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Abstract

Full yield potential of any crop cannot be harnessed completely due to several 
challenges such as biotic and abiotic, faced by the crops at various growth stages. 
Biotic stresses caused by viruses, bacteria, fungi, pathogen, parasites, pests and 
weeds pose major threat to sustainable productivity by reducing yield from 30% in 
general to complete yield loss in some severe epidemic cases. Crop protection 
measures for safe-guarding crops such as use of synthetic pesticides, weedicides, etc. 
have largely beenlielpFul in curtailing the losses, however, their haphazard use have 
caused adverse environmental and health hazards. Genetic alternatives such as 
introgression/pyramiding of genes/auantitative trait loci associated with resistance 
to target pest and diseases, on the otner hand, is much ecological and eco-friendly 
approach. Although, there are several biotic stress agents for any crop, however, only 
a few pests or diseases cause major yield loss. It is beyond the scope of this review to 
cover all the pests and diseases affecting all the crops, thereby, focus has been given 
on major pests and diseases of representative crops such as rice (cereal), chickpea 
(legume) and tomato (vegetable). Special emphasis has been given on the current 
status and future prospects of deploying modern breeding approaches for developing 
improved cultivars with high resilience to major biotic stresses in order to achieve 
maximum genetic yield potential in all the crops.

Key words : biotic stress, disease resistance, genomics-assisted breeding.

Resume

Ravageurs et m alad ies : anciennes el nouvelles m enaces — Les outils m odernes de  selection  
pour confectionner de  nouvelles varie tes de p lantes adoptees

Le plein potentiel de rendement d'une culture ne peut jamais etre totalement atteint du 
fait de plusieurs obstacles tels que les contraintes biotiques et abiotiques que 
rencontrent ces cultures aux differents stades de croissance. Les stress biotiques causes 
par les virus, bacteries, champignons, pathogenes, parasites, ravageurs et 
adventices representent un probleme majeur dans la recherche d'une productivity 
agricole duraole, en reduisant les rendements de 30 % en general jusau'a la perte 
fotale de la recolte dans certains cas d'attaques extremes. Les mesures ae protection 
des plantes telles que I'usage de pesticides et herbicides synthetiques ont permis de 
reduire les pertes mais leur utilisation hasardeuse a cause des dommages sur 
I'environnement et pour la sante. Des approches alternatives basees sur la genetique 
des plantes comme I'introgression, le pyramidage de genes et la selection par QTL 
(quantitative trait loci] de varietes resistantes aux maladies et ravageurs sont plus
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ecologiques. Meme si chaque planfe est confronfee a plusieurs types de stress 
biotiques, seuls quelques ravageurs ou maladies causent des pertes importantes de 
rendement Cet article ne se veut pas exhaustif mais se focalise sur les principaux 
ravageurs et maladies de cultures representatives comme le riz (cereale), le pois 
chiche (legumineuse) et la tomafe (legume). Une attention particuliere a ete portee sur 
la situation acfuelle et les evolutions futures du deploiement des outils modernes de 
selection des plantes pour creer des cultivars ameliores tres resistants aux principaux 
srress biotiques, comme reponse pour atteindre le potentiel maximum de rendement 
pour toutes les plantes cultivees

Mots cles : resistance aux maladies, selection genomique assistee des plantes, stress 
biotique.

A t the turn of the mid-century, 
world population is expected 
to reach nine billion (UNDP,

2006) thereby, pressing the demand 
for more food and fodder (Lutz and 
Samir, 201 0). Since, the majority of our 
calorie intake is obtained from cereals 
followed by legumes and vegetables, 
major contribution towards world food 
security is expected from these crops 
(Bruinsma, 2009). An obvious solution 
to attain this higher demand is through 
either expansion of the cropped area 
or increased productivity. However, due 
to continuous constraints on natural 
resources because of population pres­
sure and varying climate change sce­
nario, increasing crop area is not a 
realistic alternative in near future (Wall 
and Smit, 2005). Hence, the only 
feasible alternative left for sustainable 
agriculture is to increase the overall 
crop yield per unit area on the available 
agricultural land. Crop specialists all 
over the world are putting great effort in 
increasing the yield barrier. However, 
during the last decade there has been 
stagnation in yield increase in several 
important crops such as rice, wheat and 
maize. Legumes on the other hand not 
participated much in the yield increase 
per unit area. Apart for the struggle 
towards breaching the yield barrier, 
another way to increase yield is to put 
much greater effort towards protecting 
the yield loss through making crop plants 
more resilient to different stress factors. 
Nowadays, crops face countless chal­
lenges in the form of insects attack, 
pathogen infection, drought, and tem­
perature fluctuations due to climate 
change. If pest related losses are taken 
into consideration, it contributes to 1 4 to 
25% on average of the tutal global 
agricultural production (see DeVilliers 
and Hoisington, 2011). Estimated losses 
due to pests among some major crops 
were estimated to be 26% for soybean. 
28% for wheat, 31% for maize. 37% 
for rice and 40% for potatoes (Oerke, 
2006; Oerke and Dehne, 2004). How­

ever, crop losses in the range of 15-30% 
against pests are known in cotton, 
chickpea, pigeon pea, tomato and 
sunflower (see Dhaliwal et al., 2010). 
Furthermore, losses due to pathogens, 
animal pests and weeds were estimated 
to be 16, 18, and 34%, respectively. 
While synthetic pesticides have pro­
vided effective control over many pests, 
their continuous and indiscriminate 
use causes various adverse and harmful 
effects on environment along with develop­
ment of pesticide resistance in pests 
and pest resurgence (Sharma et al.,
2008). Since pesticides are not specific 
to a particular type of organism, many 
non-target organisms are also killed 
during crop protection exercises. In 
addition, pesticide residue in food causes 
health hazards in humans. It is estimated 
that around US$ 1 0 billion of pesticide is 
annually used for crop protection (Oerke,
2006).
A much ecological and environmental 
friendly technology towards crop protec­
tion is to make cultivars resistant to 
various pests and diseases through intro- 
gression/pyramiding of genes and quan­
titative trait loci (QTL) controlling these 
biotic stresses. The genetic alternative has 
a significant role towards integrated crop 
management (ICM). Advances towards 
plant genomics approaches in this direc­
tion, including modern genomics and 
genetic engineering technologies have 
opened up new avenues for plant breed­
ing. In this context, genomics-assisted 
breeding (GAB) has emerged as a 
powerful tool for breeders for enhancing 
genetic gain in crop breeding in less time 
and more accuracy. However, there is an 
urgent need to reduce the obstacles that 
bounds the routine implementation of 
complex genomic datasets by breeders. 
Part of the solution lies in the capacity 
building for next generation breeders in 
utilization of modern breeding appro­
aches in order to integrate basic and 
applied genomics for developing imp­
roved cultivars. This chapter discusses 
some modern breeding approaches and

successful examples wherein these 
modern tools have been used to develop 
improved varieties with special reference 
to pest and diseases.

