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The legume family is astonishingly diverse; inventiveness in the

form of novel organs, modified organs and additional

meristems, is rife. Evolutionary changes can be inferred from

the phylogenetic pattern of this diversity, but a full

understanding of the origin of these ‘hopeful monsters’ of

meristematic potential requires clear phylogenetic

reconstructions and extensive, species-rich, sequence data.

The task is large, but rapid progress is being made in both these

areas. Here we review specialisations that have been

characterised in a subset of intensively studied papilionoid

legume taxa at the vanguard of developmental genetic studies.
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Introduction
The legume family (Fabaceae, also known as Legumi-

nosae) evolved about 60 million years ago and diversified

into three subfamilies; the caesalpinioids, mimosoids, and

papilionoids [1]. They make up the third largest family of

flowering plants, comprising more than 700 genera and

18,000 species, with an exceptionally wide range of

habits, ranging from giant forest trees to aquatic herbs

[2–4]. Protein and/or oil-rich papilionoid legumes, such as

soybean, peanut and chickpea account for more than one

quarter of the world’s primary crop production [5��] and

are an essential component of low meat consumption

diets. Representative genome sequences of some of these

important food species have been published recently

(www.comparative-legumes.org/) and many more are in

the pipeline thanks to cheaper, faster sequencing tech-

nologies. This will lead to clusters of intensively

sequenced species that are taxonomically closely related,

so that, within these clear phylogenetic contexts, com-

parative genomic studies can be used to investigate genes
www.sciencedirect.com 
associated with synapomorphies, characters that are

shared due to common ancestry. In this review, the

characters we focus on are developmental specialisations

(Figure 1). Identification of the sequence variation associ-

ated with losses and secondary gains of synapomorphic

specialisations provides a deep understanding of the

evolution of developmental novelties.

Specialisation of inflorescence architecture
The most common type of inflorescence in legumes is a

type of shoot axis known as a raceme, which includes

flowering spikes, umbels and heads [6,7]. Even in mimo-

soid legumes, with their bottle brush or pompom-like

floral clusters [8], flowers initiate acropetally on the

raceme axis, after which they undergo a remarkable

developmental pause until all are initiated, then, together

they develop floral organs and open synchronously [6].

There is general agreement that papilionoid legume

inflorescences are usually racemes, however there is dis-

agreement on whether panicles are also common, due to

differences in the definition of a panicle [6,9]. Classically

defined panicles [10] are not found in legumes, while

compound racemes, for example double racemes with

two orders of branching, are common [7,9].

Taking the view that complex inflorescences are a devel-

opmental specialisation, we can ask if this complexity is

regulated by iteration of the same molecular mechanism

at sequential developmental time points, or by different

mechanisms and whether these mechanisms are shared in

other plant species. Berbel et al. [11��] set out to answer

these questions in their study of the double raceme in

Pisum sativum. The Veg1 gene, encoding a MADS-box

transcription factor in the euAGL79-clade, was identified

as a novel genetic function that inserts a new meristem

(called the I2, or secondary inflorescence, Figure 1) be-

tween the primary inflorescence axis and the flowers

[11��]. This I2, a short stem terminating in a rudimentary

stub, represents an additional meristem upon which

novelty can arise [12�]. In P. sativum the identity of the

I1 primary inflorescence (Figure 1) is determined by a

different gene, Determinate [13]; its expression is restricted

to the I1 by Veg1 [11��]. Mutations of Determinate result in

a determinate growth habit much sought after by breeders

[14�]. A Veg1-like gene is not found in the grasses, where

complex inflorescences are generated using a different set

of genes [15]. Other papilionoid legumes with double

racemes have a Veg1 gene [11��], but it remains to be

shown whether legumes with simple racemes have lost

Veg1 function and whether further subfunctionalisation of

the euAGL79 clade occurs in legume species with higher

levels of inflorescence complexity.
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Representation of a hypothetical papilionoid legume highlighting (in

black) specialised meristems (arrowheads) and organs discussed in the

text.
Novelty in flowers
Most legume flowers are pentamerous with five sepals,

five petals, two whorls of five stamens each and a single

carpel, but species occur with variations on this plan,

featuring floral organ reduction or multiplication [2,6].

