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Abstract 

Induced resistance was studied in three sorghum genotypes (IS2205, ICSV1 and ICSV700) against Chilo partellus 

infestation and jasmonic acid (JA) and salicylic acid (SA) application. The activity of plant defensive enzymes 

[peroxidase (POD), polyphenol oxidase (PPO), superoxide dismutase (SOD), and catalase (CAT)], and the amounts 

of total phenols, hydrogen peroxide (H2O2), malondialdehyde (MDA), and proteins were recorded at six days after 

infestation. The induction of enzyme activities and the amounts of secondary metabolites varied among the 

genotypes and treatments. The genotype IS2205 showed stronger effect than those of ICSV1 and ICSV 700. 

Treatment with JA followed by insect infestation induced greater levels of enzymes and secondary metabolites. The 

results suggest that JA induces greater levels of resistance components in sorghum plants against insect pests. Thus, 

pretreatment of plants with elicitors including JA and SA could provide more opportunity for plant defense against 

herbivores. 

Key words: Antioxidant enzymes; biotic stress; induced resistance; phytohormones; Sorghum, stem borer 

 

Introduction 

Herbivorous insects use diverse feeding strategies to obtain nutrients from their host plants. Rather than acting as 

passive victims in these interactions, plants respond to herbivory with the production of toxins and defensive 

proteins that target physiological processes in the insect (Zhao et al. 2009; Kawazu et al. 2012). This highly dynamic 

form of immunity is initiated by the recognition of insect oral secretions and signals from injured plant cells. Plants 

have developed a wide array of defense strategies against insect herbivory, which could be constitutive and/or 

induced (Scott et al. 2010; He et al. 2011; War et al., 2012). The constitutive resistance is always present in plants 

irrespective of the external stimuli, while as the induced resistance is occurs in response to the external stimuli. 

These initial cues are transmitted within the plant by signal transduction pathways that include calcium ion fluxes, 

phosphorylation cascades, and, in particular, the jasmonate pathway (Waling 2000; Shivaji et al. 2010; Scott et al. 

2010; He et al. 2011). Jasmonic acid pathway plays a central and conserved role in promoting resistance to a broad 

spectrum of insects (Waling 2000; Shivaji et al. 2010). Although, constitutive resistance is the first and primary 

defense against insects, induced resistance is more reliable and effective. It reduces the reallocations costs as it is 

produced when in demand. This induced defense against insect herbivory can be direct or indirect. Indirect induced 

defenses attract natural enemies of herbivores, whereas direct induced defenses directly affect the performance and 
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preference of the attacking herbivore (Heng-Moss et al. 2004; Arimura et al. 2008; Scott et al. 2010). Chemical 

defense strategies involve secondary metabolites and proteins which may be present constitutively or induced by 

challenges such as herbivore wounding (Heng-Moss et al. 2004; War et al. 2011a,b,c, 2012). Direct and indirect 

defense mechanisms can function additively against the herbivore.  Phytohormones are involved in plant defense 

against insect herbivores. These mediate plant signaling pathways, which lead to the production of various defensive 

secondary metabolites and proteins. The important phytohormones that play active roles in plant defense against 

various stresses are jasmonic acid (JA) and salicylic acid (SA; Zhao et al. 2009; Shivaji et al. 2010;  Kawazu et al. 

2012; War et al.2011b).  

 The important oxidative plant enzymes induced in plants in response to insect herbivory include 

peroxidases (POD), polyphenol oxidase (PPO), superoxide dismutase (SOD), phenylalanine ammonia lyase (PAL), 

lipoxygenase (LOX), catalase (CAT) and ascorbate peroxidase (APX) (Zhao et al., 2009; Scott et al. 2010;  War et 

al. 2012). POD is an important antioxidative enzymes involved in plant defense against insect herbivory (He et al. 

