

environments and years (Table 3). The accessions ranged in shoot biomass production 

from 12 to 78 g under control, which changed to 9 to 81 g under salinity in 2008. 

Similarly a grain yield range of 5 to 19 g of the accessions under control was changed to 
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3 to 32 g under salinity in 2008, indicating that the genotypic range of yield was high 

under salinity in 2008. This extended range of yield under salinity is more due to a 

‘determinate’ type of growth and synchrony in panicle emergence and development 

achieved only in selective accessions. However this accession range of 11 to 37 g in 

control was substantially higher than the range of 2 to 28 g pot
-1 

in 2009. The mean 

harvest index and its range were increased by salinity in 2009. The heritability of the 

phenological traits was the highest under control and reduced marginally under salinity. 

Based on 35 common accessions, randomly picked across the whole range of salinity 

response from 2008, the heritability of shoot biomass and grain yield were high in 2009 

but were moderate in 2008 (data not shown). The heritability derived out of two years 

pooled data was also high for the phenology (>0.92) and moderate for shoot biomass 

(0.73) and grain yield (0.51).  

From the data of 2008, initially, ten top grain yielders; five bottom ones and four 

common checks were separated. The performance of these accessions was largely 

comparable to the 2009 reaction except for a few genotypes such as ISe 254 and ISe 1888 

that yielded low (Table 4).  A close association of days to maturity with the loss of shoot 

biomass (%) under salinity as that of control or the loss of grain yield (%) as that of 

control was noticed in 2009 (Fig. 2), however, with some accessions deviating from this 

pattern. This had shown that the early maturing accessions suffered greater grain yield 

loss than the late maturing ones that took close to 80 days to maturity with an option to 

select for contrasts within the later maturing group for grain yield. But this trend was not 

followed by accessions that matured beyond 90 days after sowing. The negative grain 

yield loss observed in one long duration accession was more due to a suppression of 

growth in control (denominator component) (Fig. 2A). This accession offered a poor 

aerial competition to the relatively vigorous growing neighbors resulting in slow growth, 

less tillers and poor biomass. 

There are sufficient indications that a poor stem biomass accumulation leads to a 

poor panicle size under salinity but this effect was minimal under non-saline control. 

Accessions with greater stem biomass also produced heavier panicles in a curvilinear 

response with some exceptions for selection with the heavier plants (Fig. 3). Similar 

response of panicles to the stem weight can also be noticed under control condition, but 

this relationship was sparse with minimum gains in panicle weight for large increases in 

stem weight. 
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A pooled analysis using the common 82 genotypes in both the years showed the 

accessions × year effect to be significant for all the traits that were measured both under 

saline and control conditions (data not shown). These interaction variance components 

were about half of the genotypic variance for both grain yield and shoot biomass. 

Therefore the individual accession means of grain yield in each year were used for 

hierarchical clustering. 

The accessions were grouped into representative groups using the BLUPs of accessions 

under salinity observed in two years by a hierarchical cluster analysis using the Ward 

(1963) method. For the convenience of splitting these 82 accessions (part of the core) 

into groups of highly tolerant, moderately tolerant, tolerant only in 2009, moderately 

sensitive and sensitive accessions, a 5% dissimilarity level that yielded five clusters with 

significantly different group means were chosen (Fig 4). Based on the extent of cluster 

group means highly tolerant (n=13) (consistently high yielding ones under salinity both 

in 2008 and 2009 with mean BLUPs for 2008; 2009 as 21.8 and 23.0 g pot
-1

), 

moderately tolerant (n=16) (with mean BLUPs 13.1; 20.4 g pot
-1

), tolerant only in 2009 

(n=12) (with mean BLUPs  6.0; 21.7 g pot
-1

), moderately sensitive (n=27) (with mean 

BLUPs  5.4; 13.8 g pot
-1

) and sensitive (n=14) (with mean BLUPs  4.1; 7.8 g pot
-1

) were 

identified and these means for days to panicle appearance, days to maturity, shoot 

biomass (g pot
-1

) and grain yield (g pot
-1

) are presented in Table 5. The data for 

individual accessions can be obtained from the senior author or Dr H.D. Upadhyaya. 

