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ABSTRACT  8 

Grain-filling rate (GFR), effective grain-filling duration (EGFD) and total grain-9 

filling duration (TGFD) are important physiological traits of maize (Zea mays L.) 10 

grain yield (GY) formation. To devise effective breeding strategies, the genetic nature 11 

of these traits is a pre-requisite for improvement in early maturing maize. A study was 12 

conducted at CIMMYT-Zimbabwe using an α-lattice design with two replications in 13 

two environments to investigate the genetic variability of grain-filling traits in 14 

eighteen early maturing tropical maize inbred lines derived from CIMMYT 15 

germplasm. Highly significant differences were observed for GY, 1000 grain weight 16 

(TGW), GFR, EGFD,TGFD, kernels per rows (KR) and rows per cob (RC). The 17 

broad sense coefficient of genetic determination (the fixed parent equivalent of broad 18 

sense heritability) was above 70% for all of the traits. The highest GY was obtained 19 

from the inbred line T032-30 (79.2 g plant-1) and the lowest from inbred line CML506 20 

(37.6 g plant-1), respectively. Therefore, selecting for higher GFR and longer TGFD, 21 

especially the EGFD, can increase GY of early maize without extending days to 22 

physiological maturity. 23 
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Abbreviations: GY, grain yield; GFR, grain-filling rate; EGFD, effective grain-1 

filling duration; TGFD, total grain-filling duration; DPM, days to physiological 2 

maturity; TGW, 1000 grain weight, KR, kernels per row; RC, rows per cob. 3 

 4 

 5 

Maize is the main and preferred staple food with consumption averaging 42 kg 6 

capita-1 year-1 and exceeding 100 kg capita-1 year-1 in sub-Saharan Africa 7 

(SSA)(Ninno et al., 2007; Chauvin et al., 2012). It is grown in major agro-ecological 8 

zones in southern Africa covering over 12 million hectares for more than 200 million 9 

inhabitants (FAOSTAT, 2003). However, maize yields in this region still remain low, 10 

averaging 1.4 t ha−1 compared to yields in developed countries (FAOSTAT, 2010). 11 

The crop is produced either as a late or early maturing crop depending on the agro-12 

ecological conditions. Early maturing maize varieties provide early harvests after a 13 

long dry season and thus are an ideal crop for food security (Langyintuo and Setimela, 14 

2007). Not only does it provide food early in the season, but it also escapes late 15 

season drought, making it suitable for early or late planting depending on the onset of 16 

rains. The term ‘early maturing maize’ is used relatively to refer to maize varieties 17 

that take up to 65 days to 50% anthesis and 130 days to reach physiological maturity 18 

(Magorokosho et al., 2009). 19 

 Early maturing maize is characterised by shorter plant height, less number of 20 

leaves, early maturing and a shorter total grain-filling duration (TGFD) and low grain 21 

yield (GY) in comparison to late maturing ones. The maturity period is influenced by 22 

heat units or growing degree days which have been adopted universally to classify 23 

maturity groups in maize and other crops (Dwyer et al., 1999). However, yield 24 

differences in maize varieties that take the same number of days to physiological 25 

maturity have been reported by several researchers (Magorokosho et al., 2009; 26 
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Pswarayi and Vivek, 2008). This raises the possibilityof improving yield capacity of 1 

early maturing maize varieties to meet the increasing demand for maize.  2 

Maize improvement has resulted in gains as much as 144 kg ha-1 year-1 in 3 

tropical maize under drought when stress was imposed at flowering (Edmeades et al., 4 

1999). In temperate germplasm, the progress has been estimated at 73 kg ha-1 year-5 

