AN ANALYSIS OF ANANTAPUR CLIMATE

P. Naveen and N. Seetharama Cereals Program, and

D. Midya and S.M. Virmani Resource Management Program,

ICRISAT Center, Patancheru, and

A. Yogeshwara Rao Andhra Pradeth Agricultural University, Anantapur

August 1991

DROUGHT RESEARCH SEMINAR FORUM

International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) Patancheru, A.P. 502 324, India

and

AGRICULTURAL RESEARCH STATION

Andhra Pradesh Agricultural University Anantapur, A.P. 515001, India

AN ANALYSIS OF ANANTAPUR CLIMATE

P. Naveen and N. Seetharama Cereals Program, and

D. Midya and S.M. Virmani Resource Management Program,

ICRISAT Center, Patancheru, and

A. Yogeshwara Rao Andhra Pradesh Agricultural University, Anantapur

August 1991

DROUGHT RESEARCH SEMINAR FORUM

International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) Patancheru, A.P. 502 324, India

and

AGRICULTURAL RESEARCH STATION

Andhra Pradesh Agricultural University Anantapur, A.P. 515001, India

PREFACE

The yields of rainfed crops in the semi-arid tropics have remained low and unstable because of several environmental constraints among which soil and climatic factors are the foremost. Success or failure of rainfed crops depends upon the pattern and amounts of rainfall. However, other factors like temperature, photoperiod and wind also significantly influence crop growth and yield. The analysis of climate plays a key role in planning better farming systems to improve and stabilize yields, and to design appropriate crop breeding strategies.

The main objective of this report is to demonstrate the extensive use of climatic data for improving crop production by assessing the extent and intensity of climatic risks. We have chosen to study the climate of Anantapur which is in a dry tract with degraded soil. The International Crop Research Institute for the Semi-arid Tropics (ICRISAT) and the Andhra Pradesh Agricultural University (APAU) use this location for conducting drought research. Therefore, assessment and interpretation of the natural resources of this region in agronomically relevant terms (particularly those related to water), assume a special significance.

This is not a formal publication endorsed either by ICRISAT or APAU. Its purpose is mainly to stimulate discussion among professional colleagues, and therefore should not be cited. Comments are most welcome. We hope that similar exercise will be carried out for other benchmark stations in the arid and semi-arid tropics.

ACKNOWLEDGMENTS

P. Naveen carried out most of the work reported here as a training project with the active support of N. Seetharama, D. Midya, S. M. Virmani, and A. Yogeshwara Rao. The authors are very grateful to Drs. G. Alagarswamy, Plant physiologist, F.R. Bidinger, Principal plant physiologist and Piara Singh, Senior soil scientist, for critically going through the manuscript and making valuable suggestions.

P. Naveen is indebted to ICRISAT, and specially to Dr. J. M. J. de Wet, Program Director Cereals, and to Dr. D. L. Oswalt, Principal Training Officer and Program Leader, Human Resource Development Program, for giving him the opportunity to work at the ICRISAT Center.

CONTENTS

		Page No
1.0.	Introduction	1
2.0.	Rainfall	3
2.1.	Annual rainfall	
	2.1.1. Frequency of rainfall distribution 2.1.2. Frequency of drought occurrence during calendar years 2.1.3. Dependable annual precipitation	
2.2.	Seasonal rainfall	5
2.3.	Monthly rainfall	5
	2.3.1. Dependable monthly precipitation	
2.4.	Analyses of weekly rainfall	6
	2.4.1. Total number of rainy weeks 2.4.2. Total amount of rainfall 2.4.3. Probability estimates of weekly rainfall	
	2.4.3.1. Constant rainfall analysis 2.4.3.2. Constant probability analysis	
2.5.	Analyses of decadal rainfall	8
	2.5.1. Constant rainfall analysis 2.5.2. Constant probability analysis	
2.6.	Total number of rainy days	9
	2.6.1. Total number of rainy days during a year 2.6.2. Total number of rainy days during the growing season	
2.7.	Dry spells	10
	2.7.1. Dry spells during a year 2.7.2. Dry spells during the growing season	
2.8.	Daily rainfall	11
	2.8.1. Number of rainy days in a month	
	2.8.1.1. Mean 2.8.1.2. Range 2.8.1.3. Extremes	
	2.8.2. Dry spell between rains within a month	
2.9.	Rainy season length	12
	 2.9.1. Start and end of rainy season 2.9.2. Length of rainy season 2.9.3. Probable date of sowing of crops and probability of dry spells 	

3.0.	Air temperature	15
3.1. 3.2. 3.3.	Maximum air temperature Minimum air temperature Heat units	
4.0.	Wind speed, Humidity and Evaporation	17
4.1.	Wind speed and direction	
4.2.	Relative humidity, Mean atmospheric pressure, and Vapor pressure	
	4.2.1. Relative humidity 4.2.2. Mean atmospheric pressure, and Vapor pressure	
4.3.	Evaporation, and Moisture availability	
	4.3.1. Daily pan evaporation, and potential evapotranspiration4.3.2. Moisture availability index4.3.3. Climatic water balance	
5.0.	Other Climatic factors	20
5.1.	Cloudiness	
5.3.	Daylength	
3.4.		
6.0.	SIGNIFICANCE OF CLIMATIC FEATURE ON AGRICULTURAL PRODUCTION AT ANATAPUR	21
7.0.	Summary	22
8.0.	References	25
9.0.	Appendices	27

Page No

APPENI)IC-S

A.	Computation of initial and conditiona	l probabilities.	27
в.	Computation of gamma distribution.		31
c.	Computation of daylength.		33

LIST OF TABLES

Rain	fall: Page	no
1. M	onthly and annual rainfall data for Anantapur.	34
2. P	robability of receiving a specified amount of annual rainfall.	36
3. F	requency of drought occurrence during a calendar year.	37
4. M	onthly rainfall statistics for Anantapur.	38
5. M	onthly rainfall for specified probabilities using gamma distribution.	39
6. T d	otal number of rainy weeks, and amounts of rainfall received during lifferent weeks during 1911-1989.	40
7. W a	weekly initial and conditional probabilities of rainfall for selected mount, and the mean weekly rainfall.	42
8. W d	eekly rainfall for a given specified probability using gamma istribution.	43
9. D a:	ecadal initial and conditional probabilities of rainfall for selected mount, and the mean rainfall.	44
10.	Decadal rainfall for a specified probability using gamma distribution, and the mean decadal rainfall.	45
11.	Total number of rainy days during a year, and during the growing season.	46
12.	Years with extremes for total number of rainy days in a year, and during the growing season.	9 4 B
13.	Dry spells between rainy days during a year and during the growing season.	49
14.	Years with extreme dry spells during a year and during the growing season.	51
15.	Generalized characteristics of daily rainfall.	52
16.	Length of the growing season, and total amount of rainfall before, during, and after the start of the season.	53
17.	Forward and backward accumulation of rainfall.	56
18.	Probability of dry spells for two and three consecutive weeks.	58
19.1	Monthly statistics on maximum air temperature and its probabilities.	59
20.	Monthly statistics on minimum air temperature and its probabilities.	60
21.	Monthly statistics on heat units.	61
22.	Monthly statistics on wind speed and wind direction.	62

Continued >>>

LIST OF TABLES (continued from the previous page)

Ten	Temperature Page	
23.	Monthly statistics on relative humidity, Atmospheric pressure and Vapor pressure.	63
24.	Mean daily and monthly statistics for pan evaporation, and potential evapotranspiration.	64
25.	Monthly statistics on climatic water balance.	65
26.	Weekly climatic water balance.	66
27.	Monthly statistics for cloudiness, sunshine hours, daylength and solar radiation.	67
28.	Initial and conditional probability of weekly rainfall for week # 25 receiving more than 10 mm rainfall based on 79 years of rainfall data.	68
29.	Gamma distribution of weekly rainfall for week # 25 for 79 years.	70
30.	Comparison of rainfall characteristics at Anantapur and Hyderabad.	72

LIST OF FIGURES

	Page	No
1.	Geographical location of Anantapur in Andhra Pradesh, India.	73
2.	Variability in annual rainfall during 1911 to 1989.	74
3.	Percentage deviation of annual rainfall from the mean rainfall.	75
4.	Five-years moving average for annual rainfall exceeding specified minimum amounts.	76
5,	Number of weeks receiving rainfall exceeding specified minimum amounts.	77
6.	Initial and conditional probabilities of mean weekly rainfall exceeding $\geq\!\!10$ mm.	78
7.	Variation in daily rainfall during 1984 to 1989.	79
8.	Forward and backward accumulation of rainfall, and probability of dry spells.	80
9.	Climatic water balance.	81
10	. Initial and conditional probabilities of mean weekly rainfall receiving ≥ 10 mm at Anantapur and Hyderabad.	82

1. INTRODUCTION

Quantitative analyses of environmental characteristics deserve high priority in defining agroclimate, and in determining the crop production potential of a region. Rainfall and soil characteristics are the two primary factors limiting the agricultural production in dryland areas. These two factors largely determine the land use potential and common cropping patterns. In this report, we have attempted to analyze the climate of Anantapur, a dry and resource-poor tract.

The Anantapur district (Figure 1) is located in the Rayalaseema region in the southern part of Andhra Pradesh, India. There is an Agricultural Research Station administered by the Andhra Pradesh Agricultural University at Rekulakuntala village, which is 11 km East of Anantapur town on the Anantapur-Narpala road. The station is located at 14° 41' N latitude, 77° 44' E longitude at an elevation of 348 m above the mean sea level. It receives rains during the South-West monsoon from June to September, and during the North-East monsoons from May to November. However, being far from the coastal belt, Anantapur receives meager rainfall. The high Western Ghats also reduce the rainfall from South-West monsoon. The rainfall during the later part of the North-East monsoon season is erratic in this tract, as it is much influenced by the depressions in the Bay of Bengal. Eventhough the total rainfall may appear adequate, its poor distribution results in partial or complete failure of crops during many years. Based on the pattern of monsoon rainfall, the pre-rainy, rainy and postrainy season periods are recognized. Pre-rainy season is 18 weeks long [(std. wks.) standard weeks: 19-36] and the rainy season is very short (5 weeks; std. wks. 37-41). Postrainy season is 11 weeks long (std. wks. 42-52).

In the tropics, rainfall is the major climatic element that affects crop growth and development, particularly where rainfed farming practised widely. Data on long-term rainfall, in contrast to those on other climatic parameters, are easily available. An understanding of rainfall distribution in relation to the growth stages of the crop cultivars and soil condition is essential for successful crop planning and management. The discussion that follows is therefore confined largely to the methods of analysis of rainfall patterns as related to crop planning. Simple criteria related to sequential phenomena such as dry and wet spells can be used to obtain specific information needed for crop planning. The computation of probabilities of rainfall and drought, and water balance is discussed in detail.

At Anantapur, the soils are primarily red sandy loams (alfisols). They are shallow (0.1-0.3 m deep), and have a compact sub-soil layer that could restrict the root growth. The stored-soil moisture is about 100-115 mm m^{-1} depth. The soils are neutral in reaction, low in organic matter, deficient in nitrogen, phosphorus, zinc, and low to medium in potassium.

Groundnut is the major crop grown throughout the district. On a limited scale, groundnut is intercropped with long duration redgram (pigeonpea). Sorghum, pearl millet and foxtail millet (*Setaria*) are also grown, but during recent years these cereals are increasingly replaced by the more remunerative groundnut.

SOURCE OF DATA AND COMPUTATION PROCEDURES

Data were assembled from several sources. Daily rainfall for the early period of 1911-1965 were obtained from the District Collector's Office at Anantapur. For 1965-1989, data on rainfall, relative humidity, maximum and minimum air temperatures were collected from the Agricultural Research Station, Anantapur. The data on wind velocity, wind direction, sunshine hours, and evaporation were available since 1976. Climatic water balance was calculated using Keig and Mc Alpine's procedure (1974). Initial and conditional probability analysis was carried out using Markov chain first order probability analysis (Gabriel and Neuman, 1962). The probability of receiving different amounts of rainfall was carried out using gamma distribution (de Arruda and Pinto 1980). The computation procedures for the initial and conditional probability analysis, and gamma distributions are shown in appendices. Daily photoperiod including civil twilight (Jones and Kiniry 1986) and heat units (Ong et al. 1986, and Alagarsamy and Ritchie 1991) were calculated. The data were computed using SAS (1985), or FORTRAN and BASIC programs specially written for climatic analyses.

2. RAINFALL

Temporal variation in rainfall is high at Anantapur. We studied variation in rainfall on annual, monthly, decadal (10-day period), weekly and daily basis. Using the daily rainfall data for 1911-1989, we also analyzed following important characteristics of rainfall distribution:

(i) Means for the specified periods

- (ii) Extremes (maximum and minimum) for the specified periods
- (iii) Standard deviation (sd), and coefficient of variation (CV; %), and
- (iv) Probability of receiving specified amount of rainfall during a year.

2.1. ANNUAL RAINFALL

At Anantapur, the mean annual rainfall over the 79 year period (1911-1989) was only 565 mm with a CV of 30% (Table 1). The annual rainfall is low and highly erratic, and ranged from 176 mm (1984) to 976 mm (1919; Figure 2).

Rainfall exceeded 900 mm only thrice during the study period: in 1917 (945 mm), 1919 (976 mm) and in 1988 (915 mm; Table 1). The recent drought during 1984 was unique in its persistence: only 176 mm of rainfall was received during that year, which was the lowest annual rainfall during 1911-1989 at Anantapur.

Rainfall deviations of 20% from the long-term mean were quite common (Figure 3). The number of years receiving $\leq 20\%$ of long-term mean rainfall were 21 (out of 79), and that above 20%, was 22. Similarly, in 9 years (out of 79) the rainfall was below 40% of the mean, and in 7 years it was 40% above the mean. Generally, the variation in rainfall across years was less during the recent past than during 1911-1960. The rainfall was normal (\pm 19% of mean) in 38 years, and above normal in 21 years out of 79 years.

The five-years moving average of annual rainfall indicates that there was a frequent and conspicuous trend of decrease in annual rainfall between 1940-1950 resulting in drought. Similar trend was repeated again between 1980-1990 (Figure 4).

2.1.1. Frequency of rainfall distribution

We used the definition of the Planning Commission, Government of India (1973), to calculate the frequency of occurrence of drought. According to the Commission, the years receiving <75% of the long-term mean rainfall are drought years. The number of such drought years during 1911 to 1989 at this station was 12 (i.e., approximately 1 in 6-7 years).

The distribution of years receiving specified amounts of annual rainfall is given in **Table** 2. Only in 1984, the rainfall was <200 mm. Altogether, 82% (65 out of 79) of the years received >400 mm of rainfall, while only 38% of the years received >600 mm (30 out of 79 years). The probability of receiving 800 mm or more of rainfall is only 7.6% (6 out of 79 years).

2.1.2. Frequency of drought occurrence during calendar years:

We examined the scope for predicting drought as per the definition of the Planning Commission (see above section: 2.1.1). The objective was to find out how and when to decide whether a year is a drought year or a normal one, based on simpler calculations. This analysis is significant for initiating prompt drought relief operations by the public agencies during a drought year. **Table 3** shows the frequency of years with specified percentage of excess or deficit rainfall up to specified calendar dates. On July 1, a drought year can be assumed once in 3, or twice in 7 years (30 out of 100). If the same exercise is done earlier on June 1, one out of two years can be considered as drought year (45 out of 100). For August 1, the chance is once in three years (32 out of 100). However, based on rainfall till December, it is once in five years (19 out of 100). Thus, the chances of a year being classified as normal increases considerably during the season. The North-East monsoon rains, especially those caused by depression in the Bay of Bengal during September-October period considerably influence the outcome of above exercise at Anantapur.

2.1.3. Dependable annual precipitation

Hargreaves (1977) defined dependable precipitation (DP) as the amount of rainfall received at 75% probability (P). For agricultural purposes, 70 or 75 % P is generally accepted as a reasonable risk level. For drought-sensitive or high value crops, or during critical crop growth stages, a higher P may be more appropriate. Conversely, for drought hardy crops, or during a relatively less sensitive growth stage, a lower P may be acceptable.

At Anantapur, the dependable annual precipitation (DP_a) is 436 mm. That is, in 3 out of 4 years the annual rainfall is \geq 436 mm (=77% of the mean annual rainfall). At a lower P of 50%, DP_a is 547 mm (= 97% of long-term mean; please refer to section 2.3.1. for more details).

2.2 SEASONAL RAINFALL

Based on the rainfall distribution, there are four seasons at Anantapur:

- 1. South-West monsoon season: June to September,
- 2. North-East monsoon season : October to December.
- 3. Winter season : January to February.
- 4. Summer season : March to May.