2011). It produces semiquinone free radicals and subsequently the quinines, which are highly toxic to insect pests 

(Barbehenn et al. 2010). The PPO is an antinutritional enzyme, and reduces the food quality of the plant tissues due 

to the oxidation of phenols to highly reactive and toxic quinines (Bhonwong et al. 2009; War et al. 2012). The SOD 

is an important antioxidative enzyme in plants involved in the conversion of toxic, highly reactive and unstable free 

radicals into less toxic and relatively stable H2O2 (Raychaudhuri and Deng 2000). CAT is an important enzyme in 

reactive oxygen species (ROS) scavenging systems (Khattab and Khattab 2005; Heidari 2009). Oxidation of phenols 

by results in the production of toxic quinones that affect the insect growth and development, while as some phenols 

are directly toxic to insect pests (Maffei et al. 2006; Howe and Jander 2008; War et al. 2013). H2O2 is an important 

stable ROS involved in plant defense against insect herbivory. It acts as a second messenger in signal transduction 

pathways, which lead to the production of toxic chemicals (Maffei et al. 2007). Malondialdehyde (MDA) is an 

important indicator of plant defense against insect pests (Gechev et al. 2002). 

 Sorghum, Sorghum bicolor Moench, is an essential food and cash crops for millions of people in Africa, 

Asia, USA, Australia and Latin America and is the fifth major cereal after wheat, rice, maize and barley. Chilo 

partellus (Swinhoe) is the most serious pest of sorghum and maize in Asia and Africa (Sharma et al., 2003). It is 

difficult to control, largely because of the cryptic and nocturnal habits of the adult moths. In addition, due to the 

protection provided to the immature stages by the stem of the host plant, the insecticidal film sprayed on the crop 
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does not reach to the target organism. The losses caused by this insect are to the tune of US$ one billion (ICRISAT 

1992). It can potentially damage all the above ground parts of the plant from the second fortnight after seedling 

emergence till harvest of the crop. Young larvae feeding results into pinholes and followed by elongated lesions on 

the leaf whorls. When pest attacks at early stage it destroys the growing point commonly known as “dead heart” due 

to drying of two to three central leaves thus reducing plant vigor, reduce photosynthetic efficiency, delay in 

flowering and ultimately leads to the reduction in grain yield. The older larvae descend down inside the whorl 

leaves, bore inside the stem and cause stem tunneling that disrupts the nutrient supply to the above canopy, which 

leads to the chaffy panicles and ultimately reduction in fodder quality and yield. The present studies were carried out 

to understand the induced resistance in sorghum genotypes against C. partellus by exogenous application of JA and 

SA. The studies were focused on various antioxidative enzymes and secondary metabolites involved in plant 

resistance against insect pests. 

 Materials and Methods 

Chemicals 

The chemicals used in this study were of analytical grade. Ethylene diamine tetra acetic acid (EDTA), bovine serum 

albumin (BSA), guaiacol, polyvinylpyrolidone (PVP), proline, glucose, jasmonic acid, salicylic acid, jasmonic acid, 

salicylic acid, tannic acid, dithiothretol (DTT), disodium hydrogen phosphate, sodium dihydrogen phosphate, nitro-

blue tetrazolium salt (NBT), methionine, L-phenylalanine, 4-chloronapthol, glucose, potassium iodide (KI), and 

sodium carbonate (Na2CO3) were obtained from Sigma Aldrich, USA. Catechol was obtained from Glaxo 

Laboratories, Mumbai, India. Glycine and trichloroacetic acid (TCA) were obtained from Sisco Research Lab., 

Mumbai, India. 2-mercaptoethanol, gallic acid and Folin-Ciocalteau reagent were obtained from Merck, Mumbai, 

India. Thiobarbituric acid (TBA) was obtained from HiMedia Pvt. Ltd., Mumbai, India. Ammonium sulphate was 

obtained from Qualigens Fine Chemicals, Mumbai, India.  

The spectrophotometer used for the estimation of biochemical parameters was Hitachi UV – 2900 (Hitachi, Japan). 