Challenges in crop production: 
pest and disease resistance

Plant pests/diseases have been continu­
ously posing serious damage to crop 
plants with their dynamic evolutionary 
nature. Although disease control mea­
sures were partly successful for some 
crops for few diseases but plant host- 
patnogen based resistance emerged as 
the best available sustainable option 
which avoid use of hazardous chemicals 
and hence are eco-friendly. It is esti­
mated that diseases typically reduce 
plant yields by 10-20% each year. A 
plant shows resistance from preformed 
defences and infection-induced respon­
ses and the disease outcome is deter­
mined by the three-way interaction, i.e. 
pathogen, plant, and environment. Large 
variation for resistance has been obser­
ved among the crop specific-gene pool 
and resistance is usually pathogen 
species-specific or pathogen strain-specific. 
The other is a parasite gene called the 
avirulence (Avr) gene. Plants producing a 
specific resistance (R) gene product will 
show resistance against a pathogen that 
produces the corresponding avirulence 
(Avr) gene product. The two majorclasses 
of resistance gene namely NBS-LRR 
R-genes with a nucleotide binding site 
(NBS) and the cell surface pattern 
recognition receptors (PRR) R-genes with 
a ieucine rich repeat (LRR) piay important 
role in host-pliant defence mecnanism 
(Song etal., 1995; McHale etal., 2006). 
Some of the major challenges for crop 
production have been discussed in 
three crops namely rice, chickpea and 
tomato representing cereais, legumes 
and vegetables in this section.

262 Secheresse vo l. 2 4 ,  nc 4 ,  o c to b re -n o ve m b re -d e c e m b re  2 0 1 3



Rice

Rice is a staple food crop for more than 
half of the world's population. Due to its 
wide cultivation across several ecosys­
tem and geography, it invites numerous 
biotic stresses in the form of viruses, 
bacteria, fungi, parasites, pests, patho­
gen and weeds. Insect pests cause more 
tnan 25% yield loss (Dhaliwal et a/., 
2010). Among diseases, the three most 
devastating diseases of rice are bacte­
rial blight, blast and sheath blight. 
Bacterial blight caused by Xanfhomonas 
oryzae pv. oryzae (Xoo) is one of the 
oldest known diseases of rice. When 
plants are infested by Xoo, it can cause 
yield losses in the range of 20-30%, 
which may sometimes go up to 50% 
(Mew, 1987; Ou, 1985). In young 
plants, the leaves show peculiar symp­
toms called as 'kresek', wherein water- 
soaked pale-green streak are formed 
near the margins and tip. These 
streaks later coalesce and develop into 
yellowish-white and wavy edges. The 
whole leaf of the susceptible cultivar may 
wilt, leading to drying up and death of 
plants. In older plants, leaves become 
yellowish, w ilt and dry (Swings et at., 
1990). Another important disease of 
rice is blast caused by Magnaporthe 
oryzae, a plant-pathogenic ascomycete 
fungus, which can cause yield loss of up 
to 50% annually (Scardaci etal., 1 997) . 
Early symptoms of rice blast are areyish 
spots with dark borders on afl parts 
of shoot and leaves, which grow into 
whitish-grey spindle-shaped lesions with 
necrotic borders. If not controlled, the 
lesions may expand, coalesce and kill 
the leaves (Jia et at., 2000). Sheath 
blight, caused by the soil borne fungus 
Rhizoctonia sotani (Kuhn.), is one of the 
major diseases of rice. Yield losses of 
more than 50% have been reported 
(Chahal et a!., 2003) in high-inputs 
rice production areas. The symptoms of 
sheath blight appear as a grevish-water 
soaked lesion on the sheaths of leaf. 
These lesions enlarge quickly having 
uneven dark brown margins with whitish 
centre, giving it a snake skin look. At 
advanced stages of infestation, the 
lesions coalesce and girdle entire culm, 
leaf sheath, flag and boot leaf, encircling 
tiller to death.
Major pests of rice are planthoppers, 
gall midge, stem borers and leaffolders. 
Among planthoppers, brown planthop- 
per (BPH) Nilaparvata tugens (Stal. 
and while backed planthopper (WBPH 
Sogatella furcifera (Horvath.) are of 
importance. Plant hoppers suck sap from 
the phloem vessels through their sucking 
mouth parts, thereby making plants

devoid of food which results in wilting 
and drying of the entire plant (Bentur 
eta!., 201 1). Furthermore, BPH being a 
vector of rice ragged stunt virus and rice 
grassy stunt virus, the damage increases 
when insect and virus attack combines. 
It is noteworthy here that another impor­
tant pest of rice, green leafhoppers 
Nephotettix spp is a vector of rice tungro 
virus. Rice gall midge, Orseolia oryzae 
(Wood-Mason) is emerging as a major 
pest and causes silver shoot of paddy. 
Another important pest of rice is yellow 
stem borer [YSB), Scirpophaaa incertulas 
(Walker.). YSB infests at all the stages of 
plant development, however maximum 
damage is observed at panicle exertion 
stage when the larva bores into the 
plant feeding on the growing tip. Among 
rice leaffolders, Cnaphalocrocis medina- 
lis (Guenee.) is the most dominant and 
weil-known species in Asia, other species 
which are less predominant are Maras- 
mia exigua (Butler.), /VI. exigua and 8. 
arotraea (Bentur et at., 2011). The 
leaffolder larva causes damage through 
a peculiar mechanism. Firstly it folds the 
rice leaf, and stitching both the leaf 
blades together, secondly it feeds the 
green mesophyll tissue by scraping with 
rne fold (Bentur et at., 201 1)

