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Abstract. Soil carbon (C) sequestration has been proposed as a transitional win–win
strategy to help replenish organic-matter content in depleted agricultural soils and counter
increases in atmospheric greenhouse gases. Data assimilation and remote sensing can reduce
uncertainty in sequestered C mass estimates, but simple soil organic carbon (SOC) models are
required to make operational predictions of tradeable amounts over large, heterogenous areas.
Our study compared the performance of RothC26.3 and a reduced compartmental model on
an 11-year fertilizer trial in subhumid West Africa. Root mean square error (RMSE)
differences of 0.05 Mg C/ha between models on total SOC predictions suggest that for
contractual purposes, SOC dynamics can be simulated by a two-pool structure with labile and
stable components. Faster (seasonal) and slower (semicentennial and beyond) rates can be
approximated by constants as instantaneous and infinite decay. In these systems, simulations
indicate that cereal residue incorporation holds most potential for mitigation of transient C
loss associated with recent land conversion to agriculture.

Key words: carbon sequestration; fertilizer treatments; levels of uncertainty; model simplification;
RothC model; soil organic matter; tropics.

INTRODUCTION

Soil carbon (C) sequestration has been proposed as a

transitional win–win strategy for the next 25–50 years to

help replenish organic-matter content in depleted soils of

degraded agricultural lands while countering increases in

the atmospheric concentration of greenhouse gases, with

an estimated 15% offset on current CO2 emissions (Lal

2007). There is the increasingly popular tool of ‘‘contract

packages,’’ which are potential contracts between

farming communities and carbon-offset buyers (e.g.,

the World Bank’s Prototype Carbon Fund and agen-

cies/NGOs acting on their behalf) in which the

communities sell carbon offsets to buyers. In developing

countries, contract packages that increase biomass

productivity and C returns to the soil could be designed

to provide resource-poor ‘‘smallholders’’ (small-scale

farmers) with needed incentives to adopt more sustain-

able land-management practices (Izac 1997, Batjes 2001,

Antle and Uehara 2002) when agricultural soil C

sequestration becomes an accepted process for the

generation of certified emissions reduction (CER)

certificates. In fairly uniform environments and across

large areas, qualitative changes can be cost-effectively

monitored with remote sensing, showing potential for

verification of compliant practices such as afforestation,

rotation sequences, and fallowing.

However, quantification of relevant biophysical var-

iables such as crop residue by legacy sensors (sensors on

the first generation of remote-sensing orbiting satellites)

often remains highly inaccurate (Bricklemyer et al.

2007). This is a problem because, at the landscape and

community scales amenable to C trade (10–100 Kha),

spatiotemporal heterogeneities in production systems

deter contractualization on an activity basis (per hectare

payments) in favor of contractualization on a mass basis
(per ton payments) (Antle and Mooney 2002). This

constraint is even stronger in a developing smallholder

setting where a variety of relevant factors (e.g., soil

texture, choice of crop type, water-table depth) vary

over different spatial and temporal scales and interact

with eachother, reducing or amplifying overall variabil-

ity, and further complicating contractual domains

characterized by fragmented landscapes and irregular
management patterns. Accurate estimation of aggregat-

ed soil C on a mass basis presents more complex

challenges than the surrogate monitoring of qualitative

changes in land use.

Inadequate sampling of the contractual domain is not

the only source of uncertainty faced by C mass

monitoring. High uncertainty also arises from (1) errors

in measurements, which include laboratory methods to

‘‘directly’’ quantify organic C in soil samples (e.g.,

Walkley-Black [the historical reference method for

analysis of soil organic matter]), remote-sensing meth-

Manuscript received 10 July 2007; revised 30 August 2007;
accepted 4 October 2007. Corresponding Editor: J. Gulledge.

5 E-mail: p.s.traore@cgiar.org
6 Deceased.

624



ods to indirectly quantify proxy variables such as

standing biomass (e.g., vegetation indices), and (2)

errors linked to dynamic C models, including fuzzy

and unverifiable structure (e.g., definition of stable

fraction), weakly represented processes (e.g., erosion),

poorly estimated parameters and initial conditions, and

so on. Adequate quantification of uncertainty in

sequestered C mass estimates is a prerequisite to

contractual verification and compliance enforcement

(Vine and Sathaye, 1999).

The nature and relative importance of measurements,

models and sampling schemes is likely to vary from

project design to implementation, with trade-offs

between model complexity and sampling density. When

assessing the C-sequestration potential of existing and

recommendable practices (design stage), the need to

simulate nonlinear processes in the absence of measure-

ments can favor detailed mechanistic plant–SOM (soil

organic matter) models such as DSSAT-CENTURY

(Gijsman et al. 2002). In contrast, when dealing with C

accounting and certification (implementation stage),

increased sampling density will take over the task of

accounting for nonlinearity in the system and allow for

simpler model formulations—particularly suitable for

analytical solutions and conversion to continuous form

(Parshotam 1996, Andrén and Kätterer 1997, Bolker et

al. 1998, Martin 1998, Feng and Li 2001, Fang et al.

2005).

Model simplification is particularly relevant to the

study of the dynamics of soil organic carbon (SOC),

because the lack of fractionation methods and method-

ological unification to substantiate turnover-based pool

structure (e.g., Shang and Tiessen 2000) can increase

uncertainty in model outputs (Larocque et al. 2006).

Under such conditions, total SOC prediction is clearly

more an issue of formulation tractability and ease of

computation (Bolker et al. 1998) than a problem of

potential physical, chemical, or biological conceptuali-

zation.

This paper examines one such simplification by

comparing the performance of the five-pool Rothamsted

soil-carbon turnover model (RothC) with a simpler

compartmental model proposed for stochastic satellite

and ground data assimilation (after Bostick et al. 2007).

