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Chapter 11
Towards Enriching Genomic Resources 
in Legumes

Aditya Pratap, Rakhi Tomar, Neha Rajan, Jitendra Kumar, 
Pooja Bhatnagar Mathur, Nupur Malviya, and Tuba K. Anjum

Abstract Food legumes, mainly comprising dry beans, dry peas, soybean, chickpea, 
pigeonpea, groundnut, greengram, blackgram, cowpea, lentil and lathyrus, have 
considerable area under cultivation globally and these are important constituents of 
cereal-based vegetarian diets. Keeping in view their tremendous importance for 
diversification and intensification of contemporary agriculture, systematic efforts 
towards their genetic improvement have been undertaken with classical breeding 
tools, lately complemented by the use of genomic tools. These genomic tools provide 
comprehensive information on genes involved in biochemical pathways leading 
upto nutritional compounds and can be used to understand the genetics of traits of 
interest and consequently, helping in marker assisted breeding. During the last two 
decades powerful genetic and genomic tools such as establishment of genetic and 
physical maps, expressed sequence tags, bioinformatic tools, genome-wide 
sequence data, genomic and metabolomic platforms, etc. have been developed for 
many legume species. These efforts have led to development of large scale molecu
lar markers, identification of various marker trait associations, construction of 
genetic and linkage maps, expressed sequence tags database, partial or whole 
genome sequences, physical and molecular maps, DNA chips and bacterial artificial 
chromosome (BAC) libraries. After the genome sequencing of three model species, 
Medicago, Lotus and Glycine, draft genome sequences have recently been made

A. Pratap, Ph.D. ( * )  • R. Tomar, M.Sc. • J. Kumar, Ph.D. • N. Malviya, Ph.D.
T.K. Anjum, M.Sc.
Crop Improvement Division, Indian Institute of Pulses Research,
G.T. Road, Kanpur, Uttar Pradesh 208024, India 
e-mail: adityapratapgarg@gmail.com

N. Rajan, M.Sc.
Krishi Vigyan Kendra, Ramakrishna Mission Ashram, Ranchi, Jharkhand, India 

P.B. Mathur, Ph.D.
International Crops Research Institute for the Semi-Arid Tropics (ICRISAT),
Hyderabad, Andhra Pradesh, India

S. Gupta et al. (eds.), Legumes in the Omic Era, DOI 10.1007/978-1-4614-8370-0_11, 221
© Springer Science+Business Media New York 2014

mailto:adityapratapgarg@gmail.com


222 A. Pratap et al.

available in agronomically important food legumes, pigeonpea and chickpea while 
similar efforts are underway in groundnut and greengram. The new generation 
sequencing (NGS) and genotyping platforms such as 454/FLX sequencing and 
Illumina GoldenGate/Solexa have revolutionized plant genomic research as these 
generate millions of ESTs per run. With the increased amount of genomic resources, 
there are now tremendous opportunities to integrate these with the genetic resources 
for their widespread use in routine legume improvement programmes by integrating 
them with conventional breeding tools. As a result, the genomics assisted breeding 
(GAB) can now be successfully used in legume improvement and development of 
improved genotypes having improved agronomic and quality traits and resistance to 
biotic and abiotic stresses. This chapter discusses the developments made in devel
opment of legume genomics and their role in overall improvement of food legumes.

Keywords Genomic resources • Molecular markers • Genomic library • Whole 
genome sequencing • Comparative genomics • Genomics assisted breeding

Introduction

Legumes are important source of food, feed and fodder in many agricultural 
systems and are grown on a large scale in semi-arid tropics of the world. Grain 
legumes alone contribute 33 % of human protein nutrition (Vance et al. 2000) and 
have a unique ability to fix the atmospheric nitrogen in symbiotic association with 
Rhizobium bacteria, which not only enables them to meet their own nitrogen require
ment but also benefit the succeeding crops. Improvement in agronomic and pheno- 
logical traits of the legumes is crucial in order to improve their use as human food 
and sustainability of production system. Therefore, yielding ability, seed and quality 
characteristics, resistance to biotic and abiotic stresses, storability, etc. are receiving 
greater attention for the genetic improvement of legumes. There is also an increasing 
interest in improving nutritional characteristics of legumes with enhanced content of 
P-carotene, leutin, isoflavones and other nutraceuticals.

The way to development of better food and forage legumes requires a detailed 
knowledge of the different genes involved in biochemical pathways leading upto 
nutritional compounds, including the expression patterns and level of these genes 
and their interactions (Gepts et al. 2005) . Genomic resources are important to 
understand the genetics of traits of interest and consequently, marker assisted back- 
cross breeding (MABC), marker assisted recurrent selection (MARS) and advanced 
backcross (AB) breeding may be used effectively in legume improvement. A great 
success in this will be possible by combining genomic tools with rational selection 
of germplasm and precise phenotyping for traits of interest, termed as “genomics- 
assisted breeding” (Varshney et al. 2005). During the last two decades powerful 
genetic and genomic tools such as establishment of genetic and physical maps, 
expressed sequence tags (ESTs), bioinformatic tools, genome-wide sequence data,
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genomic and metabolomic platforms have been developed for many legume spe
cies. This chapter gives a comprehensive view of development and utilization of 
genomic resources in major food legume crops.