The data on seasonal distribution of rainfall (**Table 4**) reveal that 332 mm (58.8%) of the annual rainfall is received during South-West monsoon, and 153.2 mm (27.1%) during North-East monsoon. The Winter season contributes only 6.7 mm (1.2%), and summer season 75 mm (12.9%).

2.3. MONTHLY RAINFALL

The monthly rainfall statistics for the 79 years are summarized in Table 4. September (145 mm), followed by October (102 mm) are the wettest months. Together, they account for 44% of the annual precipitation. Monthly rainfall during May through August, and November varies between 43 to 74 mm (8 to 13% of the annual total rainfall).

The rainfall within a month over the years varied widely between nil and 489.0 mm. Even the wettest month of September may go dry without any rain in certain years. The monthly highest rainfall of 489 mm fell during August 1938 (66% of the total rainfall during that year; **Table 1**). Rainfall during most months of the year (especially those between November and February) is relatively low.

The variability in the monthly rainfall is even greater than the variability of annual rainfall. While the CV for annual mean rainfall is only 30%, the CV's for rainfall during different months are between 63-525% (Table 4). The CV is 63% even for the wettest months of September.

2.3.1. Dependable monthly precipitation

We computed the dependable monthly precipitation (DP_m) at 90, 75, 50, 25 and 10% P (Table 5). The DP_m at 75% P during the early months was low. It is only 4 mm during April and 22 mm during May. Even with the start of the South-West monsoon, it is low (June: 27 mm;

July: 16 mm; August: 18 mm). DP_{a} is highest during September [62 mm, which forms 14% of the annual DP_{a} (annual DP) at 75% P], followed by October (35 mm; 8% of DP_{a}). It declines from November (7 mm) and continues to remain low until March (1.0 mm).

2.4. ANALYSES OF WEEKLY RAINFALL

The information on annual, and even monthly rainfall is often grossly inadequate for making agricultural decisions. Therefore, we need to analyze rainfall for a period shorter than a month. Weekly analyses are more appropriate to interpret and use than the decadal rainfall. We calculated probabilities of rainfall both on weekly and decade basis for comparison.

2.4.1. Total number of rainy weeks

We calculated the total number of weeks at different threshold levels of rainfall for certain minimum amounts of rainfall (including drizzle: all recorded rainfall events): ≥ 2.5 , ≥ 10 , ≥ 20 and ≥ 30 mm week⁻¹. The results are plotted in Figure 5. On an average, there are 22 weeks in a year that receive rains (including a drizzle); the highest was 29 weeks in 1915, and the lowest was 9 weeks in 1946 (Figure 5A). At ≥ 2.5 mm threshold value, the mean was 18 weeks year⁻¹; the highest was 26 weeks year⁻¹ in 1930, and the lowest was 7 in 1946 (not shown in the figure). At ≥ 10 mm the mean was 12 weeks year⁻¹; the highest was 19 (1977) and the lowest was 6 in 1976 (Figure 5B). At ≥ 20 mm, the mean was 8 weeks year⁻¹, the highest was 14 (1916, 1917 and 1919) while the lowest was 3 (1923, 1934 and 1984; Figure 5C). For ≥ 30 mm, the mean was 6 rainy weeks year⁻¹; the highest was 12 (1977 and 1988), and the lowest was 1.0 in 1934, 1980 and 1984 (Figure 5D).

2.4.2. Total amount of rainfall

The total amount of rainfall received during a year with ≥ 2.5 mm threshold value per day was 560 mm (range 172-969 mm). This did not differ much from the total rains in a year (565 mm; range: 176-974 mm; Table 6). For other threshold levels the mean during the year were as follows: rains ≥ 10 mm: 525 mm (range: 137-934 mm), rains ≥ 20 mm: 471 mm (range: 92-903 mm); and rains ≥ 30 mm: 419 mm (range: 43-813 mm). Such data are useful in planning land treatments and water harvesting.

RAINFALL

2.4.2. Probability estimates of weekly rainfall

Using the daily rainfall data, we characterized weekly rainfall in the following two ways:

- Constant rainfall analysis (CRA).
- Constant probability analysis (CPA).

These are the two crucial parameters useful for planning farm operations like timely land preparation, sowing and crop harvest.

2.4.2.1. Constant rainfail analysis

Constant rainfall analysis (CRA) deals with the probability of occurrence of a specified minimum amount of rainfall. This analysis was carried out by using Markov chain first order probability analysis (Gabriel and Neuman, 1962).

By analyzing constant rainfall on weekly basis, we can test the degree of certainty of rainfall to meet the weekly demand at different crop growth stages. The threshold values of rainfall vary depending upon the nature of farm operations during the week. We examined the probability of each standard week receiving ≥ 10 , ≥ 20 , ≥ 30 , ≥ 40 , and ≥ 50 mm of rainfall during the year (Table 7). Details of the calculations are presented in Appendix A.

The weekly rainfall probabilities can be studied in three ways

- (i) The initial probability of a wet week $P(W_{\perp})$.
- (ii) Conditional probability of a <u>wet week</u> preceded by a wet week $P(W/W_{u})$, and
- (iii) Conditional probability of a dry week preceded by a wet week $P(W/D_{\perp})$.

 $P(W_w)$, indicates the probability of receiving certain amounts of rainfall during a given week. $P(W/W_w)$ lets us examine the probability of rain during the next week following rain during the current week. $P(W/D_w)$ does the opposite; it deals with the probability of next week being dry following a current wet week (Virmani et al. 1982).

At Anantapur, even at ≥ 10 mm rain week¹, $P(W_{\omega})$ is not more than 46% in any one of the weeks during the 'pre-rainy season'. These early rains are not at all dependable as frequently they are only light showers. $P(W_{\omega})$ does not exceed 70% during any part of the year (Figure 6A).

The $P(W/W_{\perp})$ also follows a fairly similar pattern as $P(W_{\perp})$ (Figure 6B). Only during the standard week 37, $P(W/W_{\perp})$ exceeds 70%.

The P(W/D_) is high (>50%) only in standard week 37 (Figure 6C).

These show the low and undependable rainfall pattern at Anantapur. This point is further illustrated, by comparing the Initial and Conditional probabilities of Hyderabad and Anantapur Appendix A.

2.4.2.2. Constant probability analysis

Constant probability analysis (CPA), represents the amount of rainfall expected at a given level of probability. We used the incomplete gamma distribution to find the probability of receiving different amounts of rainfall in each week (de Arruda and Pinto, 1980). Details of the calculations are presented in Appendix B. Results of expected rainfall at 90, 75, 50, 25 and 10 per cent probability levels are presented in Table 8.

At 90% *P*, on an average there are only 2 weeks that receive at least 1.0 mm of rainfall (std. wks. 38 and 39), the maximum amount being only 1.9 mm. Even at a lower level of 75% probability, none of the weeks received \geq 10 mm rain. The highest amount of rainfall received at 75% *P* is 8.5 mm during week 38 (Sep 17-23).

2.5. DECADAL RAINFALL

The Food and Agricultural organization (FAO) has chosen the decade as the standard time scale for generating the weather data for crop planning and monitoring (Frere, 1986). Therefore, we also carried out the analysis on decadal basis (Table 9). As expected, the decadal and weekly analyses agree with each other.

2.5.1. Constant rainfall analysis

For rainfall ≥ 10 mm decade¹, only for three decades (26-28) the $P(W_d)$ is greater than 40%, $P(W_d)$ increases from 19% (decade 25) to 46% (decade 28). The $P(W/W_d)$ for the period after decade 18 reveals that following early events, rains persist until decade 29 (P=24%). The maximum $P(W/D_d)$ at 10 mm week¹ is 54% (for decade 26). The relative probabilities of rainfall reduce considerably with an increase in the threshold amounts of rainfall.

2.5.2. Constant probability analysis

The expected amounts of decadal rainfall at 90, 75, 50, 25 and 10% *P* levels were calculated using an incomplete gamma distribution (Table 10). At 90% *P*, rainfall was *nil* for all the decades except decade 27 (1.0 mm). At 75% *P*, rainfall was *nil* up to decade 14 followed by 3.0 mm and 2.0 mm during the subsequent two consecutive decades. Again, there was no rain during the decades 17, 19, 20, 22 and 24. Further, rainfall was highest during the decade 27 (Sep 27 - Oct 8; 11 mm), and no rain was recorded from decade 29 to decade 14 of the next year. There were only four consecutive decades (25 to 28: Sep 1 to Oct 10) during a year that received some rainfall at 75% *P*. At 50% *P*, 11 consecutive decades received \geq 5.0 mm of rainfall (decade 18-28). The highest amount of rainfall was received during decade 27.

2.6. TOTAL NUMBER OF RAINY DAYS

We calculated the total number of rainy days in a year, and during the growing season (Growing season is characterized in section 2.8). The following threshold rainfall amounts were considered: all rains, ≥ 2.5 , ≥ 10 , ≥ 20 , ≥ 30 mm.

2.6.1. Total number of rainy days in a year

The mean total number of days in a year for different threshold amounts of rain varied as follows: all rains: 49 (range: 78-22); \geq 2.5 mm: 33 (range 13-52); \geq 10 mm: 16 (range: 6-28); \geq 20 mm: 9 (range: 1-18) and \geq 30 mm: 5 (range: 0-11; Table 11). The mean maximum and minimum number of days for different threshold levels of rain are shown in Table 12A with the list of years showing extreme values.

2.6.2. Total number of rainy days during the growing season

The mean total number of days during the growing season for different threshold amounts of rainfall varied as follows: all rains: 28 (range: 6-55); \geq 2.5 mm: 20 (range: 5-40); \geq 10 mm: 10 (range: 2-24); \geq 20 mm: 6 (range: 1-13) and \geq 30 mm: 4 (range: 0-9; Table 11). These figures (days with rain), constituted 57-80% of the corresponding rainy days during the year. The maximum and minimum number of rainy days during the growing season is shown in Table 12B with the list of years showing extreme values.

2.7. DRY SPELLS BETWEEN RAINY DAYS

We calculated the length of dry spells (mean duration of rain-free days) between two consecutive rainy days both in a year, and during a growing season. The following threshold rainfall amounts were considered for the computation of dry spells: all rains: ≥ 2.5 , ≥ 10 , ≥ 20 , ≥ 30 mm.

2.7.1. Dry spells between rainy days in a year

During a year, on an average, there is a dry spell of 8 days (range: 5-16 days) between rains, when all rains are considered (Table 13). For rains ≥ 2.5 mm the average dry spell was 12 days in its duration (range: 7-26), for rains ≥ 10 mm it was 25 days (range: 13-52), for rains ≥ 20 mm it was 44 days (range: 19-182), and for rains ≥ 30 mm it was 72 days (range: 30-365). The maximum dry spell for rainfall amount ≥ 30 mm was 365 days during 1984 (lowest annual rainfall), and the corresponding minimum was 30 days (during 1917). The mean maximum and minimum number of dry spells for different threshold levels are shown in Table 14A with the list of years showing the extreme values.

2.7.2. Dry spells between rainy days during the growing season

The mean duration of dry spells between consecutive rains for all rains was 4 days (range: 2-8); for rains \geq 2.5 mm: 6 days (range: 2-19); for rains \geq 10 mm: 11 days (range: 3-32); for rains \geq 20 mm: 17 days (range: 5-48), and for rains \geq 30 mm: 28 days (range: 6-91; **Table 13**). The maximum dry spell of 91 days at \geq 30 mm threshold rainfall was again in 1984; there was not even a single rainy day with \geq 30 mm of rainfall during that year, and the length of the growing season was only 92 days.

The mean maximum and minimum number of dry spells for different threshold levels are shown in Table 14B along with the list of years showing the extreme values. The number of dry spells during the growing season for all rains, and for ≥ 2.5 mm threshold levels is exactly half that during a year (8 and 12 days during a year, and 4 and 6 days during the growing season). For the remaining threshold rainfall levels, as expected, the dry spell is usually more than double of the dry spell during the growing season.

2.8. DAILY RAINFALL

As expected, the daily rainfall is highly variable at Anantapur. Figure 7 shows the variation in daily rainfall for the 6 consecutive years of 1984-1989. Lowest rainfall of 176 mm was received during 1984. The subsequent three years received below normal rainfall (1985: 392 mm; 1986: 436 mm, and 1987: 502 mm). During 1988, highest rainfall of 915 mm was received followed by 1989 (821 mm), which received above normal rainfall.

2.8.1. Number of rainy days in a month

2.8.1.1. Mean

The month-wise analysis of the number of rainy days with all rains, and those ≥ 2.5 mm are given in **Table 15**. The maximum numbers of rainy days are in September (9.1 days for all rains, i.e., 19% of the total rainy days, and 6.6 days for ≥ 2.5 mm rains, i.e., 14% of the total rainy days). It is followed by October (7.6 days for all rains, and 5.4 days for ≥ 2.5 mm). During August, September and October together there are 23.9 rainy days; this accounts for 49% of the total rainy days in a year (all rains considered). For threshold values of ≥ 2.5 mm during these three months (Aug-Oct) there are only 16.5 rainy days (51% of the total rainy days in a year).

2.8.1.2. Range

Although the total number of mean rainy days is higher in September, the highest numbers of rainy days ever recorded was in August (all rains: 20 and \geq 2.5 mm: 17; **Table 15**) followed by October (all rains: 19 and \geq 2.5 mm: 16) and September (all rains: 18 and \geq 2.5 mm: 16).

During all the months except July, there were at least few years without any rains for all the threshold amounts of rainfall. Out of the 79 years, only during four years (1942, 1965, 1976 and 1987), there was no effective rainfall of ≥ 2.5 mm during July. Therefore, July can be considered as the most assured month during which crops can be planted at Anantapur.

2.8.1.3. Extremes

We analyzed the highest and lowest amount of rainfall that was received during a single day in each month (Table 15). The highest amount of 180.0 mm of rainfall during the 79 year period was received on July 17, 1988. This rain was followed by next two high-rainfall events of 145.2 mm on October 10, 1937, and 130.2 mm on September 28, 1974. The lowest amount of recorded rainfall during a single rainy day in a month was lower than 0.3 mm for all the months except February (1.0 mm: February 7, 1929, and February 2, 1956).

2.8.3. Dry spell between rains within a month.

We calculated the mean duration of dry spells within a month (Table 15). During the season, the dry spell is lowest during September (9 days) followed by October (11 days), July (12 days) and August (13 days). The dry spell increases from November to January. The mean dry spells were highest in January (30 days) followed by March, February and December (28 days).

The extremes of dry spell are shown in the parenthesis in Table 15. These figures shows that the shortest dry spell is two days for all the months, while the longest dry spells were equal to the number of days in a month.

2.9. RAINY SEASON LENGTH.

2.9.1. Start and end of rainy season.

We defined the begianing of rains (X) as the first day <u>between June 1 and</u> <u>October 1</u> when (i) at least a total of 20 mm of rain is received in five days (not necessary consecutive days), <u>and</u> (ii) at least there is one rainy day with ≥ 2.5 mm rainfall in the next 10 days. The **end of rains** (Y) is defined as the last day of the first dry spell of 10 days ending between <u>October 1 and November 30</u>. The difference (days) between the beginning and end of rain is the length of rainy season (Y-X).

The average date of beginning of rains at Anantapur is July 11 (sd= ± 32 days: June 9 to August 12; **Table 16**). The average date of ending of rains is October 15 (sd= ± 11 days: October 4 to October 26). Therefore, the average growing season length is 97 days (sd= ± 31 days: 66 to 128 days).

2.9.2. Length of the rainy season

As mentioned above, the length of the rainy season varied six folds (Table 16). During the year 1961, the length of the rainy season was longest (151 days; total seasonal rainfall was 288 mm). During 1972, the length of the rainy period was very short (26 days), but the amount

RAINFALL

of rainfall during the growing season (280 mm) was almost equal to the rainfall (288 mm) during the long rainy season of 1961 (151 days). Thus the length of the rainy season is not related to the seasonal rainfall.

The amounts of rainfall that is received before, during, and after the rainy season also varied widely (Table 16). The mean rainfall received during the season is 380 mm, the same before the start of season is 115 mm, and after the season, 70 mm.

We also calculated the amount of rainfall that was received during the growing season as the percentage of the total annual rainfall for each year. The mean seasonal rainfall is 66% of the annual total rainfall. It is the highest (93%) during 1965, and lowest (24%) during 1982. The number of years that received rainfall lower than the mean (66%) was 33 years; among them it was less than even 50% of the mean during three years.

During 4 years (1911, 1922, 1980 and 1982) more rainfall was received before the growing season than during the growing season itself. In 1951, almost equal amount of rainfall was received during (265 mm) and before (260 mm) the growing season. During 1928, 1935, 1944, 1946, 1953 and 1970, no rains were received after the growing season. During 1922 (162 mm), 1948 (163 mm), 1982 (284 mm), higher amount of rainfall was received after the growing season than during the growing season.

