BANGLADESH-ICRISAT COLLABORATION IN CHICKPEA IMPROVEMENT

总
 63

COMPILED BY JAGDISH KUMAR. SR. CHICKPEA BREEDER

VOL. II OF
11

LEGUMES PROGRAM
ICRISAT
INTERNATIONAL CROPS RESEARCH INSTITUTE FOR THE SEMI-ARID TROPICS PATANCHERU P.O., ANDHRA PRADESH 502 324. INDIA

BANGLADESH AGRICULTURAL RESEARCH PROJECT
 US-AID PHASE - II
 PULSES IATROUPMENT
 AT
 HE BANGLADESH AGRICULTERAL RESFARCH INSTITUTE
 PRESENT STATUS ANO PROJECTION'S FOR FUTUEE WOFK

JAGDISH KLMAR
CONSULTANT PULSES

BANG:ADESH AGRICLLTURAL RESEARCH COUNCIL
FARMGATE. DHAKA - 15
JULY, 1985

CONHLNLS

Page

1. Acknowledgements i
II. Summary ii
III. Terms of reference vii
IV. Introduction 1
V. . \quad.hat was planned ? 5
VI. Vhat has been achieved ? 7
VII. Constraints 13
VIII Future Flans 18
IX. Fथferences 23
X. Appendices -5

rinchnowledgeyents

I wish to express my appreciation to the Bangladesh "Agricultural Research cpuncil (Dr. R.N. Badruddoza, tormer Chalxmang Dx. Ekramul Ahean. Chairman (Incharge) and
*Mr. Kamal Uddin Ahmed, Menber Dicector, Cropst, to the International Agricultuifal Development Service (Dr. D.S. Athwal. Vice President: Dr. D.M. Daugherty, Project Supervisor/ Advisor and Dr. A.K.Kaul, Crops Specialist) and to Bangladesh Agricultural Research Institute (Dr. M. M. Rahman, Director General; Dr. M.H. Mondal, Director Research; Dr. Abdul Hamid, Head Plant Breedingl, for being invited to work with the Pulses Improvement Programme of BARI and to the ICRISAT (Dr. L.D. Swindale, Director General; Dr. J.S. Kanwar, Director of Research and Dr. Y.L. Nene, Program leader) for allowing me to take up this assignment.

I recelved strong support in my work from Dr. Matiur Rahman, P.S.O. and Programme Leader, Pulses and PSO(Incharge), PARS, Ishurdi; and Mr. M.A. Islam, PSO and former Incharqe RARS, Ishurdi. The pulses staff at Ishurdi patiently responded to the demands of the expanded research work. My interactions with pulses scientists at Joydebpur, Jessore, Jamalpur, Rajshahi Feni, Hathazari, Pahartalı, Boqra, Dinajpur and Chittagong University were very fruitful in my education about the pulses research in Bangladesh.

I am grateful to Dr. M.M. Rahman, D.G, BARI and Dr. A.K.Kaul Crops Specialist, IADS for their personal commitment and determination to see the Pulses Programme flourish.

Mr. M. Ahmed, General Manager and his staff at IADS provided logistic support for my; work.

CONSULTANCY REPORT ON THE PULSES IMPROVEMENT
 plogrampe of bari
 JAGDISH KUMAR

II SUMMARY

I. The terms of reference for this consultancy included: planning and execution of pulses experiments at Ishurdi and other stations, providing training in the selection, hybridization and conduct of trials; multiplication of seed, compilation and analyses of data for 1983-84 and 1984-85 pulses experiments, writing annual reports and planning future work.
II. The main achievements of the pulses improvement before this consultancy programe were: the collection both locally and internationally, of about 4000 germplasm accessions of six pulse crops (khesari, lentil, chickpea, mashkalai, mungbean and pigeonpea) and the evaluation of some of these, release of one variety of mung fean (Mubarik) and identification of one of maskhalai (Baromashi), establishment of pulses quality and breeding laboratories and some facilities for research at Joydebpur, identification of eight low neurotoxin strains of khesari and determination of training needs (nine scientigts were sent for M.Sc. and. Ph.D studies on pulses).
III. Frequent changes in scientific staff, and absence and nonutilization of storage facilities reaulted in the loss of important breeding and germplasm materials, so much so, that less than 2000 strains were available in 1984-85. There was no breeding effort in any pulse crop. Facilities for pulses research at the regional stations were non-existant.

The highlights of the 1984-85 work are:
At the end of 1984-85 season proposals were submitted for the release of fous new varieties of pulses [BARI mung 1-3 and BARI Sola-1 (chickpea)) to the National Seed Board of Bangladesh. The mung strains were introduced by Dr. Kaul. Enouqh breeders' seed of each of the strains was multiplied for the BADC to take up the foundation seed prooramme in the next season if these are released. There were nearly perfect plant stands in pulses experiments conducted in 1984-85 at the RARS Ishurdi. The highest yields obtained with minimum inputs were; $2500 \mathrm{~kg} / \mathrm{ha}$ for Khesari, $2250 \mathrm{~kg} / \mathrm{ha}$ for lentils and $3500 \mathrm{~kg} / \mathrm{ha}$ for chickpeas. Some promising results include; identification of promising strains of chickpea (10), Khesari (3), lentil (9), mash (4) and mung (4) for their final evaluation in 1985-86 before the best ones are promoted to the farmers field tests.

I worked with the Pulses Improvement Programme of the Bangladesh Agricultural Research Institute specifically as follows:

1. Assisted in the:

i. expansion of the breeding programme.
i1. rejuvenation, eviluation and cataloguing of khesari, lentil, chickpea, !mung and mash germplasm,
iii. planning germplatm collection of rabi pulses in Bangladesh through ICRISAT cooperation in March/April 1985. This project collected 280 strains,
iv. introduction of 284 strains of lentil, 551 of chickpea and 10 of mungbean in 1984-85 and establishment of contacts for introduction of germplasm of khesari, mashkalai and cowpeas,
v. identification of 30 YMV tolerant (field conditions) strains of mungbean and eight wilt resistant strains of chickpea, and
vi. determination of inheritance of photoperiod insensitivity and seed coat color in mungbean.
2. Helped develop the following facilities:

1. a cold store for pulses seeds at PARS, Ishurdi,
ii. repair and put to use a plot thresher, seed drier, deep freezes, motor cycles,
iii. repair of an old threshing floor,
iv. submit a proposal for partially covered threshing floor for pulses, and
v. planting, threshing and storage accessories,
2. Provided training in the following technigues:
3. hybridization, selection, data recording, compiling and reporting,
ii. planning and conduct of multilocational trials,
iii. standardization of experimental plots and data recorde.
iv. safe seed storage and hygiene, and
v. experimental field management procedures.
4. Initiated the:
i. hybridization programe, 22 crosses for the major pulse crops were successfully attempted, and
ii. evaluation of segregating generations received from ICARDA and ICRISAT (lentils and chickpea).
5. Helped develop:
i. a proposal for five year'PLAN OF WORK' for pulses improvement work by BARI,
ii. project proposals for funding of the pulses programme by IDRC and CIDA, and
iii. a proposal for a national workshop on pulses in early 1986.
6. Helped prepare the following cocuments:
i. annual reports of the pulses programme for 1983-84 and the breeding experiments conducted at the RARS Ishurdi in 1984-85.
ii. release proposals for mung and chickpea varieties, and
iii. audiovisual aids for pulses experiments, data and technology,

7. Assisted in the orcanisation of:

i. review and planning meeting: for 1983-84 rabi, 1984-85 rabi, 1985 Kharif $工$ and 1985 kharif II Pulses experimente
ii. cooperation for feaearch on mungbean with Chittagong University and chickpeas with the Jute Research Station at Faridpur,
iii. training and visits to IARC's and strengthening cooperation with them, and
iv. visits of scientists, extension workers and farmers to the pulses experiments,
8. Delivered seminars on the following topics:
i. chickpea improvement work at ICRISAT, RARS, Ishurdi,
ii. pulses breeding work of BARI, RARS, Ishurdi,
iii. puises improvement programme at BARI, BARC, Dhaka,
iv. future of pulses iresearch at BARI, BARI, Joydebpur, and
v. breeding for disease resistance in chickpea, Dhaka University, Dhaka
9. Helped enrich the RARS library at Ishurdi
10. Specific recommendations were made for:
i. short term goals; introduction and evaluation of geimplasm, improvement in post-harvest seed storage, agronomic techniques for better plant stands, moisture conservation, plant growth etc
ii. long term goals; breeding low neurotoxin khesari, higher yield potential, tolerance to diseases, pests and unfavourable soil and climatic factors, response to inputs, adaptation to specific cropping syistems, basic research and removal of socion economic constraints, and
iii. long term sustained support for the pulses improvement procramme at BARI,

III TERMS:OF REFERENCE FOR DR. ©JMGDISH KUMAR

1. The consultant will be based full time at Ishurdi and will assist his BARI counterpart scientists in planning and execution of experiments and analysis of data.
2. He will provide field training in selection, hybridization and conducting of yield trials.
3. Consultant is expected to travel to other substations in connection with his assignment.
4. Consultant will report to Director, BARI and Member-Director, BARC, and will work under the administrative contriol of Project Supervisor, IADS.
5. The IADS Crops Specialist will be his contact specialist at BARC.
6. The consultant will prepare quarterly reports of his activities for the Project Supervisor and will file a final consultancy report.
7. Consultant will help compile field data from 1984-1985 winter pulses crops and assist in the analysis of the same.
8. Consultant will help plan summer pulses breeding programme at BARI
9. Consultant will asslst in the seed multiplication of selected summer pulses varieties.

The present status of the Pulses Improvement in Bangladesh was reviewed, major constraints were identified and plans were developed for expansion of the programeto meet the goals set in the National Agricultural Research Plan: This report covers briefly also the work done by the scientists of the BARI, Pulses Improvement Programme and myself during the period July 1984 to June 1985 . A six-monthly report was written in December 1984 (Kumar, 1985). Informal monthly reports were sent to all concerned people. The achievements mentioned here are of the programma. However, opinions and any frrors of $1 n t e r p r e t a t i o n ~ a r e ~ m i n e . ~$

The pulses production and area in Banqladesh has declined over recent decades (Table-1). The decline is related to strong competition from wheat and boro rice. The gap in experimental and farmer's yields is larqe (Figure-1). This indicates that immedate gains may be made through improved agronomic management.

The pulses programne of BARI supported by IDRC funds and a World Bank pulses breeder was started in 1979. The leaders of the Pulses Improvement Program at ICRISAT, India; and Food Legume Improvement Program at ICARDA, Syria (GREEN AND HAWTIN, 1979) evaluated the needs of the BARI pulses prooramme and proposed that a sound improvement frogramme backed by good crop production techm niques, better seeds and other inputs should aim at doubling the pulses production to over 450,000 tons in 1984-e5. The statistics for the past 2-3 years are not available, but if the past trends are any indication, the production in 1984-85 is expected to be around 185,000 tons; about 15 percent lower than that for 1979-80.

Table - 1

Area and production of Iuportant Pulsea
In Bangladesh 1971-72 and 1981-22

Baromashi
T-9

Duxing the pait five yeare (2979-1984) one variety of mungbean (Mubarik) was released; and one of mashkalai was identified (Appendix-1). Approximateisy 4000 germplasm straing of khesari. lentile, chickpea, makhalai, mungbean and pigeonpea were collected nationaliy and internationaliy. Based on a few multilocational triale some superior ilnes were identified for advanced trials. Prioritiea for research were identified. A national pulses workshop was organised in 1981. After the determination of training needs, seven scientists were sent for Ph.D and two for M.Sc. studies on pulses. A Pulses breed2ng and quality laboratory was established at BARI Joydabpur. Faclifties for research such as threshers, balances, deep Ereezes, quality testing instruments and tramsport were procured However, regional research stations recelved little support.

In 1982 there were changes at the senior scientist level; the World Bank consultant left the programme, several scientists went for higher studies and the work suffered. Much of the germplasm was lost. Experımental records and literature are untraceable and continuity of the research work has not been maintained.

Most of the recommendations made in several consultancy and other reports (Green and Hawtin, 1979; Nene, 1979; Davis, 1990; Gowda and Kaul, 1982; Kumar, 1984) remain unimplemented. The orders to shift the Pulses Improvement Programme to RARS, Ishurdi were issued on August 9. 1984.

V. WHAT WAS PLANNED ?

1. Expand the Pulses Improvement Programme and review the available data since 1979 on the major pulse crops to determine whether some strains were promising and if others could be discontinued.
2. Help shift the major thrust of the Pulses Improvement Programme to RARS, Ishurdi, in the heart of the important pulses production areas of Bangladesh.
3. Organise multidisciplinary review and planning meetings for 1983-84 rabi, 1984 Kharif II, 1985 Kharif I, 1984/85 rabi and 1985 Kharif II planting seasons.
4. Develop a proposal for long-term pulses improvement programme and expand the present one to serve the needs of the whole of Bangladesh.
5. Develop proposals for funding the pulses improvement programme.
6. Assist in preparing proposals for the National seed Board for release of promising strains.
7. Help in development of a proposal for national pulses workshop in 1986.
8. Assess the prescnt scientific and support staff and determine future requirements.
9. Develop and utilize experimental facilities like planting harvesting and threshing equipments, storage, laboratory and field facilities at the major research stations.
10. Standardize experimental procedures for on-station and multilocational trials of pulses and develop infrastructure to handle increased work load.
11. Suggest proceduresi to improve experimental field management for proper conduct of trials and reduction in error variances
12. Train scientists in planning and organisation of trials, reporting of data and development of their careers. Arrange training of local scientists at IARC's.
13. Attempt hybridization and selection in important pulse crops and arrange seqregating populations from IARC's.
14. Arrange more germplasm from IARC's and other countries and help in collection of local germplasm.
15. Develop inter-institutional cooperation for pulses research.
16. Write annual reports of the pulses research work for 1983-84 and 1984-85.
17. Monitor trials and help in management, data recording and selection of materials at other stations.
18. Assist in strengthening the library facilities at RARS Ishurdi.
19. Prepare audiovisual aids on pulses technology for scientists, extension workers and farmers.

36.14"

1780.

VI. WHAT HAS BEEN ACHIEVED ?

1. We reviewed the available data since 1980 and for trials conducted during 1984 Kharif II, and identified mung strains 7703,7704 and 7715 as mperior. These are now awaiting release with the National Seed Board (NSB) of Bangladesh. The data for chickpea strain $5-1$ for the period 1982-83 to 1984-85 were compiled. A proposal for its release was also submitted to the NSB. In addition to about 35 per cent higher yield, it has larger seed (50 perceht), earlier flowering, more pods per plant and and taller height than Hyprosola, the national check.
2. Multiplied breeders seed of the newly identified strains of mungbean and chickpea (about 600 kg) and for the local varieties of all pulses.
3. In lentil, khesari and maskhalai, local cultivars were the best, so all strains in the advanced yield trials upton 198384 were discontinued and those promising in the germplasm were promoted.
4. Additional germplasm strains for lentil (284), chickpea (551) and mungbean (10) were requested and received. More accessions for these, khesari, mashkalai and cowpeas, have been requested from India, Thailand, IITA and IBPGR. Arrangements were made with ICRISAT, Hyderabad, to collect local germplasm of the rabi pulses in Bangladesh. This project collected 280 strains (appendi x-2)
5. Most of the germplasm strains for khesari (155) lentil (400) chickpea (200), mashkalai (200) and mungbean (380) were evaluated. We have prepared working catalogues for all the above using six descriptors. The catalogues await typing. Promising materials in all crops were identified (Appendix - 3).
6. The pulses programe was expanded. However, the existing variability for all crops is small and further scope of identification of elite materials in these is limited.
7. Breeding programmes in khesari, lentil, chickpea, mungbean and maskhalai were initiated. Twenty-two crosses involving local land races and introduced strains having disease resistance and other characteristics were made (Table -2). ICRISAT and ICARDA were also requested to make specific crosses for Bangladesh. The local scientists at Ishurdi and those from other stations who visited us and field staff were trained in crossing, trial management and data recording.
8. Segregating populations of lentil and chickpea were received from ICARDA and ICRISAT and useful selections were made.
9. A five year detailed'Work plan-1984-89' for pulses was developed with the help of the Pulses programme leader, IADS Crops Specialist, Head Plant Breeding Division and the Directrar General, BARI (Rahman et al. 1985)
10. Two project proposals (IDRC and CIDA) for substantial and long term support to the pulses programme for the 1986-1995 period were prepared and submitted to the authorities.
11. A short-term cold store for pulses experimental seed was commissioned at Ishurdi in April 1985. This should help in safe storage of pulses breeding and other materials. A pulses laboratory and a field room were also put to use and furniture ordered (Appendix-4).
T:hlan
Crosses made, Purpose and Seeds available for the pulses breeding program

	Crop	Crosses	Purpos?	No. or Seeds
1.	Khesari	1. 3068×3604	Luw toxin, high yioly	$65+27^{a}$
		2. \times Jamalpur	Low toxin, himit yield.	$75+75$
		3. 1.506×3604	Low toxin, high yield	$25+75$
		4. x Jamalpur	Low toxin, high yiela	$21+50$
		5. $\mathrm{F}-2 \times 3968$	Low toxin, Early vigour	8
		6. \times Jamal pur	Early Vigour, $\mathrm{High}_{\text {h Y }}$ Yeld	14
11.	Lentil	1. Pabna Local $\times 79542$	High yield	$118+20$
		2. $\times 79666$	High Yield, Late Sed	$45+66$
		3. L-5 $\times 79542$	High Yield	$71+66$
		4. $\times 79666$	High Yicld, Laree jeed	$106+14$
111.	Chickpea	1. JC-74 \times Sabur-4	High Yield, wilt resistance	$16+11$
		2. \times S-1	High Yield, wilt rasistance	13
		3. x Hyprosola	High Yield, wilt resistance	7
		4. Sabur $-4 \times 5-1$	High Yield	35
		5. $\quad \times$ C-235	High Yield, tolerance to batrytis	12
		$6 . \times$ P-326	High Yield	7
		7. Hyprosola \times S-1	High Yield	$1+43$
		$\times \mathrm{P}-326$	High Yield	$1+4$

Table -2 Contd

Crop	Crosse;	Purpose No. of Seeds
IV. Mungbean	1. Sona Munk $\times 7715$	Golden Color mat high yield day-length neut.ral (already F_{2})
	2. Sona Mune x 7703	-do- (already $\mathrm{F}_{\mathbf{2}}$)
	3. $7715 \times$ Rice bean	High yield, iny resistance(being attempted)
	4. $7715 \times$ lolg Fodded strain.	" " .
V.	1. Baromashi \times Mak-2	High yield, top learing habit (being atteapted)
\rightarrow	2. \times MAK-3	High yield, tor benring habit (being atteapted)

a INDICATES SEED FOR RECIPROCAL CROSS.
12. Facilities for conducting good experiments like planting rods and field trays were made. In addition, the thresher, seed driers and deep freezers were put to use (Appendix-4).
13. Multidisciplinary review and planning meetings for pulses research were held on 19 August, 16 September 1984, and 29 January 1985 and one major review will be held in July, 1985.
14. Assisted in writing BARI pulses programme annual reports for the rabi 1983-84, Kharif II 1984 and for the pulses breeding experiments at RARS, Ishurdi, for the rabi 1984-85.
15. Procedures for experimental field management were suggested to the P.S.O. RARS Ishurdi. He discussed these in a meeting of all scientists. Some decisions like field histories, crop rotations, field levelling, fertilizer application and crop stubble management are being follwed now.
16. Improvements were made in the conduct of experiments. The experimental plot length was standardized to 4 m . Nonexperimental materials were planted around the experiments and inter-plot spaces were done-away with. Relatively better desigr like balanced lattice squares were introduced.
17. Excellent plant stands were achieved for all pulses experiments at RARS Ishurdi and most other stations to which we supplied experimental seed. Relatively lower coefficients of variability in the experiments were obtained. With no fertilizer and irrigation, high yields for khesari ($2500 \mathrm{~kg} / \mathrm{ha}$), lentils ($2250 \mathrm{~kg} / \mathrm{ha}$) and chickpea ($3500 \mathrm{~kg} / \mathrm{ha}$) were obtained at Ishurdi.
18. Data recording on most pulses experiments at RARS Ishurdi and other stations was simplified and standardizad. We recorded; plant stands, days to flowexing and maturity, early vigour, plant height, disease and pest damage, seed size and color, and seed yield. Other data like pods per plant, seeds per pod, primary and secondary branches were not recorded unless absolutely required for a particular study. This reduced the time required for data recording.
19. Khesari strains were scored visually for their vegetative growth and identified a number of them for fodder potential.
20. Disease debris for wilt and root rots of chickpea was collected to enable the pulse pathologiat to initiata artificially augmented disease screening nurseries.
21. Increased cooperation was developed or sought with IARC's; ICRISAT, ICARDA, IITA and AVRDC. We developed contacta with the Botany Department of Chittagong University who have about 1200 germplasm accessions of mungbean. We conducted an chickpea experiment at the Jute Research Station at Faridpur.
22. Invitations for the participation of Bangladesh pulses scientists to breeders meets or visits to pulses programmes at IARC's and programmes of other countries were arranged, nowever, only one plant pathologist could go during the last one year.
23. A proposal for holding a national workshop on pulses in Bangladesh in early February 1986 was submitted to the Head Plant Breeding Division, for submission to the IDRC.
24. Delivered seminars on chickpea breeding at ICRISAT, and on the Pulses improvement programme at BARIjat RARS, Ishurdi; BARI, Joydebpur; BARC, Dhaka and Dhaka University, during this consultancy.
25. Prepared slides, photographs and charts about the present status and new technology in pulses. These are available with the pulses programme at Ishurdi, BARI and BARC.
26. Assisted in submitting requests for 150 books, Journals and reports and in preparation of an author catalogue of about 200 books available in the library.
VII. CONSTRAINTS

1. Every five years or so the goal of doubling pulses production is announced, however, the concern and efforts to match the challenge do not exist at present.
2. No funds are available for pulses research beginning July 1985. However, the third phase of IDRC may be approved. A CIDA Project is expected. A gap in funding will adverselly affect the ongoing programe and should not be allowed in the future.
3. Very limited genetic variability for pulses exists in the country and once the few strains identified in each crop are released or rejected there is no further chance for improvement unless more germplasm is introduced and strong breeding programmes are initiated. Long-term storage of germplasm should be planned to ease the pressure of rejuvenating these every year or so.
4. Scientific personnel and support staff are limited to handie these progiammes in three overlapping crop aeasons in one year. Although existing staffing get up indicatea 35 personnel, only 21 are in position. There is no typiat and no driver at the pulses headquarters. The germplasm catalogues which are ready await typing.
5. There has not been any continuity of khesari neurotoxin analysis since Octoher, 1984, after the ninemonth sabbatical of Professor Md. Hossain, who repeated analysis of 133 strains. No analysis were made of $1983-84$ triala and seed for 1984-85 is awaiting analysis.
6. Although we have developed limited research facilities, there is no standby arrangement for break-downs e.g. if thresher, seed driers, cold store or, deep freezes go out of order, there can be serious damages to the materials. This has happened with the thresher and seed drierfat the peak-use period.
7. There are no facilities such as typewriter, xeroxing machine, seed counter, seed barrels, furniture for laboratory, cold store and field laboratory, slide projector, numbering machines, moistureme ters, dehumidifiers etc.
8. The pulses programme has no four wheel transport at Ishurdi. This has been a serious handicap for movement on and offstation and sometimes lead to wastage of labour time. Trial monitoring could not be upto the mark. This has affected seed distribution, seed receipt and movement of staff. We could not visit Jessore for the selection of seed and the transportation of the selections to Ishurdi, by April/May. About 40 to 80 percent seed has been infested by bruchids. Some trials at Jamalpur failed and the one at Faridpur was spoiled for simila reasons.
> 9. Threshing facilities are quite inadequate at Ishurdi and also at Jessore. There is a great danger of loss of important breeding materials: A drying room may be necessary to handie big volumes (with threshers) at peak threshing period in March, when danger ${ }^{\text {of }}$ eariy rains exists.
9. There are problems in coordination of the work from Ishurdi because of lack of communications. Generally, many decisions cannot be made locally. It is also difficult to follow up the proposals and commitments. For example NSB proposals for mungbean and the IDRC proposal for funding are still pending. Hardiy anybody from Joydebpur participated in important pulses review and planning meetings at RARS, Iehurdi. If the pulses project is continued it will become even more necessary to import seeds, send'scientists for visits, import equipment and materials and therefore, it may be more appropriate to implement the coordination from a central place.
10. Management of experimental fields should receive urgent attention. Error variances observed in the experiments can be largely accounted for by field heterogeneity and uneven gradients, which lead to variable moisture regimes, weed populations and differential treatments in the preceding season. Land leveliing, uniform gradients for drainage and removal of bunds inside fields should help to promote better experimentation. Leakage of pipes and spillage of water into adjacent experiments also result in large experimental errors and therefore, doubtful conclusions.
11. The free movement of labour and the public across the farm is not desirable. In addition to danger of theft of experimental plot materials (like selfing bags in pigeonpea, edible fruits), this results in reduced labour efficiency.
12. Shortage of funds has been a serious handicap. This may be related to labour use efficiency, vehicle use and purchases. A better and timely planning of farm operations might reduce the gap. It may also be necessary for the central office to let the projects and station know the definite fund availability and to release these in time and as per the agreements.
13. It is worthwhile to consider improvements in planning and execution of experiments. Efforts tomantain viability of seeds (post-harvest seed storage), germination and plant stands are required on the part of scientists. It will also help if they plan their leave in a slack season. Individual scientists should be accountable for experiments and their results.
14. Documentation, maintenance and proper use of all sorts of equipment is required.
15. In most station trials, high yields are obtained under larcely artificial coniitions. Only about 20 percent of the area in $B D$ is irrigated, however, most experiments at the station receive irrigation. Moreover, most agriculture in Bangladesh is rice based, but experiments of the station in rabi are planted after kharif fallow. It may be worthwhile to initiate at least some experiments in khesari under relay planting conditions in rice fields. Farmers plough their land upto 10 cm depth but at research stations mold board or disc ploughs are used to the depth of about 20 cm . Experimenta procedures as far as possible must follow farmers conditions and practices (Appendix-5).
16. If experimental facilitiee are inadequate, the number of book: and Joufnilis in the iibrary is awefully low. While there is a;pucity of books, no new journala are received, thice is little effort on the part of scientists to consult books, journale or reports.
17. Funds for internal travel and procedures for outside visits need to be streamlined. As many as four invitiations for the local scientists to participate in international meets in 1984-85 could not be availed.
18. I am told 100 tons of BADC mungbean seed is iying unsold. The need for such large multiplication and reasons for no ale are not clear.
19. Prices of pulses do not match their food value in the diet, there is no Government support and therefore, glut at harvest time results in greatly reduced prices
20. Lack of input incentives, loans good quality seeds, pesticides, and inoculum, results in lower production levels. Occasional drought during the growing season and early rains at maturity discourages the Bangladesh farmers.from investing in any form in the risky rabi season pulses.

VIII. FUTURE PLANS

In the plan of work 1984-89 for the pulses Improvement Programme (Rahman ot.al., 1985) details are given for the research which may be carried out for each crop, discipline and year, for the next five years. Most of the work proposed for 1984-85 (which could be done with the available facilities) has been completed. If the present constraints of funds, manpower and facilities are to continue, serious thought should be given to reduction in the numbex of crops on which the research should be done (Tablez).

