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Abstract. Gametogenesis in rice (Oryza sativaL.), and particularly male gametogenesis, is a critical developmental stage
affectedbydifferent abiotic stresses.Researchon this stage is limited, asflowering stagehas been themajor focus for research
to date.Ourmain objectivewas to identify a phenotypicmarker formale gametogenesis and the duration of exposure needed
to quantify the impact of heat stress at this stage. Spikelet size coinciding with microsporogenesis was identified using
parafilm sectioning, and the panicle (spikelet) growth rate was established. The environmental stability of the marker was
ascertained with different nitrogen (75 and 125 kg ha–1) and night temperature (22�C and 28�C) combinations under field
conditions. A distance of –8 to –9 cm between the collar of the last fully opened leaf and the flag leaf collar, which was yet to
emerge was identified as the environmentally stable phenotypic marker. Heat stress (38�C) imposed using the identified
marker induced 8–63% spikelet sterility across seven genetically diverse rice genotypes. Identifying the right stage based on
the marker information and imposing 6 consecutive days of heat stress ensures that >95% of the spikelets in a panicle are
stressed spanning across the entire microsporogenesis stage.
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Introduction

Rice is becoming increasingly exposed to adverse climatic
conditions such as heat, cold, and water deficit stress, resulting
in significant yield losses (Wassmann et al. 2009). Further, global
climate models predict water deficit stress-affected rice area to
double by 2100, and accompanied by a simultaneous increase
in temperature of 2.0–4.5�C (IPCC 2007): the result will be
serious damage to global rice production. The probability of
these combined stresses damaging rice crops in the major rice-
growing regions in Southern and South-east Asia has been
recently mapped (Wassmann et al. 2009). The rice scientific
community has intensified efforts to develop rice varieties
capable of withstanding these adverse conditions (heat stress,
Yoshida et al. 1981; Jagadish et al. 2010a, 2010b, 2011; drought
stress, Bernier et al. 2007; Kumar et al. 2008; Venuprasad et al.
2008; cold stress, Andaya and Mackill 2003; Ji et al. 2011)
to sustain rice production under future adverse climates. Rice
is extremely sensitive to these stresses, in particular, during
the reproductive – gametogenesis and flowering stages – and
exposure can result in increased spikelet sterility, which in turn,
reduces grain yield.

Because of the ease with which flowering can be studied, the
majority of studies concentrating on different abiotic stresses
have focussed on this stage. Microsporogenesis, the highly

sensitive stage to heat stress (Matsui et al. 2000), has not been
studiedextensivelydue to the lackof aprecisephenotypicmarker.
However, a marker based on inter auricle distance has been
identified for cold stress phenotyping (Satake and Hayase
1970), and extended to quantify the impact of cold (Oliver
et al. 2005, 2007) and drought stress (Ji et al. 2010; Liu and
Bennett 2011) during young microspore and bi-nucleate pollen
stages. The classic work by Satake and Hayase (1970) used
different inter auricle distances and stress exposure duration to
examine just two contrasting rice entries, indicating the challenge
in identifying a robust marker that could be used across many
genotypes. In more recent studies mentioned above, the inter
auricle distance after the flag leaf emergence (Fig. 1a) has been
employed, wherein a proportion of spikelets at the top of
the panicle would have progressed beyond the target stage,
diluting the estimation of panicle tolerance with stress escape.
To overcome a similar phenomenon and to account for the
asynchronous floral development in a rice panicle, marking
protocol has been used to quantify heat stress impact during
anthesis (Jagadish et al. 2008, 2010a). More importantly, cold
(Thakur et al. 2010) and heat stress (Hedhly 2011) are known
to delay and enhance most developmental stages, respectively,
making it impractical to extend progress achievedwith cold stress
phenotyping directly to study heat stress. Hence, a phenotypic
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marker to quantify heat stress impact at microsporogenesis stage
needs to be identified and extensively tested for extending its
applicability across different rice genotypes and environmental
conditions.