Insects 

Insects used for the studies were obtained from a well maintained insect rearing laboratory at International Crops for 

Semi-Arid Tropics and culture of C. partellus was maintained under controlled conditions, 16:8 h L: D regime at 25 

± 1 ºC and 65 ± 5 % RH on sorghum based artificial diet Taneja and Leuschner (1985). Aqueous sugar solution 10% 

was offered as food to the adults. The pupae were washed with 2% sodium hypochlorite solution and transferred to 
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plastic jars containing Vermiculite. Adults were transferred to wooden oviposition cages (30 x 30 x 30 cm), and 

provided with 10% of sucrose to study the oviposition preference. 

Sorghum plants (Sorghum bicolor (L.) Moench)  

Seeds of sorghum genotypes (IS2205, ICS1 and ICSV700) were sown in plastic pots measuring 30x 30 cm diameter 

in greenhouse (temperature 27 ± 3 °C, RH 65 ± 5 % ) to study the effect of two signaling molecules (jasmonic and 

salicyclic acids) on induced resistance to C. partellus. Few days after germination, only three plants were allowed to 

grow in each plastic pot to provide a uniform plant stand for all the test genotypes. At stage V2 (five leaf stage), 

plants were sprayed with jasmonic acid (1mM) and salicylic acid (1mM) then infested with C. partellus (JA + IN 

and SA + IN, respectively) and another treatment was infested with third instar larva of C. partellus (IN) and 

separate unsprayed and uninfested control  (UT) was set for all the genotypes. Before releasing the third instar larva, 

plants were enclosed by plastic jars to avoid the moment of larva from one plant to another plant. After six days of 

infestation, leaves were excised and collected from the infested and uninfested control plants to study the activity of 

various defensive enzymes including POD, PPO, and CAT, and the amounts of secondary metabolites such as 

phenols, tannins, and of H2O2, MDA and proteins.  

Enzyme extraction 

Fresh leaves (0.5 g) were ground in 3 ml of ice cold 0.1 M Tris-HCl buffer (pH 7.5) containing 5 mM 2-

mercaptoethanol, 1% polyvinylpyrrolidone (PVP), 1 mM DTT, and 0.5 mM EDTA. The homogenate was 

centrifuged at 16,000× g for 20 min and the supernatant was collected. 

Peroxidase (POD) assay 

Peroxidase activity was estimated as per the method of Shannon et al. (1966) with slight modification. The reaction 

mixture (2.9 ml) containing 0.1 M sodium phosphate buffer (pH 6.5), 0.8 mM H2O2 and 5 mM Guaiacol was taken 

in a test tube, to which 0.1 ml of enzyme source was added and the absorbance was read at 470 nm for 2 min at 15 

sec intervals. Enzyme activity was expressed as ∆OD min
-1

. 

Polyphenol oxidase (PPO) assay 

Polyphenol oxidase activity was estimated as per the method of Mayer and Harel (1979) with some modifications. 

To 2.9 ml of 0.1 M sodium phosphate buffer (pH 6.8), 0.1 ml of enzyme source and 0.1 ml of substrate (0.05M 

catechol) were added. Absorbance was read at 420 nm for 3 min at 30 sec interval. Enzyme activity was expressed 

as the enzyme activity was expressed as ∆OD min
-1

. 



6 

 

Superoxide dismutase (SOD) assay 

The activity of SOD was assayed by the method of Beauchamp and Fridovich (1971) with slight modifications. 3 ml 

of 0.05 M sodium phosphate buffer with 0.1% NaCl (pH 7.8) was taken in a test tube to which 0.3 ml of 0.1 mM 

EDTA, 0.3 ml of 0.13 mM methionine, 0.1 ml of 0.02 mM KCN, 0.3 ml of 0.75 mM NBT, 0.3 ml of 0.02 mM 

riboflavin and 0.1 ml of enzyme extract were added. The reaction mixture was illuminated in glass test tubes by two 

sets of Philips 40 W fluorescent tubes for 1h. Identical solutions that were kept under dark served as blanks. 

Absorbance was read at 560 nm against the blank and the activity was expressed as ∆OD min
-1

.  

