Line X Tester studies on combining ability in Pennisetum typhoides. by
R.P. Jain and J.V. Majmudar

Interantional Crops Research Institute for the Semi-Arid Tropies, Hyderebed, Indie.

The availability of three cytoplasme male sterile lines, Tift 23 , Tift $18 \mathrm{D}_{2} \mathrm{~A}$ and $23 \mathrm{D}_{2} \mathrm{~A}$ has permitted the full exploitation of heterosis in Pearl Millet. For a successful breeder and breeding program, it is negessary to select inbreds with high general combining ability against the evailable male sterile tester parents. The selected inbred lines based on such studies and be used for population improvement prograr : ie. composites and synthetics development. Information on combining ability oỉ new inbreds received by ICRISAT from Airica, USA end India is essential for the efficient breeding plans. A group of 81 elite inbreds with a high degree of geographic, morphological and eenetic divergence were chosen and crossed with three male sterile lines and examined for the aature and magnitude of eeneral combinindability effects of parents and specific combining ability effects of hybrids. Since in the present study a large number of pollen parents were used, it is expected that the conclusions drawn from the study will have wide applicability in comprison to earlier reports on a few parents in a diallel cross (Ahluwalia, Shanker, Jain and Joshilob2.)

Materials and Methods
The experimental material comprised 81 pollinators and three

[^0]cesters.

The geotrophic origin of pollen parents is given belov.
Guntry or w. of

U.S.A. ख2 $2423, \mathrm{M} 2591, \mathrm{M} 2675$, M 2679, M 2686, M 2687 , N 2592, 02935, M $3590, N 3637$, M 3642 , N 5050 , M 5053, H 5055, M 5056, M 5057, M 5062, M 50れ M 5034 , 45095 , M 5096, 4 5101.

Test Arine 11 M6 70, 700481, 700269, 700544, 700683, 700723, MDB 72-47-51, Gero Ilew Strain, Kaim: Composite, Naiva Ner Strain, 4912.

Geriralafrica a Ghane via. Higeria, 7237.
243 crosses vere made in rabi, 1973 and they were s:own in a replicated experiment in sumer, 1974. The observations were recorded on Four charatters viz., plant height (cm), ear Girth (cm), ear leneth (cm) ant arain yielu (Em). The method outlined by Kempthrone (1957) was used $\hat{\text { Bor }}$ obtainine estimates of general and specific ability effects.

Results and discussion
The analysis of variance (Table 1) revealed that hybrids Aifered significantly anong themselves for plant height, enr lenth and grain yield, and did not differ significantly for ear girth.

In the analysis of variance for combining pbility (Table 2) the variance due to general combining ability of the females were higher than males and famle X male interaction for all the three characters studied. However variance due to hybrids was higher than males For earlength and grain yield.

Table 1 : ANOTA FOR FOUR CHARACHERS IN 243 FYERTDS OF PEARL MILIET.

*: Significent at 1\% Level.

Table 2 : $A M O V A$ OF COAEINIGG $A B I L I T Y$ FOR THREE CHARACTERS IN PEARL MILLET.

Sourae	D.F.	Plant Feight	Mean squares Ear length	Grain Yield
Wale	80	184.1**	17.6 \%	$22000^{* *}$
Tenale	2	$6274 *$	1231.4**	$130000^{3 \%}$
Nale 2 Female	160	253	29.3%	66000% \%
Error	484	111	1.47	437

\% Sigmificant at l\% level.

On the basis of general conbining ability effects the pollen parants were grouped in classes for all the three characters and are presented in Table 3. The Eeneral combining ability of males are presented in Table 4.

GCA for males:

Plant height: Twenty six inbreds showed significant positive g.c.a. effect and 23 inbreds showed significant negative g.c.a. effect. Higest g.c.a. effect was observed for 700481, 700544 and NDB 72-47-51. High negative z.c:a. effect was observed for J 2002-4, J 1931 and this indicated that lines from African origin are good combiners for plant heidht. If a breeder wants to increase the height of his pearl millet Topulation, he should use inbreds of African origin. For dvarfness lines of Indian origin were better. تar lensth: 20 male parents have expressed significant positive e.c.a. gffects and $P 1$ showed significant negative g.c.a. effects. Relatively superior eeneral combiners were $4912,700544,700269$ and $J 1266$ respectively while among poor combiners J $104-1$, Bil $3 B$ and $J 1380$ were on the top. African lines were good combiners for ear lenjth while Indian lines vere poor combiners for this character. Grain Yield: 13 inbreds were found to be significantly good general combiners while 12 vere significantly poor combiners. Among the good combiners Ghana via. Higeria, Gero Hew Strain and J 1301 were on the top and the poor combiners were 700481, J 104-1 and M.5062. Al.though, tro African linemere best combiners for yield $\begin{aligned} & \text { fide many Indian inbreds }\end{aligned}$ four
were also good combiners. The top poor combiners represented Africa, India and U.S.A. A perusaf of the g.c.a. effects for males revealed that African and Indian types represent contrasting characteristics.