Genomic Resources in Legumes

Over the past many years, there has been an increased focus on application of pow
erful genomic approaches to major legume species with an aim of generating 
genomic resources that will not only be of use in these species but also facilitate 
crop improvement in other species also. Apart from two model legumes, Medicago 
truncatula and Lotus japonicus, efforts have been made in developing genomic 
resources in common bean (Phaseolus vulgaris), cowpea (Vigna unguiculata), soy
bean (Glycine max), pigeonpea (Cajanus cajan), alfa alfa (Medicago sativa), chick
pea (Cicer arietinum), faba bean (Vicia faba), lentil (Lens culinaris), pea (Pisum 
sativum) and peanut (Arachis hypogaea L.). However, these legumes differ greatly 
in their genome size, base chromosome number, ploidy level, and compatibility 
status (Table 11.1). The efforts have led to development of large scale molecular 
markers, identification of various marker trait associations, construction of genetic 
and linkage maps, expressed sequence tags (EST) database, partial or whole genome 
sequences, physical and molecular maps, DNA chips and bacterial artificial chro
mosome (BAC) libraries in all these crops (Table 11.2 and 11.3). Among the agro
nomically important food legumes, draft genome sequence has recently been made 
available in pigeonpea (Singh et al. 2012 ; Varshney et al. 2012) and chickpea 
(Varshney et al. 2013a) and similar efforts are underway in groundnut.

Table 11.1 Variation in basic chromosome number and genome size among legume species

Species Basic chromosome number (X) Genome size (Mb)
Peanut (Arachis spp.) 10-20 1,260-2,890
Lupin 5-13 468-1,177
Common bean (Phaseolus vulgaris) 11 637
Cowpea (Vigna unguiculata) 11 620
Pigeonpea (Cajanus cajan) 11 858
Soybean (Glycine max) 20 1,1 15
Lotus japonicus 6 472
Pea (P. sativum) 7 4,400
Lentil (L. culinaris) 7 4,063
Chickpea (C. arietinum) 8 740
Alfalfa (M. sativa) 8 800-900
Vicia faba 7 -
Medicago truncatula 8 500-550
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Table 11.3 Important genomic resources in major food legumes developed in last 5 years

Genomic resources Crop References
BAC libraries and BAC end Chickpea Thudi et al. (2011)

sequences Common bean Cordoba et al. (2010)
Pigeonpea Bohra et al. (2011)
Cowpea Yu (2012); http://www.comparative- 

legumes.org/pages/resources
Large scale SSR/SNP Chickpea Thudi et al. (2011); Hiremath et al. (2012);

markers Gaur et al. (2012)
Common bean Hyten et al. (2010)
Pigeonpea Raju et al. (2010); Bohra et al. (2011); 

Dubey et al. (2011); Kassa et al. (2012)
Cowpea Muchero et al. (2009); Lucas et al. (2011)

High throughput genotyping platforms
DArT arrays Chickpea Varshney et al. (2010)

Common bean Brinez et al. (2011)
Pigeonpea Yang et al. (2011)

GoldenGate/KASPar assays Chickpea Hiremath et al. (2012); Gaur et al. (2012)
Common bean Cortes et al. (2011); Hyten et al. (2010)
Pigeonpea Kassa et al. (2012)
Cowpea Muchero et al. (2009); Lucas et al. (2011)

First genetic maps Mungbean Isemura et al. (2012)
Pigeonpea Yang et al. (2011); Bohra et al. (2011, 2012)

High density genetic maps Chickpea Thudi et al. (2011), Hiremath et al. (2012), 
Gaur et al. (2012)

Common bean Galeano et al. (2011)
Cowpea Muchero et al. (2009); Lucas et al. (2011)

Physical maps Chickpea Zhang et al. (2010)
Common bean http://cmap.comparative-legumes.org
Cowpea http://phymap.ucdavis.edu/cowpea/

Draft genome sequences Pigeonpea Singh et al. (2012); Varshney et al. (2012)

Genome Sequences

The three model species, Medicago, Lotus and Glycine are the first legume crops 
to have their genomes sequenced. Among these, M. trancatula and L. japonicus 
were chosen for genome sequencing largely because of their small diploid 
genomes (ca. 500 and 471 Mb in size), shorter life cycle and availability of sup
portive resources (Young et al. 2005) . The information generated by genome 
sequencing of these two species has provided greater insight into their gene struc
ture as well as their physical and genetic maps. Though, the sequencing of both 
these species was initiated at almost the same time, the approaches used for 
sequencing differed slightly in these. While for sequencing of Lotus genome, a 
modified BAC-by-BAC approach followed by draft sequencing of the selected 
regions of the genome was followed, in Medicago genome sequencing project,

http://www.comparative-legumes.org/pages/resources
http://www.comparative-legumes.org/pages/resources
http://cmap.comparative-legumes.org/
http://phymap.ucdavis.edu/cowpea/
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a traditional BAC-by-BAC approach was followed, though it was focused on the 
euchromatic part of the genome. In Medicago , 0.6-0.7 of the estimated euchro- 
matic genomic region has been sequenced, capturing about 0.60 of the genes 
(Kumar et al. 2011). The sequencing is expected to be completed soon; having an 
assembly of c. 300 Mb and capturing about 0.90 % of the genes. In case of Lotus 
genome also, considerable progress has been made with sequencing of about 0.67, 
covering 0.91 % of the gene space (Sato et al. 2008). In both cases, however, the 
traditional type of sequencing method was used.

For sequencing of soybean, a Phaseoloid legume, another genome sequencing 
method- whole genome shotgun (WGS)- was used. Soybean is an excellent repre
sentative of polyploid species and it was chosen as a model legume for sequencing 
(Gepts et al. 2005) due to its moderate genome size (ca. 1,115 Mb), available infra
structure (Jackson et al. 2006) and also due to its economic importance (Nunberg 
et al. 2006). Soybean WGS comprises 950 Mb of assembled and anchored sequences 
representing about 0.85 of the predicted genome size. It has been predicted that the 
soybean genome has 46,430 protein coded genes and about 0.75 of these genes are 
there in multiple copies (Schmutz et al. 2010). Though this approach is powerful 
and fast, but it is largely suitable to smaller and less complex genomes. Another 
Phaseoloid legume, common bean, a diploid species, has medium sized genome 
(588-637 Mb) (Bennett and Leitch 2012). Besides the small size, it was chosen for 
genome sequencing due to availability of good amount of genomic resources such 
as availability of 9X physical map, BAC libraries, 25 linkage, 83,530 ESTs and 
knowledge of the genic (0.29) and repetitive (0.49) portions of the genome (see 
Kumar et al. 2011). Its extensive macrosyntentic relationships with soybean has 
also favoured its candidature for best model species for soybean and other legume 
species in order to develop new SSR and SNP markers and also for identification of 
candidate genes.