1for mild stress (Duvick, 1977). Selection in maize has led to increases in yield; the 6 

net effect of this has been the reduction of genetic variability among germplasm (Lee 7 

and Tollenaar, 2007), which compounds the amount of genetic gains that can be 8 

achieved through breeding (Halluaer and Mirander, 1988). Grain yield in maize is a 9 

function of grain number, size and weight (Luque et al., 2006). Grain number is 10 

determined by plant growth rate during silking and ear attributes such as the number 11 

of kernel rows and kernels per row (Andrade et al., 1999). Kernel weight is a heritable 12 

trait that is dependent on dry matter accumulation (Borras et al., 2009) and there is a 13 

positive genetic relationship between kernel growth rate (grain-filling rate) and grain-14 

filling duration (Talbert et al., 2001; Borras et al., 2009). Grain-filling duration starts 15 

after fertilisation and continues until physiological maturity (Lee and Tollenaar, 16 

2007). Genotypic variability in the length of the TGFD has been reported in maize 17 

(Wang et al., 1999; Gambin et al., 2007; Borras et al., 2009). Therefore, increasing the 18 

TGFD in early maize without extending the days to maturity can help to increase 19 

yield due to the long period available for the accumulation of photo-assimilates. 20 

However, this requires screening of the tropical maize inbred lines for the variability 21 

in TGFD before evaluating the heritability of this trait.  22 

Grain yield in cereals depends of the total amount of dry-matter accumulation 23 

in the grains during the grain-filling period. However, grain-filling occurs in three 24 

stages: lag phase (rapid cell division and differentiation), linear phase (rapid dry 25 
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matter accumulation) and final phase (maturation drying). Over 90% of the total dry 1 

matter in the grain is accumulated during the linear phase (Lee and Tollenaar, 2007). 2 

The length of the linear grain-filling phase is therefore considered the effective grain-3 

filling duration (EGFD), while the rate of dry matter accumulation during this linear 4 

phase is called the grain-filling rate (GFR). The EGFD is more important because 5 

over 90% of the dry matter is accumulated during this period. Grain-filling rate (GFR) 6 

is measured during the EGFD, starting about two weeks post-fertilisation and is 7 

highly heritable in maize (Wang et al., 1999) and other cereals such as wheat 8 

(Mashiringwani et al., 1994).  9 

Understanding the physiological mechanisms that determine crop growth and 10 

increased yield is a pre-requisite for plant breeders to develop screening tools to 11 

improve genotypic selection in target environments (Andrade et al., 2005). One of the 12 

physiological traits,GFR, is known to be influenced by the accumulation of photo-13 

assimilates (source factors) and their partitioning (sink factors) and the interactions 14 

between the source and sink factors (Lee and Tollenaar, 2007). These sink and source 15 

attributes have been used as indirect selection for improving yields of various crops 16 

(Lee and Tollenaar, 2007). Indirect selection using traits with high heritability and 17 

correlation with a complex trait such as GY is more effective. In maize, genetic 18 

variability for grain-filling traits have not been fully exploited to improve 19 

productivity, particularly GFR, EGFD and TGFD. 20 

Maize inbred lines represent a fundamental resource for studies in genetics 21 

and breeding and are used extensively in hybrid maize production (Anderson and 22 

Brown, 1952). Knowledge of genetic diversity in maize germplasm helps to ensure 23 

that a broad genetic base of breeding materials is maintained, not just for sustaining 24 

genetic improvement but also for reducing genetic vulnerability to various stresses. 25 
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They can help maize breeders in efficiently assigning lines to heterotic groups and 1 

guide them in the choice of parents for the development of new hybrids. Both 2 

conventional and molecular breeding approaches depend on genetic variability for the 3 

trait of interest. The aim of this study was to determine the genetic variability of 4 

grain-filling traits in early maturing tropical maize inbred lines. 5 

 6 

MATERIALS AND METHODS 7 

Plant materials  8 

Eighteen elite maize inbred lines from CIMMYT Zimbabwe tropical breeding 9 

program were selected based on earliness, drought and disease tolerance, and overall 10 

adaptation to Zimbabwe. 11 

 12 

 Trial management and experimental design 13 

The trials were conducted at CIMMYT-Zimbabwe station located at an 14 

altitude of 1,500 m above sea level and longitude and latitude of 31oE and 17o43' S, 15 

