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In the context of major global environmental challenges such as food security, climate change, fresh water
scarcity and biodiversity loss, the protection and the sustainable management of soil resources in Africa are of
paramount importance. To raise the awareness of the general public, stakeholders, policymakers and the science
community to the importance of soil in Africa, the Joint Research Centre of the European Commission has
produced the Soil Atlas of Africa. To that end, a new harmonised soil map at the continental scale has been
produced. The steps of the construction of the new area-class map are presented, the basic information being
derived from the Harmonized World Soil Database (HWSD). We show how the original data were updated
and modified according to the World Reference Base for Soil Resources classification system. The corrections
concerned boundary issues, areas with no information, soil patterns, river and drainage networks, and dynamic
features such as sand dunes, water bodies and coastlines. In comparison to the initial map derived from HWSD,
the new map represents a correction of 13% of the soil data for the continent. The map is available for
downloading.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

In the context ofmajor global environmental challenges such as food
security, climate change, fresh water scarcity and biodiversity loss, the
protection and sustainable management of soil resources are of para-
mount importance (Gisladottir and Stocking, 2005; Lal, 2004, 2009;
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Millennium Ecosystems Assessment, 2005; Palm et al., 2007, 2010;
UNEP, 2007; Vlek et al., 2008).

However, the importance of soil and themultitude of environmental
services it provides are not widely appreciated by society at large. Soil
scientists are becoming increasingly aware of a greater need to inform
and educate the general public, policy makers, land managers and
other scientists of the importance and global significance of soil
(Bouma et al., 2012; Hartemink and McBratney, 2008; Palm et al.,
2010; Sachs et al., 2010; Sanchez et al., 2009). This is particularly true
in Africa where soil degradation in its diverse forms is a fundamental
and persistent problem throughout the continent. Often ignored,
because the observed impacts are gradual, soil degradation is a major
development issue, as pressure on land, poverty and migration are
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Fig. 1. Sources of information used in the original HWSD. (A) Heterogeneity of the database: two data sources and various scales. (B) Soil diversity. The numbers from 1 to 9 indicate
the number of Soil Units (SUs) within individual Soil Mapping Unit (SMU) (see text for explanation).

Fig. 2. Examples of harmonisation shortcomings in HWSD illustrating the spatial distribution of the Soil Mapping Units (SMUs); each of them being represented by the dominant
Soil Unit (SU). The SUs that represent the same FAO soil type are shown with the same colour. (A, B) Boundary effect between the two data sources DSMW and SOTWIS showing
difference in soil classification and data resolution. (C) River network discontinuity in SOTWIS. (D) Boundary effect within SOTWIS database showing the difference of data reso-
lution. (E) Boundary effect and “pixelated” pattern in South Africa. For each caption, the legend is the same: each soil name having a specific colour. The colours are randomly
assigned given to highlight explicitly the harmonisation shortcoming features. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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mutually reinforcing (Gisladottir and Stocking, 2005; Lal, 2009;
Millennium Ecosystems Assessment, 2005; UNEP, 2007; Vlek et al.,
2008).

While increased awareness of the role of soil is critical, many Afri-
can countries lack the fundamental knowledge base on which to base
policy and landmanagement decisions. Most countries have very lim-
ited detailed mapping of their soil resources. The previous informa-
tion base is of variable age and quality and only partly correlated
between countries (Grunwald et al., 2011; Van Ranst et al., 2010).
Most countries have a general soil map at very small scales, usually
substantially smaller than 1:250,000. For many, the only consistent
and harmonised national coverage is still, thirty years after its
finalisation, the 1:5 M Soil Map of the World produced by FAO and
UNESCO in the 1970s (FAO/Unesco, 1971–1981) which was partly
based on the International Atlas of West Africa (Boulet et al., 1968).
Detailed soil information for regional or project planning is usually
not available. For example, only 15% of the Democratic Republic of
the Congo has been mapped at scales of 1:50,000 to 1:500,000
(Van Ranst et al., 2010).

In this context, the Joint Research Centre (JRC) of the EuropeanCom-
mission has initiated a project that has brought soil experts fromEurope
and Africa together to produce the Soil Atlas of Africa (Jones et al.,
2013). The main goal of the project was to produce a publication to
raise awareness of the significance of soil to human existence in Africa.
The Atlas shows and explains the reasons for the varying patterns of soil
across the continent and communicates the need to conserve andman-
age this increasingly threatened natural resource through sustainable
management.

The heart of the Atlas is harmonised soil information at both regional
and continental scales. To provide a harmonised picture of the soils in
Africa, a new continental soil map has been produced. This paper
describes the compilation and the processing of the soil data to com-
plete the harmonised area-class map. The new map is displayed in the
Atlas in a series of map sheets at the scale 1:3 M that cover the whole
continent and the harmonisation of the map is done accordingly.
Fig. 3. Harmonisation steps for production of the new continental soil map of Africa.
2. Original datasets

The Harmonized World Soil Database (HWSD) that has been devel-
oped by the Land Use Change and Agriculture Programme of IIASA
(LUC) and the FAO, in partnership with the ISRIC – World Soil Informa-
tion and with the European Soil Bureau Network (ESBN) (FAO/IIASA/
ISRIC/ISS-CAS/JRC, 2012) has been the best continental soil map of Africa
available. The new soil map is primarily derived from the HWSD.

