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Chapter 5
Advances in Pigeonpea Genomics

Abhishek Bohra, Rachit K. Saxena, K.B. Saxena, 
C.V. Sameerkumar, and Rajeev K. Varshney

Abstract Pigeonpea, a member of family Fabaceae, is one of the important food 
legumes cultivated in tropical and subtropical regions. Due to its inherent properties 
to withstand harsh environments, it plays a critical role in ensuring sustainability in 
the subsistence agriculture. Furthermore, plasticity in the maturity duration imparts it 
a greater adaptability in a variety of cropping systems. In the post genomics era, the 
importance of pigeonpea is further evident from the fact that pigeonpea has emerged 
as first non-industrial legume crop for which the whole genome sequence has been 
completed. It revealed 605.78 Mb of assembled and anchored sequence as against the 
predicted 833 Mb genome consequently representing 72.8 % of the whole genome. 
In order to perform genetic and genomic analysis various molecular markers like 
random amplified polymorphic DNA (RAPD), restriction fragment length polymor
phism (RFLP), amplified fragment length polymorphism (AFLP), simple sequence 
repeat (SSR), diversity array technology (DArT), single feature polymorphism (SFP), 
and single nucleotide polymorphism (SNP) were employed. So far four transcrip- 
tome assemblies have been constructed and different sets of EST-SSRs were devel
oped and validated in a panel of diverse pigeonpea genotypes. Extensive survey of 
BAC-end sequences (BESs) provided 3,072 BES-SSRs and all these BES-SSRs were 
further used for linkage analysis and trait mapping. To make the available linkage 
information more useful, six intra-specific genetic maps were joined together into a 
single consensus genetic map providing map positions to a total of 339 SSR markers
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at map coverage of 1,059 cM. However, earlier very few linkage maps were available 
in the crop because of non-availability of genomic resources. Several quantitative 
trait loci (QTLs) associated with traits of agronomic interest including QTLs for 
sterility mosaic disease, fertility restoration, plant type and earliness have been iden
tified and validated. To strengthen the traditional breeding, plenty of genomics tools 
and technologies are now available for integration in regular pigeonpea breeding 
schemes. This article presents the progress made in the area of pigeonpea genomics 
and outlines its applications in crop breeding for pigeonpea improvement.

Keywords Pigeonpea • Genetic map • Quantitative trait loci • Marker assisted 
selection • Genome sequence

Introduction

Pigeonpea [Cajanus cajan (L.) Millsp] is one of the most important legume species 
belonging to the family Papilionoideae and a member of warm season legumes 
(Millettioid clade). Pigeonpea is grown mainly in Asia, Africa and Central/South 
America, on ~5 million hectares. India ranks first in pigeonpea production with 
2.46 million metric tons (mmt) followed by Myanmar (0.2 mmt) and Malawi 
(0.18 mmt) (FAOSTAT 2011). In developing world specially in India and Africa, 
pigeonpea remains one of the potential sources for livelihood generation and provid
ing proteins to the resource poor farmers, whereas, in other countries such as Myanmar 
and China, it is gaining importance as one of the commodity crop to generate the 
foreign revenue. The cultivation of pigeonpea mostly in marginal and degraded soils 
and risk prone environments often causes considerable reduction in crop yield due to 
several factors. These factors mainly include diseases, insects/pests and abiotic 
stresses such as drought, salinity and water logging. This has reflected in form of a 
wide yield gap existing between the potential yield and actual yield realized at farm
ers’ field (see Varshney et al. 2012).

Realizing its importance in subsistence agriculture, sincere efforts have been 
directed towards genetic improvement of pigeonpea. Significant genetic gains have 
been achieved in the form of release of several pureline varieties along with cyto
plasmic genetic male-sterility (CGMS) based hybrids that has led to the expansion 
of production area from 2.7 mha (1961) to 5.83 mha (2011) however average yield 
still remains in the range of 736-755 kg/ha (FAOSTAT 2011). Domestication and 
breeding methods focusing strictly on self-pollination led to drastic narrowing down 
of the genetic base therefore further complicated the situation.