Many members of the papilionoid taxon Swartzieae, for

example, are characterised by a single petal [2], while the

profuse production of stamens from an innovative devel-

opmental feature, the ring meristem, is manifest in all

three legume subfamilies [6]. The typical papilionoid

flowers of P. sativum, Medicago truncatula and Lotus japo-
nicus have ephemeral meristems known as common pri-

mordia (Figure 1) from which both petals and stamens

arise [16–18]. Although the common primordia are

entirely consumed by the organs arising from them, they

represent an additional step in floral meristem ontogeny,

echoing the structural reiteration of compound inflores-

cences; both remodellings of meristematic potential are

‘hopeful monsters’. In M. truncatula, duplicated APE-
TALA3-lineage genes are expressed in complementary

patterns in the common primordia, petals and stamens

and they interact differentially with duplicate PISTIL-
LATA-lineage genes to confer petal and stamen identity

[19]. Despite the absence of a motif common to other
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eudicots, PISTILLATA proteins in P. sativum and M.
truncatula are fully functional in this role [20,21].

Mimosoid legumes are characterised by radially sym-

metrical flowers, whereas papilionoid and caesalpinioid

legume flowers are usually zygomorphic (Figure 1), that

is they are bilaterally symmetrical; their showy adaxial

petal often stands upright and two lateral petals flank two

fused keel petals when the flower opens. Like the dis-

tantly-related zygomorphic species Antirrhinum majus,
papilionoid legumes have recruited CYCLOIDEA tran-

scription factor family genes for the regulation of dorsal

and lateral petal identity [22–25]. Functional analysis of

triplicated CYCLOIDEA -like genes in L. japonicus
showed that LjCYC1 and LjCYC2 have roles in dorsal

petal patterning, while LjCYC3 confers lateral petal

identity [24,26�]. Independent genetic loci determine

the asymmetry of the lateral and ventral petals [24,27],

but these remain to be identified. Transcriptional profil-

ing of individual floral organs was undertaken in Vicia
sativa [28] and compared with gene expression in dis-

tantly-related non-zygomorphic flowers. In order to cap-

ture the particular features of this synapomorphy in

papilionoid legumes, a similar approach will need to

be taken on species within the same clade, for example,

zygomorphic and non-zygomorphic genistoid legumes

[25]. While much attention has focused on floral

morphology with respect to pollinators, other factors,

for example nectar composition, are also important in

pollination systems [29]. Specialisation occurs in other

floral organs too, such as the carpel. Legume carpels can

be covered in hairs, or hairy on one side only. The former

has been deduced as the ancestral state in papilionoid

legumes of the tribe Fabeae, while the latter, as either

abaxial or adaxial hairiness, characterises different sub-

clades [5��].

Once fertilised, the carpel normally grows out to form the

elongated seed-containing legume (or pod) that is charac-

teristic of the entire family. A striking novelty is that some

species have coiled pods (Figure 1) and this character has

arisen several times independently within papilionoid

legumes [2], suggesting it may have adaptive value. A

study of species with coiled or uncoiled pods within the

genus Medicago revealed a clear correlation between pod

morphology and a change in the SHATTERPROOF gene

coding sequence which affected the ability of this

MADS-box transcription factor to interact with a partner

[30��]. Pod coiling in Medicago occurs when cells at the

carpel margin fail to elongate and become heavily ligni-

fied. As there is only one carpel and only one margin,

inhibition of its extension results in coiling of the carpel

wall tissues, which extend as usual. Coiled pods can have

elaborate patterns of lignin deposition, sometimes result-

ing in the formation of spines, which allows seed dispersal

when the pod becomes attached to the fur of passing

animals. The Medicago clade, which contains spined and
www.sciencedirect.com
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smooth-podded species, is ideally suited to further inves-

tigation of this character.