The original HWSD data for Africa combine the FAO/Unesco
Digital Soil Map of the World, or DSMW for short (FAO, 1995, 2003;
FAO/Unesco, 1971–1981), together with various regional SOTER (SOil
and TERrain) and SOTWIS (Secondary SOTER derived from SOTER and
WISE) databases (Batjes, 2007, 2008; FAO, IGADD/Italian Cooperation,
1998; FAO/ISRIC, 2003; FAO/ISRIC/UGent, 2007; Goyens et al., 2007).
Fig. 1A shows that the information provided by HWSD is not homoge-
neous. The scale of the soil information varies by region depending on
the source data:

• The DSMW, mainly the Sahara and West Africa except Senegal and
The Gambia, is at the scale 1:5 M;

• The SOTER database for Northeastern Africa (FAO, IGADD/Italian
Cooperation, 1998) contains information at equivalent scales between
1:1 M and 1:2 M;

• The scale of the SOTER database of Southern Africa (FAO/ISRIC, 2003)
and of Central Africa (Batjes, 2007; FAO/ISRIC/UGent, 2007; Goyens et
al., 2007) range between 1:1 M for most countries, and 1:2 M for
Angola and the Democratic Republic of the Congo;

• The SOTER database for Senegal and The Gambia is presented at scale
1:1 M (Batjes, 2008).
Although some databases have a similar scale, they can differ in
resolution and differences in data density. For example, the SOTER
map for South Africa is very detailed compared to the maps of other
countries in the SOTER database of Southern Africa (FAO/ISRIC, 2003).
Reliability of the information contained in the database is variable: the
parts of the database that make use of the DSMW are considered less
reliable, while most of the areas covered by SOTER/SOTWIS databases
are considered to be the most reliable. For some regions, for example,
the Sinai Peninsula and some areas in Namibia, HWSD contains no in-
formation. The DSMW uses the FAO-74 legend of the Soil Map of the
World (FAO/Unesco, 1974) whereas SOTER/SOTWIS uses the FAO-90
soil classification system (FAO/Unesco/ISRIC, 1990). The information
from DSMW and SOTER/SOTWIS are both provided according to politi-
cal borders (Fig. 1A).

At the small scales of the HWSD, the location of individual soil types
cannot be delineated. Therefore, the database presents the locations of
groups of soil types (also known as associations) that are referred to
as Soil Mapping Units (SMUs). The criteria for soil associations and
SMU delineation take into account the functioning of pedological rela-
tionships within the landscape. Individual soil types are referred to as
Soil Units (SUs). While the proportion of each SU within a SMU is spec-
ified, the location of the individual SUs is not defined. Data on soil char-
acteristics are assigned at the SU level.

The HWSD is a raster or grid-cell database where the SMUs from
the input soil datasets have been gridded to a resolution of 30
arc-seconds (approximately 1 km at the Equator). The pixel size
ensures compatibility with important global inventories such as
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the Shuttle Radar Topography Mission (SRTM) digital elevation
model and the Global Land Cover (GLC) 2000 dataset (Dewitte et
al., 2012). The HWSD by necessity presents multiple grid cells with
identical attributes reflecting the much coarser scale of the original
vector data. For each SMU, the database records a standardised set
of topsoil (0–30 cm) and subsoil (30–100 cm) characteristics for
up to 9 SUs (Fig. 1B). Fig. 1B shows the map of soil diversity that
may reflect both the actual situation (e.g. desert areas) and the
level of soil survey in the area.

Although the HWSD constitutes a major contribution to the
harmonisation of soil data at the continental scale, it appears from
Fig. 1 that it still contains numerous harmonisation shortcomings that
cannot be presented as such in the Atlas (Fig. 2). Boundary issues, par-
ticularly at the political level, as well as areas with no information
should not be presented in the Atlas. In addition to these examples of
lack of harmonisation, mistakes are revealed in the analysis of the soil
pattern of some regions, many river and drainage networks are not
shown to be continuous, andmajor water bodies and coastline features
have not been updated recently. When zooming in the dataset, many
Fig. 4. Examples of SMU modifications brought to the HWSD to assign the dominant SU. For
corresponding table caption taken directly from the original HWSD. In these tables, the SU
tabase that is used to produce the new map, these SUs are replaced by the SUs highlighted
FAO-90 soil type. In the modified database, this SMU will be defined by a dominant SU referr
of the references to colour in this figure legend, the reader is referred to the web version o
“micro-polygons” comprising only few pixels are present, particularly
in the regions of high density information, which gives a “pixelated”
or “noisy” pattern to the soil distribution. Some of these micro-polygons
are mapping artefacts. Cartographic judgement has been used to remove
these shortcomings or at least to smooth them in order to present amore
usable harmonised picture of the African soils.

Fig. 3 identifies the steps that were followed to harmonise the
HWSD information to produce the new map. There were two main
production stages: (I) a raster stage related to the HWSD processing,
then; (II) a polygon stage where the polygon map derived from the
processed HWSD is updated. This was undertaken utilising Google
Earth and several lithological and geological maps that were readily
available (Table 3).

Google Earth was used as much as possible in all the regions. In
the arid and semi-arid areas, much can be inferred from Google
Earth since the soil surface is without vegetation or only partially cov-
ered. In regions where vegetation coverage obscures most soils, its
use is less straightforward but still allows some major soil features
to be delineated through the interpretation the vegetation patterns
each of the six examples a map is shown locating the modified SMU (in blue) and the
that has sequence 1 within the SMU is not the dominant soil type. In the modified da-
in blue in the table. For instance, in (A), HWSD is referring to a dominant SU with FRr
ing to LPe FAO-90 soil type (see Table 1 for the soil type definition). (For interpretation
f this article.)
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Table 1
Translation of FAO-74 and FAO-90 systems to WRB classification and correlation system. The RSGs are ordered alphabetically according to the codes. The division within an indi-
vidual RSG follows the order of prefix qualifiers in the WRB. The FAO soil names highlighted in different colours correspond to the major changes between the systems (see text for
explanation). The colour legend used for the RSGs is the one used in the Atlas.