1. If the newly proposed four varieties of pulses are released, efforts should be made to supply the seed to BADC and make arrangements to multiply as much breeders seed as possible. purify and multiply the seed of local cultivars also.
2. Plan further multilocational trials of the elite materials identified in khesari, lentil, chickpea, mashkalai and mungbean.
3. Procure more germplasm, through contacts with national and international institutes. Personal visits by local scientiata to bring new germplasm especially of khesari, lentil, mashicalai and mungbean should be encouraged. Bangladesh may plan to maintain over 2000 strains for each of khesari, lentils, maskhalai and mungbean in its longterm cold stores. ICRISAT can help with chickpeas, but important strains should be maintained locally.
の分いなーコ

4. Ensure adequate and long-term funding. Provide enough staff, and facilities like medium-term cold store, glass house, threshers, seed driers, drying rooms, plantert, threshing floors, laboratory equipment and transport. Funds for travel, especially for monitoring multilocational trials and delivering and receiving seeds to and from other station:, should be provided.
5. Reinitiate analysis of neurotoxin of khesari germplasm and augment facilities to screen segregating materials.
6. Collaborate on studies on safer consumption methods for khesari with the Institute of Nutrition, Dhaka University.
7. Improve agronomic technique.
i. Post-harvest seed storage (Appendix-6).
ii. Seed bed preparation and soil moisture conservation in rice-based cropping systems.
iii. Timely planting.
iv. Placement of seed in moisture zone, line sowing behind the plough or by a seeder.
v. Research on farmers methods of cultivation and place of pulses in cropping systems.
vi. Weed control at least in early stages.
vii. Removal of mineral deficiencies for phosphorus, zinc and sulphur.
viii. Research in maximum yield potential.
8. Disease management:
i. Survey important diseases of major pulse crops.

1i. Screen germplasm in augmented disease screening nurseries.
iii. Assist in screenina breeding materials.

iv. Control diseases of post-harvest stored grains
 V. Manipulate whits fly populations to control XMV.
 vi. Initiate epidemiological studien for planning longterm disease control.

9. Integrated insect-pest management:
i. Survey of important insect-pests of major pulse crops.
ii. Evaluation of methods to control them.
iii. Screening germplasm and segregating populations for tolerance and/or resistance.
1v. Development of efficient spray schedules for integrated pest management.
10. Research in bioloqital nitrogen fixation:
i. Collection and maintenance of rhizobia straing for each important pulse crop.
ii. Search for efficient nodulating strains.
iii. Provision for multiplication of anoculum.
11. Improvement through breeding:
i. Evaluate more germplasm preferably multilocationally for identification of superior varieties.
ii. Continue hybridization for combining desired characters
iii. Collaborate with BINA for increased variation through mutations especially in lentils.
iv. Breed for low neurotoxin content, at the present yield levels.
v. Utilize rapid generation turn-over, off-season advancement (Appendix-7)
vi. Breed for tolerance to biotic and abiotic factors.
vii. Breed for high yield.
viis. Breed for response to higher inputs; water, fertilizer and inoent+inn.

12. Remove socio-economic constraints:

1. Fdequate price guarantee.

i1. Loans for inputs.

iii. Improvement in consumer quality through procesaing,
13. Educate farmers and consumers that:
i. Pulses protein through cheap is good.
ii. Pulses require realatively less inputs and add nitrogen to the soil.
iii. Pulses improve soil health.
14. Routinely test advanced strains for protein content, couking time and consumer acceptance and reject those which are below siandard.
15. Identify strains of khesari anc maskhalai with good fodder. potential.
16. Identify short term training needs and encourage local scientists to visit IARC' s to learn the latest technology.
17. Conduct research on inter-cultural operations with bullockdrawn implements and improve upon the implements used by farmers.
18. Initiate studies on flower drop, pod setting in cold temperature, tolerence to moist conditions at harvest time seed size and comparatively less production etability in chickpeas; seed size in lentil and khesari and top bearine habi in mashkalai, preferably as thesis subjects at the eraduate level.
Hake efforts to include pulses improvement in the curriculum of agricultural student a so that they learn of the requirement and responses of pulsed to the environment as compared to rice. In the latter, higher inputs almoner always result in increased returns whereas thin may not be true in pulses always.

19. Organise, National Workshop on Pulses to assess the present

 situation and plan future programme.
IX. REFERENCES

```
Agricultural Statistic Year Book (1982) Bangladesh Bureau of
    Statistics, Dhaka.
Ahmed, Noawjesh (1984) A Guide Book on Production of Pulses in Bangladesh, FAO, Khamar Bari, Farmgate, Dhaka-15.8.183.
Davis, R.J. (1983). Legume inoculation. A Consultancy Report March, 1983, BARC/IADS Dhaka-15.
Gowda, C.L.L. and Kail, A.K. (1982). Pulse Crops in Bangladesh FAO, Khamarbari, Farmgate, Dhaka-15. P. 450.
Green J.M. and Hawtin G.C. (1979) Recommendations to the BARI; Joydebpur, Dhaka for research in pulse crops. 25-30 October, BARC, Dhaka-15.
Kail, A.K. (1984) Research and development in oil seeds and pulses Position paper by IADS Crops Specialist for MOA, Bangladesh, July 1984.
```


> APPENDIX -1
> Major Achievementic of the Pulees Improvement Programe of BARX. $1979-84$.

1. Collection of about, 1000 germplasm traine of six pulse crops about 2000 of which hal been lowt by 1984.

2. Evaluation of some of these in trials.
3. Organisation of a national pulses workshop 1981.
4. Release of Mubarik, mungbean and identification of Baromashi, mashkalal and isolation of eight lowtoxin lines of khesari.
5. Development of pulses breeding, quality and field laboratory at Joydebpur and creation of facilitien for neurotoxin analyses. Procurement of two threshers, seed driers, transport, deep freezes and furniture for Joydobpur.
6. Identification of training needs and personnel and their placement in Universities.

APPETDIX - 2

GEMMPLASM ACCESSIONS AND EVALUATION
1984-85

CROP	GERMPLASM			
	1983	1984	1985	EVALUATED
Whesari	196	267	267	254
Lentil	2334	527	802	400
Chickpea	1321	300	650	426
Mashkalai	300	354	354	200
Mungbean	500	182	542	308
Arhar	200	12	12	12
Cowpea	$?$?	50	50

IN ADDITION 280 SAMPLES OF RARI PULSES WERE COLLECTED BY BARI-ICRISAT TEAM IN APRII, 1985.

LPPENDIX - 3

List of Elite atraina some of which could be candidates for release in the next 2-3 yearn and numbers of userul Germplaw identifiod in 1984-85.

Crop	Elite Strains	Userus Germaplam/Breeding Linea (No.)
1. Khesari	$\underset{\mathrm{L}-\mathrm{j} 4}{\mathrm{P}, \mathrm{P}-24, \mathrm{LSD}-6,3932,3968, \mathrm{PL}-9, \mathrm{~L}-12 .}$	75
2. Lentils	$79542,81149,81116,81150,81145,81152$, P-1464, P-1472,F-1439.	74
3. Chickpen		Over 100
4. Mashkalai	Mak-2. Mak- 3, Pant 4-26, B-23	74
5. Mungbean	MK-72, MK-73, NK-19, PAG ASA-2	30

APPENDIX - 4

List of facilities created or put to effective use at RARS I shurdi.

FACILITY

1. Cold store for Pulses Seeds $23 \times 23 \times 10$ Cft.
2. Threshinc Floor
3. Pulses Field Laboratory
4. Planting Fods
5. Seed trays
6. Pullman plot thresher
7. Seed drier
8. Deep Freezers
9. Partially covered threshing
floor $60^{\circ} \times 20^{\circ}$
10. Bagsealer
11. Two Motor cycles
12. Balance

STATUS

New construction

Repaired

New Construction
rewily made
Newly made
Put to use at Ishurdi
Put to use at Ishurdi
Put to use \& one to Jessore
Tender floated

Put to use at Ishurdi
Put to use at Ishurdi
Repaired

APPENDIX - 5

SURVEY ON PULSES PRODUCTION IN BANGLADESH.

1. Department of Agriculture statistica indicates about 60 percent reduction in production of pulses from 1982-83 to 1983-84.
2. Reasons for decrease in $^{\prime}$ acreage and production:
i. Low yield potential for pulses in general.
ii. Inclemental weather resulting in severe yield losses,
iii. Expansion of irrigation resulting in a shift in area from pulses.
iv. Pest attack, and
v. Unfavourable propaanda against lathyrus.
3. 66 farmers grow pulses for consumption and sale and 27 grow lathyrus for fodder for their own cattle.
4. 768 farmers use their own seed, 228 buy from market just before planting; buying for consumption was rare.
5. Chickpea and lentil are mostly grown mixed with Mustard, linseed, barley or pea. About 70 lathyrus is grown as a relay crop after B. Aman.
6. Only about 25* farmers used fertilizer and 20% pesticides (aphids).
7. The mean yield estimates for pulses appear to be much higher than those reported by the BBS:

Mean seed yield kg/ha

Crop	Survey estimate	$1980 / 81 \mathrm{BBS}$	Five Dist Area Bangladesh.
Lathyrus	1081	701	68
Chickpea	1226	665	49
Lentil	987	599	64
Cowpea	1383	NA	

a Khan and Khan, 1984, pulses survey in six districts; Pabna, Rajshahi, Bakergonj, Faridpur,Jessoge and Chittaqona of Banqladesh.

APPIMDIX - 6

ERUCHID DAMAGE TO PULSES SEEDS IN

FARMERS STORAGE

CROP	PERIOD ETORED	PERCENT INFESTE SEEDS
Ming	6 Months	89
Lentil	6 Months	96
Chickpea	3 Months	35
Cowpea	7 Months	73

Source : Mondal et aI 1983

APPENDIX - 7

RAPID GENERATION BREEDING SCHEME FOR

RAEI PULSES

For internal circulation only

> Detailed Tour Report
> Bangladesh (12-24 March, 1985)
S.C. Seth

Itinerary

12.3 .85
13.3 .85
14.3.85
16.3 .85
17.3.85
18.3.85
19.3 .85
20.3 .85
22.3 .85
23.3 .85
24.3 .85

Hyderabad-Calcutta
Calcutta-Dhaka
Dhaka-Ishurdi
Ishurdi-Rajshahi-Ishurdi
Ishurdi-Kushtia-Fridpur
Friapur-jessore
Jessore-Dhaka
Dhaka-BARC
Dhaka-Joydebpur-Dhaka
Dhaka-Calcutta
Calcutta-Hyderabad

I was received at the Dhaka airport by Dr. Jagdish Kumar. The same day I met Dr.A.K. Kail, crop specialist, and Dr. D.M. Daugherty, IADS Advisor, to Bangladesh, Dr. M.M. Rahmen, Director BARI, Mr. Kamaluddin Ahmed, Member Director (crops) and Dr. Abdul Hamid, Head, Division of Genetics, BARI. I apprised them about my purpose of visit and the response was encouraging.

Next day I travelled to Ishurdi with Dr. Kumar.

Ishurdi
It is an old research station of BARI and has become the main center of Pulses Research very recently. of the three rabi pulses, lathyrus, lentils and chickpea the first two were already harvested whereas chickpea was still green although in a late-podfil stage. The soils are rich, moisture plenty and chickpea normally puts in a good growth, sometimes excessive though. The season was dry this year and the chickpea crop was excellent with no problem of Botrytis gray mold. At places, however, it had overgrown, particularly on the lower sides of the fields.

Dr. M. Matiur Rahman, Program Leader, Pulses, conducted the field tour for me. The following trials were seen:

Determination of economic threshold of pod borer: The trial was in good stage but I could not observe much Heligthis damage. White grubs, however, was a problem in these fields. Another experiment on screening of genotypes for their resistance to

Hellothis was also in the same state.
Agronomical Trial: A trial on optimum planting date and seed rate was in progress. Staggered planting commencing from 16 October and carried upto january 1 with an interval of 15 days was done. The earlier and the later dates seemed to be affected by overgrowth and poor grouth. November may be the best month and 15 November probably, the optimum date. Seed rates of 25 , 35 and $45 \mathrm{~kg} / \mathrm{ha}$ were being tried. Farmers however, go for very high seed rates. The reasons for these are that they broadcast the seed in paddy when it is maturing and give some tillage to over-turn and cover the seed with soil, sometimes the germinability of seed is very low owing to poor storage, seed rotting can also take place because of excessive moisture, while at other times moisture may be too low for germination.

Fertilizer Trial: Two doses of Nitrogen, 4 each of P205 and K20 and two of zinc. This trial had problem of collar rot. The come up irrigation was given. Variety used was st.

Breeding trials were managed and shown by J. Kumar. A trial on 21 entries selected out of the materials received from ICRISAT from 1981 to 1984 was conducted. The best entries of each year were selected and put in this trial for test againgt local checks. ICCL-82208 was the best looking followed by 81248 (S1), 81203 and ICC-267. ICC-492, Hypersola, the local check had some wilt. JG-74 was rree. $P 326$ was somewhat late, Sabour-4, ICCC-4 and $\mathrm{C}-235$ were average.

Mduanet generation breeding material: 32 lines selected by their scientists in Breeders meet at Hyderabad were grown and the pedigree maintained as such. JG-74 and the local checks were also included. The good plot numbers were PAO2283R/4415, PAO2883R/4709, PAO383R/26133, 21109, 26074, PAO5383R/26153, PA05783R/27414 and ICC-9046.

Advanced Yield Trial-1: $\quad 10$ entries, source ICRISAT, checks, Hypersola, Pabno local and Sabour-4, were planted in this trial. Hypersola was most affected due to wilt followed by Pabna lacal and Sabour-4. Entries that were good and relatively free; E9, E-24, and JG-74.

Advanced Yield Trial-2: Five entries and 3 checks mentioned earlier. Large plot size. It was a multilocation trial. Si and ICCC 5 were good, ICCC 2, HMS 6 and G 543 were average, Sabour 4 was also showing a good growth.

Advanced Yield Trial-3: JG-74 was probably the best in this trial followed by Sabour-4, 83151 (DPWR) and P-326.

F2MLT-DS: Entry 15 was excellent, 20 very good, 11 and 12 good. On the whole a good trial.

F3MLT-DS: Entries 1 and 9 were very good in this trial, 11 and 2 were equally so whereas 7 and 4 were good to average in different
replications.
ICSN-DS: Among checks Annigeri was the best. Goodentries were 20, 24, 51, 57, 44 whereas $32,41,1,13,30,35,31,52,34$, and 21 were bove average.

ICSN-DM: K-850 was excellent, ICCC-4 average and Sabour-4 above average. Entries uith excellent podding at this stage were 31 , $45,38,20$ and 4 . Other good ones were, 43, $30,22,47,11$, and 39.

ICCT-DS: A very good trial. Entries worth noting were; ICCL-83135, 83214, 83227, 83302. K-850 was good in two and average in other two replications.

Botrytis tolerant: F4/F5 generation Botrytis tolerant ines were grown. No Botrytis problem was noted this year because the season was dry. However, the lines that showed good podding were; 800842, 800850-2, 800885-1 and-2 and 761192.

Germplasm lines: 131 lines. Some root rot appeared in this patch. Good entries ICC-2548, -192 and -12346.

Crossing Program: Parents inciuded, JG-74, S1, Sabour-4, C-235, P-326 and Hypersola.

Evaluation of Promising Chickpea Strains-1: Plots 345, 334, 307 and 358 good, 1198120 wilted, 112 was relatively wilt-free whereas entries on both sides were killed.

Evaluation of Promising Chickpea Strains-2: Good entries E31/379, E34/401, E36/409, E46/488, E 58/600, and JG-74.

Preliminary Yield Trial: 25 entries trial Promising entries were, ICCL-82001, 83002, 83003, 83007, 83228, 83150,83213,83136 and 83004. Some entries had wilt problem.

Bangladesh Institute of Nuclear Agriculture (BINA)

BINA is conducting research on mutation in chickpea and variety Hypersola is an outcome of that. Most of the materials in their trials is the result of their own effort, however, they had also inherited some lines from ICRISAT. Some of their trials were:

AYT: Entries 6. Hypersola early, G-292 early good, G-97 mid-late but showing good podding.

Yield trial of exotic germplasm: Materials from BINA, ICRISAT and ICARDA. ICCT-4, CIYT-16 and CAT were average to good whereas Hypersola was also average. ICCT-4 had large pods, CIYT-16 had lodged.

FY: Assessment of M4 mutants of NaN3 treated chickpea seed

CM-59 and 16 showed good podding, Hypersola was average.
PYT: Selected exotic germplasm: Selections made from ICRISAT/ICARDA trisis. ICCT-12 and 2 were excellent, CIYT-1 lodged, CIYT-6 had stand problems.

ICSN-DS: This trial was little overgrown and some entries had lodged. Annigeri also showed some lodging, $J G-62$ had some wilt. Good plot numbers were $113,123,125,141$ and $K-850$.

On Farm Research and Development (OFRD), Kalikapur
The new material and technology is carried at the farmers fields through ofRD. They had some chickpea trials at a nearby village, Kalikapur. Varieties on test were Si, Hypersola, Sabour-4 and farmer local. S1 was by far the best. Some Heliothis damage was noticed in this trial.

A trial on the method of sowing clearly demonstrated that broadcasting was much inferior than line sowing behind the plough. Farmers normally plant by broadcasting the seed in paddy and use high seed rates.

Discussion with the staff at Ishurdi was useful. They expressed that ICRISAT was helpful to them in chickpea research and they look forward to more stronger links.

Rajshand

Drive from Ishurdi to Rajshahi was through various mixed cropping combinations of chickpea with other crops, however, sole chickpea was also common. The growth was generally good but patches were too frequent. Stopped at few places, could not see much disease problem, Heliothis damage was, however, noticed.

At RARS, Rajshahi, a multilocation trial similar to the one at Ishurdi was being conducted. It was in a poor shape. Problems were uneven land, many veeds, poor upkeep etc. I was told that collar rot had appeared there earlier. The preliminary Yield Trial was also in the same condition.

Quite a few farmer fields were seen west of Rajshahi.
A rield near Rajshahi town had chickpea in rice-fallows. No ploughing - poor stand, lots of weeds. Adjoining field received one turning, crop better than the first field.

In Baya village a small plot near the farm house with a good growth but rew gaps. Mixed cropping with lentils, in another field with wheat, both good.

Near Baripura village. Chickpea fields all around and in various cropping systems.

1. Chickpea + linseed + barley: Growth O.K., podding good borer attack observed.
2. Barley + chickpea: Good growth, but gaps due to broadcasting.
3. Chickpea + whest: Planted late, growth poor.
4. Wheat in this region is replacing pulses slowly.
5. Relay crop with and without tillage (1-2) showed remarkable difference. Chickpes crop would derinitely need some tillage for good growth and checking the weeds.
6. A field with one tillage, sown late but was very good. Upon checking with the farmer, we came to know that he had applied farm yard mannure to rice crop. This probably conserved more moisture for chickpea and because the season was dry this plot was exceptionally good. Some disease (B. batatifgla) was noticed, farmer was expecting $18 \mathrm{q} / \mathrm{ha}$ from this field.

We returned to Ishurdi in the evening as Dr. M.M. Rahman, Director, BARI was visiting chickpea fields next morning. The next day I held discussions with him and asked his opinion about ICRISAT's support to chickpea research. He gave me a very positive response and was satisfied with our approach. He, however, expressed that he looked for more stronger links with ICRISAT by way of exchange of visits, materials, and training their staff at ICaISAT. I feel Bangladesh is a country where we can make our impact felt and they duly acknowledge the source of our material.

Kushtia \& Fridpur
Large area of chickpea from Ishurdi to Kushtia district. Mixed crop combinations were gram with wheat, cortander, barley and mustard. One of the farmers told that they do mixed cropping with coriander to keep the Heliethis away. The crop is totally rainfed . Farmers were harvesting chickpea crop. Podding was really good, some damage due to Hellothis was observed. They give one tillage and cannot afford more because all farmers don't have their own bullocks and they have to hire an high rents. Instead higher seed rates are used to get good stands. But these remain uneven because of three problems; poor seed storage, seed roting due to excessive moisture, and broadcasting.

Abstract

At RARS, Fridpur, there was only one multilocational chickpea trial and that too was spoiled by water-1ogging due to seepage from the nearby irrigation channel. Some plots were, however, good and showed excellent podding. Si was good and Pabna local average.

Demonstration Trials at the farmers rields in a village near Fridpur were conducted nicely. Si, Pabna local, Sabour-4, Hypersola and Farmer local were grown in large plots. At one place Si was early and good, pabna local was late, Sabour-4 was average and had gaps, Hypersola was average to good and Farmer local was above average. At other place 51 was good. Pabna local average, Hypersola was damaged by disease (wilt) and Farmer local was very good.

Jessore

RARS, Jessore
All the trials were in a good shape, the growth was ideal. Chickpea crop was maturing and podding was excellent. At places, however, entries had put in excessive vegetative growth and at other places there yefre patchy stands. But on the whole the crop was impressive.

Advanced breeding lines from ICRISAT

Entries 96, planted as observation rows. About 15 tall lines also included, the expression was good. Promising entries were at plot numbers 21, 65, 100, 102, 106 , 111 and 114 . Among talls, entry 63 was the best.

Advanced Yield Trial-1: Again, 10 entries from ICRISAT were being evaluated in bigger plot size. Sabour-4 was average to poor, Hypersola very poor, and Pabna local was average. $J G-74$ was very good but in one replication it had stand problems. Entries 2 and -42 were best overall, 24 and 45 were average to good in different replications.

Advanced Yield Trial-2: One of the sites of the multilocation trial. ICCC-2 and ICCC-5 though somewhat mid-late yet seemed to be performing well, si had stand problems, Pabna local was average, Sabour-4 average to good and Hypersola was poor.

ICSN-DS: Planted in the first week of December yet the trial had excessive growth; reason: one come up
irrigation and one more frer one month. Among checks JG-62 was best, Sabour-4 was average to good. Annigeri was average. Entries 8, 20, 22, 23, 26, 30, 41, 50 and 59 were looking better than the checks.

Germplasm Evaluation: Materials received from ICRISAT. Among these ICC-203B, 2548, 257B, 3439,4874 and 11529 were looking impressive and may probably have a better scope here. K-850 was average and had lodged.

Hellothis was not problem yet an ambitious trial on contral of this insect by NPV was being conducted. Yet another trial was on rinding the threshold limit of this insect.

A trial on fertilizer response to N, P, K, S and Zn was in progress. No visible difrerences could be noticed among different treatments. Veriety used was Si. Trial was very good and data will be userul.

OFRD, Bangladesh
About 15 kms east of Jessore. Harvesting was in progress and rarmers had harvested most of their chickpeas. Some late sown chickpeas were still in the field and had poor growth. The normal sown crop showed good podding. One of the rarmers had serious problem of Botrytis although in patches. The adjoining field was almost rree. When asked, we came to know that he had applied FYM to the paddy crop and also gave one irrigation to the chickpeas. Probably the excessive moisture turned out to be suicidal for the crop.

I could see three demonstration trials of improved chickpea cultivars compared with the farmers local at the farmers' fields. In first trial farmer local was the best, Pabna local average to good, Hypersola hed moisture problem in half of the plot, Si wes very good and Sabour-4 was average.

In the second field si looked very impressive although a part of the plot was damaged by stray cattle, Sabour-4 was very good here, pabna local was average, Hypersola average to good and Farmer local was also good.

In the third trial sabour-4 was very poor, Hypersola was also more or less like this, Pabna local. was good, S1 was very good whereas Farmer local was also competitive.

BARI, Joydebpur

Dhaka to Joydebpur, once good area of pulses, has no more chickpea because of the changing cropping pattern. Now it has been replaced by wheat. At BARI station very few trials of chickpea were conducted. At one stage this was the main center of activity for pulses but now Ishurdi has become the major station of pulse research and that is the reason for fewer chickpea trials here. Some of the entries in the trials were already harvested. However, it was possible to see the harvested material in the field. The Multilocation Advanced Yield Trial was conducted at this location also. HMS-6 though mid-late looked good. S 1 , Pabna local, Sabour-4 were harvested and of these St looked better.

CIXT-ICARDA

A trial an kabuli types sent by ICARDA, most of the entries were late and unadapted. However, entry 2 was early and very good overall whereas entries 4, 8 and 22 were also good.

A trial on time of sowing and seed rate was conducted by staggering the planting for 15 days from 15 October to 1 st January and seed rates of 25, 35 and 45 kg/ha. The preliminary indications were that mid-November was the best planting time and $45 \mathrm{~kg} / \mathrm{ha}$ was the optimum seed rate.

BARC: At BARC, I met Dr. K.M. Badruddoza, the Chairman, who just retired and will be taking up his assignment with FAO. I apprised him about my visit and had some userul discussions with him. He was of the opinion that although ICRISAT is doing rine job, yet it has to make more efforts in Bangladesh than what are there at the present. I took this point and assured him that ICRISAT will take further steps in this direction.

BANGLADESH (12-24 MARCH, 1985)

S.C. SETHI

SUMMARY

- Pulses occupy about 5 per cent cropped area and produce 2 per cent food grains in Bangladesh.
- Most of the production of pulses in this country is contributed by rabi crops, lathyrus, lentil and chickpea and these are marily grown in Kustitia, Jessore, Fridpur and Pabna districts.
- ICRISAT chickpea program is making an impact in Bangladesh since virtually all the material at any of the stations is originating from seed supplies made by us.
- Si, a cultivar in on-farm test is promising anc has come out of ICRISAT's material, they duly acknowledge it. This is one of their future varieties.
- Chickpea crop on the whole was good this year because it being a dry year, no Eofrytis incidence was observed.
o Wilt and root-rots are a general problem in the colintry.
- Heliothis amage was less than 2%.
- Stands are a general problem ir farmers' fielcs because of various reseasons like seed storage, broadcasting, rotting due to excessive moisture etc.
- Dr. K.M. Badruddoza, Chairman BARC and Dr. M.M. Fahman, Director BARI felt the need for further strengthening of Pulse Program by exchange of materials, visits and training of Bangladesh staff at ICRISAT.

ISHURDI

- The major thrust of the pulses program has been shifted to more representative research station like Ishurdi. Earlier it was at Joydebpur, which is now a testing site only.
- J. Kumar is doing a fine job, all the chickpea trials were in an ercelient condition here.
Some of the trials had grown excessively
vegetative porticularly on the lower side of the
fieids.
- Pabna local, Hypersala and Sabour-4 are the local varieties of which former had less problems wheress the iatter two were highiy susceptible to wilt.

0 It seems that race situation for wilt is similar to Hydersbad as all the materisls identified resistant nere were also resistant at Ishurdi.

- The lines from ICRIsjT giving superior performance over years were identified and put in advanced yield trials. These are being tested multilocetionally in Bangladesh.
- Demonstration trisi it one of the farmer fields in Kalikapur villaec near Ishurdi was good. Si, Pabna locai. Hypersola, anc Sabour-4 were sown in large plots. Si looked best.
o Chickpeas a relay crop with rice would require some (1-2) tillage as ne-tiliage plot had a very por growth.

RAJSHAHI

- Large fields of chickpea from Ishurdi to Rajshahi.
- Growth wis optimum but stands were not perfect.
- Various ixed cropping combinations with chickpea were observed particulariy barley, wheat, mustard, coriander and sugarcane.
- At RARS fejshahi only two trials, $A Y T$ and PYT were grawn.
- No yield dats possible becsuse of uneven growth due to soil heterogeneity. Weeds were to an alarming scale.
- Collar rot was a bis problem.
- Pod borer, not much of a problem.
- Farmers used unushally high seed rates. (100-150.kg/ha) to set good stands.

KUSHTIA A FRIDPUR

o Very geod chickpea crop from Ishurdi to Kushtia.

