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Abstract 

The legume family is astonishingly diverse; inventiveness in the form of novel organs, modified 

organs and additional meristems, is rife. Evolutionary changes can be inferred from the 

phylogenetic pattern of this diversity, but a full understanding of the origin of these ‘hopeful 

monsters’ of meristematic potential requires clear phylogenetic reconstructions and extensive, 

species-rich, sequence data. The task is large, but rapid progress is being made in both these areas. 

Here we review specializations that have been characterized in a subset of intensively studied 

papilionoid legume taxa at the vanguard of developmental genetic studies. 

  



 

Introduction 

The legume family (Fabaceae, also known as Leguminosae) evolved about 60 million years ago and 

diversified into three subfamilies; the caesalpinioids, mimosoids, and papilionoids [1]. They make up 

the third largest family of flowering plants, comprising more than 700 genera and 18,000 species, 

with an exceptionally wide range of habits, ranging from giant forest trees to aquatic herbs [2-4]. 

Protein and/or oil-rich papilionoid legumes, such as soybean, peanut and chickpea account for more 

than one quarter of the world’s primary crop production [5••] and are an essential component of 

low meat consumption diets. Representative genome sequences of some of these important food 

species have been published recently (www.comparative-legumes.org/) and many more are in the 

pipeline thanks to cheaper, faster sequencing technologies. This will lead to clusters of intensively 

sequenced species that are taxonomically closely related, so that, within these clear phylogenetic 

contexts, comparative genomic studies can be used to investigate genes associated with 

synapomorphies, characters that are shared due to common ancestry. In this review, the characters 

we focus on are developmental specialisations (Figure 1). Identification of the sequence variation 

associated with losses and secondary gains of synapomorphic specialisations provides a deep 

understanding of the evolution of developmental novelties. 

Specialization of inflorescence architecture 

The most common type of inflorescence in legumes is a type of shoot axis known as a raceme, which 

includes flowering spikes, umbels and heads [6, 7]. Even in mimosoid legumes, with their bottle 

brush or pompom-like floral clusters [8], flowers initiate acropetally on the raceme axis, after which 

they undergo a remarkable developmental pause until all are initiated, then, together they develop 

floral organs and open synchronously [6]. There is general agreement that papilionoid legume 

inflorescences are usually racemes, however there is disagreement on whether panicles are also 

common, due to differences in the definition of a panicle [6, 9]. Classically defined panicles [10] are 



not found in legumes, while compound racemes, for example double racemes with two orders of 

branching, are common [7, 9]. 

 

Taking the view that complex inflorescences are a developmental specialization, we can ask if this 

complexity is regulated by iteration of the same molecular mechanism at sequential developmental 

time points, or by different mechanisms and whether these mechanisms are shared in other plant 

species. Berbel et al (2012) [11••] set out to answer these questions in their study of the double 

raceme in Pisum sativum. The  Veg1 gene, encoding a MADS-box transcription factor in the 

euAGL79-clade, was identified as a novel genetic function that inserts a new meristem (called the I2, 

or secondary inflorescence, Figure 1) between the primary inflorescence axis and the flowers [11••]. 

This I2, a short stem terminating in a rudimentary stub, represents an additional meristem upon 

which novelty can arise [12•]. In P. sativum the identity of the I1 primary inflorescence (Figure 1) is 

determined by a different gene, Determinate [13];  its expression is restricted to the I1 by Veg1 

[11••]. Mutations of Determinate result in a determinate growth habit much sought after by 

breeders [14•]. A Veg1-like gene is not found in the grasses, where complex inflorescences are 

generated using a different set of genes [15]. Other papilionoid legumes with double racemes have a 

Veg1 gene [11••], but it remains to be shown whether legumes with simple racemes have lost Veg1 

function and whether further subfunctionalization of the euAGL79 clade occurs in legume species 

with higher levels of inflorescence complexity.  

