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Abstract 

Abiotic strcsses occurring at critical growth stages in groundnut al'fect productivity 

by reducing the total dry matter, pod yield and quality. Present study investigates tlic role of 

glj~cine hctnine in alleviating cffects of the three major abiotic strcsses i. c., drought, licat 

2nd salinity on selected grol~ndnut gcnotypcs. The investigation was conducted in 3 phases 

i.e., (a) effcct of betaine on tolerance of groundnut seedlings to heat arid salinity stress 

conditions, (b) eff::! of bctaine on isolatcd plants growing in pots subjected to drought. licat 

and salinity, and ( c) effect of bctaine on tolerance of groundnut genotypes to siniulatcd 

drought undcr field conditions. 'The cxperirnents wcre conducted during 1'996- 98 pcriod at 

ICRISAT centre. Patmcheru, in laboratory, glass housc, plant growth chambers and licld. 

To investigate bct~lins effcct'on seedling systems, thc seedlings were si~hjectcd to high 

teniperaturc and salinity stress conditions in laboratory with and without glycine bctaine 

trcatmcnt. IJnder high tcmpernturc stress conditions, the seedlings with betainc treatment 

were able to produce greater root and shoot lengths 34 and 40% respectively than seedlings 

without bctainc treatment. In the non induccd treatments, thcrc was a 122% greater growtli 

of roots in betailic treated scedlirigs compared to untreated ones. The gel electrophoresis 

rcsuits indicated that betaine treatment was able to produce four new protcins with molecular 

weights of 76.4, ilO.G, 54.6 :ind 16.5 kDa. Under salinity strcss conditions, the bctnine 

treatment was ab.: to produce 30 and 32% more root and shoot growths than untreated 



seedlings. The protein profiles indicated that betainc treatment was able to producc four ncw 

proteins with molecular weights of 65.4, 37.8, 35.4 and 16.5 kDa. These strcss shock 

proteins which are produced under high tcmperaturc and salinity stress condirions were 

implicated as molecular mechanisms to cnhance tlie adaptation of the tissues to stress 

conditions. In the pot culture cxpcriments effect of glycinc bctaine on isolated plants 

growing under hcat, drought and salinity stress conditions in glass house a~id  growth 

chan~ber. Undcr licat stress conditions, seed treatment with glycinc hctaine could increase 

the root and shoot development by 150 and 32% and total dry matter by 20%. There was a 

relative increase in net photosynthetic rate and FvIFm ratios, dccrcasc in leaf water potential. 

IJndcr salinity strcs:; conditions, [he betaine treatment enlianccd thc growth in root, shoot 

and total biomass ijy 135%, 25% and 28% rcspcctivcly when cotnparcd with untreated 

control. Correspondingly the net photosyntl1ctic ratc increased by 35% wirli betaine 

trc:~tmcnt. Similarly witli high tcmperaturc strcss conditions. the seed treatment with glycinc 

hetaine could increase the root and shoot development by 22 and 43% and total dry matter 

was increased by 23%. There was a rclativc incrcasc in RWC by 10% and dccrease in leaf 

water potential by 25%. T'hc fluorcscencc (FvlPm) which is an index of PSI1 quantum yield 

was reduced in stressed plants without betainc wllcn conipnrcd witli betainc treated stressed 

plants. These results indicate that glyciiie betainc accuniulation confers protcction against 

the pliolochemicel reaction of PS I1 in vivo. In licld studies effcct oi'glycine betainc at 3, 6 

and 9 lcg ha" undcr mid season and cnd scason drought was cxa~nincd whcthcr its 

application could anlclioratc tlie effects of drought on thc yicld of groundnut. The biomass 

production and poll dry matter wcrc significantly reduced by 45 and 58% by drought. 

Exogenous applicnt on of bctaine at 3 kg ha" resulted in allcviation of drought effects as 

evidenced by reduction in drytilatter by 36% compared to control. The positivc ct'fects of 

glycinc bctirinc trcatliicnt appear to 'oc linkcd not only to its physiological rolc as a plant 

osmoric~im that iniprovcs drought tolcrancc but also to a protcctivc role for plotcins and 

tncmbrancs cvcn at low concentrations. 

The results of the present study suggest that fdiar application of glycine bctaine may 

bc used to improve stress tolerance and economic yield of groundnut. However, detailed 

biocliemical studies need to bc takcn up to establish the metabolic engineering of glycine 

betainc biosyntlietic pathway in higher plants. 



Introduction 



Chapter I 

Introduction 

Legumes are the important source of dietary proteins and fat in many developing 

countries including semi arid tropics (SAT). Even though legumes have greater ecological 

efficiency than live stock industly, their cultivation is mainly predominant in seasonally rainfed, 

low input marginal lands in SAT. Major abiotic stress factors that limit the productivity of 

legumes in SAT are drought, salinity and high temperature stresses. Among the grain legumes 

groundnut is the major cash crop of SAT and about 67 % of global groundnut production comes 

from the rainfed cultivation (Gibbons 1980). 

India is the largest producer of groundnut in the world with a total production of 8.9 

million tonnes. The crop is grown on 22.5 lakh ha area. The yield of groundnut crop is lower 

and erratic (900 Kgha) mainly due to drought, diseases and pests (The Hindu, Survey of Indian 

Agriculture). Drought remains as one dominant abiotic factor affecting groundnut production in 

India. Since availability of water for supplementary irrigation will be an increasingly scarce 

commodity, there is a need to explore genetic and managerial ways to enhance the tolerance of 

groundnut to water deficit conditions. The drought is often associated with high temperatures. It 

is well known that optimum temperature for gennination of groundnut is 27 - 30' C and 

temperatures on the either side of the optimum range result in reduction in the rate of 

germination (Kelring 1984). There is no clear documentation of base and optimum 

temperatures for various phenophases of groundnut. For all practical purposes groundnut crop 

growth models (such as PEANUTGRO, QNUT and PARCHNUT) assume a base of 10' C and 

an optimum of 2 7 ' ~  as threshold temperatures for the crop growth. 



Temperatures of a range of 35 - 40°C are common in India during the drought period in 

rainy season as well as reproductive period in summer season. 

Nageswara Rao et al., (1989) has shown that reproductive development in groundnut is 

sensitive to high temperatures. Fenilisation has been shown to be the most sensitive to 

temperature above 35' C. Hence, identification of traits and development of management 

practices that impart tolerance to heat stress is having paramount importance particularly so, in 

view of the global warming (Schneider 1989) and this change coupled with increase in CO 

concentration may substantially increase the need for tolerant genotypes all over the world (Hall 

1992). 

In India salinity is also a major factor limiting the crop production. About 10% of total 

cutivable soils in India suffer from salinity disorders. In view of growing population and 

growing demand for food and fwd  crops the important legumes such as groundnut need to be 

expanded in hostile environments or non traditional areas. 

Accumulation of osmoprotectants in higher plants and other organisms is a well known 

phenomenon representing metabolic adaptation to salinity, drought and high temperature stress. 

Osrnoprotectants are small molecules that can benefit osmotically stressed cells in two ways 

i.e., by acting as nontoxic cytoplasmic osmolytes to raise osmotic pressure and by protecting 

enzymes and membranes against damage by salt levels (Wyn Jones 1984). 

Osmoprotectants fall into two chemical classes : Polyols and their derivatives (Somero 

1986; Csonka and Hanson 1991). Glycine betaine is a polyol which occurs in small families of 

higher plants, particularly in species adapted to dry and saline environments (Rhodes and 

Hanson 1993). However, many higher plants do not accumulate glycine betaine or any other 



osmoprotcctant, and this has led to interest in the metabolic engineering of the glycine betaine 

biosynthesis pathway as an approach for enhancing stress resistance (Lerudulier et. al., 1984; 

Mc Cue and Hanson 1990) 

Higher plants synthesise glycine betaine in chloroplasts via the pathway : 

Choline + betaine aldehyde + Glycine betaine (Rhodes and Hanson 

1993). The first step is catalysed by choline monooxygenase (Brouquisse et at., 1989), and the 

second step by betaine aldehyde dehydrogenase (BADH) (Weigel et al., 1986). 

The accumulation of glycine betaine (N, N, N - Trimethyl glycine) in water and salt 

stressed plants has been proposed to play an important role in osmotic adjustment which is 

widely considered to be an adaptive response to stress due to water stress and salinity (Hanson 

1980, Wyn jones 1984, Yancey et al., 1982). It appears that betaine functions as an compatible 

or protective solute in the cytoplasm and chloroplasts (Incharbensakdi el al., 1986). Since it 

appears to be a relatively inert end product of metabolism that is not catabolised to any 

appreciable extent in plants (Hanson and Hitz 1982: McCue and Hanson 1990). 

Alleviation of abiotic stress facton by enhancing the adaptation of the crop by genetic 

and management factors can substantially contribute to the yield improvement. 

There have been studies on the use of chemical compounds to alleviate the effects of 

drought on plants and interest is increasing with better understanding of the physiological effects 

of stresses. For example, the foliar application of glycinebetaine to potato (Solanum tuberosum 

L.) and Tomato &vco~ersicum exulentum Mill.) indicates its possible use to reduce crop 

failures under conditions of osmotic smss in Sudan (Agboma er al., 1997). In a green house 
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study of drought stressed tobacco (anon betaine accumulating model crop) the foliar application 

of glycine betaine significantly increased leaf area and leaf dry weight (Agboma er.a1.,1997). 

The benefits of external application of glycine betaine on seedlings or plants have been 

demonstrated under vitro conditions on isolated enzymes (Paleg er al., 1985) or on whole plants 

(Zao et a!., 1992). External application of glycine betaine on cotton enhanced seedling vigour, 

germination and yield in cotton (Naidu er al., 1996). 

Application of exogenous glycine betaine, timed to coincide with critical development 

stage at which a crop is especially susceptible to drought, could reduce yield losses under field 

conditions. Therefore studies were undertaken to evaluate the potential of exogenously applied 

glycine betaine. 

The present investigation was undertaken with the following objectives: 

1. To investigate the effect of glycine betaine in the alleviation of drought stress in 

groundnut genotypes. 

2. To study the effect of glycine betaine on response of groundnut to high temperature 

stress. 

3. To study the genotypic variation in response to and effect of glycine betaine under 

salinity stress in groundnut genotypes. 



Review of literature 



CHAPTER I1 

REVIEW OF LITERATURE 

Food legume crops which constitute an imponant components of human 

diet and live stock feed are cultivated widely in arid, semi-arid, sub humid 

tropical regions of the world. The crops are chosen to suit the climate and soil 

type in different cropping systems. In semi-arid environments (SAT) where 

rainfall is low and growing season is short, crops like pigeonpea, groundnut, 

soybean, navybean etc., are sown in the rainy season either as a sole crop or as an 

intercrop, while crops such as chickpea, lentil and pea are grown either on 

residual moisture or during the post rainy season (Reddy and Willey, 1982; 

Papendick et a1.,19X8: Willey et a1.,1986; Ali 1990: Wood and Myer 1986; 

Squire et u1.,1986). Yield levels of food legume crops grown in SAT 

environments are generally low and erratic because they are grown under low 

inputand rainfed conditions (Carangal ct a1.,1986). 

Groundnut is one of the important food legume crops grown in the semi 

arid tropical regions. About 213 of the world production of groundnut is utilized 

as an edible oil, making it one of the world's leading oil seed crops. Lndia ranks 

first in the groundnut production in the world with about 30% share in the global 

production. The crop is grown on over 7.5 million hectares in the country and 

accounts for 53% of the oilseeds output and 59% in edible oil production. In 

lndia groundnut is grown predominantly as a rainfed crop with 82% of the crop 

production occurring in the rainy season. However, the yields of groundnut 

remained virtually stagnant at 890 kgha  as against a world average of 1100 

kgha. 



The yields of groundnut grown under rainfed conditions are in general 

low and erratic because of combination of various biotic factors (pests and 

diseases) and abiotic Pdct0rs (drought, high temperature, salinity and nutrient 

disorders). When biotic factors are controlled by integrated management factors 

drought remains to be the most important abiotic constraint affecting groundnut 

productivity under rainfed situations. 

As the demand for food, feed and oil is increasing with increase in 

population in non traditional areas and hostile environments are being explored 

for crop production. Hence there is a need for development of novel ways of 

enhancing stress tolerance in important food legumes like groundnut. 

Various reports have indicated large difference between potential and 

realized yield in food legume crops (Mc William & Dillon 1987) in general and 

groundnut in particular (Nageswwd Rao 1992). 

Classical genetic methods (involving crossing, and selection schemes) 

have already made enormous contributions towards crop implovement under 

non-limiting high input conditions (Acevado & Ferercs 1993; Jones & Gorham 

1986). However genetic enhancement for stress tolerance remains complex 

because of lack of thorough knowledge of traits contributing to the tolerance and 

lack of simple and econonlic tools for stress tolerance in large scale breeding 

programs. Hence, breeding for stress tolerance using classical selection schemes 

is not yet practiced. 

This chapter deals with the review of research in groundnut in three major 

abiotic stress areas i. e., Drought, High Temperature and Salinity stresses. 



2.1 DROUGHT STRESS: 

ln semi-arid environments, drought stress is a major factor responsible for 

low yield of groundnut (Simpson, 1981). The yield losses due to drought range 

from 5-758 depending on timing, intensity and duration of drought during crop 

growth. The intensity of drought also depends on water holding capacity of the 

soil and other environmental factors such as high temperatures. A thorough 

understanding of effects of drought on crop growth, yield formation and 

genotypic interaction is essential to make any progress in enhancing drought 

tolerance in groundnut. Effect of drought during different growth phases of 

groundnut has been investigated by many researchers. Drought during the 

vegetative stage has generally less effect on seed yield when subsequent 

environmental conditions are conducive for recovery compared to drought during 

reproductive stage (Turk el u1.,1980: Hall and Grantz 1981). Nageswara Rao et 

a1.,1985a found that moderate drought during pre flowering stage can intact 

increase in yield by 20% compared to irrigated control. Effects of drought in 

groundnut depend primarily on the pattern of drought and genotype variation is 

usually of secondary significance (Nageswara Rao et a1 1991). 

In  groundnut, stress during the flowering stage can reduce number of 

flowers and delay flowering time (Boote et a1.,1982). However, reduction in the 

number of flowers did not directly influence the pod yield (Nageswara Rao 

el ul.,lY92). Groundnut can compensate for reduced number of flowers by 

producing a new flush of flowers when stress has been relieved (Nageswara Rao 



8 
et a1.,1988; Harris et al.,1988). Pod yield was significantly reduced by drought 

stress during pegging and pod set primarily because of reduction in pod number 

rather than kernel weight per pod (Boote et a1.,1976; Pallas et al. 1979; Roy 

et a1.,1988). Stress at pod filling phase was shown to reduce groundnut yield by 

1530% (Stansell & Pallas 1985; Nageswara Rao et ul., 1985a; Chapman 1989; 

Wright et al.,IY91). Pathak et a1 (1988) recorded a yield reduction of 62.7% 

compared to the control when stress was imposed at the pod filling stage. Late 

season drought has been shown to reduce pod yield more severely in long 

duration varieties than in early ones (Muchow & Sinclair 1986). mostly through 

reduction of pod number and seed size (Pallas et a1.,197Y; Nageswara Rao et 

al., 1985; Wright et ul, 199 1). 

During 1980's substantial research had focussed on examining physiological 

basis of drought tolerance in groundnut. Although a number of studies: have 

proposed phenomena related with biochemical basis for drought tolerance such as 

osmoregulation, proline, Abscissic acid etc. These results have found limited 

application in breeding programs mainly because of lack of consistency in the 

positive role of these traits in performance of genotypes under water deficit 

condition. 

Recently, physiological models have been proposed to explain the performance 

of genotypes under a given environment. Passioura 1977 defined the yield as a 

function of transpiration (T), water use efficiency ( W E )  and harvest index (HI). 

This physiological frame work of yield formation allowed to explain the 

performance of genotypes in different environments. This model has been 

recently evaluated for groundnut (Wright et al, 1994) and allowed selection of 

genotypes with high levels of each of these traits. 



Transpiration: 9 

Efficient water uptake requires the presence of roots in deeper soil layers, 

which enables the crop to explore a greater soil volume for water. The superior 

ability of groundnut to maintain favourable leaf water status during periods of 

soil water deficit was related to greater proliferation of roots in the deeper 

rooting zone (Bunting and Kassam 1988: Devries et a1.,1989). Similarly, the 

higher root density in groundnut at lower soil depths conferred superior drought 

tolerance compared to soybean and mung bean (Pandey et a1.,1984). The 

utilization of profile water from 120 cm depth which was reported by Stansell & 

Pallas (1985) suggests scope for exploiting groundnut germplasm for the ability 

to exploit water from deeper soil profile. 

Efficient water uptake by roots was shown to be linked with 

osmoregulation occurring in root tips, (Subba Rao et. al. 1996, Davies 

et a1.,19X6). However, growth of roots into deeper soil layers under drought 

stress is a function of both genotype and environment (Gulmon & Turner 1978; 

Begg & Turner 1976; Malik et ul., 1979, Sharp & Davies 1985). 

Water use efticiency(WUE): 

W E  is defined as the quantity of DM produced per unit of water transpired. 

Thus it is apparent that W E  is one of the most important factors influencing 

crop productivity, particularly under water limited conditions (Turner 1986; Uma 

1987; Martin & Thortenson 1988). Reviews of the literatwe often concluded that 

the exploitable variations in transpiration efficiency (TE) among cultivars within 

a species is small and the potential for improvement by breeding is limited 

(Fischer and Turner, 1978); Fischer, 1981; Tanner and Sinclair, 1983). 



Significant genotypic variations in WUE (upto 60%) between different groundnut 
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genotypes have been reported in glass house and field experimental studies 

(Hubick 

et al.,1986; Wright et al., 1988; Nageswara Rao er. al, 1993). 

Variation in TE among cultivars was largely due to differences in biomass 

rather than to differences in water use. This result suggests that photosynthetic 

capacity, rather than leaf stomatal conductance, dominates the TE response in 

groundnut cultivars. Similar groundnut cultivar differences in TE have been 

reported in the field by Mathews et al. (1988a). In their study, cv. Kadiri-3 had 

the highest (2.17 &g) and cv. EC 76446(292) the lowest TE (1.71 &g). It is 

clear that considerable scope exists to improve TE and ultimately pod yield under 

water-limited conditions by selection for this trait in breeding programmes. 

Sensitivity of leaf area expansion rate to water deficit is one of the 

mechanism for reducing water loss (Kowal & Kassam 197X), Turk & Hall 19XO; 

Muchow 1985a). Leaf area development appears to be more sensitive to water 

deficit than either leaf senexence or leaf photosynthesis (Tumer 1986a). For 

example, leaf expansion rate of soybean was significantly reduced when leaf 

water potential (LWP) decreased below -1.0 to -1.2 MPa whereas, leaf 

senescence and shedding occurred only when minimum LWP fell below -2.0 

MPa (Constable & Hearn 1978). 

Stomatal closure provides another mechanism for reducing water loss. 

Stomata of crop plants are sensitive to vapor pressure deficit which is an 

important mechanism for maximizing TE (Farquhar 1978). By reducing stomatal 

conductance during periods of maximum daily evaporative demand without a 
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significant reduction in total daily photosynthesis, W E  of the crop will be 

increased (Schulze & Hall 1982; Davies 1986). For example, partial stomatal 

closure of cowpea which was subjected to drought resulted in improved W E  

(Hall & Schulze 1980). Reduced stomatal aperture can increase TE when the 

plant is subjected to moderate levels of water swess. The rate of photosynthesis 

is reduced proportionately less than the transpiration (Bradford ct a1.,1983; 

Morrison 1985). 

HARVEST INDEX: 

Attempts have been made to relate harvest index to the timing and 

severity of water stress in order to improve the prediction of ET by pod yield 

relationships (Slabbers er a1.,1970; Stewart er a1.,1977). Kanemasu (1983) 

reported that ETIpod yield relationships are not unique because of the complex 

interactions between development, assimilate partitioning and environment, and 

considers it is doubtful that an ETIpod yield relationship can be extended to 

climatically diverse regions. 

Several models have been developed to explain dry matter production 

from climate and crop variables such as evapotranspiration and transpiration in a 

range crops (de Wit 1958; Arkley 1963; Bierhuizen and Slateyer 1965, Tanner 

and Sinclair 1983). 

Molecular basis of drought resistance in groundnut: 

Tolerance of dehydration is considered to ariqe at the molecular level 

depending on the ability of cell membranes to maintain integrity so that the 

critical metabolic activities are not inhibited due to stress (Gaff, 1980), and 
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physiological phenomenon such as osmotic adjustment (Hsiao eta/., 1Y84), plant 

growth regulation (Levitt et a1.,1980). Accumulation of osmoticums as a result 

of dehydration was known to maintain cell turgor, stomata1 activity and 

photosynthesis at low leaf water potential (Tumer et al.,lY7X; Ackerson,l983: 

Wright et al, 1983; Ludlow et al.,1985). Osmoregulation was implicated with 

maintenance of root growth, thus allowing greater exploration of soil by roots at 

low soil water potential (Sharp & Davies 1979; Hsiao et a1.,1984). Yields were 

higher in those genotypes that had greater osmotically adjusted under water stress 

conditions compared to those that do not (Morgan 1983; Wright et a1.,1983). The 

degree of osmotic adjustment varied with species and genotypes and with pattern 

of drought stress (Turner & Jones, 1980; Shackel & Hall, 1983; Morgan & 

Condon 1986: Flower & Ludlow 1987: Anderson & Aremu 1991). 

2.2 SAIJNITY STRESS: 

Salinity is a major factor limiting agricultural production in large areas 

worldwide. are affected by salinity. About 60 million ha of riceland in south and 

south east Asia are rendered non-arable by soil salinity (Akbar and 

Ponnamperuma, 1980). In India 15% of soils are affected by salinity, which 

limits production of crops such as chick pea and pigeon pea. Successful crop 

production on these soils depends on the possibility to overcome this problem is 

to change the optimum mix of genetic and soil amendment practices to alleviate 

soil toxicity. The salinity affect crop growth by creating osmotic imbalance in the 

cell. Sodium chloride influences membrane functions and induces ultrastructural 

changes in membrane. The maintenance of osmotic pressure inside the cell by 
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the accumulation of solutes has been documented as an adaptive mechanism to 

salinity stress. The principle role of osmotic adjustment, which can reduce some 

of the negative effects of water deficit, is to facilitate the maintenance of turgor 

(Morgan, 1984). Although management remains the most feasible means of 

improving crop yields on salt affected soils, there is a scope for genetic 

enhancement of salt tolerance in particular crops (Epstein, 1985; Epstein & 

Rains, 1987). To achieve an integrated approach towards economic utilization of 

saline soils, the traditional approach of drainage and reclamation should be 

supplemented with genetic improvements in salinity tolerance of crop plants 

(Epstein and Rains, 1987). However, this knowledge about the control of the 

physiological mechanisms involved in salinity tolerance, is essential for an 

efficient breeding strategy for improvement of salinity tolerance in crop plants 

(Tal, 1985). Attempts were made to assess the extent of genotypic diversity for 

salinity tolerance in food legumes such as chickpea and pigeonpea, (Chauhan, 

1987) and cereal crops (Akbar, 1986, Flowers and Yeo 1981, Senadhira, 1987, 

Yeo and Flowers 1983). However, the heterogenous nature of caline soils 

presents a major factor confounding genotypic differences in the field (Richards, 

19x51. 

Although, developing salt tolerant genotypes appeared to be practical and 

feasible approach, the salinity problem is a complex issue and it appears that no 

single process can account for this variation in the plants' response to salinity 

(Yeo et a1.,1990). Thus knowledge about morphological, physiological and 

biochemical basis for salinity tolerance is essential to ensure better plant and crop 

development to this abiotic stress. 



As discussed earlier, accumulation of salt in the soil poses a big threat to 
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irrigated agricultural lands and the costs of engineering technologies, chemical 

treatments of overcoming salinity are economically impractical. Thus, with 

increasing demand for food, crop productivity in saline environment is 

envisioned to come from genetic modifications rather than environmental 

modifications. 

2.3 HIGH TEMPERATURE STRESS 

The Frequency of extreme weather has been projected to increase in future 

due to global climatic change (Schneider, 1989) and this change coupled with 

increase in COz concentrations may substantially increase the need for heat or 

cold tolerant genotypes all over the world (Hall, 1992). 

In semi-arid environments, seasonal temperature often exceeds the 

optimum (30' C) for growth and high temperature during reproductive 

development of crops presents a major factor affecting crop production 

(McWilliam an Dillon, 1987). 

High temperature is one of the major abiotic constraints in the adaptation 

of legumes in semi arid tropics. High temperatures occurring along with water 

deficits accentuate damaging effects of drought. Therefore, improvement in heat 

tolerance is considered vital to enhance the yield in many regions and cropping 
' 

systems. 

Thus, enhancement of heat tolerance in crop provides a scope for 

extending legume cultivation to previously unsuitable regions and seasons. For 

instance, development of heat tolerant pigeonpea enables its sowing early in 
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summer, thereby allowing timely sowing of wheat and leading to high yields in 

Pigeonpea - wheat rotation in north western India. Davies et al..(lYH5) have 

reviewed the yield response of pea to heat saess. Mean maximum temperatures 

of 20 ' C - 21' C appear optimum for pea yields and the stage most sensitive to 

heat stress is from 5- 10 days after bloom. 

Dreyer (1980) studied 5 different fruiting zone temperatures in groundnut 

and concluded that peg numbers and pod numbers increased linearly to harvest at 

23 ' C than that of 27, 30, 34, 37 O C because of slower pod growth rates and 

which resulted in higher pod and kernel yields. 

High temperatures (>30°) limit growth and adaptation of legumes in many 

countries (Ketring 1984, Wery et a1.,19Y4). Information is not mich available on 

the response of groundnut to high temperature (Ketring, 1984; Srinivasan 

et a1.,1996). Experiments conducted at ICRISAT have shown that the base 

temperature (tb) for germination range from 9-1 3' C for groundnut and the rate of 

germination increased lineally with increase in temperature upto 29' C. The 

optimum temperature range for germination was 29-30' C above which the 

germination rate reduced lineally. Optimum temperature range for growth stage is 

not clear from the literature. But the unpublished data indicate that temperature 

above 32' C might start damaging effect on crop growth and development. 

Heat stress is, therefore, a major cause for the unstable and low seed 

yields (-1 T ha") that are far below the potential yields of 7 - 8 T ha.' in 

groundnut and soybean and 4 T ha " in chickpea and pigeon pea. 

Heat stress affects seedling growth since the portion of the stem close to 

the soil surface come in direct contact with wet soil thus causing damage in 



1 6  
seedling. Heat stress at flowering results in severe drop of reproductive 

structures in groundnut (Sutcliffe, 1977). Under severe water stress even the 

leaves can be damaged by high temperatures. 

Crop species differ in their optimum temperature, for example, 

germination of chick pea and pea decreased when the temperature was r=3S°C, 

that of lentil was impaired at > 30' C, and that of Faba bean at > 20' C. The 

temperature during germination affects germination rate as well as time for 

germination (Ellis et al, 1985). Cove11 et al, (1986) have shown that 

temperatures above 33 O C reduce the rate of germination in chick pea and lentil 

respectively. 

The influence of temperature on groundnut is complex and disparity 

exists in the literature on peanut response to temperatures (Ketring 1984, Sanders 

et a1.,1985). Optimum air temperature for vegetative growth of peanut plants 

under controlled environment have been reported to be 26' C (Cox 1979) to 31' 

C (Bagnall and King 1991). Similarly variable temperature optima are reported 

by various workers for different reproductive growth phases (flowering, pegging, 

pod formation and kernel growth). Revious studies have established that 

reproductive growth is more sensitive than vegetative in various crops including 

many grain legumes. Warragg and Ha11 (1983) reported that high temperature 6 

days before anthesis causes male sterility and excessive flower abscission in 

cowpea. 

Alarkon et a1.,(1979) showed positive correlation exist between the 

fertility of pollen and proline content in pollen. It was speculated that prolie 

acted as adaptive mechanism to protect pollen (Zhang and Croes 1983) and 
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several plant enzymes (Paleg er a1.,1981) from heat injury. Mutters et ~1.,(1989) 

suggested that heat injury during floral development of sensitive cowpea 

genotypes might be attributed to inhibition of proline translocation from anther 

wall to pollen. Similar type of results have been reported in maize anthers (Palfi 

et al., 1981) and Tomato (Kuo et a[., 1986) plants. 