Most recently, the draft genome sequence has been made available in chickpea, 
the second most important grain legume after soybean. In kabuli chickpea variety, 
CDC Frontier, ~738 Mb long draft WGS sequence has been reported which con
tains 28,299 genes (Varshney et al. 2013a). Re-sequencing of 90 more chickpea 
genotypes was also done which provided an access to millions of genetic markers 
and low diversity genome regions that may be useful in the development of superior 
varieties with enhanced drought tolerance and disease resistance. The genome map 
will also help tremendously in harnessing genetic diversity by broadening the 
genetic base of cultivated chickpea genepool. In pigeonpea, draft genome sequence 
has been made available by two independent groups almost at the same time (Singh 
et al. 2012; Varshney et al. 2012). For generating the genome sequence in this crop, 
the ICRISAT led team used Illumina next-generation sequencing platform to gener
ate 237.2 Gb of sequence, which along with Sanger-based bacterial artificial chro
mosome end sequences and a genetic map, was assembled into scaffolds representing 
72.7 % (605.78 Mb) of the 833.07 Mb pigeonpea genome. Genome analysis pre
dicted 48,680 genes for pigeonpea and also showed the potential role that certain 
gene families have played throughout the domestication of pigeonpea and the 
evolution of its ancestors. In another independent approach by Singh et al. (2012),
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the whole genome of pigeonpea was assembled using long sequence reads of 4 5 4  

GS-FLX sequencing with mean read lengths of >550 bp and >10X genome coverage, 
resulting in 510,809,477 bp of high quality sequence. Total 47,004 protein coding 
genes and 12,511 transposable elements related genes have been predicted in this 
study. Further, 1,213 disease resistance/defense response genes and 152 abiotic 
stress tolerance genes were also identified. This genome sequence was also used to 
identify large number of hypervariable pigenpea simple sequence repeat (HASSR) 
markers, 437 of which have been experimentally validated for PCR amplification 
and high rate of polymorphism among pigeonpea varieties. These markers will be 
immensely useful for fingerprinting and diversity analysis of pigeonpea germplasm 
and molecular breeding applications. Efforts are already underway to make the draft 
genome sequence available in peanut very soon. However, in most of the other food 
legumes, with the exception of pea (P. sativum), alfalfa (M. sativa), peanut (Arachis 
hypogaea) and cowpea where some progress has been made recently, lesser genomic 
information is available. In cowpea, genome filtering method has been used for 
sequencing and analyzing the gene-rich regions (hypomethylated portion of the cow- 
pea genome). This has led to development of >250,000 gene-space sequence reads 
(GSRs) with an average length of 610 bp yielding ~160 Mb of sequence information 
(Timko et al. 2008). Among the GSR dataset, 29 % of the sequences annotated using 
the Arabidopsis gene ontology (GO) was involved to encode the majority of cellular 
enzymes and components of amino acid, carbohydrate and lipid metabolism. Besides, 
a total of 5,888 GSRs had homology to genes encoding transcription factors (TFs) 
and about 5 % of the total annotated sequences in the dataset have represented tran
scription associated factors (TAFs). This information can be utilized in mapping 
and tagging the genes for agronomically important traits in legumes.

BAC/BIBAC Resources

The bacterial artificial chromosome (BAC) and binary bacterial artificial chromosome 
(BIBAC) libraries are good genomic resources that allow genome sequencing, 
development of new molecular markers and physical map, and map based cloning 
of genes (Tao et al. 2001). In several legume species, these libraries have been 
developed with varying clone sizes from 100 to 150 kb. In chickpea, a BIBAC 
library of 23,780 clones, with an average insert size of 100 kb and a coverage of 3.8 
genome equivalents, was prepared for facilitating the development of not only 
genomic SSRs but also gene specific SSRs (Rajesh et al. 2004).

In soybean, a genome-wide physical map has been constructed from more than
78,000 BAC clones, representing 9.6X genome. It consisted of approximately 2,905 
contigs which were estimated to span 1,408 Mb in physical length (Wu et al. 2004). 
More than half of the length of the physical map was anchored to the genetic map 
using 388 DNA markers. Earlier, using molecular markers, physical map from BAC 
clones could also be related to the genetic map by locating existing genetic markers 
on the contigs (Lewers et al. 2002) . These contigs work as a starting point for
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positional cloning of specific genes which has accelerated the discovery of genes 
underlying phenotypes of agronomic interest (Liu et al. 2001; Xu et al. 2001). BAC 
libraries have also been used to generate SSR markers leading to identification of 
two genomic regions involved in resistance to the soybean cyst nematode (Cregan 
et al. 1996, 1999). Moreover, these also helped in fine mapping of genes leading to 
identification of tightly linked markers for marker-assisted selection. In cowpea,
60,000 BAC clones were assembled into a 10X physical map and efforts are already 
underway to anchor the cowpea physical map to the emerging SNP-based genetic 
linkage map. In common bean, sequencing of 89,000 BAC ends has yielded a 9X 
draft physical map which represents 62 Mb of genome sequence or 9.5 % of the 
common bean genome (Schlueter et al. 2008). In this map, 540 markers derived 
from RFLPs, genes, ESTs and other sequences have been anchored, of which 84 
are genetically mapped and provide linkage between the physical and genetic maps 
(see at http://phaseolus.genomics.purdue.edu/).