Chickpea

The important biotic stresses affecting 
chickpea are ascochyta blight (AB), 
fusarium wilt (FW), botrytis grey mold 
(BGM) and pod borer (PB). AB caused 
by the fungus Ascochyta rabiei (Pass.) 
Labrousse, is one of the most devastating 
disease and can even cause complete 
yield loss (Singh and Reddy, 1996). 
Early symptoms are wilting of individual 
plants or group of seedlings, leading 
to drying and death of plant. On leaves, 
pods and stems, circular patches having 
greyish centre with brownish margins 
can be seen (Pande et at., 2005). 
Fusarium oxysporum f.sp. c/cero a soil- 
borne fungus causes a devastating dis­
ease, FW in chickpea with a yield loss of 
up to 90% (Singn and Reddy, 1991). 
It is vascular disease which causes 
blackening or browning of xylern, leading 
to wilting and death of the entire plant. 
BGM caused by Botrytis cinerea Pers. 
ex. Fr., is one or the main foliar disease 
(Pande et at., 2006). Drooping and 
breakage of the intested terminal bran­
ches is a common symptom of BGM 
(Grewal etal., 1992). Heticoverpa armi- 
geraor PB larva causes majoryield loss; it 
initially feeds on young leaves, killing 
them completely. W hen the plant grows, 
the larva feeds on the deveioping seeds

and leaves (Sharma et al., 2008). 
Breeding for resistance to PB is a huge 
challenge in chickpea.

Tomato

Tomato (Solarium tycopersicum L.) is a 
major vegetable crop, grown in almostall 
parts of the world1. Apart from its various 
uses, it is a good source of antioxidant 
such as tocopherol, chlorogenic acid, 
rutin, xanthophylls and plastoquinones 
(Leonardi e ta l., 2000). Diseases cause 
most of the economic losses in the fresh 
market segment as well as in tomato 
processing industries2. Fungi, bacteria, 
viruses, nematodes together cause over
200 diseases in tomato (Lukyanenko, 
1 991). Among this plethora of diseases, 
fungi cause major economic losses and 
hence, few major fungal diseases are 
discussed here. Fusarium wilt caused by 
Fusarium oxysporum f.sp. Lycopersici, 
and verticillium wiltcaused by Verticillium 
dahliae and V. albo-atrum, are common 
and devastating soil borne fungal dis­
eases of tomato. The early sicjns for both 
the diseases in small plants snow yellow­
ing, drooping and wilting of lower 
leaves. However in case of fusarium wilt, 
the symptoms shows on one side of the 
plant while the whole plant is affected 
uniformly in case of verticillium wilt3. 
Another serious soil borne fungal disease 
of tomato is fusarium crown and root 
rot, caused by Fusarium oxysporum f.sp. 
radicis-lycopersici. Symptoms show swel­
ling of crown with orange and brown 
lesions, root-rotand decay of lower stem. 
As the disease progresses, the stem 
whither, leading to wilting of the plant 
within 2-3 weeks (Can etal., 2004). Early 
blight, caused by Alternaria sotani and 
A. tomatophila, is another common and 
destructive disease. It occurs mainly in the 
area where there is high relative humi­
dity, frequent rainfall and heavy dew. 
The symptoms include dark brown 
lesions with concentric rings on older 
leaves, and as the lesion expand the 
leaves eventually defoliate (Barksdale 
and Stoner, 1 977). Another major fungal 
disease which causes annually major 
economic loss is late blight, caused by tne 
oomycete Phytophthora infestans (Mont.) 
de Bary. Its symptoms include dark brown 
lesions appearing first at the top of node 
or stem, progressing down the stem.

1 h ttp ://fa o s ta t.fa o .o rg /s ite /56 7 /  
DesKtopDefault.aspx?PagelD=567#ancor
2 h ttp ://faosta t.fao .o rg /
3 htt0://ccesuffolk.orq/ossets/Horticulture-
Leaflets/Fusarium-ancfVerticillium-Wilts-of- 
Tomato pdf

Secheresse vo l. 2 4 ,  n° 4 , o c to b re -n o ve m b re -d e c e m b re  2 0 1 3 263

http://faostat.fao.org/site/567/
http://faostat.fao.org/


The disease begins when the sporangia 
start germinating on the host 
tissue through extension of germ tubes 
or through zoosporogenesis (Hardham 
and Blackman, 2010). As disease pro­
gress further, leaflets dry up, die, thereby 
spreading to rest of the leaves, leading to 
defoliation. Powdery mildew caused 
by Oidium lycopersici, O. neolycopersici 
sp. nov. and Leveillula taurina 
(Chunwongse e ta l., 1994; Kissa etal., 
2001) occurs mainly where tomatoes are 
grown in green houses, however its 
occurrence in commercial field is also 
observed. The symptoms show powdery 
white lesions on leaf surface and stems. 
As the disease furthers, the lesions merge 
and devastates the plant. The diseased 
plant produce less and small unmarket­
able tomatoes (Jones et al., 2001). 
Among the bacterial diseases, bacterial 
canker caused by Clavibacter michiga- 
nensis sp. michiganensis and bacterial 
wilt caused by Ralstonia solanacearum 
are considered most serious and wide­
spread. These diseases are difficult to 
control due to high genetic variation 
in pathogen, complexity of resistance 
traits and wide distribution of pathogen 
(Hayward, 1991; Yang and Francis,
2007). Bacterial canker causes variety of 
symptoms on plants depends on its age, 
mode of infection and environmental 
factors. However, most common symp­
tom observed in young plants are dark 
brown lesions on leaf margins, wilting, 
stunting, vascular discoloration leading 
to the death of plant (Ftayeh etal., 201 0). 
In case of bacterial wilt, the pathogen 
disrupts the water transport system of the 
plant by affecting its vascular system, 
leading to wilting and death (Hayward,
1 991). Among the major viral diseases, 
tomato mosaic virus (ToMV) and tomato 
yellow leaf curl virus (TYLCV) cause 
considerable yield loss. ToMV, trans­
mitted mechanically, is considered as a 
highly stable virus. The early disease 
symptoms include yellow mottling of 
leaves and blister like lesions, which 
may appear fern-like at later stages. Fruit 
production will be stunted, and even 
if few tomatoes are produced, it would 
be of low quality (Scott, 2007). TYLCV, a 
whitefly transmitted geminivirus, is a 
devastating disease in the tropical and 
sub-tropical areas of the world (Navot 
et al., 1991). The d isease symptoms 
consist of upward curling of margins 
of leaflet, young leaves turns yellow, 
reduction in leaf area, flower abortion 
and stunting, thereby resulting in severe 
yield loss (Moriones and Navas-Castillo, 
2000).