Limited efforts have been made in breeding heat tolerant legumes. 

perhaps because yield losses due to heat were not qualified and the damaging 

effects of heat remain more subtle than those due to disease or insect infestations 

(Summerfield et al.,1990). Plant responses to heat stress are diverse, and include 

cessation of cytoplasmic streaming (Alexandrov, 1964). Protein denaturation 

(Bernslam, 1978). changes in lipid composition (Suss and Yordanov, 1986), 

reduction in membrane stability (Shen & Li, 1982) and efficiency of 

photosynthesis (Bar-Tsur ct ul.,IY85). The relative importance of each can vary 

with species. However, membrane dysfunction is a physiological process 

disturbed mostly by heat stress (Levitt, IYXO, Quinn, 1989). Heat stress results in 

a disruption of membrane integrity leading to leakage of electrolytes, reduction in 

photosynthetic or mitochondria1 activity, and the ability of plasmalemma to retain 

solutes and water (Lin et al.,l985). The electrolyte leakage test was used to 

examine variation for heat tolerance in common bean (Schaff et a1.,1987) and 

soybean (Sapra & Anaek, 1991) but the relative tolerance of legumes under 

uniform growing conditions has not been assessed. It is well known that electron 

transfer from photosystem I1 (PS 11) is extremely heat sensitive. Measurements 

of chlorophyll fluorescence has been used to quantify inhibition or damage to 

electron transfer (Baker el a1.,1989) thus as a tool to assess heat tolerance of 

several crops (Chauhan and Senboku T.,1997) 



The mechanism of injury due to high temperature stress have been 
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described by Sutcliffe, 1977; Lawlor, 1979. Injury may occur indirectly if heat 

causes desiccation when transpiration rates increase. High temperatures may 

cause injury to plant metabolism by either directly (by desiccation) or by 

inhibiting a set of metabolic activities or sequence of enzyme reactions or by 

changing the balance between the components of a given system (Lawlor, 1979). 

Temperature of 35" C and above can result in rise of rates of photo-respiration 

and dark respiration rates in several crop plants, causing a rapid loss of assimilate 

reserves which leads to 'thermal death'. High temperature can also impair 

protein metabolism by affecting rate of protein synthesis due to a reduction in the 

rate of ATP production. High temperature effects on the structural integrity of 

proteins in cytoplasm and membrane protein denaturation has been shown and 

aggregation (Levitt, 1969). 

Stress shock proteins : 

At the molecular level, one of the most extensively characterized stress 

responses in higher plants is the synthesis of stress shock proteins (SSPs). These 

proteins are synthesized under a variety of stresses such as high temperature 

(Lindquist and Craig, 1988), desiccation (Chandler et al.. 1988). salinity (Singh 

et ul., 1985); Ramagopal, 1987; Esaka et al., 19921, heavy metals (Lin Roberts 

and Key, 1984; Howarth, 1990), chilling (Tseng and Li, 1991) and anoxia 

(Czamecka et al., 1984). Many of these proteins are suggested to protect the cell 

against the adverse effects of stress. The significance and relevance of these 

stress proteins has been well characterized in several studies (Lin er al., 1984: 

Bray, 1988; Krishnan, Nguyen and Burke, 1989). These proteins are shown to be 

synthesized when the organism is exposed to a mild non-lethal level of stress 
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often referred to as an induction stress. The ability of induced systems to tolerate 

severe levels of stress signifies the importance of stress proteins (Lin er al., 

1984;; Krishnan et al., 1989; Vierling, 1991). Thermosensitive mutants that do 

not synthesize stress proteins when subjected to mild stress do not survive severe 

stress (McAlister and Finkelstein, 1980). Information on differential synthesis of 

stress proteins in genotypes differing in stress tolerance is however inconclusive 

(Fender and O'Connell, 1989: Krishnan et a/., 1989; Ristic, Gifford and Cass, 

1991; Vierlig and Nguyen, 1992). 

In recent years, several workers have addressed the underlying 

mechanism of induction to these proteins by various stresses (Marcotte, Russel 

and Quatrano, 198% Guiitinan, Marcorre and Quantrano, 1990; Slcriver and 

Mundy, 1990; Gurley and Key, 1991: Hetherington and Quatrano, 191: Bray, 

1993). In contrast to those induced by heat stress, the stress proteins synthesized 

due to desiccation, salinity and cold stress have been shown to be mediated by 

turgor-dependent gene expression (Bray, 1993). 

Ashwani et al., 1997 gave a detailed report on few salt regulated proteins 

including osmotin, late embryogenesis abundant (LEA) proteins; 16 kDa 

responsive to ABA (RAB) protein as well as dehydrins are covered in this 

chapter. Apart from these, protein responsive to dehydration 29 (RD 29). heat 

shock proteins of 70 and 90 kDa (HSP 70 and HSP 90) and 104 kDa stress 

associated protein (SAP 104) which represent some of the other examples of salt- 

induced proteins are as yet only partially characterized. 



As discussed earlier, the productivity of plants is greatly affected by 
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environmental stresses, therefore the genetic improvement of abiotic stress 

tolerance poses an important challenge to agricultural scientists. 

Glycine betaine and abiotic stress tolerance: 

Plants accumulate a variety of low molecular weight bolutes as an 

adaptive mechanism which enables them to tolerate different stresses. Many 

prokaryotes and eukaryotes, including higher plants, accumulate low molecular 

weight organic solutes like glycinebetaine (N, N, N Trimethyl glycine), sorbitol, 

or proline, in response to environmental stresses (Kemble and McPherson 1954, 

Singh 

et a1.,1972, Storey and Wyn Jones 1975, Ahmad et u1.,1979). It was postulated 

that the accumulation of the organic solutes as compatible cytoplasmic osmotica 

play an important adaptive value in several plant species (Stewart and Lee 1974; 

Wyn Jones et al. 1977). In this regard, the compatible solutes have been shown 

to protect to integrity of enzymes (Pollard and Wyn Jones 1979) and membranes 

(Jolivet ct a1.,1982) and to protect against free-radical-induced damage of 

(Srnirnoff and Cumbes 1989) "in vitro" studies. The beneficial effects of 

accumulation of organic solutes has been demonstrated in various abiotic stresses 

such as high temperature (Paleg et al. 1981, Storey and Wyn Jones 1979, 

Shomer-llan and Waisel 1986)), salinity, cold stress (Shirahashi et al. 1978). 

Beneficial effects of betaines (N methyl amino acids) in conferring 

resistance to drought, salinity, high and low temperatures have been 

demonstrated in a number of crop species (Wyn Jones and Storey, 1981; Zao 

et.al., 1992, Naidu et a1.,1996). Accumulation of organic acids such as proline 
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and glycine betaine, and their role under various abiotic stress conditions have 

been described in earlier studies (Ford 1984; Thomas et u1.,1992; Vernon & 

Bohnert, 1992; Delauney & Verma 1993; Hanson et al, 1994). Accumulation of 

these compounds has been implicated with resistance of plants to various abiotic 

stresses (McCue & Hanson 1990). 

Higher plants synthesize glycine betaine in chloroplasts via the pathway : 

choline -r betaine aldehyde + glycine betaine (Rhodes and Hanson 

1993). The first step is catalyzed by choline monoxygenase (Brouquisse et 

a1.,1989), the second by betaine aldehyde dehydrogenase (BADH) (Weigel et 

u1.,1986). A survey conducted by Poljakoff-Mayber et al. (1987) reponed high 

levels of proline analogues in Melaleuca species and trigonelline (T) in 

Zygophyllum aurantiacum. These quaternary ammonium compounds are 

accumulated in the plants under water stress and salinity (Naidu et al. 1986). 

There have been limited studies to examine external application of betaine 

on use of chemical compounds to alleviate tolerance to abiotic stresses in crops. 

The foliar application of glycinebetaine on potato (Solanum tuberosum L.) and 

Tomato (Lycopersicon esculentum Mill.) resulted in indicating possible role of 

betaines in alleviating damging effects of droughts. Glycine bctaine applied 

foliarly at 6 kg ha'l could increase the grain yield by 18 %, dry mattet content by 

30% and number of grainslsq. m by 20% (Agboma et al., 1997). In a green house 

study the foliar application of glycinebetaine on tobacco (a non betaine 

accumulating model crop) significantly increased leaf area and leaf dry weight 

(Agboma et.a1.,1996). The benefits of glycine betaine have been demonstrated 

under "in viao" conditions on isolated enzymes (Paleg et.al., 1985) and on whole 
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plants (Zao et a1.,1992). External application of glycine betaine on cotton 

enhanced seedling vigour, germination and yield in cotton (Naidu et al.,1995). 

Muthukumaraswamy and Paneerselvam (1997) observed that application 

of "triadimefon" a fungicide on groundnut growing under salinity stress, 

(genotype VRI-2), resulted in an increase in proline and glycinebetaine content. 

This study indicates that groundnut is able to accumulate glycinebetaine. 

Under salinity stress conditions an accumulating metabolite would replace 

other compounds within the cell, thus sequestering sodium or other toxic 

compounds into the vacuole. For example, when mistletoe a parasite when it taps 

into the host phloem, polyol accumulation provides the parasite with a high 

osmotic pressure (Richter & Popp 1992). Metabolites accumulating during 

osmotic adjustment are compatible and non-inhibitory to cellular metabolism and 

their osmotic regulatory role might be exerted at high or moderately high 

concentrations. Osmoprotectants were known to act at even low concentrations 

by protecting specific structures or enzymatic processes, by exerting regulatory 

effects on ion or water uptake or transport, or by stabilizing multi-subunit enzyme 

complexes or membranes (Smirnoff & Cumbes 1989; Sornmer et a1.,1990; 

Smirnoff 1993). 

Several workers had demonstrated that betaines and their sulfan~o analogs 

Vdn play important role in osmotlc adjustment andlor osmoprotection in bacteria 

(Csonka and Hanson, 1991), cya:obacteria (Borowitke, 1986), marine algae 

I (Blunden and Gordon, 1986) and *r#hb&(6arkb-- 
I 

Yancey et al, 1982, and Robinsonand Jones, 1986 reviewed the rol ----- - - "- . 
and their sulfanio analogs as compatible solutes. 
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However, many higher plants do not accumulate glycine betaine and this 

has led to interest in the metabolic engineering of the glycine betaine biosynthesis 

pathway as an approach for enhancing stress resistance (Lerudulier et a1.,1984: 

Mccue and Hanson, 1990). 

Rathinasabapathi et a1.,1994 reported that tobacco transgenic plants could 

convert externally supplied betaine aldehyde to glycine betaine at high rates, 

demonstrating that they were able to transport betaine aldehyde across both the 

plasma membrane and the chloroplast envelope. The glycine betaine produced in 

this way was not further metabolized and reached concentrations similar to those 

in plants which accumulate glycine beraine naturally. Betaine aldehyde was toxic 

to non-transformed tobacco tissues whereas, transgenic plants were able to 

resistant the toxicity by converting of betaine aldehyde to glycine betaine. Thus, 

betaine aldehyde dehydrogenase is of interest as a potential selectable marker, as 

well as in the metabolic engineering of osmoprotectant biosynthesis. 

The accumulation of betaine in plants under abiotic stress conditions has 

been proposed to play an important role (Hanson, 1980, Wyn Jones, 1984; 

Yancey ct a1.,1982). It appears that betaine functions as a compatible or 

protective solute in the cytoplasm and/or in chloroplasts (Incharoensakdi et 

a1.,1986; Maton er a1.,1987: Robinson &Jones, 1986). 

Unlike proline, which is a bi-product of stress metabolism betaine is an 

inert end product of metabolism (Hanson & Hitz, 1982; lvicCue & Hanson, 

1990), thus betaine levels in the plant is dependent on the rate of its synthesis and 

the rate of dilution by growth (Hasegawa el al.,lY94). In barley Ladyman 

er a1.,(1983) and Grumct el a1.,(1985) demonstrated genotypic variation 
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associated with the accumulation of betaine and its genetic control under water, 

salinity or low temperature stress condition. In this study, significant differences 

in levels of betaine among genotypes were observed. It has also been shown that 

betaine accumulation was a nucleus-encoded, with significantly high narrow- 

sense high heretability. Also been suggested in thii study was a possible role of 

betaine in cold acclimation, protection against freezing injury (Kishitani et 

al., 1994). 

However, high betaine isopopulations which concomitantly maintain a 

more negative solute potential than low betaine isopopulations exhibit a growth 

and yield disadvantage, resulting in a reduction in yield potential (Grumet er 

raL.,1987). In maize, preliminary genetic studies have indicated that lack of 

accumulation of betaine under stress in certain inbreds is caused by a single 

encoded homozygous recessive gene (Rhodes and Rich, 1988). However, unlike 

barley, little is known concerning the betaine yield potential and yield stability (in 

drought prone environments) of genotypes differing with respect to capacity to 

accumulate glycine betaine. 

The occurrence of significant genotypic variations of glycine betaine 

levels in grasses, and the report of a six-seven fold accumulation of glycine 

betaine in salt stressed sorghum (Grieve and Maas, 1984) has prompted 

preliminary studies of betaine levels in a range of sorghum cultivars grown under , 

field water deficits. 

Keeping the above described literature in view, the present study was 

conducted to examine the role of Betaines in alleviation of major abiotic stresses 

in groundnut. 



Materials and Methods 



CHAPTER 111 

Materials and methods 

3. 1 Laboratory experiments : Glycine betaine and heat tolerance 

Laboratory experiments were conducted to examine the influence of 

glycinebetaine on response of groundnut to high temperature and salinity stresses. 

About 160 sound mature seeds of ICG 476 and TAG24 genotypes of groundnut 

were imbibed in either distilled water (Bo) or 25, 50, lOOmM glycine betaine ( B25. BSO, 

B~oo) for 12 hrs and then the seeds were transferred into petriplates to allow 

germination for 40 hours at 3 0 ' ~  and 75% relative humidity.. From each of the 

treatments 3 sub treatments i. e., heat induction (HI), no induction (NI) and control (C) 

were created (Fig 3. 1.  I). Each of the sub treatments had 20 seeds / petriplate and there 

were 3 replications. Root and shoot lengths were recorded at 40 hrs after germination 

before imposing the temperature stress treatments. In the HI treatment the germinating 

seeds were subjected to increasing levels of temperatures in the order of 3 5 ' ~  (Ihr), 

40" (2hrs) and 4 5 ' ~  (Ihr) in NI and C sub treatments, the germinating seeds were 

maintained at 3 0 ' ~  for 4 hrs. At the end of 4" hour the HI and N1 sub treatments were 

subjected to a lethal stress of 5 0 ' ~  for 2 hrs following which the seedlings were returned 

to 3 0 ' ~ .  The recovery growth of seedlings was observed at the end of 72 hours period. 

The C sub treatment was maintained at 30' C all along (Fig. 3.1.1). At the end of 72 ' 

hours, the root and shoot length of seedlings were recorded in all the sub treatments. The 

data was analysed using a split split plot design with 2 genotypes as main treatments, 

induction treatments (HI, NI and C) as sub treatments and betaine levels (0,25,50,100 

mM) as sub sub treatments. 

2 5 



Induction (HI) - 35'C(lhr)+ 
40"(2hrs)+45')~(1 hr) 

Germinated 
seedlings (30 '~)  No Induction(N1) - (3Ooc) 4 hrs 
(Betaine 10 mM 
and Distilled 
water) 

Control(6 hrs)( C) - (3Ooc) 4 hrs 

Fig : 3.1.1. Protocol followed to examine the influence of glycine betaine on 
response of groundnut genotypes (ICG 476 and TAG24) to high temperature 
stress. 



3. 1. 1 Separation of proteins on Sodium Dodecyl Sulphate(SDS) - Poly 

Acrylamide Gel Electrophoresis (PAGE) 

Known weight of tissue was sampled and frozen in liquid nitrogen The tissue 

was ground in 1 :4 (tissue weight : buffer volume) extraction buffer and the extract was 

centrifuged at 12,000g for 10 min at 4' C, and 100 pl of supernatant was used for protein 

analysis. 

Reagents used in the extraction buffer were Tris buffer 8.0 pH (Tris 50 mM, 

NaCl 50 mM, EDTA 2 mM, 2- mercaptoethanol5 mM, PMSF I mM, PVPP - 0.5%). 

Protein was quantified by using the method as described by Brad Ford (1976) 

(Bradford dye binding technique). 

A 100 p1 of extracted aliquot was taken in to test tubes and 3 rnl of Coomosie 

brilliant blue (CBB) reagent was added. Atter 5 minutes of adding the reagent, the 

absorbance was measured at 595 nm. Standard curve of protein is developed using a 

range of concentrations of using Bovine Serum albumin (BSA). 

Reagents of CBB DYE : 10 mg of CBB-G-250 is dissolved in 5 ml of methanol, 10 

ml of 80% ortho phosphoric acid is added and mixed well, the volume is added to 100 

ml using distilled water and filtered to remove undissolved material. 

The proteins were concentrated by trichloro acetic acid (TCA) precipitation. 

Known volume of the extract was taken in a centrihge tube. TCA (100%) was added 

equal to 1/10 volume of extract and kept on ice for 1 hour and then centrifuged at 

12,000g for 10 minutes, supernatant was then discarded and chilled acetone was added 

and centrifuged again at 12,000g for 10 min and acetone is decanted and the traces of 

acetone were removed by drying. 



Sample containing 100 p1 of total protein was dissolved in sample buffer 

containing 50 mM Tris - Hcl (pH 6.8). 1% (vlv) SDS, 2% (vlv) 2- mercaptoethanol, 

12.5% Glycerol and 0.05% stracking dye. The protein samples were denatured in 

boiling water for 4 min. M e r  cooling, IOOpg of protein is used for loading into the 

wells. 

Gels containing 12. 5 % resolving gel and 3 % Stacking gel were prepared from 

acrylamide stock containing bis. The Composition of 30 ml resolving gel was 12.5 ml of 

30 % Acrylamide with bis, 0.3 ml of 10 % SDS, 7.5 ml of 1.5 M Tris HCI buffer ( pH 

8.8) , 9.6 ml of water, 0.1 ml of 10 % Ammonium Per Sulphate. The contents were 

degassed for 2 min. The gels were chemically polymerised by the addition of 0.025 % 

TEMED by volume. The mixture was poured in gel moulds overlaid with water and was 

leR undisturbed for an hour to get satisfactory polymerisation 

The stacking gel contained 1.67 ml of stock Acrylamide ( 30 %) with Bis, 1.25 

ml 0.5 M Tris Hcl Buffer (pH 6.8), 0.1 ml of 10 % SDS, 0.05 ml of 10 % Ammonium 

per sulphate and 6.9 ml of water. The gel was exactly polymerised like resolving gel 

after the addition of 0.025 % of TEMED. The combs were inserted on top of the 

resolving gel after removing the layer of water. Stacking gel was poured over resolving 

gel and left undisturbed for about half an hour. Then combs were removed and sample 

was loaded into the wells along with a standard mixture. Electrophoresis was carried out 

using LKB 2001 Vertical unit for 2 X 1.5 mm gels at a constant current of 60 

milliamperes, until the bromophenol blue marker reached the bottom of the gel ( 

approximately 5 Hrs ). Gels were removed and fixed in 10% Acetic acid for 10 - 15 min. 

and stained overnight with 1 % Coomosie Brilliant blue dye and destained by repeated 



washing with 7 % Acetic acid in 50 % Methanol. The gels were scored and the 

differences in protein banding patterns were noted. 

3.2 Laboratory experiment 2 (salinity stress): 

About 160 sound mature seeds of ICG 476 and TAG24 genotypes of groundnut 

were imbibed in either distilled water (Bo) and 25, 50, lOOmM glycine betaine ( B ~ s ,  Bso, 

B~oo) for 12 hrs and then the seeds were transferred into petriplates to allow 

germination for 40 hours at 3 0 ' ~  and 75% relative humidity.. From each of the 

treatments 3 sub treatments i. e., Salinity induction (SI), no induction (Nl) and control 

(C) were created (Fig 3. 2. 1). Each of the sub treatments had 20 seeds 1 petriplate and 

there were 3 replications. Root and shoot lengths were recorded at 40 hrs after 

germination before imposing the salinity stress treatments. In the SI treatment the 

germinating seeds were given a salinity induction at 150 mM NaCl (16 hours). In NI 

and C sub treatments, the germinating seedlings were maintained at 3 0 ' ~  for 16 hours in 

distilled water. At the end of 16' hour the S1 and NI sub treatments were subjected to a 

lethal salinity stress of 300 mM for 48 hours following which the seedlings were 

returned to distilled water. The recovery growth of seedlings was observed at the end of 

72 hours period. The C sub treatment was maintained in distilled water all along (Fig. 

3.2.1). At the end of 72 hours, the root and shoot length of seedlings were recorded in 

all the sub treatments. The data was analysed using a split split plot design with 2 

genotypes as main treatments, induction treatments (SI, N1 and C) as sub treatments and 

betaine levels (0,25,5O.l00 mM) as sub sub treatments. 

3.2. 1 Separation of proteins on SDS - PAGE 

The method followed was same as described in 3. 1. 1 

3 .3  Glass house experiment 1 : Glycine betaine and salinity stress. 

The seeds of the ICG 476, TAG 24 and CSMG 84-1 genotypes were imbibed in 

glycine betaine (IOmM) and distilled water as control for 12 hrs. Before planting, the 

seeds were treated with captan and thiram to prevent seedling diseases. The seeds were 



Control ( (3 
Distilled water 

-Induction (SI) 

Fig : 3.2.1 Protocol to examine the influence of glycine betaine on 
response of groundnut genotypes (ICG 476 and TAG24) to salinity 
stress. 
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sown on 18" August '97 in 180 mm diameter plastic pots filled with acid washed and 

sterilised river sand. The soil surface was covered with gravel to minimise soil 

evaporation. The pots were randomised in three blocks containing 30 pots each. The pots 

were placed on bench tops in glass house. Temperatures during the experiment were 

around 28 / 22OC ( day I night ) with daily mean relative humidity of 60 - 70 %. 

3.3. 1 Treatments 

Three salinity levels i.e.. 0, 6 and 8 ds m.' were imposed from 15 days after 

sowing (DAS) using modified Hoagland solution as described below 

A modified Arnon and Hoagland nutrient solution of 0.5 strength with 1.79 mM 

NH~NOI amended with Naci + Caclz ( 1 : I w / w ) was used to simulate the five 

different salinity treatments. The composition of the nutrient solution in mM was: 0.23 

KHzPO4, 0.52 KCI, 0.25 MgS04, 0.37 CaC12, 0.0015 MnS04, 0.00023 ZnS04, 0.00025 

CuS04, 0.001 H~BOI,  0.00005 NazMoOc and 0.04 NaFe EDTA . The electrolytic 

conductivity (EC) of the nutrient solution without salt treatment was 0. I5 ds m". 

Plants were irrigated with deionised water upto 15 DAS. Salinity treatments were 

imposed by irrigating pots with 1 litre of treatment solution on 15" DAS, following this 

the salinity treatments were maintained by irrigating the pots with 250 ml of treatment 

solutions at 4 day intervals. For the "0" Salinity treatment, 0.25 strength nutrient 

solution without salt amendment was used for all flushing operations. Pots were 

randomised every week to minimise spatial effects in the glass house, and the 

experiment was terminated at 30 DAS. 



3, 3 . 2  Observations and Measurements. 

Growth Analysis 

Three plants were sampled from each treatment for growth analysis at 30 and 60 

DAS, root and main stem lengths were measured and the plants were separated into 

component parts as described in the Fig 3.3.2, and the plants were transferred to 

polyethylene bags and kept in a cold room at 5 O C  until separation into component parts 

and the analysis was done. 

Leaf areas were determined using an automatic leaf area meter (LICOR 3 100). 

dry matter of the leaves, stem and root were determined after oven drying at 8 0 ' ~  to a 

constant weight, various growth parameters were calculated as follows (Beadle 1993): 

- Root Growth Rate (RtGR) (g plant"day'l) =(In WZ - InWI) I (T2 - T I )  

Where Wz and W1 are dry weights of the root at 30 and 15 DAS respectively, and T2 

and TI  are 30 and 15 DAS. 

- Shoot Growth Rate (StGR) (g plant'' day") = (In WZ - InWl) I (Tz - T I )  

Where Wz and WI  are dry weights of the shoot at 30 and 15 DAS respectively. and TZ 

and T I  are 30 and 15 DAS. 

- Crop Growth Rate (CGR) (g plant" day") = (In Wz- InW,) I (T2 - T I )  

Where WZ and W1 are total dry matter of the plant at 30 and 15 DAS respectively, and 

Tz and T I  are 30 and 15 DAS. 

- Net Assimilation Rate (NAR) ( g m" day) =(WZ-WI) I (Tz-TI) x (In LAi-LAI)/ (LA1 - 
LAI) 
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3 Plants were harvested 
Root and shoot lengths were recorded 

Plants were separated into 

L_r_J 
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Record fresh weight 
and were separated 

Pod dry weight &I 
l ~ o o t  dry weight 1 Istern dry weight 1 

Leaf area I Leaf dry weight 11 
ig : 3.3.2 Procedure followed for analysing growth of plants sampled at each sampling 
ate in each treatment to know the effect of &cine beiine in the alleviation of salinity 
tress. 



Where Wz and WI are total dry matter of the plant at 30 and 15 DAS respectively, and 

T2 and TI  are 30 and IS DAS and LA2 and LA, are the leaf areas at 30 and ISDAS. 

- Specific Leaf Area (SLA) (cm2 g l )  = leaf area / leaf dry weight 

Gas exchange measurements 

The measurements of gas exchanges were measured at weekly intervals along 

with water relation measurements in order to interpret results in a cohesive manner. 

Measurements for gas exchange and water relations were made from Il:00 to 13:OO hrs 

in 3 leaves per plot. Gas exchange measuremnts were made using a LCA4 (Leaf 

chamber analyer). Second or third hl ly  expanded leaf from the apex on the main axis 

was used for the measurement. LCA4 provides an on-spot measurement of stomata1 

conductance, photosynthesis, leaf temperature and transpiration in addition to incoming 

photosynthetically active radiation (PAR) at the time of measurement . 

Relative leaf water content 

The 2"* or 3* leaf from the apex on the main axis was sampled from 2-3 plants 

/plot and placed in zip lock bags in an ice box. Fresh weight of sampled leaves was 

determined within 15min of excision in the laboratory first and then turgid weight was 

obtained. Leaves were kept in distilled water for 6-8 hrs at room temperature. After 

soaking, leaves were quickly and carefully dried with tissue paper prior to determining 

turgid weight . Dry weight was obtained after oven drying the leaf samples to a constant 

weight . The RWC was calculated by the equation: 

RWC % = (Fresh weight-dry weight ) 1 (Turgid weight-dry weight) X 100 



Osmotic potential 

The 2 "* or 3 *leaf from the apex on the main axis were sampled to measure the 

osmotis potentials (OP). Samples were placed in polyethylene bags and dipped in liquid 

nitrogen and transferred to a deep freezer (-40" C) until further processing. At the time of 

measurement the leaf samples were removed from the freezer and allowed to thaw for 2 

min. The samples were placed in a 1.5 ml 'eppendorf tubes and centrifuged tube for 5 

minutes at 12,000g to extract the cell sap. The OP of the cell sap was determined using 

an automatic micro-osmometer (Roebling Automatic Freezing Point Osmometer by 

Cryo Swpic Method). The osmometer was calibrated before each set of measurements 

with a standard solution of 300 milli osmoles and distilled water to get the zero point . 

Cell sap of 25 pl was used to measure Osmotic potential . 

Osmotic potential at full turgor (OPloo) was calculated according to the formula of 

assuming that apoplastic water content is negligible (Wilson el 01.. 1979): 

OPloo= OP X RWC / 100 

Osmotic adjustment (OA) was calculated as the difference between the O P ~ O O  of 

stressed and non-stressed, betaine treated and not treated leaves. 

Where C was control and T was treatment. 



Total betaine content 

The leaf samples were collected and were frozen in liquid nitrogen and kept in a 

freezer (-80'~) . The frozen samples were lyophilised to a dry powder in a Lyophiliser 

(Vertis company Itd., New York) and stored until further processing. Total betaine 

content was measured calorimetrically according to the method of Wynjones & Storey 

(1976) 

The tissue is homogenised in 10 ml of methanol Ichlorofomdwater (1253)  

extraction media in a large glass centrifuge tube . The tube was kept in an ice bath 

during extraction to counteract heat generation by the ultraturrax , since excessive heat 

can cause break down of the chloroform with the production of HCI . After extraction 

lOml of distilled water was placed in a glass centrifuge tube and used to wash the 

grinding head The resulting emulsion was added to first homogenate. The homogenate 

was centrifuged in a bench centrihge at 12,000g~10'/20°C. The supernatant( MeOH / 

HzO) was removed and stored for analysis of betaine by non-specific periodide method 

in which quaternary ammonium compounds (QACS) & betaine are precipitated at 

different pH IS. The acid potassium triodide solution (for total QACS) was prepared by 

dissolving 7.5 g 12 and 10 g K1 in 1M HCI and filtered while the same reagents were 

dissolved in a 0.4 M KHz Po4 - NaOH buffer pH (8.0) provided the alkaline reagent 

will determine betaine. Precisely 0.2 ml of either acid or alkaline potassium triiodide 

reagent was added to the sample. The mixture was shaken and left for atleast 90 minutes 

in an icebath with intermittent shaking. 2ml ice-cooled Hz0 was added rapidly to the 

mixture to reduce the absorbance of the blank. This was quickly followed by 20 ml of 



1,2- dichloroethane at -10' C and the 2 layers are mixed by a constant stream of air 

bubbles for 5 minutes while the temperature was maintained at 4" C. The absorbance of 

the lower organic layer was measured at 365 nm. 