In order to experience a quantum jump in the productivity, traditional breeding 
efforts should be supplemented with the genomics technologies. All the essential 
prerequisites such as large scale DNA markers e.g. simple sequence repeat markers 
(SSRs), diversity array technology markers (DArT), single feature polymorphisms 
(SFPs) and single nucleotide polymorphisms (SNPs), genetic and quantitative trait 
loci (QTLs) maps, trait specific mapping populations and sequence information 
(transcriptome and genome assemblies) are now available in pigeonpea for
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Table 5.1 Genomic resources in pigeonpea

97

Genomic resources Number Features References
Mapping ~30 Segregating for Kumawat et al. (2012),

populations Fusarium wilt (FW), 
sterility mosaic 
disease (SMD), 
water logging 
tolerance and 
plant type

Varshney et al. (2010a), 
Dhanasekar et al. (2010), 
Kotresh et al. (2006)

BAC resources
1) BAC libraries 2 Comprising 34,560 

clones each with 
11x coverage of 
pigeonpea genome

Bohra et al. (2011)

2) BAC-end 88,860 A set of >52K non- Bohra et al. (2011)
sequences redundant sequences 

represented 35 Mb or 
~4.3 % of the 
pigeonpea genome

Second and third generation DNA markers
1) SSRs
a) Genomic ~3,300 BAC library and Odeny et al. (2007), (2009),

(gSSRs) BES-derived highly 
informative SSRs

Saxena et al. (2010b), 
Bohra et al. (2011)

b) Genic or
EST-SSRs

i) Sanger 84 Average polymorphic Raju et al. (2010)
sequencing information content 

(PIC) value of 0.40
ii) Deep 550 PIC values ranged from Dutta et al. (2011)

transcriptome 0.46 to 0.72
sequencing

c) In silico mining 23,410 Containing tri-, tetra-, Varshney et al. (2012)
of draft genome penta-, hexa- or
sequence compound repeat 

units
2) SNPs 28,104 Specific to parental

combinations derived 
from 12 genotypes

Varshney et al. (2012)

3) DArTs 29,000 Diversity surveyed for 
400 genotypes

Varshney et al. (2010b)

4) SFPs 5,692 Specific for drought 
tolerance

Saxena et al. (2011)

Genetic maps
1) DArTs based 1 paternal and 

1 maternal
Maps covered 270.0 cM 

and 451.6 cM of the 
total genome

Yang et al. (2009)

2) SSRs based 7 (1 inter-specific Covering map distances Bohra et al. (2011), (2012),
and 6 from 466.97 to Gnanesh et al. (2011)
intra-specific) 930.9 cM

(continued)
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Table 5.1 (continued)

Genomic resources Number Features References

3) SNPs based 1 intra-specific Total map length 
1520.22 cM

Kumawat et al. (2012)

1 inter-specific Total map length 
996.21 cM

Saxena et al. (2012)

Transcriptomic resources
1) ESTs 25,314 Sanger as well as third 

generation sequencing 
derived

http://www.ncbi.nlm.nih.gov

2) Transcriptome 4 Number of transcript Kudapa et al. (2012)
assemblies assembly contigs 

(TACs) ranging from 
4,557 to 48,726

Whole genome sequence
Draft genome 2 ~605.78 Mb of genome Varshney et al. (2012)

sequences of with ~163.4x
variety ‘Asha’ coverage

~511 Mb of the genome 
with ~10x coverage

Singh et al. (2011)

initiating genomics assisted breeding (GAB) (Bohra et al. 2011; Varshney et al. 
2012 ; Saxena et al. 2012) (Table 5.1) . In recent years, several novel molecular 
breeding methodologies have been proposed for the crop improvement such as 
marker assisted back-crossing (MABC) and marker assisted recurrent selection 
(MARS) which offer a precise manner to choose a desired/superior genotype 
(Varshney et al. 2013). Approaches like multi parent advance generation inter-cross 
(MAGIC) and introgression libraries (ILs) are offering new avenues to tap natural 
genetic variation available in wild relatives and landraces into the cultivated gene 
pool (Varshney et al. 2013).

This chapter provides an overview on availability of genomic resources and the 
current status of molecular breeding approaches in pigeonpea improvement and 
explores possibilities to implement emerging molecular genetics and breeding 
approaches to gain the advancement in pigeonpea research and productivity.