In pea (Pisum sativum L.), two BAC libraries, which are useful resources for the 
isolation of genes underlying disease resistance and other economically important 
traits have been constructed. These libraries separately contained 55,680 and 65,280 
clones, of which ~1 % clones were from chloroplast origin (Coyne et al. 2007). 
In peanut also, the BAC libraries from the AA genome (Arachis duranensis) with 
84,096 clones and from the BB genome (A. ipaensis) with 75,648 clones having 
average insert size of 110 and 100 kb, have been constructed. An estimate based on 
the library average insert size and A. duranensis haploid genome equivalent to 
1,260 Mb showed that the coverage of the AA genome BAC library is equivalent to 
7.4X genome. However, for A. ipaensis, the DNA-content determination is controver
sial and hence the BB genome BAC library for A. ipaensis could represent from 2.7 to 
5.3 the haploid genome equivalents of the species considering the earlier discrepan
cies in estimation of haploid genome size (Varshney et al. 2009b). The BAC-based 
resources developed in different species will have greater utility for subsequent 
genome analyses, because they provide the basis for a physical interpretation of other 
genetic and genomic resources within each species, and they will facilitate more 
detailed analysis of high value regions of the genomes of legumes.

Molecular Markers

In most of the legume species, several DNA-based marker systems such as single 
nucleotide polymorphism (SNP), random amplified polymorphic DNA (RAPD), 
simple sequence repeats (SSRs) or microsatellites, amplified fragment length poly
morphisms (AFLPs) and hybridization based marker systems such as restriction 
fragment length polymorphisms (RFLPs) and diversity arrays technology markers 
(DArT) are now available. However, PCR (Polymerase Chain Reaction) based SSR 
and SNP markers are preferred by breeders because of their high reproducibility, 
high level of polymorphism and user friendliness. SSR markers have the advantage 
of being multi-allelic and co-dominant (Gupta and Varshney 2000). Further, these 
can easily be employed in genotyping of large segregating populations in a

http://phaseolus.genomics.purdue.edu/
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cost-effective manner and with minimum infrastructure facilities. While in many 
crops, these have been extensively utilized, in pulses their use is still limited to only 
a few crops like chickpea and pigeonpea (Varshney et al. 2009a; Saxena and 
Nadarajan 2010). Among the different marker systems used in pulses and other crop 
plants, SNP markers are high throughput and cost effective (Varshney et al. 2012). 
Similarly, diversity array technology (DArT) marker system is used for diversity 
studies, saturating linkage maps and identifying alien introgressions. The following 
section describes the most popular molecular marker systems in legumes.

SSRs

Since the SSR markers are the markers of choice in legume improvement, their 
availability has great significance in legume species for practical purposes. Over the 
years, a large number of SSR makers have been developed for many legume species 
by using following approaches individually or in combination (Varshney et al. 
2012): (a) construction and sequencing of SSR enriched genomic DNA libraries, (b) 
sequencing and mining the BAC (bacterial artificial chromosome)-end sequences 
(BES) for SSRs, and (c) mining the transcript sequences generated by either Sanger 
sequencing or next generation sequencing (NGS) approaches such as 454/FLX 
sequencing (for details see Kumar et al. 2011). Most recently, 487 novel markers 
including 125 EST-SSRs, 102 SNPs, 151 intron targeted primers, 109 EST poly
morphisms have been developed in chickpea (Choudhary et al. 2012). Similarly, 
about 2,000 new SSRs have also been developed earlier using genomic DNA librar
ies (Nayak et al. 2010; Gaur et al. 2011), ESTs (Varshney et al. 2009b), BAC end 
sequences (Thudi et al. 2011) and 454/FLX transcript reads (Garg et al. 2011a, b). 
These markers are also in use in other legume species including cowpea (768 BAC 
end sequence-BES-SSRs), lentil (100 genomic SSRs) and common bean (ca. 500 
SSRs) (see Kumar et al. 2011). In peanut, ca. 6,000 markers are now available for use 
(Pandey et al. 2012). Most recently, 3,072 BES-were developed in pigeonpea (Bohra 
et al. 2011). Besides 3,583 SSRs from ESTs (Raju et al. 2010) and 454/FLX sequences 
(Dubey et al. 2011 and Dutta et al. 2011) are also available for molecular marker 
assisted breeding programmes.

DArT

DArT marker system has tremendous use for diversity studies and identification of 
alien introgressions, especially from wild species into the cultivated ones. Recently, 
by using 1225 DArT markers in the cross between C. platycarpus and C. cajan, 
2-5 % C. platycarpus genome-carrying genes for disease and insect resistance were 
observed (Mallikarjuna et al. 2011). Yang et al. (2011) developed first generation 
array comprising 6,144 clones in pigeonpea. Similarly, ICRISAT has developed
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Table 11.4 EST database of food legumes (as on 28 Nov 2012 at NCBI)

Common name Botanical name EST submitted in NCBI
Soybean Glycine max 1468424
Burclover Medicago truncatula 286175
Cowpea Vigna unguiculata 189593
Chickpea Cicer arietinum 46064
Pigeonpea Cajanus cajan 25577
Mungbean Vigna radiata 1604
Blackgram Vigna mungo 311
Field pea Pisum sativum 21837
Common bean Phaseolus vulgaris 149769

DArT assays comprising 15,360 clones in chickpea, pigeonpea and groundnut and 
diversity study using these showed a narrow genetic diversity in the elite gene pool 
in comparison to the landraces and wild species (Varshney et al. 2012). Recently, 
DArT arrays have also become available in common bean (Brinez et al. 2011).