The highly tolerant group (ten presented as salinity resistant in table 4 with ISe 963, ISe 

1269 and ISe 1354) can be used as tolerant parents in breeding for salinity tolerance, 

while the sensitive ones as parents in developing populations that can be used in various 

genetic and genomic studies. Overall, ISe 869 that produced panicle at 52 and 58 days 

after sowing, matured 80 and 86 days, produced a shoot biomass of 71.2 and 69.4 g pot
-1

 

and a grain yield 26.5 and 27.4 g pot
-1

 in 2008 and 2009 respectively was the best and 

the consistent  salt tolerant accession (Table 4).  

 

Discussion 

The purpose of this study was to screen the germplasm under an agronomic productive 

level of salinity, get the best discrimination among the germplasm accessions and use 

these contrasting sources for further genetic improvement. Therefore, the level of salinity 

used in this study was moderate. Previous studies on related cereals (meadow foxtail) 
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have indicated that foxtail millet is moderately sensitive to salinity (Maas 1993).  The salt 

concentration (100 mM NaCl resulting in a soil ECe of 11.2 ± 0.28 dS m
-1 

in an Alfisol) 

chosen for screening, was similar to the ones used in some previous studies for sorghum 

(ECe 10–11 dS m
-1

; Maas 1985; Francois et al. 1984; El-Haddad and O’Leary 1994; 

Igartua et al. 1995). Later works (Islam et al. 2011) also confirmed that saturating with 

100 mM salt solution would be the most suitable for good genetic discrimination. 

However the top tolerant accessions need to be tested for performance under higher salt 

concentrations.  The overall grain yield loss observed was greater in the 2009 experiment. 

In this year, the overall loss in shoot biomass was 41% and the grain yield 30% and this 

biomass reduction was almost similar to the loss reported by earlier works (Thimmaiah et 

al. 1989; Islam et al. 2011). As of now, no other study, except Thimmaiah et al. (1989) 

and Islam et al. (2011), had been known to evaluate the grain yield performance of 

foxtail millet for salinity tolerance. In a closely related earlier work, dealing with saline 

water irrigation, it was shown that grain yield and dry matter production of foxtail millet 

did increase at all growth stages when irrigated with saline water up to 6 dS m
-1

 but did 

decrease at higher salinity levels, tested up to 21 dS m
-1

 (Kubsad et al. 1995). 

There was a large range in the shoot biomass or grain yield loss of individual  

accessions that varied from -17 to 79% for shoot biomass and -15 to 88% for the grain 

yield. This variation in loss was to a large extent explained by the variation in crop 

duration. Generally, the accessions that were short in duration suffered the most shoot 

biomass/grain yield loss compared to the long duration accessions likely due to the non-

availability of enough growing time for compensation. Delay in phenology, observed 

under salinity, might have further reduced the active reproductive duration in the short 

duration accessions. In comparison to the performance under control, both the shoot 

biomass (a mean 60% across years) and grain yield (a mean 50% across years) suffered 

the maximum in the ten early duration accessions. Salinity treatment rather marginally 

increased the harvest index. The mean improvement in harvest index across all the 

accessions was 7% and 80 accessions had exhibited increases in harvest index. The 

overall indication is that the salinity losses can be largely overcome by a careful choice of 

the best adapted duration, i.e., by using 80 to 85 day duration genotypes in this location. 

Accessions ISe 375, ISe 376, ISe 1468 and ISe 1541 were used as checks in these trials 

based on their superior yield performance in the non-saline field (Upadhyaya et al. 2011). 

