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Glossary
Debris avalanche A mass of rock fragments and soil that

moves rapidly down a steep mountain slope.

Lahar A landslide of volcanic debris mixed with water,

down the sides of a volcano.
aessens, L., Temme, A.J.A.M., Schoorl, J.M., 2013. Mass-movement causes:

anges in slope angle. In: Shroder, J. (Editor in Chief), Marston, R.A.,

ffel, M. (Eds.), Treatise on Geomorphology. Academic Press, San Diego,

, vol. 7, Mountain and Hillslope Geomorphology, pp. 212–216.

Treatise on Geomo2
Solifluction The slow, downhill movement of soil in areas

typically underlain by frozen ground.

Tephra The fragmented solid material produced and

ejected in the air by a volcanic eruption.
Abstract
This chapter discusses and illustrates how changes in slope angle can cause mass movement. Several processes can cause

removal of lateral or underlying support of a slope, and most of the time multiple processes are acting together on a

landscape. Slow and sudden processes causing changes in slope angle are differentiated, and several examples and illustrations
of each are given. In addition, this chapter reviews current literature on landscape evolution modeling in which researchers try

to incorporate these geomorphological processes in the analysis and simulation of current and future landscapes.
7.21.1 Introduction

Changes in slope angle can be a trigger for mass movement.

Either a slope can become too steep for shear strength to

balance shear stress so that the angle of repose is exceeded and

mass movement occurs, or the slope becomes steep enough to

reinforce another triggering mechanism decreasing shear

strength or increasing shear stress (e.g., saturation with water;

see Chapter 7.20). Several mechanisms are discussed and il-

lustrated herein that can cause changes in slope angle, as well

as the differentiation of processes that cause a slow or a sud-

den change in slope angle. Sometimes several processes work

together to cause changes in slope angle, resulting in more

complex interactions and feedback mechanisms between

processes. In addition, current modeling efforts are reviewed,

which deal with multiple processes causing changes in slope

angle, typically in landscape-evolution models. Landscape

evolution modeling is reviewed in Coulthard (2001), Pazza-

glia (2003), and Tucker and Hancock (2010).
7.21.2 Slow Changes in Slope Angle

Several processes can cause slow removal of lateral or under-

lying support of a slope, and most of the time multiple
processes are acting together on a landscape (Selby, 1993;

Easterbrook, 1999; Huddart and Stott, 2010). Ultimately,

combinations of tectonic uplift, the lowering of base level,

sediment supply, water flow, or gravity drive rivers to incise in

a landscape, thereby undercutting and slowly (over) steep-

ening slopes (Figure 1(a)) (Bridge and Demicco, 2008).

In addition, gradual erosion by water (surface runoff and gully

erosion), wind erosion, weathering, and waves cutting cliffs on

a shoreline can be causes of slow removal of lateral support

and subsequent slope failure (Figures 1(b) and 1(c)). Finally,

pressure decrease or changes in groundwater (e.g., when a lake

draws down slowly or a glacier melts) may also cause mass

movement (Figure 1(d)). Many efforts in landscape evolution

modeling are trying to simulate and understand better

or more of these processes and their interactions, which is

reviewed in Section 7.21.4.
7.21.3 Sudden Changes in Slope Angle

Different processes can cause a sudden change in slope angle

and subsequent slope failure (e.g., Evans, 2004). The first

process is mass movements themselves causing subsequent

mass movements by changing slope angles (and hydrology) in

and around the landslide scar and toe (Figure 2(a) and 2(b))

(Claessens et al., 2007). Second, major discharge and extreme

events including rapid incision, undercutting, and meander

migration are possible processes causing slope angles to

change (Huddart and Stott, 2010). Other examples include a
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Figure 1 (a) A river incises into the landscape, slowly removing lateral support of the mountain slopes (Rees Valley, Wakatipu, New Zealand).
(b) Severe water erosion (surface runoff and gullies) causing landslides (near Cuzco, Peru). (c) Wave-cut cliffs causing slope failure by removing
lateral and underlying support (Waitakere Ranges, New Zealand). (d) Gradual dropping lake levels and glacier melting causing landslides by
removal of lateral support and pressure (Milford Sound, New Zealand).
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sudden drawdown of a lake, rapid melting or draining of a