Catalase (CAT) 

Catalase activity was assayed as described by Zhang et al. (2008). The reaction mixture consisted of 1 ml of Tris- 

HCl buffer (pH 7.0), 0.1 ml of partially purified enzyme extract and 0.2 ml of H2O2. Absorbance was read at 240 nm 

for 2 min and the enzyme activity was expressed as Units mg
-1

 protein. 

Phenolic content 

Leaves (0.5 g) were homogenized in 3 ml of 80% methanol and agitated for 15 min at 70 ºC. The homogenate was 

centrifuged at 10, 000 rpm for 10 min and the supernatant was collected, which was used for the estimation of total 

phenolsby the method of Zieslin and Ben-Zaken (1993) with some modifications. To 2 ml of 2% sodium carbonate 

(Na2CO3) taken in a test tube, 1 ml of methanol extract was added. The solution was incubated for 5 min at room 

temperature and 0.1 ml of 1 N Folin-Ciocalteau reagent was added. The solution was re-incubated for 10 min and 

absorbance of the blue color was measured at 760 nm. Phenolic concentration was expressed as mg Catechol 

Equivalents g
-1

 FW (mg GAE g
-1

 FW). 

Hydrogen peroxide (H2O2) content  

Hydrogen peroxide content was estimated by the method of Noreen and Ashraf (2009). Fresh leaf tissue (0.1 g) was 

homogenized in 2 ml of 0.1% (w/v) trichloroacetic acid (TCA) in pestle and mortar and centrifuged at 12,000×g for 

15 min. To the supernatant (0.5 ml), 0.5 ml of phosphate buffer (pH 7.0) and 1 ml of 1 M potassium iodide (KI) 

were added. The absorbance was read at 390 nm. H2O2 concentration was expressed as µmol g
-1

 FW (extinction 

coefficient of H2O2 0.28 µM cm
-1

). 

Malondialdehyde (MDA) content 

MDA content was determined by the method of Carmak and Horst (1991) with minor modification. Fresh leaf tissue 

(0.2 g) was homogenized in 3 ml 0.1% (w/v) trichloroacetic acid (TCA) at 4 
o
C, centrifuged at 20,000 × g for 15 
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min. To 3 ml 0.5% (v/v) thiobarbituric acid (TBA) in 20% TCA, 0.5 ml of supernatant was added. The mixture was 

incubated at 95 
o
C in a shaking water bath for 50 min and the reaction was stopped by cooling the tubes in an ice 

water bath. Then samples were centrifuged at 10,000× g for 10 min and the absorbance of the supernatant was read 

at 532 nm. The value for nonspecific absorption at 600 nm was subtracted. The concentration of TBARS was 

calculated using the absorption coefficient 155 mmol
-1

cm
-1

 and expressed as nanomol g
-1 

FW. 

Protein content  

Protein content was determined using the method of Lowery et al. (1951) using bovine serum albumin as standard. 

Statistical analysis 

The data were analyzed by analysis of variance (ANOVA) using SPSS (Ver. 11.5). Tukey’s HSD test was applied to 

separate the means.  

RESULTS 

POD activity 

Across the treatments within the genotypes, JA treated plants showed significantly greater POD activity as 

compared to the plants treated with SA, infested and untreated control plants in IS2205 and ICSV700 (Fig. 1). No 

significant difference was observed in ICSV1 across the treatments. Among the genotypes, IS2205 plants showed 

significantly higher POD activity in all the treatments as compared to the corresponding treatments of ICSV1 and 

ICSV700. 

 

 

PPO activity 

The JA + IN treated plants in IS2205 and ICSV1 showed significantly greater PPO activity as compared to the SA + 

IN treated, IN and untreated control plants (Fig 2). However, in ICSV700, JA + IN and SA + IN treated plants 

showed significantly higher PPO activity than those of insect infested and untreated plants. Across the genotypes, 

IS2205 and ICSV1 showed significantly higher PPO activity in all the treatments as compared to that of the 

ICSV700. 