Code Name Code Name Code

AC Undifferentiated Acrisols

ACfr Ferric Acrisols ACf Ferric Acrisols Af

ACha Haplic Acrisols ACh Haplic Acrisols

ACpl Plinthic Acrisols ACp Plinthic Acrisols Ap

ACum Umbric Acrisols ACu Humic Acrisols

ALgl Gleyic Alisols ALg Gleyic Alisols

ALha Haplic Alisols ALh Haplic Alisols Ao

ALpl Plinthic Alisols Alp Plinthic Alisols

ALum Umbric Alisols ALu Humic Alisols

ANsn Silandic Andosols ANh Haplic Andosols To

ANsnmo Silandic Mollic Andosols ANm Mollic Andosols Tm

ANsnum Silandic Umbric Andosols ANu Umbric Andosols Th

ANvi Vitric Andosols ANz Vitric Andosols Tv

AR Undifferentiated Arenosols

ARab Albic Arenosols ARa Albic Arenosols

ARbr Brunic Arenosols ARb Cambic Arenosols Qc 

ARca Calcaric Arenosols ARc Calcaric Arenosols

ARfl Ferralic Arenosols ARo Ferralic Arenosols Qf

ARha Haplic Arenosols ARh Haplic Arenosols

ARpr Protic Arenosols DS

ARwl Hypoluvic Arenosols ARl Luvic Arenosols Ql

CHcc Calcic Chernozems CHk Calcic Chernozems Ck

CHlv Luvic Chernozems CHl Luvic Chernozems Cl

CLha Haplic Calcisols CLh Haplic Calcisols Bk

Xk

CLhaye Haplic Yermic Calcisols Yk

CLlv Luvic Calcisols CLl Luvic Calcisols

CLpt Petric Calcisols Clp Petric Calcisols Phase 4

CM Undifferentiated Cambisols X

CMca Calcaric Cambisols CMc Calcaric Cambisols

CMcr Chromic Cambisols CMx Chromic Cambisols Bc

CMdy Dystric Cambisols CMd Dystric Cambisols Bd

CMeu Eutric Cambisols CMe Eutric Cambisols Be

Xh

Y

CMfl Ferralic Cambisols CMo Ferralic Cambisols Bf

CMgl Gleyic Cambisols CMg Gleyic Cambisols Bg

CMhaty Haplic Takyric Cambisols Yt

CMhaye Haplic Yermic Cambisols Yh

CMvr Vertic Cambisols CMv Vertic Cambisols Bv

DU Undifferentiated Durisols Phase 9

FL Undifferentiated Fluvisols FL Fluvisols J

FLca Calcaric Fluvisols FLc Calcaric Fluvisols Jc

FLdy Dystric Fluvisols Fle Dystric Fluvisols Jd

FLeu Eutric Fluvisols FLm Eutric Fluvisols Je

FLmo Mollic Fluvisols FLd Mollic Fluvisols

Fluvisols

WRB FAO-90

Acrisols

Alisols

Andosols

Arenosols

Chernozems

Calcisols

Cambisols

Durisols

Name

Ferric Acrisols

Plinthic Acrisols

Orthic Acrisols

Ochric Andosols

Mollic Andosols

Humic Andolsols

Vitric Andosols

Cambic Arenosols

Ferralic Arenosols

Dunes & shifting sands

Luvic Arenosols

Calcic Chernozems

Luvic Chernozems

Calcic Cambisols

Calcic Xerosols

Calcic Yermosols

Petrocalcic

XEROSOLS

Chromic Cambisols

Dystric Cambisols

Eutric Cambisols

Haplic Xerosols

YERMOSOLS

Ferralic Cambisols

Gleyic Cambisols

Takyric Yermosols

Haplic Yermosols

Vertic Cambisols

Duripan

Fluvisols

Calcaric Fluvisols

Dystric Fluvisols

Eutric Fluvisols

FAO-74
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FLsz Salic Fluvisols FLs Salic Fluvisols

FLti Thionic Fluvisols FLt Thionic Fluvisols Jt

FLum Umbric Fluvisols FLu Umbric Fluvisols

FR Undifferentiated Ferralsols

FRha Haplic Ferralsols FRh Haplic Ferralsols Fo

FRpl Plinthic Ferralsols FRp Plinthic Ferralsols Fp

FRro Rhodic Ferralsols FRr Rhodic Ferralsols Fr

FRum Umbric/Mollic Ferralsols FRu Humic Ferralsols Fh

FRxa Xanthic Ferralsols FRx Xanthic Ferralsols Fx

GL Undifferentiated Gleysols G

GLcc Calcic Gleysols GLk Calcic Gleysols

GLdy Dystric Gleysols GLd Dystric Gleysols Gd

GLeu Eutric Gleysols GLe Eutric Gleysols Ge

GLhaar Ahaplic Arenic Gleysols ARg Gleyic Arenosols

GLmo Mollic Gleysols GLm Mollic Gleysols

GLum Umbric Gleysols GLu Umbric Gleysols Gh

GY Undifferentiated Gypsisols

GYcc Calcic Gypsisols GYk Calcic Gypsisols

GYha Haplic Gypsisols GYh Haplic Gypsisols Xy

GYhaye Haplic Yermic Gypsisols Yy

GYpt Petric Gypsisols GYp Petric Gypsisols Phase 5

HSdy Dystric Histosols Od

HSeu Eutric Histosols Oe

HSfi Fibric Histosols HSf Fibric Histosols

HSsa Terric Histosols HSs Terric Histosols

KS Undifferentiated Kastanozems K

KScc Calcic Kastanozems Kk

KSha Haplic Kastanozems KSh Haplic Kastanozems

KSlv Luvic Kastanozems KSI Luvic Kastanozems Kl

LP Undifferentiated Leptosols RK

LPdy Dystric Leptosols LPd Dystric Leptosols

LPeu Eutric Leptosols LPe Eutric Leptosols

LPli Lithic Leptosols LPq Lithic Leptosols I

LPmo Mollic Leptosols LPm Mollic Leptosols

LPrz Rendzic Leptosols LPk Rendzic Leptosols E

LPum Umbric Leptosols LPu Umbric Leptosols

LV Undifferentiated Luvisols LV Luvisols L

LVab Albic Luvisols LVa Albic Luvisols La

LVcc Calcic Luvisols LVk Calcic Luvisols

LVcr Chromic Luvisols LVx Chromic Luvisols Lc

LVfr Ferric Luvisols LVf Ferric Luvisols

LVgl Gleyic Luvisols LVg Gleyic Luvisols Lg

LVha Haplic Luvisols LVh Haplic Luvisols Lo

LVvr Vertic Luvisols LVv Vertic Luvisols

LX Undifferentiated Lixisols

LXfr Ferric Lixisols LXf Ferric Lixisols

LXgl Gleyic Lixisols LXg Gleyic Lixisols

LXha Haplic Lixisols LXh Haplic Lixisols Lf

LXpl Plinthic Lixisols LXp Plinthic Lixisols Lp

Ferralsols

Gleysols

Gypsisols

Histosols

Kastanozems

Leptosols

Luvisols

Lixisols

Thionic Fluvisols

Orthic Ferralsols

Plinthic Acrisols

Rhodic Ferralsols

Humic Ferralsols

Xantic Ferralsols

Gleysols

Dystric Gleysols

Eutric Gleysols

Humic Gleysols

Gypsic Xerosols

Gypsic Yermosols

Petrogypsic

Dystric Histosols

Eutric Histosols

Kastanozems

Calcic Kastanozems

Luvic Kastanozems

Rock debris

LITHOSOL

RENDZINA

Luvisols

Albic Luvisols

Chromic Luvisols

Gleyic Luvisols

Orthic Luvisols

Ferric Luvisols

Plinthic Luvisols

Code Name Code Name Code

WRB FAO-90

Name

FAO-74
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NT Undifferentiated Nitisols NTh Haplic Nitisols