- a relativeiy warmer region, farmers were harvesting their erof.
c Good ylelds $15-20$ qina are obtained by farmers.
© Not much of asease and insect problem.
- Mixed or intercropping very common practice. The belief is that it keeps the diseases (botrytis) anc insects off.
o At Eridpur station only one Advanced yield Trial, which too Hiss dateged by seepere from nearby channal through rat-hole.
o On the whole Si, HMS-6 and pabna local were good.
o Two demonstration trials at the farmers fields were also seen. Si, was good in both these trials. The fermer-local ues also in good competition with this variety. Sabour-4, Hypersole and Pabne local were poor to average. Sypersole was damaged by wilt in enother field.

JESSORE

o Most of the chickpan harvested by farmers, only late planted fields noدid be seen. These did not have good growtn.
o At RARS Jessore, ail the trial were good, growth was ideal and material was maturing.
o In AYT-1 entries from ICRISAT were being evaluated against local checks. Entries E-42 and 2 were very good whereas cherks were average.
o In AYT-2, ICCC-2 and ICCC-5 seemed to be performing well as compared to many others.
o Among advanced breeding lines from ICRISAT, entry 65. 88, 100 , 102 , 106 and 111 were good to very good.

- Among germplasm accessions ICC-2038, 254B, 2578, 3439, 4874 , and 11529 will probably have a better scope here.
c Evaluation of chicicea strains from ICARDA: ICC-559, $476,450,367,302,217$ and 211 looked impressive.
o In ICSN-DS, An:igeri was gverage, JG-62 very good and Saco:r-4 average to good. Entries 41, 26, 20, 8, 3C, 2え, 5ラ, 23 arr $5 C$ were lcoking better than the checks.

JOYDEBPUR

- Dhaka to doydebpur; once sood seed has no more chackpea because of the changing cropping pattern.
o At BARI atation very few triels of chickpea were conducted.
- In CIYT, sent by ICABDA, most of the entries were late and unsdopted. However, entry 2, was early and very good wherent 4,8 and 22 were 1180 good.
- In AYT, HMS-6 though mid-late seemed good. Si, Pabna 100a1, Sabour-4 ind Hyperso:a were harveated and of these Si looked better.
- A trisi on time of sowing and seed rate was conducted, the preliminary indicationa are that mid-November is the best planting time and $45 \mathrm{~kg} / \mathrm{ha}$ is the optimum se\#d rate.

PLAN C C NORK
1984-89.
BY
MATIUR RASAAN, ${ }^{1}$. MOMAR A AX. KAUL² AND ABDUL MAMID.

1. BAHRMDESH AGRICULTURAL RESEARCH IMSTITUTE, JOMDEBPUR AND

 FARGME, DHAKAXIS.

FABEMAM, 1955.

1 Introcuction

Palses cecupy about 1 pencent of the cropped asea and procuece 2 parpent
 Ilty of palaw buve tetully deereased over the last decade or so (Tabiea). Dupplte sorzective maunusw undertinten slace 1979 this trand could not bo malted or rwessed. High yiolding vaxiotien of wheat, gustand and a cemo
 ire thitr tradttional aretio. Morecorer cultivars, wheh mespond to inouta axe
 Rice based cropolin gattorns. Coed quality seed of oven the lecal raciotices Is not evailable to the farmon.

1 Achlym.ants:

The coordinated pulsee improvement programe initiated in 1979 and supported by the IDFC and the Worid Bank, Identifled priority acees for pelse ropearth. The retearch work on six pulse cropy; khearari, lontil, chletpen, eashealai, zungbean and plgeonpea, Included collection of lecal and exotic germplasm, ite valuation for direct use, Identification of important pethe and diseases, and mutriont requiremente of various exops. Tralning needs were identified and sowen scientiste were sent for Ptu.J. studiee for breading, pathology, agronomy and entemolegy. The detaile of achivements for the 1979me4: period are issted in Table-2. Impreved varietie of sumer pulect; manpean and
 and high yielding ilnes of chiclpek, lentil and pigeonpea mere identified and are being tested in advancec yield trials. Important disecees of each puise erep wert also identified, Effective stralm of finl rople for mung and chsckpen wore identlifed. Howerer, in the last two years ome progrest ende in the oariler yeary was lest. Soveral ucientists luft the programe for trinining or for other reason, sizeable germplase was lost in all these crops. Hybridization pregrume which could have been initiated wis not undertaken and wili-knit approach imol. ving all supgort disciplines could not progress. Wary of the eculpmanta which arrived were not being ufllized upto the writing of this document.
2.BnRII童 Iechnicut Plens:

In early 19ek, Baft and Bafic through the iant procured the cervicee of a consultamt to look into the probleas, sehiovemente and propocts of pulte excpa In Bangladush and make recormphation to cover gape in the research Input. The consultent leoked into sweral earlier consultancy reports, wet wh ruearch scientiets, fasmers, adinifetraters and ald agencies and subultted a repert indicatiog that gape cxipted in germplase collection, mintenance and eraluationg vee of topuspment, handisng of the materials at the breeding level, inget of sho erppert servieet and ceat handifng preeessing and etorage. kt alse obemrud that toet of the production of paifer fa Bagiadah map contriturted by ont esepe and these wore minly grew in Kushtia, Jeesore, Faridper and Pibn districtie" "

Therefor the suggested that the enjor thrust of the pulses programe should cour out of a more representative revearch etation like ishurdi. The Director-Genernl, BAFI accepted the recomendiation and has already iseued orderi shifing the pulses improvement programe to the RAPS; Ishurdi (Appondix-1). He has already allocated office and laboratory rooma and approved epace for aircooled ened store and covered threshing floor. Iaking note of the gepe in prowlous reesarch offort, his ordert specify that pulees improvement programe will be coordiniter from Ishurdi and all support discipline ecientists will be reeponsible to the coordinator for their work and acmindetration. They ay however, eeok specific technical guidance free their departmental heide. Since compea is important manly in Chlttagong region, the major mort on this crop will be done at the RARS, Hathazari.

II PRIOR:IIES

A. CROPS

1. Lathyrus
1) Consolidate quality laboratory and continue search for new low toxin inte.
11)Adaptation tests for these línes, including in relay-cropping and no-input conditions.

1ii) Hybridization of low toxin lines with high yielding strains.
iv, Initiation of programe to ecreen varleties for resistance to seedling blight and downy wildow.
v) Seed multiplication.
vi) Consumer quality research on afer consumption methods.
! The germplasm will be screened for their neurotoxin content. The breedling material will be developed and eelection will be made for low neurotoxin lines in the segregating material. In the advancec trials we will measure atralns for their total blomass and seed yield and identify those which produce relatively r.ore fodder. These will be identified for the fodder section fcr their evaluatl
2. Lentil

1) Collection, Evaluation and documentation of germplasm.
2) Hybridization involving local varieties and thoe fith large seed, disease resistance and eariliness.
111)Screening for resistance to milt, ruet, bushy stunt and botrytis.
iv) Studies on inter-cropping and mixed eropping potential.
v) Collection, isolation, testing, selection and production of Migh Nefixation strain of lentils.
vi) Wutritional quality ovaluation of germplese and olite linet. vis)Seed multiplication.
vi11) Farmers field trials.
ix) Adaptation trial under rainfed conditions.

Hytridization mork irvolving local and introduced strains will be undertaten for increasing variability for yield, earliness and disease resistance.

Largar trials with promising linew will be conducted at soveral stations to determine the adaptation of mot promising line .

Efforts will be made to assmble more variability fre oxotic courcen, especially for disease resistance, seed size and early maturity.

Collection of more Rhixobia strains and ovaluation of their offectiveness will be undertaken and inoculum of thoe found moet offective will be multiplied.

Efforts will be made to screen gemplasm and egregating material for resistance to rust, wilt, botrytis and bushy stunt under artifiaally inoculated conditions.

Trials will be conducted to determine photphatic, sulphur and zinc fertilizer needs of lentils. Agronomic trials will be conducted on pramising strair Farwera field trials on larger plots on the 11 ne 79542 wili be conducted by the Comarm alvision.
3. Chickpea

1) Hybridization for disease resistance, warliness and high yield.

11; Large yleld trials will be conducted in areas of adaptation.
iii, Screaning for resistance to wilt, botrytis and stunt.
1v) Agronomit tudies for good germination.
v) Cropping systems, late sowing potential.
vi) Isolation, selection and wultiplication of N-fixing strains.
vii) Seed multiplication and prevention of post-harvest seed loeset.
vii1) Study of respones to zinc, suiphur and phosphorus.
Hybridization of local adapted itraine; Pabna Jocal, Sabur-4 and Hyprosole with high yielding and/or disease resistant trains 1ike, JG-74n P-326, $S_{1}, C-235$ will be undertaken.

Large sale trials on farmers fields for S_{1} wh th local cultivars as checks will be conducted.

Strengthaning laboratory and ileld screening facilitiet for sereaning againet fusarium silt, botrytis gray mold and stunt.

Collec:ion and identification of effective stralne of chickpea zhizophe will be done and eultiplication of efficient strains will be undertaken.

Experiments to determine phosphorus and zinc nutrition of chickpea will be done. Study to determine the late sowing potentlal of chickpea will be undertaken.

4- Blackaram

1) Hybridization arvolving bearling types, arliness, resistance to yN and high yielc.
ii) Agronomic studies to detemine date of planting and mixed cropping potential.

11:1 Development of control massures against pod borer, leaf beetle and hoot borer.
iv) Isolation, stection anc multiplication of efficient N-fixing straim of fhizobia
v. Evaluation for foder potential.
v1) Seed multiplication ano prevention of nost-harvest seed loeset.
vil) On-farm testinç of promising strains.

Hytricization to inccrporate reslstance tc diseases, earliness, high frultino capacity and day-length insensitivity will be done.

Large sale trials will be conducted for comparing superior stralns with local cultivara.
5. Murgbean
i) Collection, mintenance anc ovaluation of more germplasm.

1i) Hybricization for $M i$ resistance, arlinets, synchrony of podding and nigh yiela.
111) Development of control oeasures agalnet pod borer leaf peetle and shoot porer.
iv) Collecticn, selection and multiplication of efficiont strains of rhizobia.
v) Agronomic studies on dates of planting, lixed cropping etc.
vi) Seed production and prevention of poet-harvest seed losset.
vii) On farm tetting of superior strains.

Hybridization of YN resistant strains with high yielding cultivars and wall attempt to select resistant, high yielding and day-length inseneitive limes for cultivation.

Wo will supply the nucleus seed of local Faridpur-1 and improved typen; to BAXC and help them produce good quality seed.

Merobiology section has already identified someffective Rhizobla stralm. These will be multiplied to produce base inoculum and offer will be made to produce eass inocu: in for treatirigseed at farmers level. More stralri will be selected.

More tria: will be done with mungbean.

6. Cempras

1) Genuplase collection and avaluation.
2) Dwolopment of plant protection masurew agalmit important pents and diseases.
3) Ivaluation for fodder potentiad.
iv) Collection, selection and aultiplication of phtrobil utraitu.
v) Soed aultiplication and provention of poitharvent soed lonset.
vi) Strengthen linkages with IITA and seek their beip in cempea improvament.

Work to be done at Hathazarl supported frem Inhurds. Consualame mill be collected locally and requested frem IITA and Indian sources in 1984-85. It whll be evaluated at Hathazari in the following season. Adequate protection frem importan dispases and insects will be provided.

Total bicmase production and grain yield of the promieing atralire will be entianted and those having higher fodder production will be identified for the foder section for their use.

Local and exotic Rhizobla straime will be collected and efforts will be made to identify the more officient ones which will be aultiplied for inoculation.
adaptation tests will be done in areas of cultivation. Seed of improved etrains will be multiplied.

7. Fleld Pea

1) Collection, enintenance and ovaluation of local and exotic germplate.

1i) Large scale teeting of promis:ng strains for reloase as wuch.
1ii) Hybridization of promising straina/variotios with those having disases resistance and other desirable characters.
iv) Seed multiplication(breeder's soeds).

Mo crog 1mprovement work has been undertaken on the $1101 d$ poas in Bangladeet in the past. Therofore, major offorth are required to procure the germiase for tris pulse crop.
8. Pigeonpeta

1) Germolean collection and valuation.

1i) Emphests on rabl types.
118) Studien on the scope of pigeonpeas in the Barind tract as an intex-crep.

Efforte will be made to rotrieve the lost local gormplase from ICaisat. If posible attempts will be mad to collect more variability locally.

8. DTSGIM.INS

1. Gavolatis
1) Coliaction, mintenance, Fraluation and cataloguing of germolase of important pulese erops.
2) Proparation of morting calalogut of the arailable germpame
2. Arrone :i
1) Study optime ocming date in relation to the eropping eyeted tor particular zonde.
2) Study of intercropping, elxed cropping and relay cropping potential of particular crope.
1i1) Study of the requirements for inter-cultural oparatione.
iv) Study of requinments for phosphatic festilizer and nead for application of zine and aulphur.
v) Study of the water roquireants especially of the rabl pulses for maxialzatior of production.
vi) Study planting methods to onsure better plant itands.
vil) Invetigate relative gerifinablilty of different strains.
3. Pathol ory:
1) Survy and identification of important diseases of specific pulee crope.
2) Developent and/or adoption of laboratory and ileld sereening proceduree for important diseates.
3) 5creening the germplase for resistance to important difeases and identification of retistant strains.
Iv) Screening of breeding materials for resiatance.
v) Dwolopent of economic chomical, blological of managoment control masaret epecially againt seed borm diseases.
ri) Study and control disesses in post-harvent seed storage.
VII Study eprciemielogy.
4. Entonati
1) Surver and Identification of Important pesta of apecific polee crepe.
2) Dovelepment of laboratory and field procedurve for screening.
3) Identification of sources of resistance.
iv) Screentng broeding eaterials.
v) Development of integrated pest management meatures minainit ingect dimage to mindise and ue sprey at the moet aporopriate ting.
vi) Study and coatrol deage in post-harvet seed sterajo.

5. Microbtelerra

1) Collection and Identification of phinobla for apecific pulane.
2) Solection of the moet effective itrains.
3) multiplication of tho effoctive itraine and development of offective seed inoculation methodology.

1) Develep procedures to dry seed to den 1 red levels of moisture.
2) Study the peet-harvent losese and develop procedures to roduce these.

1i1) Develep proper seed storage fecilities with lower coste.

7. Brendsing:

1) Identification of local or introduced itraine for direct use as varieties.
2) Instiation of mybridization programes in most pulse crops to incosporate disose rosistance, earliness and high ylelding ability into the local land races. Development of low neurotoxin strains in khemari.
1i1) Combine resistance to major diseasen of a particular erop.
iv! Cencuct multifocational trials.
v) Produce breoders soed of local and improved cultivart.
vi) assist seed multiplication agencies to produce nigh quality pure eeend of the imoreved strein.
vil) Organise sympoila and workehope for exchange and dissemination of improved teehnol ogy.

8. Quality:

1) Screen khesarl germplate for 1 ow neurotoxin.

1i) Screen breoding esteriale for 10 m nourotoxin and high protein and amino acid balance.

III NET WCAK OF PMSES QESEAGCH STATIONS:
Four major researeh centres have been identified to conduct research on pulise crops. Theee are Inhurdi (hoadquarters), Jessore, Jeydebpur and Jamalpur. In addition compea research will be conductod at Hathararl. Other statione will be ab centres and will conduct adaptive trials (Figure-1). Baeic facilitien Which mort doveloped in phases 1 and II of IDAC under a World Bank conmultant at Jordebpar will also be developed at the major stations and offorts and alraedy onder way at Ishurde.

IV FACIIITIES AND COSTBAIVTS:
The coordimated progrume was initlated in 1979 and an attempt was mede to procure and establich research facilities. Howwrer, the grawth hem been rather lopaided.

```
Facilitiet were bulit at Joydebpur and the regional statlon recelved ver little support. Empared to the required staff position shown in the moxt section, prosently only on PbO (breeding), cone 550 (breeding) and four so's (breeding) ar* ! rrolved in the pulses research (Table-3). The support disciplines nomineted seientists to mork on pulsen only as part time activity and therefore, these crope received lees than the requifed supoert. the following facilitios exist at Joydebpus and regional stations:
```

A FACILTIES:

1. Joydepour
1) SO's and offlce space for theo-3
2) Nell equipped pulses quality laboratory-1

1i1) Good space for pulses field laboratory.
iv) Oeep freezers-3
v) Seed storage bottles α boxes
vi) Seed driers-4
v11) Threshars-3
vi1i) Vehicie-Pickup - 1
Notor cycles - 3
こyこle -1
1x) Typist

- 1
x) Peons
-4
xi) Malk-1n cold chamber - 1
$x i 1)$ Seed storage roon - 1
xili) Balarces - 4
xiv) Type nititer - 1
xv) Photo copy machine - 1
x xi) Fieldman -1
xvii) Furniture
xvi11) Experimental space
xix) Driver
- 1
xx) Bag sealors
-6

2. Ishurid
1) PSO (Pulse Dreeding) - 1
2) 50 (Pulse breeding) deputed and office facility-1

1ii) Fieldman suall Pield laboratory -l
iv) Fildge - 1
v) Steel dlmirah - 1
vi) Book Steti Cabinet - 1
vis) Mattier Balance (2,kg.) $-\frac{1}{4}$
ix) Poly ana Sealer 1
x) Mosenting Tape -1
xi) Power Tiller -1
3. Jemsore

1) Ono fielctran with office facility -
4. Imalpur
1) $\mathrm{SSO}-1$
2) Fieldman - 1
B. Constraints
Ishurai (Head quarters
3) Air Cooled seed stor ? ?
ii) Threshing floor (partially covered, 1, 3
iii) Deep freezers ', 3
iv) Seed drier ${ }^{1}$, 1,4
v) Threshers $1, ~ \exists$
wi, Seed storage bins and plastic boxes $4,3,4$
vil) Typist
viii) Type minter
ix) Office and laboratory furniturex) Cyclostyling machine
xi) Vehicle
xii) Driver
x111) Motor cycles 2, 3, 4
xiv) Seed counter
xv) Projector, camera
x xi) Mottles balance ${ }^{2}$
xvii) Moisture meter
xviii) Sprayers $-61,3,4$
xix) Dusters 1, 3, 4
xx) Polythene packets, orvelopes 2,3, 4
$x \times i)$ Petridishes and other glass ware 1
xxii) Tapes, Ropes $1,3,4$
xxisi) Almitahe, Book racks 1
$x \times i v$) Books and journals $1,3,4$
w) Scientists and field staff $1,3,4$.
mi) Field note books $1,2,3,4$

Note : Superscripts indicate requirements at the other assigned station follow:

1. Jessore
2. Joydabpur
3. Jamalpur
4. Chittagong.

C ENS: ZENIRORENTS

The foremost requirement is for the trained staff. Seven scientists are currently on study leave. There is a serious paucity of the staff at the grate toot level lee. fielder, and field assistants who will maintain the programme. The resent staff, required number and gape are listed in fable -3. "hive some of the staff are raquirgu immediately, others could berecuited in due course of time.

Construction of al conditioned seed stores for breeding material at ishuris and Jessore are necessary to prevent looses of valuable ereadtmgmaterials as have occurred in the past.

Jevelopment of programmes in support disciplines; pathology, agronomy, entomology, microbiology aid quality may be done in sch way that they have relevance to the breeding programme and they become part of a broader crop improvement effort on pulses.

Che: facilities and constraints have been mentioned in an earlier chapter which may be considered when developing facilities at the main and sub stations.
V Detailed Yearwise forme of Bark.
198-85

1. Collect more germplasm of thesas1, lentil, pigeonpea, pea and cowpea. Request important gerrolasm of these chickpea, mathigala, mungbean\} ~ f e r u l a ~ if oo India, ICAISAI. AYFDC and ICA:OA.
show feces:
2. Evaluate important available germplasm of khesari, lentil, chickpea and cowpea and collect data on important characters f. x g catalogue.
mung, mach also

3. Studies to ensure better plant stands.
S. Survey imporiant pests of pulse crops.?
L. Conduct experiments to determine an efficient schedule for spraying. yenta
4. Control of pests of stored pulses.
5. Collection and selection of efficient strains of Rhizobia. 77
6. Multiplication of effective 3hizobia strains of chickpea and mungbean. j)

1E. Develop proper seed storage facilities at Ishundi, Jessore and Joydebpui aft ur
19. Study ways and means to reduce post-harvest seeduloses. - Vmpirfrigaluf
20. Produce small quantities of breeders seed of tine important local mung \& varieties and other improved cultivars. Assist BADC to produce pure chunhea seed of the improved cultivars of pulses.
21. Organise review meting of $1983-84$ pulses experiments and hold discussions to plan 1984 - 85 work. Write the report of work for 1983-64.
22. Write up detailed plan of work for 1984-89.
23. Contime screening khesari gemplasm for 1 ow neurotoxin.

Done
Dine dove

1985-8E

1. Collect more germplasm and continue evaluation fcr use and developing catalogue.
2. Mort hybridization work involving sources of resistance identifited by local pathologists. Attempts to make threemay and double-croises to incorporate resistance to more than one disease.
3. Arrange more segregating material from ICRISAT, aV.idC and ICARDA for chickpea, mungbean and lentile, respectively.
4. Grow Fl's of the crossen already ande In 198.25 .
5. Screan more germplasm and egregating material egainst imyortant Giseases for which facilitien will becone avallable.
6. Conduct adaptation tests for more promising materlals iauntified for each crop from gemplasm or atvancec secregai.ng material received from in ternational Inetitutes.
7. Arrange to supply (chickpea) S_{1} seed to inx formultiolication and more on-fam. tests.
E. nrrange on-farm tests for promising lines identified in other pulser

- Zcrinnue stuaies or, seed torne diseases, develop and improve facilitiec fo: ctrer aiseases.

10. Gontinus work on iuentification of sourcer of resistance to insect pests and tiring of sprays.
1.. Sontinue suiveys on impt-tant diseases of pulse crops.
11. Continue experiments on sowing dates, mixed, inter- relay cropring.
12. Continue experiments on zinc, sulphur phosphond.
13. Continue studies on ensuring better crop stands.
14. Continue efforts to reduce seed lowses in stores due to insects and diseases.

1t. Continu collection, selection and multiplication of efficient Rndzobla stralne.
17. Provide breeders seed of important local and improved varleties of pulses to BADC and assist them in producing foundation and registered seed.
18. Grganise ruview meeting ser 1985-86 and planning for 1986-87 experimente.
19. Continue screening khetari germplesm for low neurotoxin.

1. Evaluate more germ.rbasm anc develon preliminary wroxino catalogue.
2. More hybridization work-single, threo-way ans dou-le-crosses. Initiate back croases (if nocessary) to improve land races fo: Important simple characters.

3. Grow F_{1} is and screen F_{2} 's for specific diseases as planned.
4. Screen more germplasm agalnst impertant diseasef.
5. Conduc: adaptation tests for promising materisel fror aduanced gereration material found sultable from international institutes.
6. Mrrange to eupply of 7954,2 lentil seme to Bnaj for multiplication ans more on farm teste. Similar arrancoments fCI lines in khesari, unngbean, masinkalai o plgeonpea.
7. Continue ongoing stuales in pethology, agronomy, microbiolouy and entomology.
G. mssist oADC in producing foundation, reyistezud ara certililed sead o: vasjous local and injrovec vazie:jes añ supsly sremoera seed of theso.
8. Initiate scretning segregating populations of khesari for low neurotoxin.
9. Grganize reviow and planning meetifig.

$1987-88$

1. Prepare a working catalogue of avallable ceamo" asm of ail tmportant pulse crops.
2. Continue hybridization to incorporate important characters and combined resistance. Continue back crossing.
3. Receive more material from International Institutel.
4. Grom $F_{1}{ }^{\prime}$ sand screen F_{2} ' for specific and multiple diseasel resistance. Sefection of individual plants and progenies.
5. Conduct adaptation tests for promising material.
6. Supply to baDC brotder's seec of תem and old atraln for producing foundation seed. Assist them in producing foundation registered and certified seod. Train Baid staff and SMS in seed production tectinology.
7. Write up results of ongoing studies of pathology, agronony, alcrobiology and entamology. Modify old tudies according to requiresents.
8. Contimue screening egregating population of kheast for selection of low neurotoxin plante and lines.
9. Initiate basic studies in genetic and breeding.
10. Croanise a review and plaming meeting and a workshop on pulses imorovement work in Eangladesh.

19,3-89

1. Gontinue hybridization as required.
2. Zecelve more material from International Intitutes.
3. Grow F, F^{\prime} and F generations. Screen for one or more diseasts. Sefect plants and progeniesor agronomic traits.
4. Sonauct adaptation tests for promising material.
5. Supply breeders see. and assist BADC in produching certifies soen.
t. Zeceive feed-back 1 nformation from farmers on 1mproved cultivars and technclegy and modily resuarch objectives.
6. Wrise up reports of the stwales concluded in various disciplines.
7. Continue experiments as required in various discialines.
8. Continue search of low neurotoxin ilnes from segregating materials of khesar!.
9. Crganise planning and reviow mectingi and follow up action in the nex: IIve year plan.

AETGCHLEDGOMENTS:

We are thankful to Dr. K.M.Badruddoza, Mr. Kamal Lddin ahmad, Dr. MoM. Fahman and Dr. D.M. Daugherty for encouraging discussions on the pules project. A considerable inors into this write up is from the discussions in the BnRl Pulses Improvement Programe, meting for rabi 1984-85 held at Joydebpur on August,19,198. Dr. Hamizuddin Abmad, Head Piant Pathology Jivision discussed the pathology eection with us and gave usoful euggestions.

Table-1 : Area and proctuction of verious pulse crops in Bangladash $1071 / 2$ and 1981/32.

Hean imbes yields kgtha.

$$
\begin{array}{lllllll}
6^{9} / 70 & 70 / 71 & 7 / 72 & 72 / 73 & 73 / 74, & 74 / 75 & 80 / 81 \\
870 & 870 & 820 & 770 & 810 & 790 & 700
\end{array}
$$

Fert \leq

letresos oct Prosetfofid 10 tusens usen s Tip-1 4
MP 20
1 Lomp $t_{\text {on }}=1.01605$ metritens

Table-2 : Achiwements in oulset varietal improvement, 1979-198:
Tocal Gemp/abw' 1984

1. Mungbean : 500 germplasw wore waluated and one variaty in the 542 'MABARIk' has been stleasod.

2. Khesari : : X lines have been teetod and ight low toxin If nes have been 1 jentilied.
 line S_{1}, meerovert identifiec.
3. Lentil : 131. genmelasm//1ines were tested and on 11ne, 79542 anoter promis ing for lshurdi arta.
affult wry
t. Plgeonped : 20 pligeonpea lines trave bean introduced fror :CRISkT anc four short durated dwarf limes wert identified.

7 cupra
Hatheapht ${ }^{50}$
SFiblea

Tabio- 3 Stafilimg Fattern for fulses fesearch Center, baRI
1984-35 to 1983-89.

- These number, have been indlcated in the recent reorganisationd set up, which is toing done at tanl and dre .rit necessarily in poeition. Infact one HS , one SSC and three SO's are on ,ulses work and seten scientists art doing rh. D. and two H.Sc.