The standard curve was prepared by different concentrations of glycine betaine 

of 10 mM to 100 mM. 

Statistical analysis 

Experimental data were subjected to analysis of variance as described by Gomez 

and Gomez (1984) and using a Genstat for windows package at ICRlSAT center. 

3.4 Glass House experiment 2 : Glycine betaine and Water stress 

The experiment was conducted in glass house with 3 genotypes (ICG476, 

TAG24. CSMG84-1). The seeds of these genotypes were imbibed with glycine betaine 

10 mM and distilled water as control for I2 hrs, before planting the seeds were treated 

with captan and thiram to prevent seedling diseases. The seeds were sown on 29' April 

'98 in 180 mm diameter plastic pots filled with river sand, soil and vermiculite in the 

ratio of 2: 1 : I .  A b asal dose of fertilizer (18N : 40P) was mixed on the top soil at the 

time of sowing. The pots were randomised with in each of the three replications and 

arranged on bench tops in a glass house. Temperatures during the experimental period 

were maintained at 28/22" C (Daymight) and relative humidity was 60-70% (Mean 

Daymight). 

3. 4. 1 Treatments 

Plants were adequately irrigated daily upto 30 DAS after which the following 

irrigation regimes were imposed. 



1. 100% field capacity (I,) 

2. 50% field capacity (12) 

At 30 DAS all pots were satuarated with water and any excess water was 

allowed to drain through a drain hole in the base of the pots. When water leakage 

stopped, the drainage holes were blocked to prevent any hrther seepage of water from 

the pots. The pots were arranged in split - split plot design with the two irrigation 

regimes as main treatments, 3 genotypes as sub treatments, and the betaine treatments as 

sub - sub treatments. There were 3 replicates for each treatment. 

The initial weight of the pots before irrigation was taken (W I ) and these pots 

were flushed with water completely and excess water was let to drain From the holes at 

the bottom of the pots, and the final weight of the pot was measured (WZ), and here the 

pots were said to be at 100% field capacity at this point. 

Water stress treatment 11 received irrigation as such to maintain the soil at its 

field capacity (calculated by initial soil measurements), the plants in 12 received 50% of 

the water given to the plants in 11 . The amount of water loss was determined by 

weighing the pots, I for every treatment daily by a Mettler balance ( 20 kg capacity). 

Three pots with soil. but without plants were maintained in each treatment to monitor 

soil evaporation. The experiment was terminated at 60 DAS. 

3. 4.2. Observations and measurements 

Growth Analysis 

Three plants were sampled from each plot for growth analysis at 30 and 60 DAS 

and the plants were transferred to polyethylene bags and kept in a cold room at 5 O C 

until separation into component parts and the analysis is done as described in Fig : 3.3.2. 



Gas exchange measurements 

Gas exchange measurements were done as described in the chapter 3.3.2. 

Relative water content 

Relative water content was measured as described in the chapter 3.3.2 

Total betaine content 

Total betaine content was estimated as described in the chapter 3.3.2 

Leaf water potential 

Leaf water potential was determined using a pressure chamber as described by Turner 

(1988). Second or third leaf from top of the plant was sampled and the sampled leaflet 

was placed in a pressure chamber (Model B, soil moisture equipment Corp., Santa 

Barbara, CA, USA) with the cut end of the leaf petiole protruding through a gas tight 

seal of the chamber. The pressure in the chamber was gradually increased until the 

xylem sap just began to exude out at the cut surface. This point at which water was held 

in the leaf cells and the first drop of xylem sap was seen was recorded as water potential 

of the leaf cells. 

Chlorophyll flouroscence 

Chlorophyll fluorescence was measured using a modulated fluorimeter 

(Hansatech Electronics Ltd., UK) on the abaxial surface of fUlly expanded leaflets. 

Second or third leaf from the top of the main axis was used for the measurement. The 

leaflets were placed in dark for 45 minutes at room temperature, after which the dark 

adapted leaflets were placed into a leaf clip to which modulated light probe and a 

detector probe were attached. The leaflets were exposed to actinic light and saturating 



light pulses through the fibre optic cables connected to Bjorkman lamp (1800 p mol m" 

s" Photosynthetically photon flux ; Hansatech Electronics Ltd., UK). The Fluorescence 

signal at 700 nm, read directly to the computer was used to calculate the initial 

fluorescence (Fo) and maximum fluorescence (Em) were recorded. 

Variable flouroscence Fv = Em - Fo 

The Fv / Fm ratio is the measure of efficiency with which light is utilised for 

photosynthesis. 

Transpiration 

During the experimental period transpiration was estimated as: 

T = I - ( E, + V,), where 

I is Cumulative water applied during the experimental period 

E, is Soil evaporation 

V, is unused water lei? in the pot at the end of the treatment period. E, was estimated 

from the water loss from empty pots in the absence of plants. Water - use efficiency 

(WUE) (g / kg) was estimated as the ratio of dry matter produced between 30 - 60 DAS 

to transpiration (T) during the same period. 

Statistical analysis 

Experimental data were subjected to analysis of variance as described by Gomez 

and Gomez (1984) and using a Genstat for windows package at ICRISAT center. 



3. 5 Growth chamber experiment: Effect of glycine betaine in the 

alleviation of high temperature stress in groundnut genotypes 

The experiment was conducted in a environmentally controlled growth chamber 

of dimensions ( 0.75111 (width) X 1.82111 (length) X 1.4171 (height))and with 2 genotypes 

(ICG 476, TAG 24) in a completely randomised block design. 

3. 5. 1 Treatments 

The seeds of the two genotypes (ICG 476 and TAG 24) were imbibed with 

glycine betaine lOmM (Blo) and distilled water as control ( C) for 12 hrs. Sowing was 

done on 5" June '98 after treating the seeds with captan and thiram to prevent seedling 

diseases. The seeds were sown in plastic pots with 101 mm diameter, filled with 

riversand, soil and vermiculite mixed in the ratio of 2.1 : 1. Two sets of pots were grown 

in glass house upto ISDAS at 28 122" (day / night) with daily mean relative humidity 

of 60 - 70%, and the pots were shifted to growth chambers at l5DAS The pots were 

arranged in 3 randomized blocks (rep1ications)in each of the 2 Growth chambers. As 

described in the Fig : 3.3 the first Growth Chamber was programmed to maintain the 

temperature at 30' C and relative humidity at 60-70% throughout the growing period 

which serves as control (HT,). The second Growth Chamber was programmed to 

simulate the naturally occuring diurnal rhythm of the temperatures such that starting 

from 30 '~ .  the temperatiures would rise gradually ( 4 ' ~  h i ' )  to reach 45°C by 12:OO 

Noon. The high temperature of 45" C was reduced gradually to reach 3 0 ' ~  by 6:00 

PM. This high temperture stress treatments were imposed ffom 15DAS to 45 DAS 

(HT2) and the experiment was terminated at 45 DAS. 





3 . 5 . 2  Observations and measurements 

Plant Growth Analysis 

Three plants were sampled for growth analysis at 15 DAS and 30 DAS. Plant 

heights, leaf areas, root, shoot and leaf dry weights., aerial, subterranean peg number and 

all other growth analysis parameters were calculated by the same method as described in 

Fig : 3.3.2. 

Other Observations 

Photosynthetic rates, osmotic potentials and chlorophyll flouroscence were 

recorded as described in chapter 3. 3 . 2  and 3. 4. 2. 

3. 6 Field experiment : 

A field experiment was conducted at ICRlSAT center, Patancheru, near 

Hyderabad, Andhra pradesh, INDIA during the rainy season 1996 (Field experiment 1) 

to investigate role of betaines in the alleviation of drought stress in groundnut. 

3.6. 1 Crop management 

Experimental block was disc ploughed to attain a fine tilth and a basal dose of 

100 kg ha" Di ammonium Phosphate (DAP) (18 % N and 20 % P) was incorporated into 

the top soil. The field was prepared into broad beds of 1.5 m width with furrows of 30 

cm on either side were established . Sowing of the experiment was done on 26' of June 

1996. Before sowing, the seeds were treated with Thiram and Captan @ 3 g K ~ ' '  of 

seeds to prevent seedling diseases. A seed rate of 110 kg ha'lwas used and sowing was 

done by hand in shallow furrows which were 30 cm apart on the broad beds with a seed 

to seed distance of 10 cm within each row. After sowing, the field was uniformly 

irrigated to field capacity using sprinklers so that soil moisture was sufficient for seed 



germination and good crop establishment. Plants were thinned at 20 -25 DAS to achieve 

a plant population of 33plants m2. The crop was maintained pest and disease free by 

following all prophylactic measurements. There were no major problems of weeds, 

diseases and pests during the growing season. Gypsum @ 250 - 500 kg ha.' is applied 

during pegging to favour pod filling. 

3.6.2 Treatments 

Design followed for this experiment was a split split plot design with water stress 

treatments as main treatments, genotypes as sub treatments and betaine levels as sub sub 

treatments. 

Main Treatments: There were two main treatments i ,  e., irrigated (IRR) and mid season 

drought (MSD) imposed by operating portable rain out shelter (ROS). The mid season 

drought spanning from 40 to 80 DAS was imposed by using portable ROS (Chauhan el 

a/., 1997). The shelters were hand operated only during the period of treatment. Two 

border strips along the ROS were covered by a polythene sheet to prevent infiltration of 

water to plots. Thus water captured by the ROS during rainfall events was diverted into 

drains dug at two ends of the shelter and which led away from the ROS areas. 

The adequately irrigated control treatment received irrigation through sprinkler 

irrigation system to avoid water deficit. 

Sub treatments : The following 5 groundnut genotypes were assigned to sub plots. 

1.  ICG 476 ( Spanish bunch germplasm) 

2. TAG 24 (Spanish bunch breeding line developed at BARC Trombay and 

released for cultivation in India). 



1'1:lle 1 :  'l'lle r:~irl out sllelter used iu the rni~iy scitsolr 
enl)eritlrei~t of' 1996 to irrlpose nlid se:,son drought. 
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Light interception 

Canopy light interception (LI) was measured at mid-day by using a ceptometer 

(Degagon Instruments Washington, USA) at 20, 40, 60, 80, 100 DAS. The ceptometer 

readings were recorded by placing the sensor above the canopy (lo) and placed across the 

rows below the canopy (11)The fractional radiation intercepted (LI) by the canopy at a 

given time was calculated using the following equation. 

LI(%) = [(lo - I) / lo] x 100 

where, L1% is light interception % 

10 is total incoming radiation (measured above the canopy) 

1 is radiation transmitted to the ground (measured below the canopy) 

Osmotic potential 

The 2 " or 3 *leaf from the apex from 4-5 plantdplot on the main axis were 

sampled to measure the osmotis potentials (OP). Samples were placed in polyethylene 

bags and dipped in liquid nitrogen and transferred to a deep freezer (-40' C) until further 

processing. At the time of measurement the leaf samples were removed from the freezer 

and allowed to thaw for 2 min. The samples were placed in a 1.5 ml 'eppendorf tubes 

and centrifuged tube for 5 minutes at 12,000g to extract the cell sap. The OP of the cell 

sap was determined using an automatic micro-osmometer (Roebling Automatic Freezing 

Point Osmometer by Cryo Scopic Method). The osmometer was calibrated before each 

set of measurements with a standard solution of 300 milli osmoles and distilled water to 

get the zero point . Cell sap of 25 pl was used to measure Osmotic potential . 

Osmotic potential at full turgor (OPloo) was calculated according to the formula 

of assuming that apoplastic water content is negligible (Wilson el al., 1979): 



OPloo= OP X RWC 1 100 

Osmotic adjustment (OA) was calculated as the difference between the OPloo of 

stressed and non-stressed, betaine treated and not treated leaves. 

OA = OPtoo (C) - 0P1ao (T) 

Where C was control and T was treatment. 

Total Dry Matter at Harvest and Pod yield. 

At final harvest a net plot area of 2.5 X 1.2 m2 was harvested. The roots were 

separated and discarded . After picking of the pods, the shoots and pods were oven dried 

at 80 O C before recording of the dry weights. The total dry matter (TDM) was computed 

after adjusting the pod weights for the high energy content using a factor of 1.65. The 

TDM was calculated as follows 

TDM = Shoot dry weight + (Pod dry weight X 1.65) 

TDM was expressed per hactare basis. 

Statistical Analysis 

Experimental data were subjected to analysis of variance using a standard split- 

split plot design analysis as described by Gomez and Gomez (1984) and using the 

GENSTAT Package (Genstat manual, 1983) in a VAX mainframe Computer system at 

ICRlSAT Center. 

3. 7 Field experiment 2 

Another field experiment was conducted during the post-rainy season 1996-97. 

The field preparation and crop management was done as described in Experiment 1. 

Sowing of the experiment was done on December ~ 2 " ~  1998. 



3. 7. 1 Crop management 

Crop management was done as described in the chapter 3 6. 1 

3.7.2 Treatments 

The design followed in this experiment was a split split plot design with different 

levels of water deficit as main treatments, genotypes as sub treatments, and betaine 

levels as sub sub treatments. 

Main treatments 

The stress was created as different water deficit % levels by the line source 

sprinkler irrigation. The line source sprinkler technique (Hanks el al., 1976) results in 

the development of systematic gradient of soil moisture (drought intensities) as a 

function of distance from the source pipe line. This system is regularly used at lCRlSAT 

for screening groundnut genotypes for drought tolerance (Nageswara Rao R C el 

a/., 1985) 

The line source sprinkler system consisted of a line(s) of overhead sprinklers 

with 1/8 " and 5J32"nozzles with an output of about 9.3 gaVrnin and were operated at a 

pressure of 275 kilo pascals (40PS1). They were operated during the periods when the 

wind velocity was minimal (less than 3 kdhr) ,  usually at night. The water applied 

during each irrigation was measured in catchcans placed perpendicularly to the sprinkler 

line in each of the 8 beds at 4 different locations for a given bed as hrnished in Fig: 

3.7.2 .The volume of water collected in each of the catch cans was measured and 

averaged over 4 locations for a given bed to estimate the amount of water applied to the 

bed. The field layout of line source shown in plate : As shown from the figure Bed 1 

& 2 from the sprinkler received almost similar amounts of water while bed 10 received 



virtually nil. The test entries are planted from bed 2-9, in paired rows of 12m length each 

with a spacing of 30cm between rows and 10 cms between plants within a row, thus each 

plot of length 12m length consists of 8 beds (2- 9) perpendicular to the sprinkler line. 

The crop was adequately irrigated to provide uniform irrigation to all the beds 

until seedlings were established. Uniform irrigation is given by arranging sprinkler lines 

at 15m intervals. The drought treatments are imposed using line source from 80 DAS to 

FH. 

Out of the different levels of water deficit, 9.64, 27.65 and 67.54 % water 

deficits were taken as main treatments and analysed. 

Sub treatments : 

The same 5 genotypes used in the previous year were used in this year also 

Sub sub treatments: 

The betaine spray solutions @ 3 and 6 kg/ha (B2 and B3) and water (Bl) as a 

control spray were prepared in the same manner as that of the previous year. The betaine 

treatments were applied twice during the growing season. First application was made as 

soil application to 15 day old seedlings. The solution was applied in the planting rows to 

ensure the uptake of the chemical by the emerging seedling. The second application of 

betaine was made as a foliar spray at 45 DAS. The method of application was same as 

described in the Field Experiment 1. 



Distance from line source(m) I 
Fig: 3.7.2 Total water applied(cm) across the beds with line source sprinkler irrigation 

during the imposition of end season drought in rabi '96 - '97 



3.7.3 observations and measurements 

Growth analysis 

Growth analysis was done as described in the chapter 3.6.3 

Gas exchange measurements, osmotic potential, RWC, and total betaine content 

were recorded as described in Chapter 3. 3. 2. 

Light interception (LI) (%) 

Light interception measurements were taken as described in the chapter 3. 6. 3. 

Total Dry Matter at Harvest and Pod yield. 

Total dry matter at harvest and pod yield was done as described in the chapter 3 6 .  3 

Statistical Analysis 

Experimental data were subjected to analysis of variance using a standard split- 

split plot design analysis as described by Gomez and Gomez (1984) and using the 

GENSTAT Package (Genstat manual, 1983) in a VAX mainframe Computer system at 

ICRJSAT Center. 



Plstte3: LCA4 ill tise during tlie gl:tsshouse study of' 
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Results 



CHAPTER IV 

Results 

4. 1 Glycinebetaine and Heat tolerance 

4. 1. 1 Effects of betaine on the sensitivity of germinating seeds to heat 

stress 

Effect of betaine on sensitivity of two groundnut genotypes to heat stress was 

studied by subjecting seedlings to heat stress in the laboratory. The pregerminated seeds 

treated with (Bu, B ~ I ,  B ~ o ,  BIW) or without betaine were exposed to a lethal stress of 50' 

C for 2 hours and returned to 3 0 ' ~ .  There was also an imposition of heat induction by 

subjecting the seedlings to gradually raising temperatures before the lethal stress, so as to 

simulate natural conditions. The recovery growth of the seedlings from stress was 

studied The details of the treatment imposition were given in materials and methods 

section(3.l.l)and Fig3. I .  1. 

It was apparent from the results that at 40 hours after germination, the root and 

shoot lengths of seedlings were about 1 cm with no genotypic difference at this stage. 

However, at 72 hours after recovery, significant differences due to heat induction 

treatments (HI and NI), betaine treatments, as well as interaction of genotype x betaine 

treatments were apparent (Table 4.1.1). It was clear from Fig. 4.1. l a  and 4.1 . l b  that in 

the BU treatment, the recovery growth of root and shoot in NI sub treatments was 

significantly less in both the genotypes than that in HI treatments. Whereas with HI 

treatment, the root and shoot growth were 157 and 44% higher than NI sub treatment. 





The root and shoot growth in HI sub treatment were on par with control treatment where 

there was no temperature stress in both the genotypes. Interestingly the seeds treated with 

25 mM (B25) or 50 mM (Bsu) of glycine betaine have shown significantly greater growth 

of roots even under non induced (N1) treatment. Seedlings with HI + 8 2 5  treatments have 

resulted in greater root growth in comparison to N1 + B2) treatments in both the 

genotypes. Similar responses were observed with Bsa treatment. With 100 mM betaine 

treatment (B~co) there was 20% reduction in recovery growth compared to Bsu . It was 

apparent that NI + BICO seedlings recorded 122% greater growth than NI + BO seedlings. 

It was also clear from these results that the roots were more sensitive to high 

temperature stresses with the root growth ranging from 3 cm (NI + BQ) to 

13 cm (HI Bz~) .  Whereas, the response in the shoot growth due to the treatments ranged 

from 2 cm (Nl + Bo) to 4 cm (HI + BzJ). 'The 8 2 5  and BSO treatments have resulted in 20 - 

26% greater growth of seedlings (root and shoot) compared to BIOO treatment in both the 

genotypes (Fig. 4.1.1 a and 4. I .  lb). 

4. 1. 2 Variations in protein profiles in groundnut seedlings 

It is well known that several physiological and biochemical changes play a major 

role in enhancing adaptation of plants to heat stress. In the present study influence of 

betaines and heat stress interaction treatments on possible changes in protein metabolism 

has been investigated by studying the protein profile in the seedlings using gel- 

electrophoresis technique. The methodology of the electrophoresis was given in materials 

and methods section 3.1.1. 



It was apparent from the gel analysis that there were significant qualitative and 

quantitative differences between genotypes (ICG 476 and TAG 24). heat induction 

treatments (Hl and NI) and betaine treatments (Bo and Bz3) (Fig 4.  1, l a  and 4.  1. Ib). 

Analysis of the protein banding pattern revealed that genotypes have responded 

differently to heat induction and betaine treatments. Heat induction treatment (Bo) alone 

resulted in production of 2 additional protein bands in the two genotypes, although the 

molecular weight of the proteins produced varied with genotypes. In 1CG 476, the two 

proteins were of 85 and 54.5 kDa, while in TAG 24, they were 76.4 and 45.6 kDa. (Table 

4.1.2). 

8 2 5  treatment has resulted in production of four additional bands in both NI (i.e., 76.4; 

60.6; 54.6; and 16.5 kDa) and HI (i.e., 76.4; 54.6; 39.8; 16.5 kDa) treatments. However 

three out of the four new bands produced by B25 in NI and HI treatments had similar 

molecular weight. With combination of HI B25 treatment, two additional bands (35.6 and 

34.8 kDa) than NI Bzs treatment. In TAG 24 under HI as well as NI treatments B z ~  had 

resulted in 3 additional bands compared to Bo. Amongst 3 additional bands produced due 

to Bz5 treatment, two bands had same molecular weights except one band, wherein it was 

75.6 kDa with B25 HI combination while under B25 NI it was 54.6 kDa. Genotypic 

differences were apparent with the total number of bands produced were being more in 

ICG 476 in any given treatment compared to TAG 24 . In ICG 476 Bo treatment resulted 

in production of 16 bands under HI and 14 bands in NI treatments, whereas in TAG 24 

there were 15 and 13 bands in HI and NI treatments respectively under Bo, the additional 

one band noticed in ICG 476 was of 66.2 kDa. In B2, treatment, ICG 476 had shown 2 

additional bands compared to TAG 24 under both HI and NI treatments. It was 



interesting to note that the molecular weight of one of the two proteins produced was 66.2 

kDa. However with B ~ J  treatment there was an additional protein with 56.4 kDa produced 

in ICG 476 only. 

4. 2 Glycinebetaine and salinity tolerance 

4. 2. 1 Effects of glycinebetaine on the sensitivity of groundnut to 

salinity stress. 

Effect of betaine on sensitivity of two groundnut genotypes to salinity stress was 

studied by subjecting seedlings to salinity stress in the laboratory. The pregerminated 

seeds treated with (90, 915, 950, B~oo)  or without betaine were exposed to a lethal salinity 

stress of 300rnM NaCl for 48 hours and returned to distilled water. There was also an 

imposition of a gradual salinity induction stress by subjecting the seedlings to 150 mM 

NaCl for 16 hours before transferring to lethal stress of 300 m M  salinity. The recovery 

growth of the seedlings from salinity stress was studied The details of the treatment 

imposition were given in materials and methods (3. 2. I )  and Fig 3. 2. 1.  

It was apparent from the results that at 40 hours after germination, the root and 

shoot lengths of seedlings were about 1 cm with no genotypic difference at this stage. 

However, at 72 hours after recovery, significant differences due to salinity induction 

treatments (SI and NI), betaine treatments, as well as interaction of genotype x betaine 

treatments were apparent (Table 4.2.1). It was clear from fig. 4.2 . la  and 4.2. lb  that in the 

BO treatment, the recovery growth of root and shoot was significantly less in S1 sub 

treatments in both the genotypes. Whereas with SI treatment, the root and shoot growths 

were 106% and 72% higher than NI sub treatment. The root and shoot growth in SI sub 





treatment were on par with non-stressed control treatment in both the genotypes. 

Interestingly the seeds treated with 25 mM or 50 mM of glycine betaine have shown 

significantly positive growth of roots even in non induced seedlings. Seedlings with 

combination of SI and B25 treatments have resulted in greater growth of roots in 

comparison to NI + Bz5 treatment combination in both the genotypes. Similar responses 

were observed with 50 mM betaine treatment. Whereas, with 100 mM betaine treatment, 

there was reduction in recovery growth by 17% compared to 50 mM betaine. Seedlings 

N1 Bloo recorded 38% greater growth than NI Bo seedlings treated with NI + Btw 

treatment combination. 

Similar to observations made under heat stress, these experiments also have 

shown that it was also clear from these results that the roots were more sensitive to 

salinity stresses with the recovery growth in NI  90 ranging from 4 cm to 12 cm in SI B ~ J  

Whereas, the variation in the shoot growth due to the treatments was from 2 cm NI Bo to 

5 cm SI B ~ J .  The B2s and Bso treatments have resulted in 17 - 22% greater growth of 

seedlings compared to B ~ O O  treatment in both the genotypes (Fig. 4.1.1 a and 4.2.lb). 

4.2.2 Variation in protein profiles in groundnut seedlings 

In the present study influence of betaines and salinity stress treatments on possible 

changes in protein metabolism has been investigated by studying the protein profile in the 

seedlings using gel electrophoresis technique. The methodology of the electrophoresis 

was given in materials and methods section 3.2.1 

It was apparent from the gel analysis that there were significant qualitative and 

quantitative differences between genotypes (ICG 476 and TAG 24), salinity induction 



treatments (S1 and NI) and betaine treatments (Bo and B25) (Fig 4 2.1). Analysis of the 

protein banding pattern revealed that genotypes have responded differently to salinity 

induction and betaine treatments. Salinity induction treatment (Bo) alone resulted in 

production of additional protein bands in the two genotypes, the molecular weight of the 

proteins produced varied with genotypes. In ICG 476, the two proteins were of 45.1 and 

36.4 kDa, while in TAG 24, there were 4 proteins with molecular weight of 65.4, 37.8. 

35.4, and 16.5 kDa. (Table 4.2.2). B25 treatment has resulted in production of four 

additional bands at SI (i.e., 45 4; 32.6; 24.8, and 18.4 m a )  and 2 additional bands at N1 

(i.e.,46.2 and 18.5 kDa) treatments. However three out of the four new bands produced 

by B25 in NI and SI treatments had similar molecular weight. With combination of S1 

and 9 2 5  treatment, two additional bands were produced (36.4 and 34.8 kDa) than NI B25 

treatment. In TAG 24 under SI as well as N1 treatments B25 had resulted in three (at 

76.2, 35.6 and 18.8kDa) and one (at 27.8 m a )  additional bands compared to BIJ. 

Genotypic differences were apparent with the total number of bands produced were being 

more in TCG 476 in any given treatment compared to TAG 24 . In ICG 476 Bo treatment 

resulted in production of 18 bands under SI and 16 bands in NI treatments, whereas in 

TAG 24 there were 17 and 15 bands in SI and NI treatments respectively under BIJ, the 

additional one band noticed in ICG 476 compared to TAG 24 was of 66.2 m a .  In BIJ 

treatment, ICG 476 had shown two additional bands compared to TAG 24 under both SI 

and NI treatments. It was interesting to note that the molecular weight of one of the two 

proteins produced was 66.2 kDa. However with B25 treatment there was an additional 

protein with 56.4 kDa produced in ICG 476 only. 



7 3 6 E  4.1 , I  , Moor ana snoor lengrns (cm) or grounanut seeamgSHS- 
Influenced by heat stress and betaine treatments 

Betalne (mM) Treatment ICG 476 TAG24 
0 HI 9 0 3 6 8 7 2 6 

NI 3 5 2 5 2 6 1 9  
C 9 1 4 2 8 9 3 6 

25 HI 1 1 5  4 5  1 0 5  3 9  
NI 1 0 5  4 5  9 5 3 6 
C 1 2 2  5 1  1 1 2  4 4  

50 Hi 12 1 5 0  1 1 3  4 3  
N I 1 0 9  4 9  9 8 3 6 
C 1 1 4  4 1  1 1 8  4 0  

100 HI 9 6 4 8 8 7 3 9 
N I 7 8 5 0 7 9 4 1 
C 9 6 3 9 9 9 3 3 

Analysls of varlance 
Source of var~al~on df Root Shoot 
MT (genotypes(G) NO NS 
ST(Treatmenlsl(S) 1 " " 

0 x 0  1 
SSTIBctalne lavrlsl(B 3 - 

0 x 8  3 

GxSxE 3 NS NS ----- 
Table 4.2.1 ' Root and siioot lengths (em) of groundnut seedlings as 

Influenced by sallnlty stress and beta~ne treatments 
Beta~ne (mM) Treatment ICG 476 TAG24 

0 HI 9 5 3 8 9 9 3 8 
NI 4 6 2 2 3 8 3 1 
C 10 7 4 2  1 0 1  4 8 

25 HI 12 9 4 9  1 1 7  5 1 
NI 11 4 4 5  1 0 7  4 8 
C 13 2 5 1  1 3 3  5 6 

50 HI 12 3 5 2  1 2 5  5 5 
NI 11 8 5 0  1 1 0  5 8 
C 12 4 4 1  1 3 0  5 2 

I 0 0  HI 10 5 4 1 H R 5 1 
NI 7 5 4 5 9 1 5 3 
C 9 6 3 9  1 1 1  4 5 

Analysis of varlance 
Sourco of varialion df Rool Shoot 
MT (genoIypesIG) 1 NS NS 
ST/Treatmenlr)lS) i .. .. 