Moreover, themajor determinant of spikelet fertility with heat
stress exposure in rice is known to be themale reproductive organ
or pollen development and viability (Yoshida et al. 1981;
Jagadish et al. 2010a). Our focus on microsporogenesis stage
is based on the outcome of cross pollination experiment, i.e. heat
stressed pistil pollinated with fresh pollen and vice versawherein
female reproductive organ did not reduce fertility evenwith 40�C
exposure, whereas pollen exposed to 38�C led to a significant
decline in spikelet fertility (Yoshida et al. 1981). Further, the
majority of the physiological or molecular studies dealing with
microsporogenesis have drawn conclusions based on a single
genotype (Kerim et al. 2003; Hobo et al. 2008; Oliver et al.
2005, 2007; Endo et al. 2009). We hypothesise that spikelet
size (length) coinciding with microsporogenesis varies with
genotypes. Hence, it is essential to conduct systematic analysis
of the microsporogenesis stage across a range of genotypes to
identify the developmental stage just before microsporogenesis
to impose precise heat stress phenotyping protocols, which is
the main aim of the work presented here. The specific objectives
of this work were to (i) identify a phenotypic marker for
the entire microsporogenesis stage in rice and validate its
effectiveness under heat stress exposure; (ii) estimate the rate
of development of a panicle and the duration of exposure needed
to quantify heat stress impact coincidingwithmicrosporogenesis;
and (iii) ascertain the stability of the identified marker under
different environmental conditions.

Materials and methods
Crop husbandry
Rice (Oryza sativaL.) seeds of seven diverse genotypes (Table 1)
werepre-treated at 50�Cfor 3days tobreakdormancy.Seedswere
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Fig. 1. Illustration of the rice inter auricle (a) fromOliver et al.2007 and Ji et al.2010 and inter collar distance (b) from the
present study.

Table 1. Seven rice genotypes with different mature grain length used
for identifying a phenotypic marker for microsporogenesis stage

Numbers after the genotypes are the accession codes obtained from the IRRI
gene bank.Values after grain length are� s.d. HT, highly tolerant; T, tolerant;

MT, moderately tolerant; S, susceptible

Genotypes Species Mature grain
length (mm)

Degree of
heat tolerance

CG14 [96717] Oryza glaberrima 9.5 (0.09) S
DR29 [13899] Oryza sativa indica 11.4 (0.12) –

IR2006-P12–12–2-2
[32675]

O. sativa indica 10.03 (0.08) T

IR6 [51504] O. sativa indica 10.3 (0.15) TC

IR64 [66970] O. sativa indica 9.73 (0.09) S to MT
N22 [4819] O. sativa aus 7.13 (0.09) HT
Vandana [19187] O. sativa indica 9.07 (0.07) S
IR64A O. sativa indica 9.53 (0.44) S to MT
IR64B O. sativa indica 9.36 (0.40) S to MT

AIR64 grain length for seeds obtained from themain tillers from plants grown
in the field at IRRI.

BIR64 grain length for seeds obtained from the primary tillers from plants
grown in the field at IRRI.

CWidely grown in Pakistan and is considered as putatively heat tolerant.
Information on degree of tolerance was obtained from Jagadish et al. (2008,
2010a) and Yoshida et al. (1981).
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direct sown in seeding trays and 14-day-old seedlings were
transplanted into pots containing 6 kg of clay loam soil. Basal
fertiliser (2.0 g (NH4)2SO4, 1.0 g KCL, and 1.0 g SSP) was
added before transplanting and an additional 2.5 g of urea
((NH2)2CO) was added 30 days after transplanting. One plant
per pot was grown under fully flooded conditions. Plants were
maintained under controlled-greenhouse conditions with air
temperature maintained at 29/21�C day/night (actual = 28.9�C
(s.d. =� 0.6)/22.2�C (s.d.� 0.9)) and day/night RH at 75/80%
(82% (� 10)/88% (� 4)) throughout the crop growth period.
There were no major pest or disease problems except white
flies (Bemissia spp.). Cypermethrin (Cymbush) at 0.42 g L–1

was sprayed at 15-day intervals, starting 30 days after
transplanting, to manage whitefly infestation.