From germination to harvesting stage, a 
large number of insects attack tomatoes,

causing considerable crop loss. Among 
the insects that feed on leaves, show 
discoloured blotches, cause plant injury 
by boring buds, stem end and fruits, 
includes tomato fruitworm, tobacco 
budworm, tomato pinworm and vege­
table leafminer. Another class of chew­
ing insects which makes holes in seedling 
leaves, tender leaf tissue includes blis­
ter beetles, cabbage looper, Colorado 
potato beetle, flea beetles and horn- 
worms. Plant injury from sap-sucking 
insects such as tomato aphids, green 
peach aphid, greenhouse whitefly, sil- 
verleaf whitefly, stink bug and western 
flower thrips causes discoloration of leaf, 
deformation of leaf or fruit and defolia­
tion. Cutworm and southern potato wire- 
worm on the other hand feeds on lower 
stems and roots causing irregular holes 
(Foolad, 2007; Foolad ana Panthee, 
2012 ).

Modern breeding approaches

Although methods in classical plant 
breeding have contributed immensely 
towards genetically insulating crops 
from various biotic stress during the last 
century, however, in the current scenario 
of crop production wherein multiple and 
new threats have arisen, conventional 
breeding alone does not seem to be an 
effective approach. Modern breeding 
approaches have emerged as a saviour 
towards developing improved cultivars 
in a fast and effective manner. W ith the 
advent of next generation sequencing 
(NGS) and high-throughput genotyping 
technologies in the area of genomics,

last decade has witnessed numerous 
advances in the area of molecular 
biology and bioinformatics. Now geno­
mic tools for breeding applications are 
available in almost all important crops. 
Once the marker-trait or genotype to 
phenotype associations is established, 
this knowledge can be used in product 
development.
The benefits of modern breeding 
approaches include not only developing 
improving cultivars but also shielding the 
leading cultivars from pests and diseases 
by introgressing various genes and QTL 
through gene pyramiding. Large number 
of breeding populations can be screened 
at the early seedling stage in addition to 
drastically reducing the time period 
for developing a variety. This approach 
is called as marker-assisted selection 
(MAS). There are, however, several 
instances where pest and disease resis­
tance genes were found in wild crop 
relatives (WCR). Through utilization of 
molecular breeding approaches like 
advanced-backcross QTL (AB-QTL) these 
genes have been introgressed in the 
elite cultivars. Recently, novel breeding 
approaches such as marker-assisted 
recurrent selection (MARS) and genomic 
selection (GS) have been developed 
by coupling genomics tools with conven­
tional breeding schemes along with 
precise multi-season phenotyping and 
dense genotyping (Varshneyand Dubey, 
2009; Phillips, 2010). Hence an all- 
inclusive approach, where all genomic 
technologies are used in plant breeding is 
now termed as 'genomics-assisted breed­
ing' (GAB) (Varshney et al., 2005)
(figure I). Through utilization of these 
modern breeding approaches, plant

Germplasm stock

Wild
species

Land races

Cultivars Elite breeding lines

Figure 1. Integrated genomics and breeding approaches for developing improved 
germplasm with resistance to pest and diseases.
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breeding has reached to such levels 
wherein genomics tools are being 
efficiently integrated in regular crop 
improvement programs in a cost-effective 
way for speedy development of improved 
cultivars.

Trait mapping and validation 
of markers

In order to successfully reap the benefits of 
modern breeding approaches, the first 
step is to have tight linkage between 
molecular marker and trait of interest. 
Linkage and association mapping are 
the two main approaches used for trait 
mapping (Varshney etal., 2009a). Once 
the maixer-rrait linkage is established, 
confirmed and validated, it can then be 
routinely used aptly in crop improvement 
program. The prerequisite to achieve this 
is to have in place, appropriate genomic 
tools and precise phenotyping techni­
ques. Researchers in the past have put lot 
of efforts in this direction. Asa result, there 
are numerous types of molecular markers, 
genetic maps, transcriptome resource 
and genome sequence available in a 
range of crops. But, among molecular 
manners, simple sequence repeat (SSR) 
and single nucleotide polymorphism 
(SNP) markers have undoubtedly arisen 
as a preferred choice (Gupta et al., 
1999; Gupta and Varshney, 2000; 
Varshney and Dubey, 2009). However, 
with the introduction of next gener­
ation sequencing (NGS) technologies 
and high-througnput genotyping plat­
forms, SNP marker is gaining popularity 
(Varshney etal., 2009b; Varshney etal., 
2009c). It is evident that last decade 
has witnessed immense growth towards 
development of genomic tools however, 
efforttowards establishing high-throughput

Erecision phenotyping platform have not 
een satisfactory (Mir etal., 201 2; Cobb 

et al., 2013). Accurate phenotyping 
is still a major challenge for several 
complex traits towards efficient utilization 
of molecular tools and forming strong 
marker-trait association. Nevertheless, 
sophisticated robotics based digital 
image analysis platform, which includes, 
chlorophyll fluorescence analysis, ima­
ging of pathogen affected leaf area, 
fluorescence-based conidial quantifica­
tion, video tracking system, data mana­
gement and statistical analysis are now 
fast gaining importance (Lucas, 2010; 
Walter et al., 2012). The Australian 
Plant Phenomics Facility established at 
Adelaide and Canberra, Australia is one 
such initiative towards alleviating the 
phenotyping bottleneck4.