GxS 1 
SST(BrIame lrvrls)(B 3 .A 

GxE 3 
QXSXB 3 NS NS 



1'l;ltes 4 10 5 : Erfect of g l y c i ~ ~ e  betairle olr root and slroot lerlgills 
or grou~rdriut seedlirlgs (I(:<; 476 - above n11c1 'TAG 
24 below) its ir~flucr~ced by Iliglr ten~l)er:~tut.e 
slvess tre:ltnlerlts 



Yl:~le 6 IY. 7 : Effect of glycine bet;birlc or1 roctt arld slioot lcl~gtlls 
of grouridrlttl scedlirigs (1CG 476 - above ntrd 'I'AG 
24 - below) :IS iritluer~ced by s:llir~ily stress 
tre:ltlllcll~s 



ate 8 : Response or growtlt of g r o u ~ ~ d n u i  seedlir~gs to 
osr~~olytcs like glycine bet;linr. and sucrosc and 
HzO as co11tr.01 



. -- 
I'i:~les 9 & 10 I'rotriil 111-~files of g~.cturldrt~lt seedlilrgs (C;, - LC(; 

: 476) ((;z - 'I'AG 24). sltltjecletf to lligl~ tcri~)tri.;ttur-e 
(i~ltovc) atr~d silli~lity stress (below) ns irilluerlcecl by 
bet;iil~e trc:iti~~cittn 



BO 

. 825 
New 

Protrlna dun 
to 815 

lmtmrnu 
(kDa) 

18 

22 

4 (45,e a2.8; 
24.8; 18.4) 

16 

18 

Z(46.2; 18.1) 

2 (8.1; 36.4) 

4 (654 37.8; 35k, 
18.5) 

2 (46.7; 85.2) 

4 (80.7; 50.8; 28.8; 
18.4) 

I 7  I 15 

20 

3 (76.2; 35.8; 
18.8) 

18 

1 (27.8) 



4.3 Glycine Betaine m d  Salinity Stma 

As explained in materials and methods section, (3.3), the seeds of three genotypes 

(ICG 476, TAG 24 and CSMG 84-1) were either treated with distilled water (Bo) or 25 

mM of glycine betaine (Bz,). The seeds after priming with treatment solutions, were 

planted in pots of sim 180 mm diameter filled with acid washed sand. The pots were 

adequately irrigated with 0.25 strength nutrient solutions until 15 DAS after which, 3 

salinity stresses (0,6 and 8 ds m") (SI, SZ and Ss) wete imposed &om 15 to 30 DAS, the 

pots were randomised within each of the three replications. Observations on root and 

shoot growth, photosynthetic rate, osmotic potential and relative water wntent were 

made as described in the matqials and methods section 3.3.1. 

4. 3.1. Root end main stem length8 (cm) 

At 15 DAS, before the statt of salinity stress, root lengths in BO treatment varied 

from 9.9 to 1 lcm while with BZJ treatment the mot lengths were 23% higher than the Bo 

treatment representing a significant increase over control (P < 0.01), however there is no 

genotypic difference, neither there was a G x B interaction at this stage. (Table 4.3.1). 

The main stem lengths under Bo treatment ranged from 13 to 13.9 cm, whereas 

with Bas treatment the main stem length increased by 20% over wntrol representing a 

significant difference (P < 0.01). As observed for root lengths, main stem lengths did not 

differ significantly among genotypes and G x B interaction was also not significant. 

(Table 4.3.1), 



T&lo : 4.3.1 Effeci of read tmatment with betains on root 
(RL) and maln stern length (SL) of three groundnut 

genotypes st 15 DAS. 

RL (cm) MSL (cm) 
80 825 80 825 

ICCD 476 9.9 12.4 13.0 15.0 
TAQ 24 10.8 13.1 12.8 15.0 

CSMG 64-1 11.0 13.6 13.9 15.8 
G moan 10.6 13.0 13.2 15.3 

SOM f 0.428 f 0.48 

variance 
Source of vmrlation df RL M SL 
LIT (g-nowpuxG) 2 NS N. - .. 
ST (batolna Imls)(B) 1 " - 
G X B  2 NS NS 



A 3.2 Root and main stem development (mm day") 

Salinity stress imposed from 15 to 30 DAS resulted in a significant reduction in the rate 

of root and main stem development in all the 3 genotypes. The rate of root development 

was reduced by 80% under salinity stress in 90 and by 35% under Ba5 treatment. 

Genotypic variation was not observed and the G x S, G x B, G x S x B interactions were 

also not significant. S x B interaction was significant, there was a 125% increase in root 

development with B ~ s  treatment in S2 and a 200% increase with B25 treatment in S, level, 

whereas the SI differences were marginal with betaine levels in root development (Table 

4.3.2; Fig 4.3.3(a)). Seed treatment with B ~ s  resulted in a overall increase of root 

development which waa 0 . 7 6 ~  day.' in Bo and 1.03 mm day" in B15 representing a 

significant effect of B2s treatment. S x B interaction was significant for example, the rate 

of root development was 0.97 mm day" in B25 treatment in S2 and it was only 0.47 mm 

day" in BO treatment in St representing the betaine effect in specificity for a positive 

response under salinity stress conditions. 

The mean rate of shoot development was 1.1 mm day" in Bo, whereas it was 2.6 

mm day" in B25 treatment representing a significant effect of Bz5 treatment on stem 

expansion, in B25 treatment there was a 137% inmass over control. Imposition of salinity 

strese (S3) resulted in an overall reduction in the main stem development by 78% in BO 

and 58% in Bz5 treatment. CSMG 84-1 had 1.84 mm day'' mean shoot development ' 

compared to 0.86 mm day" (TAG 24) and 1.2 mm day" (ICG 476), representing a 

significant genotypic variation (P < 0.05) for main stem development. G x S interaction 

was significant, the salinity stress (S3) reduced by 76% (ICG 476) 81% (TAG 24) 

whereas in CSMG 84-1 the reduction i~ only 54% with the imposition of b treatment. S 



Table : 4 8.2 lnflumw of aallnlty atma and rssd treamem wlih belrlno 
on mot (RD) and maln 8tm (MsD) drvelopmrm of thnr groundnut 

genotypsl. 
RD (mmlday) MsD (mmlday) 
BO 825 80 825 

ICG 476 Sl 1.8 1.4 1.8 2.8 
S2 0.4 1.5 0.8 1.0 
53 0.4 1.5 0.8 0.5 

Mean 0.8 1.6 1.0 1.4 
TAG 24 S1 1.4 1.3 0.8 2.4 

52 0.5 1.2 0.3 1.0 
Sa 0.3 0.5 0.3 0.3 

Mean 0,7 1.0 0.5 1.2 
CSMG 64-1 81 1.5 1.4 2.6 4.0 

S2 0.5 0.2 0.5 0.8 
53 0.2 0.7 0.2 2.0 

Mean 0.7 0.8 1.1 2.6 
G mean 0.8 1.1 0.9 1.7 

8eM ., ' . i 0.250 f 0.025 

CV % 346 29.7 

~ m ~ p r r ~ ( ~ )  2 NB 
GXS 4 N B -  
SST ( W n a  IWWMB) 1 . " 

SXB 2 . I 

G X 0 2 Na # 
GxsxB 1 m Na 



x B interaction was also found to be significant, for example, the reduction in the main 

stem development due to salinity stress war, 80% in BO and only 60% in BZS treatment. 

The G x B, G x S x B interactions were not significant. 

4. 3.3 Seedling growth and development 

At 15 DAS, the root weights ranged from 0.76 to 0.77 g plant" in Bo and 0.76 to 

0.80 g plant" in B a  treatment. There waa no significant difference between root weights 

when obaerved for betaine levels as well as for genotypes and also no significant G x B 

interaction was observed (Table 4.3.3). 

The average leafweights with Bo treatment was 0.4 g plant" and 0.8 g plan? with 

Bls treatment representing a significant 100% increase Q c 0.01) with Bzr treatment. 

Significant genotypic differences (P < 0.01) were observed for leaf weights , where in 

CSMG 84-1 had leaf weights of 0.74 g plant'1 compared to 0.47 g plant'' in ICG 476 and 

0.58 g plant" in TAG 24 (Table 4.3.3). 

Stem weights differed significantly between genotypes (P < 0.01) , where in ICG 

476 recorded 0.82 g plant" compared to 0.69 g plant'1 it! TAG 24 and 0.55 g plant" in 

CSMG 84-1. Betaine treatment @a$ had no significant effect on stem weights (Table 

4.3.3). 

The average shoot weight with Bo treatment war, 1.1 g plant-' and 1.5 g plant-' 

with BZJ treatment repregnting a significant effect (P < 0.01) and a 87% increase with 

Bas treatment was observed. Genotypic variation was not significant. 
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Fig 4 3 3(a) Effect of seed treatment of betame on root developrnent(a) and root 
growth rate (b) In 3 groundnut genotypes under sal~nity stress conditions 



Root and shoot ratios were significantly different (P < 0 05) between betaine 

levels and there was no significant difference between genotypes. The WS ratios ranged 

from 0.64 to 0.88 in BO treatment and 0.46 to 0.54 in B23 treatment showing a significant 

decrease in R/S ratios by 28% with Bo treatment, this indicated that higher shoot weights 

in B23 treatment caused a significant reduction in WS ratios. This shoot growth was 

contributed by an increase in leaf area under B ~ s  treatment (Table 4.3.3) 

The leaf areas ranged from 95 to 125 cm2 plant" in BO and 150 - 172 cm2 plant-' 

in Bzs treatment (Table 4.3.3)There was a significant genotypic variation (P < 0.01) 

where as in ICG 476 the leaf areas ranged from 95 - 151 cm2 plant? and in TAG 24 

1 12 - 172 cm2 plant-' and 175 - 150 cm2 plant" in CSMG 84- 1 

The significant positive effect of Bzs (P < 0.01) resulted in a higher dry matter 

accumulation in Bz, treatment compared to that in BO TDM was about 1.8 g plant-' in BO 

and 2.3 g plant.' in B15 treatment. There is an overall increase of 28% with B23 treatment 

in TDM (Table 4.3.3). 

4. 3.4 Growth components 

Root growth rate (RGR) (mg plant.' day.') 

RGR differed significantly (P < 0.01) for genotypes, CSMG 84-1 recorded 

highest RGR 27.3 mg plant" day" when compared to 22.3 mg plant" day" in ICG 476 

and 18.6 mg plant'' day" in TAG 24 (Table 4.3.4; Fig4.3.3 (a). In B ~ J  treatment there was 

a 135% increase in RGR over Bo representing a significant (P C 0.01) positive effect of 

B ~ s  treatment. RGR decreased by 65% with S3 treatment when compared with SI 

treatment showing a significant effect of (P< 0.01) of salinity stress on RGR. 



G x S interaction was significant (P < 0.01), the decrease in RGR differed 

significantly, for example in ICG 476 the % decrease was 84% when compared to 69% 

in TAG 24 and 75% in CSMG 84-1. G x B interaction was significant (P < 0.01) and the 

% increase with Bz5 treatment differed significantly between genotypes, for example, the 

Bz, treatment increased RGR by 280% in CSMG 84-1 compared to only 39 and 150% in 

ICG 476 and TAG 24 respectively. S x B interaction was significant (P < 0.01). for 

example the RGR with 8 2 5  treatment increased by 200% in SI treatment whereas with S2 

and SJ treatments there was only a marginal difference (Table 4.3.4). 

Shoot growth rate (SGR) (mg plant-' day") 

SGR differed significantly ( P < 0.01) for genotypes, with TAG24 showing the 

greatest SGR with 156.9 rng plant" day" and the CSMG 84-1 had the least (65.7 mg 

plant'1 day"). lmposition of a salinity stress resulted in a reduction in SGR i.e., 205 mg 

plant" day" in control to 57.2 and 30.7 mg plant.' day" in S2 and S1 respectively (Table 

4.3.4; Fig 4.3.4). G x S interaction was also significant with SGR (P < 0.01), where in 

TAG 24 recorded a greatest decrease in SGR by 50% representing a significant (P < 0.01) 

effect of betaine on SGR. G x B interaction was significant (P < 0.01), for example, 

CSMG 84-1 had a 154% increase in SGR with B25 treatment where as it was only 30% in 

ICG and TAG 24 respectively. 

Rate of expansion of leaf area (LAER) (em' plant" day") 

Leaf area expansion ranged From 1.5 to 6.5 cm2 planfl day" in BO treatment and 

1.2 to 4.8 cm2 plant" day.' in Bz5 treatment (Table 4.3.4). Overall, genotypes differed 

significantly (P < 0.01), and the greatest LAER was in ICG 476 (4.09 cm2 plant'' day.' 



)and the least in TAG 24 (2.35 cm' plant" day-' ). LAER reduced from 4.04 cm2 plant.' 

day'' in SI to 1.59 cm2 plant" day" in S3 treatment showing a significant effect (P < 

0.01) of salinity stress on LAER. G x S interaction was significant (P < 0.05) with LCG 

476 showing a significant reduction in the leaf area expansion (64%) whereas the 

reduction in leaf area expansion was only 55 and 58% in TAG24 and CSMG 84-1 

respectively. However the effects of betaine on LAER were marginal and not 

significantly different. S x B interaction was not significantly different whereas G x B 

interaction was significant ( P < 0.01) showing ICG 476 had a 40% decrease in LAER 

with BZ treatment whereas in the other two genotypes the % increase was only 4%. G x 

S x B interaction was not significant (Table 4.3.4). 

Crop growth rate (CGR) 

CGR differed significantly (P < 0.01) for genotypes which ranged from 

12-288 my plant" day" in BO treatment and 21 - 470 with B ~ J  treatment (Table 4.3.4). 

TAG 24 had greater CGR (204 my plant" day.'), and the least in CSMG 84-1 

(98 mg plant'' day"). Salinity stress imposition reduced the CGR by 88% showing a 

significant negative effect (P < 0.01) of salinity stress on CGR. G x S interaction was 

significant (P < 0.01) for example, in TAG 24, S3 treatment reduced the CGR by 93% 

compared to SI treatment whereas in ICG 476 and CSMG 84-1 the reduction was 82%. 

On an average B ~ J  treatment increased CGR significantly ( P < 0.01) by 60% showing a 

positive effect of betaine on CGR. S x B interaction was also significant (P < 0.01). B ~ J  

treatment resulted in a 72% increase over BO in ICG 476 and 62% in TAG 24 and in 

CSMG 84-1 the differences were marginal. G x B interaction was significant (P < 0.05) , 



Table : 4.3.4 Effect of seat treatment with bataine on mot gmwth rate (RGR), shoot gmwth rate 
(SGR), leaf area development (LA),cmp gmwth rate (CGR) durlng sallnlty stress Imposed from 15 - 30 

DAS. -. - 
RGR SGR LA (crn2lday) CGR (mg1planVday) 

(mal~lantlda~) (ma/Dlant/daY) . - .  . - .  
80 825' 80 825' BO B25 BO 825 

ICG 476 S1 19.0 59.0 126.0 210.0 6.5 4.8 145.0 269.0 
S2 4.0 9.0 55.0 13.0 6.1 3.2 59.0 141.0 ~ - -  

S3 33.0 10.0 3.0 17.0 2.7 1.3 36.0 27.0 
Mean 18.7 26.0 61.3 80.0 5.1 3.1 80.0 145.7 

TAG 24 S l  20.0 45.0 269.0 425.0 2.8 3.0 288.0 470.0 
S2 2.0 24.6 133.0 97.0 2.6 3.0 135.0 121.0 
53 10.0 10.0 8.0 9.7 1.5 1.2 26.0 21.0 

Mean 10.7 26.5 136.7 177.2 2.3 2.4 149.7 204.0 
CSMG 84-1 S1 19.0 79.0 89.0 113.0 4.2 3.0 109.0 192.0 

S2 2.0 39.0 9.7 36.0 2.4 4.0 12.0 76.0 
S3 13.0 12.0 13.7 133.0 1.5 1.4 27.0 26.0 

Mean 11.3 43.3 37.5 94.0 2.7 2.8 49.3 98.0 
G mean 13.6 32.0 78.5 117.1 3.4 2.8 93.0 149.2 

SeM f 2.50 f 4.80 f 0.57 f 4.60 

ANALYSIS OF VARIANCE 
source of varlatlon dl RGR SGR LAER CGR 
MT ( s t r u l  Iovrls)(S) 1 " " "  " 
ST (genowpor)(G) 2 .. " " 
G X S  2 " -  " 
$ST (brtalna Ievnr)(B) I " .. .. 
S X B  1 .* t* NQ t* 

G X B 2 " "  
G X S X B  ~ " " N Q . .  



Fig ; 4.3.4 Effect of seed treatment of betaine on shoot development(a), shoot 
growth rate (b), leaf area expansion rate (c ), and crop growth arte (d) as influenced by 
salinity stress treatments imposed during 15 - 30 DAS. 



in CSMG 84-1 the % increase was 100 with B z ~  treatment, whereas in ICG 476 and TAG 

24 it was 81 and 36% respectively. 

4. 3. S Water relations, photosynthetic rate and total betaine content 

Photosynthetic rate (Pn) (pmol m-2sec'') 

Salinity stress levels, genotypes, G x S interaction were not significant for the 

photosynthetic rates, whereas with betaine levels were found to be significantly different 

(P < 0.01). Overall, the 8 2 5  treatment increased the photosynthetic rates by 28% and the 

Pn rates ranged from 6.56 to 9.51 pmol m"sec.' in Bo and 9.42 to 11.52 pmol m"sec" in 

Bzs treatment (Table 4 3.5). 

S x B interaction was also significantly different (P < 0.01) for example, in SI and 

SZ treatments the Bz5 treatment was able to increase Pn rates by 31 and 38% respectively. 

whereas in S3 the BZJ treatment was able to increase by Pn by only 18%. G x B interaction 

was also significant different (P < 0.01) , in ICG 476 and TAG 24 the Bzs treatment was 

able to increase the Pn rates by 30 and 35% respectively, whereas in CSMG 84-1 the % 

increase was only 23%. G x S x B interaction was not significant. 

Relative water content (RWC) 

There were no significant differences in RWC for salinity stress levels, genotypes 

, G x S interaction, betaine levels, G x B, G x S , G x S x B interactions were found to be 

not significantly different (Table 4.3.5). 



Table : 4.3.5 Effect of seed treatment with betalne on photosynthetic rates(Pn), relative water 
content (RWC), osmotic ~otentlals(0P) and total betalne content (18) durlna sallnnv stress . . . .  - 

lmposid durlng 15 - 30 DAS. 
Pn RWC( %I OP(mosrnoles) TB(mM) 

ICG 476 $1 
52 
53 

Mean 
TAG 24 S1 

SZ 
S3 

Mean 
CSMG84-1 S1 

SZ 
53 

Mean 
G mean 8.1200 10.4633 97.5 98.6 548 336 12.9 68.9 

SeM i1.567 - + 9.987 - + 21 - + 6.98 

ANALYSIS OF VARIANCE 
source of varlatlon df Pn Rwc op Ta 
MT (stress Irvrlg(9 Z N S N S N S N S  
ST ( ~ ~ O ~ Y P B S ) ( Q )  Z N S N S . N S  
G X S  N S N S "  " 
SST (btdne I~VBIS)(B) 1 " NS " " 
S X 8  ? " N S " N S  
G X 8 ~ " W N S N S  
G X S X B  4 N S N S N S N S  



Osmotic potentials (OP) 

Genotypic differences were significan (P < 0.05) with OP, wherein CSMG 84-1 

recorded a highest OP of 460 milliosmoles compared to 420 in ICG 476 and TAG 24 

(Table 4.3 5). Salinity stress imposed at 15 - 30 DAS was found to be marginal. On an 

average OP was 444 in SI treatment and 433 in S3 treatment showing no significant 

differences in OP. G x S interaction was found to be significant ( P < 0.01), whereas in 

ICG 476 the OP increased from 426 to 510 milliosmoles with an imposition of salinity 

stress in TAG 24 and 454 - 497 milliosmoles in CSMG 84-1. Betaine levels were found 

to be significantly different (P < 0.01) for OP, overall the B25 treatment decreased OP by 

38%. S x B interaction was significantly different (P < 0.01). the decrease in OP were 

45% in B25 treatment in SI, whereas it was 35 and 38% in S2 and S3 respectively G x B, 

G x S x B interactions were not significant (Table 4.3.5). 

Total betaine content (TB) (mM) 

Neither genotypic differences, nor salinity stress differences were significant for 

TB content. G x S , S x B, G x B. G x S x B interactions were found to be not 

significantly different (Table 4.3.5). Whereas the B2r treatment increased the total betaine 

content on an average by 430%showing a significant positive increase ( P < 0 01) of TB 

with B25 treatment. The TB content ranged from 10 to 14mM in Bo treatment and 65 - 79 

in B13 treatment (Table 4.3.5). 

4. 3. 6 Correlations 

Correlations of all the parameters with the total betaine content were studied, a 

significant positive correlations were observed between total betaine content and 



Table: 4.3.6 Correlation coefflclents 

TB : RGR 0.471' 

TB : SGR 0.244~' 

TB : CGR 0.306 NS 

TB : Pn 0.772" 

TB : RWC 0.572.' 

TB : OP -0.79Et" 



photosynthetic rates (0.772), total betaine content and RGR (0.471), total betaine content 

and RWC (0.572) and a significant negative correlation was observed between total 

betaine content and osmotic potentials, all the other parameters ha no correlation with 

total betaine content. 

4.4 Glycine betaine and water stress 

As explained in materials and methods section (3.4), the seeds of 3 genotypes 

(ICG 476, TAG 24 and CSMG 84-1) are either treated with distilled water (Bo) or 25 mM 

ofglycine betaine (B25). The seeds after priming with treatment solutions were planted in 

pots of size 180 mm diameter filled with sand and soil in the ratio of 2: I .  The pots were 

adequately irrigated until 30 DAS after which 2 watering regimes, 100% field capacity 

(FC), (11 ), and 50% FC (12) were imposed from 30-60 DAS, the pots were randomised 

within each of the three replications. Observations on root, shoot growth, transpiration, 

specific leaf area (SLA) and water relations were made as described in materials and 

methods section (3 4) 

4.4.1 Root and Main stem lengths (em) 

At 30 DAS, before the start of watering regimes, root length in Bo treatment 

varied from 12.2 to 13.4 cm while with B25 treatment the root lengths were 25% higher 

than BO treatment representing a significant increase over control, however there is no 

genotypic difference neither there was G x B interaction at this stage (Table 4. 4. 1). 

The main stem length under Bo treatment ranged from 15-16 cm whereas with B25 

treatment, the main stem length increased 15% over control representing a significant 



Table : 4.4, 1 Effect of seed treatment with betalne on mot (RL) 
and maln stem length (SL) of three gmundnut genotypes at 30 

DAS. 

RL (cm) MSL (cm) 
BO 825 BO 825 

ICG 476 12.3 14.8 15.1 16.6 
TAG 24 12.2 15.6 15.0 17.2 

CSMG 84-1 13.4 16.0 16.1 18.3 
G mean 12.6 15.4 15.4 17.3 

SeM f 0.423 f 0.48 

Analysls of variance 
Source of variation df RL MSL 

MT (wnot~p=l(G) 2 NS NS 
ST (batsin* I*v8ls)(B) 1 w 

G X B 2 NS NS 



difference (P<0.05). As observed for root lengths shoot lengths did not differ 

significantly among genotypes. 

4.4.2 Root and Main stem development (em day") 

Water stress imposed from 30-60 DAS (12) resulted in significant reduction in the 

rate of root and shoot development in all the genotypes, the rate of root development 

reduced by 124% under 12 treatment in BO and by 80% under B25 treatment, although 

genotypes showed significant variation in their response to water stress in terms of root 

development for example, the reduction in root development due to water stress was 10% 

in ICG 476, 7% in TAG 24 and 86% in CSlMG 84-1 (Fig 4.4.2 (b)). Seed treatment with 

Bz5 resulted in an overall increase of rate of root development, which was 0.14 cm day-' 

in Bo and 0.17 cm day" in Bl j  representing a significant effect of B25 treatment (Fig 

4.4.2(a). The G x B treatment interaction was significant for example, in ICG 476. The 

rate of root development increased from 0.16 cmiday in BO and 0.14 cm day.' with B25 

treatment representing genotypic specificity for positive effects of betaine. Imposition of 

water stress treatment resulted in 56% reduction with Bo treatment, whereas with Bzs 

treatment, the reduction in root growth was only 45%. 

The shoot development was 0.28 cm day-' in Bo treatment whereas it was 0.35 cm 

day-' in B z ~  treatment representing effect of betaine on stem expansion(Fiy 4.4.2(a). 

Imposition of water stress treatment resulted in an overall reduction in rate of main stem 

development of 35% under Bo and with B ~ s  the reduction was 32% (Fig 4.4.2(b)). 

Overall, it was clear that effect of water stress was more in root growth (55%) compared 

to that in shoot growth (35%). Further, it was clear that positive effects of betaines are 



I1 12 H I2 I1 12 
ICG 476 TAG 24 CSMG 64-1 I 

Fig : 4.4.2(a) Effect of seed trealment with belaine on the rate of root (HD) and main slem (MSD) 
development of three groundnut genolypes during water stress imposed from 30 - 60 DAS. 

Analysis of variance 
source of variation dl RD MSD 
MT (sltess Ievels)(S) 1 
ST (genolypos)(G) 2 NS 
G X S  2 
SST (botaine Itve~s)(B) 1 
S X B  1 NS NS 
G X B 2 t NS 
C X S X B  4 NS NS 



seen in alleviating water stress on root development compared to the main stem, this 

observation supports the earlier findings observed in the germinating seedlings. 

4.4.3. Effect of betaine on seedling growth and development. 

At 30 DAS, the root weight ranged from 0.93 - 0.95 among genotypes under with 

Bo reatment, with Bz, seed treatment, the root growth increased by 10% in BX compared 

to Bo. Genotypes had no significant difference for root weights, betaine levels and 

interaction were found to be significant (Table 4.4.3). 

The average stem weight with Ba treatment was 1.4 g plant" with no significant 

genotypic differences. In seed treatment with Bz5 the stem weight ranged from 1.7 g in 

CSMG 84-1 to 2.1 g in TAG 24 representing an overall increase of 25% in B2) compared 

to Bo. In general there was higher root shoot ratios in Bo treatment than that in B25 

treatment, the higher root shoot ratios was apparently manifested by greater shooter 

growth with betaine treatment, it was also clear that the increase in the shoot growth was 

contributed by an increase in leaf area under Bz5 treatment. The leaf areas plant-1 ranged 

from 200 cm2 to 216 cm2 with Bu whereas the leaf areas plant-' ranged from 240 in ICG 

476 to 268 cm2in representing an overall increase of 18% in Bz5 treatment. The positive 

increase of seed treatment with Bz5 resulted in higher dry matter accumulation in B25 

compared to that in Bo. It was apparent that total day matter plant" was about 2.3 g in Bo 

treatment whereas, the TDM ranged from 2.6 to 3g in Bzs treatment, there is an overall 

increase of 12% with B25 treatment in total dry matter (Table 4.4.3). 





4.4.4 Effect of betaine on sensitivity of groundnut to water stress. 

Genotypes differed significantly for root and shoot growth rates and other 

physiological parameters such as leaf area development, crop growth rate and net 

assimilation rate (Table 4.4.4). 

Root growth rate: 

CSMG 84-1 showed greatest root growth rate 45mg plant'' day" followed by 

TAG 24 (40 mg plant" day.') and ICG 476 (20 mg plant" day"). Imposition of water 

stress resuted in an overall reduction of 43% in root growth rate in Bo treatment whereas 

in B15 treatment, the mean reduction in root growth rate due to water stress treatment was 

39% suggesting alleviating effects of betaine on root growth and development in the 

water stress (Table 4.4.4). The genotype x betaine interaction was significant with 2 

genotypes i.e., ICG 476 and CSMG 84-1 showing a significant 50% increase in the root 

growth rate with B ~ J  treatment. 

Similarly G x S interaction was significant in root growth rate with ICG 476 

showing the 70% reduction in root growth rate under water stress, the reduction in root 

growth rate under water stress was 27% in case of CSMG 84-land 22% in case of 

TAG 24. 

Shoot growth rate: 

Genotypes differed significantly in shoot growth rates with TAG 24 having the 

greatest shoot growth rate 280 mg plant*' day" and CSMG 84-1 having the least shoot 

growth rate (60 mg plant" day"). Imposition of water stress resulted in reduction of 



shoot growth rate in 150 mg plant-1 day-l in control to lOOmg plant-1 day-l in water 

stress. G x S interactiion was also significant with CMG 84-1 showing very little effect 

of water stress on shoot growth rate (60 in both 11 and L treatments), whereas ICG 476 

and TAG 24 showed significant reduction in shoot growth rate due to water stress (Table 

4.4.4). 

Seed treatment with betaine showed increased shoot growth rate (176 glplantlday) 

compared to 124 in BO treatment under control conditions. A similar increase in shoot 

growth rate was also observed under the water stress treatments, the mean shoot growth 

rate was 11 0 in Bo treatment whereas it was 154 with betaine treatment. 

G x B interaction was significant with CSMG 84-1 showing an increase 60% due 

to B25 treatment whereas the increase due to betaine treatment 39% in TAG 24 and 36% 

in ICG 476. However, G x S x B interactioin was significant at 5% suggesting the 

sensitivity of betaines to G x S interaction. 

