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Abstract The importance of using tissue-specific promoters in the genetic transformation 

of plants has been emphasized increasingly. Here, we report the isolation of a novel seed-

specific promoter region from peanut and its validation in Arabidopsis and tobacco seeds. 

The reported promoter region referred to as groundnut seed promoter (GSP) confers seed-

specific expression in heterologous systems, include putative promoter regions of the 

peanut (Arachis hypogaea L.) gene 8A4R19G1. This region was isolated, sequenced and 

characterized using gel shift assays. Tobacco transgenics obtained using binary vectors 

carrying uidA reporter gene driven by GSP and/or CaMV 35S promoters were confirmed 

through PCR, RT-PCR and computational analysis of motifs which revealed the presence 

of TATA, CAAT boxes and ATG signals. This seed-specific promoter region successfully 

targeted the reporter uidA gene to seed tissues in both Arabidopsis and tobacco models 

systems, where its expression was confirmed by histochemical analysis of the transgenic 

seeds. This promoter region is routinely being used in the genetic engineering studies in 

legumes aimed at targeting novel transgenes to the seeds, especially those involved in 

micronutrient enhancement, fungal resistance, and molecular pharming.  

Keywords: Floral dip; Arabidopsis; tobacco; gel shift assay; legumes; promoter; seed 

protein; GUS 

Abbreviations: EMSA-Electro Mobility Shift Assay; GUS- β- glucuronidase; GSP- 

Groundnut Seed promoter; CaMV- Cauliflower mosaic virus 

Key message: This research deals with the isolation and characterization of a legume 

seed-specific promoter region, which has been validated, in Arabidopsis and tobacco 

model systems for its seed-specific activity. 
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Introduction 

Genetic engineering has tremendous potential to transform global agriculture by providing 

hitherto unavailable traits into the crop gene pool. For stable expression and inheritance of 

the transgene, the expression cassette consists of three important components: promoter, 

target gene and termination signal, of which, the promoter is essential to control the 

expression of the transgenes, besides providing valuable insights into their over-

expression or silencing in response to the external stimuli. Till date, the most commonly 

employed promoters for developing transgenic plants for various traits include the 

constitutive promoters of the genes like 35S of the cauliflower mosaic virus (CaMV 35S) 

[1] or the maize ubiquitin promoter [2, 3]. However, constitutive expression of several 

transgenes have been reported to be associated with higher metabolic costs resulting in 

interference with the plant metabolic pathways leading to undesirable pleiotropic effects in 

transgenic plants [4, 5]. Hence, the use of inducible or tissue-specific promoters has been 

recognized to be an important component of plant genetic engineering to target expression 

of the introduced genes in the desired tissues or under specific conditions which not only 

prevents the metabolic burden to the host plant, but to a certain extent also safeguards 

against the regulatory concerns. In recent years, several well-characterized gene promoters 

have become available for transgene expression in plants [6].  

A tissue-specific promoter is a promoter that has activity in only certain cell types. 

Accordingly, elements of the natural promoter region necessary for obtaining the required 

level of gene expression while retaining tissue-specificity should be known [7]. Therefore, 

choosing the correct promoter, especially a tissue-specific promoter, is a major step 

towards achieving the desired transgene expression. For example, the use of tissue-

specific promoters in developing RNAi constructs is critical to augment gene-silencing 

strategies to avoid non-target effects on other processes. Moreover, synthetic promoters 
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designed with required combination of promoter motifs provide new avenues of research 

for tailored gene expression.  

Endogenous promoters cloned from plants could direct gene expression to specific 

tissues viz., root, green tissue, seed or nodule etc., thereby avoiding transgene silencing 

often associated with the non-plant origin promoters. The real benefit of using an 

endogenous promoter is that presumably the presence of matching transcription factors so 

the transcription patterns can be better anticipated. In some cases, the use of endogenous 

regulatory regions with particular developmental expression patterns has proven to 

mitigate the problem [8, 9]. 

Moreover, use of tissue-specific promoters also addresses the biosafety concerns 

related to non-specific expression of target genes in the transgenics. Model legumes are 

being rapidly developed as experimental systems to pursue a number of important 

biological questions unique to these plants using molecular tools including genomics and 

transgenics.  Many achievements have been made and studied extensively to regulate the 

target gene expression using seed-specific promoters from the model systems during the 

seed development [10]. Using seed-specific promoters of legume origin has a potential to 

develop transgenic legume technologies for specific biotic constraints such as Aspergillus 

flavus invasion and resulting aflatoxin contamination, quality traits such as grain/seed 

biofortification, besides seed and oil quality improvement. It is preferable to utilize seed-

specific promoters for these applications so as to limit the presence of such non-traditional 

products in the seed, and also to minimize the metabolic costs in other plant parts. 