Stage and duration of stress exposure
To achieve the objective of identifying the ‘right stage’ and the
‘duration of stress exposure’ to quantify the impact of stress,
information on (i) actual spikelet size (length) when tetrad
and early microspore formation occurs (see ‘Sampling and
sectioning’) and (ii) the time taken for >90% of the spikelets
on a target panicle to complete microsporogenesis is essential
(see ‘Spikelet growth’).

Sampling and sectioning

Plants were regularly monitored following panicle initiation
(by dissecting) to collect spikelets with sizes varying from 3 to
7mm for identifying the appropriate spikelet length coinciding
with tetrad and early microspore formation. A total of 10–15
spikelets of size 3 to 7mmwere collected from the main and first
primary tiller at random from four replicate plants. Detached
panicles were placed in water-filled Petri-plates and spikelets
were separated with the help of forceps and standard ruler and
categorised according to their length and transferred immediately
into FAA fixative (10% (v/v) formaldehyde, 50% (v/v) absolute
ethanol, 5% (v/v) acetic acid) and dehydrated through a graded
ethanol series and embedded using paraffin (Paraplast Plus;
Sigma Chemical Co., St Louis, MO, USA). Serial sections of
10mm thickness were obtained by a microtome (Leica RM2135,
Singapore) and placed on Superforst Plus microscope slides
(Fisher Scientific, Hampton, NH, USA) and incubated at 45�C
for 48 h. Sections were dewaxed in xylene, rehydrated through a
graded ethanol series, and stained with 2% safranin dissolved in
50% ethanol. This was followed by ethanol washing and
subsequent staining of sections with 0.05% fast green in 80%
acetone. The samples were then mounted and oven-dried at 65�C
for 24 h. Sections were viewed under an Axioplan 2 microscope
(Carl Zeiss, Oberkochen, Germany) and images taken using a
DP70 camera attached to the microscope. A similar exercise was
conducted using spikelets of mega-rice variety IR64 collected
from both main and primary tillers separately from plants grown
in the field to test the application of this marker under field
conditions.

Spikelet (panicle) growth

To ascertain the duration of heat stress exposure needed to
ensure that stress affects at least 90% of the spikelets in the

panicle during theirmicrosporogenesis stage, spikelet growth rate
was used as an indirect measure of panicle growth rate (see
Fig. S1a, available as Supplementary Material to this paper).
Preliminary analyses were conducted and the length of all the
spikelets on the panicle was measured at different times related
to the distance (starting at �15 to +5 cm) between the collar
(illustrated in Fig. 1b) of the fully opened leaf and the flag leaf
collar (identified by gently running the thumb and forefinger
along the main tiller), which was yet to emerge. Knowing the
actual length of the spikelet coinciding with tetrad formation
(through the sectioning exercise), and the length of all the
spikelets across the whole panicle, we identified the
approximate distance between the collar of the fully opened
leaf and flag leaf when 5% of the spikelets (at the tip of the
panicle) would have undergone tetrad formation and with nearly
90–95% yet to undergo these processes (Fig. S1b).

Tillers identified to be at an appropriate distance (see
‘Results’) were tagged and dissected and the size of each of
the spikelets on the panicle was measured across all seven
varieties. In total, eight tillers with approximately the same
distance between the fully opened leaf and the yet-to-emerge
flag leaf collar were tagged on the same day. Two tillers were
dissected on four consecutive days, including the day when the
tillers were tagged, and all spikelets on each of the panicles
were measured to (i) estimate the rate of spikelet growth and
(ii) check the duration needed for >90% of the spikelets on
the panicles to have undergone microsporogenesis. This was
used to determine the duration of stress exposure needed for
standardising phenotyping protocols.