Genome Size

Pigeonpea is a diploid crop with chromosome number 2n = 2x = 22. The various 
karyotype studies conducted in pigeonpea (Krishnaswamy and Ayyangar 1935; 
Naithani 1941; Akinola et al. 1972) have concluded that all the wild relatives of 
pigeonpea carry the same number of chromosomes. After soybean, pigeonpea 
became the second member of clade Phaseoloid for which the draft genome 
sequence has become available and based on K-mer statistics the entire genome size 
was estimated to be 833.07 Mb (Varshney et al. 2012).

http://www.ncbi.nlm.nih.gov/
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Genomic Resources 

Mapping Populations

Availability of large segregating populations is an essential requirement for molecular 
tagging of traits of interest. Several types of bi-parental mapping populations such 
as F); Backcross (BC i Fj) , recombinant inbred lines (RILs), near isogenic lines 
(NILs) and double haploid (DH) are being employed for genetic map construction 
and trait mapping. Based on morphological and molecular diversity and targeting 
the trait segregation a series of mapping populations were generated in pigeonpea 
under phase I of pigeonpea genomic initiative (PGI). A total of 25 F2 mapping popu
lations were reported in pigeonpea segregating for several traits such as resistance 
to sterility mosaic disease (SMD), Fusarium wilt (FW), water logging and fertility 
restoration (Rf). Most of these populations have reached to the RILs and are being 
deployed for multi-location trials. Details on these mapping populations have been 
provided by Varshney et al. (2010a). Of these mapping populations, an inter-specific 
F2 mapping population (ICP 28 x ICPW 94) was chosen for constructing high density 
reference genetic map for pigeonpea (Bohra et al. 2011; Saxena et al. 2012). Apart 
from PGI, few more mapping populations were developed at various national agri
cultural research centers (Kotresh et al. 2006; Dhanasekar et al. 2010; Ganapathy 
et al. 2009; Kumawat et al. 2012) (Table 5.2).

Molecular Markers

A wide range of DNA markers have been employed in pigeonpea including RAPD 
(Ratnaparkhe et al. 1995) , RFLP (Sivaramakrishnan et al. 1997, 2002), AFLP 
(Panguluri et al. 2005), SSR (Saxena et al. 2010a; Bohra et al. 2011), DArT (Yang 
et al. 2006, 2011), SFP (Saxena et al. 2011) and SNP (Varshney et al. 2012; Saxena 
et al. 2012) etc. All these marker systems have been used for a variety of applica
tions e.g. estimation of genetic diversity, construction of genetic maps, etc. in 
pigeonpea. Initially SSRs were preferred over other marker systems due to unavail
ability of SNPs and several advantages like higher abundance, co-dominant and 
multi-allelic nature and ease of scoring etc. In pigeonpea, SSRs were generated 
through (1) enriched library (Burns et al. 2001; Saxena et al. 2010a) (2) )n silico 
expressed sequence tags (ESTs) mining (Dutta et al. 2011; Dubey et al. 2011) and 
(3) surveying BAC-end sequences and whole genome sequence (Bohra et al. 2011; 
Varshney et al. 2012). The first set of SSRs comprising ten SSRs in pigeonpea 
was developed by Burns et al. (2001) using CA and CT repeat enriched libraries. 
However, development of SSRs through enriched libraries remains to be time con
suming and of low through put. In this context, sequencing of BAC ends and min
ing for SSRs had provided potential alternative for large scale SSR discovery.
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Û G\PA A09 G1 -G
O £

, c
730 4

2  £  £P P -C 
O O E

To
5  <

E-

D D P
Oc Oc |-J

3 3 ^

tan
e ist
p s  typ re
nt D
lan M
P StL,

A
( B
# ̂  Ph Ph Ph

§ at s a  19 004
S <N —

D G  
T R
x B
4 x4- 7
4 B
TT TTB

^  a  e P
s C

uB

01 01 01 01 01 01 2) 2) 2) 2) 20
2 2 2 2 2 2 1 1 1 1 (2( ( ( ( ( ( 0 0 0 0 l.

(2 2( 2( 2( alal al al al al . . . .
et et et et et et al al al al
h h h h h h t t t tsh sh sh sh sh sh e e e e

a a a a
n n n n n n o o o o u  
G G  G G  G G B B B B K

0 02 2

aw aw

u u
K K

.2 .3 9. 8.