Novelty in flowers  

Most legume flowers are pentamerous with five sepals, five petals, two whorls of five stamens each 

and a single carpel, but species occur with variations on this plan, featuring floral organ reduction or 

multiplication [2, 6]. Many members of the papilionoid taxon Swartzieae, for example, are 

characterised by a single petal [2], while the profuse production of stamens from an innovative 

developmental feature, the ring meristem, is manifest in all three legume subfamilies [6].  The 

typical papilionoid flowers of P. sativum, Medicago truncatula and Lotus japonicus have ephemeral 

meristems known as common primordia (Figure 1) from which both petals and stamens arise [16-



18]. Although the common primordia are entirely consumed by the organs arising from them, they 

represent an additional step in floral meristem ontogeny, echoing the structural reiteration of 

compound inflorescences; both remodellings of meristematic potential are ‘hopeful monsters’.   In 

M. truncatula, duplicated APETALA3-lineage genes are expressed in complementary patterns in the 

common primordia, petals and stamens and they interact differentially with duplicate PISTILLATA-

lineage genes to confer petal and stamen identity [19]. Despite the absence of a motif common to 

other eudicots, PISTILLATA proteins in P. sativum and M. truncatula are fully functional in this role 

[20, 21].  

 

Mimosoid legumes are characterised by radially symmetrical flowers, whereas papilionoid and 

caesalpinioid legume flowers are usually zygomorphic (Figure 1), that is they are bilaterally 

symmetrical; their showy adaxial petal often stands upright and two lateral petals flank two fused 

keel petals when the flower opens.  Like the distantly-related zygomorphic species Antirrhinum 

majus, papilionoid legumes have recruited CYCLOIDEA transcription factor family genes for the 

regulation of dorsal and lateral petal identity [22-25]. Functional analysis of triplicated CYCLOIDEA -

like genes in L. japonicus showed that LjCYC1 and LjCYC2 have roles in dorsal petal patterning, while 

LjCYC3 confers lateral petal identity [24, 26•]. Independent genetic loci determine the asymmetry of 

the lateral and ventral petals [24, 27], but these remain to be identified. Transcriptional profiling of 

individual floral organs was undertaken in Vicia sativa [28] and compared with gene expression in 

distantly-related non-zygomorphic flowers. In order to capture the particular features of this 

synapomorphy in papilionoid legumes, a similar approach will need to be taken on species within the 

same clade, e.g. zygomorphic and non-zygomorphic genistoid legumes [25]. While much attention 

has focused on floral morphology with respect to pollinators, other factors, for example nectar 

composition, are also important in pollination systems [29].  Specialisation occurs in other floral 

organs too, such as the carpel. Legume carpels can be covered in hairs, or hairy on one side only. The 

former has been deduced as the ancestral state in papilionoid legumes of the tribe Fabeae, while the 

latter, as either abaxial or adaxial hairiness, characterises different subclades [5••].  

 



Once fertilised, the carpel normally grows out to form the elongated seed-containing legume (or 

pod) that is characteristic of the entire family. A striking novelty is that some species have coiled 

pods (Figure 1) and this character has arisen several times independently within papilionoid legumes 

[2], suggesting it may have adaptive value. A study of species with coiled or uncoiled pods within the 

genus Medicago revealed a clear correlation between pod morphology and a change in the 

SHATTERPROOF gene coding sequence which affected the ability of this MADS-box transcription 

factor to interact with a partner [30••]. Pod coiling in Medicago occurs when cells at the carpel 

margin fail to elongate and become heavily lignified. As there is only one carpel and only one margin, 

inhibition of its extension results in coiling of the carpel wall tissues, which extend as usual. Coiled 

pods can have elaborate patterns of lignin deposition, sometimes resulting in the formation of 

spines, which allows seed dispersal when the pod becomes attached to the fur of passing animals. 

The Medicago clade, which contains spined and smooth-podded species, is ideally suited to further 

investigation of this character.  

Complex and specialised leaves 

Simple leaves have been inferred to be ancestral in Angiosperms and there have been multiple gains 

and losses of leaf complexity. This means not all compound leaves are homologous, and neither are 

simple leaves, but terms have not yet been defined to reflect this. It is not clear whether the 

ancestral leaf form of eudicots, or within these the rosids, from which legumes arose, was simple or 

more complex [31•]. Maximum likelihood estimates of ancestral states suggest that among 

Angiosperms there is a strong bias for evolution towards simple leaves, however, within the 

legumes, a family characterised by compound leaves, there is no such bias, indeed evidence for the 

opposite trend is found [31•]. Thus the legume compound leaf (Figure 1), once acquired, tended to 

be retained, and provided further opportunities for developmental specialisation. 