Complex and specialised leaves
Simple leaves have been inferred to be ancestral in

Angiosperms and there have been multiple gains and

losses of leaf complexity. This means not all compound

leaves are homologous, and neither are simple leaves, but

terms have not yet been defined to reflect this. It is not

clear whether the ancestral leaf form of eudicots, or within

these the rosids, from which legumes arose, was simple or

more complex [31�]. Maximum likelihood estimates of

ancestral states suggest that among Angiosperms there is a

strong bias for evolution towards simple leaves, however,

within the legumes, a family characterised by compound

leaves, there is no such bias, indeed evidence for the

opposite trend is found [31�]. Thus the legume com-

pound leaf (Figure 1), once acquired, tended to be

retained, and provided further opportunities for develop-

mental specialisation.

The LEAFY protein, known as Unifoliata (Uni) in P.
sativum [32], SINGLE LEAFLET1 (SGL1) in M. trun-
catula [33,34] and PROLIFERATING FLORAL MER-

ISTEM (PFM) in L. japonicus [35], is known to target

many genes involved in floral patterning [36,37], but it is

also proposed to have an earlier role in enabling meristem

outgrowth, by inducing the transcription of genes such

as REGULATOR OF AXILLARY MERSTEMS1 [38�]. It

may be through this pathway that Uni/SGL1/PFM gen-

erates a transient phase of indeterminacy [32] in legume

compound leaves. The downstream homeodomainless

KNOX transcriptional regulator FUSED COMPOUND

LEAF1 has a similar role in promoting leaf complexity, as

well as defining leaflet boundaries [39], while PALMATE-
LIKE PENTAFOLIATA1 (PALM1) repression of Uni/
SGL1/PFM is important in ensuring that complexity is

eventually curtailed [33,34]. The PALM1 gene also

regulates leaflet wax deposition and this brings a poten-

tially serendipitous benefit to breeders: reduced wax

deposition on the abaxial surface of palm1 mutant leaves

confers resistance to fungal pathogens [40��].

In the mimosoid subfamily bipinnate-leaves (Figure 2a)

are common while once-pinnate-leaves (Figure 2b) are

more usual in the papilionoid subfamily [2]; whether this

additional complexity in mimosoids can be explained by

variations in Uni/SGL1/PFM and PALM1 interactions

remains an open question. The compound leaves of both

these taxa feature astounding leaf specialisations, such as

the touch-responsiveness of leaves and of tendrils

(Figure 2c). One of the genes required for tendril for-

mation in Pisum and Lathyrus species, is Tendril-less (Tl),
which is transcriptionally activated by Uni [41] and

Lathyroides (Lath) [42�], though direct interactions have

not yet been demonstrated. Sequence similarity and

genetic map position suggest Lath is the orthologue of
www.sciencedirect.com 
the WUSCHEL-related homeobox1 (WOX1) transcription

factor STENOFOLIA (STF), which was shown to be

critical for leaflet blade development in M. truncatula
[43]. Genes such as JAGGED1, recently identified in

soybean [44�], are also involved in this process. In the

tendrilled leaf of P. sativum, Lath appears to have acquired

an additional role; not only promoting blade outgrowth in

leaflets and the dorsal petal (as in M. truncatula) but also

suppressing blade outgrowth in tendrils [42�], presumably

via activation of Tl in the distal domain of the leaf.

Application of the hormone gibberellic acid suppresses

terminal leaflet blade development and this activity is

proposed to occur through increased Uni transcription

[45]: again, upregulation of Tl would lead to blade sup-

pression. Other hormones are also implicated in blade

position and outgrowth, for example, reduced levels of

free auxin and changes in the levels of transcription of

auxin-regulated genes are seen in narrow-leafleted stf
mutants [43] while smooth leaf margin1 mutants have

altered auxin distribution and excessive production of

terminal leaflets [46]. At this point at least some of the

regulators of legume leaflet versus tendril formation have

been identified, but their relationships with each other

are yet to be fully elucidated. Whether the leaf tendrils of

climbing mimosoid legume species represent convergent

evolution and whether the same physiological processes

are involved in contact-induced coiling remain to be

investigated. The terminal leaf tendrils of Entada scandens
are said to be sensitive over their entire surface [47], as are

Lathyrus aphaca tendrils, while P. sativum tendrils are

sensitive on their abaxial surface only [48].