We hypothesize that (1) RothC’s HUM (humified

organic matter) slow pool can be considered stable over

a 20-year contractual period, allowing for a consolida-

tion of RothC’s HUM and IOM (inert organic matter)

components into a single stable pool; (2) a yearly time

step will not significantly affect a model’s ability to

simulate short-term C dynamics for trading purposes;

(3) there is no significant difference among crops in

terms of their residue decomposition rates on annual

time scales, allowing for reduction of RothC’s

DPM:RPM ratio of fresh biomass (the ratio of

decomposable plant material to resistant plant material)

into a constant. Total soil organic C estimated by each

approach is compared with field data from an 11-year

rotation experiment in the subhumid tropics of West

Africa. Results are discussed from a model-simplifica-
tion perspective motivated by issues of timescale

relevance, data scarcity, and information uncertainty.
Available data do not allow for a more comprehensive

assessment of the net CO2 equivalent effect in these
systems. This study pertains only to the development of
operational monitoring and certification subsystems for

putative C-sequestration contracts in smallholder agri-
cultural communities.

MATERIALS AND METHODS

Reference model selection

Many models of soil organic matter (SOM) turnover
have been developed (McGill 1996). In a nine-model

comparison exercise, Smith et al. (1997) found no
significant difference in performance across models

intended for arable crops. Most SOM models are
compartmental, with mass fluxes between conceptual
pools often expressed as first-order kinetics. This allows

for robust functionality, but usually involves some
degree of empircism and a weaker representation of

real-world processes. Cohort models are arguably more
realistic as they mechanistically simulate trophic decom-

position by microbial biomass, responses to transient
vegetation, and coupled N and C dynamics, but are

complex and difficult to parameterize (Gignoux et al.
2001). In fact, moving away from traditional pool-based

modeling paradigms involves considerable difficulties
(Thornley and Cannell 2001). Our rationale for choosing

a reference model followed three criteria: (1) it should be
a stand-alone model, hence drivable by either biomass

predictions or measurements, (2) it should be structur-
ally simple, allowing for straightforward simplification

and easy parameterization, and (3) it should have been
favorably evaluated over a range of representative agro-
ecological conditions.

As the most frequently reported models in simulation

studies of soil C dynamics, CENTURY (Parton et al.
1988) and RothC (Jenkinson and Rayner 1977) often
serve as reference test beds for other modeling work.

They represent extremes in a range of complexity and
accessibility (FAO 2004) and have been historically

evaluated in a variety of environments. Of these two,
CENTURY has been adapted for mechanistic crop-

biomass prediction (Gijsman et al. 2002) and used for
stochastic soil C-predictions, but its complexity makes it

less amenable to utilization in data-scarce regions
(Zimmerman et al. 2005, Koo et al. 2007). Hereafter

used as a reference model, RothC version 26.3 (Coleman
and Jenkinson 1999) features four active soil organic-

carbon pools plus one inert organic matter (IOM)
compartment. Fig. 1 represents fluxes and partitioning

of carbon from plant residue (PR) and farmyard manure
(FYM) to the four active compartments: Decomposable
plant material (DPM), resistant plant material (RPM),

microbial biomass (BIO) and humified organic matter
(HUM), alongside the IOM. Compartment shapes are
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roughly proportional in dimension to relative pool sizes

reported in the literature.

Simplification into a two-pool model

HUM completely decomposes over periods of about

50 years. Neither DPM (,1 yr) nor BIO (,2 yr) alone

wield a dominant effect on soil organic carbon (SOC)

variations over time periods of less than 20 years. In

fact, the initial value of both DPM and BIO is negligible

as they reach equilibrium within 12 months (Janik et al.

2002). Such is not the case with HUM, which can

account for up to 75% of total soil organic carbon

(Coleman and Jenkinson 1999) and which requires

accurate initial estimates given a low decomposition

rate. Janik et al. (2002) further observe that RPM

constitutes the largest contributing factor to modeled

soil C among initial pool sizes (HUM and IOM being

the lowest). With HUM assumed as the difference

between total SOC and the sum of IOM and RPM, this

eventually stresses the significant effect of both HUM

and RPM initial values. Although the relatively small

IOM appears to exert a moderate influence on total

SOC, considerable ranges of variation are cited (e.g.,

Tate et al. 1995, Falloon et al. 1998), from 1.1% to

25.6% of total SOC, warranting accurate specification as

well (Skjemstad et al. 1996, Falloon et al. 2000). In

practice, IOM allows the separation of centennial from

millenial C, both beyond the time horizon of a C-

sequestration contract.

Thus, RothC’s structure holds obvious incentives for

simplification to monitor C dynamics on intermediate

timescales amenable to C trade. Following Bostick et al.

(2007), a simplified, yearly time-step model is proposed,

with a labile and a stable pool (Fig. 2). The labile

compartment L is analogous to RothC’s RPM. The

stable compartment S roughly corresponds to the sum of

RothC’s HUM (dominant) and IOM (smaller) pools.

With residency time on the order of a year or less, DPM

and BIO material can be approximated as a quasi-direct

CO2 release rate r ( f1þ p1 in RothC), and correspond-

ing pools can be neglected on a yearly time step.

Furthermore, all C fluxes to and from stabilized C are

considered negligible on contractual timescales. These

include CO2 release, direct inputs from farmyard

manure (2% only in RothC, with limited farmyard

manure applications in smallholder agriculture anyway),

and transfers between the stabilized and the labile

compartments. Biomass and farmyard inputs reach L

with rate i ( f2þ p2 in RothC), and L decomposes with

rate k (r1 in RothC).

The rationale for a two-compartment model follows.

The great differences in SOM ages measured by carbon

dating require a partitioning of biologically resistant and

susceptible material (Jenkinson 1990) that single-com-

ponent models cannot really capture (Fang et al. 2005).