NTdy Dystric Nitosols Nd

NTeu Eutric Nitosols Ne

NTro Rhodic Nitisols NTr Rhodic Nitisols

NTum Humic Nitisols NTu Humic Nitisols

PHgl Gleyic Phaeozems PHg Gleyic Phaeozems

PHha Haplic Phaeozems PHh Haplic Phaeozems Hh

PHlv Luvic Phaeozems PHl Luvic Phaeozems Hl

GRh Haplic Greyzems

PL Undifferentiated Planosols W

PLdy Dystric Planosols PLd Dystric Planosols Wd

PLeu Eutric Planosols PLe Eutric Planosols We

PLsc Solodic Planosols Ws

PLum Umbric Planosols PLu Umbric Planosols

PT Undifferentiated Plinthosols

PTab Albic Plinthosols PTa Albic Plinthosols

PTeu Eutric Plinthosols PTe Eutric Plinthosols

PTpt Petric Plinthosols Phase 3

PTpx Pisoplinthic Plinthosols Phase 6

PTum Humic Plinthosols PTu Humic Plinthosols

PZ Undifferentiated Podzols

PZcb Carbic Podzols PZc Carbic Podzols Ph

PZgl Gleyic Podzols PZg Gleyic Podzols

PZha Haplic Podzols PZh Haplic Podzols

RG Undifferentiated Regosols R

RGca Calcaric Regosols RGc Calcaric Regosols Rc

RGdy Dystric Regosols RGd Dystric Regosols Rd

RGeu Eutric Regosols RGe Eutric Regosols Re

SC Undifferentiated Solonchaks Z

ST

SCcc Calcic Solonchaks SCk Calcic Solonchaks

SCgl Gleyic Solonchaks SCg Gleyic Solonchaks Zg

SCha Haplic Solonchaks SCh Haplic Solonchaks Zo

SChaty Haplic Takyric Solonchaks Zt

SCso Sodic Solonchaks SCn Sodic Solonchaks

SN Undifferentiated Solonetz SN Solonetz

SNcc Calcic Solonetz SNk Calcic Solonetz

SNgl Gleyic Solonetz SNg Gleyic Solonetz

SNha Haplic Solonetz SNh Haplic Solonetz So

SNmo Mollic Solonetz SNm Mollic Solonetz

SNst Stagnic Solonetz SNj Stagnic Solonetz

STlv Luvic Stagnosols LVj Stagnic Luvisols

STlx Lixic Stagnosols LXj Stagnic Lixisols

STmo Mollic Stagnosols PHj Stagnic Phaeozems

TC Undifferentiated Technosols UR Urban

UMcm Cambic Umbrisols CMu Humic Cambisols Bh

Umbrisols

Podzols

Regosols

Solonchaks

Solonets

Stagnosols

Technosols

Plinthosols

Nitisols

Phaeozems

Planosols

Dystric Nitosols

Eutric Nitosols

Haplic Phaeozems

Luvic Phaeozems

Planosols

Dystric Planosols

Eutric Planosols

Solodic Planosols

Petric

Petroferric

Humic Podzols

Regosols

Calcaric Regosols

Dystric Regosols

Eutric Regosols

Solonchaks

Salt flats

Gleyic Solonchaks

Orthic Solonchaks

Takyric Solonchaks

Orthic Solonetz

Humic Cambisols

Code Name Code Name Code

WRB FAO-90

Name

FAO-74
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VR Undifferentiated Vertisols V

VRcc Calcic Vertisols VRk Calcic Vertisols

VRha Haplic Vertisols VRe Eutric Vertisols Vc

VRhams Haplic Mesotrophic Vertisols VRd Dystric Vertisols

VRpe Pellic Vertisols Vp

WR Water Body

Vertisols

Miscellaneous Categories

Vertisols

Chromic Vertisols

Pellic Vertisols

Code Name Code Name Code

WRB FAO-90

Name

FAO-74
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and their position in the landscape. Google Earth shows information
that was captured by satellites at most a few years ago, which allows
multi-temporal comparison with the HWSD data.

The following sections describe the various data processing stages
required to produce the soil maps published in the Atlas.

3. Database processing

3.1. Assigning the dominant soil type

As each pixel or cell of the HWSD can contain up to nine individual
SUs, a single SU (or a soil type) is defined as dominating a particular
SMU on the basis of largest areal extent occupying the SMU. While
it is clear that this approach masks the diversity of soil present within
an SMU and presents a simplified view of soil distribution across
Africa, the final map is much clearer and easier to use. It should be
emphasised that the main aim of this publication was to produce a
map that introduces and highlights the diversity and importance of
the soils of Africa to a new wider audience, outside of the soil science
community. Specialists who need more detailed information can
download the HWSD (http://webarchive.iiasa.ac.at/Research/LUC/
External-World-soil-database/HTML/).

In the HWSD, the sequence in which the SUs within the SMU are
presented follows the rule that the dominant soil always has se-
quence number 1. As a result of a visual inspection of the database,
it appears that there were several errors and inconsistencies in the
dominant SU table such that the SU with the largest areal extent in
the SMU is not always the one that is selected as being representative.
Therefore we rechecked all the SMUs systematically to ensure that
the SU with the largest areal extent is the one that represents the
dominant soil type of the corresponding SMU.

A total of 147 SMUs, out of the 7,327 that cover the whole Africa
have been modified (blue areas in Fig. 9). The determination of the
dominant SU in a SMU was made on the basis of the name of the
soil only, not its properties. Three types of errors or inconsistencies
were detected (Fig. 4):
Table 2
Soil phases considered in the WRB soil classification.