respectively. The mean annual rainfall exceeds 700 mm, mostly occurring during a 16 

single growing season that ranges from early November to mid-April each year. The 17 

field experiments received 350 kg ha-1 of basal fertiliser, compound D with NPK ratio 18 

of 7:14:7 and a top-dressing of 300 kg ha-1 ammonium nitrate with 37.5% N. Eighteen 19 

maize inbred lines were evaluated using an α-lattice design with two replications. A 20 

plot consisted of three rows, 4 m long, spaced 75 cm apart with 25 cm spacing 21 

between plants within the row in all trials. Two experiments were conducted: one 22 

under irrigation, with the other under rain-fed conditions. Day was used as a unit of 23 

time, instead of thermal unit, because the temperature was very moderate throughout 24 
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the growing season, with little variation during the grain-filling period of the two 1 

experiments (27-28oC for day and 19-20oC for night).  2 

 3 

Data collection 4 

To assess various grain-filling parameters, destructive sampling was 5 

performed weekly by the removal of developing maize cobs, starting two weeks after 6 

pollination. In each plot, plants from which developing cobs were removed were left 7 

standing to maintain the initial plant density. From each sampled cob, 10 g of grain 8 

(fresh weight) was obtained from the middle part of the cob to reduce variation that 9 

might result from sampling different parts of the same cob. Dry weights were 10 

measured after drying the grains in a forced-air oven at 80oC for 96 h. The same 11 

procedure was repeated weekly until the crop reached physiological maturity, as 12 

indicated by the formation of a black layer at the point where the kernel is attached to 13 

the cob. At physiological maturity there was no further increment in grain weight. 14 

 15 

Statistical Analyses  16 

 A log-linear equation Y= b ln (x) + a, was fitted on the data, where ‘Y’ is the 17 

percentage of dry matter at sampling time x, ‘b’ is the slope of the curve (rate of 18 

percentage dry matter increase on a log scale) and ‘x’ is the sampling point in time 19 

(weekly basis) and ‘a’ is the constant. The start of the linear phase is when the maize 20 

kernels reach 87% moisture content (13% dry matter content) and the end is when the 21 

kernels reach 36% moisture content (64% dry matter content) (Borras et al., 2009). 22 

This equation was fitted to the weekly dry matter content data per plot to predict the 23 

start of the linear phase. The period prior to the linear phase was designated the lag 24 

phase duration. The period from the start of the linear phase until physiological 25 
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maturity was considered the effective grain-filling duration (EGFD). Days to 1 

physiological maturity (DPM) were recorded as the days from sowing until the 2 

kernels developed a black layer at the point of their attachment to the cob. The grain-3 

filling rate (GFR) (g day-1) was calculated as the final GY per plant divided by the 4 

EGFD. The total grain-filling duration (TGFD) was calculated by subtracting the days 5 

to silking from the days to physiological maturity (DPM). Data were also recorded on 6 

number of kernels per row (KR), number of rows per cob (RC), and GY. The GY per 7 

plant was obtained by dividing the total grain weight per plot by the number of 8 

harvested cobs per plot.  9 

Analysis of variance was conducted using Genstat software version 14 10 

(Genstat, 2010) using the following mixed model as described by Dabholker(1999): 11 

Pijk = µ + gi + tj + (gt)ij + eijk where µ is the population mean, gi is the effect of the 12 

inbred line i, tj is the effect of the environment j, (gt)ij is the inbred line x environment 13 

interaction effect associated with inbred linei and environment j, and eijk is the within 14 

environment error associated with inbred line i, environment j and the replicate k.  A 15 

t-test was used to compare the mean performance for GY, TGW, GFR, EGFD, TGFD, 16 

KR and RC between the top nine and the worst nine inbred line performers. 17 

The phenotypic correlations among GY, TGW, GFR, EGFD, TGFD, KR and 18 

RC were computed as described by Singh and Chaudhary (2004) as rp= 19 

[CovP/(δP(X)δP(Y))], where rp is the phenotypic correlation between X and Y, CovP is 20 

the phenotypic covariance between X and Y, δP(X) is the phenotypic standard 21 

deviation of X and δP(Y) is the phenotypic standard deviation of Y. The genotypic 22 

correlations among traits were computed as rA = [CovA)/ (δA(X)δA(Y))], where rA is the 23 

genetic correlation between X and Y, CovA is the genetic covariance between X and 24 