http://w w w .plantphenom ics.org.au/

Once, the genomic tools and precise 
phenotyping methods are available, 
trait mapping can be initiated either 
through linkage or association mapping 
approaches. In case of linkage map­
ping, a suitable mapping population 
is developed by crossing contrasting 
parental genotypes for the target trait. 
During the past few decades various 
linkage mapping populations have been 
developed for marker discovery work, 
which includes, Fj, three-way, back 
cross, recombinant inbred lines, immor­
tal F2 S and chromosome substitution 
segment lines in a number of crops. 
Subsequently, segregating (mapping) 
populations are genotyped with the 
markers polymorphic between the 
parental lines and based on these 
genotyping data, genetic maps are 
aevelopecT In parallel, the populations 
are phenotyped for traits of interest. 
Analysis of genotyping and phenotyping 
data together by using QTL mapping 
programmes provides QTL(s) ana 
markers associated with traits (Collard 
etal., 2005; Varshney etal., 2009a). By 
using linkage mapping based approach, 
a number of QTLs conferring resistance to 
biotic stress have been identified 
in several crops (see Varshney et al., 
2013).
In recent years, association mapping 
approach which utilizes linkage disequi­
librium in germplasm for establishing 
marker-trait association is gaining impor­
tance. Some of its benefits over linkage 
mapping are that it saves lot of precious 
resources in terms of time and labour, as 
there is no necessity for developing any 
mapping population, and germplasm 
collections can directly be employed for 
phenotyping and genotyping. The panel 
of genotypes used in association map­
ping can be phenotyped for several traits; 
therefore the same genotypic data can be 
used for identification o f markers asso­
ciated with different traits. It offers higher 
resolution as it utilizes the variations due 
to meiotic recombination accumulated in 
natural population during the course of 
evolution. Even though currently associa­
tion mapping is at its nascent stage, it is 
rapidly becoming a preferred method to 
study complex traits (Varshney et al.. 
2009a). Recently marker-trait associa­
tion using this approach have been 
performed in several crop species such 
as maize (Kump etal., 201 1; Tian etal., 
201 1; Hung e tal., 2012; Poland etal.,
201 1; Riedelsheimerefa/., 201 2; Wang 
et al., 2012), rice (Huang et al., 2010; 
Zhao et al., 201 1; Huang et al., 201 2), 
barley (Yu and Buckler, 2006; Cockram 
etal., 2010; Pasam etal., 201 2), wheat 
(Neuman et al., 2011), oilseed rape

(Rezaeizad et al., 201 1), Ontario 
bean (Shi et al., 2011). Certainly this 
approach has potential to discover 
complex molecular mechanism underlying 
insect resistance as discussed recently by 
Kloth etal. (2012).
After establishing a tight marker-trait 
association, as mentioned above, for 
the resistance to a particular pest and 
disease, it is essential to validate these 
markers before utilizing them in breeding 
programmes. Depending upon the avail­
ability of germplasm source, there are 
several possibilities on validating the 
marker. In first case, if the recipient is 
same as contrasting parent used for 
identifying QTL/gene from the donor, 
then there is no need for validation. In 
second case, if the donor used for 
introgression of the desired trait is the 
same wherein QTL/gene was discover­
ed, however, the recipient is different, 
then we simply need to see marker 
polymorphism between the genetic back­
ground of donor and target genotypes for 
validation. In the third case, when we 
don't have the same donor which was 
used for marker discovery, nevertheless, 
we have other donors for the same trait; 
then we should first screen the marker 
on the genotypes we have, considering 
that they are snowing the same level of 
resistance as in the donor reported ear­
lier. If the same marker allele is observed 
in the donor, then polymorphism can be 
tested with the recipient genotypes, for its 
subsequent use in breeding programmes. 
However, many times, a different allele is 
observed in other resistance sources, in 
such cases a more reliable validation can 
be done by developing a mapping 
population with the germplasm sources 
available with the breeder and establish­
ing the reported marker-trait association 
in the same. W e consider that validation 
process is extremely critical for the success 
of any molecular breeding program.

Marker-assisted selection (MAS)

MAS is an indirect selection process for 
trait of interest based on genotype in 
place of phenotype which can be 
practiced at any generation using trait 
linked markers. The major genes con­
trolling economically important traits are 
very less in the plants such as disease 
resistance, male sterility, self-incompati­
bility, aroma, seed shape, color, and 
plant architecture. In order to check the 
efficiency of MAS, earlier MAS applica­
tions were demonstrated with the pre­
degree breeding approach where selec­
tion is practiced during F2 generation 
based on phenotype. For example. 
Abenes et al. (1993) used MAS for
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selection of brown planthopper resis­
tance (Bph3) and bacterial blight resis­
tance (Xa21) using PCR-based markers 
in rice during F2 generation. Similarly, 
PCR-based MAS Tor Xa2I gene was 
employed by Reddy etal. (1997) in rice 
improvement program. However, it was 
later realized that since MAS can be 
used to handle few genes/loci at one 
time, this approach was then either used 
for adding one or two genes into the 
background of elite cultivar through 
marker-assisted backcrossing (MABC) 
or pyramiding of 3-5 genes/loci using 
linked markers.

Marker-assisted backcrossing 
(MABC): introgression of gene 
and gene pyramiding

In order to transfer genomic regions for 
single or multiple pests and disease 
resistance in elite cultivars, marker- 
assisted backcrossing (MABC) approach 
has been quite successful. In this appro­
ach the donor parent is backcrossed 2-3 
times with recipient parent followed by 
1-2 generation of selfing. When impro­
ved cultivar is developed for multiple traits 
through markers, it is termed as gene 
pyramiding. In this approach, multiple 
genes conferring resistance to pests and 
diseases for the target environment are 
staked in the niche variety. This leads to 
rhe simultaneous expression of the genes 
stacked, thereby conferring long-term 
broad-spectrum resistance in the improved 
variety. To achieve the desired results 
and success in any gene pyramiding 
project, there are several critical factors, 
such as, number of genes to pyramid, 

enetic distance between gene and 
anking markers, type of germplasm, 

presence of linkage drag, etc. To address 
these issues, and for faster recovery of 
recipient parent genome (RPG), back­
ground selection can be utilized and if 
there is linkage drag from donor, recom­
bination selection can be exploited. It is 
always recommended to utilize back­
ground and recombination selection in 
MA3C program for quicker product 
delivery.
During the recent past there have been 
various examples wherein MABC is 
successfully applied to develop improved 
varieties in number of crops (table 7). 
Among cereals, rice is one of the leading 
crop where MABC has been used 
extensively for improving leading culti­
vars for resistance to different diseases 
and pests. Molecular breeding for bac­
terial blight (Xa4, xa5, Xa7, xa 13, X a 2 l, 
Xa22 and Xa23), blast (Pi I, Piz5, Pi55, 
Pita and Piz), brown plant hopper