Simple two-compartment models have been successfully

used to represent SOC dynamics over time spans of a

few years to centuries, with a fast pool humifying into a

slow pool, allowing for use by nonspecialists, analytical

solutions, and easier parameterization (Andrén and

Kätterer 1997, Thornley and Cannell 2001, Kirschbaum

2004). Testing the ICBM (introductory carbon-balance

FIG. 1. C pools and fluxes and the linear system of equations in the RothC model (adapted from Coleman and Jenkinson
[1999]). Key to abbreviations: DPM¼ decompostable organic material, RPM¼ resistant plant material, BIO¼microbial biomass,
HUM¼ humified organic matter, and IOM ¼ inert organic matter:

BIOtþ1 ¼ BIOt þ ðb2þ d2þ r2þ h3� b1ÞDt

HUMtþ1 ¼ HUMt þ ðh2þ d3þ r3þ b3þ f 3� h1ÞDt

DPMtþ1 ¼ DPMt þ ðp1þ f 1� d1� d2� d3ÞDt

RPMtþ1 ¼ RPMt þ ðp2þ f 2� r1� r2� r3ÞDt

IOMtþ1 ¼ IOMt

where b, d, r, and h refer, respectively, to fluxes of carbon originating in the BIO, DPM, RPM, and HUM pools, f refers to inputs of
carbon from farmyard manure (FYM), and t refers to time.
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model) soil-carbon model dynamics and parameter

sensitivity, Andrén and Kätterer (1997) note that two

fractions decomposing, respectively, every 1.25 and 165

years are probably not enough to simulate tropical, slow

SOC dynamics. Within limited time periods, they
suggest a non decomposable fraction. The proposed

model follows these heuristic approaches, with some

differences that include (1) a constant, stand-alone

fraction containing centennial turnover material (with

assumed infinite turnover time inside contractual time-
frames), (2) a labile (slow) fraction with decay rate k

corresponding to decadal turnover times, and (3) a

yearly time step resulting, as a first approximation, in

the elimination of the traditional fast pool, host to
annual turnover material (and, consequently, that of the

associated DPM:RPM ratio).

Experimental data and site description

Both RothC version 26.3 and the simple two-pool
model were run and calibrated using biomass, SOC, and

nearby weather measurements from a 1993–2003 fertility

management experiment in Farako-Ba, Burkina Faso

(11.098 N, 4.328 W; northern Guinean agro-ecological

zone) with 56 combinations of crop-rotation sequences
and input levels. Crops included cotton (Gossypium

hirsutum L.), groundnut (Arachis hypogaea L.), maize

(Zea mays L.), and sorghum (Sorghum bicolor (L.)

Moench). Fertilization involved eight input levels with

control, PK, NPK, NPK þ dolomite (D), PK þ crop
residue, NPK þ crop residue, PK þ compost (CP), and

PK þ manure (MN) treatments. The experiment was

installed on a loamy sand soil with 74% sand and 7%

clay (estimated bulk density: 1.46 g/cm3) after a six-year
native grass fallow (Bado 2002). Standing biomass data

were collected every year (four replicates/combination)

and used to prescribe biomass inputs to the models. A

total of 132 SOC measurements (0–20 cm; four

replicates except in 2001: three replicates) were available
for calibration purposes from a subset of five rotations:

continuous cotton (1998, 2003), continuous groundnut

(2001), continuous sorghum (1998, 2001, 2003), ground-

nut–sorghum–cotton (1998, 2001), and cotton–maize–

sorghum (2003), and four input levels (control, NPK,

NPKþ D, and PK þ MN). Crop-residue treatments

involved the incorporation of standing-biomass residues

in the soil. Other treatments did not receive residue, and

the root system was the sole plant source of C inputs. A

detailed description of the experiment is available in

Bostick et al. (2007).

Parameter estimation

Experimentation with RothC v. 26.3 and a sensitivity

analysis by Janik et al. (2002) provided a list of

important parameters to estimate with associated ranges

of variation (Table 1). Similar values for the simplified

two-pool model are also mentioned (after Bostick et al.

2007). Model parameters were estimated with a simplex

generalized reduced gradient nonlinear optimization in

Microsoft Excel Solver (Fylstra et al. 1998). Initial

system states (pool sizes) were optimized alongside the

decomposition rate and crop specific DPM:RPM ratio

parameters, hence a total of five initial states U0 and five

parameters h for RothC (two-pool model: two U0, two

h). For RothC, the optimization algorithm was subject

to two range sets for all parameters and initial states:

nominal value 630% (set 1), 660% (set 2), normal

distribution assumed, with initial total SOC constrained

to the measured value (16.5503 Mg C/ha). The cost

function sought to minimize the sum of squared

differences between combined simulated pools (SOCi)

and total measured (Zi) carbon:

minimize SSðh;U0Þ ¼
Xn

i¼1

ðSOCi � ZiÞ2: ð1Þ

Initial states and decomposition rates were first opti-

mized across all treatments (n¼ 132), then optimization

procedures were re-run to include DPM:RPM ratios on

individual continuous cropping rotations only (cotton, n

¼ 32; groundnut, n¼ 12; sorghum, n¼ 44). Additionally,

different parameterization options were explored for the

RothC model: optimization of all five initial states vs.

three dominant ones only (RPM, HUM, IOM),

optimization of all four decay rates vs. the dominant

one only (kRPM), no rate optimization at all, and

combinations of the above.