SOD activity 

The SOD activity of sorghum genotypes increased in various treatments (Fig 3). Among the treatments, JA + IN 

treated plants showed significantly greater SOD activity as compared to the plants treated with SA + IN, IN and 
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untreated control plants in all the tested genotypes. Across the genotypes, no significant difference as observed in 

SOD activity in JA + IN treated plants. However, SA + IN, IN treated and untreated control plants of ICSV1 showed 

significantly greater SOD activity than those of IS2205 and ICSV 700. 

CAT activity 

The SA + IN treated plants showed greater CAT activity among all the treatments in the tested sorghum genotypes 

followed by JA + IN treated and insect infested plants. However, the least activity was observed in the untreated 

control plants in all the genotypes (Fig 4). Among the genotypes, CAT activity was more in ICSV700 than the other 

genotypes (IS2205 and ICSV1) in JA and SA treated plants. Insect infested plants of IS2205 had significantly 

greater CAT activity than those of ICSV1 and ICSV700. Untreated control plants of ICSV1 had greater CAT 

activity than those of IS2205 and ICSV700. 

Total phenols 

Significant differences were found between the treated and untreated plants in the sorghum genotypes (Fig. 5). 

Among the treatments, JA + IN, SA+ IN treated and insect infested plants showed the increased levels of total 

phenols as compared untreated plants in all the genotypes. However, overall, the induction was significantly greater 

by JA treated and insect infested plants as compared to the SA + IN treated ones across the genotypes. Among the 

tested genotypes, IS2205 plants showed significantly greater phenolic content in all the treatments as compared to 

the corresponding treatments of ICSV1 and ICSV700. 

H2O2 content  

Plants treated with JA + IN and IN with insects showed greater levels of H2O2 as compared to the untreated plants in 

all the tested genotypes, however, JA + IN and SA + IN treated plants had more H2O2 than insect infested and 

untreated control plants (Fig 6). Across the genotypes, IS2205 and ICSV1 plants treated with JA + IN and SA + IN 

and infested with insects had greater levels of H2O2 than those of corresponding treatments of ICSV700. Untreated 

plants did not show any significant difference in H2O2 levels across the genotypes. 

MDA content 

Insect infested plants showed significantly greater MDA content than the plants treated with JA + IN, SA + IN and 

untreated plants in all the tested genotypes followed by the plants treated with SA and JA (Fig 7). Across the 

genotypes, IS2205 exhibited greater levels of MDA in all the treatments as compared to that of ISV1 and ICSV700.  

Protein content  
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Protein content increased in plants treated with JA followed by infestation with C. partellus in all the sorghum 

genotypes as compared to the plants treated with SA + IN and infested and untreated control plants (Fig 8). Among 

the genotypes, ICSV700 and ICSV1 showed significantly higher protein content in plants pre-treated with JA and 

SA followed by insect infestation and the insect infested plants than that of IS2205. 

Discussion 

The ability of plants to recognize and respond defensively to insect attack constitutes a form of immunity that 

reduces herbivore survival, reproductive capacity, or preference for a plant. This is termed as “induced resistance”. 

JA and SA are the important phytohormones involved in modulating plant defense against insect herbivory by 

mediating octadecanoid pathway and phenylpropanoid pathways, respectively (Shivaji et al. 2010; Scott et al. 2010). 

Exogenous application of JA and SA have been reported to enhance plant resistance against herbivores (Peng et al. 

2004; Zhao et al. 2009; Scott et al. 2010; Shivaji et al. 2010;  War et al. 2011a,b). Methyl jasmonate (MeJA) or cis-

jasmone is a volatile derivative of JA and acts as a defense inducing agents in plants against the attacking herbivores 

(Bruinsma et al., 2009). The earlier and immediate response of plants to insect infestation results in the induced 

expression of plant metabolites and defensive enzymes. Induced resistance in plants is considered as a desirable crop 

protection strategy with relatively benign environmental impacts as it allows plants to be phenotypically plastic 

against different stresses. In this study we examined the defensive biochemical response of three sorghum genotypes 

to feeding by C. partellus and JA and SA treatments. 