Toble 3: General combining ebility of 81 males for three characters in

Mean range of eech class	GCA class

Plant Height

204-203.8	58.5-41.1	700481; 700544^{36}
194.7-192.6	41.0-27.4	HDB 72-47-51* ${ }^{\text {\# }}$, 700723, 700688 Maiwe composite" ${ }^{3}$
183.4-172.2	27.3-13.7	 KG 70**, 491.2\#\#, M 5056**, Haiwa \#ew Strain ${ }^{101}$,
171.3-158.7	13.7-0	M 2423", J 87*, 7235", M 5050", M5062, 02925, 71A 966, 71A-97, K 559-1, M 5074,。 J 998, J 1240, J 1644, M 5051, M 2675 , J 87-2, Ghene via. Nigeria, M 2692 , M 2686.
155.0-144.9	00.0-13.7	A 635, J 4., J 1848-1, 7237, J 151, K 559 J 1352, 71A-722, J 464-1, J 104, J 21.58, M 3642, M 3590, J 1333, MJA 333, BiI 3B-1, J 1301, J 108*, J 1204*, J 2105^{*}, J 181." M $3637^{\prime \prime}$, Bil $3 \mathrm{~B}^{n}$, J 1848", J 104-1".
Ear length:		
27.6-28.6	6.40-4.81	4912\#\#, $700544^{\# \# 7}, 700269^{\# \#}, \mathrm{~J} 1266^{* \pi}$
25.5-26.8	4.80-3.21	Waive compositek ${ }^{* *}$, MDB 72-47-51"\#, N $242-3^{3 n}$, KG-70 ${ }^{\text {\#n }}$, J 87-2, J $2105^{n \# 7}$, J 1814\#\#, Gero Hew Strain" ${ }^{\text {\# }}$.
24.2-24.3	3.20-1.61	
22.4-23.9	1.60-0	7235*, J 87", K 559-1, P-5-32, J 2003 N 2591, NTA $333, \mathrm{~J} 1610$, J 1.848-1, 7237, H 5056, M 5101, J 2158, Ghena vie. Higerie, 7266, 700481-I, М 5084.
22.3-20.8	- to 1.60	J I352, И 5062, J 1963, J 1143, M 5050, M 5095, 71A-722, J 1996, J 1925, M 5096, M 5055, Bil 3B-1, J 934, J 1720, J 1 ㅋ33 и 2679, Ј 4644 -1, 71A 96-6, M 5053, 71A-97, J 1372-2, M 2686, K 559, A 63,

Fean Rance Of each class	$\begin{gathered} \text { GCA } \\ \text { class } \end{gathered}$	Lines in class
20.7-19.1	-1.61 to 3.20	M 3637^{*}, M 3642 , "\%, M $2687 * *, 0-299 * *$ J 1644**, J 108\#\#, N 5057%.
19.0-18.6	-3.21 to 4.80	
18.6-16.4	-4.81 to 7.40	J 104.-1\%\%
Mrain Yield:		
$654-621$	253.0-172.1	Ghana Via. Migeria**, Gero Mew Strain**.
$697-546$	172.0-86.1.	
$519-547$	36.0 to 0	J 1372-2, J 1333, J 87-2, Kaiva Hew Strain, J 2002-4, 7235, J 1204, J 29-1, K $559,700544,71 \mathrm{~A} 96-6, \mathrm{~A}$, 635 , Bil 3B-1, Ј 934, J 1648-1, J 87, P 5-32, 7236 4912, Vaiwa composite, 12591 , 42423, 7בA-97, J 1996, Ј 1380.
444--365	9 to 86.0	J 1644, J 108, 7237, J 104, M 5057, M 5095, 71A-722, J 1925, J L64, J 1P0 M 5055, 700688, Bil 3B, J 1931, J 41, A 5084, J 2003, M 3590, KG 70, M 2692, N 2686, M 5096, Ј 1963, 700723 M 337 M 5050, 700269\%, M 5101\%.
$360-305$	-86.1 to-172.0	
307-149	-258.0 to -344.0	700481%

Table 4 : General combining ability effects of femalec for three characters in Pearl Millet.

	$\frac{\text { Plant Height }}{\text { GCA efiects }}$	$\frac{\text { Ear 1ength }}{\text { GCA efiects }}$	$\frac{\text { Grain Yield }}{\text { GCA effects }}$
$18 \mathrm{D}_{2} \mathrm{~A}$	-3.58	-4.50\%	-46.04\%*
$23 D_{2} \mathrm{~A}$	10.16\%	2.36\%	$27.40 \% \%$
23A	-6.24%	2.13% \#	18.53\%
SE \pm	1.17	0.134	7.31
LSD at 5\%	3.23	0.37	20.23
LSD at 1\%	4.25	0.49	26.53

The material from Arrican continents is tall with long heads ahile the material from Indian continent is relatively dwarf and bears mall to medim size heads. It will be very interesting if these two roups are crossed and from the segregating populations selection is made for long head and short stature types. It is clear from the combinins ability for yield that both tall and dwarf types can eive hign yield. The reason may be that dwari types have more number on heads while tall trpes have a few long heads. The harvest inde: may as incressed if $10 n$ head characteristic is introduced in short stature matrons. Therofore, African material coud be used in intervarietal Gmbination to develop new inbrens having desirable characterg from arotic materinl and the improved inored should be used to find out blite restorers.