D D D D D D -R 
M M M M M M -

7 1  ( / I  ( / )  7 !  ( / I  ! /5  C

M Mc c  
C C

<N oo 8 8  9 5  1 0  M1 M0

0 1  M0 M1 
c c  
C C

2 1  M2 M1

i n r ^ ’—8 3 24 3 8<N<N’—M2 M2 M1

Ph P- 
-R -R 

a  a
2 7 3 7  3 2

C C C C C C

& ^
J  ^P 3
g  ^

(6 09 
0 2  P

z S 
A

7 2
0 0  M0 M0 P

zc S
C C C C C C  C C C C A

Ph CC 

w  ^  9 ( 
9 5  0 9  2 2  
P RZ S S  
-A -A 0- 4
1 6  3 6  
P1 P1 

z  zS S
A A

R R R

noti

dna
R R RS S SS S S
n n  o o  ti ti

re re e e
tyr tyr ype line

_J« a
53 & 
^  x 
£ * c 6

P
C

P
IC

X
7
BTTB

2
RP
IC

X
9

AP
C

R RP P
IC IC

x x 
3 3

A AP P
C C

A
SS

R
10

0-
A

SS
R

20
6 

(g
SB

5.
1)

 
10

.4 
K

um
aw

at
 e

t 
al.

 (
20

12
)

A
SS

R
10

0-
A

SS
R

20
6 

(g
M

T5
.1

) 
25

.9 
K

um
aw

at
 e

t 
al.

 (
20

12
)

A
SS

R
10

0-
A

SS
R

20
6 

(g
PD

5.
1)

 
18

.9
__

__
__

_
K

um
aw

at
 e

t 
al.

 (2
01

2)



5 Advances in Pigeonpea Genomics 101

In pigeonpea, extensive survey of BAC-end sequences (BESs) provided 3,072 BES- 
SSRs and all these BES-SSRs were further used for linkage analysis and trait map
ping (Bohra et al. 2011, 2012; Gnanesh et al. 2011). In addition, a detailed 
microsatellite survey of whole genome sequence of pigeonpea has identified thou
sands of SSRs (Singh et al. 2011; Varshney et al. 2012).

In addition to SSRs, DArT offers great potential because of its sequence- 
independent nature and ensures whole genome profiling in a high throughput and 
cost effective manner. In pigeonpea, development of 5,376 DArT features helped in 
assessment of genetic diversity in a panel of 96 genotypes from 20 different Cajanus 
species (Yang et al. 2006). However, in the post genomics era, owing to the amena
bility to high throughput detection and precise genotyping, SNP has emerged as 
preferred class of DNA markers over SSRs. Thousands of SNPs were identified in 
pigeonpea to undertake genome wide association studies (GWAS) and genome 
wide selection (GWS) (Varshney et al. 2012 ) Saxena et al. 2012). Recently cost 
effective SNP genotyping assays such as competitive allele-specific polymerase 
chain reaction (KASPar) assays were developed for a total of 1,616 SNPs and des
ignated as PKAMs (pigeonpea KASPar assay markers). Further utility of all these 
KASPar based SNPs were successfully demonstrated in genetic mapping and com
parative analysis in pigeonpea (Saxena et al. 2012). In a similar instance 752 SNPs 
were successfully used to genotype a panel of 110 accessions (wild as well as culti
vated) using GoldenGate assay and provided valuable evidences about gene flow, 
phylogeny and domestication bottlenecks occurred in pigeonpea (Kassa et al. 2012).

Furthermore, with an aim to leverage the DNA marker catalog, microarray- 
based markers such as single feature polymorphism (SFP) were also discovered 
for various parental combinations in pigeonpea. For example, the number of iden
tified SFPs ranged from 780 to 854 between parents of several mapping popula
tions. In total, a novel set of markers comprising 5,692 SFPs was reported (Saxena 
et al. 2011).