Y, δA(X) is the genetic standard deviation of X and δA(Y) is the genetic standard 25 
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deviation of Y. The genetic variances and covariances were obtained by subtracting 1 

the error variances and covariances from their respective phenotypic variances and 2 

covariances based on the 18 genotype means. Genotypic path analyses of TGW, GFR, 3 

EGFD, TGFD, KR and RC on GY were calculated as described by Singh and 4 

Chaudhary (2004). The assumption made for path analysis is that there are 5 

unidirectional causal relationships among the yield determining traits in early maize 6 

inbred lines.  7 

 8 

RESULTS 9 

There were significant differences among the maize inbred lines at P<0.001for 10 

GY, TGW, GFR, EGFD, TGFD, KR and RC (Table 2). The broad sense coefficient of 11 

genetic determination (the fixed parent equivalent of broad sense heritability) was 12 

above 70% for all of the traits. The inbred line by environment interaction was 13 

significant at (P<0.05) for GY and GFR.  14 

The highest GY was obtained from the inbred line T032-30 (79.2g plant-1) and 15 

the lowest from inbred line CML506 (37.6g plant-1), respectively (Table 3). The 16 

highest GFR (above 2.7 g day-1) was observed in the inbred lines V547-178 and 17 

T032-30 while the longest EGFD (above 30 days) was found in the inbred lines 18 

VL057967, CML507 and VL08526. There was no significant difference in days to 19 

physiological maturity among the inbred lines. There were significant differences 20 

(P<0.05) between the mean of the high yielding inbred lines group and the lower 21 

yielding ones for GY, GFR, TGFD and TGW (Table 3). The group mean yield of the 22 

high yielding inbred lines exceeded the mean yield of the low yielding inbred lines by 23 

42.7% (3.4tha-1 vs. 2.4tha-1). Furthermore, the high yielding group had 23.6% higher 24 
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GFR (2.25g day-1vs. 1.82g day-1), 7.3% longer TGFD (57.56 days vs. 53.64 days), 1 

10.7% longer EGFD (non-significant) and 24.1% more TGW (202.45g vs. 163.10g).  2 

Grain yield was significantly (P<0.05) positively correlated with TGW 3 

(r=0.67), GFR (r=0.61), EGFD (r=0.47) and TGFD (r=0.52) (Table 4), but less so to 4 

KR and RC.The TGW was positively correlated with EGFD (r=0.53) and TGFD 5 

(r=0.52) while GFR was positively correlated with RC (r=0.59) and KR 6 

(r=0.79)(Table 4). However, GFR and EGFD were negatively correlated (r= -0.40) 7 

(Table 4).  8 

The direct effects of GFR (0.93) and TGFD (0.80) on GY were positive and 9 

large (Table 5), accounting for their respective positive correlation between GY 10 

(Table 4). However, direct effects of TGW and KR were negligible and negative. The 11 

EGFD had a negative direct effect (-0.12) on GY (Table 5) but a positive correlation 12 

with GY (Table 4). However, TGFD had an indirect effect (0.35) on yield via 13 

EGFD.The indirect effects of KR (0.73) and RC (0.54) on GY via GFR were positive 14 

and large.  15 

 16 

Discussion  17 

Variability of grain yield, grain-filling traits and other related traits 18 

Improvement of GY depends on genetic variability for yield and its 19 

components. There were significant differences for GY, TGW, RC, KR, GFR, EGFD 20 

and TGFD among the early maize inbred lines (Table 2), which indicated the 21 

variability that breeders can exploit to improve GY of early maize. The utility of this 22 