 

The LEAFY protein, known as Unifoliata (Uni) in P. sativum [32], SINGLE LEAFLET1 (SGL1) in M. 

truncatula [33, 34] and PROLIFERATING FLORAL MERISTEM (PFM) in L. japonicus [35], is known to 

target many genes involved in floral patterning [36, 37], but it is also proposed to have an earlier role 



in enabling meristem outgrowth, by inducing the transcription of genes such as REGULATOR OF 

AXILLARY MERSTEMS1 [38•]. It may be through this pathway that Uni/SGL1/PFM generates a 

transient phase of indeterminacy [32] in legume compound leaves. The downstream 

homeodomainless KNOX transcriptional regulator FUSED COMPOUND LEAF1 has a similar role in 

promoting leaf complexity, as well as defining leaflet boundaries [39], while PALMATE-LIKE 

PENTAFOLIATA1 (PALM1) repression of Uni/SGL1/PFM is important in ensuring that complexity is 

eventually curtailed [33, 34]. The PALM1 gene also regulates leaflet wax deposition and this brings a 

potentially serendipitous benefit to breeders:  reduced wax deposition on the abaxial surface of 

palm1 mutant leaves confers resistance to fungal pathogens [40••].   

 

In the mimosoid subfamily bipinnate-leaves (Figure 2A) are common while once-pinnate-leaves 

(Figure 2B) are more usual in the papilionoid subfamily [2]; whether this additional complexity in 

mimosoids can be explained by variations in Uni/SGL1/PFM and PALM1 interactions remains an 

open question. The compound leaves of both these taxa feature astounding leaf specialisations, such 

as the touch-responsiveness of leaves and of tendrils (Figure 2C).  One of the genes required for 

tendril formation in Pisum and Lathyrus species, is Tendril-less (Tl), which is transcriptionally 

activated by Uni [41] and Lathyroides (Lath) [42•], though direct interactions have not yet been 

demonstrated. Sequence similarity and genetic map position suggest Lath is the ortholog of the 

WUSCHEL-related homeobox1 (WOX1) transcription factor STENOFOLIA (STF), which was shown to 

be critical for leaflet blade development in M. truncatula [43]. Genes such as JAGGED1, recently 

identified in soybean [44•], are also involved in this process. In the tendrilled leaf of P.sativum, Lath 

appears to have acquired an additional role; not only promoting blade outgrowth in leaflets and the 

dorsal petal (as in M. truncatula) but also suppressing blade outgrowth in tendrils [42•], presumably 

via activation of Tl in the distal domain of the leaf.  

 

Application of the hormone gibberellic acid suppresses terminal leaflet blade development and this 

activity is proposed to occur through increased Uni transcription [45]: again, upregulation of Tl 

would lead to blade suppression. Other hormones are also implicated in blade position and 



outgrowth, for example, reduced levels of free auxin and changes in the levels of transcription of 

auxin-regulated genes are seen in narrow-leafleted stf mutants [43] while smooth leaf margin1 

mutants have altered auxin distribution and excessive production of terminal leaflets [46]. At this 

point at least some of the regulators of legume leaflet versus tendril formation have been identified, 

but their relationships with each other are yet to be fully elucidated. Whether the leaf tendrils of 

climbing mimosoid legume species represent convergent evolution and whether the same 

physiological processes are involved in contact-induced coiling remain to be investigated. The 

terminal leaf tendrils of Entada scandens are said to be sensitive over their entire surface [47], as are 

Lathyrus aphaca tendrils, while P. sativum tendrils are sensitive on their abaxial surface only [48].   