Case study – high-temperature stress
Seeds of all seven varieties were obtained from the International
Rice Research Institute gene bank and plants were grown under
greenhouse conditions (as detailed above) and moved into
controlled-temperature chambers (Thermoline Inc., Sydney,
NSW, Australia) for imposing heat stress coinciding with
tetrad formation and the early microsporogenesis stage by
employing the identified marker. A detailed description of the
greenhouse and growth chamber conditions, including technical
details, has been given elsewhere (Jagadish et al. 2010a, 2011).
Briefly, the main tillers of the plants were tagged and regularly
monitored for the marker distance. Once the distance between
the collar of the fully opened leaf and the yet-to-emerge flag leaf
collar was close to the target range, a set of four replicate pots of
each of the seven varieties was moved into the chambers
maintained at 39�C (actual = 38.94� 0.12) and RH at 75%
(74.31� 5) from 0800 to 1430 hours for 4 consecutive days.
Immediately following the completion of exposure, plants were
moved back to the control conditions in the greenhouse and
maintained till maturity. Similarly, another set of four replicate
pots for each variety was left in the glasshouse for the entire
period as true controls. Twenty days after flowering, the tagged
main tillers from both the control and stressed plants were
cut and percent spikelet fertility was estimated by carefully
pressing the spikelets between the thumb and the forefinger
(Prasad et al. 2006). The data was analysed using GENSTAT

ver. 13 (VSN International, Rothamsted Experimental Station,
Hemel Hempstead, UK).
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Validating environmental stability of the marker
The environmental stability of the marker was validated using 16
temperature-controlled chambers under field conditions (each
chamber measured 6� 3� 2m in length, width, and height,
respectively; see Fig. S2) set up to study the interaction
between high night temperature stress and two different levels
of nitrogen in cv. N22. There were two inlet and two outlet fans
installed in the front frame and the back frame, respectively, to
minimise the differences in RH and CO2 concentration within
the chamber compared with the ambient by constant but
mild air exchange. During daytime (0600–1800 hours), the
chambers were open, exposing the plants to natural conditions.
At night (1800–0600 hours), the chambers were closed
manually and the air conditioners (CW-1805V, Matsushita
Electric Philippines Corp., Taytay, Rizal, Philippines) were
programmed to automatically impose control (22�C) and stress
(28�C) treatments, following Shi et al. (2013). The temperature
and RH were monitored every minute and averaged over 30min
(HOBO,Onset computerCorp., Bourne,MA,USA).Nearly 5 cm
of standing water was maintained throughout the experiment
to ensure a leak-proof covering of the tents for the whole
night. Temperature treatments started from the panicle
initiation stage ~31 days after transplanting and continued up
to physiological maturity. Moderate (75 kg N ha–1) and high
(125 kgN ha–1) nitrogen levels were applied and, as a result, each
of the four combinations was replicated in four chambers each.
Nitrogen in the form of urea was applied in four splits with total
amount (40% as basal, 20% at mid-tillering, 30% at panicle
initiation, and 10% at heading). For both the nitrogen levels,
phosphorus (15 kg P ha–1), potassium (20 kg K ha–1), and zinc
(2.5 kg Zn ha–1) were applied and incorporated in all plots 1 day
before transplanting. Finally, 11–18 days after imposing the
temperature treatments, 16–20 panicles per treatment were
selected randomly based on the identified marker and
dissected for measuring spikelet length following the protocol
detailed above.

Results and discussion

By employing the inter auricle distance as a phenotypic marker
and imposing 3–4 days of cold or drought stress (Oliver et al.
2005, 2007; Ji et al. 2010), young microspore and bi-nucleate
pollen stage were targeted. However, tetrad formation and early
microspore generation has also been identified to be most
sensitive to cold stress (Nishiyama 1970, 1976). Further,
targeting a precise stage during microsporogenesis in a panicle
would realistically expose the more mature spikelet on the
panicle (bi/tri nucleate stage or beyond) and younger spikelets
(at tetrad formation stage or microspore mother cell stage) to
stress. So a clear demarcation of the stress coinciding specifically
with the target stage across the entire panicle is not possible. For
example, stress imposed targeting tetrad stage will invariably
expose other spikelets at young microspore or bi-nucleate stage
to stress, dependingon their position along the panicle.Hence,we
targeted the entire microsporogenesis stage of a panicle using the
inter collar distance to come up with a phenotypic marker for use
across a wide range of genotypes and to extend its application in
heat stress tolerance breeding programs.