variability is evident in the best inbred lines (T032-30, VL08526, VL055063) which 23 

had a combination of  high GFR, longer EGFD and TGFD in addition to high TGW 24 

and high kernel number (RC*KR). In line with this observation, inbred lines with the 25 
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lowest yield (CML506 and CML197) either had low GFR, short EGFD or a 1 

combination of these two. In this study, it is evident that the difference between the 2 

high yielding and low yielding inbred lines is attributable to the differences in the 3 

grain-filling traits (Table 2). The high broad sense coefficient of genetic determination 4 

values of these grain-filling traits suggests the repeatability of these measurements in 5 

different environments. In line with this observation, Wang et al. (1999) reported 6 

significant general and specific combining ability for grain-filling traits in temperate 7 

maize, thus raising possibilities of developing superior hybrids that combine long 8 

EGFD and high GFR that translates into developing hybrids with high GY potential.  9 

In the past, the focus on maize improvement targeted TGW and kernel number 10 

(KR*RC) as indirect selection traits for improving GY (Derera et al., 2009; Banziger 11 

et al., 2004; Hallauer and Miranda, 1988). However, future genetic improvements of 12 

the yield of early maize must incorporate GFR, EGFD and TGFD as new potential 13 

traits. Although the genotype-by-environment interaction (GEI) was significant for 14 

GY and GFR, it was not present for EGFD and TGFD. The absence of GEI for EGFD 15 

and TGFD shows that these grain-filling traits could be used to predict maize GY with 16 

greater accuracy irrespective of the testing environment used.  17 

 18 

Relationships of grain yield, grain-filling traits and other traits 19 

The results showed a strong positive correlation of GY with the grain-filling 20 

traits that include GFR, EGFD and TGFD. This positive correlation observed between 21 

GY and grain-filling traits (GFR, EGFD and TGFD) shows the influence of these 22 

traits on GY formation in maize. High GFR and longer EGFD and TGFD results in 23 

the accumulation of more photo-assimilates in the grains during grain-filling (Lee and 24 

Tollenaar, 2007). High rate of grain-filling also influences seed size and seed number, 25 
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the two major components of GY. Longer grain-filling durations imply more dry 1 

matter accumulation and hence high kernel weight that translates into high yield 2 

(Gasura et al., 2013). Furthermore, increased availability of current photo-assimilates 3 

reduces embryo abortion and results in high kernel numbers per cob. Kernel number, 4 

size and weight are traits that largely contribute to yield (Luque et al., 2006; Andrade 5 

et al., 2005). Therefore, this explains the large positive correlations observed for these 6 

traits and GY suggesting their importance in GY improvement. Previous studies also 7 

showed positive correlation of GFR and yield in maize (Wang et al., 1999) and wheat 8 

(Mashiringwani et al., 1994). Kernel weight is determined by rate (GFR) and duration 9 

(TGFD especially the EGFD) of dry matter accumulation (Andrade et al., 2005). This 10 

explains the positive correlation that exists between TGW and EGFD and/or TGFD. 11 

The length of the grain-filling period (EGFD or TGFD) is critical in yield formation 12 

since there is no remobilisation of assimilates from the stem reserves in maize (Lee 13 

and Tollenaar, 2007), unlike in rice (Yang et al., 2003), wheat (Yang et al., 2000) and 14 

sorghum (Blum et al., 1997).The negative relationship between GFR and EGFD 15 

observed in this study was not absolute as evidenced by some exceptional inbred lines 16 

that were above the regression line. This suggests the possibility of having hybrids 17 

that can combine both high GFR and longer EGFD, which may translate into high 18 

yield.  19 

 20 

Direct and indirect effects of grain-filling traits and other traits on grain yield 21 