Here, we report the isolation and characterization of a novel promoter region of 

legume origin- groundnut seed promoter (GSP). We cloned and sequenced the upstream 

regulatory region of 8A4R19G1 gene [11] using gene-specific primers and tested its 

tissue-specific expression pattern by sub-cloning into a binary vector upstream of uidA 
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(GUS) gene encoding β-glucuronidase. The expression pattern of the cloned promoter 

region was analyzed in transgenic tobacco and Arabidopsis plants by histochemical and 

fluorometric analysis of GUS and Electro Mobility Shift Assay (EMSA).  

Materials and Methods 

Bacterial and Plant Material 

Escherichia coli strain DH5α was used for cloning and propagation of the plasmids and 

disarmed Agrobacterium tumefaciens strain C58 was used for plant transformation. E. coli 

and A. tumefaciens were grown in LB and YEB media [12] at 37 
0
C and 28 

0
C, 

respectively, with appropriate antibiotics. Seeds of peanut (Arachis hypogaea L. var. 

JL24) were sown and maintained in pots in the greenhouse. Genomic DNA was isolated 

from leaf tissue of one-month-old plants using the CTAB method [13].  

Isolation of Groundnut Seed Promoter Fragment 

Oligonucleotide gene-specific primers for 8A4R19G1 gene (GeneBank accession no. 

DQ450071) were synthesized using the Primer 3 software [14], and used for amplifying 

the gene from the genomic DNA isolated from peanut and sequenced. Upon confirmation 

of the sequence obtained using BLAST analysis, a 523 bp of 5’ flank upstream sequences 

of the gene was isolated using Genome Walker Universal Kit (DSS TaKaRa Bio India Pvt. 

Ltd.) from the peanut genomic DNA and sequenced. Based on the obtained sequence, 

oligonucleotide primers GSP FP  5’-AAC CGG ATC CAG CTT TAA TAG CAA CTA 

GGC-3’ and GSP RP 5’- AACC GGA TCC GGG AAA CAG CAA CTG CTA-3’ (Table 

1) were synthesized and used to amplify the putative promoter region (GSP) using 

polymerase chain reaction (PCR). The PCR reactions were carried out in a total volume of 

25 µl that contained 200 ng of template DNA, 10 mM Tris-HCl (pH 8.4), 50 mM KCl, 1.5 

mM MgCl2, 0.2 µM each of forward and reverse primer, 200 µM of each dNTP, and 1.0 U 
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of Taq DNA polymerase (Invitrogen BioServices India Pvt. Ltd).  PCR was performed in 

a programmable thermal cycler (Eppendorf) with initial denaturation at 95 
0
C for 5 min 

followed by 35 cycles of denaturation for 1 min at 95 
0
C, annealing for 1 min at 59.1 

0
C 

and extension for 1 min at 72 
0
C, with a final extension for 10 min at 72 

0
C. The amplified 

product (~523 bp) was fractionated on 1 % agarose gel and purified using the Nucleospin 

Gel elution kit (Bioserve Biotechnologies, India Pvt. Ltd.). Eluted bands of the PCR 

product were ligated into pCR-Blunt-II-TOPO vector by using Zero Blunt® TOPO® PCR 

Cloning Kit (Invitrogen BioServices India Pvt. Ltd.) followed by blue-white selection 

[12]. Plasmids isolated from the white colonies were confirmed by restriction digestion 

analysis using EcoRI and/or BamHI followed by sequencing. Orientation of the promoter 

fragment was confirmed by restriction digestion with SphI and HincII. The sequence has 

been submitted with NCBI GenBank as HM215006. 

Sequence Analysis 

Nucleotide sequences obtained after sequencing were analysed using NCBI BLAST 

analysis [15] and ‘gene tool’ softwares such as Gibb’s sampling [16], Melina software 

[17] and MEME (Multiple Expectation Maximisation for Motif Elicitation [18, 19] for 

presence of the promoter motifs. The GSP promoter sequence was also analyzed using 

various database search programs such as PlantCARE database [20, 21] and Genomatix- 

MatInspector softwares based on PLACE database [22].  

Construction of Plant Expression Vectors  

To confirm promoter activity in the plant system, a binary vector pPZP200>GSP:GUS 

(Fig. 1b) was constructed by replacing the single CaMV 35S promoter of 

pPZP200>35S:GUS (Fig. 1a) with the GSP promoter region of peanut at the BamHI site. 