 Our results revealed that pretreatment with JA and SA, followed by infestation with C. partellus resulted in 

greater POD activity in sorghum. However, a strong response was observed in IS2205 plants treated with JA and 

infested with insects than those treated with SA and infested with insects. This could be attributed to the higher 

accumulation of JA in plants infested with insects and because of the application of JA, and the strong ability of the 

IS2205 genotype to withstand the biotic stress. However, the lower POD activity in SA + IN plants than that of JA + 

IN and insect infested plants could be because of the cross talk between JA and SA (Cipollini et al. 2004; Koornneef 

and Pieterse 2008). Higher levels of POD activity in response to JA and SA application and/or insect attack will 

defend plants from the insects, pathogens and other stresses through cell lignifications, wound healing, and the 

production of secondary metabolites (Heng-Moss et al. 2004; Rangasamy et al. 2009). Our results correlate with 

several earlier results, where JA and insect infestation induced higher levels of POD and imparted resistance in 

plants against insect herbivory (Shivaji et al. 2010; War et al. 2011a, 2012). 
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 Different genotype of sorghum showed differential induction of PPO in response to JA, SA and insect 

infestation. This might be due to the difference in sensitive up-regulation response of genotypes to the biotic stress. 

The PPO plays an important role in plant defense against insect herbivory as an antinutritional enzyme, and reduces 

the food quality (Bhonwong et al. 2009; War et al. 2012). The quinines formed from the oxidation of phenols 

interact with the nucleophilic side chain of amino acids and cause protein cross-linking, and thereby, reducing their 

availability to insect pests (Zhang et al. 2008; Bhonwong et al. 2009).
 
PPO is also involved in the melanin formation 

that increases the cell wall resistance to insects and pathogens (Zhao et al. 2009).  

 Plants treated with JA and infested with insets showed significantly greater levels of SOD activity. The 

differential activity of SOD might be due to the difference in plant response across the treatments. The SOD is 

involved in the removal of highly toxic and unstable ROS (Raychaudhuri and Deng 2000). Saruhan et al. (2012) 

reported the induction of SOD activity by SA and its relation to the reduced oxidative damage. It has been further 

reported that Helicoverpa zea infestation produced higher levels of SOD activity in tomato and soybean (Felton et 

al. 1994; Bi and Felton 1995). It reduces the toxicity of ROS by converting them into less toxic and more stable 

components such as H2O2 and water (Khattab and Khattab 2005; Heidari 2009). Higher activity of CAT activity in 

plants plays a leading role in cell wall resistance, besides signals the expression of various plant defensive genes 

(Chen et al. 1993).  

 Phenols are the important plants secondary metabolites involved in defense against biotic and abiotic 

stresses. Total phenolic content was increased in plants treated with JA and infested with insect pests. Increase in 

total phenols is a common reaction of plants to herbivory (Karban and Baldwin 1997). Phenolic compounds directly 

affect the insect growth and development (Green et al. 2003; War et al. 2013). There are several reports showing the 

induction of phenols in plants in response to insect attack (Sharma et al. 2009; He et al. 2011; War et al. 2011a,b).  

 ROS production in plants in response to the oxidative stress by biotic and abiotic factors is common in 

plants (He et al. 2011; War et al. 2011a,b, 2012). ROS mediate various signaling pathways involved in plant defense 

against stresses (Maffei et al. 2007). Among all the ROS, H2O2 is regarded as the most important as it is highly 

stable and freely diffusible than all other ROS. It mediates the signal transduction pathways which lead to the 

expression of defense genes and thereby production of various defensive proteins in plants against insect herbivores 

(Maffei et al. 2007). In addition, H2O2 has been found to have direct toxicity against insects (Howe and Jander 2008; 

Meffai et al. 2007). It also defends plants against subsequent insect and pathogen invasion (Maffei et al. 2007). JA 
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and SA treatments followed by insect infestation showed greater H2O2 content in all the treatments. Our results 

correlate with earlier reports, where increase in the levels of H2O2 in plants after herbivore feeding and treatment 

with JA and SA has been observed (Walling 2000; Maffei et al. 2006; War et al. 2011a,b).  