Based on their yield under salinity, three of these check entries were rated moderately 
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tolerant, whereas the accession ISe 1468 was rated only moderately sensitive. Overall, 

the mean shoot biomass loss in the checks due to salinity compared to control was 79% in 

2008 and 35% in 2009. Similarly, the mean grain yield loss was 73 and 18%. The mean 

shoot biomass of the ten tolerant accessions under salinity compared to control were 

increased by 63% in 2008 and decreased by 30% in 2009 while the mean grain yield were 

increased by 157% in 2008 and decreased by 14% in 2009 demonstrating the superior 

value of the currently identified highly tolerant germplasm (data not shown). However, 

the salinity response of the newly identified highly tolerant accessions needs to be 

verified in field trials where the spatial variation in soil salinity is a major limitation.  

Yield potential is expected to reflect on the yield performance under stress (Araus 

et al. 2002). In this case, 20 accessions that were included in this evaluation for their high 

yields under normal field conditions performed relatively moderate under salinity with a 

grain yield loss of 30% in 2008 and 37% in 2009. Therefore, the usual salinity screening 

procedures can not be overlooked while establishing the salinity response of foxtail millet 

genotypes. 

Salinity reduced the accumulation of biomass in the shoots but the reduction was 

maximum in stem biomass followed by the panicle. The leaf biomass was the least 

affected component, and as a consequence the crop under salinity was relatively short 

statured and leafy. This trend of selective plant component reduction was observed both 

in foxtail and proso millets after exposing the plants to 100 mM concentrations of salinity 

and alkalinity stresses for 16 days at early vegetative crop growth stage (Islam et al. 

2011). However, salinity was also found to reduce the shoot length, number and size of 

spikes and the grain yield (Hendawy et al. 2012). Saline water irrigations with salinity 

increasing from 1 to 16 dS m
-1

 had been noticed to linearly decrease seed and straw yield, 

harvest index and 1000 grain weights in foxtail millet and the harvested seeds from these 

treatments were found to germinate into normal seedlings (Thimmaiah et al. 1989).  

Overall, at about 10-12 dS m
-1

 soil EC levels, salinity would reduce the stover yield more 

than the grain yield and therefore accessions would show a higher harvest index. There 

are sufficient indications that the stem accumulation in the control plants is supra-optimal 

for the best panicle size. However, under salinity, the extra early accessions tend to 

produce suboptimal stem weights and the panicle weight linearly increased only up to a 

certain level. Also the cluster group means, based only on the performance under salinity, 

had clearly shown that the changes in grain yield followed proportionately the changes in 
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shoot biomass. These observations indicate that under non-saline conditions the best 

yields can be possible with accessions of a range of plant heights, but under salinity 

relatively taller accessions with a good level of shoot productivity need to be selected 

when stable grain yields are intended.  

 

Conclusions 

This study has shown the availability of a wide genotypic variation for salinity response 

in the foxtail millet core collection. Salinity reduced both the shoot biomass and the grain 

yield but not the harvest index. Reduction in grain yield in the saline treatment was 

primarily associated with the reduction in total plant biomass and particularly the stem. 

Yield potential of the accessions provided a poor proxy for salinity tolerance in foxtail 

millet. Groups of highly tolerant, moderately tolerant and sensitive accessions in terms of 

grain yield in the saline treatment have been identified, and can be used in breeding for 

salinity tolerance as parents after verifying their salinity response in the field. 
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Captions for figures 

 

Fig. 1. The effect of soil salinity on individual plant components at final maturity 

assessed as means of a part of the foxtail millet germplasm core collection (n=84) in 

2009. The biomass of (A) stem, (B) leaf and (C) panicle at maturity recorded both under 

non-saline control and salinity in 2008 and 2009 seasons. 