Spikelet length and microsporogenesis

The set of seven diverse genotypes selected for this exercise
had varying mature grain length ranging from 7.1 to 11.4mm
(Table 1). Spikelet length at microsporogenesis varied with
genotype, and was strongly correlated with final mature grain
length with four out of five tested entries within the 95%
confidence interval (Fig. 2). N22 had the smallest mature grain
length of 7.1mm and also underwent microsporogenesis with
the smallest spikelet length at 4mm (Fig. 3). In the longer grain
varieties, namely, IR2006-P12–12–2-2 and IR64 (9.7–10mm),
spikelet size of 6mm coincided with tetrad formation and early
microspore formation (Figs 3, S3). We were unable to identify
the spikelet length coinciding with microsporogenesis among
genotypes with mature grain length of >10mm (DR29 and IR6)
since tetrad and early microspore formation probably occurred
with developing spikelet length beyond 7mm, the size at which
we had restricted our analyses (Fig. S3). Results from samples
obtained from the field followed the glasshouse results with IR64
spikelets at size 6–7mm coinciding with microsporogenesis
(Fig. 3). This indicated the consistency and repeatability of
results across controlled environments and field conditions, as
well as across different tillers.

Mature grains of 15popular rice varieties grownacrossAfrica,
South Asia, South-east Asia, and Latin America were obtained
and mature grain length was used to predict possible spikelet
length at microsporogenesis, with IR64 as the reference.
We noted that almost all these entries except Sahel 329 were
within the 10mm range, similar to IR2006 and IR64, and the
spikelet lengths coinciding with microsporogenesis were well
extrapolated within the tested range, with a high correlation,
including both the predicted and observed data (r = 0.81; Fig. 2).
On the basis of these results and the predicted spikelet lengths, we
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conclude that the developing spikelet length coinciding with
microsporogenesis stage varies with genotypes and has a
close relationship with mature grain size. Hence, the marker
can be employed to study responses to heat stress at the
microsporogenesis stage across most of the widely grown rice
varieties.

Rate of panicle development and validation of the marker

A highly dynamic growth rate of the panicles was observed, with
an average increase of >2.5 cm day–1 across all seven genotypes
studied (Figs 4, S4). The highest rate of panicle growth was seen
withN22having a 3.65 cmday–1 decrease in collar distance of the
fully opened leaf and yet-to-emerge flag leaf (Fig. 4). A similar
rapid increase in panicle size in N22 over 4 days is shown in
Fig. S1a, b, with a close relationship between the panicle and
collar growth rate and hence collar distance was used as a proxy
for identifying the tillers at the right stage and determining panicle
growth rate. Accordingly, the spikelet size increase followed the
panicle growthpattern and,within 4days of observation,>90%of
the spikelets that were yet to undergo microsporogenesis passed
through this stage (Figs 4, S4).

The marker (distance between the collar of the fully opened
leaf with the yet-to-emerge flag leaf collar at�8 to�9 cm) can be
more reliably used for stress phenotyping with entries having
mature grain size of <10mm or slightly longer, irrespective of
the variation in spikelet size coinciding with microsporogenesis
across genotypes. For longer grain sizes, we recommend
preliminary analysis to confirm the effectiveness before using
the marker. The phenotypic marker (�8 to�9 cm) was validated
by exposing all seven genotypes to heat stress and a significant
decrease in spikelet fertility was recorded across entries
(P < 0.001), and temperature treatment (P < 0.001), with a
significant interaction (P < 0.01). Induced percent spikelet
sterility ranged from 63% (CG14) to as low as 8 and 16% in
IR2006 and N22 respectively (Fig. 5). The sterility recorded
was comparable with that noted by Yoshida et al. (1981) in
DR 29 (33%) but other genotypes demonstrated a wide variation
in response to stress, indicating an opportunity to exploit
this variation in breeding varieties tolerant of heat stress at the
microsporogenesis stage. Additionally, this case study provides
evidence for the effectiveness in using the identified phenotypic
marker for imposing abiotic stress at this complex sensitive