Subsequently, the complete cassette containing uidA gene driven by the GSP promoter 
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region was subcloned into the binary vector pCAMBIA2300 using EcoRI and HindIII 

restriction sites, thereafter referred to as pCAMBIA2300>GSP:GUS (Fig. 1c). Restriction 

with SphI enzyme was done to ensure that the promoter was cloned in correct orientation 

upstream of the uidA gene. These recombinant binary vector plasmids, 

pPZP200>35S:GUS and pCAMBIA2300>GSP:GUS were mobilized into disarmed A. 

tumefaciens strain C58 after confirmation with restriction analyses, and glycerol stocks 

stored at -80 ºC until further use.  

Preparation of the Bacterial Culture for Agro-infection  

Primary culture of A. tumefaciens strain C58 harbouring the binary plasmids was prepared 

by inoculating single colony of Agrobacterium in 20 ml YEB medium (with 50 mg/l each 

of kanamycin and rifampicin for pCAMBIA2300>GSP:GUS and 50 mg/l spectinomycin 

for pPZP200>35S:GUS), and grown overnight at 28 
0
C at 200 rpm. For floral dip 

transformation of Arabidopsis, the overnight culture (~10 %) was added to 20 ml of fresh 

medium with the same antibiotic and grown to the stationary phase (O.D600~2.0). Cells 

were harvested by centrifuging at 5500 g for 20 min and the pellet was re-suspended in 

0.5X MS [23], 5 % sucrose and 0.05-0.1 % teepol® to obtain the desired density (O.D600~ 

2.0). For tobacco transformation, 5 ml of the overnight-grown culture was pelleted at 5500 

g for 10 min, the supernatant discarded, and the pellet was resuspended in 0.5X MS so as 

to dilute it to an O.D600 ~ 0.5. This suspension was used for the co-cultivation of tobacco 

leaf discs using Agrobacterium-mediated transformation.   

Production of Transgenic Plants of Arabidopsis 

Seeds of Arabidopsis thaliana (Col-1) were sown in sand:soil (1:1) mixture in 4 cm pots 

and kept in the culture room until germination. Plants at the 4-leaf stage were transferred 

to the greenhouse and irrigated every 4 days until inflorescences appeared. Plants with 
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inflorescences of about 5 cm were transformed with suspension cultures of A. tumefaciens 

harbouring the binary plasmids carrying GSP or CaMV 35S promoter fragments, using 

floral dip protocol of Clough and Bent [24]. Plants were inoculated by direct drop-by-drop 

inoculation to every flower by using a micropipette [25] and covered with plastic bags and 

incubated in dark for 10-24 h. Inoculation with the Agrobacterium was repeated twice at 3 

d intervals and the seeds collected when all the siliques dried.  

Production of Transgenic Plants of Tobacco 

Tobacco (Nicotiana tabacum L., Var. Xanthi) seedlings were grown in Magenta boxes on 

0.5X MS media under sterile controlled environment condition for two weeks followed by 

transfer to the greenhouse. Agrobacterium-mediated transformation of tobacco was carried 

out using standard leaf-disc method [26] with some modifications. The fully expanded 

leaves were surface sterilized by two-three sequential treatments with 70 % ethanol for 30 

sec followed by wiping with sterile tissue paper. These were further washed with 15 % 

clorox solution for 10 min, and then washed thrice with sterile water. The leaves were then 

cut with a sterile leaf disc borer and cultured in 9 cm diameter plastic petri dishes 

containing ~20 ml of MS4 medium that contained MS medium [23] supplemented with 10 

M BAP, 0.M NAA, 30 g/l sucrose and 8 g/l Bacto-agar (HiMedia Laboratories Pvt. 

Ltd., India) at pH 5.8. The leaf discs were dipped in Agrobacterium inoculum that 

facilitated the adhesion of bacteria to the cut ends of the leaves and then the leaf discs 

were transferred to the same media with their abaxial surface in contact with the medium. 