FAO WRB Ren

Phase namea HWSD code Name WRB code

Ren
Petric 3 Pisoplinthic Plinthosols PTpx Wit
Petrocalcic 4 Petric Calcisols CLpt Wit

Che
Petrogypsic 5 Petric Gypsisols GYpt Wit
Petroferric 6 Petric Plinthosols PTpt Wit
Duripan 9 Durisols DU with

a If the dominant SU covers more than 50% of the areal extent of a SMU and is characteri
WRB will be driven according to the rules presented in the table.
• The SU having the actual largest areal extent is not initially ranked
as the dominant one and another soil type is set as representative.
The extent of this SU can be smaller or larger than 50% of the SMU
extent (Fig. 4A and B);

• Two or three SUs are defined by the same soil type name but none
of them is ranked as the dominant SU (Fig. 4C and D). While consid-
ered together, their combined areal extent is larger than the initial
dominant SU. The soil properties of the same soil type SU can be
identical or can be slightly different. The combined extent of these
SUs can be smaller or larger than 50% of the SMU.

• An SU is defined as a non-soil unit in the initial FAO-74 system. This
SU can correspond either to DS (i.e. dunes and shifting sands) or RK
(i.e. rock debris). As noted below (Section 3.2), these SUs are con-
sidered as soil types in the classification system used for the new
map. In some cases, this “new” soil type corresponds to the actual
dominant SU and is set as such (Fig. 4E and F).
3.2. Translation to WRB

Within the HWSD, the name of the soil is given according to the
legends of the FAO-Unesco 1:5 M Digital Soil Map of the World
(FAO-74 system) or SOTER/SOTWIS (FAO-90 system). To harmonise
these two systems and the existing JRC Soil Atlas series (Jones et al.,
2005, 2010), these names have been translated to the World Refer-
ence Base for Soil Resources (WRB) classification and correlation sys-
tem (IUSS Working Group WRB, 2007). The WRB serves as a common
language through which the FAO-74 and FAO-90 systems can be com-
pared and correlated.

The WRB classification system was developed under the auspices
of FAO and the International Union of Soil Science, by building on
the foundations of the FAO legend to create a common basis for cor-
relating the soil resources of different countries. The WRB places all
types of soil within thirty two major Reference Soil Groups (RSGs),
with a series of uniquely defined qualifiers (prefixes and suffixes)
for specific soil characteristics (IUSS Working Group WRB, 2007).
aming rules

aming occurs:
h all but Vertisols (VR), Fluvisols (FL), Solonetz (SN) or Gleysols (GL)
h all but Leptosols (LP), Solonetz (SN), Planosols (PL), Stagnosols (ST),
rnozems (CH), Kastanozems (KS), Phaeozems (PH), Gypsisols (GY) or Durisols (DU)
h all but Leptosols (LP), Chernozems (CH), Kastanozems (KS) or Phaeozems (PH)
h all but Vertisols (VR), Fluvisols (FL), Solonetzs (SN) or Gleysols (GL)
all soils

sed by one of the phases in the table, then the renaming of the SU (and the SMU) into

http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/
http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/


Table 3
Maps used in support for the harmonisation.

Country Map Scale Year Source

Egypt, Namibia, Senegal, Africa Digital Soil Map of the World 1:5.000.000 2003 FAO
Egypt Soil Association Map of Egypt 1:4.000.000 1975 Hammad, M.A. Dr., Soil Survey Institute. Appendix 2.

Soil Survey Papers no. 11., Wageningen, the Netherlands
Kenya Exploratory Soil Map of Kenya 1:1.000.000 1980 Sombroek, W.G.; Van de Pouw, B.J.A., Republic of Kenya.

Ministry of Agriculture Kenya Soil Survey, Nairobi
Lesotho Soil Association Map of Lesotho 1:250.000 1979 Carroll, P.H. et al. Soils of Lesotho. The Office of Soil Survey.

Cons. Div., MA, Lesotho
Malawi Malawi Soil Map (Draft) 1:2.000.000 1991 SADCC, Food Security Programme, Regional inventory of

agricultural resource base, Harare, Zimbabwe
Tanzania Provisional Soils Map of Tanzania 1:2.000.000 1977 Samki, J.K., Geological Survey Department, Dodoma, Tanzania
Tanzania Soils and Physiography. Tanzania. 1:2.000.000 1983 De Pauw, E., Ministry of Lands, Housing and Urban Development,

Dar es Salaam, Tanzania FAO
Zambia Zambia Soil Map (Draft) 1:2.000.000 1991 SADCC, Food Security Programme, Regional inventory of

agricultural resource base, Harare, Zimbabwe
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The conversion of the FAO systems into the WRB scheme is
presented in Table 1, which correlates each WRB RSG to the related
SUs in both FAO systems but gives the translation key only for the
Fig. 5. Phase and dune update and border harmonisation. Examples for Senegal (A, B) and t
tabase processing stage. (B, D) The soil map in its final version after all the updates and mo
dominant SUs of the SMUs present in the continent of Africa. At the
scales of the HWSD the dominant SUs of the SMUs present in the
African continent comprise all but three of the WRB RSGs:
he Libyan–Egyptian–Sudan border (C,D). (A, C) The soil map as it appears after the da-
difications. See Table 1 for the WRB legend. The star in (C) locates Fig. 6.
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Fig. 6. Border harmonisation with the use of Google Earth along the Libyan–Egyptian border. (A) The SMU limits as they appear after the database processing stage. (B) The SMU
limits in their final version after all the updates and modifications. The location of this region is shown with a star in Fig. 5C. See Table 1 for the WRB legend.
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Albeluvisols, Anthrosols and Cryosols. The WRB system recommends
that the RSGs with prefix qualifiers be used for small-scale maps (i.e.
smaller than 1:1 M) (IUSS Working Group WRB, 2010). This recom-
mendation has been followed in the construction of the legend: one
or two prefix qualifiers are put with each RSG to define the soil types.