Pi fare 1. $\begin{aligned} & \text { ing showing location of pulses re: } \\ & \text { in arch stations }\end{aligned}$

OFFICE ORDER

Keeping in view the national requirements of research for pulses improvement and in conformity with the avowed policy of taking the applied research activities to the centre of concerntrated cultivation of a particular commodity, the following orders are issued fur immediate. execution :
(1) itu Region i itertcnitural Research Station, Ishurdi will. Serve as th primary, centre for applied research on pulgesa. accordingly the rujorisbility of all ongoing applied. research prueramm: h, jutted to the R. aS, Ishurdi. This. however, will excluc, works on collection and preservation of entice 1 -ounces, quality testing; and other researches Of fundament i nature, , bracing all disciplines, riluvent to the rae: if rem dialed research programme. These activates wall L , i. formed at the Headquarters,Joydebpur.
(2) Dr. Mutaur Gatun, for(als-s) will be the Technical Fregramm- Lauder for pulses improvement research. He will EL account ul to th. U. ad, Flint breading Division and the Director (- arch) at the headquarters for the technical frustum. in..arch programme development and planning shall be cone at the regional level with the assistance of the 'Think-Tank' at the headquarters. The programme will be review ed from time to tim by interdisciplinary task forces, ard approved by the Director General on the recommendation of the Central Programme heview Committee. The' technical Programme Leader shall work through the CiOn, lats, who is his local administrative boss.
(3) ThC bro administrative and fInancial policy guidelines will be given by the Headquarters. The Had, Pint Breeding Division will submit the break-up of funds for the programme and according to this break-up funds will be relented by the headquarters to the CSO, Raps, who shall make then

Laser, Heac of Fiant Breeding Divisicn and Diractor (sescarch) fo: theiz Informotior. Under : : o circumstances, the CSC, ini.i, slay div.rt.th funds of this frograme to ction prgesante.
(-) While the juis sout-rach programe will ruccive emphosis तt Jisscre, Jemalpur and Fariciur, various sub-stations. - will cortinue coruucting routin exfurimént's and varietal - t sting as required. The requiregent of various stations ir the rugard will be reviewed and necessary steps taken.
(5) Wini thefuc (Fulse: 0) t Ishurd will act as the Technical Froerame Lexuse, the itad, Fiant Eridang Division will -x.rcisc ait monitoring aun valuatire authority in implem.ñine th tucmical rograme and manabire financial and atairistraviv Lster. at deleEatud by the Director General,
 th: various invicions wil hov, to be 2% conforcity with the fir of work rucomindet ta th Contral Fiview Committee

 corstitutud at vorious locavicrs c.pencing on programme needs.
 varicus fundire aquncics, charmiled/ENCH, will have to corform to the procedures outlined in this and subsequent memoranda regarding stringthening pulses frogramme.
(8) The $H: a d$, Fle: E Breeding Division will take necessary
follow-up meacures to implemont the orcer.

Distributions

> T, TArnICH tOM , TADSAINAICHTANT PULSEGM

CONSULTANTS' REPORT

PRESENT STATUS AND RECOMMENDATIONS FOR FUTUPE WORK FOR RESEARCH IN CHICKPEA, LEMTIL AND PIGEONPEA IN BANGLADESH

Bangladesh Agricultural Research Council and International Agricultural Development Service, 15 January - 5 February 1984

Dhaka

COHSOLEANT

```
    JAGDISH KUMAR
    BREEDER
    Pulses Improvement Program
    ICRISAT, Patancheru
    Andhra Pradesh 502 324
    INDIA
```


CONSULTANCY TO IADS/BARC PULSES PROGRAM

JANUARY 15 - FEBRUARY 5, 1984

I was invited by the Bangladesh Agricultural Research Council(BARC) through the International Agricultural Development Service (IADS) to evaluate and report on the status of pulse crops improvement work in Bangladesh with the following terms of reference:
'He will examine the Pulses Improvement Programe at BARI and visit the following stations:

Joydebpur, Ishurdi, Jessore, Chittagong and Jamalpur.
He will recommend on action programme in consultation with the Crops Specialist on Chickpea, Lentils and Pigeonpea crops.

Consultant will evaluate the progress made in the BARC supported coordinated pulses programe and recommend future course of action.

He will submit a consolidated report on the status of research preparedness and future course of action on all major pulse crops."
CONTENTS PACE
I. SUMMARY 1
II. PTRODUCTION 4
III. PRESENT STATUS OF PULSES RESEARCH 5
A. STAFF. TRAINING AND LITERATURE 5
B. GENETIC RESOURCES 6
C. AGRONOMY, PHYSIOLOGY AND MICROBIOLOGY 6
D. CROP PROTECTION 7
E. CROP IMPROVEMENT 8
F. SEED PRODUCTION 9
G. CONSIMER QUALITY 10
IV. RECOMMENDATIONS 10
A. STAFF, TRAINING AND LITERATURE 10
B. GENETIC RESOURCES 10
C. AGRONOMY, PHYSIOLOGY AND MICROBIOLOGY 11
O. CROP PROTECTION 11
E. CROP IMPROVEMENT 12
F. SEED PRODUCTION 13
G. CONSUMER QUALITY 14
V. CONCLUSIONS 14
VI. ACKNOWLEDGEMENTS 15
VII. LITERATURE 16
VIII. APPENDIX - I 17
APPENDIX - II 20
APPENDIX - III 21

1. SIMinary ${ }^{1}$

1. There are five important palse crops in Bangladesh: khesari. lentil, chickpea, mash kalizi and mungbean. Soae work is boing done on pigeonpea. Recently promising cultivars have been identified or released in each crop. More work on high yiclding and disease resistant cultivars is needed.
2. Only a few staffare involyod in pulses rescarch. They are talented. Some other staff nre under training. Most staff could bencfit from practical training on specific pulses at international institutes. Efforts may be made to rebuild the programae hefore trained staff returns.
3. Very limited germplasm is available for the pulse crops. Major losses of germplasm and breeding materials of chickpoa and lentil occurred recently. These should be avoided. More germplasm may be collected from local ant exotic sources for direct agronomic evaluation and possible release for immediate gains.
4. Frequent transfers of staff have resulted in distontimuty of work and loss of valuable breeding materials. National agricultural set up and international aid agencies may ensure continued and lons sustained efforts for crop improvement work.
5. In general there is a paucity of literature. Books, Journals, symposia and workshop proceedings, consultancy reports, distase hand books, bulletins, newsletters, annual reports from international rescarch institutes may be procured for central and sectional libraries.
6. Funds for travel by scientists to various stations and farmers fields are fimited. More funds for such travel and to attend symposia, workshops etc may be ensured.
7. Some farmers in Kushtia, faridpur and Jessore grow very good crops. Presently a socioeconomic survey is being done. This survey may help in knowing problems and may give clues for proper management.
8. There appears to be a general delay in planting of rabi pulse crops. In general pulses do not respond to fertilizers. Zinc deficiency is fairly coman in Bangladesh. Experiments to determine planting dates in relation to paddy cropping systoms may be done.

1 please sec appendix-1 for abhreviation details.
9. Stubbles from previous crops should be removed to prevent damage by collar rot (Sclerotium rolfsii). In addition important diseases of pulses crops may be identified based on previous reports. Information is that, stunt, fusarium wilt and botrytis gray mold in chickpea, bushy stunt, root rots and rust in lentil, seeding blight in khesari, yellow mosalc virus in mashkalai and mungbean and sterility mosaic in pigeonpea are important in Bangladesh. Work on these may be started.
10. Heliothis can cause damage. Integrated pest control may be worked out for timing sprays at most beneficial stageb.
11. Greater emphasis is needed to develop high yielding, disease resistant and stable genotypes which have similar maturity pattern as the local land races. Hybridization between high yielding exotic strains and local cultivars may be undertaken as soon as possible. A multidisciplinary team approach may be adopted.
12. Remnant seed of all important breeding materials should be retained in cold store until the following season's harvest is in, as an insurance against crop failure or loss of seed in the laboratory.
13. Presently seed viability of chickpea and lentil is poor, may be because of excess seed moisture and bruchid damage. Postharvest seed handling and seed storage requires urgent attention. Air conditioned and insulated seed stores may be providod at important pulses research stations.
14. Seed purity of pulses leaves much to be desired. Mixtures were seen in all rabi pulses. No efforts were being made to produce selfed pure seed of pigeompeas, an often crosspollinated crop. Breeders and research insititutions may be entrusted to maintain pure seed.
15. Only a limited good quality seed is available to farmers. BADC, breeders and administrators may discuss and implement ways and means of providing good quality seed of all improved cultivars.
16. A well equipped pulses quality analysis laboratory has been established by the IDRC at the BARI. Samples for protein and amino acids are analyzed. Khesari is screened for neurotoxin. A low neurotoxin strain 3968 was identified. More work may be undertaken to identify more 10 w neurotoxin stroinc.
17. Equipment already available should be documented and put to proper use. As the work is strengthened more equipment like seed planters, threshers, driers, storage materials, and field supplies should be procured.
18. Basic studies to investigate greater adaptability of khesari and lentils than chickpeas may be done. After collecting background information, an appropriate research project for chickpea/lentil may be developed to produce genotypes which could replace khesari in the long run.
19. Contacts with international institutes may be strengthened further. Efforts may be made to simplify the procedure to receive seed materials in a short-time. Presently it takes two months or more and the delay often results in lower seed viability.
20. Finally, a number of consultancy reports on improvement of pulse crops in Bangladesh are available. The BARC and the aid agericies may identify areas of interest and support a long-term pulses improvement project.

II . INTRODUCTION

Rice is the major food of Bangladesh. Pulses complement the diet of her population by providing good and relatively low cost protein. The per day per capita availability of pulses in Bangladesh is 8 g as against the estimated minimum of 28 g and optimum of 65 g (Khan, 1983). The 1980-81 production of 208000 tons (Agricultural year book of Bangladesh, 1982) needs to be doubled by 1984-85 to provide minimum requirement of 454, 000 tons (Green \& Hawtin, 1979). Obviously this task is very difficult. However, substantial increases in the production can be made by developing good cultivars and proper management practices in the existing cropping systems.

Khesari, lentil, chickpea, mashkalai and mungbean are the most important pulse crops. BARC initiated a coordinated project on pulse crops in 1978, which has the overall responsibility for conducting research on these crops. A consultant pulses breeder was appointed with the help of the World Bank. IDRC funded the pulses project and provided physical facilities for research work. Two experts on pulses improvement helped to plan the program (Green f Hawtin, 1979) and made recommendations on priorities of research for the next five years. I quote the most important conclusion from their report:
"Our conclusion is that it is imperative to study the cultural practices used by the farmer to learn if, within his capabilities, modification can be made which will result in higher yields. Relatively small changes in techniques (eg. the use of Rhizobial inoculation placed phosphate fertilizer, disease and pest control, line sowing, correcting mineral deficiencies) may result in substantial yield increases". This appears to be as relevant today as it was five years ago.

The pulses programme has made good progress since then. Varieties of summer mung (Mubarik), mashkalai (T-9) and of chickpeas (Hyprosola) were released and in khesari, lentils and pigeonpeas have been identified. The estimated benefit from the two summer pulses may be already worth Tk. 33 million (Gill, 1983). However, there is much scope for improvement in the major rabi pulse crops. Development of superior cultivars and management practices require greater emphasis.

A short consultancy like this one cannot be expected to investigate the agricultural system for particular crops in totality. But one word of caution is in order. It is customary to recommend high fertility doses on rice crops but this especially nitrogen can be harmful to pulses. So scientists must commuicate with the needs of both crops in mind. Mutual crop relations are the key. An attempt has been made to look at the problems of pulses production from a technical view. Examples taken are to illustrate the system rather than to pinpoint deficiencies in individuals and/or groups.

Finally my own experience with only chickpea may have a limited applica tion to the orher pulse crops. Therefore, 1 have eried to discuss the particular probleas with as many concerned people as possible to make generalisations relevant.

III. PRESENT STATUS OF PULSES RESEARCH

Five pulse crops are important in Bangladesh. These arejkhesari, lentil, chickpea, mashkalai and mungbean. Some work is being done on pigeonpea also. The research work is carried out at the BARI, Joydebpur, which has its regional research stations at Jamalpur, Ishurdi, Jessore and Chittagong. Work on mutation breeding is done at the INA, Mymensingh. Agronomic investigations are also carried out at the BAU, Nymensingh. I visited the pulses research stations and farmers in the major pulses areas and met over so scientists co discuss the pulses improvement programme (Appendix 1).

During my travel through various regional stations and farmers fields, 1 did. not find any serious problems except poor stands with the rabi pulses - khesari, lentil and chickpea. Some farmers in Pabna, Bogra, Jessore, Kushtia and Faridpur, grew very good crops. The poor stands were perhaps due to low seed rate, damaged seed (bruchid infestation), low seed viability (storage problem) or damage by Sclerotium rolfsil (collar rot). Through reports I learn that at later stages, the crops of lentil and chickpea may be affected by botrytis gray mold and the former also with rust. At this stage I found little damage by Heliothis pod borer.

Two consultancy reports (Green and Hawtin, 1979; Gowda, 1982) on pulses work and several trip reports on chickpea improvement in Bangladesh by various ICRISAT Scientists (Nene, 1980; Kumar, 1980; Gowda, 1981; Nene, Smithson and Reed, 1981; Smithson, 1982; and Singh 1983) are available which refer to the development of breeding materials during various stages of the programme. A book on "Pulse Crops in Bangladesh" was published recently by Gowda and Kaul (1983). These formed important sources of information for this consultancy.

A. STAFF, TRAINING AND LITERATURE

1. Staff: Presently the greatest problem is a lack of experienced staff. Only one member remains from the staff I visited in 1980. He is leaving shortly for his Ph. D. studies. Others have either been transferred or are doing their studies. Dr. Kaul, who coordinated the activities upto 1982 has only very limited time for pulses work. There is one SSO (now being transferred to genetic resources) and four SO's at Joydebpur, one SSO at Ishurdi and one SSO at Jamalpur to look after the breedina work.
2. Training: Pulse crops require different techniques for hybridization, maintenance and evaluation. Their agronomy is much different than for rice. A person trained at ICRISAT for identification of diseases of chickpea and pigeonpea now works with potato. It is necessary that staff working with these get short term training at national and international institutes to learn various techniques.
3. Literature: During my visit to various places I found limited literature especially on pulse crops. There are not enough books, journal reports and bulletins: Vast amount of literature for example on chickpea and pigeonpea (ICRISAT) and lentil (ICARDA) which is supplied free of cost is not available even with the PSO's There mre annual progress reports of various desciplines, newsletters, proceedings of workshops and symposia, manuals, booklets on diseases and pests which have been supplied to the various scientists from time to time but are not available. Thus the scientists have no ready sources for consultation. Even the reports of specific consultants on pulses are not available.

B. GENETIC RESOURCES

A 1 imited number of accessions both local and exotic are available mainly at BARI (Appendix II). The collections for khesari, mashkalai and mungbean are rather small and are unlikely to have enough variability. In lentil and chickpea, variability can be requested from ICARDA and ICRISAT. Present stocks of 5-10 g per accession are insufficient. About 40 per cent of the chickpea germplasm was lost this year alone because of seed handing and storage problems. Poor germination was common on almost all stations and resulted in the loss of valuable materials. However, plant stands of local cultivars were normal.
C. AGRONOMY, PHYSIOLOGY AND MICROBIOLOGY

One of the practices by farmers is that they grow pulses in relatively poorer soils partly to avoid excessive vegetative growth. However, in most research station trials in Bangladesh some fertilizer had been added even in good and fertile soils so that there was overgrowth. At some stations there were trials For studying $N, P, K, 2 n$ and Mn uptake. In general zinc is deficient in Bangladesh soils and this could be applied. Other fertilizers especially N should be added with caution, lest the crop might overgrow. Late rains in the season had delayed planting of pulse crops in general this year. However, it was noted that some chickpea and pigeonpea were planted as late as early January at the research stations. It appears these will produce ilitte yield. Experiments on planting dates of these crops may be done to determine optimum time. Relatively early plantings may be advisable to escape rains during harvest. However, planting mast fit the rice cropping pattern.

Irrigation procedure at research stations may be improved. Presently flooding of uneven fialds leads to water stagnation and seed rotting. If the land is properly levelled and bunds are made to hold water in smaller strips, more even distribution of water can be assured. Excess water can cause harm because chickpea and pigeonpea cannot tolerate water logeing.

Farmers do not irrigate their fields. However, sprinkler irrigation was given $2-3$ times at the BADC farm at Amjubi. They had good crops of Hyprosola and a kabuli type chickpea L-144. The soil was sandy loam and chickpeas showed moisture stress. They were planning more irrigation which wns advisable. The crop was well grown. There was a small patch with root rot, and also nematode damage.

CIDA is funding a large project on pulses and oil seeds in 8D and in pursuance of thar a ream had gone to survey the Socioeconomic constraints for pulse crops production in Bangladesh. I had discussions with Drs. Sharofat Hussain Khan and Ahmad, survey teara members. They observed that irrigation by shallow rubewells is pushing the pulses out of Rajashahi and Bogra areas, although it is uneconomic to produce other crops. These rypes of surveys may lead to important clues for planning research programmes for developing risk efficient genotypes.

We also saw pulses being grown in mixed cropping. This practice is useful in areas with uncertain moisture conditions and results in better land utilization.

There was good nodulation in some plants which were uprooted. However, it appears that there is limited data co assess the status of Rhizobla in Bangladesh soils.
D. CROP PROTECTION

I did not observe any serious disease or pest problem in any one of the three rabi pulses. Earlier in the season Sclerotium rolfsii caused damage to trials at most situations. I observed chickpea stunt and occassional, fusarium wilt in chickpea and a virus problem in lentil. Reports indicate that botrytis gray mold becomes a problem later in the seasci. Efforts my be made to train people in identification of these diseases and adopt screening facilities available with ICRISAT. Already a chickpea wilt sick plot is developed at BARI, where ICRRN was being screened. The material was planted on 12 November and JG-62 had already started wilting. There was no appreciable wilting in other ines as yet.

I did not think that ascochyta blight is a problem in Bangladesh but Dr. Shaikh at Mymensingh told me that disease appears there. Dr, Nene also did not report this disease during his travelg in 1980 and 1982.

E. CROP IMPROVEMENT

The Bangladesh environment is unique because winter rains and drought are periodic risks to rabi pulses production. Excess moisture may cause over growth and favour disease development. Focus should be placed on utilizing local germplasm adapted to multiple stresses and disease resistance. Therefore, it is necessary that the local programme develops breeding and disease screening capabilities.

Breeding Material: At present the breeding effort is limited to only selection. There is limited germplasm for each crop. Germplasm and breeding material for chickpea is received from ICRISAT and for lentil from ICARDA. Most of these are unsuitable to the Bangladesh conditions. Breeding materials from ICARDA may have different photoperiodic response in Bangladesh as these are grown in summer there.

Most of the materials in advanced yield trials at different locations on khesari (5), lentils (5) and chickpea (9) were later in maturity than the local checks. Therefore efforts will have to be made to breed materials which are suitable and are stable across locations.

Generally conduct of trials at all the research stations was good. However, there were problems with germination at Joydebpur, Ishurdi, Jamalpur and Jessore. They informed me that the seed viability was poor. Several trials from Joydebpur, all trials from ICARDA and some from ICRISAT did not gerainate. Reason for poor germination of ICARDA seed was not known. ICSN-DS and ICRRWN supplied from ICRISAT this year emerged alright.

Presently the seed is kept in paper or polythene bags in ambient conditions in the laboratories. In addition to bruchid infestation this may also result in higher seed moisture per centage than is desirable. In fact seeds of all pulses except khesari were either infested or had bruchid eggs.

I could see polythylene bottles of different sizes in the laboratory for seed storage but were not used. I was told that IDRC had funded the pulses project earlier and they had supplied various materials for use. It now appears that the staff does not have experience of using these farilitier.

In a breeding programac the breeding materish may be lost because of several reasons. As an insurance against this remant seed is kopt in cold storage, which may be discarded after the harvest from next season is available. This practice may be ancouraged to avoid future losses of superior breeding lines.

I have listed the physical facilities available at different stations, mostly at Joydebpur (Appendix III). Most of these factilities were created by Dr. A.K. Kaul, a World Bank Pulses Breeder, at BARI during 1979-1982. The funds for these were provided by the IDRC. However, most of these are not being used at present.

Research facilities for pulses at Ishurdi, where improvement work may be shifted are non existant. They will need insulated seed storage room, deep freezers, seed driers, balances, seed storage botties, planters (?) covered crop work area and thresiling floors. Present facilities are almost all utilized by wheat, which matures at the same time as rabi pulses.

F. SEED PRODUCTION

It appears that most of the farmers depend for the seed supply of pulses on local marker sources. Commercial storage facilities may not be ideal for proper seed viability and may encourage bruchid infestation. Poor seed could be the cause of thin plant stands on some farmer fields. The BARC and BADC may discuss ways and means for providing good quality seed to the farmers at proper time. The responsibility for breeders' seed of all cultivars may be entrusted to respective breeders and the Institutes. Further multiplication should have some check by these breeders to maintain purity of the certified seed.

Seed Exchange: The pigeonpea materials for rabi were supposed to be planted before october 15 but mostly on research stations these were planted in the middle of December and were looking aweful. However, October planted pigeonpeas at Joydebpur, especially ICPL-4 and -268 may produce respectable yields. Major source of chickpea material ts ICRISAT. This year we supplied several trials and promising lines. The material was sent from our Delhi office on October 12, 1983 but I was told that this was received at Ishurdi on December 18 only and planted on December 24. The germination was alright but the material is unlikely to porform well. The trials should be repeated next year. The International Chickpea Adaptation Trials at Ishurdi and Jamalpur and ICARDA F_{3} and large seeded trials at Jamalpur did not germinate at all. I do not know what caused this. Urgent attention is required to expedite the seed material release so that it is received in time and in good shape. Unfortunately it is not possible for ICRISAT to dispatch the material before beginning of October because our international nurseries are finalized in mid September.

G. CONSIMER QUALITY

The quality laboratory is well equipped. They have grain protein analyzer, mino acid analyzer, incubator, afcrobalance and other required equipments. They are doing useful work on screening khesari strains for low netritioxin percentage. They have already identified a few such strains. Dr. M. tussain from BAU is currently spending a six month sabbatic to work on low neurotoxin lines in khesari.

They also determine protein per centige in some of their, improved. materials. A high protein strain lyprosola was released by INA, Mymensingh. However the strain has smaller seed size, which may account for its high protein percentage.

RECOMMENDATIONS

The research work should be restricted to the major pulse crops; khesari, lentil, chickpea, mashkalai and mungbean, unless there appears a possibility of pay-off from one of the minor pulses. A multidisciplinary team of scientists should work together to develop improved cultivars and practices for Bangladesh conditions. Survey should be done to know major constraints to pulses production.

A. STAFF. TRAINING AND LITERATURE

There is an urgent need of more scientific and support staff in breeding, pathology agronomy, entomology and germplasm. Each important station should have staff members in these disciplines and efforts may be made to encourage scientists to continue in their field of research.

Staff may be sent for short-term training to the international institutes. This is particularly necessary for scientific officers in breeding, pathology, agronomy, entomology and germplasm. It may be ensured that a person after receiving training continues to work in the same specialisation.

The literature on the major pulses may be procured and made available in central and sectional libraries. Many workshop and symposia proceedings, bibliographies, newsletters, annual reports and disease handouts are supplied by the international institutes like ICRISAT. free of cost. These could form an important source of information. Also consultancy reports are important compilation of information. All this literature should be documented for easy access by the scientific staff.

B. GENETIC RESOURCES

The present efforts on mantenance and evaluation of germplasm may be strengthened. A new building being constructed at Joydebpur is expected to provide seed storage and handling facilities. Efforts may be made to acquire more variability from outside sources and evaluation done for agronomic adaptation and direct release in Bangladesh.

Germplasa avaluation thay be done in regions of actual use. Once reasonable numer of entries are available, w working catalogue can be prepared for the benefit of scientists. Separate staff is needed for this. Wen the evalumtion work is over, the staff could do basic studies on plant characters of economic importance.
C. AGRONOMY, PIYSIOLOGY AND MICROBIOLOGY

Efforts bay be ande to learn more from farmers of Jessore. Kushtia and Faridpur, who grow good pulse crops. As far as possible experimental station practices should immitate farmers methods. A better judgement is required for the use of irrigation and fertilizers especially nitrogen. Zine status of solls may be studied.

It is necessary to fit pulses with the rice cropping pattern. Therefore, experiments on planting dates and spacing are necessary. The plant stands were generally poor. Whether line sowing and uniform depth of planting could be recommended may be investigated! Finally large demonstration trials of improved cultivars and practices should be done in farmers fields.

Lentil and khesari are relatively more tolerant to excess moisture than chickpeas. This may be because they have smaller seeds. Lentil also has a waxy seed coat and khesari has dormancy. These could result in better germination in the two crops. It also appears that these crops have lesser pseudoflowers than chickpea. Basic studies on these physiological processes may be useful to search for such characteristics in the latter.

Presently there appear to be no basic studies of applied research. It is necessary to identify germplasm which remain compact and are cmpable of podding under humid conditions. Problem of flower drop in pulses may also be studied and selection may be done for genotypes with relatively low flower drop.

Work on nitrogen fixation by Rhizobia may be initiated and if innoculation can help increased nitrogen fixation then efforts should be made to produce and supply inoculum to the farmers.

D. CROP PROTECTION

Scue af the tiseases $\mathbf{1 5 k}$ coller rot (Scierotium rolfsii) could be reduced by proper management practices. If previous crop stubbles are removed the danage can be less. This can help in berter plant stands in the field.

Fusarium wilt of chickpeas is seed borne. However, if the seed is treated with Benlate-T the pathogen is eradicated. Seed treatment can be used to prevent seed disseminarion of the pathogens. Seed treatment may help to prevent damage by other pathogens in the initial stages.

Field and laboratory facilities to screen pulses against important diseases should be developed. A fusarium wilt sickplot is already available. It may be necessary to screen materials against botrytis gray mold, stunt, rust etc.

Once the screening facilities are available breeding material may be screened to develop combined resistance against say wilt, stunt and botrytis gray mold in chickpea.

Presently one can suggest only integrated pest management for Heliothis can be a problem sometimes. If proper schedule for spraying is developed, damage may be minimised.

E. CROP IMPROVEMENT

In chickpea cultivars which can germinate well in excess or limited moisture and which are resistant to root rots, chickpea stunt and botrytis gray mold are needed. Local land races germinate well under adverse situations and are flexible in their maturity. Crosses involving these with strains resistant to diseases and having higher yield potential may be made and selections should be done locally. The segregating populations should be exposed to important diseases. This may result in selections having higher yield and stability of performance. Similar approach may be adopted for other pulses.

National set up and international agencies may find it worthwhile to draw up a longterm pulses improvement project, ensure enough funding and provide a continued and dynamic leadership for research on these crops.

I have made a list of chickpea materials and other promising entries identified as elite since 1979. Some of these were lost, e.g. line 81001 in lentil, and chickpea lines listed in Table 1 of Gowda (1982). Efforts should be made to acquire as much seed of these from ICRISAT and other sources. These materials may be planted in observation rows or trials at important stations for pulses and selections will be made for larger trials in the following season. Similar excercise should be done in other pulse crops especially lentil and khesari to identify the promising materialsfan previous years. Presently chickpea segregating populations for botrytis gray mold are available from ICRISAT. These should be utilized before crosses with local material become available.

Improved cultivars were released or identified in all important puise crops. This is a good development. Mubarik in mungbean. T-9 in meshkalai and thprosola in chickpen were released. A low toxin strain 3968 in khesari; S-1 (ICCL-81248) and several matants in chickpea, 79542 in lentil and four strains in pigeonpea (76012, 76013, ICPL-2 and ICPL-4) are performing woll and may be released in the near future. Efforts should be made to grow these in demonstration plots.

More work on 10 neurotoxin lines is needed in khesari as it appears to be the most stable pulse crop. I saw some bees visiting the khesari flowers and wonder if they cause any cross-pollination. Mr. Dozza has observed two plants in two different lines of khesari which had maic sterility. I suggested that these may be maintained by pollinating with sister plants. Male sterility may be useful in increasing variability in this crop.