glacier, dropping water levels from a flood, or collapse of

(limestone) caves and mines (Figure 2(c)). More rapid in-

direct processes include road construction, tectonics (earth-

quakes), and volcanic activity. The latter can realize sudden

changes in slope angle and mass movements either associated

with the eruption of a volcano itself or as a result of mobil-

ization of very weak volcanic deposits such as tephras (ash,

lapilli, and pieces of rock) (Figure 2(d)). Volcanic mass

movements are generally referred to as lahars, debris ava-

lanches, or flank collapses. To illustrate how mass movements

change slope angles, Claessens et al. (2007) used the LAPSUS-

LS (landscape process modelling at multidimensions and

scales) model to simulate landslide hazards, erosion, and

deposition patterns for a study area in New Zealand. The

model was run for several consecutive yearly timesteps, and by

comparing the different landslide hazard maps between the
timesteps, they got insight into the pattern of upslope and

downslope triggering of new landslides and the resulting slope

retreat. Figure 3 shows details of a comparative operation

between the landslide hazard maps after timesteps 1 and 5.

Higher hazards occur upslope of the failed slide because of

undercutting and steepening of the slope above the eroded

part. Furthermore, downslope of the failure parts with a

higher landslide potential occur that are caused by steepening

of local slopes mainly on the sides of the landslide sediment

lobe. Because water from upslope is more canalized toward

the steepened eroded part of the landslide, parts bordering

the channel show less contributing area and are relieved

of some failure potential. In this way, the model simulates

the mosaic-like shifting pattern of upslope and downslope

triggering of new landslides over the years by soil material

redistribution and slope-angle changes caused by former mass

movements.
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Figure 2 (a, b) Former landslides changing slope angles causing subsequent landslides (Peru and Ecuador). (c) Collapsed sea cave (Waitakere
Ranges, New Zealand). (d) Intense gully erosion and landsliding in loose volcanic material (lapilli) (Mount Longonot, Kenya).
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Figure 3 Comparison of landslide hazard maps between timesteps
and visualization of resulting changed (in)stability patterns. Red
colors indicate landslide erosion, whereas green colors are
deposition; yellow colors signify a decreased landslide hazard; and
blue colors an increased landslide hazard.
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7.21.4 Changing Slope Angles in Landscape
Evolution Models

Several efforts are ongoing in landscape evolution modeling

that are trying to include one or several of the processes

causing changes in slope angle described above and combine

these with landslide modeling. Champel et al. (2002), for

example, used a numerical model combining uplift, hillslope

diffusion, and landsliding to show the dynamics of fault-

related fold propagation in western Nepal. Coulthard et al.

(2000) applied a cellular model with approximations for

mass movement, creep, vegetation, hydrology, erosion, and

deposition to an upland catchment in the UK to disentangle

the effects of land use and climate change on channel for-

mation. Dadson and Church (2005) studied the evolution

of an idealized glaciated valley during the period following

retreat of ice using a numerical model (including landsliding

and fluvial sediment transport) with a numerical landscape

evolution model that combines a detailed tectonic displace-

ment field with a set of physically based geomorphic rules

(including bedrock landsliding). Densmore et al. (1998)

generated synthetic landscapes that closely resembled moun-

tainous topography observed in the western US Basin and

Range geomorphic province. Van Der Beek and Braun (1999)
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employed a numerical surface process model that included

long-range fluvial transport, hillslope diffusion, and land-

sliding in order to quantitatively assess the tectonic, litho-

logical, and structural controls on the landscape evolution and

denudation history of the southeastern Australian highlands.

Their results indicated that the observed highland morph-

ology requires that the drainage divide be established at its

present location prior to opening of the Tasman Sea; that

escarpment retreat does not appear to be the fundamental

process eroding the highlands; and that the observed barbed

river drainage may be imprinted as a result of lithological

variation. The LAPSUS modeling framework (Schoorl et al.,

2002; Claessens et al., 2007) hosts separate modules for

simulating overland flow, creep, solifluction, tillage erosion,

and landsliding, all of which have process-based algorithms

that make changes in slope angles over time. The combination

of several processes in a general landscape evolution model,

taking into account interactions and feedback mechanisms, is

currently under progress.
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