FIG. 2. C pools and fluxes and the linear
system of equations in the simplified two-pool
model (in analogy to the RothC representation in
Fig. 1). In the figure: g ¼ the ‘‘direct’’ release of
carbon as CO2 by plant residues (PR) and
farmyard manure (FYM) (not transiting by any
pool in the model); k ¼ the release of carbon by
the labile pool (L); h1, f3, and r3 correspond to
carbon fluxes in RothC (Fig. 1) that are neglected
in the two-pool model (Fig. 2); and p refers to
inputs of carbon from plant residue (as in Fig. 1):

Ltþ1 ¼ Lt þ ðp� kÞDt

Stþ1 ¼ St:
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Comparative evaluation of models

After parameter and initial-condition estimation,

optimized values were used to simulate SOC. RothC

and the simplified two-pool model were propagated

forward in time for all individual replicates of all

combinations of seven crop rotations and eight fertilizer

levels. In RothC, soil was covered by vegetation from

sowing month to harvest month. The two-pool model

was also run on a monthly time step to look separately

at the effects of simplification in structure (first

hypothesis) and time (second hypothesis).

Where SOCmeasurements were available, their outputs

were compared with measurements using mean bias error

(MBE), root mean square error (RMSE) and lack-of-fit

(LOFIT) statistics with associated F and t significance

values (for LOFIT and RMSE). The purpose was to

highlight any potentially significant discrepancy with

measurements following Smith et al. (1997). As delineated

in the following notations, each of the 20 combinations of

rotations and levels was taken as a distinct experiment

featuring oijmeasurements on i(1���N) dates and for j(1���n)
replicates. Similarly, pij refer to model predictions for the

ith date and j th replicate, and ōi is the average of replicate
measurements for the ith date. Aggregate statistics were

also calculated (rotation-wise, level-wise, and overall).

Formulas are provided at the experiment level.

Mean bias error (Willmott 1982) is the average

difference between measured and simulated values, and

negative (positive) differences indicate under- (over-)

prediction by models:

MBE ¼ ðNnÞ�1
XN

i¼1

Xn

j¼1

ðoij � pijÞ: ð2Þ

The root mean square error (Willmott 1982) eliminates

compensation between under- and over-prediction.

Standard errors of measurements were computed from

replicate values to assess RMSE’s statistical significance

at P ¼ 0.05 (two-sided Student’s t test):

RMSE ¼ ðNnÞ�1
XN

i¼1

Xn

j¼1

ðoij � pijÞ2
" #0:5

: ð3Þ

The lack-of-fit statistic (Whitmore 1991) separates

measurement and model errors present in the residual

sum of squares. Its significance was computed at P ¼
0.05 (one-sided Fisher F test):

LOFIT ¼
XN

i¼1

niðōi � pijÞ2: ð4Þ

Focused on inorganic-fertilizer effects, the Farako-Ba

experiment did not include SOC measurements on 36 of

the 56 treatments, including those with crop-residue

incorporation. The latter were thus useless for model

calibration but provided valuable biomass data to

simulate SOC trends and check whether the two-pool

model followed RothC’s response. To that purpose, the

difference between total predictions by the two models

TABLE 1. Summary list of RothC and two-pool model parameters optimized for the Farako-Ba (Burkina Faso) long-term fertility-
management experiment.

Initial state U0, parameter h Nominal�

Set 1 Set 2

Minimum
�30%

Maximum
þ30%

Minimum
�60%

Maximum
þ60%

RothC model

Initial relative pool size (% of initial total SOC)

DPM 0.5 0.35 0.65 0.2 0.8
RPM 14.5 10.15 18.85 5.8 23.2
BIO 2 1.4 2.6 0.8 3.2
HUM 75 52.5 97.5 30 100
IOM 8 5.6 10.4 3.2 12.8

Decay rate, k (yr�1)

kDPM 10 7 13 4 16
kRPM 0.3 0.21 0.39 0.12 0.48
kBIO 0.66 0.462 0.858 0.264 1.056
kHUM 0.02 0.014 0.026 0.008 0.032
DPM:RPM 1.44 1.008 1.872 0.576 2.304

Two-pool model

Decay rate, k (yr�1)

k 0.33 0–1�

Initial relative pool size (% of initial total SOC)

Labile compartment, L 43.6 0–100�
Stable compartment, S 56.4 0–100�

Notes: There are two sets of range values. In range set 1 (RothC), acceptable value ranges are determined as the nominal value
630% (range set 2: 660). Key to abbreviations: SOC ¼ soil organic carbon; DPM ¼ decompostable organic material, RPM ¼
resistant organic material, BIO¼microbial biomass, HUM ¼ humified organic material, and IOM¼ inert organic material.

� Nominal values for RothC model are after Janik et al. (2002); for two-pool model, Bostick et al. (2007).
� Minimum and maximum values for the two-pool model are for the entire model and are not divided into ranges.
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was also used as an indicator of their potential

concordance or discrepancy.

RESULTS

Initial pool sizes and turnover rates

Estimated RothC parameters and initial states

changed consistently across optimization options, yield-

ing better soil organic carbon (SOC) predictive quality

when more initial states and decay rates were allowed to

vary over a wider range around nominal values. Overall

root mean-square error (RMSE) varied from 1.94 to

1.40 Mg C/ha (Table 2, Fig. 3). Forcing DPM

(decompostable plant material) and BIO (microbial

biomass) initial values to 0 inevitably increased HUM

(humified organic matter) and IOM (inert organic

matter) with no effect on rates, and a loss of predictive

skill. Rate optimization always resulted in reduced DPM

turnover (yet always quarterly or faster) and augmented

resistant plant material (RPM) and microbial biomass

(BIO) decay, with an increase in prediction skill.

Relaxing the range of acceptable values improved

agreement with SOC measurements through increased

RPM, DPM, BIO, RPM decay rate (kRPM) and reduced

DPM decay rate (kDPM) with no effect on other rates

and initial states.

Retained initial pool sizes of 0.17, 3.84, 0.53, 11.49,

and 0.53 Mg C/ha (1, 23, 3, 70, and 3% of total SOC,

respectively; Table 3) for DPM, RPM, BIO, HUM, and

IOM, respectively, are generally consistent with pub-

lished values for comparable agro-ecological conditions.