F. SEED PRODUCTION

Seed production, handiling and storage require greatest attention, as benefit of the improved cultivars and cultural practices cannot be reaped if the seed supplied to the farmers does not germinate or is of doubtful purity.

BARC, BADC and international aid agencies may get together and implement an efficient seed production system for all improved pulse cultivars. This should involve responsibility of the breeder to provide breeder's seed. The foundation seed should be produced under the breeder's supervision and certified seed by appropriate agencies. At all stages proper seed drying, handling and storage should be ensured.

At ICRISAT the season at harvest is dry and seed is properly dried and then put in bags. Moisture per centage is well below 14\%. Thousands of samples which are harvested and threshed are kept in crop work area/laboratory until all harvesting is finished. Then the seed is cleaned, weighed and stored in cool and dry store in plastic jars or bottles (temp. about $20^{\circ} \mathrm{C}$. More important material is put in cold store (teap. abowt $4^{\circ} \mathrm{C}$). Wo put napthalene balls in most of the material and all material is occassionally funigated. Care is teken thit old min mew material is not mixod and bruchid infestatian is not there. All bulk material is stored in tightly seale drums. A sindiar procecture could be edopted at BARI.

G. CONSLRER QUALITY

The quality laboratory is well equipped. They may take up work on consumer quality of prerelease materisls in all pulse crops. Work on screening for 1 ow neurotoxin strains in khesari should be continued both in germplasm and breeding lines.

CONCLUSIONS

The Pulses Improvement Program of BARC funded mostly by IDRC, World Bank and USAID and previously headed by Dr. A.K. Kaul has resulted in the release and/or identification of cultivars in all important pulse crops in Bangladesh. However, transfer of all staff including Dr. Kaul has resulted in substantial loss of valuable germplasm and breeding material.

It may be necessary to sum up by saying that research infrastructure had been built for pulses research. It is unfortunate that frequent changes in staff particularly at the leadership level have affected the programme adversally. Bangladesh cannot afford to neglect pulses production and therefore, local research input is necessary. A person having experience with pulses improvement may be able to giye the requisite leadership in terms of technicalities and help in building the programe. Furthermore, it is suggested that the main thrust of the pulses programme should come out of a more appropriate place like Ighurdi where more facilities should be developed or shifted. A fub-station may be retained at Joydebpur.

The programe is in urgent need of trained staff, coordination, physical facilities and literature. Hybridization involving local land races and disease resistant high yielding strains has not yet been initiated. Facilities for screening the breeding material locily for disease resistance are needed. Post-harvest seed handling and storage should be given first priority as there is frequent loss of breeding material. Collection of more variability should be done. Work on agronomy of these crops should be taken up immediately. Finally a coordinated continued long sustained support both financial and technical is needed from national and international arencies.

V. acknowledcements

I take this opportunity to thank Drs. K.M. Badruddoza and K.U. Aham of BARC and Drs, D.S. Athwal and D.M. Daugherty of IADS for seeking wy services to report on the Pulses Improvement Programme of the BARC. Drs. L.D. Swindale, J.S. Kanwar, Y.L. Nene and J.B. Smithson of ICRISAT administration very kindly allowed me to take up this consultancy. I am thankful to them. It is my pleasure to thank Dr. Mat lubur Rahman, Director and Dr. A. Hamid, Head, Division of Genetics, BARI for allowing me to discuss with their staff, I acknowledge the contribution of more than 50 scientific administrators, scientists and others of BARC, IADS, BARI and Its Regional Research Stations at Ishurdi, Jamalpur and Jessore, and BADC, BAU and INA (Appendix I) who gladly shared their experiences with me. I would particularly thank Mr. M.B.H. Sikder, S.S.O. Pulses, Dr. Matiur Rahman, P.S.O. Pulse Breeding, Ishurdi and Mr. Abıd Hussain S.O. Breeding, for their assistance. The latter two also accompanied me on outstation trips. I wish to thank Mr. R. Stanley of IADS for logistic and other support and 0 Or. J. Hunt for making useful suggestions during the preparation of this report. Finally I am grateful to Dr. A.K. Kaul, Crops Specialist, IADS for making all arrangements for this consultancy and for my orientation.

1. Agricultural Statiatic Year Book, (1982)
2. Ahmad, Kamal Oddin, (;983)
3. Gowdn, C.L.L. (1981)
4. Gowdm, C.L.L. (1982)
5. Gowdm, C.L.L. and Kaul. A.K. (1983)
j. aill, G.7. (1983)
6. Grsen, J.M. and Hiwtin, G.C.. (1979)
7. Kaul, A.K. (1981)
). Khan, 5.H. (1983)
8. Kumar, J. (1980)
9. Nen*, Y.L. (1979)
10. Nene, Y.Log Bmithsen, J.B. and Reed, W. (198-2)
11. Singh, Onkar, (1983)
12. Smithson, J.B. (1982)

Bangladesh, Dhaka.
In BABC, Agricultural Reasarch in Bangladeah. BarC, Dhaka, pp 186.

Chickpel trials and general chickp eurrey in Bangladesh. 13-21 March ICRISAT, Hyderabad, India.

Terninel Report of the Consultant in Plant Rreeding in the FaO Proje: ICP BGD/0/08 for atrengthening pulsea braeding program in Bangladesh, BARI, Joydebpur.

Pulae cropa in Bangladesh. Fio Rame, PP 450.

Agricultural Rasearch in Bangladeal Coste and Returne, BARO. Dhaka-15.

Recommendetiona to the BARI for research on Pulae Gropil. 15-30 October, 1979 IdRISAT. Eyderabad, India.

Annual Report Puise Improvement vork in Bangladesh. BNRI, Joydebpur, Bangladesh. .

In BARC, Agricultural Remearch in Bangladesh. BARC, Dhaka, pp 186

Chicikea improvement in Bengladesh A trip report March $16-25$, ICRISAT. Hyderabad, India.

Survey of diseases of Pulse crops especially chickpena in Bangladesh Dec. 26, 79-January 2, 1980, ICRISAT, Hyderabad, India.

Chicipen trials and comereial erog in Bungladesh 13-21 Tebrumey ICRISAT, Iyderebad, India."

Chiclpot improreant and comarcia erop in Bangladeak 15-26 Wurch ImPISA; Myderabad, Indta:

Chiclpes trials and commorcial arop in Bangladeth 19-26 Tebruary, ICREBAT, Eyderabad, India.
Appendix-1
PL.ACES VISITED AND PERSONS CONSULTED:
Bangladesh Agricultural Research Council, USAID, IADS, Dhaka
Dr. Kazi M. Badruddoza, EVC, BARC
Dr. D.M. Daugherty. Iads Leader
Dr. A.K. Kaul, Crops Specialist
Mr. Kamal Uddin Ahmad. Member-Director-Crope
Dr. (Mrs.) Joanne T. Hale, USAID, Dhaka
Dr. Mannan Chowdhury, Director (IPSU)
Dr. D.T. Krigsvold, Consultant IADS, Pathology
Mr. D.N. Sharma, Agricultural Engr., IADS
Dr. M. W. Khan (PSO) Crops. BARC
Dr. Ahmad Husgain, Director Training, BARC
Dr. Davy, Training Officer. IADS
Bangladesh Agricultural Research Institute, Joydebpur
Dr. Mat 1 ubur Rahman. Director, BARI
Dr. M. Abdul Hamid. Head Division of Genetics
Mr. M.B.H. Sikder, Incharge Pulses Section
Mr. Abid Hussain, S.O., Chickpea breeding
Mr. Habibur Rahman, S.S.O., Plant Pathology
Mr. Dozza Sarwar 5 - 8,0 . Lentil breeding
Mr. Ali Hussain, S.O.
Ms . Fatima Khatun, S.O. Mungbean breeding
Mr. Osiqul Haque, P.S.O., Plant Pachology
Mr. W. Zaman, S.O., Khesari breeding
Dr. Sharofat Hussain Khan, Principal, PGI
Dr. M.A. Wahab, P.S.O. Research

$$
-2-\quad \text { Appendix-I }
$$

```
Bangladeah RIce Research Ingtitute, Joydebpur
Dr. Hesemmuz Zaman, Director
BARI Regional Agricultural Reaearch Station, Ishurdi
Mr. Asharful Imlam, P.S.O., Station Incharge
Dr. Matiur Rahman, P.S.O. Genetic Resources - likely to be breeding
Mr. Joinal Abedin. S.S.O., Agronomy
Mr. Naresh Chandra, S.O.. Breeding wheat
BARI Regional Agricultural Research Station. Bogra
Mr. M.M. Bhuiyan, S.S.O., E&RP & Incharge
Mr. Abul Hashem. Subject Matter Officer, Gabrali Upzila
Christian Reformed World Relief Committee, Bogra
Mr, R.A. Goni, Field Asstt.
Bangladesh Agricultural Development Counctl (BADC)
Mr. Nazrul Islam, Agronomist, Incharge, Vegetable Farm, Amjubi
Mr. M. Haque, Asstt. Director, BADC, Dilkhusa, Dhaka
BARI Regional Agricultural Research Station, Jessore
Mr. Md. Tusuf Ali, S.O. E&RP
Mr. Abdul Najid Fieldman, Pulaea
Mr. RuatomitAli, S.O. Plamt Fathology
GaRI Regloquy Agriculturin Eesearch Stetion, Jommpur
Mr. NlI Almand. P.S.O., Wheat breeding
Mr. Abdul Mhyar. P.S.O. Production
Mr. A.R.M. Saydur Ratraan, S.S.O. breeding
Mr. Tf= Kelley. Aceociate Agronomist, Production
```


Bangladem Agriculcural Univeraity, Mymanaimeh
Dr. Lulufer Rahman. Head Cenotice Plant Breeding Dept.
Dr. A.M. Shemeuddin, Head Agronomy Dept.
Mr. A.U. Sarkar. Agronomist
Dr. M.A. Karim. Agronomilet
Dr. Shahe Alam, Soybean Breeder
Dr. M. Hussain, Biochemist, presently at BARI, Joydebpur
Institute of Nuclear Agriculture, ymensingh
Dr. A.J. Minh. Director
Dr. M.A.Q. Shaikh, Head. Division of Genecict
Mr. M.R.I. Khan. S.S.O. Breeding
Mr. A.D. Bhuiyan. E.O.
Mr. Hyder Ali, Field Asste.
Ministry of Agriculture, Dhaka
Mr. Annisuzamman, Secretary, Minzstry of Agriculture
Others:
Dr. H. Bremmer, FAO, Dhaka

MPPENDIX II

Pulae Cropa Germplatm in Bangladesh

For internal circulation only

DETAILED TOURING REPORT
 Bangladesh - 15 to 26 March 1983
 aNEAR SINGH

Objective

The purpose of my visit was to see as much of the chickpea growing ares of Bangladesh as possible, to see the condition of the crop in farmers' fields, to see the breeding materials in trials at research stations, and to have discussions with the scientists working in chickpea improvemeat programs.

Itinerary

14.3 .83	Hyderabad-Calcutta	By air
15.3 .83	Calcutta	
16.3 .83	Calcutta-Dhaka	By air
17.3 .83	BARC Dhaka, BARI Joydebpur	
18.3 .83	Dhaka-Mymensingh-Dhaka	
19.3 .83	Dhaka-Ishurdi	
20.3 .83	Ishurdi-Rajshahi-Ishurdi	By ra
21.3 .83	Ishurdi-Jessore	
22.3 .83	Jessore-Faridpur-Dhaka	
23.3 .83	Dhaka-Joydebpur-Dhaka	
24.3 .83	Dhaka-Jamalpur-Dhaka	
25.3 .83	Dhaka-Calcutta	
26.3 .83	Calcutta-Hyderabad	By air
		By air

16-17 March - BARC, Dhaka and BARI, Joydebpur
On arrival at Dhaka, I was disappointed to learn that Dr. A.K. Kail. who was supposed to arrange my visit to various places in Bangladesh, was out of station and nobody knew what arrangements had been made. I met then withDrs. K.M. Badrudozza and Motlebur Rahaan, Executive Vice-chairman and Member Director, respectively, of BARC and discussed about my proposed itinerary and finailzed the arrangements. Then 1 drove with Mr. D.N. Sheree to hel, Joydebpur, and met with Dry. S.H. Than and M.A. Wahab, Head of Plant Breeding Division and Principal Scientific officer (Pulses), respectively, at BARI, and further discussed and finalized my program as suggested earlier by Dr. Badrudoz2a.

At BARI, the pulses improvement program started only in 1979. Prior to 1979 it was a part of ofl seeds improvement program. The research projects on pulses are boing supported by IDRC in addition to BARC. There is an additional support from FAO for pigeonpea improvement program in North Bangladesh. Other organisations involved in research and development of pulses are Bangladesh Agri. Development Council and, Extension and Research Project for On Farm Trials. Total area under pulses in Bangladesh is around 0.3 million acres and chickpea is the third most important pulse crop after Lathyrus and lentil.

Due to heavy rains previous night and continuous drizzling, the fields (about 6 acres under chickpea) were flooded with water and it was not possible to soe the experimental plots.

18 March - Dhaka-Mymensingh-Dhaka
Accompanied by Mr. B.H. Sikdar of BARI, we drove to Mymensingh in a jeep provided by BARC.

Main crops rice, wheat, sugar cane, lentil (harvested), Lathyrus and mustard. Occasional fields of groundnut, banana and chickpea. Large areas under jute-crop germinating. Chickpea crop mostly at late pod-fill stage with good stands and reasonable growth. The crop almost free from Botrytis but Alternaria spots present on leaves. Stunt serious in some fields but not in others. Little problem of Heliothis. Most of the uprooted plants showed good nodulation. Previous night's rains gradually decreased towards Mymensingh.

Mymensingh. Bangladesh Institute of Nuclear Agriculture
Being Friday it was a holiday in Bangladesh and the Institute was closed. We met Dr. M.A.Q. Shaikh, Head, Division of Plant Genetics, at his residence and he readily agreed to our request to show us the chickpes experiments. Mr. A.D. Bhuiya and Mr. M.R.I. Khan joined us later in the fields.

Most of the experiments had good stands but excessive vegetative growth resulting in high incidence of Alternaria and Botrytis causing flower drop. Few plants affected by root rot and stunt. Hellothis negligible.

Germplase - 139 eccessions planted in pots as well as in the field. Good growth but less fruiting. Accessions, $G-117,-121,-128,-195,-202,-211$ and -216 mpenred better than others.

Hyprosola mutant - The mother variety Faridpur-1 and Hyprosola mutant derived from it were planted side by side for comparison. The mutant eppeared esrly and showed betcer fruiting than the mother varlety.

M2 populations - To increase the seed size of and to bring earliness in Hyprosola its seeds were treated with sodium azide and M_{1} derived M_{2} progenies were planted in the field for screening. Because of the high incidence of leaf disemses there was no pod setting and consequently there appeared no variation for esrliness or seed size. There was some variation for disease incidence which could be escape as well.

F3 MLT-DS - Good stands but excessive growth. Plants in several patches severely affected by small leaf virus. No fruiting at all even in Hyprosola, the check cultivar. No possibility of any good results from this trial.

ICSN-DS - Very good stands but excessive growth. The crop was late with little fruiting. Some problem of Altermaria. Plot numbers 102, 128, 129, 142, 151,168 and 180 appeared s good as the local check Hyprosole. Rest of the material was relatively late.

CAT - Good trial with reasonable growth and stands. Good fruiting in most of the lines. There was awitch-over between Annigeri and K-850 in all the reps, and labelling was corrected, otherwise the trial was uniform and will provide good comparisons. ICCC-4, ILC-519. K-850, Rabat, and L-550 appeared beter than others. Annigeri was poor.

F2 Population - Twenty six $F_{2}{ }^{\prime}$ in 3 to 5 rows plots and unreplicated with JG-62 and Hyprosola as checks. All excessively grow and affected by Botrytis and Alternaria. Hyprosola appesred best in the lot.

Yield trial of mutants - Pive mutant lines along with Hyprosola as a check with three reps. Ressoneble growth and stands. Two mutants, G-296 and G-300, looked better than Hyprosola in respect of earliness and fruiting.

Microplot yield trial - Twenty ontries including 10 mutant lines, 7 lines selected from material supplied by ICRISAT, and 3 checks. The trial was planted in field with relatively light soil and therefore the growth was not excessive. Reasonably good stands with good fruiting. No ICRISAT line was earlier than the two mutants, G-294 and G-299. But four ICRISAT 1 ines, G-96, $-97,-138$ and -201 , showed better fruiting than rest of the material and appeared to be a promise for future.

Then I had a brief discussion with Dr. Shaikh. He agreed with my observations that small seeded and early cultivar is required in Bangladeshi conditions and that a breeding program involving local cultivars is essential to breed material for local conditions. Regarding the participation in Breeders' Meet, Dr. Shaikh pointed out that he requires the invitation to reach him at least $2-3$ months in advance to enable him to finalize the arrangements.

19 March - Dhaka-Ishurdi
Accompanied by Mr. Mumtazul Haque (Sr. Sc.officer, BARI) the journey was performed by road and river ferry. From Joydebpur to Aricha Road it was mainly the forest area dominated by Jackfruit. Along Dhaka-Aricha road it was mainly wheat and onions area, Lathyrus very important in some areas and being harvested. Other important crops were rice, tobacco, linseed, sweet potato, groundnut and chickpea. Sugarcane also important in irrigated areas (mainly tube wells). Occassional fields of vegetables such as tomato, brinjal, garlic etc. Mustard and linseed already harvested. Chickpea mostly sole but occassionally intercropped with wheat and linseed.

After the river ferry from Nagabari to Ishurdi it was mostly upland and dry area. Main crops wheat, onion, Lathyrus and chickpea. The latter quite Iaportant area wise, mostly sole but also intercropped with linseed, wheat and Barley, Both sole and intercrop of chickpea well grown and healthy with good stands. Little problem of leaf diseases and Heliothis. Vegetative growth and fruiting more balanced in intercrop compared to sole crop. No pigeonpea, perhaps harvested already.

20 Warch - Regional Research Station, BARI, Ishurrdi
Met Mr. Ashroful Isiam (Officer-in-charge), Dr. Matiur Rahman (SSO) and

Mr. Obaldul lslam (SSO). Mr. Sediq Ali (SSO), who received training in pathology at ICRISAT and uged to work on pulses, had been transferted to potatoes.

Total farm eron 143 acres tut under chickpes only one acre. The apts. were planted after mid-Novaber and in December. There wore only fen experiments but crop was very good without showing any excessive growth with good stands and fruiting and nearly mature. Only traces of Botrytis and Heliothis but serious stunt in one experiment.

Preliminary yield trial - Five ontries - S_{1} (Ex-ICSN 81248), S_{2} (Ex-ICSN81248), Hyprosola, Pabna local, and market collection - planted on 15 November in RBD with 3 reps. Excellent trial with very good stands and frufting at late pod-fill stage. Both selections, S_{1} and S_{2} were early and looked very promising compared to the other three entries. Selection S_{2} which was earlier than the local check could well be the future variety in Bangladesh. It possessed all the three qualities which, I thought, were required for a good cultivar in Bangladesh 1.e. earliness, small seed and high yield.

ICSN-DS - The trial was planted late on 12 December (spacing $50 \times 10 \mathrm{~cm}$) because of the late recoipt of seeds. Uniformiy good stands and very well balanced growth. Most of the lines podding very well and almost free from disease. Good comparisions could be expected from the trial. Ent 18 appeared most promising. Entry Nos. 9. 36,38 and 50 were also early with good fruiting. Other goodd looking entries were $1,12,35$, 51 and 53. Entry No. 23 was 1ate and 41 multisceded.

Scroening for Botrytis resistance - Twelve accessions planted at 50×10 cm on 7 December for sereening against Botrytis. The season being relatively dry there were no signs of Botrytis and the crop wes healthy. Anong the 12 Ifnes, ICC-4065 and $\mathrm{Pb}, 7$ appeared agronomically superior over others. Also there was some damage by Heliothis.

Evaluation of Local Market Collection - Seeds collected from local market planted in about half an acre for deriving single plant progenies. The plot were severely affected by stunt and smali legf viruses. As expected, there wes apparent fenetic variation for various morphological and other
agronomic charmetertstics including nodulation but nothing looked very spectaculer. Not much problem of diseases or heliothis.

Agronomy Trial - The main objective of this trial was to see whether soil fertility could be maintained/improved by following chickpea - sesameblackgram crop rotation. The local chickpea cultivar, pabna local, planted with various combinations of Nitrogen, Phosphorous, Potash and Sulphur. It was the first year of experinent and the crop looked quite good.

Regional yield trial of pigeonpea - Four entries, ICPL-2, -4, 76012 and 76013. planted late on 1st November due to late arrival of seed in $6 \times 4 \mathrm{~m}$ plots and at $30 \times 15 \mathrm{~cm}$ spacing with five replications. Both stands and growth were poor but fruiting was good. ICPL-4 appeared slightly better than others. ICPL-2 was late in those conditions.

Ishurdi appeared to be the most ideal place for breeding chickpeas in Bangladesh. It falls in a comparatively drier zone and has got good soil. But there was a lack of qualified staff, and people working on chickpea were not enthusiastic because of poor coordination from BARI headquarters after Dr. A.K. Kaul left for BARC. It was suggested that one of their staff should consider receiving training at ICRISAT.

In the aftemoen we drove towards Bogra and then to Rajshahi to see more of chickpea crop in the farmers fields. This region appeared to be the second most important area after Jessore and Faridpur with regard to chickpea production in Bangladesh. Here, the chickpea is generally planted after rice. After examining several fields that were planted in mid-November to early-December, we found no serious problem of diseases and pests. There appeared to be more Heliothis damage in late sown crop. The crop was well grown with good nodulation in most of the fields and being harvested at several places. In one field near Rajshahi, there was no fruiting fin the crop and it looked stunted. The reason could not be ascertained. Chickpea will remain as an important pulse crop in this region.

21 Merch - Ishurdi-Jessore

Tobacco, sugar cane, Lathyrus and wheat were the win crops followed by chickpen, onions, LInseed and banana. Large areas under chickpea near

Jessore. Chickpea crop genermily well grown and at late pod-fill stage. Stunt appeared to be the main problem in this area although Fusarium, Sclerotiu and Rhizoctonia wert also presont. I was cold that Heliochis generally causes severe danages in this area but this year it was nogligible. Chiclopen intercropped with wheat appeared to be the best cropping system as result of reduction in damages caused by Heliothis and other leaf diseases.

21 March - Regional Research Station, Jessore
Met with Dr. Ali Hussain, Sr. Scientific Officer and Incharge of station, and Mr. Anwar Karin (SSO, Agronomy) who wes looking after the breeding materials in the absence of a breeder and who showed us around the field.

ICSN-DS - The trial was planted on 2nd December in 3 rows of $4 m$ long. Stands were good but in general the vegetative growth was too excessive perhaps due to basal application of $20 \mathrm{~kg} \mathrm{~N} 40 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$. There was a very high incidence of Botrytis and Alternaria causing flower abortion. Almost no fruiting in most of the entries. Ltttle problem of Heliothis. Small leaf virus also mppeared in a few patches. Entries at nos.1, 4, 27. 35 and 55 showed very poor germination. Entries that looked little better and earlier than others were: ICCL-82208, -82215, -82227, -82230, 82108, -82214, and -81237.

ICCT-DS - Entries in this trial had 3 rows of 4 m lengthplented 40 cm apart in 4 replications on 2nd December. The crop conditions were sama as in case of ICSN and no comparisons were possible. ICCC-36 and BG-246 appeared highly susceptible to leaf diseases. ICCC-8, -35 and -36 and BDN $9-3$ were having atleast some pods despite a very high incidence of lenf diseases.

Arconosy trial - Maxed cropping of chickpea with mustard and varying levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ and seed ratios under rainfed conditions. It was the first yoar of experiment and chickpea plots with mustard (already harvested) appeared to have less diseases and more frutting than plots having pure stands of chicicpea.

Retional yield trisi of pigoonpes - Same trial as at Ishurdi but planted on 9 October at normal plenting tiwe. All the four entries except ICPL-4 were alreedy harvested. ICPL-4 was also mature and ready for harvest and

A1so I could see a pheromone trip installed in one of the chickpea fields. The man who takes the insect counts was not avallable to give any information on this. Jessore is the most important district with regard to chickpea arei and production but unfortunately there were least research efforts on chickpe improvement at this station.

22 March - Jessore-Faridpur-Dhaka

Almost same cropping pattern as between Ishurdi and Jessore till Aricha Road, I could see some pigeonpea along the roads and railway tracks. Botrytis appeared to be the most comm disease of chickpea and pigeonpea followed by stunt and sterility mosaic respectively. I was told at Jessore that there might be a few experiments on chickpea and pigeonpea at Agri.Ext.Tr. Institute, Faridpur, but I found none

23 March - BARC, Dhaka and BARI, Joydebpur
In the morning, I visited BARC headquarters at Dhaka and met with Drs. K.M. Badrudozza and A.K. Kaul and told them about my impressions gatheyed during last fow days. It was felt that there was a lack of coordination an the research efforts being made to improve the pulses in various regians of Bangladesh. BARC is attempting to coordinate the research on pulses and Dr. M.A.Q. Shaikh of Institute of Nuclear Research, Mymensingh, was likely to be given the responsibility to coordinate the chickpea research activities. It was pointed out by Dr. Kaul that anong the rabi pulses, chickpea is the third most inportant crop but area uder pulses, in general, was on decline as farmers have been shifting to rice and wheat wherever irrigation has been extended. But it was agreed in general that chickpea will remain an iuportant rabi pulse in Bangladesh and there was a need to replace the existing low yielding and susceptible cultivars with improved genotypes. Dr. Badrudozz appreciated ICRISAT's efforts in cooperating with various chickpea improvement programs in Bangladesh and expressed the need to strengthen these efforts further. He was particularly keen to know whether ICRISAT can help in formulating projects on dryland farm management for the development of relatively dry areas of Northwest Bangladesh by providing necessary training and expertise in these fields. My suggestion that mixed cropping of chickpea with cereals or linseed may help in reducing the disease and pest incidence was very well received by Drs. Badrudozza and kaul and they emphasised the need to popularise this prectice.

Went to BARI Joydebpur in the afternoon and met with Drs. S.H. Khan and Abdul Waheb, Head of Plant Breeding Division and Principal Scientific Officer (Pulses), respectively, at URRI. Unfortunately Dr. Waheb had received his transfor order from pulses to oilseeds the same day and fe looked a bit depressed but readily agreed to show around the chickpea experiments. There were about 12 expts. in all including multipilcation and covering about 6-7 acres of land. The crop was planted around midNovember. In general, the crop was poor and growth highly variable. Stands were also variable due to uneven germination caused by raduced viability of seeds as a result of rainsoaking last season. The crop was mostly mature without much problem of diseases. Some damage was caused by Botrytis and Fusarium in the early stages of growth.

Evaluation of drought tolerant genotypes - 528 germplasm lines planted second year in succession. Variable growth and stands. Evaluation not possiblo. Later, I was told by Dr. Kaul that he made some selections out of this material last yeer which, obviously, had not been soparatoly planted this year. A fow early and good looking lines were: CPS-1 and ICC-1096, -5743, $-5817,-8338$ and -8396 . ICC-8330 and -8370 were late but good.

Observation trial - Seven entries replicated three times to evaluate new selections. Though not uniform, the trial looked reasonabley good to give some comparisons. ICCC-2 appeared best in all the replications followed by H-55-61, G-543 and HMS-6. X-850 and L-550 had stand problems.
F_{3} observation rows - 50 entries in 4 rows plots. Growth and stands highly variable. Comparisons not possible. Entries IC-7919 and -7921 appeared a little better than others. Early plants from wany of these populations were already selected and harvested.