(Bphl4, Bphl5, Bphl8, Bphl, Bph2, 
Bph25 and Bph26) and Asian rice gall 
midge (Gm-2, Gm-6(t) and Gm8) is now 
routinely being practised, leading to the 
value addition of several improved 
varieties for Asia (Singh et a/., 2001; 
Gopalakrishnan etal., 2008; Sundaram 
etal., 2008; Perumalsamy etal., 2010; 
Suh etal., 201 1; Hu etal., 201 2; Huang 
et al., 2012; Singh et al., 2012; Myint 
etal., 201 2; Sama etal., 201 2, Pandey 
etal., 2013). In wheat, MABC approacn 
has been used for fusarium head blight 
(Qfhs.ndsu-3AS), stripe rust (Y rl5, Y r l7  
and Yr36), leaf rust (Lrl, Lr9, L rl, Lr24, 
Lr28 ana Lr47], stem rust (Sr25 and 
Sr38), septoria (Stb4), powdery mildew 
(Pm2, Pm4a, Pm l2 and Pm2 I), wheat 
streak mosaic virus (Wsm-1), yellow 
dwarf virus (Bdv2), orange blossom 
wheat midge (SmJ), wheat stem sawfly 
(Qss.msub-3BL), hessian fly (H2Sj and 
cyst nematode (CreX + CreY). These 
MABC efforts led to development of 
improved cultivars/varieties around the 
world (Elias etal., 2005; Nocente etal., 
2007; Brevis etal., 2008; Bainotti etal., 
2009; DePauw etal., 2009; Graybosch 
etal., 2009; Randhawa etal., 2009; Yu 
etal., 2009; Kumarefa/., 201 0). Similar 
type of efforts have been undertaken in 
other cereal crops like maize (Abalo 
et al., 2009; Gupta et al., 2010; 
Prasanna et al., 2010a; Prasanna 
etal., 2010b; Asea etal., 2012), barley 
(Friedt and Ordon, 2007; Ordon etal., 
2009; Palloix and Ordon, 2011), At 
ICRISAT also, MABC approach was used 
to improve hybrid of a parental line of 
pearl millet, by introgressing a genomic 
region conferring resistance to downy 
mildew and HHB 67-improved line was 
developed (Hash et al., 2006). Similar 
efforts are also underway to introgress 
genes and QTLs for enhanced resistance 
towards shoot fly, grain mold, striga 
resistance and staygreen trait in parental 
lines of hybrids and cultivars in sorghum 
(Kassahun et al., 2010; Kumar et al., 
2011; Muth e ta l.,  2011: Deshpande 
and Vadez5).
Among legumes, soybean is one of the 
most important crop, as it is a main 
source of vegetable oil and protein 
content. The most devastating pest of 
soybean are nematodes; several 
varieties have been released in USA 
such as 'JTN-5109' and 'DS-880', 
through pyramiding of three genes 
rh g l, Rhg4 and Rhg5 for resistance 
towards soybean cyst nematode (Arelli 
and Young, 2009; h ttp :/'/www.ars-grin. 
gov/cg i-b in /npgs/acc/d isp lay.p l1?

5 personal communication.

1 836762). In addition, soybean cultivar 
'JTN-5109' and 'JTN-5303' conferring 
disease resistance have also been 
released in USA (Arelli et al., 2006; 
Arelli et al., 2007; Arelli, et al., 2009). 
Also, a soybean variety, 'Essex'has been 
released in USA by pyramiding Rsvl, 
Rsv3 and Rsv4 genes for soybean mosaic 
virus (Maroof etal., 2008). Among bean, 
varieties resistance towards anthracnose 
'USPT-ANT-1' (Co-42 gene, Miklas etal., 
2003) and common bacterial blight 
'ABCP-8' (SAP6 and SU91 linked QTL, 
[Mutlu etal., 2005]) have been released 
in the USA. In the case of groundnut, 
much progress has been made towards 
development of varieties conferring 
nematode resistance (Rma gene) such 
as 'NemaTAM' (Simpson et al., 2003), 
and efforts are underway to combine it 
with high oleic trait (Chu etal., 201 11. In 
addition, ICRISAT has successfully 
improved elite groundnut cultivars for rust 
resistance (Pandey et al., 2012; Varsh­
ney etal., 201 3) and chickpea elite lines 
are being improved for fusarium w ilt and 
ascochyta blight at ICRISAT using MABC 
approach (Chamarthi et al., 2011; 
Varshney et al., 201 3).
Among fruits and vegetables, efforts 
towards molecular breeding for disease 
resistance in tomato have been quite 
exciting. Several seed companies and 
public sectors are actively invoked in 
pyramiding genes and QTLs for traits in 
tomato such as bacterial canker (Rcm2.0, 
Rcm5. I), bacterial speck (Pto), bacterial 
spot (Rx-3 QTL), blackmold (tew QTLs), 
corky root rot (Py-1), fusarium w ilt (I-2C 
and 1-3), late blight (Ph-2, Ph-3 and few 
QTLs), powdery mildew (Lv, O l-l and 
OI-2), tomato spotted wilt virus (Sw-5), 
tomato yellow leaf curl virus (few QTLs), 
tobacco mosaic virus (Tm-2a) and verti­
cillium wilt (Ve) (Robert et al., 2001; 
Brouwer and Clair, 2004; Coaker and 
Francis, 2004; Yang and Francis, 2005; 
Foolad, 2007; Gardner and Panthee, 
2010; Panthee and Gardner, 2010; 
Foolad and Panthee, 2012). Similar 
efforts are underway in many other 
vegetable crops.

Advanced-backcross (AB-QTL) 
analysis

The past experience of marker-trait asso­
ciation in many crops has provided 
significant proof that irrespective of 
poorer phenotype, wild relatives/land- 
races or exotic germplasm are expected 
to more likely have QTLs for yield, quality, 
disease resistance, pest resistance and 
tolerance to several abiotic stresses 
(Wang and Chee, 2010). In order to 
simultaneously identify and introgress
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Table 1. Selected examples of improved lines/cultivars/varieties developed with resistance to pest and diseases through molecular breeding 
approaches in some crops.