 

Fig. 2. Relationship between (A) the days taken to maturity and the proportion of shoot 

biomass under saline conditions compared to the control (g pot
-1

) [(Shoot biomass under 

control – shoot biomass under salinity) × 100] and (B) days taken to maturity and the 

proportion of grain yield (g pot
-1

) [(grain yield under control – grain yield under salinity) 

× 100] in the germplasm accessions of foxtail millet grown in 2009 (n=84). The 

accessions that took >100 days to maturity were not considered for the linear regression 

curve and are shown in grey on A and B. 

 

Fig. 3. The relationship between the stem weight and panicle weight observed under both 

saline (open) and non-saline control (closed) conditions in the germplasm accessions of 

foxtail millet grown in 2009 (n=84). 

 

Fig. 4. Dendrogram showing the distribution of various salinity response groups of the 

subset (n=82) of the core foxtail millet germplasm tested using the grain yield under 

salinity stress in two years. 
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Table 1. Standard week-wise (StdWk) sums of rainfall, mm (RF) and open pan 

evaporation, mm (PE) and weekly means of maximum temperature, °C (MaxT), 

minimum temperature, °C (MinT), morning relative humidity, % (RHM) and 

evening relative humidity, % (RHE) during the crop growing season of the foxtail 

millet germplasm evaluation for salinity tolerance both during 2008 and 2009 rainy 

seasons. 

 

 2008 2009 

StdWk RF PE MaxT MinT RHM RHE RF PE MaxT MinT RHM RHE 

19 0.0 81.3 38.5 23.0 43.3 21.6  

20 5.0 92.5 39.4 24.6 68.3 43.7  

21 5.8 59.6 37.4 23.5 72.7 38.6  

22 6.2 79.0 39.0 25.9 63.7 27.3  

23 3.4 64.8 35.1 24.0 75.4 44.9 63.2 82.8 37.0 24.6 76.3 38.3 

24 37.2 64.3 32.2 22.8 82.1 49.4 8.2 68.1 37.1 24.8 79.6 45.9 

25 9.0 71.8 34.6 23.9 76.7 43.4 24.8 59.3 35.7 23.3 88.1 58.4 

26 20.2 38.5 31.6 22.4 86.6 61.1 0.8 59.3 34.5 25.0 76.9 46.3 

27 1.0 56.9 33.6 23.3 80.7 56.7 22.8 50.5 32.8 23.5 83.7 51.6 

28 2.0 60.6 33.8 23.5 77.3 48.9 16.8 39.8 30.6 23.1 86.1 60.6 

29 14.4 45.0 34.9 23.8 81.3 56.7 19.2 50.5 31.3 23.2 86.6 59.3 

30 87.5 21.5 28.6 21.4 93.4 78.0 0.4 54.2 31.9 23.3 81.9 52.7 

31 84.6 29.7 29.2 21.5 93.7 72.9 0.0 52.7 33.4 24.1 77.0 47.4 

32 234.1 16.9 26.4 21.5 91.0 81.4 16.0 50.0 31.7 23.7 83.7 51.7 

33 12.3 25.0 29.5 21.8 92.4 72.1 46.8 37.7 31.3 23.7 87.4 60.0 

34 31.6 28.2 30.1 22.0 91.3 63.6 235.3 17.9 29.3 22.4 95.9 76.9 

35 29.2 26.2 31.1 22.3 94.0 65.4 247.6 27.5 28.8 21.7 92.9 73.7 

36 141.7 28.4 30.8 21.8 94.1 63.6 40.9 22.0 28.3 22.4 91.0 77.0 

37       4.8 30.1 31.8 22.8 91.6 57.7 

38       19.0 31.8 32.4 22.4 92.6 54.7 

39       74.4 29.2 31.5 22.4 91.3 61.6 

40       60.1 22.1 28.7 23.0 92.9 77.0 

41           0.0 26.1 30.8 21.2 93.7 53.0 
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Table 2. Analysis of variance for various characters measured on the core collection 

of foxtail millet germplasm (n = 144) with four check accessions in the 2008 and a 

selected subset of core collection (n = 80) with four check accessions in the 2009 rainy 

seasons grown under both salinity stressed and control conditions. *** and ** denote 

significance at P =<0.001 and P=<0.01 levels, respectively. 