Ex-ICEN(1981) - 60 entries as observations rows. ICCL-81203 and -81238 were quite early and appeared most pronising. I helped Dr. Waheb in selecting several other good looking and early lines and suggested to test them in a roplicated trial next season.

Observation rows - Old germplasm stocks - about 75 lines. Mostly late and with very very thin stands. No selections possible.

Evaluation of extra-early lines - 30 entries, all selections from ICRISAT's matorial, with 3 reps. Reasonable stands but umeven growth. Entry no. 25 (84P) appeared to be most promising followed by 15 (56P), 3 (23P), $10(26 \mathrm{P})$ and 24 (798). This material appeared to be a promise for future.

F4 Trial (F3 MLT-DS of previous year) - Good replicated trial comprising 16 entries with 3 reps. Entries IC-7877 and -78546 appeared to be early meturing and best in performance.

ICCT-DS - Not a very good trial but comparisons possible. 16 etnries in 3 rows of 4 min , replicated four times. Entry RSG-44 looked very good followed by ICCL-78055 and ICCC-30, both double podded. Phule G-4 was also gipod.

Ex-ICCT-DS - Again 16 entries with 4 reps. The trial was not so good but entry IC-73129 looked exceptionally good in all the replications. Other good entries were: IC-73111, K-850 and Phule G-4.
F_{3} Trial (F2MLT of previous year) - 50 entries with 3 reps. Good Erial with reasonable stands and growth. A double podded entry IC-7971 appeared to be most promising. Other good entries were: IC-7926, -7957, -7914, -7978, -7969 and -7938.

ICSN-DS - The trial planted in a highly variable piece of land. Both stands and growth poor and variable and no possibility of good comparisons. ICCL-82219 and -81220 appeared somewhat good but then local check was also equally good.

Multiplication - Among the 12 entries multiplied, including a few ICCT-DS ontries, only ICCC-2 appeared better than Sabour-4.

After seeing the experiments, I felt that elthough there was lot of good breeding material left by Dr. Kaul with BARI the whole thing-was poorly planned and badly managed, and that there was a need to reorganise the ' things. This also came under discussion when I met Dr. Sharafat than.
tive sought my advice on these points and agreed with my suggestions on the reorganisation of the whole program. He felt that there was a lack of trained staff and almeady five persons have been sent for higher education in Imdia (IARN, and that ICRISAT can also help in this by providing training facilities in various disciplines.

24 March - Regional Research Station, Jamalpur

Drove in a car to Jamalpur which is about 120 km towards north from Dhaka, Almost same cropping pattern as between Dhaka and Mymensingh. Mot with Mr. Ali Xhan, Incharge of station, who showed me the chickpea experiments. Two of the three plant breeders were away for higher studies.

ICSN-DS - Reasonable trial with good growth, stands, and fruiting, and will provide good information. No problem of disaases but some damge caused by Heliothis. Entries at plot nos. 39 and 40 were most promising and early. Plot 75 good but late. There were many entries looking better than the checks providing good scope for selection.

Microplot yield trial - Twelve mutants from Mymensingh and eight lines selected from ICRISAT's material replicated thrice. G-96, -108, -298 and - 302 appeared better than others.

CIYT-Kabuli - Trial from ICARDA with 24 entries in 3 reps. The trial was in a poor soil patch but stands and growth were uniform. A fow early entries vere already harvested. There was not much of variation among the remaining genotypes.

Entomology trial - Experiment on the effect of detes of sowing on the incidence of insect pests and grain yield. Cultivar Sabour-4 planted on 1, 8, 15, 22 and 29 November and 6 December. There appoared to be no veriation with regard to Heliothis incidence across detes of sowing. Ist and 8th November plantings appeared to produce highest grain yield. There wore two pheromone traps installed in these fields and highest insect count (124) was recorded on 17 March.

25 Merch

Left Dhaka in the aftemoon, stayed it Calcutta overnight, and rached Elyderabad naxt day morning. It was a very useful and pleasant visit
to Bengladesh after a for problems in the beginning. I an highly grateful to Dr. K.M. Bedruddozza, Dr. A.K. Kaul and Mr. D.N. Sharma for making arrangements for my visits to various places in Bangladesh and for thotr Kind hospitality during my stay at Dhaka. I an also thankful to Mr. Mumtazul Haque and Mr. B.H. Sikdar for accompanying me to various places.

gs

17683

Joydelpar 20 and 24 Febryary

Drousht tolerance trial. 628 genotypas, mostly asriy maturing, also being ectwened for drought tolerance at ICRIsAT by NP Saxana, In three tiare, only the first of which is mufficientiy etreased, no not good Ecreming. However, mome entriam look very pood so vill provide new range of materiala for selection.

ICSN-DS. Racher variable growth and atand. Plote 101 to 112 vary good. 113-122 very poor atand and moderate incldence of atunted plante, axcapt 119, which ia very good in poor area. Plote $123-151$ good, except 127, which hat poor etend and atunt 140 , 141 , and 145 with poor wand. Plotis 152 to end showing signs of greater strese but uniform. ICCL-80074 (P1ot 176) is godd in poor area; plot 177 - no plante.

Miltilocation trial - tall. Very variable atand and moderate to good goowth. Most entrias rather late. IC-7573-74 (whiteflowered) and IC-7570-3 good in two reps, IC-7512-52 is good but intermediate duration.

Multilocation trial - very early maturling linea (MT-VEM). Set of 30 early maturing linem from desi progenies at ICRISAT in 1980-81. In Aix environments including late som at Joydebpur. Hay excelient growth but variable stand from very poor to good. Several entries look good but aelection will be difficule. Local check ICCC-4. Seed packets and field book did not correapond.

F2-MLT-DS Better, with uniformiy good growth and leas variable stand. Entries 49 and 50 - Iccc-4.

E3-MIT-DS. Good growth and etand, will give good data. IC-78546, $-7881,-7898,-7885$ and -78506, excellent. Local checke 15 and 16 ICCC-4. Both comm chacks appear to be Annigeri here.

LCCT-DS. Growth excellent but stand rather vaxiable. ICCC-8, ICCC-73129, $\$ 2375$ and ICCC-4 (locel check) are very good. Bny-9-3 and ICCC-78788 also looking wel1. ICC1-74633 in Rep I, has large
podded off-type which in worth harvanting separately.

Regional Yield Trial - Small. Selected fron Regional Yield Trial - manl in previous year. Fifteen entries. Mostly long duration auch as F-6l and G-130, which had excaped rain danage. Emergence has been practically zero in most entries due to very poor seed. Only entries with full stand are ICCC-2, -4 and -5 .
\underline{F}_{3} bulks. From ICRISAT F_{2} g grown at Joydebpur in 1980-81. Single rows mainly late maturing.

Prelininary Yield Trial of Short duration-pigeanpea. Sown 15 October, 5 entries (70012,70013, TCPL-2, and -4 and $C-11$) and 3 reps. 70012 and 70013 eariler than others and carries mature pods with much pod fiy damage. Alk* considers increased constriction of pods around seeds may prevent movement of pod fly larva within the pod. Other entries caller and now producing pods. Much Botrytis on flowers.

plant density trial on pigeonpea

Sown 13 October, epacings ($25 \times 25,20,15$ and 10 cms) and cultivat ICPL-4. Closest apacing looks very promising.

Ishurdi

Chickpea Regidnal Yield Trial - Small. As at other centers extremely good growth and uniform at present, except for Rep III which has poor stand and growth at extreme ehd.

ICSN-DS. Excellent growth and now almost completely covered, although stand was moderate at start. Entries podding are: JG-62 and ICCL-80031, $-80032,-80070,-81212,-81213,-81214,-81216,-81217,-81225,-81238$, -81245 and -81248 . Poor stands in ICCL-81206, 81223 and -81247 . Annigeri and 81221 are tending to lodge. ICCL-B1005, -81202 and -81237 are Large leaved with distorted growing pointe as with K-850. No discards alongside plots 101 and 181.

* Dr. A.K. Kaul

Chickpea Adepcation Irial. Sown 26 November. Excelient growth. Earlieat flowering to Harigantes but is only just podding - flowere have mhed at firat 6 to 14 reproductive noden. The kabuli entrien in particular appear to heve formed many pseudo flowern - Syrian and Jordanian locals have them fitist 7-11 nodes. Others have both peeudo flowera and ahedding after flower opening. \quad - 130 hee poor etand. $K-850-t i p$ distortion.

Miltilocetion trial of mid-call erect cypes. Mont entriee are not podding consietently in all three repa. Best appaard to be IC-7573-74.

Multilocation crial of very early macuring typea. Growth and atand as for other triels. Few entriew podding coneistentiy. Thooe with pode are entries 4, 10, 15, 21 and 24. Seed packetim and fiald book do not correspond.

Foliar fungicida on eroundnut. Dacca No. 1 RCB, 4 reps, plot size $3.5 \times 4.5 \mathrm{~m}$. Som E Novber. Treatmenta: Benlate, Cuman L, Dithane M-45, Du-ter. Every 12 days from appearance of symptons Cercospora or rust; at 2 g a.i./litre. Second year. Last year Dufter signifio cantly reduced Cercospora leaf spot but there were no significant differences in yield. This year siight yyptom of Cercospora - not yet aprayed.

Variety x plant density on groundnuts. Three genotypes: IG-B101(ex Phillipines), Dacea No. 1 , Red Spanimh. Spacinga $50 \mathrm{~cm} \times 5,10$, 15 and 20 cm. giving $30,15,10$ and 5 plantes m^{2}.

Pryal on gram. Same trial as at Immalpur. Pabna Local. Growth varlable but no clear differences between treatments - no phosphate treatment appears to be podding better than others.

Irrigation trial on gram. From INA. Two genotypes: 'Hyprochola' (IUA matant) and local; 8 treatments and 6 reps. Excellent mand but excessive vegetative growth. Very bad Botrytis already developed in some plote.

Insecticide trial on gram. Sown 19 Movember. 6 treatmants: Suaicidin 20 EC $0.3 \mathrm{~kg} \mathrm{a.1./ha}$ and Nuvacron 40 EC , Bidrin 24 HEC , Diazinon 40 EC and Polytrin 44 EC 0.75 kg a.i./ha; and control. Excellent atand and growth but complete failure of podding. Little Heliothis damage.

Prellminary Yield Trial of short duration arhar. As at Joydebpur except only 4 entries: 70012, 70013, C-11 and ICPL-4. Laid out as miryor image and mislabelled. Labls nearranged. Growth and stand are not as good as at Joydebpur. 76012 and 76013-flowering almost complete; ICPL- 4 wid pod-fili; C-11 early pod fill. No Botiytig, Some pod fly.

Pigeonpes trial. 8 entries. Laid out as mirrox image and mislabelled. Labels rearranged. Growth and stand variable. Approximate scores for stand and vigor are given below:

	StandZ	Vigor
Behar	80	3.5
ICPL-1	30	2
C-11	70	4
BDN-1	10	1
ICPH-6	95	5
UQP	30	0
ICP-1-6	40	3
LRY-30	60	3.5

$5=$ most vigorous

Resional Preliminary Yield Tisal of Lentil. As at Joydebpur. Sown 10 November. 81001 and 79694 appear earliest and most promising. Very good growth and podding.

Multilocation Evaluation trial of lentil. 10 entries, 3 reps, plot size 4 m x 2m. Sown 7 November. 81001 and 79694 earllest. Growth and podding as above.

Obeervation trial of lentil. 17 entries. Inciuding mont of the above. 3 repa, 5m x 3m. Sown 9 Noweber - 81001, 79481, 79354 and 79542 promising. 79536 lodging. Good growth and podding.

Agrosconomic studies of pulee oriented intenive croppiag patcerns, Fout rotations beins cested.

1. Wheat (10 Nov.) - mung bean (7 March) - Aua rice (7 May)
2. Chickpea (1 Dec.) - Mustard + black gram(1 April) - mung (10 Auguat)
3. Mugtard(25 Oct.) - Mung (1 March)-Aus rice (1 May)-black gram (IO Aug.)
4. Mustard (25 Oct.) - aus rice (1 Mar.) mustard + mung (1 June) mung (10 Sept).

Mustard already harvested. Heavy Infestation of Orobanche. Chickpea extremely vegetative and is badly lodged due to late thinning. Wheat hear maturity.

23 February - Jessore.

Chickpea Varietal Trial. Five entries ICCC-2, $-4,-5, K-850$ and L-550; three repa; plot size 4 x 3 m ; sown 8 December.

Stand and growth very good but vegetative growth leas because of later sowing. $K-350$ and $L-550$ are in mid pod fill and appear to be podding normally; LCCC-4 has many pseudo flowers and, with LCCC-2 and -5 is just beginning flowering. K-850 showing tip distortion.

MT-VEM. As at Joydebpur - sown 29 November. Excellent stand and growth, despite which podding is occurring, in contrast with lahurdi, No obvious disesse or insect problems at present.

ICSN-DS. Sown 30 November. With excellent stand and growth and wełz podded. Entries 11 (ICCL-81005), -14 and -49 showing tip distortion; 13 (81201) wite-fiomered; 18 (81206) poor atand. In three tiers with no discarde alongeide 101 and 127 (Annigeri); 128 and 154 (JG-62); and 155 and 181 ($6-130$).

Chickpea Regiomal Yield Trial - Small. As at Joydebpur, sown 30 November Stand, growth and podding as above.

Irrigation Trial on gram. Sown 28 November. Sabour 4. Basal dreasing $20: 80: 40,3$ reps; plot size $4.5 \times 2 \mathrm{~m} ;$ spacing $30 \times 10 \mathrm{~cm}$. Irrigation treatments: none, maintain PET; 20\% above PET; 70\% above PET; one other not indicated but probably 100% above PET. Growth, atand and padding as above but no clear effects on growth or podding although control may be better podded than other treatments.

Fertiliser trials on gram. Two trials. NPKZn and SZn. Sown 6 December Growth and atand rather variable - poor to good in Reps. I and II of both trials. No clear treatment differences. Local - just flowerieg.

ITHTMC RENDIS
 Bantiaden 19-26 Pobruish 1982

3.3. statusom

Obiectzum:

To follow up on visit of prewioun yoar in reviowins chickpea trials and commercial crop and ramerint contect: with Bak.

Itinarary

19	Pebruary	Eyderabed-Delhi	IC440	0745-0945
		De1hi-Daces	TC304	1610-1845
		Dacca-Joydebpur		
20	February	Joydebpur-Jmanal pur	Foad	0830-1230
		Jemalpur-Joydebpur	Road	1500-1830
21	February	Joydebpur		
22	February	Dacem-Ithurdi	BG-481	0943-1015
23	February	Ishardi-Jeenore	Romd	0750-1150
		Jeneore-Ishurdi	tond	1445-1855
24	February	Iehurdi-Joydebpux	30-482	1100-1145
25	February	Joydebpur-Pani	toad	0500-1045
		Fani-Joydebpur	load	1400-1800
26	February	Decce-Delhi	TC404	1400-1630
27	February	De1hi-liyderabad	IC-439	0700-0850

20 February - Joydebpur-Iamel pur-Joydebpur

Comercial crops atadlar to thone observed in 1981 except that whent nrea is conalderably reduced and evidentily replaced by Latbyut and lentil in areas with linited water and "boro" rice in irrigabie areate. Rice belng tranoplanted and Lathyrue belnt grased. Leatil approaching maturicy. Dollebos liblet comon in compounde. Ho piseoppea although thare had been appreciable area 2 yeart previously.

Again, vety littie chicicpea, Sav two farmare ploes mear Tangail in same area mas yaar. Both had very poot atande but grouth wate reasoonble. sone flower abortion accompanded by fungal growth. Low incidence atunt and Felicthis.
 OZbere. voritin ca pulees. are Mesers Deepak san and Farudila Minh.
 ieboratorie atreniy fmprecticable.
 (Earmal and Janalpur) wese sood.
 69 local collections with chree repe, to bevalnated for fedder produc-

Lentil Regional Trigl. At 7 locations. Mont promising entry 8iOul Ex Ethiopia - enrly maturing.

Chickpea Phoaphate Trial. Very mall trial but with excellent uniform growth and atand. Treatmants were $0,30,6 n$ and $90 \mathrm{~kg} / \mathrm{ha} \mathrm{P}_{2} \mathrm{O}_{5}$ as TSP. Variety Sabur-4. No differences evident at this stage. Some'peeudo flowert and flower abortion siecodiated with fungal growth, perhaps Botrytis and Alearmaria.

Other chickpes trials had been sown on more clayey soxl and had received rain fuat efter mowing so that stand was very poor. Growth was also not good. Variety trial from INA, (Institute of Nuclear Agriculture) Mymeneingh - some entries with paeudo flowers. Also Microbiology Trial. None will give useful data.

21 February - Jordebpur.

Saw pules trial accompanied by Dre. Avtar Kaul and C.L.L. Gowda and Qumrul 「slam.

In previous year chickpea crop had been deattoyed by heavy rain at pod fill and maturity and virtually no seed had been harvestad. Only aelectione had been a few late maturing lines which had escaped damage fad seed of these hus given poor amergence. Nearly all the triels werd tharefore composed of aeed from ICRISAT. All rere sown after 13 November and received comeup irrigation on 22 and 23 November.

Chickpea marefiale. In general growth is good but etand is momewhat variable, There is a 10 incidence of stunt but no evidence of any other diseasc problem at present. All well nodulated. ICRISAT trinls includa F_{2} and $\mathrm{F}_{3}-\mathrm{MLT}-\mathrm{DS}$. ICSN-DS, ICCT-DS, Hultilocation Trials of tall cypes and very early maturing lines from desi progenies at ICRISAT in 1980-81. The latter sown on 9th December as well as at normal tine' and aet of meterials for drought tolerance (NPS). BARI trials are Regional Yield Trial - Small, most entries of which have germinated very poorly; F_{3} bulks of F_{2} populationa selected at Joydebpur in 1980-B1.

Pigeonpta, Rabi pigeonpea, sown wid October, looks very good. Flowering and podding profusely. Laac year gave 1400 kg seed/ha. 76012 and 76013 from Fiorida are highly determinate and earlier. Some pod fly damage on early pods of these but not on more recent pods. Botrytis common on flowers. Nas told Meruca 1s mein problem in kharif.

Latil and Lathrous. Similar range of materiala as ather atations.
Detaile" notes of these and other triala are attached for interested persone.

22 February - Ishurdi See report of last year. Regional Reaearch Station of Bari. OIficer in-charge kr. Aehraful Ialan Obaidul Islam, OHIseads and Pulses Breeder.

Chiclpea Trial excellame. Som late November mad raenived 25 min rain in aid December. No fertiliter or iryigetion. Inergene tuad
bewn only andercte but stowth is excellent an: raps hava now been completely cowered. Speeling is where thmin recmmonded, with 40 cm betwein rows.

Howaver, podding is yet to bagin in mowe er., rita na account of flowar eheddiag. In harigantea in dodapacion Trivi, 11 , woring began in omrly Jamaary but peds are caly fuet toraing - up to 14 renroductive nodae are barren on basal branchee. Botsyele nne racorded, mernbahly ohyitiolngical. In anme trial, kohuli ontriea, Jortanian and Syrian local carry up to 11 peeudo flemera on each tranch and although reccrded as SOt fimering abnut 1 veek previfuely this ing atill not certain.

The same stuation pertmined in $1980-81$ an' seet was uitimately harvested frow only $\mathrm{K}-85$? and $\mathrm{L}-550$, this in only mall quanticy. in important cause then was Botrytia. This was aean this yaar only in an irrigation trial upplied by the Inatitute for Nuclear Agriculture (INA), where in tome plota, it wis alresdy mevera on both vegetative and reproductive parta; and ia likely to opread.

In farmert fields in ourrounding areas growth was gnod but not exceamive due to s-reer plant population nond later planting. In chese -1 ats momacne was genernily satisfactory an! it is clear that plant deasity and date of mowng raquire invatigation.

A few entries in the etation trials were podding including JG-62 and a number of other 1ines in ICSN and mome in the multilocation trisl of very early maturity itnee (MT-VEM). In a phosphate trial there appeared to be more podding in the no phoaphate traatment.

There were patches with 100 z plant mortality due to wilt root rot like disorder preading in from pathe at four pointe in the 3rd and 2nd repe of MT-VEM. Thare was root damage just bilow soil surface but not obviously any of the cotmon cases of wilt or root rots. K-85C ws showing growing roint distortion. Very ilttla Haliothis at this stage. Nodulation good in both farmere" fielde and on station.

Pigeonpea. Two triale cf rabi pigeonpes varieties vere not an wal grown at ac Joydebpur and tian was variable. No Bortytis on flowera. Some pod fly damage. One erial had been sown very late and only DOP waf beginalng to flower. Both laid out an mirror trages and mislabalied, which was correctes.

Lent11. Looked very good wich excellent etand and prowth. Some Fron 7-10 nowember. Podding wall and earilent ines beginning to mature. These wre showing some ruat. Best innes vire 81001 and 79694.

There vere alwo fev trials of groundauts - one pachology and one vatiaty x plant pomlation trisi. Showing olight Cerccepora. We sow hich infesta.ion of Oroknche in fitids vacated oy mustard out the parasite bas not oeen recorded on pulaca.

23 February - Iahurdi-Ieseore-Iehurdi

Wide range of crope. Whent, rice, lineéed, lentil, Lathyrus, chichpea, muatard, coriander, tobacco, rugar cane, bananas. Again, what acreage if reducad relative to lat year and there is increase in Lathyrub and uncropped areae. Tobacco and sugarcane are froportant from Rushtia to Jeasore. Chickpan is present throughout and occupien condidarable area from Kunhtia to Jemeore. Chickpea preflowering to mid pod fill with good growth and podding. Low incidence of atunt and pod borer damage.

Jessora. Regional Agricultural theearch Station of BARI. Officer incharga Mr. Enamul Haq Chaudhary who wal away. Shown around trials by Mesert. Abdus Samad end Ammar Rarim, the latter Agronomist looking after pulses and oilseeds in addition to cereals. Station has about 50 acres of land of which 3 are in pulses.

Chickpea. Sown late November and early December and has excellent atand and growth. Spacing rather cloae ($30 \times 10 \mathrm{~cm}$). Deapite thit, podding is better than at Iehurdi.

Trial inciude Chickpea Variety Thial (5 entries), MT-VBM, PYT-mali, ICSN-DS, an irrigation trial and fertiliser triale. The mr-VEA, randomiaation was wrong but had bean corracted from the seed packete. No disease problem at present. Some Botrytis on flowers and low incidence of stunt and pod borer. Nodulation excellent. Should produce good data.

Lentil. Sown same time as chickpea and has vary good growth. Earliant linea naar maturity. Low incidence of stunt-ilke symptome but lean in 81001. In irrigation trial, irrigation has resulted in up to $30 x$ plant mortality associated with blackening of foliage. Cause not identified but no ign of Botrrtian. In trial of planting x plant dansity trial, mid November sowing looks best.

25 February - Joydebpur-Feni-Joydebpur

Accompanied by Dre. Kaul, C.H. Antholt, Head of Food and Agriculture Progran of USATD and H. Monzano, Cropping Systems Agronomist of LADS.

Almont entirely boro rice near Dacca and becveen Comilia and Peni. Much of the area is uncropped in latter stretch. Between Dacca and Comilla, although there are extensive arese of theat, much of latat years acreage has been replaced by rice. lentil and innaeed are very tmportant, both being harvested. Lathyrus only minor. Occasional field, foxtall millet. Water malon, potatoes and chillies occupy conniderable areas empecially nearer Comilla. No chiclepen anymere. Dolichos lablab comon in compounds.

Feni. Remearch Station of Menonite Central Coomittee (MCC). Nome of the senior staff vere present and we vere bown round che crials by Field Aseistant.
ycC are examining placea of new crops and new genotypes in cropping sybtom. They have most of the aces in coybean, includimg mirsCr trial, thatr own variety erial and a variecy x platitng dete trial.

Srisaciy, Brage min Devis have given bent resulte put there ie problem of end Finbility. Local. mall. black meeded cultivar lín not ton bul in the reapect. ali tisals had been inceulated with hiseobive. Mcat of che metial ware in flowertmp or pod fill acagen and thare was vide range of enturities. In planting date trial. Wevember sown tratmonte of Bragg and Duin vere maturing. In zeneral; the crop appared to be rather eparesiy podded. Smybene it being uaed locally for dinl and there are 5 nt 6 factorien refining imported crude cogument acybean o11.

Preiminary Yield Trial of short duration nigennpea. to at ocher locations. Four varieties. Lonke excellent. Very gool atand anj grovth. 76 C12 and 13 ptopped flowerling. ICPL-4 late poci-fill. C-ll coly juat beginning to pol, Fod-fly damage on mature pole. Dotrytin on flomers.

Lentile. Included Rerisoni Yiaid Trial - large wich il genotypen me at other locationg. Sown 11 November and earliest entriet 81001 and 79543 belng harvested. Stand, grouth and podding very good.

Chickpe Variery Trial. Sown 3 necember. Five eniries as other locatlons. Alehough growth was net too excessive, the erop had lodged in the ehird rep and poimotet wat poor due to flomer hborcion. Pungal growt. on flowert apoemed to se Alcernarla. No Eelfothis iamage observed.

Groundnut Variety Trial. Stand and growth very poor although crop was at flowering gtage. Cercoopora present. Entries rere Dacca No.1. PI, Small Japan. Kedeng, Senegal, 13, 20 and Local.

In Cropping Syeteme trial coupes uas showing severe thripe damage and there vas the heaviant infastation of thripe in open flowere I have ever seen.

In morning visited Moc offices in Dacca and obtainad research raports. Also visited BAII before flying to Delhi.

TOUR REPORT OF BAMOLADESM
 C.L.C. gonon
 13-21 March 1981

Abstract

Obiective: Visit chickpee trials and general chickpen survey in Beopledesh.

Itinerary:

13 March		Hyderated - Delhi	15-440
		Delhi - Dacea	16-304
		Dacee - Joydebpur	By Moad
14	March	Field visit et Joydebpur	
15	Merch	Joydebpur - Pabne - Ishurdi	By Moad
16	Merch	Ishurdl - Mogra - Ishurdi	By Road
17	Merch	Ishurdi - Jessore - Faridpur	By Road
18	March	Faridpur - Joydebpur	By Road
19	March	At Joydebpur	
20	Murch	Joy debpur - Dacea	Or Moad
		Dacca - Calcutta	-6-491
		(filghe delayed by 2 hes: mis	Hight to
21	March	Colcute - Myderobod	1 C-269

13 March - Hyderdond-Belhi-Dacen
1 was met by Dr. A.K. Raul at Decca airport, and we drove strelght to Joydebpur. Stayed et BARI (Bangladesh Agricultural hasearch Institutel guest houst. Met Dr. A.B. Joshl. isman Consultant, who wat visfeing taki on chat dey.

14 Mareh

Flid visit at soydaber.

The enkl wet officially opened only a fortalght ago, and the festive mood mas sellil om. Dr. thul ineroduced at to Dr. Sharafat Mhan, Maed of Plant Brestiog Bepertment. and Dr. M.A. Menhab. M/s 1. Mesud and 0. Istian. of she Pulte Improvement Project. iater I spent the doy
visiting chickpea trials with M/s Masud and islam. Mr. Masud was looking ofter this year's iCCT-DS. ICSN-DS. F MLT and Regional Yield Trial (Lerga).

General crop condition voried from very poor to good depending on soll variation.