Crop Cultivar/ breeding line/ 
p a re n fa f line

Resistant to Trait Gene(s)/QTL (Q) Place Reference

Rice PR106 Bacterial blight xa5 + xa l3  +  Xa21 India Singh et al. (2001)

Pusa Basmati 1 Bacterial blight xa l3  + Xa21 India Gopalakrishnan et al. (2008)

Samba Mahsuri Bacterial blight xo5  +  x o /3  + Xa21 India Sundaram et al. (2008)

ADT43 Bacterial blight xa5 + xa l3  + Xa21 India Perumalsamy et al. (2010)

Huahui 1035 Bacterial blight Xa7 + Xa2I + Xa22 + Xa23 China Huang et al. (2012)

PR36944-450, PR36944-700 Bacterial blight Xa4 + Xa7 + Xa21 Philippines Perez et al. (2008)

XH2431, 9311 [Xa27], WH421 Bacterial blight Xa4 +  Xa21 +  Xa27 China Luo et al. (2012)

Taraori Basmati, Basmati 386, Vasumati Bacterial blight Xa21 + x o /3 India Pandey et al., 2013

KMR3, PRR78, IR58025B, Pusa 6B, Mahsuri Bacterial blight Xa4 + x o5  + x o /3  + Xa21 India Shanti et al. (2009)

Lu-Yuon-Zhan Bacterial blight, 
Bacterial leaf strike

Xa23 + Rxol China Zhou et al. (2009)

Pusa Basmati 1 Bacterial blight, blast and 
sheath blight

x o /3  + Xa21 + Pi54 + 
qSBRll-1

India Singh et al. (2012)

C039 Blast Pil +  Piz-5 +  Pita Philippines Hittalmani el al. (2000)

Pusal 602 Blast Piz-5 India Singh et al. (2012)

Pusa 1603 Blast Pi55 India Singh et al. (2012)

IR50 Blast Pii India Narayanan et al. (2002)

Zhenshan 97A Blast Pil China Liu et al. (2003)

C039 Bacterial blight, blast Pil +  Piz5 + Xa21 India Narayanan et al. (2004)

Rongfeng B Bacterial blight, blast Xa23 + Pil + Pi2 China Fu et al. (2012)

Junambyeo Brown planthopper Bphl 8 Taiwan Suh etal. (2011)

Minghui 63 Brown planthopper BphM + BphlS China Hu et al. (2012)

Tsukushibare Brown planthopper Bphl + Bph2 Japan Sharma et al. (2004)

ADR52 Brown planthopper BPH25 + BPH26 Japan Myint et al. (2012)

Duokang #1, Phalguna Asian rice gall midge Gm-2, Gm-6(tj India Katiyar et al. (2001)

Improved Samba-Mahsuri (ISM) Asian rice gall midge Gm8 India Sama et al. (2012)

Wheat Ben Fusarium head blight Qfhs.ndsu-SAS USA Elias et al. (2005)

Zak Stripe rust Yrl5 USA Randhawa et al. 
(2009)

Westmore Stripe rust Yr36 USA Brevis and Dubcovsky (2008)

BIOINTA 2004 Leaf rust Lr47 Argentina Bainotti et al. (2009)

HD2329 Leaf rust Lr24 + Lr28 India Kumar et al. (2010)

UC1113 (PI638741) Stem rust (Ug99) Lrl 9 +  Sr25 USA Yu et al. (2009)

Bolero, CelWorito, Serio, Spada 
and Thatcher

Leaf rust Lrl, Lr9, Lr24 and U47 Italy Nocente et al. (2007)
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Table 1. (Continued)

Crop Cultivar/ breeding line/ 
parental line

Resistant to Trait Gene(s)/QTL (Q) Place Reference

Mace Wheat streak mosaic virus Wsm-1 USA Graybosch et al. (2009)

Goodeve Orange blossom wheat midge Sml Canada DePauw et al. (2009)

McNeal, Reeder, Hank Wheat stem sawfly Qss.msubSBL USA http://w w w .w heatw orld .
org/pdf/dubcovsky.pdf

Cataldo Hessian fly H25 USA http ://w w w .a rs-g rin .go v/
cgi-bin/npgs/acc/display.pl?
1698787

D3-8-3, D3-8-5 Cyst nematode CreX +  CreY France Barloy et al. (2007)

Maize CM137, CM138, CM139, CM150 
and CM151

Turcicum leaf blight and 
Polysora rust

RppQ India Prasanna et al. (2010a); 
Prasanna et al. (2010b)

NA Corn borer resistance QTLs on chrom. 7, 9 and 10 Willcox et al. (2002)

Barley Steptoe Stripe rust Bmyl USA Toojinda et al. (1998)

NA leaf rust Rphq6 van Berloo et al. (2001)

NA Barley yellow dwarf virus m Jefferies et al. (2003)

DH-lines Barley yellow dwarf virus Ryd2 + Ryd3 Germany Riedel et al. (2011)

NA Yellow mosaic virus rym4 + rym5 + rym9 
+ ry m ll

Werner et al. (2005)

Pearl Millet HHB 67-improved Downy mildew India Hash et al. (2006)

Soybean JTN-5503 Soybean cyst nematode rhgl +  Rhg4 + Rhg5 USA Arelli et al. (2006, 2007)

JTN-5109 Soybean cyst nematode rhgl + Rhg4 + Rhg5 USA Arelli and Young (2009)

Essex Soybean mosaic virus Rsvl + Rsv3 + Rsv4 USA Maroof et al. (2008)

Bean USPT-ANT-1 Anthracnose Co-42 USA Miklas et al. (2003)

ABCP-8 Common bacterial blight SAP6 and SU91 linked Q USA Mutlu el al. (2005)

ABC -Weihing Common bacterial blight SU91 linked 0 USA Mutlu et al. (2008)

Groundnut NemaTAM Nematode resistance Rma USA Simpson el al. (2003)

Cassava CR41-10 Cassava mosaic disease CMD2 Nigeria Okogbenin et al. (2007)

desirable QTL alleles from exotic in to 
cultivated lines, another molecular breed­
ing method, mentioned as advanced 
backcross (AB) QTL strategy was develop­
ed. This strategy was first explained by 
Tanksley e t a l .  (1996) in tomato. In this 
method, an elite cultivar is crossed with 
the exotic germplasm followed by 2-3 
backcrosses, then marker trait associa­
tion is established and the same asso­
ciated markers are used to track the 
introgression of QTLs by MABC. During 
the recent years, there have been lot of 
interest in this approach and many genes 
and QTLs for resistance to pests and 
disease, abiotic stress and agronomic 
traits have been identified from land

races or wild relatives in important 
crops such as rice (Cheema e t  a l . ,  
2008; Lu e t  a l . ,  201 1: Eizenga e t  a l . ,  
2013; Zhang e t  a l . ,  201 3), wheat (Naz 
e t  a l . ,  2008; Buerstmayr e t  a l . ,  2011; 
Naz e t  a ! . ,  2012; O g D o n n a y a  e t  a l . ,  
2013), maize (Li e t a l . ,  2008; Welcker 
e t a l . ,  201 1) and barley (Schmalenbach 
e t  a l . ,  2008; Saal e t  a l . ,  2011: Saved 
e t a l ,  2 0 1 2 ) .