Slow and passive (refractory) pools being the most

significant for C sequestration, in RothC we are

TABLE 2. Optimized values for U0 initial states 3 and 5 (carbon pools) and h parameters 0, 1, and 4 (decay rates) for two value-
range sets (630%, 660% of nominal value, n.v.).

U0 h Range 6% n.v.

Initial states Decay rates

RMSEDPM RPM BIO HUM IOM kDPM kRPM kBIO kHUM

5 0 30 0.11 3.12 0.43 11.97 0.93 10.00 0.30 0.66 0.02 1.61
5 1 30 0.11 3.12 0.43 11.97 0.93 10.00 0.39 0.66 0.02 1.56
5 4 30 0.11 3.12 0.43 11.97 0.93 7.00 0.39 0.86 0.03 1.45
3 0 30 0.00 2.98 0.00 12.30 1.27 10.00 0.30 0.66 0.02 1.94
3 1 30 0.00 3.12 0.00 12.50 0.93 10.00 0.39 0.66 0.02 1.76
3 4 30 0.00 3.12 0.00 12.50 0.93 7.00 0.39 0.86 0.03 1.50
5 0 60 0.17 3.84 0.53 11.49 0.53 10.00 0.30 0.66 0.02 1.41
5 1 60 0.17 3.84 0.53 10.81 1.21 10.00 0.43 0.66 0.02 1.41
5 4 60 0.17 3.84 0.53 11.49 0.53 4.00 0.43 0.82 0.02 1.40
3 0 60 0.00 3.84 0.00 12.18 0.53 10.00 0.30 0.66 0.02 1.54
3 1 60 0.00 3.84 0.00 12.18 0.53 10.00 0.48 0.66 0.02 1.47
3 4 60 0.00 3.84 0.00 10.59 2.12 4.00 0.47 0.78 0.03 1.44

Notes:When only a subset of states are optimized, BIO¼DPM¼0. When only one parameter is optimized, it is kRPM. Cells with
italic data refer to fixed (nominal) values (n.v.). Boldface values are subsequently used in the forward runs. RMSE ¼ root mean
square error; for other acronyms see Table 1 notes.

FIG. 3. Evolution of total soil organic carbon (SOC) predictive quality (measured by the root mean-square error, RMSE) as a
function of the number of RothC initial states and number of parameters considered for optimization, for two value-range sets; n.v.
¼ nominal value.
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primarily interested in HUM and IOM. Falloon et al.

(1998) report 0.7 Mg C/ha IOM (3.5% of total SOC) in

the Ho-Keta savanna plains of Ghana, and a range of

1.9–9.8% of total SOC for a set of tropical sites. The

relative discrepancy between combined HUM þ IOM

value (73% of total SOC) and refractory SOM pool sizes

(13–59%) as reported by Falloon and Smith (2000)

relates to differences in pool age between models (HUM

in RothC: ‘‘only’’ 50 years), and plausible differences in

overall soil C dynamics. While refractory SOM is, strictu

senso, limited to IOM in RothC, it could as well be the

sum of IOM þ HUM for our purposes. Optimized

values for the stable pool in the two-compartment model

is 9.23 Mg C/ha (Table 3), identical to earlier results on

the Farako-Ba site (0.32% of SOC on a mass basis;

Bostick et al. 2007).

Turnover rate constants in RothC were originally set

using long-term Rothamsted (UK) experiments and are

normally not altered (Coleman and Jenkinson 1999).

However, the nonbinding, conceptual nature of C

compartments and potential differences between C

dynamics at Rothamsted and in the Tropics suggest

that alteration may be useful. In fact, a number of

RothC application studies (e.g., Jenkinson et al. 1999,

Janik et al. 2002, Diels et al. 2004) have experimented

with variable decay rates. Fig. 3 shows that with the

Farako-Ba data set, rate optimization can reduce RMSE

on total SOC predictions by as much as 0.44 Mg C/ha

when the three larger C pools (BIO, HUM, RPM) only

are optimized (0.16 Mg C/ha when all five C pools are

optimized). Optimization of the single most influential

rate (kRPM) in addition to three pools improved RMSE

by 0.18 Mg C/ha (with five pools: 0.05 Mg C/ha). Given

data constraints and the subsequent multiple solutions

to the estimation problem, retained rate coefficients (4,

0.43, 0.82, and 0.02) for kDPM, kRPM, kBIO, and kHUM,

respectively, are reasonably close to recommended

values. The decreased decay rate for the small DPM

pool wields a limited influence on total SOC prediction

after 10 years even for acid soils (Jenkinson et al. 1999),

much like the DPM:RPM ratio on which it depends (see

next section). In the two-pool model, the unique kL
decay rate is optimized at 0.21 yr�1, fairly distinct from

an earlier estimate of 0.33 yr�1 by Bostick et al. (2007).

This disparity might result from different treatment of

abcised material (estimated in the former study, and

neglected here), possible minor differences in the

measurement sets used for calibration purposes, and

optimization setup, but could not be ascertained.

DPM:RPM ratio in RothC

Including the DPM:RPM ratio in the set of adjustable
parameters yields a maximum effect on total SOC

prediction in the order of 0.1 Mg C/ha when the ratio is
allowed to vary from 0.25 to 3.35, and there is no

perceptible difference between cotton, groundnut, and
sorghum. The ratio has some effect during the first two
years of litter decomposition, and becomes rapidly

negligible afterwards with limited influence on RothC
(Janik et al. 2002, Diels et al. 2004, Shirato and
Yokozawa 2006). In crop management for C sequestra-

tion (excluding agroforestry), there is no need for
dynamically decoupling fast decay rates, and the

DPM:RPM ratio can be approximated by a constant
C-release rate.