 

 Salt treatment  Salt treatment × Genotype 

 Wald statistic Significance level σ
2

g (SE) Significance level 

2008 

Days to panicle emergence 48.4 <0.001     5.06 (1.03) *** 

Days to maturity 120.5 <0.001     5.41 (1.32) *** 

Shoot biomass (g pot
-1

) 27.3 <0.001   125.8 (30.9) *** 

Grain yield (g pot
-1

) 0.78 0.379     28.7 (5.67) *** 

Harvest index (%) 0.01 0.915     74.9 (13.14) *** 

Panicle harvest index (%) 42.9 <0.001   64.6 (16.3) ** 

Stem dry weight (g pot
-1

) 129.9 <0.001  17.6 (4.42) ** 

Leaf dry weight (g pot
-1

) 7.18 0.008    3.95 (1.04) ** 

Panicle dry weight (g pot
-1

) 41.8 0.418    41.8 (8.66) *** 

 

2009 

Days to panicle emergence 78.5 <0.001     6.16 (1.16) *** 

Days to maturity 61.3 <0.001   12.46 (2.22) *** 

Shoot biomass (g pot
-1

) 629.0 <0.001     12.2 (3.33) ** 

Grain yield (g pot
-1

) 300.5 <0.001     2.51 (0.64) ** 

Harvest index (%) 98.7 <0.001     20.2 (4.39) *** 

Panicle harvest index (%) 103.7 <0.001     13.7 (3.09) *** 

Stem dry weight (g pot
-1

) 392.3 <0.001     66.7 (16.4) ** 

Leaf dry weight (g pot
-1

) 136.5 <0.001     10.8 (2.44) *** 

Panicle dry weight (g pot
-1

) 7.7 0.007     27.9 (5.48) *** 
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Table 3. Mean days to panicle emergence, maturity, total shoot biomass (g pot
-1

), 

grain yield (g pot
-1

), harvest index (%) and panicle harvest index (%) for the core 

collection of foxtail millet germplasm (n = 155) with five check accessions in the 2008 

and a selected subset of core collection (n = 84) in the 2009 rainy seasons grown under 

both salinity stressed and control conditions. In 2008, 12 accessions that had one plant  

per pot was removed from the analysis  

 Trial  Range of     Heritability 

Season/Environment mean  predicted means S.Ed σ
2

g (SE)    (h
2
) 

 

2008, Salinity stressed 

Days to panicle appearance 50.8 29.8 – 88.9 3.29 113.6 (14.1) 0.963 

Days to maturity 74.3 55.1 – 107.3 4.13 93.8 (12.4) 0.925 

Shoot biomass (g pot
-1

) 30.9 9.3 – 81.1 16.50 452.0 (77.4) 0.698 

Grain yield (g pot
-1

) 10.0 3.4 – 32.3 6.19 56.8 (10.3) 0.662 

Harvest index (%) 27.7 21.1 – 35.5 6.26 28.4 (13.1) - 

Panicle harvest index (%) 65.0 53.7 – 72.4 9.34 67.2 (26.8) - 

 

2008, Control 

Days to panicle appearance 48.4 26.0 – 89.0 1.87 116.4 (13.9) 0.985 

Days to maturity 69.9 48.9 – 117.8 2.26 116.0 (12.8) 0.976 

Shoot biomass (g pot
-1

) 40.6 12.0 – 77.9  9.78 163.0 (27.6) 0.706 

Grain yield (g pot
-1

) 10.7 5.4 – 18.9 3.02 9.11 (2.26) 0.499 

Harvest index (%) 27.3 11.2 – 51.9 5.05 68.5 (9.99) - 

Panicle harvest index (%) 73.8 60.6 – 85.6 5.76 37.2 (8.32) - 

 