2.9.3. Probable date of sowing of crops, and the probability of dry spells

Morris and Zandra (1978) suggested that the rainfed crops can be sown when the rainfall accumulates to 75 mm at 75% P in the beginning of the rainy season, and the date of cessation of the rainy season can be determined by backward accumulation of 20 mm at 75% P of rainfall from the end of the rainy season. Accordingly, a program was developed to calculate the probable week receiving 75 mm rainfall for forward accumulation and 20 mm rainfall for backward accumulation along with their probability percentage. The standard weeks along with their probability percentage were ranked and shown in Table 17 (also see in the next page).

The probabilities of occurrence of 2 consecutive, and 3 consecutive dry weeks were also calculated, using the Markov chain Model suggested by Robertson (1976). We assumed a standard week as dry when the rainfall was less than 20 mm (approximately equal to half the potential evapotranpiration). These probabilities indicates the risk of drought to the rainfed crops during a growing season. The probability of dry spells during the growing season ranged between 5-38% for 2 consecutive dry weeks and 1-17% for 3 consecutive dry weeks (Table 18; also see

RAINFALL

below).

Using the data in **Table 17** and **Table 18** a graph has been plotted see Figure 8. Sowing of rainfed crops in Anantapur region is possible by second week of July (std. wk. 28) in 3 out of 4 years, and the rainy season practically ends by the last week of October (std. wk. 43; probability >75%). Thus a crop of 15 weeks might succeed in this alfisols- dominated tract.

After sowing the crop by the second week of July (Figure 8), a dry spell of 2 consecutive weeks could be expected to begin in standard week 31 (July 30) at 38% P. Later the P falls down to 31%. Besides, a dry spells of 2 consecutive weeks could also be expected from the standard week 33 to 35 in 1 out of 5 years. Even during the cessation of rains the dry spell of 2 consecutive weeks touch as high as 42% P (std. wk. 45).

The dry spell of 3 consecutive standard weeks could be expected to begin with standard weeks. 30-31. Yogeshwara Rao et al. (1988) analyzed the probable decade of sowing of groundnut, and its effect on yield at Anantapur. They reported that the bunch type groundnut of 110 days duration is extensively grown in Anantapur region and subjected to dry spell during the first flush of flowering (18-28 DAS), thus adversely affecting the pod yield.

3. AIR TEMPERATURE

Anantapur is somewhat warm throughout the year. However, this warm environment is modified seasonally by changes in water regimes and surface (land) conditions. Monthly air temperatures, and probabilities of the temperatures exceeding specified threshold values using daily data for the period 1911-1989 are presented in Table 19 (maximum temperature) and Table 20 (minimum temperature)

3.1. MAXIMUM AIR TEMPERATURE

Mean monthly maximum air temperatures exceed the annual mean maximum temperature of 33.7°C from March through July (Table 19); during this period, mean monthly air temperatures exceed 35°C during all years except July (P = 100%). The CVs range between 1.0 and 3.1%. The probabilities of maximum temperatures exceeding 40°C but below 45°C is 3.0% in May, and only 1.0% in April. Throughout the crop growing season (Jul-Oct) the mean maximum temperature is always \geq 30°C except during September (P=97%).

3.2. MINIMUM AIR TEMPERATURE

Mean monthly minimum temperatures also show little variation as indicated by the low CV (Table 20). Their CVs for minimum temperature are higher than those for the maximum air temperatures. Mean monthly minimum temperatures during November through February are below the annual mean of 22.0°C. It never reaches above 20°C at Anantapur. During all other months, it is >20°C. In May, during most years the mean minimum temperature exceeds 25°C, but is below 30°C (P = 95%); this is rarely so during April (P = 9%). During the growing season, the mean minimum temperature vary between 23.8°C (July) to 22.0°C (October).

3.3. HEAT UNITS

The mean heat units accumulated during a month have been calculated from the maximum and minimum temperatures using the equation of Alagarswamy and Ritchie (1991). This equation is given in the next page.

Heat units for groundnut have been calculated by modifying the equation given by Ong et al. (1986); we have considered an upper limit of 34°C and lower limit of 6°C with a base temperature of 10°C. When a base temperature of 8°C is considered instead of 10°C, the corresponding values increased by 2°C.

```
HU = {(Maximum temperature + Minimum temperature)/2 - BT},

Where Maximum temperature = \leq 34^{\circ} C

Minimum temperature = \geq 6^{\circ} C

BT (Base temperature) = 8^{\circ} C for Sorghum

10^{\circ} C for Groundnut
```

The mean heat unit during a year is $16.6 d^{-1}$. The range in heat units is not large: it varied between 13.1 in December to 19.2 in May.

We analyzed the highest and lowest heat units that accumulated during a single day in each month (Table 21). The highest heat unit of 19.6 was in May, and the lowest heat unit of 10.0 was in March, May, July and August. The lowest was not during 'winter' season.

4. WIND SPEED, HUMIDITY, AND EVAPORATION

4.1. WIND SPEED AND DIRECTION

The wind speed, and its direction recorded at 3 m height are given in Table 22. The annual wind speed is 11.0 km h⁻¹. High winds prevail during June to August, with the monthly average exceeding 18 km h⁻¹. During this period the wind speeds in the afternoons touch even 50-60 km h⁻¹ (Yogeshwara Rao et al. 1985). This coincides with the beginning of the crop season which is a special feature of Anantapur climate.

4.2. RELATIVE HUMIDITY, MEAN ATMOSPHERIC PRESSURE AND VAPOR PRESSURE

4.2.1. Relative humidity

Statistics on relative humidity (RH) in the morning (0720 hr) and afternoons (1420 hr) are presented in Table 23. During summer months of March, April and May, the RH is low (55-64% in the morning, and 25-31% in the afternoon). During rest of the year it exceeded 65% in the morning, and 32% in the afternoon.

4.2.2. Mean atmospheric pressure and Vapor pressure

The annual mean atmospheric pressure is 967 mb (Table 23). The range is 965 (during May-Aug) to 974 (during Dec).

The mean vapor pressure deficit for Anantapur is 19.6 mb. Vapor pressure deficit is low during November to April (lowest in March, 13.4 mb; Table 23). It then increases with the onset of rains. Maximum vapor pressure is recorded during August (23.5 mb). Throughout the period of June through October, it remains above 23.0 mb. Variation in the mean vapor pressure deficit is also narrow during the crop season.

4.3. EVAPORATION, MOISTURE AVAILABILITY INDEX AND CLIMATIC WATER BALANCE.

4.3.1. Daily pan evaporation and potential evapotranspiration

We obtained daily pan evaporation (PE) from the U.S. Open pan evaporimeter (Table 24). The daily mean PE is 7.6 mm d⁻¹. During March, April and May the PE equalled or

exceeded 10.0 mm d⁻¹ as the solar radiation is high during the same period (23 MJ month⁻¹ also see section 5.2). During the crop growing season the PE value varied between 8.2 mm (July) and 5.2 mm day⁻¹ (October).

We multiplied the mean monthly PE values with a factor 0.75 to get the Potential evapotranspiration (PET). The daily mean PET is 5.8 mm d⁻¹. During April and May, it exceeds 8.0 mm d⁻¹. It continuously declines from May (8.2 mm d⁻¹) to November (3.8 mm d⁻¹). It is >200 mm month⁻¹ during the beginning of the rainy season (May & June) but, declines to about 120-130 mm month⁻¹ during later part of the season.

Due to high winds that prevail during the crop growing season specially during June through September, the PET values are relatively high $(7.1 - 4.4 \text{ mm d}^{-1})$, compared to most locations in the state of Andhra Pradesh. For example, at Hyderabad the PET values range between 6.5 to 4.0 mm during the same period.

4.3.2. Moisture availability index

We computed monthly moisture availability index (MAI) using Hargreaves (1975) formula. Only during September, MAI is moderately deficient (0.47), while during the rest of the year it is low (Table 25). A month is too long a period to study crop weather relationship; therefore, we analyzed MAI on a weekly basis (Table 26).

From the available crop water use data, it follows that at most stages of crop growth, the ratio of actual evaporation to potential evapotranspiration (AE/PET) had to be at least 0.50 to meet the crop water demand (Yogeshwara Rao et al. 1985). There are only 9 consecutive weeks (std. wks. 37-45) that have sufficient soil moisture (>20.0 mm) for crop growth at Anantapur (Table 26).

4.3.3. Climatic water balance

Keig and Mc Alphine (1974) water balance model was used to estimate the weekly available soil moisture storage. This model is based on two assumptions. First, a maximum soil moisture-storage capacity has to be known or at least assumed. Second, run-off or deep drainage losses of rainfall occurs only after the maximum soil water storage capacity has been reached. Soil water-storage at the end of a particular week was calculated by subtracting the soil water loss due to evapotranspiration during the week from the sum of the soil water storage at the end of a previous week and the amount of rainfall received during the week. Soil water loss through

WIND, HUMIDITY and EVAPORATION

the week was estimated by the ratio of actual evapotranspiration (AE) to potential evapotranspiration (PET) multiplied by PE. The ratio of AE/PET is taken as 1.0 as the soil water storage decreases from 100% to a minimum value, x%; and it decreases linearly from 1.0 to 0.0 as the storage decreases from x% to 0%. The value of x varies with the maximum soil waterstorage capacity. PET values for the last 13 years (1977-1989) were used in the water-balance computations. Using the above procedure, weekly available soil moisture was estimated (**Table** 26). Maximum soil water-storage capacity for Anantapur is taken as 74 mm (Bulk density is 1.58 Field capacity is 14%, permanent wilting point is 4% meter¹ depth of soil.) The mean annual rainfall is 565 mm and the mean PET is 2094 mm. Average monthly PET varied between 115 (Dec) and 254 (May). The total annual run-off is 79.5 mm with peak during the standard week 40 (14.6 mm). There are only five consecutive weeks retaining soil moisture \geq 30 mm (standard week 38-42).

Cocheme and Franquin (1967) proposed a graphical approach for climatic water balance. It is based on the computation of periods at which average rainfall (R) equals to 1/10, 1/2, and 1.0 of PET at the beginning, middle and end of the rainy season. The point where R equals to 1/10 of PET defines the beginning of the preparatory cultivation period, which in turn ends with the beginning of the first intermediate period (R = 1/2 PET). The humid period begins when R \geq PET. The intermediate period, during which R is more than half the PET but does not exceed it, occur before and after the humid periods.

Figure 9 depicts the climatic water balance at Anantapur. According to Cocheme and Franquin (1967), the preparatory cultivation period could be used for preparation of the soil. The preparatory cultivation period lasts for 81 days (April 25 to July 15). The beginning of the moist period is the best period for sowing. The moist period is 115 days (July 16 to Nov. 8) while the humid period is 39 days (Sep 5 to Oct 14). The above calculation does not consider soil moisture reserves in the profile that could be used by the crops after the rains end. Length of the rainy season discussed in the section 2.9 gives weightage to the profile water reserve by computing the end of the season as the last day of first dry spell of 10 days ending between Oct 1 - Nov 30.

5. OTHER CLIMATIC FACTORS

The monthly data on cloudiness, sunshine and solar radiation are presented in Table 27.

5.1. CLOUDINESS

The sky is generally clear throughout the year at Anantapur. During the two high rainfall months of September and October, the cloud covers are only 6 Oktas compared to 7 Oktas during July and August. From November onwards the sky is relatively clear; it further clears up in January.

5.2, SUNSHINE

The annual mean daily sunshine is 7 h 45 m d⁻¹. Sunshine hours range from 8.0 (during Oct - Dec) to 10.0 h day⁻¹ (Mar - May). During the crop growth period (Jul - Sep), the sunshine hours are low, with July recording the lowest (5.0 h d⁻¹).

5.3. DAYLENGTH

The daylength (including twilight) was computed using equations as shown in Appendix C. The variation at Anantapur $(14^{9} 41^{\circ} N)$ is not much. Daylength varied from a low value of 12.0 h in December to a maximum of 13 h 13 m in June. It is ≥ 13.0 h d⁻¹ during the growing season except September (12 h 12 m day⁻¹). The average annual mean was 13 h 02 m d⁻¹. Except during the few summer months, the temperature is also moderate; therefore, the phenological response to daylength may not vary much across planting dates without drought stress.

5.4. SOLAR RADIATION

Solar radiation was computed by using a FORTRAN program with the following input data: daily rainfall, temperature maximum, temperature minimum, sunshine hours, latitude and longitude of a station. The average of daily solar radiation is 20.0 MJ d⁻¹. Solar radiation is above average during January to May (20.2 to 23.0 MJ d⁻¹), and below the average during the rest of the year. Solar radiation is lowest during July (16.2 MJ d⁻¹). It increases continuously from August to April (23.8 MJ d⁻¹), and remains high during May and June.

6. SIGNIFICANCE OF CLIMATIC FEATURE ON AGRICULTURAL PRODUCTION AT ANANTAPUR

The amount of rainfall and duration of rainy-season does not provide a good index of productivity. The potential evapotranspiration, water loss, water-holding capacity of soil dictates the amount of available water for crop growth. More important than the quantity of rainfall in a given season is the question of its persistency over a short interval (for instance, during one week or fortnight). For red sandy soil of Anantapur, information on rainfall probabilities is important for agricultural planning. Alfisols, because of their poor structural stability at the surface are susceptible to erosion. Besides, the high winds of >18 km hr¹ prevailing during cropping season take away the beneficial effect of a rain in no time. Inspite of this observation, rainfall intensities are seldom measured.

The farming system at Anantapur is characterized by small farms, fragmented holdings, limited capital, use of mainly animal or human labor, severe unemployment, limited biological resources, lack of credit facilities and labor shortage at peak times. Improved productivity on this type of soils should consider the period available for crop growth. The beginning and end of the growing period show a wide fluctuation, by that reflecting the need to consider different management strategies. Once the extractable water-holding capacity is determined, waterbudgeting techniques can be used to find the pattern of changes in the profile moisture during the crop-growing season. Above factors assume greater importance if the modern technologies, including the new genotypes, is popularized, and moderate amounts of purchased inputs are applied.

The growing season at Anantapur is only 15 weeks long; therefore, a crop that can complete its life cycle within 105 days must be deployed. But, we need to consider the possibility of postponement of flowering time by droughts at pre-flowering stage; in such cases allowances should be made for the time to recover from early season drought.

Climatic and soil characteristics of Anantapur make this place ideal for conducting drought research.

7. SUMMARY

The climate of Anantapur is classified as tropical arid. The rainfall is variable between seasons. The rainfall is erratic, and shallow sandy loam soils have low infiltration capacity with the high evapotranspiration at this location, droughts are very common and so successful farming is difficult in the region.

Rainfall

Anantapur receives a mean annual rainfall of only 565 mm with a CV of 30%. According to the Planning Commission's definition, drought prevails once in three, or twice in 7 years. The data on seasonal distribution of rainfall reveals that 58.8% of annual rainfall is received during South-West monsoon and 27.1% during North-East monsoon. The dependable annual precipitation at 75% probability is 436 mm. September and October are the wettest months, together accounting for 44% of the annual precipitation. The variability in rainfall within the month is so high that even the wettest month goes dry without rain.

During any part of the year, the Initial probability of wet week, $P(W_w)$ does not exceed 70%. The conditional probability of wet week followed by wet week, $P(W/W_w)$ follows a similar pattern as $P(W_w)$ except during the standard week 37. During none of the weeks the conditional probability of $P(W/D_w)$ exceeds 59%. Constant probability analysis for rainfall ≥ 10 mm reveals that the highest amount of rainfall at 75% probability is 8.5 mm. At 75% probability there are only three consecutive decades (24-26) during the year receiving a minimum rainfall of 30 mm.

On an average; there are 49 days in a year with at least some rainfall. During the rainy season there are 28 rainy days. There is a dry spell of 8 days duration between rains when all rains are considered during a year. The mean dry spell during the growing season is 4 days only, but it can range from 2 to 8 days. The maximum number of rainy days is in September (mean: 9.1; range: 0-18).

The mean date of onset of South-West monsoon at Anantapur is July 11(sd: ± 32 days). The mean date of cessation of North-East monsoon is October 15 (sd ± 11 days). Therefore, the length of the rainy season is 97 days (sd: ± 31 days); it range from 26 - 151 days, thus shows the risks faced by the local farmers.

The probable date of sowing crops at Anantapur is around standard week 28 in 3 out of 4 years. The rainy season practically ceased by standard week 43. Thus, a crop of 15 weeks misht succeed in this alfisols-dominated tract.