BAC Libraries

BAC libraries harbor large inserts of DNA ranging from 100 to 350 kb with an average 
insert size of 150 kb. The large size of DNA inserts ensures better coverage of the 
genome. These offer several advantages like ease of handling, high stability, non
chimeric nature and better transformation efficiency over other vectors such as yeast 
artificial chromosomes (YACs) and cosmids (Farrar and Donnison 2007). BAC 
libraries represent a potential genomic resource extensively used for (1) physical 
map construction, (2) comparative genome analysis via searching for macrosyn- 
tenic blocks across species, (3) map-based or positional cloning to isolate genes/ 
QTLs responsible for economically important traits, (4) large scale DNA marker 
discovery through BAC-end sequencing, and (5) assembling of raw sequence reads 
into genome assembly for an organism. In pulses, several BAC libraries have been
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reported and are being constructed for chickpea, lentil, pigeonpea, mungbean, 
cowpea, field pea and common bean etc. (Yu 2012). In pigeonpea, two BAC librar
ies were constructed by using HindIII and BamHI restriction enzymes. Each of the 
libraries was composed of 34,560 clones. The average insert size of HindIII library 
was 120 kb while the BamHI library had an average insert size of 115 kb. These clones 
collectively represented ~11x coverage of the pigeonpea genome. The sequences 
adjacent to the insertion sites are generally known as BESs and potential resources for 
identifying minimally overlapping clones (Kelley et al. 1999). With this perspective, 
randomly selected 50,000 BAC clones were targeted for end sequencing which gener
ated a set of 88,860 high quality BESs (Bohra et al. 2011).

Genetic Maps

Saturated genetic maps have been constructed for several legumes like chickpea 
(Thudi et al. 2011; Hiremath et al. 2012), cowpea (Muchero et al. 2009; Lucas et al. 
2011), common bean (Cordoba et al. 2010), soybean (Hwang et al. 2009) etc. 
Till 2010, no genetic map was available for pigeonpea due to non-availability of 
ample amount of genomic resources such as molecular markers and segregating 
mapping populations and this situation exacerbated by low genetic variation in 
Cajanus primary gene pool. Following the large scale development of BES-SSR 
and DArT markers, the first generation genetic maps were constructed for an F2  

population derived from an inter-specific cross ICP 28 (C. cajan) x ICPW 94 
(C. scarabaeoides). SSR based genetic map covered a total map length of 930.9 cM 
with 239 loci with an average inter-marker distance of 3.8 cM (Bohra et al. 2011). 
In parallel, DArT based genotyping on this parental combination provided a set of 
388 polymorphic markers. However, coupling and repulsion phase of polymorphic 
markers resulted in development of paternal and maternal specific genetic maps 
with 172 and 122 unique loci, respectively.

The above mentioned genetic maps were derived between C. cajan and C. scara- 
baeoides, which does not reflect the level of DNA polymorphism existing in pri
mary or cultivated gene pool of Cajanus. Therefore, greater emphasis was directed 
towards construction of genetic maps for narrow crosses/intra-specific mapping 
populations. Keeping this view in mind, a total of six SSRs based intra-specific 
genetic maps with low to moderate marker density were constructed for six F2  map
ping populations (Gnanesh et al. 2011; Bohra et al. 2012). The number of mapped 
loci were in the range of 59 (ICPB 2049 x ICPL 99050) to 140 (ICPA 2043 x ICPR 
3467) while covering map distances of 466.97 cM (TTB 7 x ICP 7035) to 881.57 cM 
(ICPA 2043 x ICPR 3467). Furthermore, to make the available linkage information 
more useful, all the six intra-specific genetic maps were joined together into a single 
consensus genetic map providing map positions to a total of 339 SSR markers at 
map coverage of 1,059 cM (Bohra et al. 2012). The bin wise polymorphism infor
mation content (PIC) values provided for each mapped loci will help geneticists and 
breeders to select the more informative and precise markers from the region of
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interest. Recently one more genetic map based on an intra-specific mapping population 
(Pusa Dwarf x HDM04-1) was reported for cultivated pigeonpea. This genetic map 
comprising 296 loci (267 SNPs + 29 SSRs) covered a map length of 1520.22 cM 
organized into 11 LGs (Kumawat et al. 2012).