Building Table 1 presented many issues. It is based on expert knowl-
edge of both the FAO andWRB systems, the expertise in the realisation
of FAO Soil Map of the World and the SOTER methodology, and the
HWSD interpretation. One of the key issues concerns the consideration
of the phases. In FAO-74 and FA0-90, phases are subdivisions of soil
units based on characteristics which are significant for the use or man-
agement of the land but are not diagnostic for the separation of the
soil units themselves (IUSS Working Group WRB, 2007). While noted
as an additional soil characteristic in these systems, phases have to be
taken into account in the WRB classification terminology (FAO names
in mauve in Table 1). The WRB renaming of the SU was undertaken
according to the rules presented in Table 2. To obtain the final transla-
tion we have considered in the database that the phases rule the name
to the SMU if they are associated to a dominant SU that covers more
than 50% of the SMU. For example, a dominant SU characterised by a
petric phase (HWSD code 3)will be renamed as a Pisoplinthic Plinthosol
(PTpx) if its initial name is not a Vertisol, a Fluvisol, a Solonetz or a
Gleysol. The consideration of Phases 3 and 6 allows representation of
the Plinthosols in the region covered by the DSMW, since this soil
group is not defined in the FA0-74 system (Table 1).

The HWSD contains units defined as “non-soil” in the FAO systems:
DS (i.e. dunes and shifting sands), RK (i.e. rock debris) and ST (salt flats)
in FAO-74 and UR (urban) in FAO-90. These units are considered as soil
types in WRB (FAO names in green in Table 1).

It is clear from Table 1 that most of the RSGs and soil types defined
in FAO-74 and FAO-90 are also present in WRB, the symbols having
been adapted accordingly. Nevertheless, some RSGs present in the
FAO systems are not defined in WRB: Lithosols, Rendzinas, Xerosols
and Yermosols in FAO-74 and Greyzems in FAO-90 (FAO names in
blue in Table 1). And WRB contains RSGs that are not defined in
FAO: Durisols, Umbrisols, Stagnosols and Technosols in both FAO sys-
tems, and Alisols, Calcisols, Gypsisols, Lixisols and Plinthosols in
FAO-74. In addition, several FAO soil types do not keep their name
in WRB and are inserted into other RSGs (FAO names in red in
Table 1).

The WRB soil types defined as “Undifferentiated”, and for which
no corresponding FAO name is shown in Table 1, are soil types that
were not present as such in the HWSD. Their occurrence results
from the completeness of the “No Data” areas in the original database
(see Section 4.4).

For more detailed information on the major WRB RSGs present in
Africa, the qualifiers used in the table and the WRB classification ap-
proach to describe and define different types of soil, the reader can
refer to the Atlas (Jones et al., 2013).

4. Data update and modification

At the conclusion of the soil name translation stage, the raster data-
base was converted to polygons to facilitate the cartographic stage
(Fig. 1). Cells with adjacent soil names were merged in this process.
The conversion gives a map of 30,554 polygons that can be categorized
in three groups: soil, water body, and sea and ocean area; these groups
containing, respectively, 26,204, 3,951 and 399 polygons.

Thousands of “micro-polygons” corresponding to small terrain and
soil components, which were too small to be labelled on the map sheets
of the Atlas at the scale 1:3 M, were overwritten with their surrounding
mapunits in order to produce ‘clean’maps. These are indicated by the red
speckle on the summary modification map (Fig. 9). These polygons are
smaller than the minimum legible delineation (MLD), which, according
to the definition of Vink (1975), is 0.25 cm2 on the map. For a 1:3 M
scale, MLD is 225 km2. The map contains 20,500 polygons smaller than
225 km2 (i.e. 80% of the total number), most of them being located in
the SOTWIS regions (Fig. 1).

At this stage, a decisionwas taken not to over-clean the SOTWIS data
with respect to the coarser information from the original DSMW

image of Fig.�6


Fig. 7. Completion of “no information” areas. Example for two large areas in Namibia. (A, C) The soil map and the SMU limits as they appear after the database processing stage. (B,
D)) The soil map and the SMU limits in their final version after all the updates and modifications. (C, D) close-ups of the Etosha Pan Area in the Kalahari Basin in the north of Na-
mibia showing the harmonisation with the use of Google Earth. See Table 1 for the WRB legend.
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(Fig. 1). While the preservation of detail at the expense of cartographic
harmonisationmay have produced some ‘noisy’map sheets in the Atlas,
e.g. in Kenya and South Africa, we felt that it was better to highlight the
lack of data in other parts of the continent. Some parts of the map are
therefore at a much finer effective scale than 1:3 M.

In total, 12,800 soil polygons smaller than 225 km2 (out of 20,500
in the initial map) were overwritten; 12,000 of them (out of 14,300)
having an area smaller than 25 km2 (i.e. the MLD for a 1:M scale map)
and 6,800 (out of 7,000) being smaller than 1 km2 (i.e. approximately
the size of a pixel at the Equator). Most of these polygons are located
in South Africa, Senegal and Kenya.

Several major modifications were carried out to the initial data
contained in the HWSD on the basis of expert knowledge, Google
Earth, and several soil maps (Table 3). These maps are accessible to
the public through the ISRIC–World Soil Information Database
(http://library.wur.nl/isric/).

The harmonisation steps are described below. For the sake of clar-
ity, they are presented separately in a structured order. In practice,
we often dealt with several harmonisation issues concurrently.

4.1. Phases and dunes

In addition to the renaming process performed during the previous
stage (Table 1), a number of modifications were made to the polygon
map using expert knowledge and the phase characteristics of the
DSMW. The main modifications are related to the phases 3 and 6
(Table 2) that were used to redefine the extent of the Plinthosols in
central and west Africa, and which were previously absent (the green
areas in Fig. 9). As an example, Fig. 5A and B illustrate the Plinthosol
updates in Senegal and the neighbouring countries. When considering
only the renaming through the database processing (Fig. 5A), Plinthosols
are absent in Senegal. At the continental scale, Plinthosols constitute a
major update (Fig. 9). The other modifications related to phases 4, 5
and 9 are clearly of smaller geographic extent. These changes are indicat-
ed in the red areas in Fig. 9.