10-12 co-cultivated leaf disc explants were plated per petri plate, sealed with parafilm and 

incubated at 26 ± 1 
0
C under continuous light of 100 µEm

–2
s

-1
 for 72 h in a 16:8 light/dark 

regime. At the end of this period, explants were transferred onto MS4C medium (MS4 

medium supplemented with 250 mg/l cefotaxime) and sub-cultured onto fresh MS4C 

medium every 2 wk interval until shoot regeneration. The explants containing regenerated 
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shoot buds with the plasmid pCAMBIA2300>GSP:GUS construct (containing the nptII 

gene) were subjected to selection with 50 mg/l kanamycin. The explants were sub-cultured 

onto fresh MS medium for 35- 40 d at 2 wk intervals for shoot elongation and rooting. The 

rooted shoots were transferred to the pots containing autoclaved sand and soil (1:1) 

mixture and maintained in a containment glasshouse until flowering and seed set.  

Molecular Characterization of Putative Transgenic Plants 

Genomic DNA was isolated from the leaves of T0 and T1 generation transgenic plants of 

tobacco by using the modified CTAB method [13]. PCR was set-up in a total volume of 

25 μl containing 10-20 μg of template DNA for amplification of the 1213 bp uidA gene 

fragment using primers GusFp 5’-TGA TCA GCG TTG GTG GGA AAG-3’ GusRp 5’-

TTT ACG CGT TGC TTC CGC CAG-3’. The PCR conditions included initial 

denaturation for 5 min at 95 
0
C, followed by 35 cycles of denaturation for 1 min at 95 

0
C, 

annealing for 90 sec at 58.8 
0
C and extension at 72 

0
C for 90 sec followed by final 

extension for 10 min at 72 
0
C. PCR products were fractionated on 1% agarose gel. 

Similarly, RT-PCR analysis was carried out to confirm integration of the uidA gene using 

the Thermoscript RT-PCR system (Invitrogen, Carlsbad, CA, USA) on total leaf RNA 

isolated using the TRIzol® reagent (Invitrogen, USA) and from seed tissues using RNA 

isolation kit (MACHEREY-NAGEL, Germany). The primer sequences for the GUS 

transcripts were same as those described for the PCR analysis. 

Electrophoretic Mobility Shift Assay (EMSA) 

Nuclear proteins were isolated from the seeds of peanut using NE-PER Nuclear and 

Cytoplasmic Extraction Reagent Kit (Thermo Fisher Scientific India Pvt. Ltd., Mumbai, 

India). PCR amplified product of promoter fragment of GSP was end-labelled with biotin 

3' End DNA Labeling Kit (Thermo Fisher Scientific India Pvt. Ltd., Mumbai, India) and 
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used as a probe. In vitro DNA-protein binding assay was carried out as described by Light 

Shift Chemiluminescent EMSA kit (Thermo Fisher Scientific India Pvt. Ltd., Mumbai, 

India) by combining solutions of freshly isolated nuclear proteins (~5-10 g) and 3’ biotin 

labelled nucleic acid fragments. The resulting binding mixtures were fractionated by 

electrophoresis on 0.8% agarose gel for the GSP fragment. These were then transferred to 

Hybond-N+ nylon membrane (GE Healthcare, New Jersey, USA) and developed 

according to manufacturer’s instructions.  

GUS assays 

 The harvested seeds of tobacco and Arabidopsis were subjected to GUS assays using X-

gluc (5-bromo-4-chloro-3-indolyl- -glucuronide in 20 mM sodium phosphate buffer (pH 

7.2), 0.1% Triton X-100, 10 mM EDTA and 5 mM potassium ferrocyanide) as the 

substrate with overnight incubation at 37 
0
C [27]. To confirm the -glucuronidase enzyme 

specific activity in Arabidopsis and tobacco transformants, GUS assay was carried out in 

different tissues like seeds, maternal tissues, cotyledons, stem, root, leaves and flower. For 

the GUS assay, tissue samples were collected in 1.5 ml eppendorf tubes and treated with 

500 l GUS assay solution followed by incubation for 16-24 h at 37 
0
C. While the tissues 

were cleared with serial transfers in 70% alcohol, the final samples showing blue 

coloration were photographed. 

The fluorometric assay for specific GUS enzyme activity was quantified by measuring 

the hydrolysis rate of the fluorogenic substrate 4-methylumbelliferyl -D-glucuronide 

(MUG) (HiMedia Laboratories Pvt. Ltd.) as earlier [28]. Standards were prepared with 

different concentrations, i.e., 1 mM, 1 M and 100 nM of 4-methylumbelliferone sodium 

salt (4-MU; HiMedia Laboratories Pvt. Ltd.) in 0.2 M sodium carbonate. 2 mM of 4-MUG 

was added to each sample as the substrate.  
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Seed extracts prepared with GUS extraction buffer (50 mM sodium phosphate, pH 7.0; 

10 mM -mercaptoethanol; 10 mM EDTA and 0.1% Triton X-100) were used for 

histochemical analysis. Plant materials (seeds, flower and leaf) were vigorously ground to 

a finely pulverized powder with a pestle and mortar under liquid nitrogen in 500 L GUS 

extraction buffer. The extract thus obtained was centrifuged at 8,000 g for 5 min at 4 
0
C. 