Rate of expansion of leaf area (cm2 day") 

Leaf area expansion rate ranged from 1.5 to 2.5 cm2 day-' in Ba treatment and 1-8 

to 2.7 cm2 day" in B25 treatment. Overall genotypes differed significantly with ICG 476 

having the greatest leaf area development (2.35) compared to 1.99 cm2 day.' in CSMG 

84-1 and 1.71 in TAG 24. The rate of leaf expansion reduced from 2.2 in 11 to 1.9 with 11 

representing a significant effect of water stress on leaf expansion. Genotype x water 

stress interaction was significant with ICG 476 showing significant reduction in the rate 

of leaf expansion (21%) whereas, the reduction in leaf expansion due to water stress was 

only 4% in TAG 24 and 12% in CSMG 84-1. However, the effects of betaine on leaf 



area expansion were marginal. The rate of leaf expansion was 2 cm2 day-' in Bo 

compared to 2.03 in Bx. The genotype x betaine interaction was not significant. 

Similarly G x S x B interaction was not significant on leaf area expansion (Table 4.4.4) 

Crop Growth Rate (mg plant *' day -') 

Genotypes differed significantly in Crop growth rates which ranged from 110 to 

280mg plant" day" in BO and 190 to 300 with B23 treatment. CSMG 84-1 had greatest 

CGR (250). Imposition of water stress resulted in a reduction of 33% in Crop growth 

rate representing by effects of water stress. The G x S interaction was significant with 

ICG 476 and CSMG 84-1 shouring greatest reduction in water stress (34%) compared to 

28.5% in TAG 24. The Bzs treatment resulted in an increase (27% to 33%) in all the 

three genotypes. However, G x B interaction was not observed (Table 4.4.4 and Fig : 

4.4 4) 

Net assimilation rate (g m.' day") 

NAR ranged from 3.6 - 7.3 representing a significant variation due to the 

treatments. The genotypes differed significantly with CSMG 84-1 having the greatest 

CGR (6.1) followed by ICG 476 (5.3) and TAG 24 (4.6). Imposition of water stress 

resulted in an overall reduction of 30% in NAR genotypes have shown marginal 

differences however, the reduction in NAR due to water stress in ICG 476. Seed 

treatment with betaine resulted in a overall increase of 15% in NAR. Howeverr, the 

effect of betaines on NAR varied with genotypes. For example, the increase in NAR was 

of the order of 3.78, in CSMG, 15.8 in TAG 24 and 28.4 in ICG 476 (Table 4.4.4 and Fig 

4.4.4). 
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Fig : 4.4.4 Effect of reed treatment of betaine on crop growth rate(a) and 
net assimilation rate (b) during water stress imposed from 30 - BODAS 



4. 4. 5 Dry matter production and water use efficiency 

Effect of betaine treatment has been examined by quantifying traits (transpiration 

(T), and water use efficiency (WUE)) that contributed to dry matter production. 

All the genotypes irrespective of betaine and stress levels used similar quantities 

of water (2.7 -4.6 kg in 11 and 2.4 to 3.1 kg in 12) but were significantly different in dry 

matter production which ranged from 8.9 - 10.9 g plant" in 11 and 5.6 -9.9 g plant" in IZ 

during the treatment period resulting in a signiticant variability in WUE between 

genotypes (2.2 -4.7 g kg" in 11, and 2.2 to 3.7 g kg" in 12). Genotype TAG 24 with B211 

treatment had the highest WLTE in treatment 11 (4.7g kg") and the same genotype had a 

WUE of 3.8 y kg" in water limited conditions (12). Genotype ICG 476 recorded lowest 

WUE in both irrigation treatments. 

Correlation of water use efficiency with transpiration and dry matter produced 

during 30 - 60 DAS were studied, there was a negative correlation (-0.33) between WUE 

and transpiration, water use efficiency and SLA (-0.512) had a significant negative 

correlation. A significant positive correlation (0.77) between transpiration and dry matter 

produced was observed, all the other correlations were not significant (Table 4.4.7). 

4. 4. 6 Water  relations 

Relative water content 

Betaine levels were found to be significantly different for RWC. The genotypic and 

betaine differences were not significant for relative water content and G x B, G x S, S x B 



Table : 4.4.6 Effect of seed treatment with betaine on relatlve water content (RWC), leaf Water 
potential( w), total betaine (TB) (mM) and fluomscence ratlo (Fvffm) durlng water dress Impose 

during 30 - 60 DAS. 
RWC I w (Mpa) Total betaine (mM) FvlFm 

BO B25 BO 825 80 825 BO B25 

ICG 476 H 93.7 94.6 -2.1 -1.9 11.5 62.4 0.89 1.00 
12 74.7 78.6 -4.5 -2.9 10.7 56.3 0.67 0.79 

Mean 84.2 86.6 -3.3 -2.4 11.1 59.4 0.67 0.89 
TAG 24 H 92.8 97.2 -2.5 -1.9 12.6 60.4 0.86 0.95 

I2 75.8 78.8 -3.1 -2.6 13.0 63.6 0.65 0.88 
Mean 84.3 88.0 -2.8 -2.3 12.8 62.0 0.65 0.95 

CSMG84-1 11 90.7 92.6 -2.8 -1.9 11.6 52.4 0.88 0.91 
12 75.3 77.7 -3.2 -2.3 15.6 86.5 0.56 0.91 

Mean 83.0 65.1 -3.0 -2.1 13.6 69.5 0.72 0.91 
G mean 83.8 88.8 4.0 -2.3 12.5 63.6 0.68 0.92 

SeM f 10.90 f 0.58 f 1.45 f 0.10 

ANALYSIS OF VARIANCE 
soume of wriatlon df Rwc LWP Tot bal Fvffm 
MT (stress Iovols)(s) 1 " " NS 
ST (o~nolypes)(G) Z N S N S N S  NS 
G X S 2 N S N S N S N S  
SST (belaine Ievalr)(a) 1 NS " 
S X B  P N S N S .  
G X B  2 NS 
GXSXB 4 N S .  
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and G x S x B  interactions were also not significant. In 11 treatment the RWC ranged 

from 90 - 97% in all the genotypes and in 11 RWC ranged from 74 - 78% (Table 4.4.6). 

Leaf water potential: 

Leaf water potentials differed significantly (P<O.OS) among stress levels, genotypic 

differences were not significant, where as leaf water potential differed significantly 

(Pc0.01) with betaine treatments, the G x S , S x B interactions were not significant and 

the G x B, G x S x B  interactions were found to be significant. 

In 11 the mean ~ J W  was -2.2Mpa, whereas with I1 treatment the mean LWP was - 

3.lMpa. \yW ranged from -2.4 to -3.6 Mpa Bo and -1.9 to -2.6 MPa in B25 treatments. 

ICG 476 with BO treatment had the lowest y W  (-3.3) and the highest y W  (-2.1) was 

recorded in CSMG 84 - 1 genotype (Table 4.4.6). 

Total betaine content (mM) 

Genotypic and stress differences were not observed for total betaine content, 

betaine differences were significant for the total betaine content (P<0.01), G x S, G x B  

interactions were not significant while the S x B and G x S x B interactions were 

significant (Table 4.4 6). Total betaine content ranged from 11.8 to 13.1 mM in BQ 

treatment and 58.3 to 68.8 mM in Bz3 treatment. 11 treatment with B ~ J  recorded less total 

betaine content (58.3) and the highest was in 12 with B ~ J  treatment. 

Fluorescence ratio (FvlFm): 

The genotypic differences were not significantly different, while the stress and 

betaine level differences were highly significant (P<0.01) for FvIFm and as shown by 



1 : t e  I : F:l'fect of glyrine b e t n i ~ ~ c  0 1 1  gruu~ld~rut p l a ~ ~ t s  : ~ t  30 
DAS V'AG 24) irr  g1:tss l lol~se during tire study of 
g l y r i ~ ~ c  Iwt:ti~tc rI'Si.cts on wnlcr stress i~r~j)osetl 
fro111 30-60 OAS. 

1'I:rie 12 : 1*:1~Fect 01. glyci~lc  b e t e i ~ ~ e  011 grounif~lut seetllir~gr of 
'I'AC; 24 :at 30 UAS, t111ri11g the s111dy of glyritle 
b e t : ~ i ~ ~ e  c f i r t s  or1 w:itrr stress i l~~l)oset i  fro111 30-60 
I>i\S. 



Table : 4.4.7 Correletlon wefficlenta 

Correlation coefficient 

TB : RGR 0.384 

TB : SGR 0.266 

TB : CGR 0.439 

TB :NAR 0.208 

TB : WUE 0.471' 

TB:T 0.156 

TB : RWC 0.048 

TB:FvlFm 0.567' 

T B : y p  0.528' 

T : WUE -0.33 

T:DM 0.77" 

WUE : SLA -0.51' 

T:DM 0.34 



significant G x S, G x B, S x B, G x S x B interactions (P<0.05) (Table 4.4.6) . The 

Fv@m ratio decreased with imposition of water stress treatment in all the genotypes 

studied. The mean FvIFm ratio was 0.915 in 11 and 0.743 in 12 treatments. Betaine 

treatments increased FvFm ratio from 0.75 in BO to 0.9 in B25 treatments. TAG 24 had 

the highest Fv/Fm ratio (0.951) in B25 treatment and the least in (0.562) in CSMG 84-1 

genotype with BO treatment. 

4. 4. 7 Correlations 

Correlations of total betaine content with all the parameters were observed, there 

was no significant positive correlation of total betaine content with WUE (0.471), FvIFm 

ratios (0.567) with total dry matter (0.77)all the parameters. 

4. 5 Glycine betaine and high temperature stress 

As explained in materials and methods section (3. 5), the seeds of 2 genotypes 

(ICG 476 and TAG24) are either treated with distilled water (Bo) or 25mM of ylycine 

betaine (B25) The seeds after priming with tretament solutions were planted in pots of 

size lOlmm diameter filled with sand, soil and vermiculite in the ratio of 2:1:1, the plants 

were grown in glass house at 3 0 ' ~  upto 15DAS and then 1 set was shifted to a growth 

chamber (0.75 x 1.82 x 1.4m ) at temperatures of 3 0 ' ~  and 60 - 70% relative humidity, 

this serves as a control (HTI), and the second set was shifted to another growth chamber 

of same dimensions and this programmed so as to simulate the naturally occuring diurnal 

rhytm of temperatures (HT2) as explained in the Fig : 3. 5. The experiment was 

terminated at 45DAS. Observations on root, shoot growhs, specific leaf area water 

relations were made as described in the materials and methods section 3. 5. 



Table 4.6.1 : Effect of seed treatment with betaine on root 
length (rl),shoot length (sl)at 15DAS 

rl(cm) sl (cm) 
BO 825 BO 825 

ICG 476 9.9 10.2 10.8 10.9 
TAG24 10 1 10.5 11.3 11.5 
G mean 10.0 10.3 11.1 11.2 

Se M * 0.151 f 0.017 
CV % 2.3 1.8 

Anaivsis of 
variance 

Source of variation df ri $1 

MT (aenohl~eslfGl 1 NS - . .. . 

ST(betaine leveia)(B) I 
G X B  I NS 

* Signillcan[ at P- U.US. 
**  Significant at P001.  
NS Non Significant 



4.5. 1 Root and main stem lengths 

At 15 DAS, before the start of high temperature regimes, root length in Bo 

treatment varied from 9.9 (ICG 476) to lO.l(TAG 24), while with Bz, treatment the root 

lengths were 10% higher than that of the Bo treatment (Table 4. 5. 1). However there was 

no genotypic difference and no significant G x B interaction at this stage 

The min stem lengths under BO treatment ranged from 10.83(ICG 476) and 11.33 

(TAG 24), whereas with Bz5 treatment the main stem lengths increased and ICG 476 had 

a stem length of 10.9 cm and TAG 24 with 11.53 showing a significant response to 

betaines. The genotypic variation is observed in main stem lengths, where in which on an 

average the ICG 476 recorded 10.86 cm, where as TAG24 recorded a stem length of 

11 43 cm (Table 4. 5. 1). 

4. 5. 2 Root and main stem development 

High temperature stress imposed from 15 to 30 DAS resulted in a signifcant 

reduction in the rate of root and shoot development in both the genotypes (Table 4. 5 .  2). 

HT2 on an average could decrease the root development by 12%. Genotype ICG 476 had 

more root development (0.263 cm day") than that of the TAG24 (0.287 cm day"). G x S 

interaction was also found to be significant, in ICG 476 the reduction in the root 

development due to high temperature stress was only 4%, whereas in TAG 24 the 

reduction was about 20%. Betaine treatment had a significant positive response showing 

on an average 22% increase in Bz:, treatment compared to BO treatment. S x B 

interaction was found to be significant, the rate of root development reduced by 18% 

under Bo treatment, and it reduced by only 6% in Bz5 treatment. G x B interaction was 





also significant, in ICG 476 the root development increased by 43% with B23 treatment 

and in TAG 24 the B ~ s  treatment could increase the root development by only 5%. G x S 

x B interaction was not significant (Table 4. 5. 2). 

4. 5.3 Seedling growth and development. 

At IS DAS, the root weights had no genoypic variation, but a significant (P < 

0.05) positive response due to betaine treatment was observed (Table 4. 5. 3). The Bz5 

treatment could increase the root weights by 30% on an average, and the root weights 

ranged from 0.46 to 0.41 in Bo treatment and 0.52 to 0.61 g plant" in B ~ J  treatment. 

The average shoot weight with Bo treatment was 0.67 g plant'1 and 0.78 g/plant in 

B ~ s  treatment. There was no genotypic difference at this stage, whereas with betaine 

treatment the differences were significant, and the BZS treatment could increase the shoot 

weights by 17%. G x B interaction was not significant(Tab1e 4. 5. 3). 

Root shoot ratios were found to have no genotypic differences, and there was a 

significant difference in RS ratio with betaine treatments (P < 0 OS), the BZS treatment on 

an average could increase the RS ratio by 11%. G x B interation was not significant a this 

stage (Table 4. 5. 3). 

There were no significant differences between genotypes when observed for leaf 

areas, there was a significant (P < 0.01) positive response due to BZS treatment. The B25 

treatment could increase the leaf areas by 16%. The leaf areas ranged from 158 to 180 

cm2 plant.1 in Bo treatment, whereas with BIJ treatment the range is 193 to 200 cm2 plant' 

I GxB interaction was not significant (Table 4. 5. 3). 



Table : 4.5.3 influence of high temperature rtrerr and betalne treatments on 
root (RD) and main rtem (MID) development of three groundnut genotypea. 

RD MID (cmlday) 
(cmlday) 

8 0  825 SO 825 
ICQ 476 HT1 0.233 0.301 0.391 0.431 

HT2 0.201 0.318 0.212 0.137 
Mean 0.217 0.310 0.302 0.284 

TAQ 24 HTI 0.316 0.317 0.347 0.345 
HT2 0.247 0.266 0.222 0.136 

Mean 0.283 0.292 0.285 0.242 
G mean 0.25 0.30 0.20 0.26 

Se M k0.0049 j: 0.0085 

Analyrir of variance 

rource of variation df RD SD 
msln trt~(alreaa~S) 1 
sub lrb 1 
g@no(Q) 
Q X S  1 
SST (belalna I@Va18) 1 a* a t  

SXB 1 
G X 1 NS - -. - 
QXSXB 1 NS NS 
* Significant at R 0.05: 
*' Sign18canl at P.001: 
NS Nan Significant 
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Fig A 5 . 3  Effect of seed treatment of betalne on root development (a) and mot growlh rate 
(b) In three groundnut genotypes under two hlgh temperature stress treatments. 



The positive response of seed treatment with betaine resulted in a increase in total 

dry matter by 23% (Table 4. 5. 3). The differences due to betaine treatment were 

significant (P < 0.01) and the genotypic variation was not observed. G x B interaction 

was significant (P < 0.01). 

4. 5 .4  Growth components 

Root growth rate (RGR) (mg plant" day") 

Genotypes did not differ significantly for root growth rates, where as G x S 

interaction was found to be significant (Table 4. 5. 4). The HT2 treatment could decrease 

the RGR by 17% in ICG 476 and 38% in TAG 24. Betaine levels differed significantly, 

The B25 treatment could increase the RGR by 42% over all. S x B, G x B, G x S x B 

interactions were not significant. 

Shoot growth rate (SGR) (mg plant-' day") 

Shoot growth rates were significantly different (P 0.01) among genotypes and 

stress levels (Table 4. 5. 4). HT2 could decrease the SGR on an average by 22%. The 

genotypes varied significantly for SGR (P < 0.01), highest SGR was in TAG 24 genotype 

(74.7mg plant" day") and 1CG 476 had SGR of only 56.lmg plant" day". G x S 

interaction was significant (P < 0.05) wherein which in ICG 476 HT2 could decrease the 

SGR by 5%, whereas in TAG 24 the reduction due to HT2 treatment was 33%. Betaine 

levels were also significant (P < 0.01), and the BZJ treatment could decrease the SGR by 



14%. S x B interaction was significant (P < 0.05). in HTI treatment the decrease in SGR 

by B23 treatment was not significant and it was marginal whereas in HT2 treatment the 

decrease due to SGR was 27%. The G x B was also significant, in ICG 476 the BZJ 

treatment could decrease the SGR by 20%, whereas in TAG 24 the decrease was only 

10%. G x S x B interaction was not significant (Table 4. 5. 4). 

Rate of expansion of leaf area (em2 day-' plant-') 

Leaf area expansion rate ranged from 1.8 to 4.7 cm2 day" plant" in Bo treatment 

whereas in 825 treatment it ranged from 0.7 to 3.1 cm2 day'' plant", showing a significant 

negative response (P < 0.01) of BIJ treatment decreasing the LAER by 48%. Genotypic 

differences were also significant (P < 0.05), TAG 24 had LAER of 2.1 cm2 day" plan<' 

whereas it was 2.9 cm2 day" plant" in ICG 476. Stress levels were also significant (P < 

0 OI), on an average HT2 treatment decreased the LAER by 56%. G x S, S x B, G x B, G 

x S x B interactions were not significant (Table 4. 5. 4). 

Crop growth rate (CGR) (mg plant " day 'I) 

Genotypes differed significantly in CGR (P < 0.05), in ICG 476 the CGR was 

only 83.4 mg plant-1 day-1 whereas in TAG 24 the CGR was found to be 102 mg plant'' 

day" (Table4.5.4) Stress level s were significantly different 8 .: 0.05), HT2 treatment 

could decrease the CGR by 24%. G x S interaction was significant , in ICG 476 the HT2 

treatment could decrease the CGR by only 8%. whereas in TAG 24 the decrease due to 

HT2 treatment was 35%. There was no significant difference in betaine levels for CGR. S 



Table : 4.5.4 Effect of rwt treatment with betnine on root growth rate (RQR), shoot 
arowth rate ISGRh leaf area exDanrlon rate ILAl .cro~ arowth rate ICGR) durlna water - . . . ,  - 

r t r a i r  Impored from 30 - ~ O ~ A S .  
RQR SGR LAER CGR 

100478 HT1 17.7 40.3 58.0 55.3 4.7 3.1 77.0 97.0 
HT2 14.7 33.7 88.3 44.6 2.6 1.1 81.3 78.3 

Mean 16.2 37.0 82.2 50.0 3.7 2.1 79.2 87.7 
TAG24 HT1 35.0 32.0 90.7 68.3 4.0 2.0 126.0 120.7 

HT2 21.3 20.3 86.7 53.0 1.8 0.7 87.3 73.0 
Mean 28.2 28.2 78.7 70.7 2.9 1.3 106.7 98.8 

Q mean 22.2 31.8 70.4 80.3 3.3 1.7 92.9 92.2 
Se M +2.17 + 3.25 f 0.320 f 4.48 

ANALYSIS OF VARIANCE 
sourcw of vsrlatlon dl RQR SQR LACR CQR 
MT(rtrsu)(S) 1 NS .. 
ST 1 NS " 

g*no(Ql 
0 x 9  1 '* NS 
8 8 7  (bwtalnr Imvwls) 1 *. NS 
s x a  I NS . NS NS 
Q X B  1 N 8  " NS " 

Q X S X B  1 Nw NS NS 
* Stgntfiunl st P= 0 05. 
** S~sn~ f i cm lU  hOOl. 
NS Non S~gnlfisanl 



HTl HT2 HT1 HTZ 
ICG476 TAG24 

ig 4. 5 . 4  : ~ f fec t  of seed treatment of betaine on shoot development(a), shoot growth rate(b), c p 
growth rate ( c) and leaf area expansion rate (d) during water stress at 30 - 60 DAS. 1 



x B interaction was also not significant. G x B and G x S x B interactions were 

significant. In ICG 476 the CGR increased due to BZS treatment by 11%, whereas in TAG 

24 the differences were marginal. 

4. 5. 5 Relative water content (RWC), Leaf water potential (YW), Total betaine 

content (TB), and Fluorescence ratio (Fvmm). 

Relative water content (RWC) (%) 

High temperature stress decreased the RWC significantly (P < 0.05), on an 

average the HT2 treatment could decrease the RWC by 10%. Genotypic variation and G 

x S interaction were not significant (Table 4. 5. 5). Betaine treatment were found to be 

significant (P < 0.05), on an average the betaine treatment is found to increase the RWC 

by 6%. S x B interaction was significant (P < 0.05), in BO treatment the decrease due to 

HT2 treatment was lo%, whereas in BZS treatment the decrease was only 5%. G x 8, G x 

S x B interactions were not significant. 

Leaf water potential (yW) (Mpa) 

High temperature stress decreased the YW by 44% showing a significant 

difference due to stress treatment (P < 0.01) (Table 4. 5. 5). Genotypes were also 

significantly different with ICG 476 having an average YW of -4.6 Mpa and TAG 24 

with a YW of -5.7 Mpa. S x B interaction was significant ( P < 0.05), in BQ treatment the 



decrease in YW is 35%, whereas in B25 treatment the decrease in YW is 24%. G x B 

and G x S x B interactions were found to be not significant. 

Total betaine content (TB) (mM) 

Total betaine content did not differ significantly for genotypes and stress levels, 

the Gx S interaction was also found to be not significant (Table 4. 5. 5), whereas total 

betaine content differed significantly (P < 0.01) with betaine treatments. Bzs treatment 

could increase the level of betaine content in the leaf by 356%. S x B and G x S x B 

interactions were not significant. G x B interaction was significant (P < 0.05), In ICG 476 

the Bzs treatment could increase the betaine content by 340% whereas it was 380% in 

TAG24. 

Fluorescence ratio (FvtFm) 

Stress levels were significantly different for FvRm ratio showing a decrease of 

5%. Genotypic variation and G x S interaction were not significant (Table 4. 5. 5). Bz, 

treatment could increase the FvlFm ratio by 8%. S x B and G x S x B interactions were 

not significant, whereas the G x B interaction was found to be significantly different. ICG 

476 had an increase in FvIFm ratio by 14% whereas the difference was marginal in 

TAG 24. 





4.5.7 Correlation coofflcienta 

Correlation coefficient 

TB : RWC 0.462 

TB : LWP 0.125~' 

TB : Fv/Fm 0.691" 

TB : RGR 0.504' 

TB : SGR -0.332 Na 

TB : CGR -0.033 NS 

TB : LAER -0.595 



In view of the effects of glycine betaine observed in the laboratory and glass 

house experiments, field experiments were undertaken to study the effect of glycine 

betaine in the alleviation of drought imposed during mid of the season and end of the 

season. 

4. 5. 6 Correlations 

Correlation of total betaine content with all the growth parameters and 

observations were studied, there was a significant positive correlation (0.6904) between 

total betaine content FvEm ratio between total betaine content and shoot growth, total 

betaine content and relative water content (0.461), a significant -ve betaine content and 

leaf area expansion rate (0.595). (Table 4.4.6). 

4. 6 Effect of glycine betaine on sensitivity of groundnut genotypes to mid season 

drought. 

As explained in Materials & Methods section 3.6.1, field experiments were 

undertaken during the 1996 rainy and 1996197 post rainy seasons, to examine the effect 

of mid season and terminal drought stress on groundnut and the role of betaines in 

alleviating the drought stress. In both the seasons, watering regimes i.e., irrigated and 

mid season drought were treated as main treatments, genotypes (CSMG 84-1, ICG 476, 

ICGV 86031, TAG 24, TMVPNLM) as sub treatments & betaine levels (0,3,6,9 kgha) 

(BI, B2, B3, B4) as sub sub treatments. 





1996 Rainy season: 

During the rainy season the mid season drought spanning from 40-80 DAS was 

imposed by using portable rain out shelter, while, irrigated treatment received adequate 

irrigation either by rainfall or supplementary irrigation. The results of the rainy season 

experiment are given below: 

4. 6. 1 Vegetative weight (g m"), Pod dry weight (g m ") and harvest index. 

Vegetative weight (g m ") 

At 100 DAS, effect of drought on shoot growth was significant (P<0.05) with the 

shoot dry weights being 649.6 g m '' in irrigated and 369.9 g m " under mid season 

drought conditions (Table 4.6.1). Genotypes also differed significantly (P<0.05) for 

shoot dry weights with TMV2NLM having greatest shoot dry weight (652.8 g m ") and 

CSMG84-1 having the lea4 shoot dry weight (233.1 g m "). S x G interaction was 

significant (P<0.05). The genotypes differed significantly in their reduction of shoot 

growth due to drought, i.e., in 56% CSMG 84-1, 37% in ICG 476, 43% in TAG 24, 53% 

in ICGV 86031 and 30% in TMV2NLM. Effect of betaine were found to be not 

significant neither S x B interaction was significant. However, G x B interaction was 

found to be significant (P<0.05) with 20% increase of shoot dry weight only in case of 

ICG 476 but the effect of betaine in other genotypes was marginal and not significant. 

(Table 4.6. I ) .  



Pod Weights (g m "). 

On an average there was about 30% reduction in pod weights with an imposition 

of mid season drought. However genotypic variation was found to be significant 

(P<0.01) (Table 4.6.1). TMV2NLM recorded greatest pod weight (362 g m .'). CSMG 

84-1 recorded the least 47 g m .'. Genotypes differed significantly in their reaction to 

drought. In ICG 476, there was a 60% reduction, 40% in CSMG 84-1, TMVZNLM, TAG 

24 and 15% in ICGV 8603 1, due to droughts. Betaine effects were not significant and S 

x B, G x B and G x S x B interactions were also not significant (P<0.05) (Table 4.6.1). 

Harvest Index 

Harvest Index was significantly influenced by drought. There was marginal 

reduction in HI under irrigated conditions (0.308), compared to that under mid season 

drought (0.363) conditions. Genotypes also differed significantly for HI where with 

TMV2NLM having greatest HI (0.558) and TAG 24 having the least (0.152). S x G 

interaction was significant. ICG 476 recorded 43% reduction in HI under mid season 

drought. While the differences were marginal in the other genotypes. However, betaine 

treatments, S x B, G x B and G x S x B interaction were not significant. (Table 4.6.1). 





4.6.2. Reproductive development 

Aerial pegs (AP) (pegs ma) 

AP decreased significantly (P<0.01) under mid season drought. Under irrigated 

conditions, mean AP were 51 1 pegs m '' while under drought AP were reduced to 332 

pegs m '2. There was significant genotypic reduction in AP amongst genotypes with 

TAG 24 recording the greatest number of pegs m -2 (693 m'2) and ICG 476 the least (280 

m .') (Table 4.6.2). S x G interaction was also significant (P<0.05). The mid season 

drought reduced the AP by 40% in CSMG 84-1, ICG 476 and Tag 24 and while the 

reduction in AP was only 22% in ICGV 86031. The effect of betaine was not however, 

significant and S x B and G x S x B interactions were also not significant. G x B 

interaction was however significant (P<0.05) with CSMG 84-1 sharing no response to 

betaine treatment (B1 and B4 recorded 358 pegs m '2) whereas in TAG 24, there was a 

10% increase in AP with B4 treatment (Table 4 6.2). 

Subterranean Pegs (SP) (pegs m") 

Subterranean peg development was significant (P<0.01) affected due to drought. 

For example, while there were 1415 SP no. under irrigated control whereas in drought 

treatment there were only 510 pegs m". There was a significant genotypic variatioin 

(P<0.01) with TAG 24 recording 1701 SP no. m2 and TMVZNLM recorded only 485 

pegs mZ. S x G interaction was found to be significant (P<0.01). For example, CSMG 

84-1 and 1CG 476 had a 60% reduction in SP with an imposition of MSD and the 



decrease was only 51% in ICGV 86031. Betaine treatment resulted in a significant 

increase in SP (P<O.OS). Particularly in B4 treatment, there was a 30% increase in SP. S 

x B interaction was found to be significant with MSD resulting in reduction of SP by 

58% in B1, 69% in B2, 61% in B3, 65% in B4 respectively. G x B and G x S x B 

interactions were found to be not significant (Table 4.6.2). 

Total Pegs (TP) (pegs m-') 

Total pegs m " (TP) differed significantly (P<0.01) for stress levels. Where there 

were 2152 pegs m -' in irrigated conditions while MSD resulted in only 885 pegs m '2. 