A novel organ, the pulvinus (Figure 2d), mediates leaf

movements in some legumes and is driven by changes in

turgor pressure [49]. Such responses can be rapid and

reversible, whereas leaf repositioning in plants without

pulvini occurs more slowly via differential growth of cells

in the leaf petiole [50]. Both reversible and non-reversible

mechanisms of movement may be important for the

tolerance of light, temperature and water stresses. Sensi-

tive leaves, described as seismonastic, due to the sudden-

ness of their response to touch, have a pulvinus enabling

rapid flexion from the base of the leaf or leaflet. This

intriguingly radialised organ represents an intercalation of

non-polarity between the flattened leaflet and the

polarised leaf axis. A preliminary study has found evi-

dence of seismonasty evolving multiple times in distinct

lineages within the genus Mimosa [8]. One hypothesis is

that the presence of a pulvinus, acting as a hinge in regular

movements, such as solar tracking and day/night leaflet

opening and closure, permits exaptation to seismonasty.

Analysis of mutants without a pulvinus in P. sativum, M.
truncatula and L. japonicus led to the identification of a

LOB-domain transcription factor as a key component in

the development of a leaflet pulvinus [51�,52�]. These

legumes are all members of the 50 Ma Hologalegina clade
Current Opinion in Plant Biology 2014, 17:153–158
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Figure 2

(a) (b)
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Examples of legume compound leaves and their novel leaf organs. (a)

Bipinnate leaf, Delonix regia. (b) Once-pinnate leaf, Cicer arietinum. (c)

Leaflet tendrils, Pisum sativum. (d) Pulvini, P. sativum. An intact leaflet

pulvinis, delimited at its base by red coloured epidermal cells, is shown

on the left, a section through a pulvinis on the opposite leaflet of the

same leaf, as stained with toluidine blue, is shown on the right.
of papilionoid legumes [1], so this discovery naturally

leads to the question of whether pulvinus formation in

phylogenetically remote and distinct clades, such as the

42 Ma Mimosoid clade and the 45 Ma Millettioid clade,

with pulvini at the base of their leaves as well as their

leaflets, is regulated by the same process.

A novel root organ: the nodule
No discussion of developmental specialisations in

legumes can ignore the novelty of nodules (Figure 1),

organs that accommodate symbiotic nitrogen-fixing bac-

teria on underground or adventitious stem roots [3,53,54].

Nodules are not unique to legumes as indicated by their

multiple independent origins in Angiosperm lineages

[55], however, recent attention has focused on their

evolution in legumes thanks to a new class of mutant

defective in nodule identity [56��]. Maintenance of

nodule identity requires suppression of root identity by

the NODULE ROOT/COCHLEATA (NOOT/COCH)gene,

which also has roles in leaf and floral development [56��].
In the pea coch mutant the most extreme leaf phenotype is

the replacement of the stipules with compound structures

resembling those on the rachis; reminiscent of the stipule

form in Delonix regia [57]. The enlarged meristematic

regions and supernumerary organs observed on noot/coch
nodules, leaves and flowers suggests that long and/or

short-distance stem cell pool maintenance signals are

not correctly interpreted in the mutant. These broad

phenotypic effects probably reflect original functions of

the ancestral gene in shoot development prior to its co-

option in nodule maintenance [56��]. As with many other
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specialised organs, in the nodule we see a clear example

of evolutionary tinkering through gene recruitment.

Conclusions
It happens to be the case that most agricultural legume

species are in the papilionoid subfamily, so this group is

where genome sequence and genetic information is rich-

est at present. In contrast, fascinating and potentially

useful developmental specialisations are distributed

throughout the legume family; the examples discussed

here are but a sparse sample of the evolutionary inven-

tiveness of this angiosperm family. Among the specialis-

ations we have described a common feature is the

intercalation of a new meristem, involving gene subfunc-

tionalisation, which adds structural complexity. Organ

sculpture into specialised shapes is another commonality,

whether of leaflets, petals, or pods, members of large gene

families have been co-opted to this function. New genes

are driving phenotypic evolution, so it is with more

extensive sequence information throughout the legume

family that we can identify the newcomers and under-

stand how they have been incorporated into existing

developmental circuitries to bring about novelty.
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