The GFR and EGFD had positive direct effects on GY that were  larger than 22 

the correlations between GY and these traits, suggesting that GFR and EGFD have a 23 

true effect on GY. Singh and Chaudhary (2004) reported that if the direct effects are 24 

larger than the correlations, then the indirect selection method would be the best. To 25 
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this regard, GFR and EGFD become excellent traits to use in supplementing other 1 

traits used to select for high GY. Large and positive direct effects of GFR and EGFD 2 

on GY were also reported by Wang et al. (1999) in temperate maize germplasm. Path 3 

analyses showed EGFD to have a large and indirect effect via TGFD while TGFD had 4 

large indirect effect on yield via TGW. In this case, TGFD can be considered in the 5 

selection for GY. The large indirect effects of KR and RC on GY via GFR show that 6 

increasing KR and RC increase GFR, and in this case GFR becomes a critical trait to 7 

select when improving GY. 8 

In the past, maize breeders selected lines that had high kernel number (KR and 9 

RC), harvest index and TGW as major yield components (Luque et al., 2006), as well 10 

as improved resource capture and stress tolerance (Tollenaar and Wu, 1999; Duvick 11 

and Cassman, 1999). However, it is important to consider other traits for the 12 

improvement of GY. The grain-filling traits identified in this study can be used to 13 

complement other traits for selection to improve GY. A better selection index can be 14 

developed if GFR and EGFD are included in the equation rather than based on TGW, 15 

KR and RC alone. The advantage of the grain-filling traits is that they still have 16 

variability that be exploited compared to other traits commonly used in breeding. 17 

Furthermore, the absence of GEI on EGFD and TGFD makes them more accurate in 18 

predicting GY across varied environments. Lee and Tollenaar(2007) noted that not all 19 

variability is useful in GY. They emphasised that there will be less variability from 20 

the harvest index and other source and sink factors. However, grain-filling traits are a 21 

product of the various sources and sink factors and thus present much variability that 22 

can be exploited in pushing up the yield of early maturity maize. Improving the yield 23 

of early maize can be achieved by selecting for a combination of high GFR and long 24 

EGFD.  25 
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The breeding progress relies on genetic variability for the traits of interest, 1 

high selection intensity, high heritability of the traits of interest and their strong 2 

genetic correlation with yield. Furthermore, there must be a genetic correlation 3 

between yield in the selection environment and the target population of environments 4 

(Falconer, 1989). This demonstrates the possible utility of GFR and EGFD duration in 5 

improving yield. These traits not only showed genetic variability, but also a strong 6 

genetic correlation with yield. Furthermore, they showed high broad sense heritability 7 

coupled with some reports that showed that these traits are largely controlled by 8 

additive gene action (Wang et al., 1999), suggesting that these traits might have high 9 

narrow sense heritability values. The absence of GEI on EGFD and TGFD selection 10 

of yield based on these traits is desirable since it is not influenced by the selection 11 

environment.  12 

 13 

Conclusions  14 

This study revealed genetic variability of GFR, EGFD and TGFD and their 15 

associations with GY in tropical early maize inbred lines. These traits could be used 16 

as additional traits in the improvement of maize GY in early maize without extending 17 

the DPM by selecting for a combination of high GFR and long EGFD. In this study, 18 

inbred lines with high GFR (V547-178 and T032-30) and long EGFD (VL057967, 19 

CML 507 andVL08526) were identified and can be used in future genetic studies. 20 
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 1 