Predictive performance of models

Table 4 illustrates the close predictive performance of

both models, which display the same bias pattern
including systematic SOC underestimation in the PK þ
MN (P–K–manure [MN]) level and continuous ground-

nut rotation. RMSE varies identically in both models
with some significant departures from observations in
the sorghum continuous rotation and PK þ MN

fertilizer level, and only five statistically significant
differences between model lack of fit (LOFIT) can be

reported across 20 treatments, when compared to
observations. Most discrepancies with measurements
and between models are observed in treatments involv-

ing sorghum, which is probably the experiment’s most
heterogenous crop, notably at the root system level (sole

contributor to control, NPK, NPKþD [dolomite], and
PK þ MN treatments). Beyond similarities in perfor-
mance by the two models, these statistics illustrate the

uncertainty inherent in SOC measurements. This is most
notable in the sorghum continuous rotation, where
simulated SOC fails to fall within the interval defined by

the mean and standard deviation of measurements in
1998. Drawn from 16 soil samples (4 treatments 3 4

replicates), the values (0.33 6 0.04% [means 6 SD] on a
soil mass basis) look like outliers and might have been
affected by laboratory or reporting errors. Some

replicate values have been observed in SOC measure-
ments across repetitions inside the data set, and

exploratory suppression of replicate values in the 1998

TABLE 3. Optimized model parameters and initial states used to simulate the Farako-Ba (Burkina Faso) fertility-management
experiments.

Model

Initial states (Mg C/ha) Decay rates, k (yr�1)

RMSEDPM RPM BIO HUM IOM L S kDPM kRPM kBIO kHUM kL

RothC 0.17 3.84 0.53 11.49 0.53 4.00 0.43 0.82 0.02 1.40
Two-pool 7.32 9.23 0.214 1.46

Note: Key to column headings: L¼ labile pool, S¼ stable pool, kL¼ decay rate of the labile pool; see Table 1 for key to other
abbreviations.
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continuous sorghum-rotation case allows the measured

SOC value to rise to 0.35 6 0.04% on a soil mass basis.

Overall, RothC predicted final total SOC with a relative

RMSE of 13.8% (two-pool: 14.0%), comparable with the

12.5% figure of Bostick et al. (2007).

A closer look at two-pool model predictions shows

that they are always equal or higher than RothC’s in the

range of 0–0.02% of soil mass after each C input pulse (0

to ;0.6 Mg C/ha or ;5% of current total SOC) for all

treatments with limited exceptions in the cotton–maize–

sorghum rotation, and they display two variability

modes on seasonal and decadal time scales. Seasonal

differences are an artifact of the different time resolu-

tions and the assumption that residue C inputs to the

soil occur in December (just after harvest), bringing

about a higher concordance between models at that time

of the year (Fig. 4). The tendency of the two-pool model

to predict a shallower SOC decline in the first half of the

experiment period results from both the model structure

(more rigid) and the lack of SOC measurements to better

constrain the fit during the first years. The local

inversion of the difference in the cotton–maize–sorghum

treatment (Fig. 4d) corresponds with high C input

following maize (2000) and sorghum (2001) cultivation.

Here again, the two-pool model lacks flexibility, but

responds with a noticeable inflection of the SOC loss

TABLE 4. Model performance statistics by crop rotation and fertilizer-treatment level.

Treatment�

Rotations�

CCC CMS GGG GSC SSS All

Bias statistic

RothC model

Control 0.34 1.15 �0.57 0.56 1.41 0.76
NPK 0.00 0.50 �1.90 0.02 1.11 0.26
NPK þ D �0.11 0.61 �0.74 0.33 �0.05 0.03
PK þ MN �1.08 �0.48 �1.09 �0.29 �0.74 �0.73
All levels �0.21 0.44 �1.08 0.16 0.43 0.08

Two-pool model

Control 0.53 1.39 �0.78 0.26 1.18 0.68
NPK 0.19 0.77 �2.11 �0.27 0.40 0.03
NPK þ D 0.09 0.89 �0.93 0.05 �0.25 �0.03
PK þ MN �0.82 �0.15 �1.29 �0.57 �1.52 �0.96
All levels 0.00 0.73 �1.28 �0.13 �0.16 �0.07

Root mean square error, RMSE

RothC model

Control 1.31 1.21� 1.35 0.92 1.59 1.34
NPK 1.49 1.60 2.51 1.22 1.56� 1.60
NPK þ D 1.09 1.64 0.79 0.75 1.29 1.16
PK þ MN 1.68� 0.91 1.65 1.25 1.59� 1.49
All levels 1.41 1.37 1.69 1.05 1.51 1.40

Two-pool model

Control 1.38 1.44� 1.45 0.23 1.40 0.75
NPK 1.50 1.71 2.67 1.22 1.59� 1.64
NPK þ D 1.08 1.76 0.97 0.65 1.28 1.17
PK þ MN 1.53� 0.78 1.79 1.34 2.14� 1.68
All levels 1.38 1.44 1.83 1.03 1.65 1.46

Lack of fit, LOFIT

RothC model

CTRL 1.05 5.14jj 0.87 3.50 24.28jj 34.84jj
NPK 0.38 1.07 10.64 4.06 22.27jj 38.41
NPK þ D 0.57 1.09 1.64 1.83 6.49 11.62
PK þ MN 16.64jj 0.87 3.47 1.48 25.01jj 47.47jj
All levels 18.63 8.17 16.63 10.87 78.05jj 132.35jj

Two-pool model

Control 2.43 7.54jj 1.72 1.43 18.00 31.12jj
NPK 0.50 2.53 13.11 4.09 23.25 43.49jj
NPK þ D 0.43 2.73 2.60jj 0.89 6.21jj 12.85
PK þ MN 12.94jj 0.00 4.89 3.10 47.25 68.18jj
All levels 16.30 12.80 22.32 9.51 94.70jj 155.63jj

Note: All units are Mg C/ha.
� MN¼manure.
� CCC ¼ continuous cotton, CMS ¼ cotton–maize–sorghum, GGG ¼ continuous groundnut,

GSC¼ groundnut–sorghum–cotton, SSS¼ continuous sorghum.
§ Simulated values are outside 95% confidence interval of measurement sample.
jjError in simulated values is significantly larger than error in measurements at P¼ 0.05.
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curve. At the end of the simulation period, differences

between models stand below 0.01% of soil mass (;0.3
Mg C/ha or ;3% of final total SOC).