 Plants infested with insects showed higher amounts of MDA in all the sorghum genotypes. The induction 

was more in IS2205 genotype as compared to that of ICSV1 and ICSV700. This might be attributed to the severe 

oxidative stress due to wounding by insects. It has been suggested that MDA levels accumulate in plants after 

herbivore attack and assists in the synthesis more complex defense compounds and activates antioxidative enzymes 

(Gechev et al. 2002; Zhang et al. 2008; War et al. 2011a,b). In addition, the emissions of green leaf volatiles, which 

are involved in indirect plant defense, are induced by lipid peroxidation after herbivore damage (Arimura et al. 

2009). Our results are in line with earlier reports, where MDA levels were induced by insect damage (Huang et al. 

2007; Zhang et al. 2008; War et al. 2011a,b). 

 In addition to secondary metabolites, which have been traditionally perceived as the major components of 

chemical defense strategies that regulate host plant utilization by insects (Sharma et al. 2009; War et al. 2011a, b, 

2012, 2013), proteins are also an important contributor of the plant's chemical defense mechanism. Proteins are a 

major and the most common limiting nutrient for insect growth. These compounds can alter the physiology of 

herbivores by reducing their growth rate, adult size, and survival probability (Harvey et al., 2003). There was a 

significant increase in protein content in all the genotypes on various treatments. However, JA induced significantly 

greater protein content in plants than rest of the treatments. Increase in protein concentration might be endorsed to 

increased antioxidative enzyme activities after JA application and insect infestation. When under stress, plants 

produced various defense related enzymes and other protein based defensive compounds, thereby increasing the 

overall protein concentration (Lawrence and Koundal 2002; Chen et al. 2009; War et al. 2011,a,b,2012). There are 

several reports showing the elevation of protein concentration in response to insect attack and JA application (Chen 

et al. 2009; He et al. 2011; War et al. 2011a,b, 2012). 

Conclusion 

The sorghum genotypes responded differentially to the infestation by C. partellus and treatment with JA and SA in 

terms of the defensive enzyme activities such as POD, PPO, SOD, CAT and the total amounts of phenols, H2O2, and 

MDA. Since these enzymes and other defensive components are responsible for the plant defense against biotic and 

abiotic stresses, sorghum genotypes with higher activity of these enzymes and other defensive components could be 
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more resistant than the genotypes with low induced levels of these components. Alteration in digestibility and 

palatability of plant tissues by the induced compounds in response to insect attack affect insect growth and 

development adversely. The induced resistance could play an important role in pest management and defense 

mechanism against insect pests.  

 A detailed understanding of plant immunity to arthropod herbivores will provide new insights into basic 

mechanisms of chemical communication and plant-animal co-evolution and may also facilitate new approaches to 

crop protection and improvement.  
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Fig. 1: Peroxidase (POD) activity (∆OD min
-1

) of sorghum genotypes after Chilo 

partellus infestation and jasmonic acid and salicylic acid application. 
Bars (Mean ± SD) of same color with similar letters within a genotype are not statistically different at P ≤ 0.05. 

JA+IN = Treatment with JA and infested with C. partellus; SA+IN = Treatment with JA and infested with C. 

partellus; IN = C. partellus infested plants; UT = Untreated control plants. 

 
Fig. 2: Polyphenol oxidase (PPO) activity (∆OD min

-1
) of sorghum genotypes after Chilo 

partellus infestation and jasmonic acid and salicylic acid application. 
Bars (Mean ± SD) of same color with similar letters within a genotype are not statistically different at P ≤ 0.05. 

JA+IN = Treatment with JA and infested with C. partellus; SA+IN = Treatment with JA and infested with C. 

partellus; IN = C. partellus infested plants; UT = Untreated control plants. 
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Fig. 3: Superoxide dismutase (SOD) activity (∆OD min

-1
) of sorghum genotypes after Chilo 

partellus infestation and jasmonic acid and salicylic acid application. 
Bars (Mean ± SD) of same color with similar letters within a genotype are not statistically different at P ≤ 0.05. 