The sstinates of s.a.n. effects foybest three hybrils with zach ana starile line for three characters are given in Table 5. It is notemortiy that the crosses which had hirh significant s.c.a. effects Gor erain yiela were not highly significant for plant height and ear lencth. For grain yield the combinations of J g98, Thana via. Nigeria ana J 1301 on ms 23A, H 2675 , J 1352 and $\mathrm{MDB} 72-47-51$ on $\mathrm{ms} 23 \mathrm{D}_{2} A$ and $\overline{3} 151, \pi 2158$ and K 550 on $\mathrm{ms} 18 \mathrm{D}_{2} \mathrm{~A}$ were promisinc. cica for females:

Amone the females, 23DeA was found to be best seneral combiner For ziant heisht, ear iencth and grain yield. MS 18D2A was poor sombiner for all the three characters as evident by negetive ge.a. effects. 3 S 23 A wes Eodd combiner for Erain yield and ear leneth. S $23 D_{2} A$ which is best combiner for all the three characters $\$$ is hichly susceptible to downy mildew disease. Hybrids developed by
Table 5 : SPECIFIC COMBIMING ABILITY EFFECTS OF 3 BEST HYBRIDS FOR THE THREE CHARACLR S. IN PEARL MILLET.

	$18 \mathrm{D}_{2} \mathrm{~A}$	SCA effect	$23 \mathrm{D} 2^{\text {A }}$	SCA effect	23 A	CA effect
Plant height.	700544	48.5	700481	49.8	Maiva New Strain	32.7
	02935	47.8	71.A 96-6	29.9	02935	22.1
	Gero New Strain	40.9	700723	27.8	J 464-1	31.7
Ear length	SE \pmTall lonhead	67 LS	5\% 1.86		1\% 2.45	
		11.3	M 3590	3.8	J 87-2	8.2
	700269	10.3	700544	2.9	J 172	3.3
Grain Yield	71A-722	9.4	J 934	2.6	J 1266	3.1
	SE \pm	077 LSD	5\% 0.22	LSD $1 \% 0.28$		259.60
	J 1516	188.89	M 2675	157.62	Ј 998	
	J 2158	146.89	J 1352	136.62	Chana vis. Wiceria	219.00
	K 559	260.89	$\mathrm{MDB} 72-47-51$	132.12	J 1301	180.60
	5 SE 42.2		5, 51.70	LSD $1 \% 15.38$		

usint this line will also be susceptible to downy mildew. Therefore, Encorporating resiatance to downy mildew into $23 \mathrm{D}_{2} \mathrm{~A}$ is suggested to obtain resistant hybrids. As regards MS 23A which is second eood ambiner, some resistant mutants have been identified at Indian Arricultural Besearch Institute, Tew Delhi and this ms line istused in all the released hybrids of India. As resards $18 D_{2} A$, a dwarf and downy mildev resistant ms line but is a poor combiner with long ear head. This ma line in combination sives hybrids havins loose head, sparse seed astring and poor gr in quality.

From the above studies, it is possible to select aood inbreds. They san be used to develop composites, suthetios and hybiris. This nor: has already been initinted at this Tnstitute nnci selected inbreds wre beine use in the population improvement progran. Murty, Tiwari and :tarinarayana (1907) have also indicated the poasibility of creatine Serm plasm complexes from the material involving desirable inbreds and hybrids. The advance material from the composite may be used to dev 2 fop inbreds by the breeders.

Sumary

Hature and magnitude of combining ability in $2^{14} 3$ crosses of Pearl Millet involving 3 female parents and 81 male parents was studied in respect of four characters viz., plant height, ear lensth, ear girth and grain yield. Hybrids did not differ significantly for ear girth. Mereiore, combining ability was estimated for three characters. Good seneral combiners and specific combiners for each characters was identified and were used for amposite and hybrid development program. The possibility for the development of nev good inbreds has been discussed.

ACKTOHLEDGMMETS

We are grateful to Dr. R.W. Cumaings, Director and Dr: J.S. Kanwar, Associate Director, for providing the necessary facilities, Dr. Hugh Doggett, Leader of Cereals Improvement Program and Mr. D.J. Andrews, Millet Breeder for tineir encouragement. REFERENCES

Ahluwali, M., Shanker, K; Jain, S.K., and Joshi, A.B. (1962) A diallel cross study of combinine ability for some quantitative characters in Pearl Millet. II. Tiller, height and yielding ability. Indian J. Genet. 22: 45-53.

Kempthrone, 0. 1957. An introduction to Genetic Statistics. Ist edition. PP 458-71. John Wiley and Sons, Mew York.

Purty, B.R., Tiwari, J.L. and Harinarayana, G. 1967. Line X Tester analysis of combining ability and heterosis for yield factors in Pennisetum typhoides (Barn) S \& H. Indian J. Genet. 27: 238-245.

[^0]: 字 Research Associate aud Assaatie Breadar, Part tullet Improvemant frogram