2009, Salinity stressed 

Days to panicle appearance 49.7 24.8 – 97.9 2.13 206.0 (32.4) 0.964 

Days to maturity 76.4 50.5 – 115.9 2.30 150.8 (23.9) 0.901 

Shoot biomass (g pot
-1

) 45.9 10.4 – 102.6 7.04 424.9 (70.0) 0.929 

Grain yield (g pot
-1

) 16.6 2.3 – 27.9 3.11 40.4 (7.08) 0.844 

Harvest index (%) 38.2 4.4 – 58.5 3.32 71.9 (12.1) - 

Panicle harvest index (%) 79.0 19.3 – 87.5 3.97 70.5 (12.2) - 

 

2009, Control 

Days to panicle appearance 45.9 25.5 – 104.2 1.85 216.5 (33.9) 0.994 

Days to maturity 71.9 51.1 – 130.3 2.03 230.6 (36.2) 0.997 

Shoot biomass (g pot
-1

) 78.3 42.9 – 120.2  9.63 392.0 (69.6) 0.817 

Grain yield (g pot
-1

) 23.7 11.3 – 36.5 3.43 34.1 (6.46) 0.743 

Harvest index (%) 31.0 12.3 – 43.5 2.71 34.6 (6.07) - 

Panicle harvest index (%) 81.6 64.8 – 87.7 3.24 22.2 (4.58) - 
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Table 4. Mean days to panicle emergence, maturity, total shoot biomass (g pot
-1

), 

grain yield (g pot
-1

), harvest index (%) and panicle harvest index (%) under salinity 

for the accessions that were rated as top 10 resistant, bottom 5 sensitive and 4 check 

entries of foxtail millet germplasm in the 2008 with their corresponding reaction in 

2009. 

Reaction Days to  Shoot Grain Harvest  Panicle 

group/ panicle Days to  biomass yield index harvest 

Accessions appearance maturity (g pot
-1

) (g pot
-1

) (%) index (%) 

 

2008, Salinity resistant 
ISe 254  49.7 75.6 80.3 32.3 33.4 72.4 

ISe 869 52.3 79.6 73.4 27.3 31.8 72.4 

ISe 1851  47.1 74.0 58.9 23.0 32.5 72.4 

ISe 96 51.0 75.0 61.2 23.0 31.8 70.7 

ISe 388 53.6 78.3 62.4 22.2 31.3 71.1 

ISe 480  55.8 77.7 69.3 21.3 28.8 67.6 

ISe 995  47.1 71.9 60.1 20.4 30.4 68.5 

ISe 1629 52.9 75.9 56.4 20.1 31.5 68.3 

ISe 969  51.6 75.9 57.6 20.1 31.1 70.1 

ISe 1888 54.8 76.2 76.0 26.8 31.2 70.2 

 

2008, Salinity sensitive 
ISe 735  - - - - - - 

ISe 1118 50.8 74.3 9.3 3.4 27.7 65.0 

ISe 1597  74.0 74.3 11.3 3.4 27.7 65.0 

ISe 769  - - - - - - 

ISe 1059 50.8 74.3 9.3 3.4 27.7 65.0 

 

2008, Checks 
ISe 375 56.3 76.2 31.4 9.7 29.0 65.7 

ISe 376 57.1 80.5 39.7 13.9 28.6 65.9 

ISe 1468  49.9 71.6 18.3 6.8 30.2 67.9 

ISe 1541  62.2 83.3 53.3 14.8 26.7 61.5 

 