The supernatant was recovered and, 50 L of extract was added to 950 ml of 4-MUG 

assay buffer (2 mM), to initiate the reaction. The reaction was stopped by adding 200 l of 

the reaction to 1.8 ml of 0.2 M Na2CO3 stop buffer at intervals of 0, 30, 60 min, and 

overnight, and fluorescence measured using a DyNA Quant 200
TM

 fluorometer (Hoefer 

Scientific Instruments, San Francisco, CA), following the manufacturer’s instructions. The 

protein concentrations of each sample were determined [29] with a spectrophotometer 

(Shimadzu, UV-1650PC) at OD595 using Quick Start Bradford Protein Assay kit (BioRad), 

and the GUS enzyme activity was expressed as pmoles of 4-methylumbelliferone (MU) 

produced per mg protein per min. 

Results 

Sequence Analysis of GSP Fragment 

Based on the results of blast analysis using nucleotide-nucleotide homology, the GSP 

promoter fragment sequence revealed similarity with aquaporin genes/tonoplast intrinsic 

proteins of various organisms and plants. The in silico promoter analysis revealed 

presence of major motifs (Table 2) which confer seed-specific expression. The GSP 

promoter sequence contained transcription initiation site and some basic promoter 

elements such as two CAAT-boxes at -287 to -283 and -233 to -229 positions and TATA-

box (2 copies) at -469 to -462 and -479 to -474. Computational analysis of GSP sequence 

revealed many important promoter motifs including two AT rich elements at -470 to -462 
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and -493 to -485 positions and TGCA motif at 3 locations (-54 to -51, -150 to -147 and -

285 to -282). The RY repeat element (CATGCA) was found at -152 to -147, whereas the 

G box (CACGTG) was absent. A W-box element TGACT that has been identified for its 

role in wound-induced expression was also found at -101 to -97. Similarly GCN4 motif 

was present at -107 to -101 positions in the GSP promoter fragment. These observations 

indicated that the presence of multiple copies of the seed-specific promoter motifs in the 

GSP fragment may be responsible for its seed-specific promoter activity. 

Transformation Studies in Tobacco  

All the tobacco shoots transferred to half MS medium rooted well and were acclimatized 

followed by their transfer to the contained greenhouse. The plants were normal in their 

morphology and were comparable to the untransformed tobacco plants for all phenotypic 

characters. 

Molecular Characterization of Putative Transgenics 

A total of 25 putative transgenic tobacco plants were developed and transferred to soil. 

The transgenic nature of the primary transformants was confirmed with PCR using the 

GSP as well as uidA gene-specific primers. Majority of the primary transformants showed 

the presence of an expected 1213 bp uidA gene amplicon (Fig. 2). These PCR-confirmed 

transgenics in the T1 generation were also confirmed for expression of the uidA transgene 

using the semi-quantitative RT-PCR analysis that proved the gene integration and stable 

expression over generations (Fig. 3).  

Gel Shift Assay (EMSA) 

To examine binding of the nuclear proteins to the regulatory elements of the peanut seed 

(GSP), gel mobility shift assay was carried out using nuclear extracts from different plant 

tissues. The biotin labelled PCR amplicon of GSP was used as DNA probe. The EMSA of 
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GSP fragment exhibited stronger affinity showing distinctly shifted bands with peanut 

seed nuclear extracts, compared to the nuclear extracts of other tissues and GSP promoter 

DNA probe alone (Fig. 4, Lanes 2, 3, 4).  

Histochemical and Fluorometric GUS Analysis  

UidA gene expression was observed in both Arabidopsis and tobacco transformants 

obtained following the Agrobacterium floral dip and modified leaf disc methods, 

respectively. While, the seeds of the untransformed controls did not take up the 

histochemical stain, transgenic seeds showed a distinct blue colour. Moreover, a localized 

GUS expression was observed in seeds of transgenic Arabidopsis and tobacco transformed 

with pCAMBIA2300>GSP:GUS and pPZP200>35S:GUS constructs (Fig. 5b-c,e-f), 

whereas no GUS staining was observed in other plant parts such as leaves, roots, and 

shoots  

The fluorometric analysis of leaves, flower and seeds from the transgenic tobacco 

plants in T1 generation along with their untransformed counterparts indicated fluorescence 

activity in transgenic tobacco plants (Fig. 6 a, b). The histochemical and fluorometric 

results clearly confirmed the observations of gel retardation assays, thereby indicating that 

the uidA gene driven by GSP promoter was specifically expressed in the seed tissues of 

the transgenic Arabidopsis and tobacco plants. 