SOC trends over contractual timescales

Figs. 4 and 5 illustrate the transient C-loss stage
associated with agricultural disturbance following
steady-state conditions (Batjes 2001, Post et al. 2001).

The characteristic effect of initial cultivation is clearly
more drastic than subsequent management practices
(Christensen 2001). Observed and modeled decay (in the

order of 25–40% over 11 years) concur with other values
from the literature. Simulated final SOC (9.9–10.5 Mg
C/ha) corresponds to values observed by Batjes (2001)

on cultivated luvic arenosols in Senegal. In a 16-year
continuous maize–cowpea control rotation in subhumid
Ibadan, Nigeria, Diels et al. (2004) observed a 50% loss
in total SOC, fast enough to require a doubling of all

decomposition-rate constants in RothC (compared to
nominal values). A similar trend is visible in our results
(30–50% increase in kRPM rates from nominal values).

Crop-residue treatments (Fig. 5: right-hand side)
illustrate the remarkable contribution of residue incor-
poration to SOC dynamics. Rather limited in cotton and

groundnut, they substantially offset C loss in cereal

systems (Table 5) with limited SOC decay of 25–33%.

Diels et al. (2004) noted that a mitigating 8.5 Mg dry

matter�ha�1�yr�1 application of crop residue (CR) would

still result in a 25% loss over the same period, which is

consistent with our prediction for the PK þ CR and

NPK þ CR treatments. This is somewhat more

moderate than our simulated decay of 36–39% (contin-

uous cotton), 32–33% (continuous groundnut), 26–33%

(continuous sorghum), 26–30% (cotton–maize–sorghum

and groundnut–sorghum–cotton) on the Farako-Ba

residue treatments, where residue input was also smaller.

Effects of inorganic fertilization were almost negligible

as reported elsewhere.

Lack of agreement between models and the 1998 SOC

measurements on sorghum might corroborate a general

tencency to underestimate initial SOC decline after

conversion to cropland (Coleman et al. 1997), notably in

tropical soils with accelerated SOM cycles (McDonagh

et al. 2001), but could also be due to errors. It is possible

that the root : shoot ratio decrease induced by fertiliza-

tion and noted on grassland by Coleman et al. (1997)

could enhance contrast between SOC trends in treat-

ments with residue incorporation and treatments with-

out.

FIG. 4. Total and stable SOC content (%) simulated by RothC and a yearly two-pool (2p) model. Error bars represent 6SD
from measurements mean.
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DISCUSSION

Hierarchies of scale in modeling meta-stable and

transient dynamics (Wu and Loucks 1995) imply that

some timescales (i.e., turnover pools) are more relevant

than others depending on the process studied. For

agricultural C sequestration, intermediate, decadal time

scales are key, emphasizing the significance of passive

pools. Yet the definition of ‘‘stabilized’’ organic matter is

not experimentally verifiable and changes as a function

of research objectives, data-set characteristics and model

formalization. For example, the proposed 50-year

turnover time for humified organic matter (HUM) is

FIG. 5. Simulated C management options for 16 rotations (4 crop treatments [a–d]34 fertilizer treatments), showing total SOC
content (%) simulated by RothC (relatively smooth curve in each panel) and by a yearly two-pool model ( jagged lines). Error bars
represent 6SD from measurements mean.

TABLE 5. Offsets in soil organic carbon (SOC) loss (%) occasioned by various practices compared to the control scenario (11-year
duration), as simulated by the two-pool model.

Crop rotation Control

Treatment

PK
fertilizer

NPK
fertilizer

NPK þ
dolomite

PK þ
crop residue

NPK þ
crop residue

PK þ
compost

PK þ
manure

Cotton continuous �40 �40� �40 �40 �37� �35� �35� �33
Groundnut continuous �40 �40� �40 �36 �32� �30� �33� �32
Sorghum continuous �42 �42� �40 �40 �33� �26� �35� �33
Cotton–Maize–Sorghum �40 �40� �39 �39 �28� �25� �35� �32
Groundnut–Sorghum–Cotton �40 �40� �40 �38 �28� �26� �33� �32

� These predictions correspond to treatments without SOC measurements.
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probably not fortuitous given the specific longevity of

data sets used for model design and fitting. Subsequent

inclusion of older material in an arbitrarily inert device

with infinite turnover (inert organic matter [IOM] in the

RothC model) could prove adequate for 20-year C-

sequestration contracts where a dynamic passive pool

(like Century’s SOM3) is not required. However,

reducing the number of pools involves a redefinition of

age classes: the stable fraction (S) in our two-pool model

is not equivalent to the sum of HUMþ IOM in RothC,

which, if DPM þ RPM þ BIO (decompostable plant

materialþ resistant plant materialþmicrobial biomass)

was interpreted as the labile fraction, might convey an

unrealistic view of plant-available C (small enough after

five years to trigger an inflection in the HUM þ IOM

curve: Fig. 4). Most two-pool models investigated so far

rely on a dynamic slow component, and our study

suggests that it can be replaced with an inert compart-

ment without loss of predictive skill. Likewise, pools

cycling on irrelevant short frequencies can be simplified

through appropriate reduction of the temporal resolu-

tion in models: operating RothC on a yearly time step

results in a quasi-instantaneous, ‘‘transparent’’ turnover

of DPM. This active pool can be eliminated in a simpler

yearly model, as it contributes little to total SOC

prediction.