SUMMARY

After sowing the crop by second week of July, a dry spell of 2 consecutive weeks are highly probable, which begin with the standard week 31 (38% probability). The probability of 3 consecutive std. wks. could be expected beginning with standard week 30-31.

Temperature and heat units

The annual mean maximum temperature is 33.7° C. The annual mean minimum temperature is 22.0° C. During crop growing season (July-Oct), the variation in maximum (32-33°C) and minimum (22.0 to 23.8° C) temperatures is low. The annual mean heat unit is $19.2 d^{-1}$. During the growing season the heat units range between 19.0 to 20.4 d⁻¹. Given the growing season length of 15 weeks, a crop that require about 2500 heat units can mature in Anantapur.

Wind speed and relative humidity

The annual wind speed is 11.0 km h^{-1} . The wind speeds during the afternoons are high touching 50-60 km h^{-1} . This coincides with the beginning of the crop season, a special feature of Anantapur. During summer months of March, April and May, the relative humidity is low (55-64% in the mornings, and 25-31% in the afternoons), while during rest of the year it exceeds 65% in the morning and 32% in the afternoons.

Atmospheric pressure and vapor pressure

The annual mean atmospheric pressure is 967 mb. The mean vapor pressure deficit is 19.6 mb. Maximum vapor pressure deficit of 23.5 mb is recorded during August. The change in the mean vapor pressure deficit is also aarrow during the crop season.

Potential evaporation and water balance

The monthly mean PET is 174.5 mm (5.8 mm day⁻¹). It exceeds \geq 200 mm month⁻¹ during the beginning of the season, but declines to about 120-130 mm month⁻¹ during later part of the season. There is sufficient soil moisture for crop growth only during std. wks. 29-46.

A graphical approach of climatic water balance showed that the preparatory period lasts for 81 days (April 25-July 15), the moist period for 115 days (July 16 - Nov 8) and the humid period is only for 39 days (Sep 5- Oct 14).

Cloudiness, sunshine and daylength

The sky is generally overcast from May to October with a peak overcast between July and August. The annual mean daily sunshine is 7 h 45 m d⁻¹. During the crop growth period (Jul-Sep), the number of sunshine hours is low, with July recording the lowest ($5.0 h d^{-1}$). The annual mean daylength including twilight is 13 h 02 m d⁻¹. During the growing season the daylength is

SUMMARY

13.0 h d⁻¹ except in September (12 h 12 m d⁻¹).

Implementation of above analysis on different strategies for crop production and research at Anatapur are discussed.

8. REFERENCES

Alagarswamy, G., and Ritchie, J. T. 1991. Phasic development in Ceres-Sorghum Model. Pages 143-151 *in* Predicting phenology of crops (Hodges, T., ed.). Boca Ration, FL 33431, USA: CRC Press.

Cocheme, J., and Franquin. P. 1967. A study of the agroclimatology of the semi-arid area south of the Sahara in West Africa. FAO/UNESCO/WMO Inter-agency Project on Agroclimatology. Tech. Report.

de Arruda, H.V., and Pinto, H.S. 1980. A simplified gamma probability model for analysis of the frequency distribution of rainfall in the Region of Campinas, SP, Brazil. Agricultural Meteorology 22:101-108.

Frere, M., and Popov, G. 1979. Agroclimatological crop monitoring and forecasting. Rome, Italy: FAO.

Gabriel, K.R., and Neumann, J. 1962. A Markov chain model for daily rainfall occurrence at Tel Aviv. Quarterly Journal of the Royal Meteorological Society 88:90-95.

Hargreaves, G.H. 1975. Water requirements manual for irrigated crops and rainfed agriculture. Logan, Utah, USA: Utah State University. 40 pp.

Hargreaves, G.H. 1977. Water requirements manual for irrigated crops and rainfed agriculture. Logan, Utah, USA: Utab State University.

Jones, C.A., Ritchie, J.R., Kiniry, J.R., and Godwin, D.C. 1986. Subroutine structure. Pages 49-111 in CERES-Maize: a simulation model of maize growth and development (Jones, C.A., and Kiniry J.R., eds.). College Station, Texas, Texas A & M University Press.

Keig, G., and McAlphine, J.R. 1974. Watbal: a computer system for the estimation and analysis of soil moisture from simple climatic data. 2nd edn. Australian Division of Land Research Technical Memorandum 74/4. Melbourne, Australia: Commonwealth Scientific and Industrial Research Organization. 45 pp.

Morris, R.A., and Zandra, H.G. 1978. Land and climate in relation to cropping patterns in rainfed lowland rice: selected papers from the 1978 International Rice Research Conference International Rice Research Institute, Los Banos, Manila, Philippines, pp. 255-274.

Ong, C.K. 1986. Agroclimatological factors affecting phenology of groundnut. Pages 115-125 in Agrometeorology of groundnut: proceedings of an International Symposium, 21-26 Aug 1985, ICRISAT Sahelian Center, Niamey, Niger. Patancheru, A.P. 502 324, India: International Crops Research Institute for the Semi arid Tropics.

India: Planning Commission. 1973. Integrated agricultural development in drought prone areas. Report of Task Force on Integrated Rural Development. New Delhi, India: Planning Commission.

Penman, H.L. 1948. Natural evaporation from open water, bare soil, and grasses. Proceedings of the Royal Society of London, Series A 193:120-145.

Software system for data analysis (SAS), 1985. SAS users guide: Basics, Version. 5th Edn. NC 27511, USA: SAS Institute.

Sivakumar, M.V.K. 1986. Climate of Niamey. Progress Report-1. Niamey, Niger: International Crops Research Institute for the Semi-Arid Tropics. Sahelian Center.

Virmani, S.M. 1975. The agricultural climate of the Hyderabad region in relation to crop planning: a sample analysis. Patancheru, A.P. 502 324, India: International Crop Research Institute for the Semi-Arid Tropics. 80 pp. (Limited distribution).

Virmani, S.M., Reddy, S.J., and Bose, M.N.S. 1980. A handbook on the rainfall climatology of West Africa: data for selected locations. Information bulletin no. 7: Patancheru, A.P. 502 324, India: International Crops Research Institute for the Semi-Arid Tropics.

Virmani, S.M., Sivakumar, M.V.K., and Reddy, S.J. 1982. Rainfall probability estimates for selected locations of semi-arid India. 2nd edn. Research Bulletin no. 1. Patancheru, A. P. 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. 180 pp.

Yogeshwara Rao, A., Krishna Rao, K. and Ramana Rao, B.V. R. 1988. Rainfall probability analysis of 3 stations in Andhra Pradesh for crop planning. Indian Journal of Agricultural Sciences 58 (2):133-137.

Yogeshwara Rao, A., and Krishna Rao, K. 1987. Climate of Anantapur. Research Bulletin.

Anantapur, Andhra Pradesh, India: Agricultural Research Station.
8. APPENDICES

A. Initial and Conditional probability analysis

.

1. Initial probability of a given week having rain in excess of a specific amount, P(W).

No. of years which have rain more than 10 mm

At any given week, we implement the following formulae

$$P(wi) = \frac{N(wi)}{N}$$
 and

$$N(Di)$$

$$P(Di) = \frac{N(Di)}{N}$$

where N(Wi) = No. of occurrences of a wet week in the i'th period. N(Di) = No. of occurrences of a dry week in the i'th period. N = Total No. of years [N(Wi) + N(Di)]

'n

2. Conditional probability of a given wet week to be followed by a wet week, P(W/W).

Where N(Wj, Wi) = No. of occurrences of a wet week in i'th and j'th period. N(Wi) = No. of occurrences of a wet week in i'th period.

3. Conditional probability of a given dry week following a wet week, P(W/D).

N(Wj,Di) P(Wj/Di) = -----N(Di)

Where N(Wj,Di) = No. of occurrences of a dry week in i'th period and a wet week in i'th period.

From the Table 28, we could get the following results,

P (Wet) =
$$14/79 = 0.18 = 18\%$$

P (Wet/Wet) = $\frac{2/79}{------} = 2/14 = 0.14 = 14\%$
 $14/79$
P (Wet/ Dry) = $\frac{28/79}{------} = 28/65 = 0.42 = 42\%$
(79-14)

Similarly, the calculation process for any given amount of rainfall can be achieved. A more complete description of the conditional probability analysis is given by Robertson (1976), cited in Virmani (1982).

Comparison of analyses of Initial and conditional probability at Hyderabad and Anantapur

According to the Troll's method of classification, Anantapur and Hyderabad are classified as dry semi-arid $[2-4^{1}/_{2}$ humid months where R (rainfall) $\geq PE$ (potential evapotranspiration)]. According to other classifications, the climate at Anantapur is arid. It actually falls under semi-arid bordering the arid climate. According to Hargreaves method of classification (1971), both Hyderabad and Anantapur are in the climate class semi-arid (3-4 consecutive months of $R/PE \geq 0.34$).

The initial and conditional probability analysis shown in Figure 10 reveals the following:

APPENDICES

The rainfall distribution at Anantapur is bimodal. Not even a single estimate of weekly initial probability of P(W) exceeds the 70% threshold (Figure 10a). The conditional probability of wet period followed by wet period P(W/W) also follows a fairly similar pattern as P(W). Only during the standard week 37, P(W/W) exceeds 70% (Figure 10b). The conditional probability of wet followed by dry period P(W/D) is not more than 59% in any of the week (Figure 10c). In comparison, rainfall distribution for Hyderabad is unimodal. A dependable rainfall (602 mm) distributed between June 18 to the end of July and from about mid-August to mid-September. Monsoon rainfall during rainy season (Jun -Sep) at Anantapur is highly erratic and therefore undependable. It is the major environmental factor that has led to low agricultural production; other factors are red sandy soils (Alfisols) which are well drained but possess low water holdingstorage capacity, and traditional methods of rainfed farming. The soils are both unproductive and prone to excessive run-off and erosion. Hyderabad seems to have much more favorable season for crop production during rainy season as the soils are vertisols or medium or deep Alfisols with high water holding-storage capacity.

Thus from the study of rainfall, moisture index and the length of the growing season Table 30, it is closely seen that the two areas are quite different with each other. Further, following observations can be made:

1. At Hyderabad the length of the growing season is long (130 days) and reliable especially on vertisols. Dry seeding can be adopted for Hyderabad region as the start of the season is reliable. At Anantapur same is impossible as the start of the season is variable, short (97 days) and the soils are Alfisols (shallow and sandy soils) and prone to crusting.

2. At Hyderabad, as evidenced from the rainfall probability analysis (Fig. 9) mid-season breaks in the continuity of rainfall are likely to occur once in 4 to 6 years in a 10-year period. Generally, one would not select a crop cultivar whose growth is sensitive to moisture stress during this period. Therefore, either a sole short-duration crop (which completes most of its life cycle before cessation of rainfall) or a long duration base crop with a short duration intercrop would be best suited for the Hyderabad under dryland conditions (Virmani et al 1980). At Anantapur, sole cropping of groundnut or sorghum is possible as the rainfall is received for a short period of 13-14 weeks, with an intermittent drought. Therefore, crop cultivars which can withstand stress during the early stages of crop growth are preferred. The possibilities for intercrop at Anantapur are low, and double cropping it is not feasible.

3. The potential benefit for recycling of run-off water would be much more favorable in Anantapur resion than at Hyderabad. The run-off is more at Anantapur (102 mm year¹) since the soils are Alfisols with inherent characteristic, such as low water-holding capacity, high errodability, and a potential for excessive run-off, that are constraints in crop production under rainfed conditions compared to vertisols which are high water-holding capacity and high cation exchange capacity because of physico chemical nature of the soils.

B. Gamma distribution.

A number of models have been proposed for the patterns of rainfall over a period of time either daily, weekly, or monthly. Gamma distribution is one of the most appropriate models for interpreting rainfall data. The gamma distribution function is expressed by

$$g(\mathbf{x}) = \frac{1}{\beta^{\mathbf{Y}} \mathbf{f}^{(\mathbf{Y})}}$$

Where B is a scale parameter, γ is a shape parameter and $\Gamma(\gamma)$ is the ordinary gamma function of . However, this formula gives a poor estimate of the parameters. Adequate estimates are approximated by

$$\dot{\hat{\gamma}} = \frac{1}{---} (1 + 1 + 4A/3) \\ 4A$$

and
$$\hat{\beta} = \frac{\hat{x}}{\hat{\gamma}}$$

where A is given by

$$A = \ln \overline{X} - \frac{\xi \ln x}{n} \quad \text{or } \xi \ln x i - \ln x$$

The distribution function from which probabilities may be obtained is

$$G(x) = \int_{a}^{x} g(t)dt$$

Gamma distribution for week # 25 has been calculated (Table 29). From the example we get an average rainfall of 6.32 mm and $\ln x = 1.84372$. The total of $\ln x = 78.05$. Therefore, $A = \ln \bar{x} - \leq \ln x/n = 1.84372 - 0.99000 = 0.85372$.

Thus,
$$= \frac{1+1+4 (0.85372)/3}{4 (0.85372)} = 2.75$$

 $\beta = 6.32 / 2.75 = 2.30$

To determine the amount of rainfall at any given probability, it must be put in the standard form t (F) = X/β . From the gamma distribution table, we can get the amount of rainfall.

C. Equation for calculating daylength including civic twilight

Photoperiod in hours (HRLT) is calculated from the day of the year (JDATE) with a series of three equations:

.

1. DEC= 0.4093 * SIN [0.0172 * (JDATE-82.2)]

2. $DLV = (-S_1 * SIN (DEC) - 0.1047) / [C_1 * COS (DEC)]$

3. HRLT= 7.639 * ACOS (DLV)

Where,

DEC is solar declination angle (radians). $S_1 = SIN (LAT * 0.01745)$ $C_2 = COS (LAT * 0.01745)$

TABLES

-

•

:941 :945 :946 :946 :946 :946 :946 :946	931 932 933 934 935 939 935 939 935 939 935 939 939	921 922 922 923 924 925 925 925 926 927 927 928 929	911 912 912 913 914 915 915 916 917 918 919	EAR
000000000 000000000000000000000000000	0000000000	13 000000 0000004	80000 40 000	JAN
00010000	2000 ¹ 9000 ² 0	12 09 NN NO 06 00 00 00 00 00 00 00 00 00 00 00 00	132000 30 000 30	FDB
005000000000	0660000000	р 5000000500	0491060001	MAR
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20 20 20 20 20 20 20 20 20 20 20 20 20 2	1 313 3 304 4 26 5 3 7 1 20	8 4 0 0 0 4 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	APR
119 43 60 129 126 126 101	42 119 21 129 21 128 128 143 43 43 43	67 12 61 12 61 12 61 12 61 12 61 12 61 12 61 12 61 12 61 12 61 12 61 51 51 51 51 51 51 51 51 51 51 51 51 51	60 18 102 64 66 66	МАҮ
1126 1126 28 28 30 30	1 4 2 3 3 3 3 4 1 5 3 3 3 3 3 4 1 5 1 4 1 3 3 3 3 3 3 3 4 1 5 1 7 1 4 1 7 1 8 3 3 3 3 3 3 4 1 7 1 8 1 9 1 8 1 9 1 9 1 9 1 9 1 9 1 9 1 9	53 53 53 54 54 54	123 45 123 123 123	NDL
52 4 13 41 27 27 27 27 27 27 27 27 27 27 27 27 27	1202 127 127 127 127 127 126 126	1 4 2 6 9881 2 9 1881 2 9	16 30 316 21 77	JUL
109 109 109 109 109 109 109	220 220 269 20 23 20 20 20 20 23 23 23 23 23	47 47 47	126 126 153 168 168 47	AUG
195 130 130 236 149 149	102 102 144 151 146 100	79 106 1356 136 201 231 119 247	1126 1126 1127 1127 1128 1128 1128 1128 1128 1128	. SEP
144 225 123 123 123	1103 1114 1114 1114 1114 1114 1116 1116	105 105 105 105 105 105 105 105 105 105	119 119 119 119 119 119 119 119 119 119	OCT
$\begin{array}{c} & & & & & \\ & & & & & & \\ & & & & & & & \\$	100 100 100 100 100 100 100 100 100 100	151 151 155 10 10 10 55	1122 1122 1122 1122 1122 1122 1122 112	NON
000040000+0	000000×°40000	18100020010	60000000000000000000000000000000000000	DEC
530 522 517 517 512 512 512 512 512 512 512	755774452733 75554452837 9904304831	657333497 6126333497 5263074675	3977745774 3977745827 9945417314 9685414314 4685414314	ANNUAL RAINFALI

Cont i niia,4

š

Page..34

ble 1. Monthly and annual rainfall (mm) data for Anantapur (database: 1911-1989; section: 2.1).

K-1.

YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960		0 0 0 0 1 0 2 8 0	50 0 0 0 0 0 1 0 0	19 0 39 8 0 70 4 22 29 2	176 81 4 33 129 85 55 55 21 27	42 20 60 0 63 47 177 78 139 19	28 38 154 26 109 32 33 66 119	7 26 39 60 88 15 76 96 49 3	123 52 238 23 168 138 92 152 207 284	80 95 324 88 95 237 102 78 51 60	3 0 30 146 10 16 0 42	0 38 0 39 1 7 0 7 17 0	528 351 858 335 599 854 548 540 587 555
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970	0 0 0 0 0 0 0 0 0 0 0	7 0 0 0 0 10 0	0 0 0 0 10 30 0	0 24 58 7 16 0 18 8 4 12	122 63 53 9 48 36 15 93 120	103 54 22 78 54 124 27 64 67 15	36 80 193 6 92 151 27 35 122	44 71 175 39 109 112 10 0 130 68	2 77 64 260 106 97 143 267 13 182	103 142 74 43 0 72 174 44 199 144	20 22 0 30 61 5 52 1 0	0 85 2 1 62 14 3 34 10 0	437 619 510 655 361 623 578 552 551 661
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980	0 0 0 0 0 0 0	0 0 0 0 0 3 20 0	16 0 0 4 0 4 2 0 0	2 9 0 5 52 28 2 10	63 83 2 90 39 11 149 13 25 38	25 48 83 68 19 11 67 24 20 20	58 10 45 19 51 4 58 79 36 10	130 6 30 11 102 190 108 19 52 35	22 215 200 359 107 41 70 228 281 52	260 137 306 67 323 23 173 47 53 41	3 33 49 1 55 23 63 51 137 18	2 17 0 0 0 0 0 19 0 0	582 55 721 615 695 30 765 51 627 22
1981 1982 1983 1984 1985 1986 1987 1988 1989	1 0 0 0 9 0 0	0 0 0 3 0 0	15 0 13 15 0 33 26	5 2 0 4 22 0 0 33 6	17 106 140 8 0 7 14 112 37	6 85 116 0 30 105 87 5 58	100 45 24 72 88 8 1 124 454	45 2 143 6 33 40 90 343 12	213 100 239 40 34 163 120 225 201	84 58 30 19 147 68 155 31 22	24 226 1 0 20 31 20 0 3	18 0 33 14 5 2 14 9 2	528 625 725 176 392 436 502 91. 821
Mean Sd <u>+</u> CV (%)	3 15 525	4 15 396	5 10 214	14 18 124	54 41 75	53 39 74	60 67 112	74 85 114	145 91 63	102 86 84	43 51 120	9 17 190	565 17 3

(Table 1. Continued from the previous page)

Table 2. Probability of receiving a specified amounts of annual rainfall at Anantapur (database: 1911-1989; section: 2.1.1).

Annual : (mi	rainfall m)	Probabi • (%)	lity
< 2	00	1.3	(1)
200 - 4	00	16.5	(13)
400 - 6	00	44.0	(35)
600 - 8	00	30.4	(24)
· > 8	00	7.6	(6)
Figures of years	in parenthesis rep out of total (79)	presents t years.	he number

Table 3. Frequency of drought occurrence during a calendar year at Anantapur (database: 1911-1989; calculated based on the definition of Planning Commission see section: 2.1.2)

Percent	age			Nu	nber	of	years	3 (%)	in	fre	quen	су с	lass		
annual		J	ับก	Jı	ul	A	ug	Se	ept	0	ct	N		De	c
lainiai		1	15	1	15	1	15	1	15		15	1	15	1	15
A. 25 1	Int	ter	val			****						•			
<25		8	4	3	1	1	0	0	0	0	0	0	0	0	0
25-50	:	13	10	10	14	6	6	6	5	5	6	6	5	5	5
50-75	2	24	23	17	15	25	24	28	27	19	14	15	14	14	14
Total	4	45	37	30	30	32	30	34	32	24	20	21	19	19	19
75-100) :	10	24	26	27	24	28	19	30	29	29	28	38	38	37
100-125		14	12	20	15	16	22	27	15	27	32	29	19	19	22
125-150) :	10	11	11	12	15	13	8	13	13	12	15	16	18	16
Total		34	47	57	54	55	63	44	58	69	73	62	73	65	75
150-175	; ;	11	6	4	10	8	3	6	2	2	6	5	8	6	6
175-200)	4	4	5	5	3	4	1	4	4	1	1	0	0	0
>200)	6	6	4	1	1	1	5	4	1	0	0	0	0	0
Total	2	21	16	13	16	12	8	11	10	7	7	6	8	6	6
B. 12.	5 %	In	tervi	1											
75-87.5	i	8	10	13	13	17	16	14	13	16	19	13	11	9	8
87.5-10	0	2	14	13	14	7	12	5	17	13	10	15	27	29	29
100-112	.5	6	7	9	11	10	7	16	11	13	18	20	10	11	14
112.5-1	25	8	5	11	4	6	15	10	4	14	14	9	9	8	8
Long te mean ra fall (m	erm in um)*	82	112	133	153	194	218	269	314	416	475	515	545	556	563

* (Upto that particular date)

Month (or) season	Mean rainfall (mm mon ⁻¹)	Standard Deviation (Sd <u>+</u>)	C.V. (%)	Maximum Rainfall (mm mon ⁻¹)	Minimum Rainfall (mm mon ⁻¹)	Max-Min (mm)
Winter sea	Ason				ین میں شور میں کا کہ میں _ا ین مند اور میں م	
January	2.8	15.0	525	130	0.0	130
February	3.9	15.4	396	132	0.0	132
Summer se	ason					
March	4.5	9.7	214	50	0.0	50
April	14.4	17.8	124	99	0.0	99
Мау	54.1	40.6	75	176	0.0	176
South-Wes	t monsoon s	leason				
June	52.9	39.2	74	177	0.0	177
July	60.2	67.2	112	454	1.0	453
August	74.4	84.9	114	489	0.0	489
September	144.5	91.4	63	424	0.0	424
North-Eas	t monsoon s	leason				
October	101.7	85.8	84	347	0.0	347
November	42.6	51.3	120	226	0.0	226
December	8.9	17.0	190	85	0.0	85
Annual	565.1	169.9	30	976	176.0	800

Table 4. Monthly rainfall statistics for Anantapur (database: 1911 - 1989 section: 2.2 and 2.3).

مد جب دهه مد هد باد مد مد بری							
Month -	Rainfall	(mm)	at proba	bility	levels	(\$)	Mean
Homen	90	75	50	25	10		rainfail (mm)
January	0	1	2	5 .	, 10	• 600 Age and 40	3
February	0	1	3	7	13		4
March	0	1	3	8	14		5
April	1	4	10	21	37		14
May	11	22	43	76	115		54
June	. 3	27	53	81	105		53
July	0	16	60	107	148		60
August	0	18	74	133	185		74
September	c 32	62	117	198	297		145
October	15	35	76	142	225		102
November	2	7	24	59	112		43
December	0	1	5	13	26		9
Annual	350	436	547	675	806		565

Table 5. Dependable monthly rainfall (mm) for given probabilities using gamma distribution (database:1911-1989; section: 2.3.1).

.

Year	All No	raina Amount	>2. No	5 mg Amount	No ≥10	am Anount	N0 ^{≥2}	0 mm Amount	<u>}</u> 30 №0	
1911 1912 1913 1914 1915 1916 1917 1910 1919 1920	27 24 17 20 29 28 23 20 28 20 28 22	463 721 583 424 770 763 944 497 974 394	22 20 14 19 23 23 21 16 24 19	458 716 578 422 762 755 941 494 969 389	13 14 10 11 12 16 11 16	403 696 354 695 722 904 468 934 346	9 8 7 7 8 24 24 24 7	349 604 516 325 631 608 873 438 903 291	4 \$ 5 9 11 5 10 5	232 604 490 276 566 539 796 331 795 242
1921 1922 1923 1924 1925 1926 1927 1928 1929 1929	18 23 18 21 26 18 24 24 23 26	715 497 246 734 536 530 732 525 511 684	16 20 13 18 21 14 18 20 20 20 26	711 492 241 732 530 525 725 522 508 684	12 9 6 14 13 8 25 11 12 16	689 430 197 701 491 493 709 466 463 632	9 12 7 9 10 5 12	645 438 149 643 478 483 625 454 369 566	6528657759	572 364 128 577 341 436 570 383 344 493
1931 1932 1933 1934 1935 1936 1937 1938 1939 1939	22 26 26 20 23 20 19 23 23 23	370 732 727 233 539 442 773 749 538 709	15 20 21 16 19 19 16 19	364 724 722 230 535 437 771 746 535 706	10 15 7 13 13 15 10 14 14	338 697 691 202 519 418 750 709 509 671	7 12 3 6 9 8 10 9	295 617 651 405 341 657 664 469 587	6871657886	271 569 531 405 267 614 684 395 519
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950	21 18 20 15 18 9 26 21 20 20	529 299 521 517 415 282 614 391 512 456	17 13 17 13 16 7 24 15 16 19	526 294 517 513 413 281 612 384 506 454	13 8 14 7 11 7 13 13 13 9 13	504 270 499 474 388 281 535 374 453 425	8 5 9 6 8 5 7 5 5 9	429 224 421 454 345 251 442 251 397 379	6365575456	383 178 347 428 297 171 392 230 397 305
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960	26 22 21 16 26 27 23 28 19 23	-528 350 858 334 599 853 547 547 540 546 554	18 20 17 13 21 22 23 17 16	518 348 853 331 594 848 547 534 534 584 584	14 10 14 8 13 15 11 15 15 15 10	499 301 832 306 536 822 476 482 567 510	11 6 12 6 11 11 8 8 9 10 5	447 246 798 274 507 752 434 378 490 437	8 3 10 5 8 9 7 4 6 5	375 177 744 253 441 702 413 202 387 437
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970	21 26 24 27 18 25 19 23 23 23 18	436 619 509 655 362 622 577 551 552 663	17 23 19 21 13 23 17 20 17 16	429 614 503 647 357 620 575 547 547 661	11 14 14 23 6 16 11 12 8 11	396 555 473 612 329 584 584 480 505 630	8 10 10 5 11 7 8 9	351 499 413 564 284 510 498 417 505 \$05	5. 8 7 5 7 6 8 8 8	276 457 321 490 284 411 475 367 505 582

Table 6. Total number of rainy weeks, receiving rainfall, and the amount received (mm week") during different weeks at Anantapur (database: 1911-1989; section: 2.4.1).

8 582 Continued >>>

All rains		22.5	D.(1)	>10	697.	>20		<u>></u> 30 mm		
Year	No	Amount	No	Amount	NO	Amount	No	Amount	No	Amount
1971	23	581	17	\$71	12	550	5	447	5	447
1972	26	557	22	355	12	501	j	462	ĩ	404
1973	18	721	15	715	10	686	i i	656	8	656
1974	17	614	14	612	11	601	7	537	í.	516
1975	26	698	23	692	14	649	9	577	6	510
1976	15	307	13	304	6	270	4	237	2	190
1977	25	765	23	760	19	737	12	642	12	\$42
1978	25	513	22	507	14	462	7	359	3	264
1979	28	626	24	621	13	556	9	503	5	415
1960	21	224	13	215	ŧ	175	5	130	1	43
1981	26	528	19	520	13	486	7	395	6	367
1982	20	624	13	614	9	589	9	589		564
1983	23	725	20	721	13	675	11	653	10	620
1984	17	175	14	172	7	137	3	92	3	47
1985	19	392	18	390	12	360	6	275		234
1986	23	435	18	427	10	389	8	352	٦	331
1987	22	501	19	499	9	448	6	407	5	384
1988	26	914	22	910	16	872	13	836	12	013
1989	20	B21	17	817	12	787	9	747	8	725
Mean	22	565	18	560	12	525	8	471	6	419
Max	29	974	26	969	19	934	14	903	12	813
Min	9	176	7	172	6	137	3	92	1	43
Sd+	- Ā	. 171	4	171	3	171	3	172	2	174

(Table 6 Continued from the previous page)

Standar	d	<u>></u> 10 x	v n		<u>></u> 20 m			≥30 m	 0		>40 #			>50 m		Mean
No	N	W/W	W/D	W	W/W	W/D	v	W/W	W/D	¥	N/N	W/D	*	¥/W	W/D	(mm)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	<pre>< 4 1 0 0 4 1 0 1 5 3 4 9 6 8 15 9 15</pre>	33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 4 1 5 3 4 9 6 7 15 10 13 19	3 1 0 0 3 0 0 3 0 1 3 3 4 5 8 5 11	50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 3 0 3 0 1 3 4 5 8 5 11 9	-Pro 1 1 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1	babili 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ty (* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)					1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.3 1.2 0.3 0.1 2.3 0.3 0.3 0.3 0.5 0.6 1.2 2.5 2.2 2.6 4.7 3.1 7.3
Pre-r	ainy	(tota	1: 20	64 mm)											
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	19438628747533735153 428747533735153	33 44 57 24 14 34 35 35 46 46 57 46 57 46 59	34 32 396 142 125 87 32 16 31 31 31 31 31 34 49	10 25 28 31 13 20 13 18 24 20 28 29 28 29	25 17 35 11 20 329 25 20 25 20 25 20 25 25 25 25 25 25 25 25 25 25 25 25 25	23 285 321 200 106 200 125 208 125 208 208 208 208 208 208 208 208 208 208	6 16 23 19 22 13 6 11 9 15 24 19 14 13 16 27 29 14 13 16 27 27 19 15 24 19 15 24 19 19 15 24 19 15 24 19 15 24 19 15 24 19 15 24 19 15 24 19 15 24 19 15 24 19 15 24 19 15 24 19 15 24 19 15 24 19 15 24 19 15 24 19 15 24 19 15 24 19 15 24 19 15 16 16 17 16 16 16 16 16 16 16 16 16 16	0 11 12 12 12 12 12 12 12 12 12	$ \begin{array}{r} 18 \\ 27 \\ 21 \\ 22 \\ 13 \\ 6 \\ 11 \\ 7 \\ 14 \\ 13 \\ 11 \\ 13 \\ 11 \\ 13 \\ 12 \\ 19 \\ 18 \\ 31 \\ \end{array} $	5 13 15 15 15 8 9 5 9 15 14 8 6 19 13 13	0 0 17 8 0 0 25 32 18 17 25 18 17 25 32 1 0 25 32 1 0	13 17 18 15 38 58 12 65 14 15 14 130	4 9 11 9 11 5 13 13 13 13 15 16 16 11	0 0 14 0 0 33 75 22 22 17 20 38 15 44	9 13 10 11 6 19 10 6 5 9 13 12 11 27	$\begin{array}{c} 7.0\\ 13.7\\ 17.9\\ 19.5\\ 6.3\\ 2.9\\ 6.4\\ 11.0\\ 20.3\\ 15.5\\ 13.0\\ 11.1\\ 15.5\\ 13.0\\ 11.1\\ 16.9\\ 23.2\\ 19.4\\ 16.3 \end{array}$
Rainy	503.	son (t	otal	: 185	mm)											
37 38 39 40 41	53 66 61 58 56	71 69 65 65 45	59 44 48 42 31	43 56 49 46 38	62 52 54 44 33	51 46 38 33 31	35 53 41 33 32	61 45 30 42 24	49 35 30 26 19	34 47 30 29 24	56 24 25 30 16	42 36 31 21 15	29 44 22 22 19	48 23 12 24 0	43 20 24 18 13	32.2 51.7 39.3 30.8 31.0
Post-	rain	y (tot	al:	80 🛲)											•
42 43 44 45 46 47 48 49 50 51 52	39 37 32 22 18 13 9 1 4	45 45 32 18 21 20 29 0 0	31 32 22 17 18 11 7 7 1 4 4	32 27 24 24 11 8 5 1 6 1	36 29 37 16 11 17 0 0 0 0	22 22 20 10 7 4 1 6 1 1 3	20 23 15 19 8 3 4 1 4 0	38 28 33 7 0 0 0 0 0 0 0 0 0 0	19 11 16 3 4 1 4 0 1 1	15 19 10 15 6 3 1 3 0 0	25 27 13 8 0 0 0 0 0 0 0 0 0	18 6 15 6 3 1 3 0 0 1	10 16 9 5 3 1 3 0 0	25 9 20 14 0 0 0 0 0 0 0	15 6 8 4 3 1 3 0 0 0	15.7 19.9 13.6 17.3 8.0 5.3 3.8 2.6 3.5 0.5 1.0

Table 7. Neekly initial and conditional probabilities of rainfall (%) for selected amounts, and the mean weekly rainfall at Anantapur (database: 1911-1989; section: 2.4.2.1).