EST Databases

Extensive efforts have been made in sequencing expressed genomic regions obtained 
from tissues in different conditions and developmental stages, leading to deposition 
of large number of EST sequences in the public database (Kumar et al. 2011; 
Table 11.4). The EST databases provide an effective tool for gene discovery and 
generate raw material for the production of cDNA arrays for transcriptome analysis 
(Coram and Pang 2005a). As a result, these easily accessible EST sequences have 
emerged as cost-effective valuable source for in silico generation of markers and 
broaden the field of comparative mapping in species where limited or no sequence 
information is available. EST database provides the first insight into the genes that 
may be associated with root development and abiotic stress tolerance, particularly in 
crops like chickpea (Jayashree et al. 2005). EST libraries have been generated and 
analysed in chickpea for isolation of candidate genes controlling defence mechanism 
in Ascochyta blight (Coram and Pang 2005b). The identified ESTs have putative rela
tionships with proteins involved in drought tolerance and hence provided a useful 
resource for identification of candidate gene or mining the alleles responsible for 
drought avoidance and tolerance in cool season legumes (Buhariwalla et al. 2005).

Microarrays or DNA Chips and Transcriptome Analysis

Microarrays or DNA Chips are important tools of functional genomics for identifying 
the network of genes underlying the expression of agronomically important traits 
(Meyers et al. 2004) . These can be developed from hundreds of thousands 
ESTs or cDNA libraries available in model and other legume species (Table 11.5).
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In M.truncatula, microarrays developed using EST and other oligo sequences were 
used to study the expression of genes involved in nodule formation during symbiotic 
association, and in development of flower, pod and seed. A commercial affymetrix 
chip with a 51 k GeneChip including cDNA-microarrays and 70-mer oligonucle
otide microarrays of different tissues developed in this species are useful genomic 
resource for comparative analysis of gene expression in related grain and forage 
legumes. The use of these DNA microarrays/chips has led to identification of thou
sands of genes that are induced or repressed during the development of nodules and 
symbiotic nitrogen fixation (Kuester et al. 2004; Baier et al. 2007; Benedito et al. 
2008; Jones et al. 2008). Several other studies have also investigated the transcrip
tional basis of seed development, differentiation, desiccation, plant responses to 
aluminium toxicity, and changes in nitrogen nutrition using microarray chips 
(Buitink et al. 2006; Verdier et al. 2008; Narasimhamoorthy et al. 2007; Chandran 
et al. 2008). Long-oligo arrays of M. truncatula have also been used effectively 
to identify the transcripts upregulated in alfalfa trichomes secreting the molecules 
during insect defense (Aziz et al. 2005).

In Pea (Pisum sativum), a microarray (Ps6kOLI1) consisting of 70-mer oligo 
probes targeting ~5,200 EST clusters assembled predominantly from cotyledon 
under GLIP has been developed primarily for identifying genes relevant to seed 
formation. Similarly in soybean, high-density expression arrays containing 18,000 
cDNAs arrayed on a filter have been developed (Shoemaker et al. 2003) and three 
microarrays comprising low redundancy unigene sets of 27,513 clones (each micro
array with 9,728 unigenes) have been constructed from a variety of cDNA libraries 
made from a wide range of organs at different developmental stages, disease- 
challenged tissues, and various stress conditions. These microarrays have been used 
to examine tissue specific gene expression and global expression in mutant isolines 
which led to identification of set of candidate genes potentially encoded or modu
lated by the mutant phenotype (Vodkin et al. 2004). The microarray tools developed 
in soybean have been used successfully to identify genetic markers closely linked to 
soybean aphid resistance gene Rag1 (Kaczorowski et al. 2008), and genes involved 
in the soybean iron deficiency chlorosis response under iron deficient conditions 
(O’Rourke et al. 2007).

In chickpea, 768-feature microarray was developed that comprised 559 chickpea 
cDNAs, 156 grass pea cDNAs, 41 lentil resistance gene analogs (RGAs) and 12 
controls. Using this microarray, the transcriptional change in genes responsible for 
different abiotic stresses was observed leading to identification of 2, 15 and 30 genes 
differentially expressing between tolerant and susceptible genotypes for drought, 
cold and high-salinity, respectively. These genes code for various functional and 
regulatory proteins. Significant differences in stress responses were observed within 
and between tolerant and susceptible genotypes highlighting multiple gene control 
and complexity of abiotic stress response mechanism in chickpea (Mantri et al. 2007,
2010). In case of lentil also, a cDNA microarray approach has deciphered the 
Ascochyta blight resistance (Mustafa et al. 2009).
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New Generation Tools for Legume Genomics 

High Throughput Sequencing/Genotyping Platform

New generation sequencing (NGS) and genotyping platforms such as 454/FLX 
sequencing and Illumina GoldenGate/Solexa have revolutionized plant genomic 
research by generating millions of ESTs per run. The advantage with these sequenc
ing methods is that these are not limited by prior knowledge of transcribed sequences 
or predicted genes. Approximately 75 million ESTs have been generated in M. trun- 
catula using an Illumina/Solexa resulting in quantitative expression data comple
ment and extend Affymetrix Gene Chip data (Benedito et al. 2008; Young and 
Udvardi 2009). Next-generation sequencing may also become an attractive option 
for transcriptomics of non model species where DNA arrays are unavailable, espe
cially if sequence lengths can be increased to facilitate alignment and contig assembly. 
Using 454/FLX sequencing at ICRISAT in collaboration with JCVI and NCGR, 
435,184 and 496,705 sequence reads providing 44,852 and 48,519 contigs were 
obtained from chickpea and pigeonpea, respectively. These sequence data provide 
access to a significant fraction of the total transcriptomes of these crops, and are 
expected to aid in the analysis of drought tolerance, including candidate gene discov
ery and the development of molecular markers for breeding applications (Varshney 
et al. 2005). In another study, 2,496 ESTs were generated and utilized in chickpea 
for the development of 487 novel EST-derived functional markers including 121 
EST-SSRs, 151 intron targeted primers, 109 EST polymorphisms (ESTP) and 102 
SNPs (Choudhary et al. 2012). While EST-SSRs, ITPs and ESTPs were developed 
by in silico analysis of the developed EST sequences, SNPs were identified by allele 
resequencing and their genotyping was done using Illumina GoldenGate Assay. 
In groundnut, Sanger sequencing, which is slightly more extensive, has been con
ducted which resulted in 54,000 ESTs for cultivated groundnut (A. hypogaea) and
6 , 0 0 0  in the diploid A. stenosperma.