Marker-assisted recurrent selection 
(MARS)

While conducting QTL analysis, in addi­
tion to major QlLs, a iarge number of 
minor effect QTLs are identified. Major

and minor QTLs interactions can now be 
easily visualized for better understanding 
of the complex genetics behind any trait 
(Isobe e t a l . ,  2007). However, in majority 
of cases minor effect QTLs are not utilised 
due to their inconsistency across different 
seasons and environments. Nevertheless, 
if some minor QTLs are showing consis­
tency, their introgression through MABC 
in elite cultivars is a big challenge. For 
such cases, a modern molecular breed­
ing approach, marker assisted recurrent 
selection (MARS) has been proposed.
In the case of MARS, superior alleles for 
different QTLs (10-40 loci) are pyramided 
into a single genotype, thereby increasing 
the frequency of beneficial alleles having
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both additive and small individual 
effects in recurrent crosses (Ribaut 
et al., 2010; Varshney et al., 2012). 
Through this approach, it is proposed that 
the overall phenotypic variance for a trait 
would be increased, thereby leading 
to development of more durable crops 
against disease and pests in much shorter 
time and effort when compared to 
conventional breeding approaches 
(Bernardo and Charcosset, 2006). Efforts 
are underway in many crops to combine 
superior alleles for traits of interest 
(Kulwal etal., 2011). Due to its benefits, 
private sector has shown a lot of interest 
towards using this technique in their 
breeding program (Eathinaton et al.,
2007). In several crops such as maize, 
rice, sorghum, wheat, beans, cowpeas 
and cassava efforts are underway to 
develop improved cultivars using this 
method. MARS approach has not been 
exclusively used for disease and pest 
resistance, because of involvement of 
elite cultivars, MARS approach in general, 
combines resistance to diseases and 
pests with other traits. In case, resistance 
to different races for a given disease or 
different diseases and pests are com­
bined, MARS seems to be an effective 
approach.

Genome-wide or 
genomic selection (GS)

Next-generation sequencing (NGS) tech­
nologies, wherein the entire genome can 
be seauenced in a much shorter time, has 
paved' the way towards development of 
various advances towards crop genetics 
and breeding such as re-sequencing of 
well-characterized species, de novo 
sequencing of crop species, genome 
wide association studies (GWASj, popu­
lation genetics and evolutionary biology 
(Varshney et al., 2009b). In addition 
to these, a much recent application of 
NGS or high-throughput genotyping 
technologies is foreseen as genomic 
selection (GS) for rapid crop improve­
ment (Varshney et al., 2012). Unlike 
MABC and MARS, GS can be used for 
selecting superior lines with high GEBV 
that leads to develop superior Ones with 
better agronomic performance overall 
(Bernardo and Yu, 2007; Heffner et al.,
2009).
In GS, genomic-estimated breeding 
values (GEBVs) are used as a criteria 
for selection of superior lines and making 
new crosses. In order to calculate GEBV, 
the two most important prerequisites are 
generation of highly dense genotypic 
data covering the entire genome and 
multi-season historical phenotypic data

on a 'training population'. The 'training 
population' is usually constituted of 
advanced breeding lines and elite culti­
vars. The whole GS relies on effective 
calculation of GEBV; hence it is very 
critical to have an appropriate statistical 
model to derive these values. Once the 
selection is made based on GEBVs, 
genotypic data of progenies from these 
crosses are generated, and GEBVs for all 
the progenies are calculated based on 
the model developed in training popula­
tion. Consequently, progeny lines with 
higher GEBVs are selected and used for 
further breeding process (Varshney etal., 
2012). The idea here is to select indivi­
duals entirely based on higher GEBVs 
unlike traditional phenotypic selection. 
So far this approach has been well 
embraced for improving complex traits 
(Asoro et al., 2011; Zhao et al., 2012; 
Rincent et al., 2012) but few efforts 
also demonstrated its utility in improving 
disease resistance (Rutkoski et al., 201 1; 
Lorenz et al., 2012; Rutkoski et al., 
2012). Thus, this strategy has the poten­
tial to revolutionize plant breeding in 
faster delivery of product lines.

Future directions

The current climate change scenario is 
becoming a key force towards changing 
the population dynamics of pests and 
diseases (Dhaliwal et al., 2010). Hence, 
there is a need to adapt effective 
management strategies to handle the 
new status of pest and diseases. Geno­
mics-assisted breeding plays a very 
important role to efficiently develop safe 
and healthy crop varieties Iror target 
biotic stress in less time and cost-effective 
manner as compared with conventional 
breeding (Varshney et al., 2009a). 
However, it is observed that the huge 
genomic resources developed are not 
Being regularly used by plant breeders, 
particularly in the public sector (Ribaut 
et al., 2010). This could be due to 
several challenges such as, inapt pheno- 
typing infrastructure, lack of bioinfor­
matics systems and dearth of modern or 
next generation molecular breeders who 
have experience in integrating new 
technologies in crop improvement pro­
grams (Tester and Lanaridge, 2010). 
However, initiatives such as Integrated 
Breeding Platform6 wherein plant 
breeders can access phenotyping, 
genotyping and information technologies

6 https://w w w .integrotedbreeding.net/

which could help them integrate these 
in their breeding programs. Ultimately 
following an integrated breeding 
approach towards crop improvement 
for biotic stress will ensure sustainable 
agriculture and food security mainly in 
developing countries.
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