1CCT-DS: Sown 13 Movember 1980. 30 cms between rows. 40 kg P/ha edded. JG-62 kept as local check. After going through the first 4-5 plots In the first replication, it was obvious that some mistake had happened in sowing. The entry in the field book and in fieldwere mot matching. I tried to strigighten it out, but could not succeed because i was able to identify properly only the released cultivars such as Annigeri, JG-62, P-436 and K-850. The rest was anybody's guess. Such mistakes were in other replications also. It was suggested that 1 should check this at ishurdi where another set of ICCT-OS was sent to see whether the mistake was because of wrong seted packating by us (!), or it was an error at planting. (At Isfurdi the entries were in the correct order which indicated error while plenting at Joydebpur).

1CSN-DS: Sown on 18 Novenber 1980. G-130 was not replaced by local check. (Although our information booklet says that this has to be replaced by local cultivar, very few people had taken notice of it. It is better to keep empty packets so that they will be forced to put - local check.) At Joydebpur most of the well-known cultivars had - different look, and 1 had some initial setback in recognising them. Most of them were taller and lankler than at Hyderabad. Two entries (plot 109 and 106) were early, and pods were taken away by rhodents. Part of the field was very poor. and these lines (plot 151 to 175) mey not give good yields. The nursery was split in to groups of 10 and planted fier giving 1 row gap after every 10 entries. Hence plot 107. 108, 117. 118. 127. 128. 137. 138. 147, 148. 150, 151, 160, 161, $170,171,180$ and 181 were vigorous and may give inflated yields. Also plot of G-130 (plot 129) is doubtful. It may be a case of seed min-up. JG-62 was very good in most of the plots. mmong the test entries, plots 111. 115. 122. 131. 132. 133.137.138.139. 145. 146. 151 and 176 were looking good.
F_{2} mitilocation Trial: Sown on 18 Movember 1980. k-850 (entry 49) and sebour-s (entry 150) used as local checks 1 and 2 . The experimant wes planted on an aren where the soll veriation was at its maximum varying from wery poor ($15-20 \mathrm{~cm}$ olant height) to 900 d ($40-50 \mathrm{~cm}$ plant helght) soll, interspersed egein with moderate and poor patchas. The mop of crop growth indicating soll hateroganeity, is at follows:
$R 111$
R 11

With such differences in crop growth, it is really difficult to plek out the better crosses unless they hapoened to fall on good soll in all three replications. Suggest that the trial be repeated next year as f_{3} gest in a more homogeneous land. However, individual plants from bettar plots can be selected and advanced.

Regional Yleld Trial (Large plots): Eleven entries erial sown of 8 locatlons -- Joydebpur, Ishurdi, Jessore, Dinajpur, Pabna, Feni, nangpura, Bogra. Plot size 6 rows $\times 5 \mathrm{~m}$. The entries in the trlal
were: 1.K-850 7. JG-62
2. $\mathrm{L}-550$
3. $850-3 / 27 \times 0 \mathrm{C}-5 / 7$ (73114)
8. ICCC-3
9. ICCC-4
4. $\mathrm{H}-208 \times \mathrm{T}-3$ (7310) 10. Annigeri
5. Jt-62 \times F-496 (73167) 11. Sabour-4 (Check)
6. $\mathrm{Jt}-62 \times$ Rechey (73129)

This trial was being conducted to idantify cultivars suited to these regions so that they could be multhplied and distributed for farmer's fleld trisis. W-850 and t-550 were good, and so werc limes of 73167 (JE-62 x F-496) ond 73129 (J5-62 n Radrey) (P.S.: 1 did not see these trials at lessort and logra. Possitily they were not sent/not planted at these stations. At logra there was a 100 varisty observasion trial

Jessore did not have any trial sent from Joydebpur on chickpeas.) In the afternoon met with Mr. Qamrul Islam and had discussions before golng to field. Rice belng the mein crop, any other crop should fit In to the gap between two rice crops. The 'Anen' rlce (both transplante and broadcest) If harvested by October-Movember. The land thus vacated will be used for the dry season' rabl crops such as wheat, chickpea, Lethyrus, lentil, mafz, linseed etc. The season is short because the farmer would llke to plant the 'Aus' paddy In April. Ouring thls short sesson (100-i20 days) temperatures are low oniy in DecemberJenuary, and then followad by high temperatures, and rains during the growing season. Essentially then, the farmer would need ast growing short duration chlckpea to be harvested by Merch. From anong the materlal sent by ICRISAT, the varieties originating from maharashtre, Madhye Pradesh, Andira Pradesh and Karnataka are performing well which Indicates that Bangladesh needs short to medium maturity cultivars? Mr. Islan seemed to be good worker, and he knew the material very. well, end also had good knowledge of what is needed to be done in chlckpeas for Eangladesh.

Reglonal Yleld Trial (Small): Flftyone entries. To be conducted at Joydebpur, Ishurdi and Jessore. Sown 26 November 1980 . Field was comparatively better, and results should be encouraging. Among the test entrles CPS-1. ICCC-1, P-436, JG-74, BDN 9-3 and N-59 were better poddec then others. F- 370 was having many branches, and although late it may still give good yield. P-6067, a dwarf umbrella type bushy plant, was very good, and should be followed through es it seems to be aood plant type for Bangladesh conditlons. BG-203 was mid-late, but podding was good. HMS-6 was early and good. 7357-22-3-B-BH was having bold pods and podding was excellant.

Observation Trial: Hundred tines selected mosty from the germplasin sent from ICRISAT. An exploratory trial belng conducted at loydebpur, tshurdt, Bogra and Faridpur to know adeptation of chickpea veriezles in these areas. Germination mot good in many entries. Seed was obtaine from lshurdi Station where rein at maturity had affected seed viablitty. L-550, K-850, J6-62, Annigeri and Sabour-4 were good (as checks). Yiele
dete from plots maving reasonable plant stand should be considered for selecting better genotypes ecross the four locations.

Eveluetion for lace soming: In many years the field may be vecated by late Movember, end hence aeed for identifying cultivers that wlll perform well when sown in oecember. Two trials were undertaken to screen varletles for late sowing. One was the 100 lines germplesm evaluation (also sown at normel timel. sown an 4 December 1980 in 1 row plot of 4 m . Among these, J6-62, P-99, T-103, P-324, P-6067. ICC-506-EB, and H 556-1 were very good. Another was ${ }^{1 l-e n t r y}$ trisl with 3 replications. Plat size 4 rows $\times 4 \mathrm{~m}$. Entries were JG-221, JG-74, JG-62, F-61, H-223. K-850. Chafa, $1 \mathrm{C}-73114$, $1 \mathrm{C}-73167$, $1 \mathrm{C}-7310$, and CPS-1. The trial wat good. Chafa, JG-221, X-850 and H-223 were wall podded. These two trials should give a strong indicetion of lines that wlll sult lete planting. This is en ares which should recelve more atiention by the local breeders.

Other trials seen were:

1. Effect of Phosphorus on yleldifhickpea conducted by the soll chemisery division. Details were not available.
2. Effect of M, P and K on nodulation and yield of chickpea. Different doses of M, P and K were given with or without Rhizobium inoculation. Land was poor, but 1 could not see eny visible differences among different treatments.
3. One hundred and thirty two F_{2} populations (sown al ewo places) were grown. Growth was poor because of poor soil; not much visible segregation. Sabour-h was planted as check fiter evepy 10 rows. Suggested to bulk thit season and select individual plants in f_{3}.
4. Twentyeight lines selected by Dr. B.A. Malik (Pskistan) were found In their consignment, and were grown. They were too late. Suggest thet they send it to Dr. Mallk ofter harvest.

15 March - Joydebpur-ishurdi

Dr. Kaul had mede arrenganents for the Journey by Mazda Plckup.
Dr. M.A. Wahhab accompanled me during the trip. We were delayed at Joydabpur because driver was not avallable until 9 a.m. We left Joydebpur around $10 \mathrm{a} . \mathrm{m}$. Joydebpur to Dacca Contonment was mostly forest type area with Jeckfrult dominating. Rice flelds were in mejority. After about 10 milles from Decee Contonment, towards Arichaghat, tobaceo was very common in uplands. Sugarcane with lentll or linseed in the ridges was also common. Hold up at Aricha that up to I p.m. because of long queut for the forry over rivar Padma (Ganga). Three hour journay to reach Pabna district border. From Nagerbadi onwards mostly uplands. What most common. Chickpea, lentil, linseed, Brassica in patches. Sugarcane and pigeonpeas occasional. It was dark by the time we reached Pabrim town, hence could not visit the experiment station. Reached Ishurdl station by $6.30 \mathrm{p} . \mathrm{m}$.

16 March

Ishurdi: Reglonal Agricultural Research Station. Area: \|ll acres Persons met: Mr. Joynul Abidin, Principal Scientific Officer (PSO)

Mr. Abdul Khaleque, Senior Scientific Officer ($\$ \$ 0$)
Mr. Abdul Rashid, S5O, Agronomy
Mrs. Munira Begum, SSO, Breeding
The research station received three heavy ralns after planting rabi crops. Too much vegetative growth had led to lodging; and increased the incidence of Botrytls mould. According to Mr. Khaleque, the disease was noticed after the second rain when the plants were In flowering stage. Many entrif had flowered eariler, but there was no pod set. Most flowers had dropped, possibly after the attack of sotrytis, but could be due to raln and cloudy weather also. Ey far heavy coll was taken by lodging followed by sotrytis mould. Early infected plots were almost wiped out by the disease, and plants were blackish.

ICCT-gS: No evaluetion prssibie because of ladging and mauld. But 1 checked the sowing opder to sew whether the mix-up of seed observed at Joydabour could confirmed. All the varletles ware in the correct order wich indicated that our seed packeting was correct. And sha mistek was only at Joydebpur while planting. K-850 was havily infected with mould. Aonigeri had mild disease, but brenchet were barran. ICCL-78054, and -76021 mere having less mould ateck, and looked tolerant. These should be checked again next year.

1CSM-DS: Too much vegetative growth, lodging and heavy inctdence of mould. Mamy entries had barren branches with few flowers at sop. Mo evaluation was postlble.

Reglonel Yleld Trial (Smell): Lodging and mould incldence same as in others. T-3 Grallor and MEC-900 semed to be colerant to mould. Stmilerly. ICCC-1, P-99 and JG-74 had less mould, and had quite fow pods on them.

Regional Yield Trial (Lurge): Growth and disease sam es bove. L-550 was loaking good, follamed by K-850.
i00 lines Ooservation trial was eiso heavily lodged, but disesse was not much at that time. It may spread later. Pabna lacsl, 7385-17-2-8-8H and stom leaf were looking excellent. Some entries had very poor germination.

Overall. it was a very bad year at this station. Better co sow chickpeas - Hitele late co reduce helght. Also should avold giving irrigetion and nitrogen to chickpees. otherwise the situation may not tmprove because winter ralins will upset the crop time and agaln.

16 March - ishurdi-Bonfa-ishurdi

After vistifing experiments tit ishurdt. left for sogre by road. from ishurdl to tetore (sub-divistion of hejeshati District) wheat wat common In uplands, while rice was cultivated in low iying areas. Lathyays wes very common, mext to wheet, grown in large areas. Chlekpea (sole crop) was found ocesslonally but ehlckpea/wheat and chlckpea/lingeed intercrops were common. Ocher Intercrops observed were chickpeaf lirassices,

Linseed/Brassica, and Lathyrus/Linseed. We recorded the following crops over 4 -mile stretch:

```
Wheat - 35
Lathyrus - 28
Chrckpen = 5 , Totel Pulses - 36
Lentll - 3 )
Ollsced - 5 (Brassica and LInseed)
Vegetables-2
Sugarcane - 4
Onlon-4
Garlic - I
```

It is interesting to note that singly wheet is most common followed by Lethyrus. All pulses taken together are more than wheat fields.

Towards end of Natore subdivision, and beginning of Bogra district large areas ware left uncropped aftet the paddy harvest. Most of these flelds are uplands, and can (rather, should) be planted to crops sukh as chickpee or pigeonpea wich can grow on minimal water requirement. I think this is an area where extension education to farmers to grof a pulse crop is much needed. In this area itself 1 saw examples wher 'subsistence farming' was practised. In one fleld of 1000 sq .m. (or around that). I could see diverse crops being grown In small patchef wheat, lentil, linseed, chickpea, onion, garilic, and 2-3 vegetabies. This indicates that the farmer needs the foodgrains, and will planta crop If guldance is given.

Arrlved at Bogra Research Station around 12.30 p.m.
Parsons met: Mr. M.M. Bhulya, SSO and Farm-Incharge (met at ishurdi)
Mr. R.C. AChikari, SSO, Extension Research Project
Mr. D.J. Costa, SO
Mr. M. Ramman, SO, Potato Research Station, Chalopara.
The climate and soll of Bogre district are sultable for rabl crops. Eastern pare of Bogra, called the Barind Tract, is sultable for chickpeas with its alluvial solls and low winter rainfall. Efforts are urgently needed to intensify chickpea cultivation in this teact, and possibly iCRISAT can help here then anywhere else.

The observation trial (100 lines) was planted (20 Movember 1981) at this station. Only sixty had good gernination: others had completely felled to germinate. I mas informad that the soll wes mettalously prapared like e nursery bed and Irrigated. The result wes heavy soll compaction ond poor aeration. Plants were poorly grawn with 2-3 branches and 6-10 cods/oliant. and 20-25 cm height (In contrast, neerby field having chickpea in e relay crop experimant wat very good. Plants had $8-10$ brencher, 40-50 pods/plant and 35-40 en Melght). Chickpeatetune was present; and aew plots had low Incldence of Botrycis. Among the entries, p-6099. E-212-1. 7381-E8, P-6264, WEC-43 and P-1774 were having modarate podding.

In an experiment of relay cropping (after paddy), chiexpea looked best In comperison to melze and wheat and moy give highest yleld. Soybean had not germinated in this erial. This trial indicated that chickpea can be culifivated in this region without amy difficulty.

Potazo Research Project - Chalopora Rasearch Stacion

This station is about 4 miles from bogra Research Station and beyond the river wich indicates the starting of Barlad Tract. Although this Is mainly for potato reseerch, other experiments ilso conducted. Two experiments on chickpea were planted.

1. Experimen: on seed rate of chickpea: Cultivar - Bhangura; date sown - 4.12 .80 ; fertillzers $-80 \mathrm{~N}, 60$ and 40 K (kg/ha). Six. seed rates - 15, 20, 25, 25 (broadcast), 30 and $35 \mathrm{~kg} / \mathrm{hs}$. A. B.0. with 3 replications. Croop growth was very good for such late planting. Wo vislble difference with varying seed rates, but Botrytis mould was more evident In higher sead rate plots. Chickpea stunt present where stands ware poor.
2. Mext to this trial was domonstration plot compering three local varieties - Anangurs, faridpur-i and 5 sbour-h. Although the three varieties looked similar from odstance, their branching pattern was different.

Ehangure

Faridpur-1

Sabour-4

Soth Bhengura and Farldpur-1 were 'open type' plants with more basal branching. Bhangura was mort prostrate and spreading, while fariddur-1 was semi-spreading (similar to G-130 and C-235). Sabour-4 was 'cidised type" with fower basal branches approaching the umbrella type (but quite) of Annlgerl. Ehangura looked more Impressive when not lodge but Sabour-4 is more stable for lodging. It will be good idea tc test the 100 lines trial at this station to see their performance ylald and lodging. Provided the rains are fewer. Bhangura types wi yleld betcer, but with intermittent rains the umbrella type plants wlll be more stable. (We will send a few umbrella type, early maturling lines for testing.)

Returned to lshurdi by evening for stay.

17 March - Ishurdi-Kushtia-Jessore

From ishurdl up to Padma river wheat was more common, but chickpea plots were on Increase. Mostly tell grown pigeonpeas ranging from t acre to 2 acres at some places. Hellothis attack evident by the number of bored pods. Common mixed crops were: wheat/chickpea, chickpea/linseed, chlekpeafmustard. Lathyrus not common in this area. Crossed river Padma by ferry. Entered Kushtia district. Canal irrigation-cumpower project near the river. Tobacco and sugarcane common on both sides of the canal. Whest and chickpea in higher elevations. Very littie scope for chickpea to eomplete with tobaceo and sugarcane.

Lesinniog of sessore disticict whent is frmauliy replaces by chickpee. and vest armes of chickpan could be seen. Jastort and farldpur districts sre the predominantly chigkpea growing areas, and shero wes sufficient evidence for chat. Surprisingly, Lathyrus was lass In thase areas. Common crep aixturet werechickpea/lentll, chickpedilinsest and chlckpea/ ment. Lentll was iso common os solt crop.

Jessore - Regional Aricultural Research Station

This is comparitively big ferm with 56 seres under cultivation. Solis ere loam and sandy latm. Ralnfall 1400 mm. soil pH7.5-8.0. Important rabl crops are wheat, potato, gram, lentil, lingead, black oram and cabbage.

Persons met: Mr. Mbdur mashld, S0. Vegetoblet
Mr. Shahzehan Alt. \$0. Entomology
Mr. Mbul Hossaln, S0, Farm
Mr. I.M. Bhulyan, 550, Entomology
Mr. Abu Bakr Slddique, $\mathbf{5 0}$, Breeding
Mr. Arwerer Karim, \$\$0, Agronony
Mr. All Ahmed, PSO and farm Incharge wes out of station.

Two chickpea silals for saft were to be planted here, but 1 was told that no such trial was plantad. There was multiplication plot of chickpea (local varitety) in abowt acre erea. Sown with one frigation and $\mathbf{8 0} \mathrm{kg}$ urea and 80 kg triple uperphosphatelecre. Two heavy ralns followe. and lead to excessive vegetative growth. Most part of the fiefd was dameged by botryils mavid. The crop had flowered normelly, but no podding. Alt flowers had dropped. On the wey the fermers fields had heatehy and well podded chickpea. With incidence of Botrytis confined to ereas with excessive vegetarive erowth in patches. In mose of the experiment stations vislited. people cended to give nitrogen and irrigetion to chlekpet. This Is one passon why growth is excessive in research stations comparted to farmers field. Mance, this practice should be discontinued, and the crop som towerds end of November, so get a nem-normal crop of chickpen at ehe research stations.

In contrast to the above, there was another experiment with a good crop of chlckpen - survey of insect pests of chickpen. plgeonpen and lentll. Sown 8 December 1980, local varlety. Mo fartillzer or Irrigation. Crop growth was good, and was in late flowering stage with good podding. Sone plants with chickpee stunt present. Heliothis was the major pest.

Fertillzer experiment on chlckpea (Soll chemistry department): Effect of W, P (two levels) and K with or without ZInc and Sulphur. Variety -Sabour-4; date sown - 11 Decenter 1980; R.B.0. with three replications. Control plot looked better; others had excess vegetative growth. Should avold N and Irrigation for chickpee experiments.

Hat Md. Axizur Rehman, 5SO, Cropping System Program of Bangladesh Agricultural Development Councll (BADC) who was on tour to Jessore to see on-farm trials. There are four regional research stations where the cropping system work will be inltiated - Jessore, Jamelpur (Mymensingh district), Ishurdi (Pabna district) and Hatazari (Chittagong distrite). At Jassore they are trying 3 systems - Potato-Maize-Transplanted Afin (rice)

- Mustard-Maize-Transplanted Aman
- Chickpea-Malze-Groundnut (no rice syst

This is the first year of study in Jessore (7 villages) and he felt that the result showid be encouraging to motivate farmers to diversify their cropping system from rice system.

Jessore-Faridpur

Again chickpea was more prominent, almost on equal footing with wheat. Sugarcine was more common near thenidah where sugar factory is located. Other crops were linseed and lentll, plgeonpea on bunds and small plots. Near Khamarkall shat (low lying area) rice becomes predominant. Farldpur district also had lerge areas of chickpea, as expected.

18 March - Farldpur

Persons met: Mr. Immm All, Deputy Director, BADC Farm (Mr. Billal Hussaln, Principal, AETI, was out of station)

Wet Mr. Ashutoth Sarker who was on germplasm collection mission with Dr. Mazrul Maque (islami). Flnanced py ifPcR. They hod a month long plan to cover all distrlets of sangtadesh. In the first 10 days they had covered the districts of dessore. Whulne and faridpur. They ape collecting permplasm for all cermels, pulses and ollsets. We should get ane set of all chichpan and pigeonpea collection (P.S: LJEM hes written to Dr. A.k. Weul to send the sends).

The 100-variety Coservation Trisl was conducted at Agriculzure Extension Treining institute (AETi) farm. The station had received heaw ralns 3 days ago. and many entries had lodged (sown mid-Movember). The crop growth was better. and the cultivars wera in late moding atege. Mamy lines had poor germinetion (because of pain-daneged seed from last yeer). Host of late maturing and 'open type' cultivars has lodged, while few unt ralla type cultivars were stending perfectly well. The following cultivars were very good in podding and had not lodged: $8-110$. p-272, P-4203. P-3249. P-4079, Erown leaf, 72-5 (ex-1CSN), Chafa-8-16, Re3p-451. MEC-760, L-550-2 and J6-62. Sabour-h local had moderately lodged and was good in podding. The above mentioned cultivars should be eviluated agein next year in as many locations as possible, and also used in crosses. (Ye will send a fer crosses with these for setection in Bangladesh.)

At chls station also botrytis mould was noticad, especially in tall grown and thick canopy plots. Incidence of chickpea stunt was low. There wasfdamege by Mellothit. postibly becouse of the two insecticidsl sprays given to the erop.
faridpor beim an limportant area for chichpea cultivation. It was surpristme*

 trefaliog in oestry NEँTI.

18 March - Faridpur-Gaolondoghat-Arichaghat-Joydebpur

From Faridpur to Gaolondo wheat and chickpea were more common. After thls wheat became predominant, and tobecco was also common. Chickpea and limseed could still be seen frequently, but pigeonpeas were occaslonal Small ferry crossing et Gzolondo. and big ferry over river Padma to reach Arlchaghat. Followed the sans isute, as on way to Ishurdi, for return Journey to Joydebpur.

19 March

Discussed my tour impressions with Dr. A.K. Kaul and his colleagues, and also regerding the breeding materlal to be sent from ICRISAT for further avaluation.

Visited chlckpea and plgeonpea pathology fields with Dr. Hamizuddin, Head of Pathology Department and Mr. Abu Bakr. Helped them in identitying disased plants (wilt and stunt) for photographs (photographer: f_{t}. Kaul). Wilt was rare, but stunt was common. The International Chickpea wilt and Root Rot Nursery was planted in a normal field as they do not have - wilt-sick plot yet. Stunt incidence more because of abundant aphid populations on green gram or black gram.

In the pigeonped field saw very good symptoms of witches' broom. Incidence was high. Very few plants had sterility mosaic.

20 March - Joydebpur-Dacca-Calcutta
Joydebpur to Dacce Airport with Dr. Wahhab. After reaching the airport learnt that the filght was delayed from 11.25 to 13.30 hrs . Reached Calcutta by 13.45 hrs, but the Hyderabad fllght had promptly taken off at 13.30 hrs . Stayed at Airport Hotel.

21 March - Calcutta-Hyderabad

Calcutca to Hyderabad by $1 \mathbf{C - 2 6 9}$; arrived 1555 hrs.

couping Reores

Eanduanh - 13 to 21 Fobruasy 1981.

Opfectives
To we chickpea triale and commercial erop in Bangladash.
Icfaerary

13 Pebruary	Hiacar - Deiht (Jbs)	Moad
	Hyderabed - Delhi (WR)	16440
	Pantragar - Deihi (TLN)	Road
14 Pebruary	Deihi - Dacca	TG304
	Dacca - Joydebpur - Dacce	Road

Stay Intercontinental fotel
15 Pebruary Dacea - Jamalpur
Jamiput - Joydebpur
Stay MRI gunet houme
16 February Dace - Saldpur by Alt
Saidpur - Dinajpur - Thakurseon - Dinaipur Doed
17 February Dinaspur - Saidpur road
Saidpur - Dacea By Mr
Decea - Joydebpur
Stay BAEI CR Joydebpur
18 February Joydebpar - Lehurdi Iaed
seay ball ch Ibhurdi
19 February Ishurds - Joydebpur Doed
8eay HapI Cx Joydebpur
20 Rebrutry Joydebper - Daces Eoad
Decen - De1hi IC 303
stay IIC
21 Pebruary Delhi - Iyderabed IC 439

13 February - Dacea

Dn arrival in Dacca we were met by Dr. A. K. Auckland and Dr. M.A. Wahhab, who accompanied us to the Intercontinental Hotel where we were accommodated for the first two nights. We found that our wisit coincided with a meting of the Commonealth Ministers of Agriculture.

14 February - Bansladesh Agricultural Reaearch Institute, Joydebpur

met with Dr. A.R. Kaul, Pulaes Breeder and Joint Leader of Pulses Improvemat Profect; Dr. K.M. Badruddoza, Director of B.A.R.I.; Dr. S.B. Than, Fhed of Division of Plant Breeding: Dr. M.A. Wahhab, Joint Leader of Pulses Improvement Project; and, Messrs Quamdal Islam and Ashutosh Sarkar, Pulse Breeders.
B.A.R.T. has headquarters at Joydebpur, 22 milea north of Dacca, four regional research centers, (Ishurdi, Jamalpur, Jessore, and Chittagong) and 14 aubcantere and has reaponsibility for research on all crops eacept rice, fute and augar cane. It also offers graduate and post-graduate degrees in agricuiture and is involved in on-farm triale and extensfion.

Soon after our arrival the Commonwealth Ministers of Agriculture artived, we wera introduced to these and foined them in an introductory talk, tour and field viaft. BARI ia relatively new with impressive buildings. Much of the land has been reshaped (by our D.N. Sharma) and although the levelling has been vell done the usual problems of soll heterogeneity on newly levelled land were evident. Most of the farm is on very heavy alluwial soils with a high and sticky clay content. Recent rains had ande most of the fields very wat indeed. In addition to pulses the fields were growing wheat and potatoes.

15 February - Joydebpur-Jama1pur

Prom Joydebpur mainly paddy area. "Boro" rice being transplanted. Clay soil - PH 5 to 6. Otherwise rice crops - type of teak, jack fruit, mango, Banana, coconut.

Then into area where wheat predominates. Other crops, in order of importance - barley, panicum, lentil, broad beans (small-black seed, giliothis feeding), potato, groundnut. Very little chickpea. Paddy infrequant - in valiey bottoms only.

Farmars plot of chickpea about 12 milea east of Tmgail - very wet moderate plent and growth - early pod fill. Eeliothig present in vegetative parts and feading inside poda - not a comwon characteriatic of II. ardigera. Alternaria leaf spot and stunt - but low incidence.

Farmers plot of chickpea mixed with little lentil. Bealthy and well grown with pronounced secondary branches. Low incidence Beliothis and stunt. Mid pod-fill.
 Indeed.

Demonetration plot of chickpea noer Jamipur. Eanal branching cypa poesibly Tadhey which hat haen imported by mabC. Just thowerins - traces Enliochis/scunt. Well nodulaced.
 Chowdiary. Stand in chiclepes triels was not pood. Poor pervination followed by Selarotin motifk - collar rot. No eign of pupariug vile. craces of etunt and Balionhat. In obmervation trial of too ilnea, mown on 1 December, earliest Ilnee just begmaing to flownr. Cood linea were P-619-1, P-4203, 3C-62, P-4968, ICCC 506-8, EB and 7381-Es-m. Otherw ehowed poor stand and/or grouch. Salaction eade from ICSN-DS at Inhardi and Jamipur in previous year had hown no germination at all.