Inter-specific mapping population (ICP 28xICPW 94) relatively bigger than 
previously used (167 F2) mapping populations, used for SNP genotyping through 
cost effective genotyping platform (KASPar assays) resulted in a much lower geno- 
typing error rate than that obtained with markers like SSRs. A comprehensive genetic 
map comprising of 875 SNP loci was constructed (Saxena et al. 2012). The total 
length of this map was 967.03 cM with average marker distance of 1.11 cM. This link
age map was a considerable improvement with the previous pigeonpea genetic 
linkage maps using SSR and DArT markers. The marker density in this map has 
almost three times higher than the previous maps. This higher marker density would 
be useful in determining double recombinants affecting a single marker and in guiding 
future mapping efforts in pigeonpea.

Trait Mapping

Trait mapping is one of the important pre-requisite for prediction of phenotype from 
the genotype. As compared to some other legumes like chickpea and common bean 
not much progress has been witnessed in the area of trait mapping in pigeonpea. 
Earlier inadequate supply of DNA polymorphisms and lack of saturated genetic 
maps have posed obstacles in undertaking QTL analysis in pigeonpea. Despite this, 
some of the traits such as tolerance to SMD and FW and ideal plant type were 
chosen for mapping using bulked segregants analysis (BSA). BSA was performed 
using DNA from extremes phenotypes from segregating F2  populations. The first 
instance of QTL analysis was reported by Gnanesh et al. (2011) to tag SMD resis
tance in pigeonpea. This study reported existence of major as well as minor effect 
QTLs imparting resistance against SMD. The investigation included two F2  mapping 
populations which were subjected to linkage and QTL analysis. The results indi
cated occurrence of six QTLs (designated as qSMD1-6) explaining phenotypic 
variations in the range of 8.3-24.72 % (Gnanesh et al. 2011) (Table 5.2).

Another successful attempt for mapping a trait using QTL analysis was performed 
for fertility restoration (Rf). Restoration of fertility in hybrids forms a vital part of 
CMS based hybrid breeding. Keeping this in mind, QTL analysis was conducted 
using genotyping and phenotyping data generated from three different F2  mapping 
populations showing segregation for fertility restoration. QTL analysis revealed a 
total of four large effect Rf-QTLs playing important roles in fertility restoration in 
pigeonpea (Table 5.2). The phenotypic variations governed by the identified QTLs 
were observed up to 24 % (Bohra et al. 2012). The SSR markers tightly linked with 
fertility restoration will help not only in search of a potential restorer but also in 
discriminating between restorer and maintainer. Similarly based on an intra-specific 
F2  population and F2 :3  families (Pusa Dwarfx HDM04-1) several QTLs were
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recovered for six different agronomics traits related to plant type and earliness and 
the phenotypic variation was observed in the range of 3-50 % (Kumawat et al. 2012). 
These genomic regions can further be chosen as candidates while practicing marker 
assisted selection (MAS) for plant type and earliness in pigeonpea.

Functional and Comparative Genomics

Functional genomics has shown remarkable impacts on plant genetics and breeding. 
In the context, collection of ESTs represents an excellent genomic resource to carry 
out functional genomics studies. In pigeonpea, a total of 25,576 ESTs have been 
deposited in NCBI database (http://www.ncbi.nlm.nih.gov/dbEST/dbEST_sum- 
mary.html). In parallel, recent advancements made in the area of next generation 
sequencing technologies have helped generation of massive transcriptome sequence 
data. For instance, in the case of pigeonpea, a total of four transcriptome assemblies 
have been constructed using Illumina GA IIx, FLX/454 and Sanger sequencing 
(Raju et al. 2010; Dutta et al. 2011; Dubey et al. 2011; Kudapa et al. 2012). Among 
these, the two most comprehensive assemblies were designated as Cajanus cajan 
transcriptome assembly version 1 and 2 (CcTA v1: Dubey et al. 2011 and CcTA v2: 
Kudapa et al. 2012) comprising 48,726 and 21,434 transcript assembly contigs 
(TACs), respectively. The robust transcriptome assembly offers tremendous scope 
for predicting gene content, function and large scale mining of genic or functional 
molecular markers (GMM or FMM). For instance, different sets of EST-SSRs were 
developed from these transcriptome assemblies and validated in a panel of diverse 
pigeonpea genotypes (Raju et al. 2010 ; Dutta et al. 2011) . Since the functional 
markers remain highly conserved across genera during the course of evolution, 
these form the basis for comparative genome analysis.