The NGS platforms are also important tools for discovery of SNPs, especially in 
legumes having a narrow genetic base. Development of large-scale SNP markers 
may help accelerate linkage mapping and whole genome association (WGA) stud
ies. In this connection, efforts have been made by several institutions for developing 
the SNP markers in cowpea, pigeonpea, chickpea and groundnut (reviewed by 
Varshney et al. 2009a, b). Recently, 26,082 SNPs have been identified in chickpea 
based on alignment of approximately 37 million Illumina/Solexa tags generated 
from ICC4958 and ICC1882 genotypes (Hiremath et al. 2011). In pigeonpea, 12,141 
SNPs have been identified in ten parental genotypes based upon the alignment of 160 
million reads against a transcriptome assembly (CcTAversin 1.0) (Dubey et al.
2011). Further, comparison of transcript reads from 12 different pigeonpea geno
types has led to identification of 28,104 novel SNPs (Varshney et al. 2012). Kudapa 
et al. (2 0 1 2 ) developed a comprehensive transcriptome assembly for pigeonpea by
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analysing 128.9 million short Illumina GA IIx reads, 2.19 million single FLX/454 
reads and 18,353 Sanger expressed sequenced tags from more than 16 genotypes. 
Based upon the knowledge of intron junctions, 10,009 primer pairs were designed 
from 5,033 TACs for amplifying intron spanning regions (ISRs). These ISR markers 
will be immensely beneficial to accelerate breeding and genetic research in pigeonpea. 
Similarly, KASPar assays from another next generation SNP genotyping technology, 
have also been developed for 2,005 SNPs in chickpea (Hiremath et al. 2012) and 
1,616 in pigeonpea.

Serial Analysis o f Gene Expression

Serial analysis of gene expression (SAGE) is an approach that allows rapid and detailed 
analysis of thousands of transcripts. In case of chickpea, 80,238 26-bp tags representing 
17,493 unique transcripts (UniTags) from drought-stressed and non-stressed control 
roots have been generated using SuperSAGE technology for the analysis of gene expres
sion in chickpea roots in response to drought (Molina et al. 2008). Sanger sequencing 
has been used to a limited extent to access the chickpea and pigeonpea transcriptomes 
(27,000 and 13,000 ESTs, respectively).

RNAi and TILLING

Forward genetics which aims at identifying the responsible genes for a trait, can be 
performed through map based cloning and T-DNA and transpose insertional or inser
tion mutagenesis. This has been used widely for identification and cloning of genes 
for a known phenotype (Kumar et al. 2011). For example, in L. japonicus, two new 
Sym genes (LjSym1 and LjSym2) have been isolated through map-based cloning 
approach. LjSym2 is required for symbiosis involving both arbuscular mycorrhizal 
(AM) fungi and rhizobia in root nodules (RNs) while, the LjSym2 gene encodes a 
receptor-like kinase (Endre et al. 2002). Another important approach is reverse genet
ics approach for which mutant population can be a valuable resource. Such mutant 
populations can be generated through T-DNA and retrotransposon insertions where 
gene sequences or a protein with unknown function are associated with responsible 
phenotype. Following this approach, a population in M. truncatula mutagenized by 
a tobacco retrotransposon, Tnt1 has become an important resource for reverse 
genetics (D’Erfurth et al. 2003). Screening this population by sequencing of tagged 
sites led to the isolation of M. truncatula“Pim”gene (Benlloch et al. 2006).

More recently, RNAi technology or virus induced gene silencing, have become 
important resources for knowing the function of genes (Allen et al. 2004). In 
legumes, virus-induced gene silencing has been used in pea (Constantin et al. 2004). 
In soybean, RNAi induced gene silencing has been successful using transformation 
methods, either through biolistics or Agrobacterium tumefaciens (Reddy et al. 2003;
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Subramanian et al. 2005; Nunes et al. 2006), hairy root transformation (Jackson 
et al. 2006), transposon mutagenesis (Jackson et al. 2006) and virus-induced gene 
silencing. Targeting induced local lesions in genomes (TILLING) or deletion- 
TILLING (de-TILLING) is a reverse genetics approach which uses knowledge 
of gene sequence having unknown function to know their function or phenotype. 
A large number of TILLING resources have been developed in several legume spe
cies (Table 11.6). Using this approach, approximately 2,000 individual germlines 
have been generated in Medicago truncatula (Vanden Bosch and Stacey 2003). 
Similarly, in Lotus japonicusa population of >40,000 mutants was developed 
through induced mutation by using 1 % v/v EMS comprising mutants defective for 
morphological, metabolic and nodule formation characters (Perry et al. 2003) and 
also the mutants having variant alleles of SYMRK and sucrose synthesis genes 
using TILLING procedure (Stracke et al. 2002; Horst et al. 2007). The TILLING 
resources developed in different legumes have provided notable functional genomic 
resources to the legume researchers towards knowing the function of genes.

Use of Genomic Resources in Legume Improvement

With the development of large scale genomic resources in major food legumes, 
there are now tremendous opportunities to integrate them with genetic resources for 
their widespread use in routine breeding practices and their integration with conven
tional breeding tools. As a result, the genomics assisted breeding (GAB) can now be 
successfully used in legume improvement for development of improved genotypes 
having resistance to biotic and abiotic stresses and improved agronomic traits. The 
available genomic resources have successfully been used in legumes for hybridity 
confirmation, diversity analysis studies, marker assisted breeding, genome wide 
selection and advanced back cross QTL analysis.