Regional Iteld Trial (harge). Eleven entriete inciuding ICCC-3, Iccc-4, JG-62, L-550, K-850, Chafa, Annieari, Sabur-4, 7901, 7902, 7903 and 7905. K-850 and 7905 were good but reaules hould be interpreted with caution due to variable and senersily poor atand.

Other materiale were cropping tyetema trial of chickpea, whent, motard, sesammand 'aus' rice; fertiliser trial on chickpes, both using 8abur-4; and chickpea seed increase - Sabur-4, Faridpur-1, mutant 669 (from Faridpur-1). Also C-li rabi pigeonpea wultipilcation, in which botrytis was causing flower drop (sbout 50x) some Heliothe. Maruca tetetuinila, Exelastis atomosa, blue butcerfly larvac, fandide and chripa, yellow maic (iz) and eterility mosaic-like ympton mithough the latter could not be confiread without anderoscope to identify aites. Retional yield Trial (large) of Lethyres looked good and crop havithy.

16 Pebruary - Saidpur-Dignipux-Thakurison

Wth Dr. Xaul flew fron Dacca to Saidpur, then by road to Dinajpur. Between Saidpur and Dinalpur mainly whent with mome Lathyrue and lencil. In sons areas tobacco or sugar cane are iaportant. Much cuitivation in progreas for 'aus' rice and some juce. Chickpee infrequart and usumily intercropped on ridges with sugit cane in furrows. Fistonpen, large plante, commo hedse crop in compounds. Bemboo, coconut, banana, frequent.

Rajberi, near Dinajpur, is mubintion of BARI. Officer incharie Mr. Abu
 net Mr. Mleamah, Bcientific officer, Enteneion and Research; Mr. Wazed 411 Sheh, laving for Ithurdi, and wias Protime Fundu, who handles enteorology deta.

Seventy-ix expertuents covering 7 projecte. In chickpea, gends urre agaln poor - reduced germantion due to 3 days reinfall after sowing and eubeequent scienotits, enhanced by wet condition and paddy residues.

No Fugarium, traces of stmat and Biliothis. Stuating and reduced leaf sise my be due to Zn deficiency, gyptome of which were scen in mise. Soll analysis should be done. Solls hare are higher pil (6.4) and more clayey than much of Diasfpur District.

Trials included 100 line obeervation trial, nown 25 November and earlieat Just flowering but mont had not germinated. Bent plots were R-850, L-550 and Sabur-4. Regional Meld Trial (Large) somn 26 November but stands again variable mid generally poor. Iines in order of earilness ware JG-62, L-550, sabur-4 and ICCC-4 (78 DFF). Apparent spray (diazinon) dmange on $\mathrm{x}-8 \mathrm{sjo}$. Water requiremant of chickpea - no irrigation, $28+56$ days, $28+84$ days, $28+56+84$ daye. K-850 aown 29 Blovember - very poor mergence. Cropping pattern trial - wheat, mustard, gram, potato, groundnut following rice/rice. Chickpea sown 21 December - poor stand and growth - not yet flowering.

Thency four pigeonpea genotypes ex ICRISAT in replicated trial mainly harveated. Remaining plote (760018 and 760024) showing witchea brqoulike disorder on regrowth. Thript in flowers, much flower drop. Several of the pods contained podfly puparia which were black in color, markedly differant from the normal brown puparia of M.obtusa. Dr. Lateef hyd previously reported the phenomenon of black puparia in pigeonpea pods during a tour of Asam, but the flies which emerged from these werd aubsequently identified te being typical Melanagrouyza obtusa. Alsp irrigation trial on lentil and seed increase of Lathyrus (pahartail, Jamalpur, 3870) appeared good.

Agricultural Extension Training Institute, Dinejpur. Soils more saidy and with lower pH (4.8) Eypical of 75\% of Dinajpur District. ICPL-2, -4 and -6, T-21 and stiv-1 pigeonpes, sown 26 November not yet flowering. there were few pests except for jassids, but the crop had been aprayed with diazinon. Several plants had yellow circles on the leaves which baffled our diagnostic ability. Of the cultivars, $\mathrm{T}-21$ and BDN-1 looked good. Trials of forage potential of Lathyrus, mung genotypes for late sowing (27 November). K reaponse in lentil. Breeders seed of lentil, and seed multipilcation of pigeonpea, C-11 sown 27 November.

Ranpur - Dinajpur Rehabilitation Center, Thakurgaon. Sandy soil, low pH. In chickpea 100 line observation trial, stands and growth were rather better than at othar centers. Sown late October and many lines had been tlowaring for more than one month but little or no pod set due probably to exceasively wet and humid conditions as rainfall in January and February had been much heavier than normal. Botrytis cauaing at least part of flower drop. Rhizoctondia solanf, wet root rot, causing loss of atand in some areate. Good IInes include P-9803, and B-110, with pronounced secondary branching; ICC 506-EB-EB, P-3552, 7385-17-2-E-BH, NEC 355, P-9929, P-22-1 and P-108-1. P-6099, very poor.

Black grsan S-1 and T-9, sown 16 October mature. Pigeonpea, sown same date, food but showiag flower drop due to Botrvtis.

17 February - Ratbart-Said ar-Dacee-Joydebpur

Mabari. ICABM elaveath Ingional trial of barley - EETT-14 and LCB-41 drying with enpty hasd - takeall-ilk disuase. Aleo Enleipthosporiun though not aevers. Ratia and coaquest from Indla and Islampur (local) appeared sood.

Montpur - satdpur. Farmate plot chickpea intercropped with coriander. Early pod fill and appeared to be flowering and podding normally. Little Eliothis.

Fermers plot chickpea, intercropped with sugar cane on ridgee about 60 cme apart. Mixture of genotypee mostly proetrate, bael branching, small leaved with fow more eract typel. Flowaring just atarted. Little Heliothig.

Plot of pigeonpea tall, kharif somn. It had been damaged by Maruca teatulalis earlier but had been left and was bearing a good compensatery fluah of pods. Pew podfly were eeen in these pode. Botrytis on il lovers ves evident.

Flew Saidpur to nacca then to Joydebpur.
On our return to Dacea we were able to meet the Miniater of Agriculture, Major General (Retired) Nurul Islam. He told us of the probleme that Bangladesh faced in Agriculture, with instability of production and marketing being mator constraints. This year is likely to be very good for rice and wheat and a surplus is expected. Such a situation is very unusual in this country and there will be problews in marketing and storing such a crop. Be told us that he requires further assistance in research on pulses and sroundnuts, both of which are in limited supply. He hopes to be invited to visit ICRISAT. He told of a rather chaotic situation in pesticide marketing and distribution for earlier, insecticides had been distributed free and this lead to a great deal of adulteration and wastage. Large volumes of dangerous outdated penticidea are causing diaposal problews. The pesticide reaponaibility hat now been handed back to coumercial firms who will be responaible for development, distribution and sales.
B.A.R.I., Joydebpur. In the chickpea, grouth wat rather variable, probably a result of soll heterogeneity. Most of the recent flowers had not iet pods, probably becauae of the receat rains and high humdity and several of the flowers were cowered with fuagus (Alternaria). There were only tew Beliothly larvae, but the selentiste eald that they remove by hand any they see.

In ICCT-DS, growth alons east side was poor i.e. beginning of the four replicates. Field plan mas not available but plote 105, 106, 109 and 216 appeared very grod. Many of the lines were too late for theas مr 1ri.).

In ICsif-Ds, plote 107, 108, 117. 118, 127, 128, 137, 138, 147, 148, 150, 151, $160,161,170,171,180$ and 181 were unbordered so yielde should be treated with caction. Plot 128 -G-130 quastionable - too early and doublepodded. JG-62 and plote 133, 134 and 139 were noted an excellent. Eigh proportion of lace lines.

Other ICRISAT meterials included $130 \mathrm{~F}_{2}$'s of which 850/CPS-1/P-378 and L-550/B-110/Annigeri combinations were good, compared with Sabur-4; the local check, which was later and poorly grown. P3 trial had very patchy growth but 104 wat segregating aarly plants. Selected aingle plante tobe grown as F3 progenies in 1981-92. Materials obtained from Eissar were such too late.

ICRISAT F_{4} 's had been very late in 1979-80. F5 bulke had given very poor emergence due to weterlogging this season.

Regional Xield Trial (large) - very pronounced gradient along replicates whth poor growth at south whll confound interpretation of results. Would have been better had replicates been 'blocked' rather than sown as frips.

Regional Yield Trial (small) - 51 entries but has in fact been sownas three separate randomised blocks and must be analysed as such as th re is again a very promounced gradient with poorer growth in the comparisho of Entrice 1 to 17. Moat of the early entries were among these. JG-7/, P-436, ICCC-1, NEC-750 and 7357-22-B-BH were excellent. Entries in order fre:

Gesmplasm evaluation - 80 eatries - mainly kabulis from ICARDA but 20
from ICRISAT germplaam. Earliest is Bnrigantas from Gajarat which flovered in 33 days. Very poor emargence in some plots. In 100 innes observation trial stand and grouth were patchy but geacrally poor. Forty-one lines sent through USA from Washington were all late and etraeoly and obviously of little value for these conditions.

18 Pemany - Jopdebore - Ihmodi

By road and giver ferry with Dr. Wehhab. Joydebpur to Decca/Arfich hoad. Faddy area with teak pleatítion mindiar to area described on may to Jimalpur. Aloug Dacea/ariche moad minly wheat belt. Laclorrus extromaly important in oome arem where it occupied up to 70 X of area. Beins grezed by animale. Oeher crope ate mastard, linacod, tobecco, berlay, lmatila, chickpea, bromd beans, corfimeter, potatons, sweat potatoes in approximate order of tmportance. Mertard moit often intercropped Lithyrve, ilneed ond chicicpea and being harveated.

Siadar pattern occure aleo betwean Magarbari and Ishurdi. Lentils and Lathyrus irequently intercropped with lineed and berley and chickpea with bariey. Linseed wery important.

In farmery plot near Pabna, chickpea intercropped with barley - poorly grown. Early pod-fill. More gellothig larwee and pod damage than seen previouly. Pungue on dead flowerl with pod sat generally very poor.

Eshurdi-Regional Research Scation of B.A.R.I. Officar-in-charge Mr.Ashreful Isian. Station vell organised and maintained. Also met Mr. Abdul Khalequa and Mrs. Monira Iegum.

Chickpen trials vere mowing extremely vigorous and uniform vegetative growth with flowering tivet commencing in earlleat lines. No ilgn of Beliothil. Botyytis grey mould was evident on flowera and evera on foliage on one early som plot of Pabna local. Incidance is increased by too much vegetative growth which has occursed in very wet conditiona encouraged by irrigntion, given at 25 daye nfter sowing.

In ICCT-DS, sown 28 Hovamber, wost lines cormencing floveriag, facluding the local check, Pabna local. Tip dietortion obeerved on some lines -K-350, 78023, 79073. Previously obeerved by Drs. Nene and Green but causal ageat not identified - appears to be associated with R-850 but aleo seen on Sabur-4.

ICSN-DS, sown 1 December. Derandondsed with 2 repa, and 1 row par plot. standard chacks eom only once inatead of after every 10 entries. Plots 108, 132 and 139 mabordered.

Regional Yield Trial (omil) - agnin laid down an three eaperate exiale and should be analysed as euch. Sown 27 Movember and aarliest antrios Elowering. Botritis indide plant canopy. L-550 bas gervornated poorly in all three replicates.

Regional Yield Triel (larte) - aowa 20 Movember. Iip dietorrion on M-850, 8abur-4 and ICCC-3. All ifnes flovering axcept 7909.

100 line obeervation trial - mown 19 Movember. MEC-45i compnct groweh. Bergence and growth excellant le plot: 1 to 65, 77, 94-100. Remaining
plots - emergence absent or very poor. A trial to acrean fungicidet for Ascochyta blight control had been damaged by rats and had poor growth and stand. An early November somn meltiplication of Pabna locml uhoued aevare Botrytis. Thare were ofher multiplications of Pabna local and one of Radhey.

Lentils included 100 entry obsarvation trial with three replicates, Montly ICARDA germplaem from India and Iran other ICAROA materials having proved to be too late in 1979-80. Several lines - 1705, 1706, 1708, 1710 and 1717 - had falled to germinate in all three repe. 2487.ex India was ahowing severe Botcytis. Trial not randomised. Also multiplication of Pabns local and 19-12 both rather earlier than the ICARDA materials.

A small tifial of pigeonpea was to be harvested next day. This had been sown for the kharif and was more than 2 m tall. Several pods had all of the seeds damaged by podfly (with black puparia). Bunchy growth on some texminals with yellow small, leaves was probably caused by fassids which ware present in large numbers. In the evening some of the flowers rere litarally covered with thrips. Two plants showing typical wilt symptoms were observed.

A groundnut trial (test of fungicides against leaf spots) had many whitefly (said to be Bemiaia tabaci) and some thrips. Little dise was aeen.

19 February - Iahurdi-Joydebpur

Farmars plot chickpea - 5 miles SE of Aricha. Well grown, mid pod- 11 but flowering poor. Botrytis on flowers and follage and causing floper drop. Little Heliothis camage. Genotype predominantly basal branching.

Fatners plot chickpea - 20 wiles from Aricha. Intercropped with mustard, poor stand but well grown. Mid pod-fill but pod set poor due to Botrytis, on flowers and foliage.

20 Pebruary

Dr. Reed visited the Entomology Division where Dr. Idris Ibn-Al-Azim is acting head during the absence of Ameerul Islam who is in the Philipines finishing a Ph.D. on the biocontrol of stem borer. The Entomology Diviaion has a total of 12 entomologists at the Joydebpur headquarters and other entomologists posted to the regional centers. Responsibilities are genarally divided on a crop basis, but with some working on purely toxicological problems.

Hellothis armigers was not listed in any records but H.essults was (frow tobacco). Another lepldopteran borer of black gram was Ifsted as Reliothis sp. but it looked to be most unlike other Hellothis spp. Some other insects were not correctly identified.

The Diviston is curractly baing reorganised, with movement of booke and materiale. THe insect collection hat decertorated very bedly, with most of the soft bodied lamects having been catem may, leaving a pin and label. Yoat of the antomologtete charefort have no meane of Identifying thatr pest insects. Rowevar, two acientists have recently returned from a course at the Commomealith Inctitute of mintomology, London whate they laurned the techalques of tasect preservation and identification and eo it is hoped that it will nom be posesible to rejuvenate the reference collection.

Bangledesh has barmed DDF and some other chamdcale, and soveral of the other cheap and effective chantcala are not avallable. A dectaion to ben Dor in Bangladach at this time way not be in the best intereste of the people for it is the cheapeat and most effective peaticide where it has bean overused. Bansladesh doas not need to usa very toxic and/or very expensive pesticides while the old cheaper pesticides are etill effective.

Dr. Mene wisited the Plant Patholosy Dfviation and held discuasion with Dr. Handruddin, Acting Bosd, and Mr,Abs Bakr, formarly a pulee pathology tralnce at ICRISAT. The work ie pathogen orimed rather than erop disease orientated. The division naeds considerable otrengthening by way of equipesenta and additional training.

In the afternnon ve flew back to Delhi from Dacca. We ware taken to the afrport by Dr. Kaul who lonked after us very vell throushut our etay. Dr. Kaul's enthasiasm is undoubtedly havinf a very large beneficial effect in advancing the pulse program in bangladew. We were not convinced that either chickpea or pigeonpes will become the dominant pulse in the country for Lathyman and lentila are very popular and relatively easy to grow in the humid conditiona there. Rovevar, there is obvioumly a raady market for our pulses and subetantial production of chickpas, and wa ahould continue to auppnrt the Bangladeah efforts.

TRIP REPORT
Trip to bangledosh
Parch 16-24, 1980
Jupdish Kumax

```
Places visited: , ngladesh Agricultural Research Institute (BAPI),
    ydebpur
    agladesh Agriculturel Research Council (BARC), Dacca
    AI Regional Research Station (RRS), Ishurdi
    ! stitute of Nuclemr Agriculture (INA) experiments
    3nted at the Sugarcane Research lnstitute (SRI),
    lmurdj
    F IRL Regional Research Station, Jmamlpur
    I A experiments planted at Jamalpur
```

Persons contacted:

BARI

Dr. A.K. Xaul, Vorld Bank Consultant 8 Joint Coordinator Pulses
Dr. K.M. Badruddoza, Director
Dr. S.H. Khan. Professor \& Coordinator, Pulses
Dr. M.A. Wahab, PSO, Breeder
Mr. M. Quadir, SO, Breeder
Hr. Q. Islam, SO, Brooder
Dr. Khaleque. Oilsceds Bracder
INA
Dr. M.A.Q. Shaikh, Breder
Mr. Hyder Alt, Field Assistant
Mprnondte Central Comaittee (MCD)
Mr. R.P. Dick
BARC
Dr. Musiehudin Ahoed, $1 / \mathrm{c}$ Member Director

Bengladesh Agricultural Lniversity (BAU)
Dr. 2.H. Bhuiya, Soil Scisrce
Dr. L. Rehman, Brueder
Dr. M. Karim, Agronomist
Dacea Luiversity
Or. A.S. Islam and his studeats.
Ministry of Agriculture, Bangladesh
Maj. Cenri. (Retd.) Nurul Islem, inister of Agriculturi
Dr. Iqbal, finister of State for Agricuiture
BARI: RRS, Ishurdi
Dr. Ashraful Islam, PSO (Breeder)
Dr. M.A. Khaleque, 50
SRI, Ishurdi
Mr. Dilwar Hussain, Agronomist
Dr. Hamid Miah, PSO, Entomologist
BARI: RRS, Jamelpur
Mr. Fariduddin Miah, SSO, Brecding
Mr. M.D. Alamgir Itiah, SO, Breeding
Mr. Surjya Karta Saha, SO, Breeding

Summary

Coordinated effort for the improvement of chickpeas at BARI is a welcome initiative.

Chickpeas almost always follow rice so development of package of practices for this rotation is necessary.

Short to medium duration cultivars perform well in Bangladesh; this has been characterized by ICRISAT nurseries, ICCT-DS and ICSN-DS. Introduction and adoption of such cultivers should be beneficial.

With present growing corditions and management, it is unlikely that long duration desi types and kabuli types can make a headway.

Disaases idantifiad by Dr. Nenc and chickpon rust (Yroeyces sp.) anu a potentiai threat for tho production of chickpoas in bangladush.

Training of porsonnel in chickpea crop imprownont work is likuly to prove buneficlad.

Improvement in saud he ilng and storago facilitios naels t bo tono.

1 was invited to visit International Chickpon Nursorios and othor chickpow anturi:1 i.i Eangladush hy Or. ...K. Xail, Ifr. Richard Dick (ACC) and Dr. M.A.Q. Shadh (IN:) tc issuss tho variatal picturu of their chir.! imp reant pulse crop. © r . kaul coordinatud ny erip.

We have provided 159 CB dinus. 16 olitw culeivars, 2 sets of ICSN-DS and 159 tall advancod braoding strains to Dr. A.X. Ksul. This matorisl is planted nt soveral locations. Their local cvs aro Faridpur-i and Sabour-4. They have rathor limitud variability in their locsi collactions mich thoy have colluctod and had planted 47 strains on thoir farm.

BARI-Joydebpur

They had planted 1 row each of 159 CB lines and a replicatod tial of 16 elite cultivars in the last weck of Novembor. P-436, ICCC-3, Chafa, Annigeti and JG-62 uppared pronising. A fivo-culcivar trial of strains salected from ICCT-OS sont by ICRISAT in previous years showed that two ICRISAT lines. 73167-5-3-8-BP (JH-62 \times C-496) and 73114-16-2-2P-BP ($850-3 / 27 \times(\mathbb{O}-5 / 7$), and cultivar $850-3 / 27$ wore performing woll. ICRISAT crials conducted by MCC last year showed that thesc yioldad woro than twice as much as their loeal cvs. Bangladosh organisations are proposing to multiply and import larger quintitios of seods of thoso lines. Cultivar P-324 was good but showed indoreminate growth probably baceuse of late rains.

Thay have tirive ICNROA nurserizs: Chickpos Regional Nurscry (CRLJ), Chiekpen International Screening Nursary (CISN), and F_{4} yiold trial. Some ontries in CISN were promising but the best oppearing one NEC- 1091 was dest type. Most of the matorial was late in maturity and my not be suitable tor those conditions.

In \boldsymbol{I} y view short to modivi duration strains appared promistig, al though in Decomber 12 som material only short duration lines showod promise. Considering the tupartance of rico in Bangitadoth, chiclypess will almoet aiways follow that crop in roctition. Sonetimes tho land is under vater and is not availeble uril very isto, say early December for chickpea sowing. 1 discussed this with Dre. Kawl and Khan and they have agreed so condict studies on this appect.

As mentioned in Dr. Nenc's report (January 1980) I could see zinc deficiency symptoms, collar rot (Sclerotium rolfsii), and root rot (Rhizoctonia solani) The plants having fron deficiency may have already recovered by the time of my visit.

I observed chickpea rust (Uromyces spp.) rather widely although the intensit) was not high. In some cases almost half of the dorsal surface of affecte! wa was pink $n d$ the vontril surface full of ruptured pustules. Considering wart humid conditions in Bangladesh if maturity of the crop is delayed rust cin possibly be an important disease. The disease could be seen on local and other material.

They found a very big leaved compound leaf plant in Chrysanthifolia variety from Maharashtri. It was flowering bet not setting pods. By its stature it could be a polyploid. They have put one of these plants in $=$ glass hous.

Dr. Kaul arranged my meeting with Dr. K.M. Badruddoza, Director, ARI. Wo discussed chickpea inprovement program in Bangladesh. He was quite appreciative of ICRISAT's help in this direction ard assured Dr. Kaul all administrative help in his initiative for improvement of pulse crops.

Personally I feel that administrative setup for the improvement of chickpea crop in Bangladesh is good. I met scveral newly appointed scientific officers for pulses at various stations. However, most of them would nced some exposure to a good chickpea improvement program to be more effective in their new jobs.

BARC

I was invited to attend a meeting on pulses called by BARC on March 20 , 1950 under the Chairmanship of Or. Mushlchudin Ahmed, l'ember Director Crops. It was attended by the represontatives of organisations involved in pulse improvement work in Bangladesh. They fixed priority in various pulse crops for identifying high yielding cultivars, management practices and prevention of losses by pathogens and pests. Dr. Kaul's proposal for allotment of US $\$ 200,000$ for pulse research was approved. There was great debate on US $\$ 350,000$ proposal for soybean research, which was not approved. The reason given was that soybean has much less acreage than even the minor pulses. The coordinators were asked to prepare plans for increased emphasis on high yielding cultivars, low toxin content (in Lathyrus) improved management and disease and pest resistance in Eathyrua, lentils and chiclepers. They were highly tppreciative of ICRISATH 3 roie in chickpea inpeoverient in, Bung hadesh and ithe chaimuan made appef al mention of fithat in the meting. I assurted them of ICRISAT's contimued cooseratiom for chickpea improvemeat.

On March 21 I had an opportunity to meet with Maj. Cen. (Retd.) Narnil Islan, Bangladesh Minister of Agriculture, and Dr. Iqbal, Minister of State for Agriculture. Mr. Islamemasised the need for increasing pulse production
in Borpladesh and was very hapy t le lenm ef tcrisit's wole in helpino Bannlodesh achieve their objective. He nssured or. Kaut of all posisible thip and in fact ageod to d 1 d m lagne dapurs of chickpun suod from ladia, wich his shiwn food purformince in suvoral parts of Bancindosh.

3ARI-RPS, Ishurdi

The crep was in potding stape. Chickpen trials were prown in fiche that
 (On chickpen crop). Thirewas e" rich vonctative pewth ard crop had

 ar. ifne. Thure was sene recovery in plant prowth.

The ICSN-DS supplied by ICRISit was planted as sinfle rows in two roplications, rather than ewc riw plets as suppostud by us. Nest ef the untrios appeared gord but it was too early to mince a visuni estimate of thuir perfirmance. Onie hundred and fifty-nine tall type breeding linus frem ICRIS:T were grown here. Hist of these had arown cover cne metur tall bucauso of high inputs as mentioned oarlier.

1:in meturigl at Bind, RRS and SRI
They have ICCT-DS with li entries and 4 ruplications. The crop was still greer. The ICSi-DS with 81 entries was planted as S foct rows in two replications. Cr. Shaikh was not there and I could net decode his labels. However, entry nes. 122, 134, 173, 176, and 177 warc vary premising. The last tw: were JG-62 and P-436 and appuared bust. In the 118 germplasm entries rics. 91, 116 , and 113 had very pocd podding.

I als saw suparcani-chickper inecrercpping, chickpoa had very pood vegetative orowth. 'I culd sec rust pustules and sone killing by roct rot. If the crop is not affect "by diseases, one culd expect a good chickpoa crop there. There was med nedntirn f chickpos in the inturcroppod ares.

There was a trial at Ishurdi whure plots of only desi check Faridpur-1 existed, $n=$ trace f other cultivars. I was t ld that the other material was white scedod and did not gorminato. 1 onquirod abcut the seed storage and i: mpoared thar the seed of the whits seeded cultivars was storod in tins and it culd have had mon moisturc at harvest time which resulted in seec inviability. In Bareladesh, in goneral, rains come early and drying of seed properly is a problem and there appears to be considerable loss in viability of seed.

Bruchids seem t : infect chickpeas in the ficld itsolf, but the aajor infacticn is in stores. I sugeested naphthalene bells be put in proporly tried seed.

BirRI-RRS, Jamalpur

It is another good place for rabi pulses. There was one set of ICSH -DS anti 107 other lines. Everything was planted in two replications, plot size was 1 re 5 : $:$ ne. The crop was in the poring stage. Here again early entries wert perfuming well. Thu sat- of planting was :tveitbor 11.

They had planted an irrigation and foridizer experiment with their local cultivar Siour-4. There ajpuarwit be nu apparent effect en nitrogen. There was more rust on irrigated then on unirwigotel plots.

Ir goncral root rot was a problem. ficulntinn was good. Ir. Alamgir :4 aah informer min that he bsurvel ratan nolulation in N20 and $\mathrm{P}_{2} \mathrm{O}_{5} 40$ doze.

INA Exivribonts, Jaraifur
Dr. Ji.̂.Q. Shaikh had planted some cf his mutagen treated chickpea material. the germination was very pour an: plant growth was stunted.

Dr. Shaykh claims t: have developed a chickpea mutant (Y rays) I in from Farípur-1, which has 4\% higher protein and 19\% higher yield than the parental line. The seed sizo appeared to be small.

Pigenpeas: Forty-six lines from ICRISAT were grown at Joydebpur. Prabhat All BDN-1 wore promising. Some plants were affected by a disease. The symptoms were: small leaves, light green in color. The leaves were thin and leathery. In some other planes leaves were chewed by insects probably hopper (green in color).

December-sown ICPL-4 had good podding and was about 25 cm tall, while Juneplanted was very tall and hat only a few pods.

Fifteen lines which wore segregatiar were being advanced by selecting individual plants but there was no pollination control.

Dace a University

On 23 March Dr. A.S. Islam, Professor of Botany, who had got some chickpea seed from ICRISAT, invited me to see his students'material. The material was still green. They had rather low success with seed setting in crosses. I show ad than how to make crosses and explained the environmental conditions conducive for higher seed sut. On the request of Dr. Islam I gave a seminar tu the postgraduate students on Chickpea Breeding with special reference to Breeding for Disease Resistance.

AC,
I was unable to visit Bad, Mymensingh and/Feni, Dist. Noakhali, where also our trials are located. Fortunately for me, Dr. M.A. Karin (BAU) and Mr. Richard: Dick (MCC) were present at the Bi RC meeting on pulse improvement in Bangladesh and I had fruitful discussions with them.