Significant genotypic variation (P<0.01) was observed with TAG 24 having the greatest 

no. of TP (2633) and TMV2NLM having the least (790). S x G interaction was 

significant (P<0.01) with TAG 24 showing a 67% reduction in TP under MSD and the 

reduction in TP was only 46% in ICGV 86031. Effect of treatments were also differed 

significantly (P<0.05) with 8 4  treatment producing 30% more TP than that of B1 

treatment. S x B interaction was significant with drought treatment resulting in 60% 

reduction in TP, while in B2 and 8 3  treatments, the percentage reduction was 53 and 

57% respectively. G x B and G x S x B interactions were not significant. (Table 4.6.2). 
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Fig : 4.6 2 Subterranean pegs(SP), total pegs (TP) as ~nfluenced by betaine treatment 
sunder irrlgated and mid season drought cand'itlons in 5 groundnut genotypes, 
CsMG 84-(a), ICG 476(b), TA624 ( c ) ,  TMV 2 NLM (e) during kharif96. 



4.6.3 Crop Growth Rate (CGR) (g m -' day -I), Pod Growth Rate (PGR) 

(g m -' day 'I), and Partitioning (Part %) 

Crop Growth Rate (CGR) (g m -' day ") 

CGR was significantly affected due to drought (P<0.05). In irrigated conditions 

the mean CGR was 16.9 g m " day .' while in MSD conditions it was 7.3 g m .' day .' 
(Table 4.6.3). Genotypes differed significantly for CGR (P<O.OS). CSMG 84-1 recorded 

greatest CGR (17.7) and ICGV 86031 recorded the least (6.6). S x G interaction was 

significantly different (F'c0.05) with CSMG 84-1 showing 73% reduction in CGR under 

drought, while the % decrease was 54, 51, 62 and 25% in 1CG 476, TAG 24, ICGV 

86031 and TMV2NLM respectively. Betaine effects and other interactions were also not 

significant. 

Pod Growth Rate (PGR) (g rn -' d ") 

PGR was significantly (Pi0.01) reduced under MSD. However, genotypes 

differed significantly for PGR (p<0.05) with TAG 24 having the greatest PGR (6.2 g m " 

d 'I) and TMVZNLM having the least (1.8) S x G type interaction was significant 

(P<0.05). In TMVZNLM, the reduction in PGR due to MSD was 93% while in CSMG 

84-1 and ICGV 86031, the PGR reduced by 80%. However, in case of TAG 24, PGR 

reduced by only 40% due to drought. Betaine treatments did not show significant 

differences. (Table 4.6.3). 



T a b  : 4.6.3 Cmp gmrnh rate (CGR). pod gornh rste (PGR} and pmlioning percm(ags (pm q .S intklmlxd by belahe treaments unhr I-d md mid season 
drwght mndiUons during khrit  '96 

CGR (g m' d*') PGR (g mq day'') PART% 

81 B2 83 B4 B l  82 83 84 B1 82 83 B4 

CSUGW-1 IRR 278 271 278 289 6.8 7 3 7.0 7.6 024 0 27 0 25 0.26 

HSD 5.4 7 3 9.9 7.3 0.8 1.0 0 7  12 0.15 014 0.07 017 

1nem 16.6 17.2 10.9 18.1 38 41 3.0 4.4 023 0.24 0.20 024 

lCG476 IRR 129 139 11 6 11.9 7.2 55 46 5 1  0.56 0.40 040 0.43 

MSD 7.9 4 0 6 6  4.4 14 21 19 1 0  o 18 0.53 029 o n  

10.4 8.9 9.1 8.1 4.3 3.8 3.3 3.0 OA2 0.43 0.36 0.37 

TAG 24 IRR 23 2 21 1 245 246 6.5 9 6  9 6  6 7  028 046 039 0.27 

MSD 109 10.2 11.3 12.8 3 3  5.0 3.8 4.7 0 30 0.49 0.33 0.37 

me- 17.1 15.7 17.9 18.7 4.9 7.3 6.7 5.7 0.29 o . n  03 o.n 

ICGV86031 IRR 9.9 8.4 10 1 10.4 4 6  42 3 9  4.3 0.47 050 0.38 0 41 

MSD 3.3 2 5 46 4 0  0 6  0 9  0 6  05 0.18 037 013 014 

nnrsn 6.6 5.5 7.3 7 2  2.6 2.6 2.2 2.4 0.39 0 ~ 7  030 OM 

N V Z N L M  IRR 12.1 11.5 102 11 0 3.6 3 1  3 1  3 6  0 30 0 27 0.31 0.32 

A"dys#s ot varirnce 

SOU- 01 Y ~ O .  dl CGR PGR PART% 

UT (str- levds(S) 1 m NS 

ST (motypcr (GI 4 NS 

S x G  4 

S T  (Woke I d a )  (8) 3 N S N S  NS 

S x 8  3 

GXB 12 NS NS 

G l S x B  12 NS NS NS 



Partitioning % (Part %) 

Imposition of drought resulted in marginal reduction in part O h  from 0.51 in 

irrigated conditions to 0.45 under MSD conditions. There was a significant genotypic 

variation with TAG 24 having the greatest and TMV2NLM having the least (0.38) 

partitioning. S x G interaction was found to be significantly different (P<0.05). For 

example, the reduction in partitioning due to drought was 28 in TMV2NLM and 24% in 

lCGV 86031. However, in ICG 476, the partitioning was unaffected due to drought 

However, betaine treatments did not show any significant effects on part. (Table 4.6.3). 

4.6.4 Photosynthetc rate (Pn), Relative Water Content (RWC), Osmotic Potential 

(OP) and Light Interception (LI) 

Photosynthetic rate (Pn) (p rnol m -' sec -') 

Pn was significantly (P<0.01) influenced by drought. The mean Pn in irrigated 

conditions was about 16.2 while under MSD conditions, the Pn was 12 (p mol m '2 sec ' 

'). Genotypes however, did not differ significantly for Pn. S x G interaction was found 

to be significant with reduction of Pn in ICG 476 was 35% whereas in other genotypes 

the reduction was 25%. Effect of betaines and associated interactions were not 

significant (Table 4.6.4). 



Omotic Potential (OP) (milli osmoles) 

The osmotic potentials were significantly influenced by the drought. In irrigated 

treatment, the OP ranged From 282 in TMV2NLM to 376 in ICG 476 resulting in 

significant differences between genotypes. On average, ICGV 86031 recorded highest 

OP (324) and the least OP was recorded in TAG 24 (276). S x G interaction was found 

to be significant (P<O.OS). Effects of betaines and S x B interaction were not significant. 

Although there was some trend for an increase in OP under Betaine treatment for some 

genotypes (CSMG 84-1). The data was not conclusive enough in all the genotypes. The 

highest OP was recorded in B3 treatment in TMV2NLM genotype and the least was 

recorded in B1 treatment of TAG 24 (Table 4.6.4.). 

Relative Water Content (RWC) (%) 

The drought effects were significant for RWC with RWC being 94% under 

irrigated and 87% under MSD conditions. However, genotypes and betaine treatments 

did not show significant differences for RWC. For the S x B, G x B, S x G x B 

interactions were also not significant (Table 4.6.4). 

Light Interception (LI) (%) 

There was a significant reduction in LI due to drought. In irrigated conditions, the 

LI% was 80 while in MSD conditions it was only 67%. There were no differences for 



T d e  : 16.4  Pholsspthalic rate (Pn), oenwlls polenlid (OP), nlativc wmer content (RWC) and light Interceplion % (Ll%) u influenced by betaina 
tr.stmntr under hlgnled md mid xarw dmughl corn- al MAS durlq Wri t  'PC. 

Pn bmd m" sc6'j OP(mBlo0mola) R W Y 9  U (9 
81 82 83  84 81 82 8 3  84 6 1  82 83 84 8 1  82 83 84 

CSYG 84-1 IRR 12 7 13 7 14.7 13 2 289 265 356 376 95 4 95.6 94 7 98 3 75 76 82 86 
USD 120 112 11.4 11.0 245 312 287 363 871 880 871 862 71 69 70 68 
m e n  123 124 13.0 121 267 288 322 370 91.3 91.0 90.9 922 73 72.5 76 77 

-476 IRR 165 17.8 18 8 19 0 376 226 328 338 92 1 92 0 920 93 1 78 73 71 76 
MSD 12.3 120 11 4 11 0 389 354 270 392 86.9 87 1 853 88.0 63 64 65 65 
lnesl 14.4 14.9 15.1 15.0 382.5 290 299 365 89.5 89.6 88.6 90.6 70.5 68.5 68 70.5 

TAG24 IRR 143 17.4 17.7 143 241 208 294 249 924 91.2 91 7 90 1 84 82 72 87 
USD 120 13.0 120 110 214 357 235 317 856 862 862 87.3 68 66 68 55 
mean 13.2 15.2 14.8 127 277.5 283 265 283 89.0 88.7 89.0 88.7 76 74 70 76.5 

ICGV8W31 IRR 18.8 135 182 168 321 277 295 358 936 978 982 973 73 84 76 89 

USD 121 12.5 13 1 120 1 8  398 382 305 894 855 883 860 65 68 69 70 

lnsm 15.4 13.0 15.7 14.4 289.5 338 339 332 91.5 91.6 93.2 91.7 69 76 72.5 79.5 
N V 2 U  IRR 144 189 132 193 282 365 357 272 X.O 91 0 900 903 82 85 87 76 . - - . - . . . . 

YSD 12.0 130 122 135 322 251 318 255 863 865 906 88 1 67 69 70 69 

m e n  13.2 16.0 127 16.4 302 308 338 264 892 88.8 90.3 89.2 74.5 77 78.5 725  

Gmem 13.7 14.3 14.3 14.1 303.7 301 312 323 89.9 90.1 90.4 90.5 72.6 736 73 75.2 

v- 
sowee ot v r i a t i m  dl Pn OP RWC U 

MT ( m r  I w d s  (S) . .  
ST (genotyps (GI 4 N S  N s N S  
S x G  4 N S N S  
SST(beWnsIsvals) (6) 3 NS NS NS NS 
S x 8  3 NS ffi N S H S  
0 x 8  1 2 N S  N S W  
G r S r e  12 ffi NS N S N S  
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LI%. Betaine level differences were also not observed. S x B, G x B, G x S x B 

interactions were also not significant (Table 4.64). 

4. 7 ElTect of glycine betaine in the alleviation o f  mid season drought during 

Rabi 96- 97. 

Another field experiment was conducted during post rainy season of 96-97 to 

study the effect of glycine betaine spray (0, 3 and 6 kg ha.') (Bl, B2 and B3) on the 

alleviation of drought stress (mid season drought)(MSD) in groundnut genotypes (CSMG 

84-1, 1CG 476, TAG24, ICGV 86031 and TMV 2 NLM) Mid season drought spannins 

from 40 - 8ODAS was imposed by withholding water. 

4. 7. 1 Vegetative weights (Veg wt) (g m.'), pod dry weights (pod dry wt) (g m ') 

and harvest index 

Vegetative weights (Veg wt) (g m-') 

Shoot dry wts were found to be significantly different (P<0.01) between stress 

treatments. On an average, IRR treatment produced a shoot dry wt of 524 g m" and 

MSD had a shoot dry wt of 229 g m"( Table 4.7.1) Genotypes also were found to be 

significantly different (F'<0.05). ICG 476 recorded more shoot dry wt (558) while the 

least was observed iin ICGV 8603 1 (265). SxG interaction was found to be significant 

(P<0.05) where CSMG 84-1 had a 20% decrease in shoot dry wts with imposition of 

MSD while in other four genotypes it was nearly 60%. Veg weights differed 



significantly with betaine treatment (PC0.05) with B3 having a shoot dry wt of 443 g m.2 

while B1 treatment had only 393 g m'2 representing a positive significant effect of betaine 

treatments on shoot dry wts. SxB interaction was found to be not significantly different 

while GxB interaction was found to be significant. GxSxB interaction was not 

significant( Table 4.7.1). 

Pod dry weight (Pod dry wt) (g m-') 

TRR treatment is found to produce 159% more pod dry wt than that of MSD 

treatment. Genotypic variation was significant where ICG 476 was found to produce 

more pod dry wt (335) and the least was observed in TAG 24 (213). SxG interaction was 

found to be significant (P<0.05) where in TMV2NLM there is a 79% decrease in pod dry 

weights in MSD conditions and it is only 37% decrease in CSMG 84-1 Betaine levels, 

SxB, GxB and GxSxB interactions were not significant( Table 4.7.1). 

Hawest Index (HI) 

With an imposition of MSD there is a 10% increase in HI. CSMG 84-1 had a 

22% decrease in HI with an imposition of MSD (P<0.05). Where in other four genotypes 

the decrease was less than 10%. Betaine levels GxB, SxB and GxSxB interactions were 

not significant( Table 4.7.1). 



Table : 4. 7.1 Vegetative weight (veg wt), pod dry weights(pod dry wt), and harvest index as influenced by Detaine tretments under mid 
season drought during rabi 96-97. 

Veg * (g ma) dry wt. (g m') HI 
B l  82 63 61 62 83 61 82 63 

CSMG 844 MSD 330 387 338 198 174 179 0.6 0.45 0.53 
IRR 434 423 444 330 313 240 0.76 0.74 0.54 

mean 382 405 391 260 241 209 0.68 0.595 0.535 
K G  476 MSD 135.2 223.3 156.4 81 125 92 0.6 0.56 0.59 

IRR 510 457 707 321 270 445 0.63 0.59 0.63 
mean 510 457 707 314 263 431 0.62 0 . m  0.61 

TAG 24 MSD 223.3 224 156.4 134 125 91 0.6 0.56 0.58 
IRR 554 504 572 338 282 297 0.61 0.56 0.52 

mean 389 364 364 235 204 200 0.61 0.56 0.56 
lCGV 86031 Us0 235.7 195.2 234 153 109 138 0.65 0 56 0.59 

IRR 405 613 510 288 405 342 0.71 0.66 0.67 
mean 320 404 372 218 247 234 0.68 0.61 0.63 

TMV 2 N U #  MSD 135.7 240 221.4 76 115 144 0.56 0.48 0.65 
IRR 595 599 547 345 467 350 0.58 0.78 0.64 

mean 365 420 384 208 264 248 0.57 0.63 0.645 
Gmean 393 410 444 248 243 264 0.63 0.594 0.594 

S ~ M  + 26.77 + 23.35 + 0.01 
CYX + 12.6 f 25.8 + 21.9 

Analysis of variance 

Soume of variation df shootdry poddry HI 
wl wl 

MT (stress levels (S) 1 .. .. 
ST (genotypes (GI 4 NS 
S x G 4 .. 
SST (betaine levels) 2 NS 
(6) 
S x B 2 NS NS NS 
GXB 8 NS NS 
G x S x B  8 NS NS NS 



4.7.2 Reproductive development 

4. 7. 2 (a) Aerial pegs (AP) (pegs m"), Subterranean pegs (SP) (pegs m-') Total pegs 

(TP) (pegs m.'). 

Aerial pegs (AP) (pegs m-') 

IRR treatment was found to produce 343 pegs rn.' while MSD had only 283 pegs 

rn-2. Genotypes differed significantly for AP (P<0.05) ( Table 4.7.2(a)). Where ICGV 

8603 1 was found to produce more pegs m" (426) while TAG 24 had only 260 pegs rn.' 

SxG interaction was found to be significant where in TMVZNLM, CSMG 84-1, there 

was a 40% decrease in AP. While in other three genotypes, the differences were 

marginal. B3 treatment had 410 pegs m" Whereas 8 1  had only 235 pegs m'2 showing a 

significant (P<0.01) positive increase in AP with B2 and 8 3  treatment. SxB interaction 

was found to be significant where in B1 treatment, the percent decrease due to MSD was 

35 while in B2 treatment, it is 20 and in 8 3  treatment the difference was only 2%. GxB 

interaction was significant where in CSMG 84-1 there was a 150% increase in AP with 

B3 treatment while the other four genotypes the increase was 40-60%. GxSxB 

interaction was not significant ( Table 4.7.2(a)). 

Subterranean pegs (SP) (pegs m") 

IRR treatment was found to produce 532 pegs m" while MSD had only 396 pegs 

m". Genotypes differed significantly for SP (P<0.05) ( Table 4.7.2(a)). Where ICGV- 



86031 was found to produce more pegs m" (581) while TAG 24 had only 387 pegs m" 

SxG interaction was found to be significant (P<0.05) where in CSMG 84-1 and 

TMV2NLM there was a 50% decrease in SP while in other three genotypes, the 

differences were less than 20%. B2 treatment had 512 pegs m.2. Whereas B1 had only 

418 pegs m" showing a significant (P<0.01) positive increase in SP with 8 3  treatment 

SxB interaction was found to be significant where in Bl treatmnet, the percent decrease 

due to MSD was 34 while in 8 2  treatment, it is 38 and in B3 treatment the difference was 

only 25%. GxB interaction was significant where in CSMG 84-1 there was a 33% 

increase in SP with 8 3  treatment while the other four genotypes the increase was 20- 

25%. GxSxB interaction was not significant (Table 4.7 2(a)). 

Total pegs (TP) (pegs m") 

IRR treatment was found to produce 883 pegs m-' while MSD had only 612 pegs 

m". Genotypes differed significantly for TP (P<O.OS). Where ICGV 8603 1 was found to 

produce more pegs m'2 (1014) while CSMG 84-1 had only 647 pegs m". ( Table 4.7.2(a)) 

SxG interaction was found to be significant (P<0.05) where in CSMG 84-1 and 

TMV2NLM there was a 55% decrease in TP while in other three genotypes, the 

differences were less than 15%. B2 treatment had 788 pegs m" whereas B1 had only 

684 pegs m" showing a significant (P<0.01) positive increase in SP with B2 treatment. 

SxB interaction was found to be not significant. GxB interaction was significant where 

in TAG 24, there was a 24% increase in TP with B3 treatment while in the other four 

genotypes the increase was less than 20%. GxSxB interaction was not significant ( Table 

4.7.2(a)). 



Table :4.7.2 (a)Aerial pegs(AP) subterranean pegs(SP), and total pegs(TP) as influenced by betaine treatments under irrigated 
and mid season drought conditions at 60 DAS during rabi '96-'97. 

AP (peg no. m-') SP (peg no. ma) TP (peg no. ma) 

B1 82 83 B l  82 BJ B l  B2 B3 
CsMGW-1 USD 110 220 450 187 352 330 407 462 408 

IRR 294 269 554 488 662 597 782 931 893 
-n 201.9 244 502 338 507 464 595 696.3 650.3 

cG476 MSD 286 319 363 341 287 616 616 701 627 
IRR 243 208 388 441 721 309 683 929 696 

264.3 263 375.4 391 504 462 650 815 661.7 
TAG24 MSD 154 165 440 407 396 297 561 619 737 

IRR 157 297 351 314 459 455 470 756 807 
mean 155.4 231 395.7 360 427 376 516 687.3 771.9 

KGV8601 W D  264 506 504 415 616 440 944 715 1122 
IRR 361 376 548 614 667 738 975 1043 1285 

m e n  312.7 441 525.9 514 641 589 960 878.9 1204 
W Z N L M  W D  112 100 264 297 308 297 363 561 351 

IRR 366 508 238 678 657 563 1044 1165 800 
mean 239 304 251 488 482 430 704 863 576 

Gmeao 235 297 410 418 512 464 685 788 773 
Sen f 23.6 ? 49.9 f 54.0 
CV% + 19.7 + 21.5 t 32.8 

ST (genotypes ( ~ j  . 4 - 
S x G  4 
SST (betaine levels) (B) 2 
S x B  2 
G x B  8 
G x S x B  8 NS ' 



4.7.2 (b) Aerial peg, subterranean peg and total peg addition rates 

Aerial peg addition rate (peg m-' day") 

Effect of drought on AP addition rates was significantly different (P < 0 05) with 

AP addition rates being 4.65 pegs m " day " in IRR conditions while the rate being only 

2.22 in MSD conditions. Peg addition rates were significantly different (P < 0 05) for 

genotypes with ICGV 86031 having the greatest peg addition rate (4.75) and the least in 

CSMG 84-1 (1.76). S x G interaction was also significant with 90% reduction in 

TMV2NLM with an imposition of drought whereas in ICG 476 and ICGV 86031, 

reduction was less than 10%. AP addition rates showed significant (P < 0.05) differences 

with betaine levels wherein B3 treatment had an addition rate of 5.63 pegs m -2 day " 

while it is 2.8 in B2 and 1.88 in B1. S x B interaction was significant (P < 0.05) in B3 

treatment, the percent reduction due to drought was 63 while the other two genotypes it 

was 30-40%. G x B, G x S x B interactions were not significant 

Subterranean peg addition rate (pegs m .' day ") 

SP addition rates were significantly different for stress levels (P < 0.05), with an 

imposition of MSD, SP addition rates decreased from 5.25 in IRR conditions to 2 82 in 

MSD conditions. Genotypic variations was also observed with greatest peg addition rate 

of 5.35 in ICGV 86031 while the least (2.36) in ICG 476. S x G interaction was 

significant (P < 0.05) with TMV2NLM showing 85% reduction with MSD and the 

percent reduction was only 12 in ICG 476. SP addition rates were signiticantly different 



with betaine levels where B3 treatment recorded 6.22 pegs m " day " while it was only 

2.48 pegs m " day 'I in B1 treatment. S x B interaction was also significant (P < 0.05). in 

B3 treatment with an imposition of MSD, the SP addition rates decreased by 100°h. 

While in B1 and 82 treatments, the decrease was less than 30%. G x B interaction was 

also significant (P < 0.05) with ICGV 86031 showing the greatest increase in SP addition 

rates by 279% while it was 68% increase in TMV2NLM with B3 treatment. G x S x B 

interaction was not significant. 

Total peg additlon rate8 (pw m ' day -') 

The total peg additioh rate was 9.9 pegs m " day .' in IRR conditions while it was 

only 5.04 pegs m " day 'I under MSD conditions showing a significant difference (P < 

0.05) in TP addition rates between stress levels. Genotypic differences were also 

significant with ICGV 86031 having greatest TP addition rate of 10.01 pegs m " day " 

while the least rate was in ICG 476. S x G interaction was significant (P C 0.05) with 

TMV2NLM showing 88% reduction in TP addition rate under MSD while it was only 

12% in ICGV 86031. Betaine treatment increased the peg addition rates, B3 treatment 

had a peg addition rate of 11.85 while it was only 4.37 pegs m " day 'I in B1 treatment. S 

x B interaction was also significant where in B1 treatment there was a 37% decrease in 

TP addition rate with an imposition of MSD while it was only 27% in B2 treatment. G x 

B interaction was also significant (P < 0.05), betaine treatment could increase the TP 

addition rates by 344% in TAG 24 while the increase was only 73% in TMV2NL.M. (3 x 

S x B interaction was not significant. 



Table A. 7.2 @)Aerial peg addiion rate,subtemnern peg additbn n t e  and total peg addition rdte as influmeed by 
m i n e  bertments under iniaaed and mid season drcnuht conditions during nbi 98-97. - - -  ~ - - - 

AP addn rate SP addn nte TP sddn nt. 
(peg no. ma day') (peg no. m5 day') (peg no. m5 day') 

8 1  82  63 81 82 B3 B1 BZ B3 
CSUo84-1 IRR 213 2.25 4.85 2.73 2.85 5.45 4.88 5.10 10.30 

(S) 
(ganotuper (GI 4 -  

. - 
S x G  4 ' . . 
SST (betaim *wk) (8) 2 . . . 
SxB 2 . 
G x B  S N S ' "  
G r S x B  8 NS NS NS 



4.7.3 Crop growth rate (CGR) (g m" day -I), Pod growth rate (PGR) (g m" day 'I) 

and Partitioning %. (Part *A). 

Crop growth rate (CGR) (g rn" day 'I) 

CGR differed significantly (PC005) between stress levls. On an average IRR had 

a CGR of 19.5 (g ni2 day ") while MSD had a CGR of 11.8 (g m" day ") ( Table 4.7.3). 

Genotypic variation is also Been where in CSMG 84-1 recorded highest CGR (19.2) while 

the least waa observed in ICG 476 (11.8). S x G interaction (Pc0.05) was found to be 

significant where in ICG 476 had a 68% decreased in CGR with an imposition of MSD, 

ICGV 86031 had a 53% d&r&e while in TAG 24 and TMVZNLM the differences were 

marginal. Betaine treatments were found to increase the CGR by 25% and the 

differences were significant (P<O.O5). S x B, G x B, S x G x B interactions were not 

significant ( Table 4.7.3). 

Pod growth rate (PGR) (g ma day 'I) 

On an average, IRR treatment had a PGR of 13.2 whereas MSD had a PGR of 7.8. 

Genotypes had a significant difference (PC0.05) for PGR. The highest PGR was 

observed in CSMG 84-1 (13.3) and the lowest in ICGV 86031 (7.8) ( Table 4.7.3). SxG 

interaction was significant (PC0.05) where CSMG 84-1, ICOV 86031 and TMV2NL.M 

had a 38% decrease in PGR with an imposition of MSD while TAG 24 and ICG 476 had 

43% decrease with MSD. Betaine levels SxB, GxB, GxSxB interactions were not 

significant. 



Table :4. 7.3 Crop gmwth rate(CGR),pod gmwth rate (PGR), partitioning (PART%) as influenced by betaine tretments under 
mid season drought in raabi '96-'97. 

CGR (g m-' day-') PGR (g m-' day-') PART% 

61 82 83 Bl 82 83 61 82 63 
C S M G m i  MSD 16.0 16.2 17.7 9.9 9.7 11.0 0 720 0.510 0.620 

IRR 21.0 22 0 22.4 14.4 20.6 14.3 0.687 0 934 0.639 
mean 18.5 19.1 20.1 12.2 15.1 12.7 0.703 0.722 0.629 

ICG476 MSD 4 7  5.4 6.6 5.9 5.5 13.7 0.690 0.560 0720 
IRR 19.2 16.1 18.7 12.7 11.4 17.3 0.661 0.709 0925 

man 11.9 10.7 12.7 9.3 8.5 15.5 0.676 0.634 0.823 
TAG24 MSD 6.6 22.8 13.2 4.2 7.4 9.9 0634 0.324 0 760 

IRR 21.5 189 252 13.9 11 0 14.4 0.645 0.583 0 572 
mean 14.0 20.8 19.2 9.0 9.2 12.2 0.640 0.453 0.666 

ICGVEW31 MSD 6.7 6.0 14.7 4.7 4.7 7.4 0.686 0 793 0 670 
IRR 12.1 25.6 22.7 10.1 10 0 10.2 0 832 0 539 0 619 

mean 9.4 15.8 18.7 7.4 7.4 8.8 0.759 0.666 0.644 
TMVZNLM MSD 11.8 15.1 14.7 8.5 9.9 5.5 0.950 0457 0.667 

IRR 12.5 18.6 16.5 12.5 148 11.3 1064 0.816 0.770 
mean 11.8 15.1 14.7 10.5 12.3 8.4 1.007 0.637 0.718 

G m a n  13.1 16.3 17.1 9.66 10.5 11.5 0.7568 0.623 0.696 

Analysis of variance 
Source of variation df CGR PGR PART% 
MT (stress levels (S) I '  .. . . 
ST (genotypes (GI 4 NS 
S x G 4 .  NS 
SST (betaine levels) (6) 2 NS NS 
S x B 2 NS NS NS 
G x B  8 NS NS " 
G x S x B  8 NS NS NS 



Partitioning % (Part %) 

Part % decreased significantly with an imposition of MSD (p<O 05) On an 

average LRR had a Part % of 0.73 while MSD had a Part % of 0.65 ( Table 4 7 3 )  

Genotypes SxG, B, SxB interactions were not significant whereas GxB interaction was 

found to be significant. In ICG 476 there was a 20% increase in Part % with B3 

treatment While in other genotypes, the differences were marginal. GxSxB interaction 

was not significant. 

4.7.4 Net assimilation rate (NAR) (g m-2 day -I) ,  Leaf area duration (LAD) (days) 

Net assimilation rate (NAR) (g m"day ") 

Stress levels were found to be significantly different (P<0.05) for NAR IRR 

treatment was found to produce 9.7 g m" day" while MSD had only an NAR of 5 9 

(Table 4.7.4). Genotypic variation is not seen. SxG interaction wassignificant, CSMG 

84-1, ICGV 86031 and TMV2NLM had a 50% decrease in NAR with MSD treatment 

while in the other two genotypes, the decrease was less than 20%. Betaine levels were 

found to be significantly different (P<0.01), 8 2  treatment had an NAR of 8.5 and B1 had 

only 6.5 g m" daye'. SxB interaction was found to be significantly different, the 

decrease in NAR due to MSD was 48% in B1 treatment whereas it was only 32 to 39% in 

8 2  and B3 treatments respectively. G x B interaction was found to be significantly 

different, ICGV 8603 1 and TMVZNLM had a 60% increase in NAR due to B3 treatment 



Table : 4.7.4 Net assimilation rate(NAR), Leaf area duration(LAD) as Influenced by betalne 
treatments under Mld season drought during rabi '96-'97. 