Hybridity Confirmation

In most of the legumes species, making crosses is difficult as compared to cereals 
owing to small size of the flower and a weak peduncle supporting the bud. Legumes 
being self pollinated crops, have increased chances of selfing. Furthermore, differ
entiating between the selfed and F1  plants is also difficult due to low phenological 
diversity between the selfed and crossed plants. Marker assisted identification of 
true F j  hybrids is a robust and full-proof approach for identification of true hybrids 
and therefore increasing the efficiency of selection of desired recombinants. This 
approach is now being routinely used in identification of true F 1  plants in chickpea 
in the crosses between Pusa 256 x Vijay and Pusa 256 x WR315 at IIPR, Kanpur; 
C104 x WR315 and C 214 x ILC 3279 at ICRISAT; JG 74 x WR 315 at JNKVV, 
Jabalpur; Phule G12 x WR 315 at MPKV, Rahuri and Annigeri-1 x WR 315 at ARS
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Gulberga in a molecular breeding network project funded by Department of 
Biotechnology, Government of India. In lentil also this approach has been success
fully applied with 2 1 % Fj plants identified at true Fjs and the others as selfed or 
admixtures (Solanki et al. 2010).

Diversity Analysis Studies

Moleculer markers greatly help in studying the availability and level of genetic 
diversity among the different gene-pools (Zong et al. 2009; Taunk et al. 2012). 
Diversity analysis studies in food legumes which have a comparatively narrow 
genetic base may also help in identifying contrast parents for development of ideal 
mapping population for a variety of uses. Comprehensive assessment of genetic 
diversity help identify and rescue the genetic resources at the verge of extinction 
(Polegri and Negri 2010). The genetic diversity estimates using molecular markers 
in different crops including pea demonstrated that no gain or reduction of genetic 
diversity has occurred in last five decades (van de Wouw et al. 2010).

Marker Assisted Breeding

Marker assisted recurrent selection (MARS) and marker-assisted backcrossing 
(MABC) are the two approaches of marker assisted breeding in legumes as well as 
other crops. MABC involves introgression of specific trait(s) from a donor parent 
into the genetic background of a recurrent parent using molecular markers (Hospital 
2005). This approach can also be used to generate near-isogenic lines (NILs) or 
chromosome segment substitution lines (CSSLs) for genomics research, which are 
populations that are often used for genetic analysis of genes/QTLs and alien gene 
introgressions (Varshney et al. 2013b).Use of MAS is especially advantageous for 
traits with low heritability where traditional selection in difficult, expansive, or 
lacks accuracy or precision (Varshney et al. 2010).

MARS is used to estimate the marker effects from genotyping F2  or F3  population 
and phenotyping F2  derived F4  or F5  progenies, followed by two or three recombinant 
cycles based on presence of marker alleles for small effect QTLs (Eathington et al. 
2007). For MARS, identification of QTL in the population (generally good x good 
cross) is followed by crossing the lines carrying superior alleles for maximum QTLs 
to pyramid superior alleles in a single genetic background. The resultant recombinant 
lines are screened finally in the field to identify the best lines for their multi-locational 
evaluation and their possible release as a cultivar. The genetic gain achieved in MARS 
is higher because it captures several genomic regions at a time, and more number of 
major and minor QTLs (Bernardo and Charcosset 2006).

Knowledge of marker-trait association provides greater insight to the breeders 
in executing MAS in a better way for development of improved cultivars. The 
manipulation of the genomic regions having positive additive effects on traits of
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interest can lead to maximum potential genetic gain through MAS, particularly for 
traits having low heritabilities and difficulties in scoring (Kumar et al. 2011). Soybean 
is the best example where use of markers in breeding programmes has been most 
successfully demonstrated (Pratap et al. 2012). In past several years, many improved 
varieties/lines for resistance to different SCN races (Arelli and Young 2009), phy- 
tophthora root rot and brown stem rot, insect resistance (Warrington et al. 2008); low 
linolenic acid content, yield (Concibido et al. 2003), mosaic virus resistance (Shi 
et al. 2009) have been developed. MAS has also been used successfully in common- 
bean to develop several lines which are resistant to rust (Stavely 2000; Faleiro et al. 
2001), anthracnose (Alzate-Marin et al. 1999) and bean golden yellow mosaic virus 
(Miklas 2002). In peanut, markers linked with root knot nematode resistance were 
introgressed into cultivated background via amphidiploids pathway (Simpson et al. 
2001) . DNA fragment carrying nematode resistance gene was also introgressed 
selecting a recessive AhFAD2B allele using the linked markers for foreground selec
tion (Chu et al. 2011). This led to development and release of the improved variety 
“Tiftguard High O/L”. Currently, MABC is also being practiced for introgression 
and pyramiding Fusarium wilt and Ascochyta blight resistance gene into chickpea in 
India (Chamarthi et al. 2011; Varshney et al. 2012) by ICRISAT, IIPR and other col
laborators in state agricultural universities. In one such project funded by Department 
of Biotechnology, Government of India, resistance to two races foc2  and foc 4) 
independently and pyramiding of resistance to two races (foc1 and foc3) of fusarium 
wilt and two QTLs for resistance to Acsochyta blight is being undertaken using 
MABC and MARS and currently, various generations (BC1F2  to BC3F3 .4 ) are avail
able for the different crosses. Similarly, for drought tolerance, nine different chick
pea varieties have been targeted (see Varshney et al. 2012). Efforts have also been 
initiated to use MARS in chickpea at ICRISAT, IARI and IIPR.