Standard	Rainfall	(sem) at dit	ferent pro	bability 1	evels (%)	Hean
no,	90	75	50	25	10	(mm)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0.2 0.2 0.6 0.1 0.0 0.0 0.0 0.0 0.3 0.4 0.3 0.2 0.2 0.2 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.2 0.4 0.2 0.2 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.6 0.6 0.9 0.5 0.0 0.2 0.0 0.7 0.7 0.7 0.7 0.7 0.8 0.8 0.9 1.1	1.5 1.4 1.2 1.0 1.8 0.3 0.1 0.8 1.4 1.3 1.3 1.5 2.1 2.1 2.1 2.3 3.1 2.6 4.1	3.3 3.0 1.6 1.2 3.0 2.1 3.7 2.6 2.1 2.2 3.0 4.8 4.5 4.5 4.5 4.5 7.7 5.7 11.2	5.6 5.2 2.1 1.3 4.4 5.5 4.3 3.4 4.9 8.6 7.7 8.6 14.6 9.9 21.9	1,3 1,2 0,1 0,3 0,1 0,3 0,1 0,5 0,2 2,6 7,1 3,3
Pre-rainy						
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	0.3 0.6 0.6 0.7 0.7 0.4 0.6 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5	1.3 2.8 3.1 1.5 1.5 1.8 2.3 1.8 2.4 1.8 2.4 2.4 2.4 2.4 2.2 6	4.4 7.8 9.2 10.9 4.4 7.8 6.4 9.8 8.8 7.4 9.1 10.9 9.5 9.5	10.9 19.9 25.6 22.4 27.9 10.1 19.0 13.0 16.3 28.3 28.4 19.0 16.2 24.2 32.0 27.1 23.6	20.4 38.2 41.6 53.1 25.1 18.2 33.4 31.0 57.4 42.9 36.3 32.4 47.1 55.9 44.1	7.0 13.7 17.9 15.5 8.6 12.9 8.4 12.9 8.4 12.3 15.5 11.1 16.9 13.1 16.9 13.4 1.1 16.3
Rainy sea	noa					
~37 38 39 40 41	0.8 1.9 1.4 1.0 0.5	4.1 8.5 6.3 4.6 3.4	16.4 29.0 21.9 16.7 14.8	44.6 71.9 54.9 43.1 42.5	87.9 135.1 103.6 82.7 86.4	32.2 51.7 39.3 30.8 31.0
Post-rain	īΥ					
42 43 44 45 46 47 48 49 50 51 52	0.5 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	2.3 2.1 1.7 1.4 1.1 0.9 0.7 0.7 0.7 0.7	8.7 9.4 7.0 7.3 4.5 3.3 2.6 2.1 2.4 1.2 1.5	22,7 27.6 19.5 23.6 12.1 8.5 6.5 5.0 6.1 2.0 2.8	43.8 56.7 39.2 50.9 23.8 16.3 12.3 9.1 11.6 3.0 4.5	15.7 19.9 13.6 17.3 5.3 3.8 2.6 3.5 0.5 1.0
Annual	349.9	435.6	546.5	674.8	806.0	564.6

Table 8. Neekly rainfall (mm) for a given specified probability at Anantapur using gamma distribution (database 1911-1989; section: 2.4.2.2).

Standard		<u>≥</u> 10	min		<u>></u> 20	1963. 1963	****	≥30 m	 n		<u>></u> 40 m	 M		250 m	 3	Nean
No	N	W/N	W/D	ĸ	N/W	W/D	¥	N/N	W/D	*	¥/#	W/D			#/D	rainfall (mm)
No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20 21 22	N 1 0 0 1 1 0 0 0 1 1 1 1 3 10 0 0 0 1 1 1 1	W/W 0 0 0 0 0 0 0 0 0 0 0 0 0	W/D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	H 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	W/H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	W/D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	W 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N/N 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	W/D 1 0 0 0 0 0 0 0 0 0 0 0 0 0	w 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1		W/D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			#/b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(ma) 2.5 0.2 0.1 2.6 0.8 1.1 2.6 3.9 5.6 10.3 16.6 27.2 25.6 11.4 12.6 23.5 12.6 24.0 16.7
Pre-rain	y 84	ason	(84 m	m)												
23 24 25	18 24 19	36 11 40	22 22 50	6 15 10	20 8 13	15 10 32	4 6 5	0	7 5 16	0 4 1	0 0	4 1 6	0 4 0	0 0 0	4 0 3	22.2 35.4 26.6
Rainy se	2 2 0 0	16	8 2020.)													
26 27 28 29	48 49 46 22	45 46 25 24	54 45 19 23	30 30 20 6	29 17 19 20	31 22 3 12	15 15 13 3	25 8 10 0	13 13 1 3	6 8 6 1	0 0 0	8 7 1 1	3 6 4 0	0000	6 4 0	57.2 60.7 50.2 25.4
Post-rai	ny i		n (<u>7</u> 6	nan)												
30 31 32 33 34 35 36	23 20 10 5 1 1 0	11 13 25 0 0 0	23 10 3 1 1 1 0	13 8 3 1 1 0 0	000000000000000000000000000000000000000	9 3 1 1 0 0 1	3 5 1 0 0 0 0	0 0 0 0 0	5 1 0 0 0 1	1 3 0 0 0 0 0	0 0 0 0 0 0 0	3 0 0 0 0 0 0	0 1 0 0 0 0	00000	100000	26.1 24.2 11.5 6.9 4.4 3.5 1.0

Table 9. Decadal initial and Conditional probabilities of rainfail (%) for selected amounts, and the mean decadal rainfall at Anantapur (database: 1911-1989; section: 2.5).

Decade No	Rainfall	(2000) 41	probabil	ity leve	ls (%)	Hear (mm)
	90	75	50	25	10	
1 2	0	0	0	0	0	20
3	0	0	0	.0	0	0
5	õ	ŏ	ŏ	ő	ŏ	ĩ
6	0	0	0	0	1	1
8	ŏ	ŏ	ŏ	ŏ	1	1
9	0	D	0	0		3
11	ŏ	ŏ	ŏ	õ	17	5
12	0	0	0	0	18	6
14	õ	ŏ	ê	õ	46	17
15	0	3	16	1	71	27
17	õ	ō	3	16	34	11
18	0	1	8 11	13	43	10
20	õ	ō	5	8	69	23
21 22	0	ő	14	8	49	17
Pre-ra	iny seaso	Ŕ				
23	0	1	13	11	63	22
24	0	2	38	9	73	27
26	0	7	30	14	148	57
Rainy-	BGABOR					
27	1	11	13	13	151	61 50
29	ö	õ	4	38	70	2
Post-r	ainy seas	on				
30	0	0	0	30 13	77 75	20
32	õ	õ	ŏ	9	38	ī
33	0	0	C	4	25	
35	ŏ	õ	Ď	D	ĩį	:
36	0	0				
Annual	345	432	545	676	810	56

in a year Rainfall Total number of rainy days during the growing season Year during during . the YRAC A11 2.5 <u>></u>30 <u>>10</u> growing A11 22.5 ≥20 rains BRASON rains 721 583 ŧ 1Ĭ 29 38 ż 76 1Ĵ ĩŝ 45 š 6 10 3 678 ã ŝ 1919 1920 394 11 29 1923 154 522 258 277 13 24 17 B īī ã 1926 1927 26 59 9 27 22 14 27 733 38 Ĵ â \$ â š zŏ 11 38 35 1933 1934 59 š 21 32 ŝ ż 31 36 Ŕ 709 1 R 14 23 22 275 417 A 18 13 ŝ ā 23 19 13 Ē 11 615 391 16 23 p t 2 12 3 7 39 13 23 6 59 31 14 2 5 168 351 ĩ 437 540 587 30 21 14 ŝ 41 25 9.7 372 25 1963 17 7 47 30 37 21 42 32 15 28 17 16 18 25 Ś 39 1965 1966 1967 1968 469 461 ē 47 53 Ē 7 8 15 24 35 э š R

Table 11. Total number of rainy days during a year, and during the growing season at Anantapur (database: 1911-1989; section: 2.6.1 and 2.6.2).

>>>

. ~

Yesr	Rainfal: during	l T	otal nu i	nber of h a yea:	rainy d	аув	Rainfall during	Total number of rainy days during the growing season				
	Year	All rains	<u>≥</u> 2.5	<u>></u> 10	<u>></u> 20	<u>≥</u> 30	growing season	All raine	<u>></u> 2.5	<u>></u> 10	<u></u> 20	2
971	582	49	32	15	7	6	388	26	17	10	3	
972	558	48	37	15	8	5	280	ii	9	7	Ś	
973	721	46	28	16	- 14	10	491	3i	10	10	9	
974	615	45	28	16	8	7	523	35	24	13	6	
975	699	58	38	22	12	6	575	42	26	37	11	
976	308	28	20	8	4	j	144		5		3	
977	765	49	39	26	12	ß	451	32	24	16		
978	513	58	39	11	5	- Ā	1 322	25	16	7	4	
979	627	60	39	18	9	5	372	21	12	11	7	
980	224	39	20	6	2	i	69	11	Ĩ.	2	1	
981	528	53	37	16	7	5	399	27	23	12	7	
982	625	37	26	14	12	9	148	15	8	3	3	
983	725	51	35	21	13	7	543	38	29	18	10	
984	176	30	22	6	2	0	130	20	15	4	2	
985	392	45	33	13	5	3	301	31	21	10	5	
986	436	48	27	13	8	3	366	30	19	12	7	
987	502	44	29	ió	8	4	365	22	17	8	7	
988	915	67	48	28	16	9	793	55	40	24	13	
989	821	51	36	17	12	8	688	33	26	14	10	
lean	565	49	33	16	9	5	380	28	20	10	6	
ax	945	78	52	28	18	11	793	55	40	24	13	
in	176	22	13	6	1	0	69	6	5	2	1	
44	170	12	9	5	Э	2	159	11	8	5	3	

Page,.48

Table 12. Years with extremes for total number of rainy days in a year, and during the growing season at Anantapur (database: 1911-1989; section: 2.6.1 and 2.6.2).

Threshol rainfal (mm)	ld <u>No, of</u> 1 Mean	<u>No. of rainy days during a</u> Mean Maximum (Year)					
All rain	ns 49	78 (1956)	22 (1946)				
<u>></u> 2.5	33	52 (1919)	13 (1946)				
<u>></u> 10	16	28 (1988)	6 (1946, 1980)				
<u>≥</u> 20	9	18 (1917)	1 (1934)				
<u>></u> 30	5	11 (1917)	0 (1984)				

A. During a year

B. During the growing season

Threshold rainfall (mm)	<u>No. of rainy</u> Mean	<u>days during the</u> Maximum (Year)	<u>growing</u> <u>season</u> Minimum (Year)
All rains	28	55 (1988)	6 (1976)
<u>></u> 2.5	20	40 (1988)	5 (1976)
<u>></u> 10	10	24 (1988)	2 (1934,1948)
<u>></u> 20	6	13 (1988)	1 (1980)
<u>></u> 30	4	9 (1953)	0 (1948,1954, 1980,1984)

	D	ry spel	ll in a	year		Dry sp	ell du	ing gr	owing a	eason
1041	All rains	<u>≥</u> 2.5	<u>></u> 10	<u>></u> 20	<u>≥</u> 30	All rains	22.5	<u>></u> 10	<u>></u> 20	≥30
1911	7 6	11	26	52	73	3	1	5	15	29
1913 1914	8 9	12 11	26 26	46	73 91	4	6	12 11	19 18	27 31
1915 1916	5 5	8 8	20 16	33 26	52 61	3 2	4	87	13	27 16
1917 1918	6	13	13 23	19 33	30 52	3	57	12	13	20 24 20
1919	10	15	30	46	33 91	3	4	7	12	12
1921 1922	8	10 13	18 26	30 33	46 61	57	5	10 32	17 32	27 64 32
1923 1924 1925	14 9 7	13 10	20 24	30 40	52 73	5	6 5	10	14	28 33
1926 1927 1928	13 6 7	17 9 12	36 23 26	46 33 33	61 40 52	4 3 3	4 5 6	14	21 15	21 20
1929 1930	8 6	10 8	21 13	52 33	73 61	2 3	2 5	37	5 15	23 23
1931 1932	8 6	15 10	30 17	61 30	61 46	5	11	20 9	26 20	26 30 20
1933 1934	6 9	9 19	17 46 26	36 182 40	52 182 52	3 5 3	12 3	19 7	48 10	48 15
1935 1936 1937	8	11 11	28 18	61 33	91 40	64	76	18 10	27 16	35 18
1938 1939	7	9 10	17 19 16	28 28 28	46 121 61	3	6 3	11 5	13 7	53 13
1940	° 9	13	21	52	61	3	5	9	14	17
1942 1943	13 8	26 10	40	61 36 27	73	3	3	4	8	19 20
1944 1945	11 10	15	30 30 52	46 52	52 91	4	6 10	10 18	16 18	20
1940 1947 1948	6 9	9 13	21 30	40 91	91 183	2 5	36	12	11 37	20
1949 1950	8 10	12 13	30 26	52 40	61 61	4 5	7	12	20	23

Table 13. Dry spells between rainy days in a year, and during the growing season at Anantapur (database: 1911-1989; section: 2.7.1 and 2.7.2)

Continued >>>

P	а	a	e		5	٥
			_	-		

Volt		Dry sp	ell in	a year		Dry sp	ell dur	ing gro	wing as	ason
1441	All rains	<u>></u> 2.5	≥10	<u>></u> 20	<u>≥</u> 30	All rains	<u>2.5</u>	≥10	<u>></u> 20	≥30
1951	7	12	17	 20						
1952	7	ii	41	61	122	4	8	13	25	74
1953	6	8	13	24	122	2	2	26	35	52
1954	11	14	28	61	121	ŝ,	6	1.	27	11 01
1955	5	11	18	33	73	ž	Å	17	11	30
1956	5	8	15	26	41	2	j	6	12	25
1957	6	10	26	40	61	3	5	14	16	25
1958	6	9	24	46	91	3	5	14	20	47
1959	8	14	19 21	30	52	4	6	8	13	19
		•••	~ 1	40	52	٩	5	7	11	13
1961	9	15	28	46	61	5	8	17	30	50
1962	6	10	19	36	52	3	4	13	33	50
1963	ŝ	10	10	46	61	3	4	8	20	25
1965	ě	17	33	46	91	4	4 A	16	23	20
1966	6	9	21	36	46	3	4	10	15	20
1967	8	12	26	46	52	3	5	9	14	17
1968	7	9	24	52	91	2	2	5	9	12
1969	8	13	28	36	46	4	6	11	14	16
1970	7	10	18	33	40	3	4	6	12	16
1971	7	11	23	46	52	3	4	7	13	17
1972	7	10	23	41	61	2	3	.4		. 6
19/3	8	13	21	40	46	4	6	12	23	28
1075	ŝ	10	17	30	52	2	4	6	10	17
1976	13	18	41	73	91	7	8	10	13	20
1977	7	Ĩĝ	13	28	40	4	5	8	16	21
1978	6	10	30	61	73	3	6	12	17	22
1979	6	10	19	36	61	2	4	4	7	12
1980	9	17	52	122	183	4	6	15	23	40
1981	7	10	21	46	61	3	3	6	11	15
1982	10	14	24	28	36	6	12	28	28	42
1983	7	10	17	26	46	3	2	22	46	2 9
1984	12	16	52	122 61	305	3	4	8	17	28
1985	8	13	26	40	91	4	7	11	18	43
1985	í R	13	33	40	73	4	5	10	12	27
1988	5	17	13	21	37	2	3	6	10	17
1989	7	10	20	28	40	3	4	7	9	15
Mean	 в	12	25	44	72	4	6	11	17	28
Max	16	26	52	182	365	5	13	32	10 C	<u>71</u>
Min	5	7	13	19	50 46	5	3	6	ğ	17
sd <u>+</u>	2	4		29 						

Table 13 continued from the previous page)

.

Table 14. Years with extreme dry spells during a year, and during the growing season at Anantapur (database: 1911-1989 section: 2.7.1 and 2.7.2).