NAR (g m' day") LAD (days) 

B1 B2 83  B1 B2 B3 

CSMG84.1 MSD 3.7 9.0 5.0 78.9 113.6 55.7 

IRR 10,2 8.6 10.6 95.0 1520 112.0 
mean 7.0 8.8 7.8 87.0 132.8 83.9 

ICG476 MSD 4,8 6.1 7.1 148.4 150.9 114.3 

IRR 7 , l  8 , l  6.1 101.0 107.0 87.0 

mean 6.0 7.1 6.6 124.7 128.9 100.7 

TAG24 MSD 5.Q 8.7 7.3 82.8 154.8 112.9 
IRR 7.7 5.0 11.2 78.0 157.0 134.0 

mean 6.8 5.9 9.2 80.4 155.9 123.5 

lcGV8BOJf MSD 4.5 6.7 6.8 56.8 79.4 94.9 

IRR 9.0 14.6 12.0 102.0 73.0 85 0 

mean 6.7 10.6 9.4 79.4 76.2 90.0 

TMVZNLM MSD 3,9 6,3 5.2 127.2 147.2 147.6 

Analysls of variance 

Source of varlatlon df NAR LAD 

MT (stress levels (S) 1 '  
ST (genotypes (G) 4 NS " 
S x G 4 ' 
SST (betaine levels) 2 NS * 
(B) 
S x B 2 " NS 

G x B 8 ' NS 
G x S x B  8 NS NS 



while in the other three genotypes, the increase was 25%. G x S x B interaction was not 

significant (Table 4.7.4). 

Leaf area duration (LAD) (days) 

LAD was found to be not significant with stress levels, while genotypes had a 

significant difference (P<0.05) with ICG 476 having LAD of 118 days while in ICGV 

8603 1 the LAD was 81. S x G interaction was found to be significant where in CSMG 

84-1 had a 31% decrease in NAR due to MSD while in the other four genotypes, the 

differences were marginal. Betaine treatments were found to be significantly different 

(P<0.01). B2 treatment had an LAD of 120 while BI had an LAD of only 97. S x B, G 

x B, G x S x B interactions were not significant (Table 4.7.4). 

4.7.5 Photosynthetic rates (Pn) (p mol m -' sec "), Relative water content (RWC) 

(YO), Osmotic Potential (yx) (milliosmoles), Light Interception (LI) (%) 

Photosynthetic rates (Pn) (p mol m -' see -') 

Photosynthetic rates differed significantly for stress levels(P<0.05) IRR treatment 

had on an average 19.5 k mol m -2 sec 'I while MSD had a Pn rate of 16.3 y mol m" set- 

'. Genotypes, S x G interaction were not significant. Betaine levels were found to be 

significant (P<0.05). On an average Bl  treatment had a Pn rate of 16.8 p mol m '' sec " 

while B2 and B3 treatments had 18.6 and 19.8 y mol m -' sec " respectively. S x B, G x 

B, G x S x B interactions were not significant (Table 4.7.5). 



Relative water content (RWC) (96) 

There were no significant differences in RWC for stress, genotypes, betaine S x 

G, G x B, S x B, G x S x B interactions. The RWC ranged from 77 - 90% in MSD 

treatment and 90 - 96% under IRR conditions (Table 4.7.5). 

Osmotic Potential (OP) 

OP differed significantly for stress levels(P<0.05). IRR treatment had a OP of 

318 milli osmoles whereas MSD had 367 milli osmoles. Genotypes had no significant 

difference S x G interaction was not significant. Betaine levels differed significantly 

(P<0.01). On an average B1 treatment had an OP of 414 while B2 had an OP of 31 1 and 

8 3  had an OP of 303 milli osmoles. S x B interaction found to be significant where in B1 

treatment, the decrease due to MSD was 13% whereas in 8 3  treatment the decrease was 

10%. 

G x S x B interactions were not significant (Table 4.7.5). 

Light interception (LI) (%) 

LI % differed significantly with stress levels(P<0.05). IRR had an L1 of 78% 

whereas MSD had only 68% LI. Genotypes, betaine levels did not differ significantly for 

LI. 

S x G, G x B, S x B, G x S x B interactions were not significant (Table 4.7.5). 



 able :4.7.5 Relative water content (RWC), photosynthetic rates (Pn ) osmotic potentials (OP),and light lnterception(LPA) as influenced by betaine 
treaments under mid season drought at IOODAS during rabi '96-'97. 

RWC (*A) Pn (p mol ma sec-') OP (milli osmoles) U(X) 
B1 82 83 B1 82 B3 B l  BZ 83 B l  B2 83 

CSMGBCI MSD 88 90 90 15.2 18.7 18.7 345 300 312 65 64 68 
IwC 90 90 96 19.9 21.5 22.8 327 256 245 72 74 77 
nrrn 89 90 93 19.9 21.5 22.8 336 278 278.5 68.5 69 72.5 

ICG476 MSD 77 79 88 19.9 20.5 23.7 399 287 259 54 67 65 
IRR 87 90 96 20.7 21.0 19.9 327 256 245 75 78 80 

mean 82 85 92 20.3 20.8 21.8 363 271.5 252 64.5 72.5 72.5 
TAG24 MSD 77 79 83 11.2 11 3 13.3 354 259 254 65 67 64 

IRR 87 94 93 17.4 19.9 19.8 399 245 286 77 79 72 
mean 82 87 88 14.3 15.6 16.5 377 252 270 71 73 68 

K;GV86031 USD 87 87 80 13.9 19.9 20.1 398 284 206 69 70 72 
IRR 88 97 90 17.0 17.4 22.8 352 214 263 74 83 88 

mean 87 92 85 15.4 18.6 21.4 375 249 234.5 71.5 76.5 80 
TMV2NLM MSD 89 87 88 9.9 14.5 14.5 716 589 548 76 78 82 

wR 90 93 95 15.7 19.3 19.1 523 421 412 79 88 87 
rneen 90 90 92 12.8 16.9 16.8 620 505 480 77.5 83 84.5 
uMan 86 89 90 16.5 18.7 19.9 414 311.1 303 70.6 74.8 75.5 
S a  f 19.7 + 2.9 f 34.7 + 13.9 
cv% f 30.2 f 19.8 f 20.0 f 25.0 



Table : 4.7.6 Total betaine content (TB) as influenced by betaine tratmenta under mid 
season drought during rabi'96-'97. 

TB (mM) 

B1 B2 63 
CSMG 84-1 MSD 12.2 74.5 77.8 

IRR 15.3 80.8 B3.5 
mean 13.7 77.7 85.6 

ICG 478 MSD 11.0 71.4 82.3 

IRR 9.9 69.4 83.0 

mean 10.5 70.4 82.6 
TAG 24 MSD 10.5 88.2 86.9 

IRR 9.5 55.8 70.5 

mean 10.0 72.5 78.7 

ICGV 86031 MSD 13.5 77.7 75.0 

IRR 10.3 60.0 92.2 

mean 11.9 68.8 83.6 
TMV 2 NLM MSD 8,l 51.3 82.1 

IRR 5.4 48.1 81.2 

moan 7.2 49.7 91.7 

Gmean 10.7 67.8 84.4 

SeM i 2.0 
c v %  t 23.7 

Source of df TB 
variation 
MT (stress levels (S) 1 NS 

ST (genotypes 4 NS 
101 

SST (betaine levels) (B) 

S x B 

G x B 
G x S x B  





4.7.6 Total betaine content (TB) (mM) 

Stress levels and genotypes did not differ significantly for TB. S x G interaction was 

also not significant whereas betaine levels differed significantly (P<0.01). With a spray 

of betaine, the TB increased from 10 mM in B1 to 84 mM in B3, showing a 740% 

increase in TB with 8 3  treatment. S x B, G x B, G x S x B interactions were not 

significant (Table 4.7.6). 

4.7.7 Correlations 

Total betaine content had a significant positive correlation (with CGR (0.464*), PGR 

(0.461*), NAR (0.702") and OP (0.582**) under irrigated conditions whereas with 

MSD, betaine content had no significant correlation with CGR, PGR and NAR whereas 

there was significant positive correlation between total betaine content and OP (0.657**) 

and RWC (0.661 **) 

4. 8 Effect of glycine betaine in the alleviation of end season drought (ESD) (80 - 
100DAS) during rabi '96-'97. 

A field experiment was conducted during rabi '96 - '97, with stress levels as main 

treatments, irrigated (IRR) and end season drought (ESD), genotypes as sub treatments 

(CSMG 84-1, ICG 476, TAG24, ICGV 86031 and TMV 2 NLM) and betaine spray as 

sub sub treatments (0, 3 and 6 kg ha.'). The end season drought was imposed from 



80 DAS to Final harvest by line source sprinkler irrigation system which develops a 

systematic gradient of soil moisture(different drought intensities). 

4. 8. 1 Shoot dry weights (shoot dry wt) (g m"), pod dry weights (pod dry wt) (g m. 

2, and harvest index 

Shoot dry weights (Shoot dry wt) (g m-') 

Shoot dry wts were found to be significantly different (P<0.01) between stress 

treatments. On an average, 67.54% water deficit recorded a shoot dry wt of 428 g m-2 

and 8.6% water deficit had a shoot dry wt of 931 g m'2 (Table 4.8.1). Genotypes also 

were found to be significantly different (P<O.OS). ICGV 8603 1 recorded more shoot dry 

wt (806) while the least was observed in CSMG 84-1 (471). S x G interaction was found 

to be significant (P<0.05) where ICG 476 had a 45% decrease in shoot dry wt with 

imposition of 67.5% WD while in other four genotypes it was nearly 58%. Betaine levels 

differed significantly (P<O.Ol) with B3 having a shoot dry wt of 717 g m'2 while B1 

treatment had only 593 g m" representing a positive significant effect of betaine 

treatments on shoot dry wts. S x B interaction was found to be significant, shoot dry 

weights decreased by 63% in Bl  while in B2 and B3 the decrease was 50%. G x B 

interaction was found to be significant, CSMG 84-1 had a 49% increase in shoot dry 

weights with B3 treatment while TAG 24 had a 36% increase due to B2 treatment. G x 

S x B interaction was not significant (Table 4.8.1). 



Pod dry weight (Pod dry wt) (g m") 

8.6% WD treatment is found to produce 93% more pod dry wt than that of 67.5% 

WD treatment. Genotypic variation was significant where TAG 24 was found to produce 

more pod dry wt (449) and the least was observed in CSMG 84-1 (381). S x G 

interaction was found to be significant (P<0.05) where in TMVZNLM there is a 53% 

decrease in pod dry weights in 67.5% WD conditions and it is 50% decrease in CSMG 

84-1. Betaine levels were found to be significantly different (P<O.OS) with B1 producing 

383 g m " while B3 treatment produced 442 g m ". SxB interaction was found to be 

significant. In B1 treatment, the decrease due to 67.5% WD was 61% while in B2 

treatment, the decrease was only 33%. GxB and GxSxB interactions were not significant 

(Table 4.8.1). 

Harvest Index (HI) 

With an imposition of 67.5% WD there is a 15% increase in HI Genotypic 

variation was observed, CSMG 84-1 recorded a H1 of 0.83 while in ICG 476 it was only 

0.57. S x G interaction was significant (P<0.05), CSMG 84-1 had a 30% decrease in HI 

with 67.5 % WD. Whereas it was less than 20% in all the other four genotypes. Betaine 

treatments were found to be not significantly different, GxB, SxB and GxSxB 

interactions were not significant (Table 4.8.1). 





4.8.2 (a) Aerial pegs (AP) (pegs m-'1, Subterranean pegs (SP) (pegs m-') Total pegs 

(TP) (pegs m") at SODAS. 

Aerial pegs (AP) (pegs m") 

Genotypes differed significantly for AP at 80 DAS, ICGV 8603 1 had 268 pegs m 

'2 whereas in TAG 24 there are 428 pegs m ". Betaine treatments also differed 

significantly (P<0.01), B3 treatment is able to produce 364 pegs rn " whereas BI 

treatment had only273 pegs m ' I .  G x B interaction was found to be significant(Tab1e 

4.8.2(a)) 

Subterranean pegs (SP) (pegs m-') 

Genotypes differed significantly for SP at 80 DAS, ICGV 8603 1 had 409 pegs m ' 

whereas in TAG 24 there are 672 pegs m -2. (Table 4.8.2(a)). Betaine treatments also 

differed significantly (P<0.01), B2 treatment is able to produce 633 pegs m '2 whereas 

B1 treatment had only 507 pegs m -'. G x B interaction was found to be significant. 

Total pegs (TP) (pegs m-') 

Genotypes differed significantly for TP at 80 DAS, lCGV 86031 had 677 pegs rn ' 

whereas in TAG 24 there are 1 I01 pegs m  ab able 4.8.2(a)). Betaine treatments also 

differed significantly (P<0.01), B2 treatment is able to produce 965 pegs m " whereas 

B1 treatment had only 791 pegs m ". G x B interaction was found to be significant. 



Table:4.8.2 (a)Aerlal pegs (AP), subterranean pegs(SP), and total pegs 
(TP)as influenced by betalne treatments at 80DAS under and season . . 

drought during rabl '96-'97. 
AP (peg no m.3 SP (peg no rn.3 TP(peg no m.3 

Geno 81  82 83 81 82 83 B l  82 83 
CSMG 84-1 294 269 295 488 662 597 782 931 893 

ICG 476 243 208 388 441 721 309 683 929 696 
ICGV86031 157 297 351 314 459 455 470 756 807 

TAG24 361 376 548 614 687 738 975 1043 1285 
TMVZNLM 311 508 238 678 657 563 1044 1165 800 

Gmean 273 332 364 507 633 532 791 966 898 
SeM + 54.8 i 50.4 i 85.3 
Cv% 28.6 15.0 27.4 

Analysis of varlance 
Source of df AP SP TP 
variation 
MT (genotypes 4 .* " *. 
10) 
$ST (betalne levels) (8) 2 " '* 
G x 8 8 



h g  : 4.8.2 Subterranean pegs and I otai pegs as lntluencw by betalne treatments at I 

8ODAS before the imposition of end season drought in 5 groundnut genotypes, CSMG 84- 
l(a), ICG476(b),lCGV 86031 (c). TAG24(d), TMV2NLM(e). 



4. 8.2 (b) Aerial peg, (pegs m-' day"), Subterranean peg (pegs m" day") Total peg 

(pegs m" day.') addition rates. 

Aerial peg addition rate (pegs rn " day 'I) 

AP addition rates were significantly different with stress levels where 67.5% WD 

level could record an AP addition rate of 2.92 pegs m '2 day " while 8.65% WD level had 

5.35 pegs m .' day ". Genotypic variation was also significant where in ICGV 8603 1,  the 

AP addition rate was 5.45 while the least was observed in CSMG 84-1 (2.45 pegs m-2 

day "). S x G interaction is found to be significant. TMV2NLM had a 84% reduction 

due to end season drought, the reduction was only 12% in ICG 476. AP addition rates for 

betaine levels were significant with B3 treatment, the AP addition rates increased from 

2.88 (Bl) to 6.62. S x B interaction was also significant. The percent reduction due to 

ESD was 57 in B3 treatment, while it was 29% in B1 and B2 treatments. G x B 

interaction was significant, with betaine treatment the AP addition rates increased by 

224% in TAG 24 while it was 62% in TMV2NLM. G x S x B interaction was not 

significant. 

Subterranean peg addition rate (pegs m "day 'I) 

SP addition rates were significantly different with stress levels where 67.5% WD 

level could record an SP addition rate of 3.53 pegs m '2 day " while 8.65% WD level had 

5.89 pegs m " day ". Genotypic variation was also significant where in ICG 476, the SP 

addition rate was 6.06 while the least was observed in CSMG 84-1 (3.06 pegs m " day"). 



S x G interaction is found to be significant. TMVZNLM had a 78% reduction due to end 

season drought, the reduction was only 10% in ICG 476. SP addition rates for betaine 

levels were significant with B3 treatment, the SP addition rates increased from 2.58 (Bl) 

to 7.13 pegs m -' day ". S x B interaction was also significant. The percent reduction 

due to ESD was 52 in B3 treatment, while it was less than 30% in B1 and B2 treatments. 

G x B interaction was significant, with betaine treatment the SP addition rates increased 

by 3 15% in TAG 24 while it was 89% in TMVZNLM. G x S x B interaction was not 

significant. 

Total peg addition rate (pegs m day .') 

TP addition rates were significantly different with stress levels where 67.5% WD 

level could record an TP addition rate of 5.74 pegs m -Z day 'I while 8.65% WD level had 

10.59 pegs m '' day 'I. Genotypic variation was also significant where in ICGV 86031, 

the TP addition rate was 10.8 while the least was observed in CSMG 84-1 (4.81 pegs m " 

day 'I). S x G interaction is found to be significant. TMVZNLM had a 84% reduction 

due to end season drought, the reduction was only 11% in ICG 476. TP addition rates for 

betaine levels were significant with B3 treatment, the TP addition rates increased from 

5.36 (Bl) to 12.84 pegs m '' day 'I. S x B interaction was also significant. The percent 

reduction due to ESD was 58 in B3 treatment, while it was less than 30% in B1 and B2 

treatments. G x B interaction was significant, with betaine treatment the TP addition 

rates increased by 315% in TAG 24 while it was 89% in TMVPNLM. G x S x B 

interaction was not significant. 



Table :4. 8. 2 (b)Aerial addition rat~~subterranean peg addition rate and t ~ l a l  peg addiiion rate as 
influenced by betaine treatments under irrigated and end season dmught conditions during rabi '96-'97. 

AP addn rate SP addn rate TP addn rate 
WD% 61  82 63 61  82 83 81 82 83 

CSff iWI  8.65 3.13 2.35 5.84 2.83 3.86 5.43 5.85 5.20 11.29 
39.9 1.27 0.29 1.84 0.97 1.80 2.46 2.14 1.08 3.29 
67.5 1.18 0.19 1.75 0.87 1.70 2.36 2.04 0.98 3.19 
mean 1.86 0.94 3.14 1.56 2-45 3.42 3.35 2A2 5.93 

lCG476 8.65 2.47 2.42 8.99 2.17 3.93 9.61 4.54 5.34 17.59 
39.9 2.08 3.98 2.97 1.78 5.49 3.59 3.76 8.45 5.55 
67.5 1.99 3.88 2.88 1.69 5.39 349 3.67 8.35 5.45 
m-n 2.18 3.42 4.95 1.88 4.93 5.56 3.99 7.38 9.53 

TAG24 8.65 2.92 2.85 11.59 2.62 4.36 12.21 5.44 6.20 22.79 
39.9 4.12 3.67 7.54 3.82 5.18 8.15 7.83 7.85 14.68 
676 4.02 3.58 7.44 3.72 5.09 8.05 7.73 7.75 14.58 
mean 3.69 3.37 8.86 3.39 4.88 9.47 7.00 7.26 17.35 

ICGV86031 8.65 1-12 1.30 8.49 0.82 2.81 9.11 1.84 3.10 16.59 
39.9 2.96 3.89 4.76 2.66 5.40 5.38 5.52 8.29 9.13 
67.5 2.87 3.80 4.67 2.57 5.30 528 5.43 8.19 9.03 
men 2.32 3.00 5.97 2.02 4.51 6.59 4.26 6.52 11.59 

TW2Ni.M 8.65 7.27 8.05 11.39 6.97 9.56 12.01 14.14 16.60 22.39 
39.9 1.47 0.17 2.75 1.16 1.68 3.37 2.53 0.84 5.11 
67.5 1.37 0.07 2.65 1.07 1.58 3.27 2.43 0.74 5.01 

- - 

CVX f 20.2 f 17.3 
Analysis of variance 

Source of variation df AP SP TP 
MT (stress levels (S) 1 
ST (genolypes (GI 4 
S x G  4 
SST (betaine levels) (8) 2 
S x 8  2 
G x 8 8 .. 
G x S x 8  8 NS NS NS 



4. 8. 3 Crop growth rate (CGR) (g m-' day 'I), Pod growth rate (PGR) (g m" day -I) 

and Partitioning %. (Part %). 

Crop growth rate (CGR) (g m" day ") 

Stress levels differed significantly (P<005) for CGR. On an average 8.6% WD 

had a CGR of 20 (g m-' day ") while 67.5% WD had a CGR of 1 1  (g m" day ") (Table 

4.8.3). Genotypic variation is not seen. SxG interaction (P<O.OS) was found to be 

signiticant where in CSMG 84-1 had a 67% decrease in CGR with an imposition of 

67.5% WD, TMVZNLM had only 14% decrease. Betaine treatments were found to 

increase the CGR by 20% and the differences were significant (P<O.OS). SxB interaction 

was significant, in B1 treatment, the decrease due to water deficit was 40% while in B2 

treatment, the decrease was 36%. GxB interaction was significant, CSMG 84-1 had a 

50% increase in CGR due to B3 treatment whereas it was only 18% in TAG 24. GxSxB 

interactions were not significant (Table 4.8.3). 

Pod growth rate (PGR) (g m-' day ") 

On an average, 8.6% WD treatment had a PGR of 12 whereas 67.5% WD had a 

PGR of 8. Genotypes had no significant difference (Table 4.8.3). SxG interaction was 

not significant. Betaine levels were found to be significantly different (P<0.05), B3 had 

a PGR of 12 whereas it was only 9 in B1 treatment. SxB was significant, in B1 

treatment, the decrease due to water deficit was 49% while in BZ and B3 treatments it 

was less than 25%. GxB, GxSxB interactions were not significant (Table 4.8.3). 



Table:4.8.3 Crop growth rate (CGR), pod growth rate (PGR) and partitioning X (part%) as influenced 
by betaine treatments under end season drought during rabi 96-97. 

CGR (g m2day') PGR (g m.'dayl) part % 

WD'A 81  82 83 81  82 83 81  82 83  
CSMG 84-1 8.65 21 0 29.7 22.4 14.4 20.6 14.3 0.69 0.69 0.64 

39.9 
67.5 

mean 
ICG476 8.65 

39.9 
67.5 

mean 
ICGV86031 8.65 

39.9 
67.5 

mean 
TAG24 8.65 

39.9 
67.5 

mean 
W Z N L M  8.65 

39.9 
675 

mean 
Gmean 

SeM 
CVX k 19.7 ? 20.4 k 22.2 

Analysis of  variance 
Soume of variation df CGR PGR part% 
MT (stress levels (SI 2 
ST (genotypes ( ~ j  . 4 NS 
S x G 8 

.* 
NS : NS 

SST (betaine levels) (8) 2 .. 
S x B 4 .. NS 
G x B  8 
G x S x B  16 NS NS NS 



1 
B? 

A 03 
Linear (81) 
Llneai 1@2) 

-ilnfai (I331 

- -~ -. . 

f l ~  4 8 3(a) Crop growth rate (CGR) as ~niluenced by betairre tl&Iient~ uiidel end season dloul 
dur~ng rah~  '96 '97 in 5 groundnut genotypes, CSMG 84-?(a), ICG476(b). iCGV86031(c ) .  

TAG24(d)and TMVZNLM(e) 



- 20 0 
X 

1 5 0  
E 
Cn 100 

B 2 ..0 - 
iU 

5 0 0  
JZ 

5 
b t ro  
g 4 0  

a 1 2 0  

0 LO 40 60 80 
Water deficit % 

. .. . . . ~ ~  ~- . 
4 8 3(b) Pod growth rate (PGR) as ~nliuenced by betaine trcal~netits iriidei end seas 
drought during labi '96-'97 in 5 grouiidiiul gellotypes, CSMG 84-l(a), lCG476(b), 

ICGV86031 (c ) rAG24(d)and TMVZNLM(e) 



Partitioning % (Part %) 

Part % decreased significantly with an imposition of 67.5% WD (p<0.05). On an 

average 8.6% WD had a Part % of 0.69 while 67.5% WD had a Part % of 0.67. 

Genotypes differed significantly for Part % with ICG 476 recording the highest Part % 

(0.77) whereas the lowest was in TAG 24 (0.65). SxG interaction was also found to be 

significantly different, in TAG 24 the decrease due to water deficit was 52% while in the 

other four genotypes, the decrease was less than 30%. Betaine levels were also found to 

be significantly different (P<0.01), B1 had a Part % of 0.67 whereas it was 0.77 in 8 3  

treatment. SxB, G x B, G x S x B interactions were not significant (Table 4.8.3). 

4.8.4 Net assimilation rate (NAR) (g m"day 'I), Leaf area duration (LAD) (days) 

Net assimilation rate (NAR) (g m"day -') 

Stress levels were found to be significantly different (P<0.05). 8.6% WD 

treatment was found to produce 9.4 g m" day" while 67.5% WD had only an NAR of 5.4 

(Table 4.8.4). Genotypic variation is not seen. SxG interaction was not significant. 

Betaine levels were found to be significantly different (P<0.01), B2 treatment had an 

NAR of 9.1 and BI had only 7.1 g m" day". SxB interaction was found to be 

significantly different, the decrease in NAR due to 67.5% WD was 52% in B1 treatment 

whereas it was only 29 to 45% in B2 and B3 treatments respectively. G x B interaction 

was found to be significantly different, ICG 476 had a 88% increase in NAR due to B3 



Table:4.8.4 Net assimilation rate (NAR) and leaf area duralon 
(LAD) as Influenced by betalne treatments under end season 

drought during rabi '96-'97. 
NAR (g mZday-') LAD (days) 

WD% B1 6 2  83 B l  B2 B3 
CSMG 84-1 8.65 10.2 8.6 10.6 95 152 112 

39.9 7.4 7.3 7.2 73 121 90 
67.5 4.8 4.4 4.8 61 109 78 

mean 6.1 7.9 8.0 78 127 93 
ICG476 8.65 7 1 8.1 6.1 101 

39.9 6.3 12.8 18.8 98 
67.5 2.4 8.8 5.2 89 

mean 5.3 0.9 10.0 98 
ICGV 86031 8.85 7.7 6.0 11.2 78 

39.9 7.8 12.1 17.0 108 
67.6 5.5 7.0 4.1 109 

mean 7.0 8.0 10.8 98 
TAG24 8.65 9.0 14.6 12.0 102 

39.9 8.3 1 0 .  13.5 101 
67.5 2.8 8.0 6.0 91 

mean 6.7 10.9 0 98 
TMVPNLM 8.65 10.9 12.6 8.4 80 

39.0 11.7 12.1 7.9 69 
67.5 6.1 6.3 6.3 53 

mean 9.6 10.3 7.5 67 84 107 
Gmean 6.9 9.4 9.0 87 100 93 
SeM + 1.31 * 15.9 
CV% + 22.8 + 20.6 

Analysis of 
variance 

Source of dt NAR U D  
variation 
MT (stress levels (S) 2 

ST (genotyp*~ (Q) 4 NS NS 
S  x  Q  8 N  
SST (betalne levmls) (6) 2 
S x B  4 

Q X  8 6 
Q x S x B  16 NS 
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treatment while in the other three genotypes, the increase was 30 - 60%. G x S x B 

interaction was not significant. 

Leaf area duration (LAD) (days) 

Stress levels were found to be significant, with an increase in water deficit there 

was a 25% decrease in LAD. Genotypes had no significant difference (Table 4.8.4). S x 

G interaction was found to be significant where in TMVZNLM had a 36% decrease in 

NAR due to 67.5% WD while in the other four genotypes, the decresae was 20- 25%. 

Betaine treatments were found to be significantly different (P<O 01). B2 treatment had 

an LAD of 100 while B1 had an LAD of only 87. S x B interaction was significant, G x 

B interaction was also significant, CSMG 84-1 had a 67% increase in LAD due to B3 

treatment whereas in the other 4 genotypes the % increase due to B3 treatment was 25%. 

G x S x B interactions were not significant. 

4.8.5 Photosynthetic rates (Pn) (y mol m " sec -I), Relative water content (RWC) 

(%), Osmotic Potential (vx) (milliosrnoles), Light Interception (LI) (%) 

Photosynthetic rates (Pn) (p mol m -' see ") 

Stress levels differed significantly for photosynthetic rates (P<0.05) 8.6% WD 

treatment had on an average 18.6 p mol m " sec -' while 67.5% WD had a Pn rate of 14.7 

y mol m '' sec ". Genotypes, S x G interaction were not significant (Table 4.8.5). 

Betaine levels were found to be significant (P<O.OS). On an average B1 treatment had a 



Pn rate of 15.9 p mol m " sec " while 92 and 93 treatments had 17.5 and 18.4 p mol m '' 
sec " respectively. S x 9, G x B, G x S x B interactions were not significant. 

Relative water content (RWC) (%) 

There were significant differences in RWC for stress levels, the RWC decreased 

from 92% to 67% with an increase in the water deficit (Table 4.8.5) Genotypes, S x G 

interaction were not significant Betaine levels were found to be significantly different 

(P<0.05), on an average the B l  treatment had an RWC of 75%, while it was 86 and 84% 

in 92 and b3 respectiely. G x B interaction was significant, whereas G x S x B interaction 

was not significant. 