Discussion 

Tissue-specific expression of a gene is regulated by the presence of specific motifs in 

DNA sequence of the promoter region. In the present study, we observed two TATA 

boxes and one CAAT box in promoter region of groundnut seed-specific promoter (GSP). 

These results are in accordance with the previous study, where the number and spacing of 

TATA box elements have been reported to be essential for high levels of transcription 
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initiation in phaseolin gene in the developing embryos [55], potentially affecting the 

tissue-specific expression [56]. Interestingly, GSP promoter fragment contained CTCTT 

motif at -49 to -45 position that might have contributed to the seed-specific expression. A 

nodule lectin gene promoter reportedly also had CTCTT motif instead of TATA and 

CAAT elements [50].  

The sequence analysis of the GSP promoter region fragment revealed the presence of 

several seed-specific promoter motifs such as A/T rich motifs that are important for 

binding of transcriptional factors and also required for seed-specific expression [35]; RY 

repeat element (or Legumin box), which is also a sequence motif required for seed-

specific expression [42]; AGCCCA motif, which is a sequence motif required for 

transcriptional regulation and seed-specific expression [44]; TACACAT motif with one 

base to mismatch which is responsible for activating seed-storage protein expression [45]; 

E-box (CANNTG) in presence of other seed-specific promoter motifs which help in the 

activation of seed-specific promoters for heterologous expression [36], and ACGT motif 

that is also required for seed-specific expression [34].   

The RY repeat element (CATGCA) was found at -152 to -147 positions in GSP 

fragment. This RY element, (CATGCA (C/T) [57] is widely distributed in seed-specific 

promoters of monocots and dicots, including the legumin and USP genes of Vicia faba 

[58, 59], the napin genes of Brassica napus [60,  61], and the maize C1 gene [62] and are 

also known as the legumin box [63] or the Sph element [62]. These conserved RY-repeats 

of seed-specific genes are important regulatory factors for seed and plant development 

[41], and is also one of the important conserved motif in seed-storage proteins of three 

plant families including Brasssicaceae, Fabaceae and Poaceae [64], besides being present 

in promoter (-500 to -1000) regions of genes regulating the embryonic pathways [65].  
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It has also been reported that CATG-containing motif is enriched in early/transient 

genes in seed development and CATG interacting factors may control physiological 

responses directly affecting pathogen viability, such as camalexin biosynthesis and cell 

wall modifications [52].  

In the GSP fragment, AACA motifs were present at -179 to -173, -412 to -406 and -

457 to -451 positions. Previous report by Takaiwa et al. [33] also details the importance of 

AACA motifs in driving high level of gene expression in tobacco endosperms. Similarly, 

two AT rich regions that were observed in GSP fragment regulated seed-specific 

expression, the CATGCAT/A sequence did not affect the concavallin expression in seeds 

[43].  

In the present study, we also found TGAG occurring twice in groundnut seed (GSP) 

promoter region. TGAC-like motifs, including a TGAGTCATCA region in a 22 bp have 

also been observed to play a crucial role in seed-specific expression of a pea seed lectin 

[54]. Similarly, the conserved GCN4 motif that has been reported to be involved in 

controlling seed-specific expression in a number of seed-storage protein genes [46] was 

also present at -107 to -101 in the GSP fragment.   

The blast analysis of GSP fragment revealed similarity with many tonoplast intrinsic 

proteins (TIP’s) and aquaporin genes. Aquaporin -TIP is specifically expressed in the 

membrane of protein storage vacuoles in seeds of many plant species [66]. Studies 

showing the late accumulation of -TIP during seed maturation and its disappearance 

during germination and seedling growth [67-69] suggest that the protein may play a key 

role at the early stages of seedling growth.  Rice TIP expression patterns under various 

abiotic stress conditions including dehydration, high salinity, abscisic acid (ABA) and 

seed germination were investigated by real-time PCR analysis, where OsTIP1s (OsTIP1;1 

and OsTIP1;2) were found to be highly expressed during seed germination, whereas 
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OsTIP3s (OsTIP3;1 and OsTIP3;2) specifically expressed in mature seeds with a decrease 

in expression levels upon germination [70]. Besides, the TGACG motif, which is a W box 

element important for high-level gene expression of Agrobacterium tumefaciens T-DNA 

octopine synthase (ocs) [71], nopaline synthase (nos) [72], CaMV 35S [73], and rice 

GOS2 [74] was also found to be present within the groundnut seed-specific promoter 

(GSP). 