Comparative genomics remains a powerful approach to harness genomic infor
mation form related genera. In pigeonpea, successful cloning of approximately 600 
unique nucleotide-binding site (NBS) domain and leucine-rich repeat (LRR) domain 
sequences was performed using degenerate primers targeting the NBS-LRR 
sequences from model legume Medicago truncatula (Varshney et al. 2010a). NBS- 
LRR represents the most abundant class of resistance genes in plants (Varshney 
et al. 2009). Therefore, availability of cloned NBS-LRR fragments would shed light 
into the fate of NBS-LRR resistance genes during divergence of Millettioid and 
Galegoid clades within the subfamily Papilionoideae. Similarly, comparative analy
sis of the CcTA v2 with genome sequence of soybean (Glycine max) provided a set 
of 128 intron spanning region (ISR) markers. Mapped SNPs were also used to dis
cover the synteny blocks in each of the 11 pigeonpea linkage groups to their coun
terparts of four legumes chromosomes (soybean, cowpea, Medicago and Lotus), 
implying certain co-linearity for the syntenic chromosome/linkage pairs. Conserved 
sequences were identified among five legume species (pigeonpea, soybean, cow- 
pea, Medicago and Lotus) (Saxena et al. 2012). The data from comparative genome 
analysis should facilitate studies on genome evolution and analysis of structural 
genome, but more significantly would be helpful in understanding and validation

http://www.ncbi.nlm.nih.gov/dbEST/dbEST_summary.html
http://www.ncbi.nlm.nih.gov/dbEST/dbEST_summary.html
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of functional inference of genes in pigeonpea. The identification of gene functions is 
difficult in non-model species including pigeonpea, thus functional genome analysis 
will have to rely heavily on the establishment of orthologies from model species by 
using comparative genomics analysis.

Genome Sequencing

With the availability of draft genome sequence, pigeonpea has shown a quantum 
jump in its status and joined the league of model/genomic resource rich crops. 
Pigeonpea has become the first orphan and non-industrial grain legume to have a 
draft genome sequence (Varshney et al. 2012). Next generation sequencing plat
forms such as Illumina GA and HiSeq 2000 were used to sequence elite pigeonpea 
cultivar Asha (ICPL 87119). Using a de novo genome assembly and with the help 
of bacterial artificial chromosome (BAC)-end sequences and available genetic 
maps, 605.78 Mb was assembled into scaffold with N50=516.06 kb. Based on esti
mated genome size of 833 Mb using a K-mer analysis, 72.8 % of the genome was 
assembled. Gene prediction analysis suggested presence of 48,680 genes with an 
average transcript length of 2,348 bp and 3.59 exons per gene. A total of 46,750 
genes (96.4 %) could be assigned based on functional ontology and 1,930 genes 
(3.96 %) are of unknown function. In terms of non-coding RNAs (ncRNAs), 763 
tRNA, 862 miRNA, 329 rRNA and 363 snRNA were encountered in <0.5 % 
assembled genome. In another sequencing effort, 454 GS-FLX sequencing tech
nology was used to assemble ~511 Mb sequence data for Asha variety (Singh 
et al. 2011). In this study, 47,004 protein coding genes including 1,213 disease 
resistance/defence related genes and 152 abiotic stress tolerance genes were 
predicted.

Analysis of genome assembly (Varshney et al. 2012) for repetitive DNA showed 
presence of transposable elements (TEs) in 49.61 % of assembled genome. 
Comparison of pigeonpea genome with soybean, grape, Medicago truncatula and 
Lotus japonicus genomes revealed 4,311 clusters of genes that were common to all 
five eudicot genomes whereas 3,068 gene families were specific to the pigeonpea 
genome. Pigeonpea genome contains higher number (111) of drought responsive 
genes than soybean, Medicago truncatula and Lotus japonicus. These genes are 
suitable candidates for allele mining in global germplasm collection of pigeonpea 
so that superior alleles and haplotypes for drought tolerance can be implemented in 
pigeonpea crop improvement (Varshney et al. 2012).