Similarly to the consideration of the phases, the update of the
shifting sands and active dunes needed processing additional to the
database renaming. The WRB classification defines these areas by a
specific Protic Arenosol showing no horizon development (ARpr,
Table 1). The shifting sands and active dunes are also specifically
defined in FAO-74 (renamed from DS to ARpr, Table 1). However
this distinction does not exist in FAO-90, shifting sands and active
dunes being implicitly considered together with other sandy soils
and classified as Arenosols having no meaningful characterisation
(renamed from ARh to ARha, Table 1). Contrary to the FAO-74
data, a direct renaming in the database from FAO-90 to the WRB
ARpr was impossible. For the areas covered by the FAO-90 data,
the renaming from ARha to ARpr was done after the database pro-
cessing. A systematic approach was to check with Google Earth all
the ARha polygons in the areas covered by FAO-90 data to see to
what extent they were related, or not, to shifting sands and active
dunes and to correct obvious misclassifications. Intensive checking
of the data with Google Earth also allowed new dune areas to be de-
tected and dune areas that had moved to be reshaped. This can be

http://library.wur.nl/isric/
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Fig. 8. Harmonisation of drainage networks, water bodies and coastlines. (A, C, E) The soil map as it appears after the database processing stage. (B, D, F) The soil map in its final
version after all the updates and modifications. See Table 1 for the WRB legend.
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seen, for example, in the Libyan–Egyptian–Sudan border region,
where changes can easily be observed in the pattern of the dune
polygons (Fig. 5C and D). The areas of dune update are shown in
yellow in Fig. 9.

4.2. Boundary effects

The most visible boundary effects occur when a border delimits the
two data sources DSMW and SOTWIS, showing differences in soil classi-
fication and data resolution (Figs. 1 and 2). These effects are particularly
striking between Libya and Egypt where, for example, two different soil
names are used for the Great Sand Sea (Fig. 2A). Another explicit exam-
ple concerns Senegal and The Gambia where compared to the surround-
ing countries the density of information is far greater and the soil
terminology changes across the borders (Fig. 2B). The same observation
can be made between Lesotho, which is only defined by a few FAO-74
soil units, and South Africa (Fig. 2 E). Within SOTWIS areas, differences
in data resolution are also frequent across country boundaries as
exemplified in Fig. 2D between Kenya and Tanzania in the Mount Kili-
manjaro region. The example of Mount Kilimanjaro illustrates very
well the problem that, very often, differences in soil terminology exist
between SOTWIS units having similar soil forming factors but which
are separated by a political border.

Fig. 5 shows the harmonisation for two problem regions. In Sene-
gal and The Gambia, the consideration of the Plinthosols was one key
issue. The harmonisation required a simplification of the SOTWIS
data. In the Libyan–Egyptian–Sudan border region an important part of
the harmonisation relied on the update of the shifting sands and active
dunes. The updates in that region resulted in an increase in density of in-
formation. The two examples in Fig. 5 are ideal cases of harmonisation
where plenty of information is available either from theHWSD in Senegal
and The Gambia, or from Google Earth images in the Libyan–Egyptian–
Sudan region (Fig. 6).

All the political borders were checked systematically and, where
feasible, the boundary effects were removed on the basis of expert
knowledge. In total, modifications were brought to most of the borders
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Fig. 9. Summary of the modifications. The blue areas correspond to the modifications brought during the database processing stage. The other areas are the result of the processing
of the polygon map. The red areas indicate all the updates and modifications other than those specified by the legend. The close-up on the Zambezi Delta shows an example of
coastline update. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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between the two data sources. The borders inside SOTWIS data were
also modified except for those between the countries of the horn of
Africa and between Egypt and Sudan where the harmonisation in the
original database is flawless. Fig. 8(C and D) shows together with the
harmonisation of the drainage network, the consideration of the border
issues between three SOTWIS countries. Unless otherwise stated, the
changes at the borders are indicated as red areas in Fig. 9.
4.3. Soil pattern

At the small scales of the HWSD, one can understand that the soil
pattern of a specific region might differ slightly from one map to an-
other since such a survey implies expert knowledge. However, inde-
pendently of the boundary effects and the other harmonisation
issues, mistakes were identified in soil patterns in regions of Zambia,
Malawi and Lesotho. The information for these countries is from the
DSMW (Fig. 1) and some mistakes were due to the poor resolution
of the data; Lesotho, for example, being defined mainly by two poly-
gons. In addition, in Zambia and Malawi, experts familiar with this
region noticed several inconsistencies in the general north–south dis-
tribution of the soils. The modifications were carried out on the basis
of different soil maps at more detailed scales (Table 3). These changes
are indicated as red areas in Fig. 9.

4.4. No information areas

A total of 203 areas with no information are present in the HWSD
derived soil map (Fig. 1). Four of them are particularly large: one is lo-
cated in Egypt (the Sinai Peninsula) and the other three are in Namibia
(two along the ocean and one in the north of the Kalahari Basin). There
are other areas of very limited extent that do not appear at a first sight
in a regional map.

All the areas were completed (black areas in Fig. 9). Fortunately,
the larger areas are located in semi-arid and arid regions allowing a
reliable use of Google Earth. Fig. 7 shows an example of the comple-
tion of two of the large areas in Namibia. It can be seen that the com-
pletion were done according to the existing soil pattern.

4.5. Drainage networks, water bodies and coastlines

Drainage networks, water bodies and coastlines are features easily
identifiable on a map and any kind of shortcoming in their
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Fig. 10.Harmonised soil map at the continental scale. The map represents the dominant SU of each SMU.World Geodetic System (WGS 84) is the coordinate system used to produce
the map.
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morphology can discredit the value of the soil information presented
in the Atlas.

Many drainage networks and river bodies are not shown as con-
tinuous features, particularly when the drainage systems flow across
political borders (Fig. 8A and C). In addition some rivers, lakes and
coastlines are dynamic features subject to morphological changes
large enough to be noticeable even at the small scale of the HWSD.
Being based on legacy information, some of the data used in HWSD
are from several decades ago. In very dynamic environments such
as river deltas and lakes with water level changes and large sedimen-
tation rates, such periods of time are long enough to register signifi-
cant changes (Fig. 8E).

In this context, the drainage networks as well as the rivers and
water bodies (e.g., Congo River, Nile River, Lake Chad, Lake Volta)
have been harmonised. The main coastline changes have been also
considered (e.g. Nile Delta, Mozambique coast) (see Fig. 8 for exam-
ples). The modifications of the drainage networks and water bodies
are indicated as red areas in Fig. 9 whereas the coastline updates
are in pink.