Based on the above results and the literature available, it is indicated that groundnut 

seed-specific (GSP) promoter fragment possess promoter activity and promote the seed-

specific expression of heterologous gene. The molecular characterization studies such as 

PCR and RT-PCR analyses of the tobacco transgenics containing pCAMBIA2300>GSP: 

GUS in T0 and T1 generations confirmed the stable integration of the transgene (uidA) 

over generations.  The presence of three TGCA motifs, observed at -54 to -51, -150 to -

147 and -285 to -282 positions in the GSP fragment is crucial since the number and 

spacing of TGCA motif reportedly affect the binding of nuclear DNA binding protein [53] 

which substantiate the strong binding affinity of the promoter with the seed nuclear 

proteins. 

The histochemical staining of seeds of stable transgenic Arabidopsis and tobacco 

plants carrying GSP-uidA construct further support the tissue specificity of this promoter 

region. These results are in line with the previous reports where uidA expression was 

reported in the developing seeds of transgenic tobacco within 12–21 days after flowering 

[75]. Quantitative fluorometric studies indicated a higher GUS activity in the seeds of 

transgenic plants when compared to the untransformed plants.   

Our study attempted isolation, cloning and sequencing of a groundnut seed-specific 

promoter region from peanut. In silico characterization of the promoter region was done 

followed by functional characterization in the heterologous model plant Arabidopsis 
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thaliana and tobacco plants. The sequence of the groundnut seed-specific promoter region 

was deposited in GenBank with accessions HM 215006.  

In conclusion, the seed-specific sequence motifs, binding assay with nuclear proteins 

of seeds by gel shift data and molecular characterization followed by uidA reporter gene 

expression studies of the transgenic Arabidopsis and tobacco plants support the potential 

of the groundnut seed promoter for seed-specific transgene expression. This seed-specific 

promoter region successfully targeted the transgene to the seed tissues that was confirmed 

by histochemical and fluorometric analysis and also by electro mobility shift assay. This 

promoter sequence can be potentially used for modification of seed phenotypes in 

agronomically important crops, further promoter function characterization might be useful 

to elucidate its role for  enhanced transcriptional activity. 
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Table 1 Primers used this study 

Primer  Sequence Amplicon Size 

GSP FP 

GSP RP 

5’-AAC CGG ATC CAG CTT TAA TAG CAA CTA GGC-3’ 

5’- AACC GGA TCC GGG AAA CAG CAA CTG CTA-3’ 

 

523 bp 

GusFp 

GusRp 

5’-TGA TCA GCG TTG GTG GGA AAG-3’ 

5’-TTT ACG CGT TGC TTC CGC CAG-3’ 

 

1213 bp 
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Table 2 Putative cis-acting regulatory elements identified by in silico analysis in the 

GSP sequence  

cis-Element Consensus Motif present in 

GSP sequence 

Motif position Reference 

Frequent elements     

TATA box TATAWAWA 

TATA 

TATAAATA 

TATATA 

-469 to -462 

-479 to -474 

[30] 

CAAT box CAAT ATTG 

Complimentary 

-287 to -283 

-233 to -229 

[30] 

Seed-specific elements     

AACA motif, endosperm- 

specific 

AACAWDD AACAAGA 

AACATTT 

AACAAAG 

-179 to -173 

-412 to -406 

-457 to -451 

[31-33] 

ACGT-containing element 

endosperm-specific (ACE) 

NACGTN 

(TGCA 

complimentary) 

GTGCAG 

ATGCAG 

TTGCAG 

-53 to -50 

-149 to -146 

-284 to -281 

[31,34] 

E-box, storage-protein, oilrape CANNTG CAAGTG 

CAAGTG 

CAGGTG 

CAGTTG 

-297 to -292 

-203 to -198 

-58 to -53 

-25 to -20 

[35,36] 

GCN4 motif, endosperm-

specific, seed, storage-protein 

 

TGAGTCA TGAGTGT -107 to -101 [31,32,37] 

SEF4 binding site, 

soybean embryo factor, seed 

RTTTTTR ATTTTTG 

GTTTTTG 

-83 to -77 

-257 to -251 

[38] 

SEF1 binding site, 

soybean embryo factor, seed 

ATATTAWW ATATTATA -436 to -429 [38] 