Another strong, albeit less discussed incentive for

simplification is the limited availability of data, and of

information on parameter values and initial conditions,

particularly in the Tropics (Diels et al. 2004). Even in

simple SOM models, data scarcity aggravates issues of

overparameterization and equifinality, raising doubts on

the appropriateness of traditional statistical parameter

estimation procedures (Schulz et al. 1999); here ‘‘over-

parameterization’’ refers to the impossibility of identi-

fying one single ‘‘best’’ parameter set, and ‘‘equifinality’’

indicates that equivalent predictions might arise from

the use of different parameter sets (Beven 2006).

Multiple solutions can yield concordance with observed

data (Feng and Li 2001), increasing simulation uncer-

tainty across a range of boundary conditions. This

situation occurred in the variability of optimized states

and parameters in RothC (results not shown). At

equivalent predictive quality levels (below 10 kg C/ha

variation in total SOC), relocation of up to 1.5 Mg C/ha

were observed between initial HUM and IOM followed

by increases in the decay rates kHUM and kRPM,

depending on the way the optimization procedure was

initialized (starting at a nominal value vs. 0). Similar

observations were made when introducing artificial

errors in the computation of RothC’s moisture rate

modifier (b) or the omission of the HUM-to-HUM

recycling flux, with a marked tendency to relocate SOM

between HUM and IOM or vice versa, or similarly to

‘‘transfer’’ decomposability between kRPM and kBIO.

Although this plasticity (Larocque et al. 2006) takes

place between relatively comparable components in

agreement with results from sensitivity analyses, it

becomes irrelevant when using a two-pool model. Good

parameter values and good predictions are related but

not identical (Makowski et al. 2006), and many

parameter values are not required for good SOC

predictions.

Uncertain information adds to data scarcity in

support of simple models. Oblivious to this work is the

assessment of initial conditions, which bears a critical

impact on any C-sequestration project. In the controlled

conditions of Farako-Ba (Burkina Faso), agricultural

disturbance was effectively preceeded by a long-term

fallow. On potential farmer-contract areas in the

Tropics, the determination of historical land use might

prove exceedingly uncertain as farmer recollection

decreases over time and agricultural statistics are not

reliable enough to be used (e.g., as in Zimmerman et al.

[2005]). Baseline certification options for verification

agencies could include the historical documentation of

cropland expansion using low-cost satellite time series

such as Corona, Landsat with change detection, and

spatial analogue methods (McDonagh et al. 2001).

However, a substantial level of doubt will continue

and affect the translation of initial SOC measurements

into departures from a steady state, more so for complex

models where longer spin-ups (initialization processes by

which a model is allowed to reach a steady state [here,

steady distribution of SOM across model pools])—or

arbitrary decisions—might be required to allocate SOM

among numerous pools. Fitted against SOC measure-

ments and driven by biomass measurements, RothC and

the two-pool model can only predict total SOC within

;1.5 Mg C/ha (RMSE) of its actual value. This error

will increase when predictions are made with uncertain

initial conditions, parameters, and driving variables.

Methods to further quantify and reduce uncertainty in

operational verification frameworks include stochastic

models, data assimilation, geostatistics, and remote

sensing (Bostick et al. 2003, Zimmerman et al. 2005,

Liu et al. 2006, Jones et al. 2007, Mooney et al. 2007).

Conclusion

There are multiple uncertainties in our understanding

of SOC dynamics at various heuristic levels: uncertain

data (from diverse collection protocols and analysis

standards), uncertain information (e.g., relative to

steady or transient states), and uncertain knowledge

(formalized along unverifiable concepts). The ‘‘modeling

the measurable or measuring the modelable’’ paradigm

(Motavalli et al. 1994) hints at the large level of

uncertainty affecting both measurements and models,

and at constraints occasioned by data paucity.

The nested, hierarchical nature of SOM turnover

(Christensen 2001) can be discretized into custom

compartments, the individual importance of which

depends on the process studied and its relevant

timescales. For putative 20-year C-sequestration con-

tracts, interannual to interdecadal dynamics are key.

Faster (seasonal) and slower (semicentennial and
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beyond) rates can be approximated by constants as

instantaneous and infinite decay, representing the

asymptotes of the ‘‘hockey-stick’’ exponential decay

function (Feng and Li 2001).

A discrete, yearly, two-pool SOC model composed of

one stable (nearly inert on contractual timescales) and

one labile compartment successfully predicted C decom-

position in a controlled long-term fertilization trial in

subhumid Burkina Faso. In hindcast mode and after

parameter estimation, it performed equally well as

RothC version 26.3 for total SOC simulation (þ0.2%

difference in RMSE), and exhibited comparable predic-

tive skill on independent treatments, including those

with residue incorporation. RothC sensitivity analysis

(Janik et al. 2002) and exploratory optimization

provided a heuristic base for this reduction approach.

At comparable predictive levels, a simpler structure

should mitigate risks of equifinality and resulting

simulation uncertainties.

With the benefits of simplification, including a better

understanding of the system and various derived

applications including upscaling (Brooks and Tobias

1996), the two-pool model features an adequate level of

complexity for spatial integration over patchy contract

areas on relevant time spans. In fact, if statistical

appraisal cannot positively identify outstanding perfor-

mance across a set of models (e.g., Smith et al. 1997),

then other evaluation criteria, including simplicity,

should be considered. Unavoidable residual errors

arising from model structure, limited baseline informa-

tion, and data quality and quantity will be handled more

efficiently in a light, stochastic data assimilation

framework involving the use of remote sensing and

complementary in situ measurements.
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