4 mm 5 mm 6 mm 7 mmGlasshouse
conditions

Field
conditions

IR64

N22

IR64
Primary tiller

IR64
Main tiller

Fig. 3. Spikelet length (mm) of rice varieties IR64 and N22 coinciding with tetrad formation and early microspore
formation in plants grown under glasshouse conditions. Spikelet length (mm) of IR64 from the main tiller and the
primary tiller coincidingwith tetrad formation and earlymicrospore stage fromplants grown in thefield. Pollenmother
cells at tetrad formation are shown in inset.
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stage in rice. N22, which is known to be highly heat tolerant
(Prasad et al. 2006; Jagadish et al. 2008, 2010a), was on par
with IR2006, indicating its tolerance during both critical
developmental stages. Breeding programs using N22 as a
donor for developing heat-tolerant rice varieties for the
flowering stage could induce higher tolerance even for the
microsporogenesis stage.

Marker application

Our aim was to identify the right stage of the panicle so that 90%
of the spikelets on the target panicle are exposed to stress at
microsporogenesis and we successfully reached our target in
CG14 and Vandana. However, a few later developing spikelets
were still below the critical spikelet size (for example, in IR64

and N22) when the 4-day stress imposed was relieved (Fig S4).
Hence, we recommend that the combination of identifying the
marker at the right stage and imposing 6 days of heat stress will
ensure that >90% of the spikelets are exposed to stress. Extended
application of this marker to cold and particularly water stress
could be slightly complex with the rate of growth reduction
depending on the severity of cold stress or water limitation
and hence the marker as well as the duration of exposure has
to be applied with caution. Additionally, a high synchrony
between male and female gametogenesis in rice is essential for
normal gamete development, fertilisation, and finally seed-set
(Zinn et al. 2010). Hence, we hypothesise that this phenotypic
marker identified could be extended to study the impact of
stress coinciding with either microsporogenesis (male gamete
formation) or megasporogenesis (female gamete formation) or
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their combined effect on seed-set, through artificial cross-
pollination studies as employed effectively in tomato (Peet
et al. 1997).

Environmental stability of the marker

The proportion of N22 spikelets with �3mm in length (with
4mm coinciding with the tetrad formation) was �80%,
coinciding with marker distance (–8 to –9 cm; Day 1), across
all four combinations of nitrogen and night temperature
treatments (Fig. 6). Across these treatments, only 5–8% of the
spikelets were�4mmonDay 1. Four days later, 80––90% of the
spikelets were sized �4mm. The per cent spikelets before
undergoing tetrad formation and the per cent spikelets passing
through the critical microsporogenesis stage in the subsequent
4 days under field conditions are highly comparable with the
proportions obtained under controlled chamber conditions
(Fig. 4b). Even though the total number of spikelets was

significantly reduced with 75 kg N (mainly attributed to
shortage of resources), the relative proportions of spikelet sizes
on Day 1 (�3mm) and Day 4 (�4mm) did not vary significantly
compared with 125 kg N. Moreover, 4 days after the right
stage was identified, nearly 9–19% of the spikelets were
�3mm in length, a case which was also observed under
controlled environments with N22. Hence, as recommended in
themarker application section, stress exposure has to be extended
to 6 days to ensure that >90% of the spikelets in the target panicle
undergo microsporogenesis under stress conditions. In addition,
the panicle length across the treatments did not change
significantly (data not shown). The reliable performance of the
identified marker under field conditions with different
combinations of nitrogen and night temperatures (and light
conditions – field vs chamber conditions) provides concrete
support for its stability under different environmental conditions.

Conclusion

We identified a reliable phenotypic marker to identify the
microsporogenesis stage in rice, based on final grain length.
Results indicate a rapid increase in both spikelets and panicles
during the microsporogenesis stage, and exposing the plants
or identified tillers at the right stage for 6 days of stress would
expose >90% of the spikelets to stress, thus, allowing precise
estimation of stress impact on this complex developmental stage.
Importantly, the identified marker was stable across different
environmental conditions. This finding has to be further verified
and extended to study multiple abiotic stress impacts on seed-set
and to quantify other negative effects on megasporogenesis,
male and female organ developmental asynchrony under heat
stress, and more importantly, the contribution of the female
reproductive organ to spikelet sterility under major abiotic
stresses.
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