Sh1 box, maize TGAATG TGAATC -207 to -202 [39] 

RY element CATGCA CATGCA -152 to -147 [40-42] 

AT rich region AT rich region ATATAAATA 

AAATTAAAT 

-470 to -462 

-493 to -485 

[35,43] 

Motif required for 

transcriptional regulation and 

seed-specific expression 

AG/CCCCA AGCTCTT 

AGCTCCA 

-51 to -45 

-305 to -299 

[44] 

Motif responsible for activating 

seed-storage protein expression 

with one mismatch 

TACACAT 

 

complimentary 

ATGTGTA 

TACACTG 

TACACTC 

TACAGAT 

ATGTTAA 

ATGTCTT 

-213 to -207 

-277 to -271 

-475 to -469 

-141 to -135 

-173 to -167 

[45] 

Cis element involved in seed-

specific expression 

AAGAA AAAGAA -335 to -330 [34,46] 

Other elements 

ABRE–GARE elements 

Binding core bZIP, ABA 

response 

GARE 

ACACNNG 

TAACAAA/G 

CTGGTGT 

(complimentary) 

TAACAAG 

-243 to  -250 

 

-180 to -174 

[47,48] 

Pyrimidime box TTTTTCC TTTTTGGC 

TTTTTGC 

TTTTGG 

-82 to -75 

--256 to -250 

-362 to -357 

[49] 

CTCTT CTCTT CTCTT -49 to -45 [50] 

W-box element (wound 

induced expression) 

TGACD TGACA 

TGACT 

-63 to -60 

-101 to -97 

[51,52] 

TGCA  motif TGCA TGCA -54 to -51 

-150 to -147 

-285 to -282 

[53] 

CATG containing motif CATG CATG -152 to -149 [52] 
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TGAC like motif TGAGTCATC

A 

TGAGTCTGAC 

TGAGGCTTCC 

-107 to -98 

-380 to -371 

[54] 
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Figure legends 

Fig. 1 Schematic representation of T-DNA region of the binary vector constructs used in 

this study (a) pPZP200>35S:GUS:polyA, (b) pPZP200>GSP:GUS:polyA, (c) 

pCAMBIA2300>GSP:GUS:polyA. 

Fig. 2 PCR analysis of the genomic DNA of T1 generation transgenics of tobacco 

transformed with the binary plasmid pCAMBIA2300>GSP:uidA:polyA amplifying 

the 1213 bp fragment of uidA (GUS) gene. Lane B-Blank; Lane C-untransformed 

tobacco control; +-positive control plasmid as indicated in the figure. 

Fig. 3 Semi quantitative RT-PCR of transgenic tobacco plants expressing uidA gene 

driven by legume seed specific promoters. Lanes 1, 3, 5, 7 and 9 carry cDNA from 

seeds of pCAMBIA2300>GSP:GUS; Lanes 2, 4, 6, 8 and 10 carry cDNA from 

leaves of pCAMBIA2300>GSP>GUS;  Lane 11 carries 100 bp ladder; Lane 12 has 

plasmid as positive control. B and C represent blank and untransformed control. 

Fig. 4 Electro Mobility Shift Assay (EMSA) for the confirmation of promoter region 

from peanut-Groundnut seed-specific promoter (GSP) binding assay on 0.8% 

agarose gel. Lane 1 contains unbound GSP fragment, Lanes 2-4 carry GSP 

fragment bound with peanut seed nuclear extracts in presence of EDTA and KCl, 

Lanes 5-7 carry GSP fragment bound with leaf, immature seed, and testa extracts, 

respectively, Lane 8 is blank and the Lane 9 carries the 100 bp ladder.  

Fig. 5 Validation of seed-specific promoters in transgenic Arabidopsis (a-c) and tobacco 

(d-f); (a, d) Histochemical GUS assay in untransformed control showing negative; 

(b, e) GUS expression in transgenic seeds carrying the plasmid pPZP200>35S: 

GUS: polyA; (c, f) GUS expression in transgenic seeds carrying the plasmid 

pCAMBIA2300>GSP:GUS:polyA. 

Fig. 6 Expression patterns of transgenics expressing seed-specific promoter GSP based 

on GUS activity using MUG assay (a) Comparative expression patterns in seed, 

leaf and flower tissues; (b) Mean GUS activity ± SE measured at different time 
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intervals (30 min, 60 min and overnight assay) with five replicates in the seeds of 

independent transformants with promoter construct (GG=GSP).  

 