Threshold rainfall (mm)	<u>Dry</u> Mean (days)	<u>spells</u> <u>during</u> Maximum. (Year)	<u>a year</u> Minimum (Year)
All rains	8	16 (1946)	5 (1915,1916,1919, 1955,1956,1988)
<u>></u> 2.5	12	26 (1942)	7 (1919,1962,1988)
<u>></u> 10	25	52 (1980)	13 (1917,1930,1 953 1977,1988)
<u>></u> 20 ,	44	182 (1934)	19 (1917)
<u>></u> 30	72	365 (1984)	30 (1917)

A. During a year

B. During the growing season

Thi ra	reshold ainfall (mm)	<u>Dry s</u> Mean (days)	<u>pells during</u> Maximum (Year)	<u>the growing season</u> Minimum (Year)	
A1]	l rains	4	8 (1942)	2 (1916,1929,1938, 1953,1955,1956, 1968,1972,1975, 1979,1988)	
≥	2.5	6	19 (1942)	2 (1929,1938,1968)	
2	10	11	32 (1922)	3 (1929)	•
<u>></u> 2	20	17	48 (1934)	5 (1929)	
2	30	28	91 (1984)	6 (1972)	

Nonth	Mean total number of rainy days		Highest no. of rainy days		Lowest no. of rainy days		Extremes of su during single r	Nean duration (d) between rains	
	All rains	22.5	All rainm	22.5	All rains	<u>></u> 2.5	Highest (*)	Lowest	during the menth (lowest-highest)
January	0.3	0,2	4	2	c	¢	82.6 (25)	0.3	30 (2-31)
rebruary	0.4	0.3	3	3	0	0	63.0 (30)	1.0	28 (2-28)
MARCH	0,5	0.4	4	3	0	0	32.0 + (41)	0.3	29 (2-31)
April	1.8	1.2	6	6	0	٥	67.1 (144)	0,1	24 (2+30)
MAY	4.7	3.1	10	7	Q	0	82.6 (373)	0,2	13 (2-31)
June	5.2	3,2	12	7	٥	0	213.8 (412)	0,1	13 (2-30)
July	6,6	3.7	19	11	1	0	100.0 (523)	0,1	12 (2-31)
August	7.2	4.5	20	17	0	۵	118.6 (572)	0.2	12 (2-31)
September	9.1	6.6	18	16	0	0	130.2 (720)	0.1	9 (2-30)
October	7.6	5.4	19	16	0	٥	145.2 (598)	0.2	11 (2-31)
Kovember	4.0	2.6	12		0	٥	99,3 (313)	0.1	19 (7-31)
December	1.2	0.7	5	5	Q	٥	49.3 [95)	0,2	26 (2-30)

Table 15. Generalized characteristics of daily reinfall at Anantapur (detabase 1911-1989; section; 2.6.1).

(*) Mean number of rainy days in a month.

.

Table 16. Length of the rainy season (days) and total amount of rainfal (mm) before, during, and after the start of the rainy season. The annual rainfall and the percentage of rain falling during the growing season are also shown (database 1911-1989; section 2.9.1 and 2.9.2).

Year	<u>Ra</u> Start [*] <(3	<u>inv se</u> End ^b Julian	Length ^c days)>	<u>Rainf</u> Before (mm)	<u>all tot</u> During (mm)	al After (mm)	Annual rainfall (mm)	Growing season (%)
1911	261	290	30	215	188	60	463	41
1912	190	200	90	87	473	160	721	66
1913	150	209	134	80	499	4	583	86
1914	101	200	126	36	358	30	424	84
1915	197	304	108	170	491	109	770	64
1916	179	211	99	39	554	170	763	73
1917	154	274	121	244	465	235	944	49
1918	180	274	95	117	240	140	497	48
1919	156	293	138	125	678	171	975	70
1920	246	283	38	176	208	10	394	53
1921	153	288	136	45	554	116	715	78
1922	155	283	129	181	154	162	497	31
1923	179	274	96	92	154	1	246	63
1924	186	297	112	138	522	74	734	71
1925	224	289	66	160	258	118	536	48
1926	252	287	36	243	277	10	530	52
1927	159	285	127	57	480	195	732	66
1928	178	296	119	124	402	0	525	76
1929	260	286	27	127	295	90	511	58
1930	165	304	140	92	519	73	684	76
1931	172	274	103	75	204	92	370	55
1932	155	275	121	39	487	207	732	66
1933	203	301	. 99	154	510	63	727	70
1934	208	304	97	82	143	9	233	61
1935	229	302	74	150	389	0	539	72
1936	173	279	107	106	246	91	442	56
1937	161	285	125	161	598	15	773	77
1938	213	281	69	108	639	2	749	85
1930	169	274	106	70	317	151	538	59
1940	253	305	53	186	438	85	709	62
		-					Conti	nued >>>

*Start of rainy season (X): as the first day between June 1 and October 1 when at least a total of 20 mm of rain is received in five days (not necessary consecutive days), and at least there is one rainy day with >2.5 mm rainfall in the next 10 days.

***Z.5** mm rainfall in the next to days. ***End of rainy season (Y)**: as the last day of the first dry spell of 10 days ending between October 1 and November 30.

Tangth of rainy season: the difference between the start and end of rain is the length of rainy season (Y-X).

Year	<u>Ra</u> Start <(Ju	<u>inv s</u> End lian	Length days)>	<u>Rain</u> Before (mm)	all to During (mm)	tal After (mm)	Annual rainfall (mm)	Growing season (%)
1941	204	289	86	69	406	55	530	 זי
1942	161	274	114	60	209	31	299	70
1943	243	301	59	191	275	56	521	53
1944	181	303	123	99	417	. 0	516	81
1945	200	279	80	104	279	32	415	67
1946	204	274	71	120	161	- <u>-</u>	282	57
1947	216	293	78	107	464	43	614	76
1948	219	293	75	88	140	163	391	36
1949	185	274	90	133	289	90	512	56
1950	176	293	118	95	330	31	456	72
1951	154	302	149	260	265	3	528	50
1952	195	299	105	120	192	38	350	55
1953	201	302	102	104	754	Ő	858	88
1954	200	281	82	4)	168	126	335	50
1955	213	302	90	218	351	31	599	59
1956	206	305	100	226	474	153	853	56
1957	154	279	126	59	454	35	547	83
1958	152	294	143	80	437	23	540	81
1959	168	281	114	83	487	17	586	83
1960	198	278	81	68	444	42	554	80
1961	154	304	151	129	288	20	436	66
1962	176	276	101	109	271	239	619	44
1963	197	298	102	135	372	2	509	73
1964	166	293	128	14	611	30	655	93
1965	159	274	116	36	265	62	362	73
1966	156	278	123	57	469	97	622	75
1967	197	282	- 86	108	461	8	577	80
1968	252	288	37	171	295	86	551	53
1969	207	304	98	179	362	11	552	65
1970	202	295	94	148	514	0	663	78
1971	234	300	67	188	388	5	581	67
1972	260	285	26	179	280	99	557	50
1973	155	279	125	12	491	218	721	68 `
1974	162	302	141	90	523	1	614	85
.975	202	304	103	68	575	55	698	82
1976	235	275	41	117	144	46	307	47
977	166	294	129	230	451	83	765	59
1978	188	274	87	73	322	118	513	63
1979	241	289	49	109	372	146	626	59
1980	229	275	47	96	69	59	224	31

(Table 16 continued from previous page)

Cont4 und >>>

Year	<u>Ra</u> Start < (Ju	End End	Length days)>	Rain Before (mm)	<u>fall to</u> During (mm)	<u>tal</u> After (mm)	<u>Annual</u> rainfall (mm)	Growing season (%)
1981	204	280	77	51	399	77	528	76
1982	190	274	85	192	148	284	624	24
1983	156	278	123	143	543	39	725	75
1984	194	285	92	25	130	21	176	74
1985	202	285	84	66	301	25	392	77
1986	155	283	129	22	366	47	435	84
1987	216	297	82	102	365	35	501	73
1988	152	285	134	112	793	9	914	87
1989	188	279	92	128	688	4	821	84
Mean	192*	288	97	115	380	70	565	66
Max	261	305	151	260	793	284	975	93
Min	152	274	26	12	69	0	176	24
Sd <u>+</u>	32	11	31	59	158	68	171	15

					Page55
(Table	16	continued	from	previous	page)

* Julian day 192 = July 11 * Julian day 288 = October 15

Table 17. Forward and backward accumulation of rainfali at Anantapur (database: 1911-1989; section: 2.9.3) Forward accumu Std. Wk." P4" Decrward Accumiation Year ----------..... ____ 51 50 ı 20 20 Ĵ 95 94 ā 50 49 20 20 20 21 90 . ĩĩ i i 85 84 83 1923 1923 16 18 19 20 48 48 47 47 80 21 23 78 75 28 29 30 22 22 22 22 22 22 22 22 22 22 22 'n 1934 1935 1936 68 66 46 46 46 46 36 38 59 58 55 55 55 55 55 50 23 23 23 45 45 45 45 45 45 45 45 45 1942 1944 23 23 23 23 44 45 46 48 1949 1950 45 45 45 44 44 44 1951 -54 55 56 58 1953 24 25 25 25 26 26 44 43 41 40 26 26

Page..56

*Forward accumiation refers to accumulation of >75 mm of rainfall from the standard week 18.

Continued >>>

Std. Wk.(standard week): The corresponding week receiving \geq 75 mm and \geq 20 mm rainfall respectively.

of refers to the probability percentage.

"Backward accumulation refers to backward accumulation of >20 mm of rainfall from the standard week 52.

ear .	Forward a Std. Nk.	ccumulation Pt	Backward Std. Nk.	accumiation
301	20			
043	20	63	22	14
703	20		22	
904	20		11	33
200	20	27		36
300	4 9	10		20
967	21	/1		
968	21	13		26
969	28	12		• 35
970	26	/3	• •	
971	28	76	43	24
972	29	78	43	23
973	29	79	42	21
974	29	80	42	20
1975	29	81	42	19
976	29	83	42	18
977	29	84	42	16
1978	30	85	43	15
1979	30	86	41	14
1980	30	88	41	13
	30	89	41	11
1 901	30	90	41	10
1 282	11	91	41	9
1 203	31	93	40	8
1 005	32	94	40	6
1000	12	95	40	5
1007	12	96	39	4
1008	32	98	30	3
1 200	32	99	33	1

P	a	g	е	•	5	8
		_				_

	two conse durir (data 2.9	consecutive ecutive we ng the gro abase: 191 .3).	ve, and thr beks at Ana bwing seaso 1-1989; sec	ee ntapur n tion:
Std. Wk.	Dry	Dry/Dry	Pofdry 2 week 3	spells week
Pre-ra	iny seas	on		
25 26 27 28 29 30 31 32 33 34 35 36	82 63 76 73 65 67 63 77 62 59 65 57	67 42 58 53 42 48 42 61 41 33 35 32	34 37 40 31 31 28 38 31 20 21 20 11	20 20 17 15 13 17 16 10 7 7 4 1
Rainy	season			
37 38 39 40 41	47 34 39 41 44	19 11 16 16 20	5 6 8 17	1 1 3 8
Post 42 43 44 45 46 47 48 49 50 51	-rainy #6 61 63 68 78 82 87 91 91 99 99	39 44 38 46 62 67 75 81 81 96 91	27 24 29 42 53 61 71 74 88 90 0	10 11 18 28 39 50 50 57 71 80 0

Hean test	Hean	Standard	cv	Naginum	Range	Absolute	Frobabi	Lity (4)	of Hax	aus temp	ereture
ionen	onen (*C)	(\$d+)		('C)		("C]	<u>></u> 15°C	<u>≥</u> 30℃	7122	240%	249%
January	30.4	0,2	0.8	31.0	2.0	34.2	100	97	٥	٥	0
February	33.6	0.4	1.3	35.3	3,4	38,6	100	94	0	0	0
March	37.1	0.4	1.0	38.4	3.0	41.1	100	100	100	0	0
April	39.6	1.2	3.1	50,3	11,9	43.4	100,	100	100	1	٥
Мау	39.0	0.5	1.3	41,1	4.6	43.3	100	100	100	ı	9
June	35.0	0,6	1.7	38,7	6,4	41.2	100	100	3	0	0
July	33.2	0.4	1.3	35.2	3.4	37.8	100	100	1	٥	0
August	32.4	0.4	1.1	33,7	2.7	37.5	100	100	0	٥	0
September	32.3	0.5	1.7	34.6	4.5	37.0	100	\$7	٥	0	0
October	31.9	0.4	1.3	34.0	3.5	36.5	100	100	٥	¢	٥
November	30.0	0.4	1.2	31.7	3.0	34.2	100	3	0	G	0
December	29.4	0.4	1.3	30.8	2.8	33.5	100		0	0	••••••
Annual	33.7	0.3	0.8	35.2	2.3	33.5		**			

Page..59

Table 19. Nonthly statistics on maximum air temperature and its probabilities (database: 1911-1983; section: 3.1).

Table 20. Monthly statistics of minimum air tempendiume and its probabilities at Amantapur (detabase 1911-1989; section; 3.3

	and the second se	the state of the s									
Mast h	Nest	Standard deviation	cv	Minimum	Range	Abeolute	1200	ebility (4) of Nin	Inus Temp	erature
	(10)	(14)		(70)		("C)	<u>≥10°C</u>	215%	220-0	2295	730.0
January	16,9	0.4	2.6	15.3	3.2	17.5	100	100	0	0	٥
February	19,4	0.5	2.5	17.0	1.1	14,0	100	100	0	0	٥
March	22.0	0.4	1.6	20,0	2.7	17.0	100	100	100	٥	D
April	25.5	1.5	5.8	22.7	25.3	37,0	100	100	300	•	Ð
								•			
Hay	26.0	0.5	1.8	23.4	5.3	18,2	100	100	100	95	C
June	24.6	0.5	1.9	22.4	5.2	20.0	100	100	100	٥	٥
July	23.8	0.3	1.3	22.2	2.4	16.5	100	100	100	0	٥
August	23.4	0.2	1.1	22.4	2.2	20.9	100	100	100	٥	0
September	23.0	0.3	1.3	21.6	2.4	19.8	100	160	100	٥	a
October	22.0	0.3	1,2	20.9	2.0	16.5	100	100	100	0	٥
November	19.5	0.5	2.5	17.1	4.2	13.0	100	100	1	a	0
December	17.6	0.3	2.0	15.5	3,3	11.5	100	100	٥	D	0
Annual	22.0	0.1	1.4	20.9	2.9	11.5			**		

Month	Maan	Ran	هی باو چه بی بند باد من این این ای ای بات ا ^{رد}	
	Heat units	Maximum value	Minimum value	Standard deviation (Sd <u>+</u>)
January	14.2	15.0	12.8	0.4
February	15.7	16.5	14.0	0.4
March	16.5	17.4	10.0	0.8
April	18.7	19.3	15.5	0.6
Мау	19.2	19.6	10.0	1.2
June	18.8	19.0	17.0	0.4
July	17.4	18.8	10.0	0.9
August	17.4	18.4	10.0	1.3
September	17.6	18.3	16.9	0.2
October	16.8	17.3	15.3	0.4
November	14.2	15.7	12.3	0,4
December	13.1	14.3	10.8	0.4
Annual	16.6	17.5	12.9	0.6

Table 21. Monthly statistics on heat units at Anantapur, (database: 1911-1989; section: 3.3)

Maximum upper limit of 34°C Minimum lower limit of 6°C Base temperature: 10°C
Month	Wind speed (Km h ⁻¹)	Wind direction
January	9	North East
February	8	North East
March	8	North East
April	9	North East
Мау	13	North East
June	. 18	South West
July	20	South West
August	20	South West
September	11	South West
October	6	North East
November	6	North East
December	8	North East
Annual	11	

Table 22. Monthly statistics on wind speed and wind direction at Anantapur (database 1976-1989; section: 4.1).

Relative humidity (%) Mean Vapor atmospheric pressure Morning Afternoon pressure deficit (0720 hr) (1400 hr) (mb) (mb) Month 82 January 43 973 16.0 February 65 32 971 13.8 61 970 March 26 13.4 April 55 17.8 25 968 21.1 965 64 31 May 23.2 965 70 42 June 965 23.4 78 50 July 966 23.5 August 81 53 967 23.2 September 80 51 23.5 969 77 47 October 19.0 972 49 80 November 83 49 974 17.2 December ----_____ _____ 19.6 967 41 66 Annual

Table 23. Monthly statistics on relative humidity, atmospheric pressure and vapor pressure at Anantapur (database: 1976-1989; section: 4.2).

Page..63

,

Table 24. Mean daily and monthly statistics for pan evaporation and potential evapotranspiration at Anantapur (database 1911-1989; section: 4.3).