2009, Salinity resistant 
ISe 254  51.2 76.6 43.5 15.4 34.7 82.4 

ISe 869 57.9 86.3 69.4 27.4 40.5 87.4 

ISe 1851  54.2 80.9 72.6 26.1 36.6 81.3 

ISe 96 54.0 79.0 53.4 19.0 35.9 82.6 

ISe 388 52.8 82.3 71.9 27.5 39.3 85.0 

ISe 480  52.6 82.1 66.6 26.4 40.4 85.8 

ISe 995  53.4 79.0 62.4 20.6 33.6 77.2 

ISe 1629 56.3 80.7 55.8 21.6 39.3 81.6 

ISe 969  51.2 76.0 63.4 24.8 39.9 84.9 

ISe 1888 49.6 76.4 51.9 17.7 34.6 80.5 

 

2009, Salinity sensitive 

ISe 735  49.7 76.5 45.9 16.6 38.2 79.0 

ISe 1118 32.5 59.4 31.4 14.8 46.2 78.0 
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ISe 1597  77.6 102.4 58.1 15.5 26.9 80.0 

ISe 769  89.3 101.3 26.0 2.3 4.4 22.3 

ISe 1059 64.1 83.5 35.0 10.0 27.1 76.5 

 

2009, Checks 
ISe 375  59.5 81.3 54.0 19.7 36.4 78.8 

ISe 376 61.9 80.3 48.3 17.6 37.2 80.2 

ISe 1468  46.4 71.1 45.6 17.2 37.3 80.8 

ISe 1541  64.9 92.0 57.9 18.3 32.5 77.7 

 

- =  Data not available 
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Table 5. Means of individual cluster groups with their standard errors for days to panicle appearance, days to 

maturity, total shoot biomass (g pot-1) and grain yield (g pot-1) of the five different groups of foxtail millet 

germplasm out of 82 common accessions tested in two years. The grain yield under salinity stress across two 

years was used for this clustering.  

  

 Days to panicle Days to Shoot biomass Grain yield 

 appearance maturity (g pot-1) (g pot-1) 

Salinity 

response groups     2008 2009 2008 2009 2008 2009 2008 2009 

Highly tolerant 52±0.82 53±0.69 77±0.72 80±0.85 60.9±2.47 63.0±3.14 21.7±1.13 23.0±1.14 

Moderately tolerant  57±2.50 56±2.48 79±2.23 82±2.01 43.5±2.80 58.6±2.11 13.1±0.43 20.4±0.72 

Tolerant in one season 52±3.03 54±2.94 75±2.70 80±2.64 20.9±1.81 59.5±4.42 6.0±0.54 21.7±0.79 

Moderately sensitive 49±2.34 48±3.06 72±1.96 76±2.55 17.7±1.42 38.4±3.07 5.4±0.37 13.8±0.41 

Sensitive 39±1.62 38±4.54 65±1.74 65±3.50 12.1±0.57 19.7±1.60 4.1±0.23 7.8±0.49 

________________________________________________________________________________________________ 
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Fig. 1. The effect of soil salinity on individual plant components at final maturity 

assessed as means of a part of the foxtail millet germplasm core collection (n=84) in 

2009. The biomass of (A) stem, (B) leaf and (C) panicle at maturity recorded both under 

non-saline control and salinity in 2008 and 2009 seasons. 
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Fig. 2. Relationship between (A) the days taken to maturity and the proportion of shoot 

biomass under saline conditions compared to the control (g pot
-1

) [(Shoot biomass under 

control – shoot biomass under salinity) × 100] and (B) days taken to maturity and the 

proportion of grain yield (g pot
-1

) [(grain yield under control – grain yield under salinity) 

× 100] in the germplasm accessions of foxtail millet grown in 2009 (n=84). The 

accessions that took >100 days to maturity were not considered for the linear regression 

curve and are shown in grey on A and B.  
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Fig. 3. The relationship between the stem weight and panicle weight observed under both 

saline (open) and non-saline control (closed) conditions in the germplasm accessions of 

foxtail millet grown in 2009 (n=84). 
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Fig. 4. Dendrogram showing the distribution of various salinity response groups of the 

subset (n=82) of the core foxtail millet germplasm tested using the grain yield under 

salinity stress in two years. 
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