The large number of water bodies in the initial map derived from
HWSD was due to an artificial fragmentation of the river network.
Through the harmonisation, we went from 3,951 to 251 water bodies.
The occurrence of 399 sea and ocean areas enclosed with soil
polygons in the initial map was also due to cartographic artefacts.
The modification of the coastlines removed all of them except two
that are in the Nile Delta.

At the conclusion of the harmonisation, the new map contains
13,689 polygons: 13,436 sol, 251 water body, and 2 sea and ocean.
This represents a reduction of 12,768 polygons from the initial map.

In the former sectionswe detailed all the steps for the harmonisation,
referring each time to a specificmodified area. If we sum all the areas to-
gether the finalmodification picture is shown in Fig. 9. The totality of the
modified areas is large, representing 13% of the continent; soil types and
SMUs of the original HWSD were corrected.

The quality and the reliability of the modifications are difficult to
quantify. However, for the areas in arid and semi-arid environments,
for example at the Egyptian–Libyan border and in the Namib desert,
the delineation of the soil units was clearly facilitated by the very
low density or even absence of the vegetation cover. These places
were harmonised at a higher resolution and are therefore more
reliable.

5. Continental soil map

The new map harmonised at the continental scale (Fig. 10) shows
the distribution of the major dominant soil types that can be found in
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Fig. 11. WRB Soil Reference Group (RSG) distribution. (A) Table with the main statistics. (B) Graphical view of the percentage of the continental area occupied by each WRB RSG.
(C) Graphical view of the polygon average area for each WRB RSG.
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Africa as defined by the Reference Soil Groups of the WRB scheme.
The map comprises all but three of the WRB RSGs and illustrates a
great soil diversity. The analysis of the RSG distribution (Fig. 11)
shows that over 60% of the soil types represent hot, arid or immature
soil assemblages: Arenosols (22%), Leptosols (18%), Cambisols (11%),
Calcisols (5%), Regosols (3%) and Solonchacks/Solonetz (2%). A fur-
ther 20% or so are soils of a tropical or sub-tropical character:
Ferralsols (10%), Plinthisols (5%), Lixisols (4%) and Nitisols (2%). 12
RSGs cover an area of less that 1% of the African land mass. This fact
illustrates that a considerable number of soil types are associated
with local soil forming factors such as volcanic activity, accumulations
of gypsum or silica, waterlogging, etc. Unlike the other continents,
Africa does not exhibit large expanses of prairie or steppe type soils
(Kastanozems, Chernozems and Phaeozems).

The average size of the polygons varies considerably according to
the RSG (Fig. 11). This can be related to the scale of the original
dataset as, for example, a lot of Arenosols, Plinthosols and Ferralsols
are in the DSMW part of the HWSD (Fig. 1) and DSMW was also
used for the phase update (Plinthosols and Durisols). Different envi-
ronmental conditions could also be responsible for the polygon size
(Gray et al., 2011): Arenosols contain the large dune areas in the de-
serts and Ferralsols are mostly associated with high rainfall areas
where the very dense vegetation coverage makes soil delineation
less straightforward.

In the context of raising awareness about soil, the harmonisation
procedure has allowed a more accurate map to be produced. Howev-
er, there is scope for future improvement because of the unequal res-
olution of soil data which causes differences in quality of the current
dataset. The confidence of spatial data is usually difficult to quantify
because it requires validation and collection of additional indepen-
dent soil information, usually from the field (Brus et al., 2011;
Kempen et al., 2009). This was not possible in this case but it should
be possible to improve the new soil map periodically in future with
inclusion of new data.

In the meantime, the confidence of the map can only be inferred
qualitatively. The best procedure is to consider the information
provided in Fig. 1: first, the different data sources of the HWSD that
show that density and reliability of the information varies according
to political borders; then the number of the SU for each SMU that
shows the diversity of soil information. The SMU with the highest
number of SU bears the most reliable information. The map shown
in Fig. 1B provides information similar to a purity map (Kempen et
al., 2009).

The new map is at the heart of the Soil Atlas of Africa (Jones et al.,
2013), displayed in a series ofmap sheets at the scale 1:3 M, constituting
some forty per cent of the Atlas pages. The published Atlas, the Soil Map
of Africa that it contains and the corresponding datasets (modified map
and associated modified HWSD) are available for downloading free of
charge from the portals of the European Commission Joint Research Cen-
tre SOIL Action (http://eusoils.jrc.ec.europa.eu/).

6. Conclusions

The new soil map of Africa represents an important contribution
to the future sustainable use of soil resources of the continent. To-
gether with the Soil Atlas of Africa it will raise awareness about the
importance of soils in the support of an increasing population and
threatened environment. The soil map and associated database also
have the potential to enhance global studies on climate change,
food production and land degradation for example. The explanation
of the decisions that were made to produce the map will be useful
to others who are attempting to harmonise legacy soil data sources
to provide a usable information base.

The Soil Atlas of Africa Project utilised the large body of legacy soil
information for Africa collected over the last 60 years. The resulting
harmonised soil map and database demonstrate the value of apply-
ing modern spatial analytical techniques to historic soil data to pro-
duce what is undoubtedly the best current soil information base for
the African continent. Initially it is expected to satisfy the soaring
demand for up-to-date and relevant soil data at international level
in addition to the Africa Soil Information Service (AfSIS), which
constitutes the African part (http://www.africasoils.net) of the

http://eusoils.jrc.ec.europa.eu/
http://www.africasoils.net
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GlobalSoilMap.net project (Sanchez et al., 2009). However, the
resulting map highlights the need for applying new mapping tech-
niques and collecting new data in Africa to meet 21st century soil in-
formation needs.

It is important to recognise that themap has limitations if applied at
high resolution because, to be meaningful, this would require data at
the soil type (SU) level. The soil mapping units (SMUs) on the current
map only comprise a dominant SU together with a number of ancillary
(or included) soil units for which the precise spatial distribution is not
known. But the structure is flexible enough to incorporate new soil
(spatial and attribute) data as they become available and there is good
expectation that the current resolution can be constantly improved in
the future.
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