Month _	Pan ey Daily (mm)	Monthly (mm)	Potential e Daily (mm)	Avapotranpiration Monthly (mm)
January	5.7	176.7	4.3	132.8
February	8.0	224.0	6.0	168.0
March	10.0	310.0	7.5	232.5
April	11.0	330.0	8.3	248.3
Мау	10.9	337.9	8.2	254.3
June	9.4	282.0	7,1	212.3
July	8.2	254.2	6.2	191.3
August	7.6	235.6	5.7	175.5
September	5.7	171.0	4.4	131.3
October	5.2	161.2	3.9	120.0
November	5.0	150.0	3.8	112.5
December	4.9	151.9	3.7	114.8
Annual	7.6	210.0	5.8	174.5

			~~~~~~~~		
Month	Mean rainfall (mm)	Mean PET (mm)	Mean R/PET*	Mean DP (75%)	Mean MAI ^b
January	2.8	132.8	0.02 .	1	0.007
February	3.9	168.0	0.02	1	0.006
March	4.5	232.5	0,02	1	0.004
April	14.4	248.3	0.06	4	0.016
May	54.1	254.3	0.21	22	0.086
June	52.9	212.3	0.25	27	0.127
July	60.2	191.3	0.31	16	0.084
August	74.4	175.5	0.42	18	0.103
September	144.5	131.3	1.10	62	0.472
October	101.7	120.0	0.85	35	0.292
November	42.6	112.5	0.38	7	0.062
December	8.9	114.8	0.08	1	0.009
Annual	565.1	2093.6			

Table 25. Monthly statistics on climatic water balance at Anantapur (database: 1976 -1989; section: 4.3.2).

*R/PET Calculated as the ratio of rainfall to potential evapotranspiration (PET).

MAI (Moisture availability index) calculated as ratio of DP (Dependable precipitation) to potential evapotranspiration (PET).

Nesk	Hean Rain (mm)	Nean PET (mm)	Mean AE (mm)	Nean AE/PET	Hean DP (75%)	Mean NAI	Mean Deficit (mm)	Hean Run-off (mm)	Nean SHOS (mm)
1 2 3 4 5 6 7 8 9 10 11 12 23 14 15 16 17 18	1.3 1.2 0,3 0.1 2.3 0.1 0.8 0.9 0.5 0.6 1.2 2.5 2.2 2.6 4.7 3.1 7.3	28.0 29.0 31.0 33.0 39.0 42.0 44.0 47.0 50.0 52.0 54.0 55.0 55.0 55.0 55.0 55.0 55.0 55	1.8 1.3 1.2 1.6 1.5 1.4 1.7 1.4 1.5 2.1 3.5 3.2 3.6 5.5 5.5	0.07 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.04 0.03 0.04 0.03 0.04 0.04 0.03 0.04 0.04 0.03 0.04 0.04 0.04 0.03 0.04 0.04 0.04 0.04 0.04 0.03 0.04 0.04 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.100 0.06 0.100 0.06 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.10000 0.10000 0.10000 0.10000 0.10000000000	0.6         6           0.8         0.9           0.5         0.0           0.2         0.0           0.7         0.7           0.7         0.7           0.8         0.8           0.9         0.1	0.021 0.021 0.026 0.027 0.014 0.000 0.000 0.005 0.014 0.013 0.013 0.013 0.014 0.013 0.014 0.014 0.016 0.019	0.9 0.7 0.6 0.2 0.7 0.5 0.1 0.1 0.1 0.1 0.3 0.4 0.6 1.0 0.6		1, 1, 0, 0, 1 0, 1 0, 1 0, 1 0, 1 0, 0 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 0 0, 1 0, 0 0, 0
Pre-ra	iny								
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	7.0 13.7 17.9 15.4 19.5 8.6 6.3 12.9 8.4 11.0 21.3 15.5 13.0 11.1 16.9 23.2 23.2 19.4 16.3 32.2	$\begin{array}{c} 58.0\\ 57.0\\ 55.0\\ 54.0\\ 52.0\\ 48.0\\ 47.0\\ 46.0\\ 44.0\\ 43.0\\ 43.0\\ 43.0\\ 39.0\\ 38.0\\ 38.0\\ 34.0\\ 34.0\\ 34.0\\ 34.0\\ 34.0\\ 32.0\\ \end{array}$	8.5 14.5 17.6 18.1 17.9 11.3 9.8 7.1 12.9 14.1 13.3 13.3 13.3 15.1 15.1 16.7 18.4	0.15 0.25 0.32 0.34 0.23 0.15 0.22 0.21 0.22 0.34 0.34 0.34 0.34 0.34 0.39 0.42 0.49 0.57	1.3 2.1 2.8 3.1 1.5 2.3 1.8 2.3 2.4 2.1 1.4 2.1 2.2 2.8 4.1 8.5	0.022 0.037 0.051 0.026 0.026 0.031 0.026 0.039 0.041 0.057 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055	1.4 2.3 3.8 2.9 0.6 2.7 0.8 3.9 3.9 3.9 3.9 3.9 3.9 3.9 5.8 5.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.3 1.2 2.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1
Rainy	51 7	30.0	22.6	0.75	6.3	0.210	4.1	4.2	38.6
39 40 41 42	39.3 30.8 31.0 15.7	29.0 29.0 28.0 27.0	23.8 22.3 21.4 20.7	0.82 0.77 0.77 0.77 0.77	4,6 3,4 2,3 2,1	0.159 0.117 0.082 0.078	7,5 7,1 8,5 10,7	13.4 14.6 9.2 11.3	39.5 38.8 37.1 30.8
Post-s	ainy								
43 44 45 46 47 48 49 50 51 52	19.9 13.6 17.3 8.0 5.3 3.8 2.6 3.5 0.5 1.0	27.0 27.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 27.0	18.6 16.1 14.8 12.4 10.2 7.6 5.2 4.5 2.8 2.0	0.69 0.57 0.48 0.39 0.29 0.29 0.20 0.17 0.17 0.11	1.7 1.4 1.1 0.9 0.7 0.7 0.7 0.7 0.7 0.7	0.063 0.052 0.042 0.035 0.027 0.027 0.027 0.027 0.027 0.027	9.3 #.1 7.5 5.2 5.2 3.8 2.5 2.3 1,2	1.3 3.9 2.5 3.6 0.9 0.0 0.0 0.0 0.0 0.0	28.3 23.3 22.2 16.8 11.9 8.2 5.6 4.6 2.3 1.5
Rein- PET - AE - A AE/PET OP - D MAI - Defici Run of	565.6 m Potentia ctual en ependabl Moisture t = 147. f = 79.5 Sol ¹	n; al evapor vaporati o of acti le preci e availa .6 mm; 5 mm; isture)	transpir on; ual evap pitation bility i = 433.2	ation; erstion a ; ndex; m.	ind pote	ntial eva	spot ranspi	Fetion;	

Table 26. Weekly climatic water balance at Anantapur (database: 1911-1989; section: 4.3.3).

Month	Cloudiness (Oktas)	Sur h mon"	shine h day"	Dayler h i	ngth Min	Radiation MJ(daily)
January	2	279	9.0	,12	03	20.2
February	2	252	9.0	12	08	22.7
March	2	310	10.0	12	15	23.8
April	3	300	10.0	13	07	23.8
Мау	5	310	10.0	13	12	23.0
June	6	210	7.0	13	11	19.1
July	٦	155	5.0	13	10	16.2
August	7	186	6.0	13	02	17.3
Septemb	er 6	210	7.0	12	12	18.7
October	5	248	8.0	13	05	78'7
Novembe	ez 4	241	8.0	12	02	18.7
Decembe	r 3	248	8.0	12	00	18.7
Annual	4	220	8.0	13	02	20.0

#### Table 27. Monthly statistics for cloudiness, sunshine hours, daylength and solar radiation at Anantapur (databases 1911-1989; section: 5.0).

	•
Table 28.	Initial and conditional probability of rainfall for week # 25 for Anantapur station receiving more than 10 mm rainfall based on 79 years of rainfall data (database 1911-1989; section: Appendix A).

	Rainfal	l data	· · · · · · · · · · · · · · · · · · ·		
Year	Neek # 25	Neek 1 26	*	w/w	W/D
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920	0.0 1.8 1.3 0.0 4.6 2.5 7.9 0.8 33.0 \$.6	6.9 17.8 10.2 3.3 6.6 29.5 26.9 25.5 3.3 7.1			2 2 3 3 3 4 5 6 6 6
1921 1922 1923 1924 1925 1926 1927 1928 1928 1928 1929	0.0 1.3 0.0 22,6 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 20.3 113.0 10.3 38.3 14.2 5.6	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	000000000000000000000000000000000000000	7 7 7 8 9 10 11
1931 1932 1933 1934 1935 1935 1936 1937 1938 1939 1940	35.3 0.0 0.0 1.0 26.7 20.6 13.0 30.5 0.0	8.2 12.7 0.0 1.1 16.1 3.8 0.0 0.0 50.6 0.0	3 3 3 4 5 6 7 7 7		11 12 12 13 13 13 13 13
1941 1942 1943 1944 1945 1946 1946 1947 1948 1949 1950	13.0 5.1 0.0 0.0 0.0 19.3 0.0 0.5 5.8	5.8 1.3 19.8 80.6 0.0 7.4 0.6 16.6 26.7	8 8 8 8 8 8 9 9 9 9 9 9 9 9	1 1 1 1 1 1 1 1	13 14 15 15 15 15 15 15 16 17
1951 1952 1953 1954 1955 1956 1957 1958 1959 1959	0.0 0.0 2.8 3.3 9.4 0.0 53.1 9.7	0.0 0.0 8.0 4.9 2.6 5.6 25.9 12.0	9 9 9 9 9 9 9 10 10	111111111111111111111111111111111111111	17 17 17 17 17 17 17 17 17
1961 1962 1963 1963 1965 1965 1966 1967 1968 1969	42.6 0.0 20.6 0.0 11.3 1.0 9.3 2.3 9.0	0.0 32.0 21.1 0.0 11.0 0.0 3.5 14.3 63.8 3.4	11 11 12 13 13 13 13	2222222222	18 19 20 21 21 21 22 23 23

Centinned >>>

# Fage....9

¥	Rainfal	l data		No. of we	***
1441	Week 8 25	Neek 8 26	w	w/w	W/D
1971	4.2	0.0	13	2	23
1972	28.8	0.0	14	2	23
1973	0.0	38.0	<u> </u>	ž	24
1974	0.0	0.0	14	2	24
1975	3.0	<u>0</u> .0	14	2	24
1976	8.4	2.6	14	2	24
1977	2.0	5.0	ĩá	2	24
1978	7.5	0.0	īi	2	24
1979	4.8	ā,ā	14	2	24
1980	0.0	0.0	14	2	24
1981	4.7	1.2	14	2	24
1982	0.0	54.2	14	2	25
1983	0.0	11.9	14	2	26
1984	0.0	0.0	14	2	26
1985	4.5	0.0	14	2	26
1986	1.6	0.0	14	2	26
1987	4.2	82.7	14	2	27
1988	0.2	2.2	14	2	27
1989	0.0	10.2	14	2	28

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1911       0.0       0.00000         1912       1.8       0.58778         1913       1.3       0.26236         1914       0.0       0.0000         1915       4.6       1.52606         1916       2.5       0.91629         1917       7.9       2.06686         1918       0.8       -0.22314         1919       31.0       3.49651         1920       6.6       1.88707         1921       0.0       0.00000         1923       1.3       0.26236         1924       0.0       0.00000         1925       22.6       3.11795         1926       0.0       0.00000         1927       0.0       0.00000         1928       0.0       0.00000         1929       0.0       0.00000         1931       35.3       3.56388         1932       0.0       0.00000         1933       0.0       0.00000         1933       0.0       0.00000         1934       0.0       0.00000         1935       1.0       2.56495         1939       30.5       3.41773
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1931       35.3       3.56388         1932       0.0       0.00000         1933       0.0       0.00000         1934       0.0       0.00000         1935       1.0       0.00000         1935       1.0       0.00000         1935       1.0       0.00000         1935       1.0       0.00000         1936       26.7       3.28466         1937       20.6       3.02529         1939       30.5       3.41773         1940       0.0       0.00000         1941       13.0       2.56495         1942       5.1       1.62924         1943       0.0       0.00000         1944       0.0       0.00000         1945       0.0       0.00000         1946       0.0       0.00000         1947       19.3       2.96011         1948       0.0       0.00000         1949       0.5       -0.69315         1950       5.8       1.75786         1951       0.0       0.00000         1955       2.8       1.02962         1956       3.3       1.13932
	1941       13.0       2.56495         1942       5.1       1.62924         1943       0.0       0.00000         1944       0.0       0.00000         1945       0.0       0.00000         1946       0.0       0.00000         1947       19.3       2.96011         1948       0.0       0.00000         1949       0.5       -0.69315         1950       5.8       1.75786	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 29. Gai distribution of reinfall k

Year       Rainfall       In       x         1971       4.2       1.43510         1972       28.8       3.36040         1973       0.0       0.00000         1974       0.0       0.00000         1975       3.0       1.09860         1976       6.4       2.12820         1977       2.0       0.69310         1978       7.5       2.01490         1979       4.8       1.5660	(Table	29 gantin	ued from	previous	page)
1971       4.2       1.43510         1972       28.8       3.36040         1973       0.0       0.00000         1974       0.0       0.00000         1975       3.0       1.09860         1976       6.4       2.12820         1977       2.0       0.69310         1978       7.5       2.01490         1978       4.8       1.56860	Year	Rainfall	ln x	•	
1972 28.8 3.36040 1973 0.0 0.00000 1974 0.0 0.00000 1975 3.0 1.09860 1976 8.4 2.12820 1977 2.0 0.69310 1978 7.5 2.01490 1978 4.8 1.56860	1971	4.2	1.43510	•	
1973 0.0 0.0000 1974 0.0 0.00000 1975 3.0 1.09860 1976 8.4 2.12820 1977 2.0 0.69310 1978 7.5 2.01490 1978 4.8 1.5660	1972	28.8	3.36040		
1974 0.0 0.0000 1975 3.0 1.09860 1976 8.4 2.12820 1977 2.0 0.69310 1978 7.5 2.01490 1979 4.8 1.5660	1973	0.0	0.00000		
1975 3.0 1.09860 1976 8.4 2.12820 1977 2.0 0.69310 1978 7.5 2.01490 1978 4.8 1.56860	1974	0.0	0.00000		
1976 8.4 2.12820 1977 2.0 0.69310 1978 7.5 2.01490 1979 4.8 1.56860	1975	3.0	1.09860		
1977 2.0 0.69310 1978 7.5 2.01490 1979 4.8 1.56860	1 974	8.4	2.12820		
1978 7.5 2.01490 1979 4.8 1.56860	1 9 7 7	2.0	0.69310		
1979 4.8 1.56860	1070	7 5	2.01490		
	1979	A 8	1 56860		
	1997	0.0	0.00000		
1900 0.0 0.00000	1900	0.0	0.00000		
1981 4.7 1.54760	1981	4.7	1.54760		
1982 0.0 0.00000	1 68 2	n n	0.00000		
1983 0.0 0.00000	1 98 1	0.0	0.00000		
1984 0.0 0.00000	1984	6.6	0,00000		
1985 4.5 1.50410	1005	4.4	1 50410		
1985 1.5 0 47000	1086	1.2	0 47000		
	1007		1 41510		
	1 707	7.5	-1 60940		
	1 200	×	-1.00940		
7383 0.0 0.00000	7.29.2	<b>Q.U</b>	0.00000		

Page.	•	72
-------	---	----

Table 30. Comparison of rainfall characteristics of Anantapur and Hyderabad (database 1911-1989 for Anantapur and 1901-1970 for Hyderabad; section: Appendix A).

Characteristics	Location			
CH418C10115C1C5	Anantapur	Hyderabad		
1. Latitude	14* 41'	17* 27'		
2. Longitude	77° 37'	77* 37*		
3. Altitude (meters)	349	545		
4. Mean rainfall (mm)	565	764		
<ol> <li>Dependable- precipitation (mm)</li> </ol>	444	602		
<ol> <li>Mean potential- evapotranspiration (mm)</li> </ol>	2094	1758		
7. Coefficient of variation (%)	) 30	26		
8. Water holding capacity (mm)	50	150		
9. Thornthwaite moisture index	-73.0	-56.5		
10. Rainfall characteristics:				
a. Start of the rainy season	July 11 ( <u>+</u> 32)**	June 12 ( <u>+</u> 9)		
b. End of the rainy season	Oct 15 ( <u>+</u> 11)	Nov 8 (±9)		
c. Length of the rainy season	97 days (+31)	130 days ( <u>+</u> 14)		
\$\$ - Standard deviation.	-			

**FIGURES** 

.

.

.

Page ... 73



Fig.1. Geographical location of Anantapur in Andhra Pradesh, India.



Page ... 74



0W>-<--02 4003 2W<2 \$



Page ... 76







z٥

2 ...

o-

Page .... 77







Fig.7. Variation in daily rainfall during 1984-1989 at Anantapur.

18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 Fig.8. Forward and backward accumulation of rainfall along with probability of dry spells. 20% probability Backward accumulation Standard weeks Forward accumulation S weeks dry spell inede the energy aparts 75% probability 0 30 2 20 40 50 60 80 70 6 100

Page...80

-0000----> %

٥.



Fig.9. Climatic water balance at Anantapur (database 1911-1989).

Page ... 81



۵