Table 1.Names and pedigrees of the CIMMYT maize inbred lines used in this study 2 
 3 
Inbred line name Inbred line pedigree
T032-30 ZEWAc2F2-183-2-B-B-B
VL08526 ZEWBc2F2-101-2-B
VL055063 [Ent320:92SEW2-77/[DMRESR-W]EarlySel-#I-2-4-B/CML386]-B-11-3-B-2-#-B*4
VL057967 ZEWAc1F2-219-4-3-B-1-B*4-2-4
C389-92 ZM523B-29-2-1-1-B*6
VL05615 ZEWBc1F2-216-2-2-B-2-B*4-2-4
VL057903 ZEWAc1F2-151-6-1-B-1-BBB-2-6
VL0536 [CML389/CML176]-B-29-2-2-B*5
VL08528 ZEWBc2F2-110-1-B
CML507 [[[K64R/G16SR]-39-1/[K64R/G16SR]-20-2]-5-1-2-B*4/CML390]-B-38-1-B-7-#-B*6
V547-178 03SADVEA-#-28-1-2-1-1-B
VL057847 ZEWAc1F2-300-2-2-B-1-B*4-3-4
VL0536 [CML389/CML176]-B-29-2-2-B*5
VL05128 WWO1408-1-1-2-B*4-#-B
CML508 [89[G27/TEWTSRPool]#-278-2-X-B/[COMPE2/P43SR//COMPE2]F#-20-1-1]-B-32-2-B-4-#-2-B*5
VL058014 ZEWAc1F2-254-2-1-B-1-BBB
CML197 Ent52:92SEW1-2/[DMRESR-W]EarlySel-#L-2-1-B/CML386]-B-22-1-B-4-#-1-B*5-B-B
CML506 [EarlyMid1/KatumaniSR]-#-169-2-4-B-1-#-BBB  4 
 5 
 6 
 7 
 8 
 9 
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 1 
Table 2. Summary ANOVA, variance components and broad sense heritability values 2 
Source DF Grain Yield a1000 kernel Grain filling rate Effective grain filling Total grain filling Rows per Kernels per

(g plant-1) weight (g) (g day-1) duration (days) duration (days) cob row
Environments 1 2493.31*  1.97* 28.48 1.13 2.70 45.71
Environments.Replications 2 28.66 52.10 0.04 15.92 3.74 0.50 12.81
Genotypes 17 578.13*** 2098.10*** 0.79*** 80.38*** 71.27*** 9.80*** 42.06***
Genotype*Environment 17 72.66* 0.24* 12.50 3.42 0.94 6.54
Error 34 37.15 150.80 0.11 11.52 4.38 0.73 8.38
Total 71

Error variance component 37.15 150.80 0.11 11.52 4.38 0.73 8.38
GxE variance component 16.26 0.07 0.49 -0.48 0.11 -0.92
Genotype variance component 127.12 973.65 0.14 16.97 16.96 2.22 8.88
Broad sense heritability
             Single plot basis 0.70 0.87 0.44 0.59 0.81 0.73 0.54
             Across envrionments basis 0.88 0.70 0.84 0.95 0.90 0.84  3 
 4 

*** significant at 0.1% probability level, * significant at 5% probability level. a traits recorded in one environment.  5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
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Table 3. Grain yield and related traits performance of the top nine and bottom nine yielding maize inbred lines 1 
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Inbred line Grain yield 1000 kernel Grain filling rate Effective grain filling Total grain filling aDays to physiological Rows per Kernels per
name (g plant-1) weight (g) (g day-1) duration (days) duration (days) maturity (days) cob row
Top nine (9)
T032-30 79.22 224.98 2.76 28.64 57.50 122.00 12.83 23.08
VL08526 76.46 210.47 2.38 32.38 60.75 127.00 13.50 24.83
VL055063 67.74 169.09 2.42 28.52 54.25 127.00 14.33 25.92
VL057967 64.85 211.79 1.94 33.65 59.75 128.00 10.90 22.83
V553/1 59.69 181.17 2.45 24.51 53.50 125.00 16.67 23.17
VL05615 58.31 158.47 2.27 25.92 58.25 128.00 15.83 22.25
VL057903 57.83 240.14 2.02 29.92 62.75 127.00 13.08 16.76
CML509 54.26 245.08 1.95 27.97 55.00 127.00 11.50 18.17
VL08528 54.21 180.83 2.08 26.70 56.25 127.00 12.17 23.75
 Mean 63.62 202.45 2.25 28.69 57.56 126.44 13.42 22.31
Standard deviation 9.22 31.35 0.28 2.95 3.12 1.88 1.91 2.98