JA+IN = Treatment with JA and infested with C. partellus; SA+IN = Treatment with JA and infested with C. 

partellus; IN = C. partellus infested plants; UT = Untreated control plants. 
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Fig. 4: Catalase activity (∆OD min

-1
) of sorghum genotypes after Chilo partellus infestation and 

jasmonic acid and salicylic acid application. 
 

Bars (Mean ± SD) of same color with similar letters within a genotype are not statistically different at P ≤ 0.05. 

JA+IN = Treatment with JA and infested with C. partellus; SA+IN = Treatment with JA and infested with C. 

partellus; IN = C. partellus infested plants; GAE = Gallic acid equivalents. 

 
Fig. 5: Total phenols (µg GAE g

-1
 FW) of sorghum genotypes after Chilo partellus infestation 

and jasmonic acid and salicylic acid application. 

 
Bars (Mean ± SD) of same color with similar letters within a genotype are not statistically different at P ≤ 0.05. 

JA+IN = Treatment with JA and infested with C. partellus; SA+IN = Treatment with JA and infested with C. 

partellus; IN = C. partellus infested plants; UT = Untreated control plants; GAE = Gallic acid equivalents; FW = 

Fresh weight. 
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Fig. 6: H2O2 content (µmol g

-1
 FW) of sorghum genotypes after Chilo partellus infestation and 

jasmonic acid and salicylic acid application. 
Bars (Mean ± SD) of same color with similar letters within a genotype are not statistically different at P ≤ 0.05. 

JA+IN = Treatment with JA and infested with C. partellus; SA+IN = Treatment with JA and infested with C. 

partellus; IN = C. partellus infested plants; UT = Untreated control plants. 

 
Fig. 7: Malondialdehyde (MDA) content (µmol g

-1
 FW) of sorghum genotypes after Chilo 

partellus infestation and jasmonic acid and salicylic acid application. 
Bars (Mean ± SD) of same color with similar letters within a genotype are not statistically different at P ≤ 0.05. 

JA+IN = Treatment with JA and infested with C. partellus; SA+IN = Treatment with JA and infested with C. 

partellus; IN = C. partellus infested plants; UT = Untreated control plants; FW = Fresh weight. 
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Fig. 8: Protein content (mg g

-1
 FW) of sorghum genotypes after Chilo partellus infestation and 

jasmonic acid and salicylic acid application. 
Bars (Mean ± SD) of same color with similar letters within a genotype are not statistically different at P ≤ 0.05. 

JA+IN = Treatment with JA and infested with C. partellus; SA+IN = Treatment with JA and infested with C. 

partellus; IN = C. partellus infested plants; UT = Untreated control plants; FW = Fresh weight. 
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Table 1: Catalase (CAT) activity (∆OD min
-1

) of sorghum genotypes after Chilo partellus infestation and 

jasmonic acid and salicylic acid application. 

Genotypes 
Treatments 

JA + IN SA + IN IN UT 

IS2205 2.52 ± 0.005
a 

2.65 ± 0.004
a
 2.21 ± 0.005

ab*
 0.82 ± 0.001

c 

ICSV1 1.54 ± 0.005
b
 2.48 ± 0.005

a
 1.65 ± 0.005

b
 1.10 ± 0.001

bc*
 

ICSV700 4.97 ± 0.002
a*

 3.04 ± 0.003
b*

 1.10 ± 0.005
c
 0.55 ± 0.001

d
 

 

Values (Mean ± SD) with similar letters in a row are not statistically different at P ≤ 0.05. 

*within a column shows significant difference across the genotypes within a treatment. 

 JA+IN = Treatment with JA and infested with C. partellus; SA+IN = Treatment with JA and 

infested with C. partellus; HIN = C. partellus infested plants; UT = Untreated control plants. 

 