 

A novel organ, the pulvinus (Figure 2D), mediates leaf movements in some legumes and is driven by 

changes in turgor pressure [49]. As such responses can be rapid and reversible, whereas leaf 

repositioning in plants without pulvini occurs more slowly via differential growth of cells in the leaf 

petiole [50]. Both reversible and non-reversible mechanisms of movement may be important for the 

tolerance of light, temperature and water stresses. Sensitive leaves, described as seismonastic, due 

to the suddenness of their response to touch, have a pulvinus enabling rapid flexion from the base of 

the leaf or leaflet.  This intriguingly radialized organ represents an intercalation of non-polarity 

between the flattened leaflet and the polarised leaf axis. A preliminary study has found evidence of 

seismonasty evolving multiple times in distinct lineages within the genus Mimosa [8]. One 

hypothesis is that the presence of a pulvinus, acting as a hinge in regular movements, such as solar 

tracking and day/night leaflet opening and closure, permits exaptation to seismonasty. Analysis of 

mutants without a pulvinus in P. sativum, M. truncatula and L. japonicus led to the identification of a 

LOB-domain transcription factor as a key component in the development of a leaflet pulvinus [51•, 

52•]. These legumes are all members of the 50 Ma Hologalegina clade of papilionoid legumes [1], so 

this discovery naturally leads to the question of whether pulvinus formation in phylogenetically 

remote and distinct clades, such as the 42 Ma Mimosoid clade and the 45 Ma Millettioid clade, with 

pulvini at the base of their leaves as well as their leaflets, is regulated by the same process.   

 



A novel root organ: the nodule  

No discussion of developmental specialisations in legumes can ignore the novelty of nodules (Figure 

1), organs that accommodate symbiotic nitrogen-fixing bacteria on underground or adventitious 

stem roots [3, 53, 54]. Nodules are not unique to legumes as indicated by their multiple independent 

origins in Angiosperm lineages [55], however, recent attention has focused on their evolution in 

legumes thanks to a new class of mutant defective in nodule identity [56••]. Maintenance of nodule 

identity requires suppression of root identity by the NODULE ROOT/COCHLEATA (NOOT/COCH)gene, 

which also has roles in leaf and floral development [56••]. In the pea coch mutant the most extreme 

leaf phenotype is the replacement of the stipules with compound structures resembling those on 

the rachis; reminiscent of the stipule form in Delonix regia [57]. The enlarged meristematic regions 

and supernumerary organs observed on noot/coch nodules, leaves and flowers suggests that long 

and/or short-distance stem cell pool maintenance signals are not correctly interpreted in the 

mutant. These broad phenotypic effects probably reflect original functions of the ancestral gene in 

shoot development prior to its co-option in nodule maintenance [56••].  As with many other 

specialised organs, in the nodule we see a clear example of evolutionary tinkering through gene 

recruitment.  

Conclusions 

It happens to be the case that most agricultural legume species are in the papilionoid subfamily, so 

this group is where genome sequence and genetic information is richest at present. In contrast, 

fascinating and potentially useful developmental specialisations are distributed throughout the 

legume family; the examples discussed here are but a sparse sample of the evolutionary 

inventiveness of this angiosperm family. Among the specializations we have described a common 

feature is the intercalation of a new meristem, involving gene subfunctionalization, which adds 

structural complexity. Organ sculpture into specialized shapes is another commonality, whether of 

leaflets, petals, or pods, members of large gene families have been co-opted to this function. New 

genes are driving phenotypic evolution, so it is with more extensive sequence information 



throughout the legume family that we can identify the newcomers and understand how they have 

been incorporated into existing developmental circuitries to bring about novelty. 
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Figure 1. Representation of a hypothetical papilionoid legume highlighting (in black) specialized 

meristems (arrowheads) and organs discussed in the text. 
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Figure 2. Examples of legume compound leaves and their novel leaf organs. 
A. Bipinnate leaf, Delonix regia. B. Once-pinnate leaf, Cicer arietinum. C. Leaflet tendrils, Pisum sativum. 
D. Pulvini, P. sativum. An intact leaflet pulvinis, delimited at its base by red coloured epidermal cells, is 
shown on the left, a section through a pulvinis on the opposite leaflet of the same leaf, as stained with 
toluidine blue, is shown on the right. 