Bottom nine (9)
CML507 52.05 190.75 1.60 32.51 57.00 131.00 11.00 17.00
V547-178 48.49 147.37 2.90 17.16 55.00 120.00 12.67 26.33
VL057847 47.97 184.07 1.52 31.62 57.00 129.00 12.00 23.75
VL0536 44.38 138.65 1.64 27.21 49.25 130.00 13.33 22.58
VL05128 43.75 169.82 2.09 21.23 44.50 127.00 12.83 24.58
CML508 43.16 167.68 1.40 31.11 54.50 127.00 12.50 17.75
VL058014 42.89 168.07 1.67 25.72 54.25 122.00 10.83 16.25
CML197 41.12 143.24 2.18 20.10 58.75 127.00 13.17 22.08
CML506 37.58 158.22 1.40 26.68 52.50 127.00 12.00 20.25

Mean 44.60 163.10 1.82 25.93 53.64 126.67 12.26 21.18
Standard deviation 4.32 17.88 0.49 5.45 4.41 3.57 0.89 3.57

Difference 19.02 39.35 0.43 2.76 3.92 -0.22 1.16 1.13
% Difference 42.65 24.13 23.63 10.66 7.30 -0.18 9.50 5.34
Standard error of difference 3.39 12.03 0.19 2.07 1.80 1.34 0.70 1.55
t-value 5.60 3.27 2.30 1.34 2.17 -0.17 1.66 0.73
t-probability 0.000 0.005 0.035 0.200 0.045 0.871 0.117 0.476

Minimum value 9.22 31.35 0.28 2.95 3.12 120.00 1.91 2.98
Mean 54.11 182.80 2.04 27.31 55.60 126.56 12.84 21.74
Maximum value 79.22 245.08 2.90 33.65 62.75 131.00 16.67 26.33
P-value (for 18 inbred lines) <.001 <.001 <.001 <.001 <.001 <.001 <.001
5% least significant difference 12.28 25.37 0.65 6.97 4.23 1.72 5.96
Coefficient of variation (%) 11.30 6.70 16.00 12.40 3.80 6.60 3.90  1 
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a traits recorded in one replication of one environment.  1 
 2 
 3 
Table 4. Genotypic (lower diagonal) and phenotypic (upper diagonal) correlation coefficients of grain yield and yield determining 4 
traits5 

Grain Yield 1000 kernel Grain filling rate Effective grain filling Total grain filling Rows per Kernels per
(g plant-1) weight (grams) (g day-1) duration (days) duration (days) cob row

Grain yield (g plant -1) 1.00 0.60 0.61 0.42 0.49 0.28 0.34
1000 kernel weight (grams) 0.67 1.00 0.11 0.55 0.49 -0.23 -0.29
Grain filling rate (g day -1) 0.61 0.15 1.00 -0.44 0.18 0.49 0.61
Effective grain filling duration (days) 0.47 0.53 -0.40 1.00 0.43 -0.28 -0.32
Total grain filling duration (days) 0.52 0.52 0.21 0.45 1.00 -0.04 -0.18
Rows per cob 0.30 -0.21 0.59 -0.34 -0.07 1.00 0.416 
 7 
Genotypic and phenotypic correlations were calculated based on genotype means across locations. The r critical values at 10%, 5% and 1% levels are 0.39, 0.46 and 0.58, 8 
respectively.   9 
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Table 5. Direct and indirect effects of grain-filling and related traits on grain yield  1 
 2 

weight (grams) (g day-1) duration (days) duration (days) cob row
1000 kernel weight (grams) -0.02 0.00 -0.01 -0.01 0.01 0.01
Grain filling rate (g day-1) 0.14 0.93 -0.37 0.20 0.54 0.73
Effective grain filling duration (days) -0.06 0.05 -0.12 -0.05 0.04 0.05
Total grain filling duration (days) 0.41 0.17 0.35 0.80 -0.06 -0.16
Rows per cob -0.02 0.06 -0.03 -0.01 0.10 0.04
Kernels per row 0.03 -0.06 0.04 0.02 -0.03 -0.08

 3 
 4 
 5 
 6 
 7 
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