Genome sequence will be useful in utilizing gene sequences for molecular breed
ing as well as genetic engineering approaches for crop improvement to minimize 
yield gap in farmers’ field. It will not only facilitate comparative analysis with other 
members of warm-season Millettioids and cool-season Galegoids but also in under
standing the phylogeny and evolution within the legume family as a whole. 
Furthermore, identified candidate drought responsive genes can be utilized for 
improving other legume crops such as soybean and common bean, which are 
adversely affected by drought stress.
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Genomics-Assisted Breeding

To enhance the crop productivity of pigeonpea, it is important to implement recently 
developed biotechnological tools such as molecular markers and genetic maps in 
the breeding programs. These are pre-requisites for genomics-assisted breeding 
applications such as marker-assisted selection (MAS) (Varshney et al. 2009). With 
the development and availability of molecular markers and dense molecular genetic 
maps, MAS is in routine in breeding programs in several major crop species. 
However, in pigeonpea full potential of molecular breeding still needs to be realized 
to reap the benefits of colossal amount of molecular information generated through 
whole genome sequencing. Though, traditional pigeonpea breeding has provided 
enough genetic gains in the form of release of several elite cultivars, the pace of 
improvement is not adequate. Wild relatives of pigeonpea representing the untapped 
reservoir of tremendous genetic variation offer greater scope for broadening of 
genetic base in pigeonpea. However the undesirable alleles associated with the 
wild germplasm i.e. linkage drag hampers the speedy recovery of superior perfor
mance. Some novel molecular breeding methods such as advanced backcross QTL 
(AB-QTL) analysis permitting identification as well as transfer of wild type supe
rior alleles into elite cultivars help greatly by generating broad based breeding 
materials including introgression lines (ILs), near isogenic lines (NILs), chromo
some segment substitution lines (CSSLs) etc. Some efforts have also been initi
ated at ICRISAT using C. scarabaeoides as donor to discover superior alleles of 
various economically important QTLs through AB-QTL approach (Varshney et al. 
2013).

Apart from this, whole genome opens new avenues for re-sequencing and 
genome wide SNP genotyping of landraces/core/reference sets/composite collection 
(Upadhyaya et al. 2011) (Fig. 5.1). This will greatly assist in discovery of alleles 
and unlocking the alleles/loci undergoing selection pressure during the process of 
domestication. In addition, reference genome would facilitate precise identification 
of recombination blocks using high throughput genotyping platforms and methods 
such as genotyping by sequencing (GBS). GBS can be employed to tap the potential of 
nested association mapping (NAM) ensuring benefits of both association mapping 
(historical recombination) as well as linkage analysis (bi-parental recombination). 
NAM would provide insights into the molecular basis underlying various QTLs 
governing several complex traits. In crops like pigeonpea, some of the other schemes 
relying on multi-parent crossing would be very effective in providing opportunities 
for extensive recombination. For instance, creation of multi-parent advanced gen
eration intercross (MAGIC) lines in pigeonpea will help not only in accumulation 
of superior alleles from various genetic backgrounds but also in fine mapping of the 
region of interest (Kover et al. 2009). Access to the genome wide SNP/SSR markers 
together with availability of a training population with a robust historical phenotyp- 
ing data would allow identification of a genotype with higher breeding value through 
genomic selection (GS) bypassing extensive field testing/repeated phenotyping 
(Varshney et al. 2013).
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Fig. 5.1 An integrated approach to harness reference genome sequence for pigeonpea genetic 
information

Conclusion and Perspectives

With the availability of draft genome sequence, pigeonpea has marked its presence 
among sequenced legumes such as Lotus, Medicago and soybean enabling more 
focus on basic research and translational genomics for crop improvement. In the 
context, high density genetic maps along with precise phenotyping platforms would 
facilitate identification of genomic regions/QTLs associated with traits such as tol
erance to abiotic and biotic stress and fertility restoration. Since exploitation of 
hybrid vigor seems to a potential alternative to overcome the existing yield barriers, 
elaborated understanding about the molecular basis of heterosis would allow easy 
access to the genes imparting hybrid vigor. Furthermore, re-sequencing of several 
genotypes including landraces, wild relatives and cultivars would ensure recovery 
of novel haplotypes associated with domestication and other important phenome
non. The deployment of these genomic tools into regular breeding programmes in 
the form of MABC, MARS and GS would help greatly in bridging the yield gap in 
pigeonpea through enhancement of productivity in the resource poor and risk prone 
environment.
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