Gene pyramiding is also a useful approach to achieve multiple and durable 
resistance (Shi et al. 2009) . It has been successfully demonstrated in soybean 
where genes controlling resistance to CSN have been pyramided (Concibido et al. 
2004). Similarly, QTLs/genes controlling tolerance to Phytophthora root rot and 
resistance to soybean mosaic virus have also been stacked in this crop (Shi et al. 2009; 
Li et al. 2010).

MAS for two QTLs available on separate linkage groups has been shown to be 
effective in imparting white mould resistance in common bean (Ender et al. 2008). 
Similarly, MAS for a major QTL associated with root-rot resistance was found to be 
effective and it imparted realized gain in plant biomass and vigour traits associated 
with root-rot complex in snap bean (Navarro et al. 2009). Utilization of MAS has 
also resulted in development of several improved cultivars in common bean and 
soybean, mostly in USA (Chamarthi et al. 2011) Pratap et al. 2012). In common 
bean three genotypes, USPT-ANT-1, ABCP- 8  and ABC-Weihing have been released 
between 2004 and 2006 (Miklas et al. 2003; Mutlu et al. 2008). Similarly, a number 
of varieties (JTN5503, JTN5303, JTN5109, DS880) have been released in soybean 
also for resistance to diseases and soybean cyst nematode (Arelli et al. 2006, 2007; 
Arelli and Young 2009; Smith 2010).
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Genome-Wide Selection

Genome-wide selection (GWS) or “genomic selection (GS)” is useful for complex 
traits that are controlled by many genes/ QTL, each with small effect (Chamarthi 
et al. 2011). This method predicts genomic estimated breeding values (GEBVs) of 
progenies, which are calculated for progenies, based on both phenotyping and geno- 
typing data. These GEBVs are then used to select the superior progeny lines for 
advancement in the breeding cycle (Heffner et al. 2009) Jannink et al. 2010). 
Doubled haploid (DH) populations are very useful in GWS compared to F2  popula
tions, when many QTL control a trait (Mayor and Bernardo 2009). GWS can help 
breeders in reducing the frequency of extensive phenotyping as well as bypass the 
need of QTL mapping besides reducing the selection cycle, thereby having consid
erable savings of time. However, there is not much information available on use of 
GWS in legumes, although recent developments in plant genomics make it feasible 
to generate genome-wide marker data (using SNPs) to start GWS in breeding pro
grammes. In the coming few years, GWS is expected to be used at least in soybean 
among the legumes.

Advanced Backcross QTL Analysis and Harnessing 
Variability from Secondary Gene Pool

Many a times the genes for traits of interest may not be available in cultivated/ 
primary gene pool of a species and it is necessary to explore the wild species/relative 
for them. However, owing to linkage drag, their use in conventional breeding 
programmes still remains restricted. It is now possible to recover the favourable 
alleles in elite germplasm avoiding associated linkage drag using molecular maps 
and integrative analysis. In the advanced backcross QTL (AB-QTL) approach, par
allel discovery and transfer of desired QTL from an unadapted germplasm into 
selected breeding lines takes place (Tanksley and Nelson 1996). In AB-QTL, 
repeated backcrossing is done with the elite parent in wild X cultivated species cross 
and selection is imposed in advanced backcrossed (BC2F2  or BC2F3) populations. 
This approach reduces linkage drag as well generates phenotyping and genotyp- 
ing data. The advanced backcross populations are simultaneously used to identify 
desirable genes/QTL through QTL analysis. Once favourable QTL alleles are 
identified, marker assisted selection in a few generations (3-4) can lead to devel
opment of near isogenic lines (NILs) which can be used for development of a 
variety. This approach has been successfully used in soybean and commonbean 
(Blair et al. 2003; Chaky et al. 2003). Fonceka et al. (2009) reported a successful 
effort for genome wide segment introgressions from a synthetic amphidiploids 
(A. duranensis xA  ipaensis) to a cultivated variety (Fluer 11) using molecular markers. 
The backcross (BCj F 1 and BC)F1) lines carrying the wild genome segments with 
maximum recurrent parent genomic regions provided optimal distribution of the 
synthetic genome introgressions.
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In another approach, introgression libraries are constructed which are made up of 
several introgression lines (ILs). The ILs are developed by repeated backcrossing of 
F1s between wild X cultivated lines. This leads to distribution of donor (wild spe
cies) genome into the entire genome of ILs and consequently their expression in 
the phenotype. Such libraries have been reported to be developed in soybean using 
wild soybean species (G. soja) (Concibido et al. 2003) and groundnut from syn
thetic tetraploids (Fonceka et al. 2009).

Conclusions and Perspectives

In the past decade, proactive and coordinated efforts of the international legume 
community have ensured a significant progress in the development of genomic 
resources of food legumes which have led to a better understanding of their genome 
structure. These have also offered new possibilities for genetic improvement of not 
only grain legumes but also several other species, especially those where their 
development is costly. While the cost effective, polymorphic and reproducible 
markers such as SSRs, SNPs, etc. can be used by breeders in development of 
improved cultivars through marker assisted breeding employing MAS, MARS and 
MABC, high throughput sequencing can accelerate the development of new molecu
lar markers. The marker-trait association will enable biotechnologists to more rap
idly and precisely manipulate target genes underlying key agronomic traits, especially 
a series of abiotic and biotic stresses limiting crop productivity. This will be espe
cially useful in developing such genotypes which suit the marginal environments of 
food legume growing areas of the world. Increased focus is required on development 
of organized genome resources including physical maps and functional genomic 
tools, TILLING populations, and microarray chips, which will facilitate the isola
tion of genes for resistance/tolerance to biotic and abiotic stresses. Ultimately, the 
availability of high-throughput and cost-effective genotyping platforms, combined 
with automation in phenotyping methodologies, will increase the uptake of genomic 
tools into breeding programs, and thus usher an era of genomics-enabled molecular 
breeding in legumes.
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