Osmotic Potential (ylx) (milli osmoles) 

Stress levels did not differ significantly for OP (Table 4.8.5). Genotypes had 

significant difference, ICGV 86031 recorded a OP of 290 milliosmoles whereas OP was 

358 in ICG 476. S x G interaction was significant. Betaine levels differed significantly 

(P<0.01). On an average B1 treatment had an OP of 370 while 92 had an OP of 274 and 

B3 had an OP of 287 milli osmoles. S x B interaction found to be significant where in B1 

treatment, the decrease due to 67.5% WD was 5% whereas in 93 treatment the decrease 

was 0%. G x S x B interactions were not significant. 



Table: 4. 8. 5 Total Betalne content(T8) as Influenced by Betaine 
Treatments under end season drought conditions at 100 DAS during rabl 

'96-'97. 
TB (mM) 

WD% B l  8 2  83 
CSMG 84-1 8.65 15.3 80.9 93.5 

39.9 33.2 79.1 86.6 
67.6 23.1 72.2 90. I 

mean 23.9 77.4 90.1 
ICG476 8.66 9.9 69.4 83.0 

39.9 13.6 74.0 87.9 
67.5 13.9 76.9 90.0 

mean 12.5 73.4 86.9 
ICGV 86031 8.85 9.5 55.8 70.5 

39.9 13.5 54.2 98.5 
67.5 11.2 65.1 91.6 

mean 11.4 58.4 86.9 
TAG24 8.65 10.3 60.0 92.2 

39.9 16.1 65.8 94.8 
67.5 15.5 65.7 96.3 

mean 14.0 63.8 94.4 
TMV2NLM 8.85 5.4 48.1 91.2 

39.9 12.9 57.7 93.3 
87.5 8.9 48.1 91.8 

mean 9.1 61.3 92.1 
Gmean 14.2 64.9 90.1 

SeM f 2.44 
CV% k14.60 

Analysls of variance 

Source of variation df TB 
MT (stress levels (S) 2 NS 
ST igenotypes (G) 4 NS 
S x G 8 NS 
SST (betalne levels) 2 
(6) 
8 x B 4 NS 
G x B  8 NS 
G x S x B  16 NS 







Light interception (LI) (%) 

Stress levels differed significantly in LI % (P<O.OS) 8.6% WD had an L1 of 58% 

whereas 67.5% WD had only 54% LI. Genotypes, betaine levels did not differ 

significantly for LI. S x G, G x 9, S x B, G x S x B interactions were not significant 

(Table 4.8.5). 

4.8.6 Total betaine content (TB) (mM) 

Stress levels and genotypes did not differ significantly for TB. S x G interaction 

was also not significant whereas betaine levels differed significantly (P<0.01) (Table 

4.8.6). With a spray of betaiko, the TB increased From 14 mM in B1 to 90 mM in 83, 

showing a 542% increase in TB with B3 treatment. S x 9 ,  G x 9 ,  G x S x B interactions 

were not significant. 

4.8.7 Correlation coeflicients 

Correlations of total betaine content with all the parameters were studied At 

8.65% water deficit, there was a significant positive correlation between total betaine 

content and RWC (0.79Zm*), OP (0.573*), NAR (0.768**) and CGR (0.667"). There 

was a significant negative correlation between total betaine content and partitioning %. 

At 39.9%, a significant positive correlation was observed between total betaine content 

and CGR (0.456') and PGR (0.621**), a significant negative correlation was there 

between total betaine content and OP (-0.503"). At 67.5% water deficit, there was a 

significant positive correlation between total betaine content and relative water content 

(0.727**), NAR (0.455*), PGR (0.577*). Whereas, there was a significant negative 

correlation between total betaine content and osmotic potential (-0.492*). 



Table 4.8.7 : Correlation coefficients 

8.65% 39.9% 67.5% 

TB : CGR 0.792** 0.212Ns 0.727** 

TB : PGR 0.573** -0.503* -0.492' 

TI3 : Partition 0.768** 0.352N' 0.455* 

TB : NAR 0.667** 0.456* 0.262N" 

TB : LAD 0.022NS 0.621 * *  0.577* 

TI3 : Pn -0.473* 0.222NS -0.012NS 
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CHAPTER V 

DISCUSSION 

Legumes are the important source of dietary proteins and fat in most of the semi 

arid tropical (SAT) countries. In developing countries the ever increasing demand for 

cereal grain mitigates against the use of grain legumes in better endowed agricultural 

lands and often relegates them to less favourable, usually rainfed environment (Saxena 

el al., 1993). Many of the biotic and abiotic stresses faced by grain legumes (Johansen 

et al, 1994) contribute to the large yield gap between potential yields and realized yields 

(Suhha Rao et ul., 1995). Major abiotic stresses that limit the productivity of legumes in 

SAT are drought, salinity and high temperature. Among the grain legumes, groundnut is 

the major oilseed and cash crop of SAT and about 67% of global groundnut production 

comes from rainfed cultivation (Gibbons, 1980). The yield of groundnut crop is lower 

and erratic (900 kg ha -') mainly due to drought, diseases and pests. Drought remains as 

one dominant abiotic factor affecting groundnut production in India. The drought is often 

associated with high temperatures. 

In India, salinity is also a major factor limiting the crop production. About 10% 

of the total cultivable soils in India suffer from salinity disorders as a result of heavy 

irrigation and poor drainage. It is common to see large patches of white crust of salt on 

the surface of the clayey soils containing sodium chloride and other salts in Haryana, 

Punjab, Rajasthan, and Western U. P. 

Various agronomic and genetic management approaches have been studied to 

alleviate the complex abiotic factor such as drought (Subba Rao er al., 1995). Drought is 



a complex phenomenon which involves interaction of plant with environment variables 

such as temperature and also soil variables such as water and nutrition. The crop starts 

experiencing water deficit when the roots are unable to supply water to meet the 

environmental demand. However, environmental factors such as high temperature can 

accentuate the effect of drought through manipulating stomatal movement. For example. 

even in case of roots being able to access water from deeper soil profile and the high 

VPD can affect stomatal movement resulting in closure of stomata. thus leading to a 

build up of high temperature in the leaf. Even though, supplementary irrigation is an 

efficient production practice to alleviate water deficit, availability of this resource is 

scarce and likely to be more and more limiting in future. Hence alternate agronomic and 

genetic management approaches are being investigated to mitigate effects of drought on 

crop production. However adoption of these technologies depend on farmer's perception 

and his economic resource. Hence, development of seed based technologies with 

mechanisms to toleratelresist major abiotic stress factors will be long lasting and 

sustainable. 

Although extensive work was done on various biochemicals and physiological 

traits contributing to drought has been done, the utility of these in crop improvement 

programs is limiting. So far. At ICRISAT centre, physiological investigations on the 

effects of drought on groundnut has been extensively investigated which led to 

development of simple, rapid and efficient tools to assess genotypic variability for the 

traits contributing to superior performance of genotypes under water deficit conditions 

(Nageswara Rao et a!., 1992). It is only recently, methodologies for utilising these as 

indirect selection tools in breeding programs have started emerging (Wright ef al., 1996) 



In addition to the above pursuits, it is necessary to investigate other management 

tools to alleviate deletorious effects of environmental factors such as drought, heat and 

salinity in groundnuts. 

Glycine betaine is a quaternary ammonium compound, naturally occurring in 

many halophytes and in cultivated plants, although several crop species cannot synthesize 

this compound. The glycine betaine accumulation has been implicated with osmotic 

adjustment in many crops (Robinson and Jones. 1986; Matoh et a/. 1987; Rhodes and 

Hanson, 1993). In addition to this glycine betaine was also shown to be playing a major 

role as a "protectant" for protein and membrane structures from high concentrations of 

Na' and C1' (Hanson eta/,  1994). Several studies have shown significant yield increase 

with exogenous application of glycine betaine in green house and field grown crops such 

as tomato (Makela, 1998) tobacco (Agboma er ul., 1996) cotton (Naidu er a/. .  1995). 

Recently, biosynthetic pathway of glycine betaine has become a target for genetic 

engineering approach to enhance the stress tolerance (McCue and Hanson, 1990; 

Rathinasabhapathi el a!.. 1994; Holmstrom et ul., 1994). However there is no 

information on production of glycine betaine by groundnuts to our knowledge, although 

only one study by Muthukumaraswamy and Paneerselvam, (1 997) indicated the ability of 

groundnuts to produce glycine betaine when fungicide - Triademefon was applied, other 

than this, the author is unaware of any particular study on production of betaines and their 

role in combating abiotic stresses in Groundnut. As the synthesis of organic solutes such 

as glycine betaine is bioenergetically costly, exogenous application of this compound has 

been suggested as an alternative approach to enrich the tissue with betaines to alleviate 

environmental stress effects (Makela, 1998). 



The present investigation reports the effects of exogenous application of glycine 

betaine on sensitivity of selected groundnut genotypes to three major environmental 

stress factors i.e., drought, heat and salinity. Experiments have been conducted in three 

phases: 

( a ) To investigate the effects of betaine on tolerance of germinating seedlings. 

( b ) Effects of betaine on isolated plants growing in pots subjected to drought, 

heat and salinity. 

( c ) Effects of betaines on tolerance of genotypes to simulated drought under 

field conditions. 

(a) Effects of betaine on sensitivity of germinating seedlings to heat and salinity 

stress conditions. 

High temperature is one of the major abiotic constraints limiting the production of 

legume crops such as groundnut. Temperatures above 23' C have shown to slow down 

the pod growth and development (Dreyer, 1980). Several studies have shown that 

optimum temperature range for germination of groundnut was 21-30' C. The rate of 

growth was linearly reduced with increase in temperature beyond 32' C, thus high soil 

temperature (> 30' C) during the seed germination phase will be deletorious to 

groundnut. 

Under normal circumstances, there will be slow and gradual increase in the 

temperatures until it reaches maximum during the midday followed by reduction, thus 

dynamic diurnal rhythm offers adaptive mechanism to emerging seedlings to combat high 



temperature stresses. Experiments conducted with seedling systems have clearly shown 

that heat induction treatments resulted in improving adaptation of the growing seedlings 

to high temperature stress. In the seedlings with heat induction treatments (HI) growth of 

roots and shoot were greater by 157 and 44 % respectively than the non induced 

seedlings (Table 4.1.1). The inhibitory effect of NI  treatments could be due to various 

physical (desiccation) and physiological reasons. The delecterious effects of high 

temperature stress on metabolism have been described in detail by Sutcliffe, (1977) and 

Lawlor, (1979). High temperatures may cause metabolic injury by either direct ways 

(desiccation) or indirectly by influencing the sequence of metabolic reactions resulting in 

imbalance in natural metabolic pathways. Temperatures above 31' C have been shown to 

enhance the rates of respiration in several crop plants. Prolonged exposure to high 

temperature can lead to thermal death. It was apparent that glycine betaine treatment 

with 25 mM or 50 mM concentrations resulted in a significant increase in the recovery 

growth of roots even under non induced treatments. The synergetic effects of HI and 

betaine treatments were also apparent in these experiments. These experiments also have 

shown that higher concentration (100 mM) of betaine was inhibitory suggesting 

specificity of betaine concentration in the tissues to result in positive growth, The 

beneficial effects of betaine could be ascribed to various reasons such as protection to 

proteins an their functions and in inducing new proteins (heat shock) which offer 

defensive mechanisms to combat heat stress. 

In the present study, effect of heat stress on possible changes in protein 

metabolism has been investigated using gel electrophoresis techniques. As shown in the 

figures 4.l(a) and 4.2.1 (a), the betaine treatments resulted in quantitative as well as 



qualitative changes in protein banding patterns. Nature of proteins produced consequent 

to the heat and betaine treatments under heat and betaine interaction has been described 

in detail in results chapter 4.1. In summary. HI treatment alone produced 2 additional 

bands of proteins with molecular weights of and 85 and 54.5 kDa. Betainc treatment 

under N1 conditions resulted in production of 4 additional bands which included high and 

low molecular weight proteins (76.4. 60.6, 54.6 and 16.5 kDa). Combination of B Z ~  + HI 

compared to B" + HI produced 4 additional bands which are of siniilar nature to those 

produced with BZS + NI treatment. BlS + HI treatment has produced 2 additional bands 

(35.6 and 32.4 kDa) which are of low molecular weight and distinctly different from 

those produced under B2j + NI. 

Several studies have shown the production of heat shock proteins (HSPs) and 

implicated these as molecular mechanisms to enhance adaptation of the tissues to high 

temperature stress (Ashwni el ul., 1997). Several HSPs were identified with various 

molecular weights in different plants. Rice seedlings exposed to high and low 

temperatures, salinity and water stress produced HSP'S of 87 and 85 kDa collectively 

referred as stress associated proteins (SAP 90). (Ashwani et al., 1997), HSP 104 plays a 

crucial role in the development of thennotolerance in yeast cells and the same protein 

accumulated in rice seedlings in response to heat stress. 

There was no information on the influence of betaine on the protein metabolism. 

Results from the present study indicate production of a combination of high and low 

molecular weight proteins by B2$ enrichment, whereas the heat induction apparently 

supported production of only high molecular weight proteins. These results indicate that 

betaine might be having a metbolic role by producing HSP's, these results further 



substantiate from the study in which the effect of betaines was compared with other 

osmotically active substances such as sucrose (Plate :8) to examine if the observed 

changes in protein metabolism are specific to betaine alone or they could be induced by 

other osmoregulants. It was apparent that the effects of sucrose on root growh werc not 

as significant as they were with betaines. The results from the gel eelctrophoresis also 

showed that sucrose treatment did not result in development of any IISP's. These results 

indicate that effects of glycine betaine were different to that of other osmo reyulants like 

sucrose and the observed positive responses of betaine were manifested from the 

metabolic changes on the enzymes and other growth promoting proteins rather than mere 

osmoregulation. 

Salinity stress: 

The results have shown that salinity stress had significantly reduced the root and 

shoot growth (Table 4.2.1). Salinity induction resulted in significant enhancement in 

growth of root (106%) and shoot (72%) compared to that under non induced treatments. 

In fact, the root and shoot growth in SI treatment was comparable to that under non 

induced control (NI conditions). Enrichment of seeds with betaine (25 or 50 mM) 

resulted in significant improvement in tolerance to salinity. For example, the seeds 

treated with betaine upto 50 mM maintained their growth at high salinity conditions (300 

mM), whereas this salinity level was inhibitory to growth of seedlings in Bo treatment. 

The effects of salinity on crop growth are documented extensively (Subba Rao 

and Johanson, 1994; Epstein and Rains, 1987). The major effect of high salinity levels 

were shown to be through damage to membrane and imbalance of osmolarity of cell sap 



(Akbar and Ponnamperuma. 1980). Although management of saline soil is a major 

production practice, there exists a need for enhancement of salinity tolerance through 

genetic approaches (Tal, 1985). 

The present study illustrates the role of exogenous application of betaines in 

alleviating salinity stress effects. Maintenance of osmotic pressure inside the cell by 

accumulation of solutes and exclusion of ions has been shown as an adaptive mechanism 

to salinity conditions. However, the present study again establishes the influence of 

betaine on protein metabolism. It was apparent from the results that S1 is able to produce 

2 additional protein bands (45.1 and 36.4 kDa) compared to NI. 821; treatment was able 

to produce 4 additional bands (65.4. 77.8, 35.4 and 16.5 kDa) in SI when compared with 

Nl. B25+ SI treatment produced 4 additional bands (45.4. 32.6,24.8 and 18.4 kDa) when 

compared with 8 B25 + N1 treatment. The proteins produced due to salinity induction and 

B25 treatments are both high and low molecular weight proteins. B25 + NI treatments 

produced 2 additional bands (46.2 and 18.5 kDa) when compared with Bo + NI 

treatments, 

One of the extensively characterised stress proteins in higher plants is the 

synthesis of stress shock proteins (SSPs). The SSPs produced under salinity stress were 

documented by Singh el al., (1985), Ramagopal, (1987) and Esake el al., (1992). The 

SSPs have been shown to be synthesised under mild stress. The ability of induced 

systems to tolerate severe levels of stress signifies the importance of stress proteins (Lin 

et al., 1984, Vierling 1991). Unique proteins of 21 and 54 kDa were observed with 200 

mM NaCl induction in fingermillet by Uma et al., (1995). Similar qualitative differences 

were reported in maize (Ristec el al., 1991) and wheat (Krishnan el al., 1989). Salt stress 



proteins were studied in different crops for example. 58. 18 kDa in tobacco (Singh er a/.. 

1985), 21-34 kDa in wheat (Ramagopal, 1987, Hurkman el a/. ,  1989). 14 kDa in tomato 

(Goday er ul., 1994), in citrus (Ben - Hayyim el a/., 1993) and 22 kDa in mustard 

(Reviron et ul.. 1992). 

The review and results indicate that betaine acts not as a mere osmoregulant but 

also had metabolic changes associated with enzymes and other growth promoting 

proteins like stress shock proteins called salinity stress proteins. 

(b) Effects of betaines on isolated plants growing in pots subjected to salinity, 

drought and heat. 

Salinity: 

The results have shown that salinity stress had resulted in significant development 

(by 78% in Bo) however in B25 treatments the reduction was only 58% which clearly 

indicated that betaine treatment alleviated the adverse effects of salinity to some extent. 

The experimental results showed that seeds pretreated with glycine betaine heve shown 

increased growth of root (135%), shoot (25%) and biomass (28%) (Table 4.3.2). The 

increase growth and development was supported by increased photosynthetic rates by 

(30-35%) with B25 treatment. 

However betaine did not influence the leaf RWC despite an increase in all the 

other parameters. It was apparent that the observed increment in growth due to betaine 

could be ascribed to presence of high betaine in the tissue. The exogenous application of 

betaine resulted in increase in levels of glycine betaine by 430% more than that of 



untreated plants (Table 4.3.5) These results were in accordance with the work done on 

tomato by Smith et al., (1992) and Plaut, (1995). These results showed that glycine 

betaine can be readily taken up by the emerging seedlings and the chemical compound 

was translocated to the young leaves as the leaves were analysed for total betaine content 

and the TB content was 430% more in plants which were from seeds treated with betaine. 

The results were in agreement with studies of Naidu (1995) on the effects of 

glycine betaine on cotton, in which the seed treatment enhanced the germination and 

seedling vigour. In these studies Seedling dry matter production increased by 64-68% in 

response to 5% seed treatment using glycine betaine in controlled environment (Naidu. 

1995) and field experiments (Naidu cr al., 1996, Campbell ef al., 1996). 

The results from the present study are in support of literature and demonstrated 

that the glycine betaine can increase in germination, seedling vigour and yield. It was 

noted in the present study that the glycine betaine had a positive effect on root and shoot 

lengths, root and shoot development, total biomass, leaf area and crop growth rates. 

These responses suggest a hormone like activity for glycine betaine and similar effects 

have been noted in grapes (Naidu, unpublished). Wheeler (1973) in fact suggested that 

glycine betaine had activity similar to cytokinins. The studies suggest that either genetic 

or mangement practices which could result in accumulation of endogenous betaine by 

groundnut can enhance the seedling growth and development. 

Drought stress: 

Imposition of drought resulted in the reduction in above ground dry mass by 50% 

compared to control however in case of seed treatment with betaine the reduction was 



only 12%. The present study have shown that seed treatment with glycine betaine could 

increase the root and shoot lengths by (25 and 15%), root and shoot developn~ent (50 and 

32%) total dry matter (20%), CGR (30%) of isolated plants under water stress conditions. 

The increase in above ground weight following seed treatment with betaine resulted from 

the well known physiological function of endogenously synthesised glycine betaine that 

improves drought tolerance. As a cytoplasmic osmoticurn, it enables the plant to 

maintain photosynthetic activity in osmotic stress conditions. stabilise the enzymes 

involved in amino acid metabolism and maintain turgor pressure even at leaf 

concentration of upto 500 mM (Borowitzka,, 1981; Wynjones and Storey, 1981). The 

overall results here indicate that treatment with glycine betaine could reduce yield losses 

of groundnut under water limiting conditions. 

Glycine betaine treatment increased the FvIFm ratio under drought stress which in 

turn resulted in an increase in photosynthetic rate (Table 4.6.4). These findings are in 

support of the reports by Makela el ul,, (1998) who showed an increase in leaf, stem, 

root dry weights, net photosynthetic rate in tomato under water stress. 

In the present study plant water status measured as RWC, was unchanged in 

glycine betaine treatments and control, whereas, there was a decrease in ** values with 

BZ5 treatments. Our water relations data are in contrast to results of Sonoeka el al, 1995 

who found an increase in RWC with glycine betaine accumulating maize lines grown 

under stress conditions compared to glycine betaine deficient genotypes. They also found 

that a higher leaf sap osmolarity and turgor was higher in lines which accumulate the 

high glycine betaine lines. Since the majority of the reported glycine betaine 

accumulation (6-1 1 mM) were predominantly located in cytoplasmic compartments 



rather than vacuoles this finding indicates that glycine betaine might be playing a major 

metabolic role. The importance of the compartmentation of glycine betaine was even 

demonstrated in the osmotic adjustment of chloroplasts (Robinson and Jones. 1986) and 

the cytoplasm (Matoh e l  ul., 1987) of plants which are able to synthesize it naturally. 

However it is not known whether exogenously applied glycine betaine is accumulated in 

the cytoplasm or other cellular compartments such as vacuoles (Makela cr a/.. 1998). In 

addition to the putative role as an organic solute compatible with enzyme functioning 

(Rhodes and Hanson, 1993), glycine betaine treatments have also been shown to have 

protective effects on membranes (Yang et al., 1996) and protein functions (Papageorgiou 

sr a[., 1991) during stress. 

High temperature stress: 

The present study strongly suggested that glycine hetaine accumulation offers 

partial protection of tissues from the injurious effects of high temperature. The results 

demonstrated that, as the exposure of tissues to temperature above 40' C results in 

significant reduction in root and shoot growth (Table 4.5.1). Chlorophyll fluorescence 

was severely disrupted in treatments where there was no glycine betaine accumulation 

(Table 4.5.5). Similar results were observed by Yang el ul,, 1996 where they observed 

effects on high temperature membrane stability and chlorophyll fluorescence. Their 

results showed that chlorophyll fluorescence decreased abruptly when temperatures 

increased above 50' C in betaine deficient maize lines, whereas in betaine containing 

maize lines, Fv/Fm ratios increased in the heat stress treatment. 



In the present study, seed treatment with betaine resulted in increase of root and 

shoot lengths, total dry matter and leaf area expansion rates. Root growth increased by 

was found to increase by 10% with B25 treatments. The % reduction due to high 

temperature stress in the TDM, CGR and LAER was reduced in B25 treatments compared 

to BO treatments. The benefits and stress alleviating effects of glycine betaine have been 

demonstrated by several workers in the past under laboratory conditions, often on 

isolated enzymes (Paleg e t  a/., 1985) or on whole plants in short duration experiments of 

Zao et al,, 1992. 

Saneoka et al., (1995) found that RWC was greater in glycine betaine 

accumulating maize lines grown under stressed conditions than in glycine betaine 

deficient ones. They also found a higher leaf sap osmoiarity and higher turgor in some of 

the high glycine betaine lines. The results confirm the positive effects of glycine betaine 

under stressed conditions. 

PS I1 plays a critical role in the responses of photosynthesis to environmental 

stress (Baker 1991), and several physiochemical constraints including high temperature 

and salinity stress can cause lesions in the reaction centre of PS I1 (Armond et al., 1980; 

Cao and Govindjee, 1990), Increasing temperatures were believed to lead first to a 

blockage of PS I1 reaction centres, followed by a phase separation of non-bilayer forming 

lipids in thylalloid membranes (Armond et a/., 1980, Gounaris et al., 1983). In the 

present study, Bo treatments exhibit greater thermo lability from PS I1 function as inferred 

by fluorescence measurements. There were marked differences in chlorophyll 

fluorescence between B2s and Bo treatments. These lines of evidence support the 



conclusion that glycine betaine protects PS I1 from thermal damage as duration of 

exposure to 40' C in beyond one hour. the FviFm ratio markedly decreased in the Bo 

treatments under heat stress and no differences in FvlFm ratios were observed in B15 and 

Bo of untreated controls. These results were similar to those described by Yang er al., 

(1996) and Havaux (1992). It can be concluded from the present studies that high 

temperatures cause a complete and irreversible destruction of PS 11 in heat sensitive 

plants and B ~ J  treatment appears to reduce the extent of this damage by protecting the 

concerned proteins and their functions. The results presented here strongly suggest a 

protective role for glycine betaine against heat destabilisation of plasma membranes and 

thylakoid membranes in groundnut. Although, the mechanism of thermoprotection 

lnvivo is not known, several possible roles for glycine betaine have been suggested from 

studies where chloroplasts or membrane preparations are incubated with glycine betaine 

and other compatible osmolytes (Williams et al., 1992). 

The temperature treatments utilised in the present study suit the naturally 

encountered groundnut production environments, this hypothesis shows that glycine 

betaine can influence heat tolerance in groundnuts. 

( c ) Effect of betaines on tolerance of genotypes to simulated drought under field 

conditions. 

In this field study, glycine betaine foliar application was studied in the rainy 

season under mid season drought conditions and glycine betaine foliar application did not 

result in any positive way, which is related to the tolerance of drought. As illustrated in 



table 4.6.2 drought reduced the total biomass, AP, SP. TP production and growth. There 

was a decrease in net photosynthetic rate, RWC. LI% due to mid season drought imposed 

from 40-80 DAS. These results are not in agreement with results of Wynjones (1984) 

who examined the exogenous glycine betaine on biomass production of maize seedlings 

under stress. The betaine levels which were used in our experiment were 0. 3. 6 and 9 kg 

ha-' and the betaine was foliarly applied to the plant @ 30 and 60 DAS. The Ieavcs 

would have received little surface glycine betaine absorbed directly would have been 

greatly diluted during subsequent expansion. This finding supports the earlier work on 

translocation of radio labelled glycine betaine in summer turnip rape. (Makela el a[. ,  

1996). 

We could not detect an increase in the total biomass of plants in response to 

glycine betaine in the drought experiments but Makela et a/., (1998) have reported that 

the yield increases obtained by glycine betaine application are highly dependent on the 

growth stage of bush tomato, mid flowering stage being the most responsive in terms of 

increased yield. tomato has an indeterminate growth pattern (Plaut, 1995). So, glycine 

betaine applications might affect yield by changing the source - sink relations and 

assimilate might be allocated for enhancement of flower set instead of accumulation of 

leaf, stem or root dry weights. 

Because, the levels of glycine betaine were expected to be high, and also the 

application of glycine betaine was very late i.e., at 30 DAS, another field experiment was 

done in the post rainy season of 1996-97 with 3 levels of glycine betaine (0,3, an 6 kg ha 

") and water stress was imposed as mid season and end season drought. Glycine betaine 



was applied foliarly at 15 and 45 DAS. mid season drought reduced the pod dry weight. 

and the IRR treatment was able to produce 159% more pod dry weight. 22% more HI 

than that of the MSD treatment. Pegs production (both aerial and subterranean) was also 

found to be more in IRR conditions than that of MSD. The percentage decrease due to 

MSD was 35% in betaine untreated plants. whereas in plants where betaine was foliarly 

applied the decrease due to MSD was only 20% in B2 and 2% in B3 treatment (Table 

4.7.2 (a)). Same trend was observed with subterranean peg and total pegs. Peg addition 

rates also followed the same trend, where with betaine the decrease in peg addition rates 

was less when compared with water sprayed plants. Crop growth rates increased by 25% 

with the application of betaine, the decrease due to MSD in CGR was less in betaine 

treated plants. PGR, Part % NAR followed the same trend. Photosynthetic rates 

increased by 15-20% with the application of betaine, relative water content remained 

unchanged. 

The results are in agreement with the results obtained by Saneoka el  ul.. (1995) on 

isogenic lines of maize and Makela el a/., (1998) who have reported that the yield 

increases in tomato obtained by glycine betaine application. The results are highly 

dependent on the stage at which the glycine betaine was applied. In addition to a putative 

role as an organic solute compatible with enzyme functioning (Rhodes and Hanson, 

1993), glycine betaine may have 'protective effects' for membranes (Yang el a/., 1996) 

and protein functions (Papageorgiou er a/.. 1991) during stress, More specifically, 

glycine betaine can 'protect' the O2 evolving machinery of chloroplasts when exposed to 

high NaCl concentrations (Murate er al., 1992). Although these studies have used higher 

concentrations of glycine betaine than found in the tissues, it is possible that glycine 



betaine may still play a protective role for proteins or membranes even when present at 

concentrations too low for an osmotic role. 

When glycine betaine was applied at 15 DAS as soil application and as foliar 

application @ 45 DAS to plants under irrigated and end season drought conditions, 

similar responses were observed which were observed in the mid season drought 

conditions. 

The increase in total dry matter following foliar application of glycinr betaine to 

groundnut probably resulted from the well known physiological function of 

endogenously synthesized glycinr betaine that improves drought tolerance. As a 

cytoplasmic osmoticum, it enables the plant to maintain photosynthetic activity in 

osmotic stress conditions, stabilize the enzymes involved in amino acid metabolism, and 

maintain turgor pressure even at leaf concentrations of upto 3 kg ha " (Borowitzka, 1981; 

Wynjones and Storey, 1981; Laurie and Stewart, 1990). This aspect of our results is 

similar to that of Wynjones (1984) who examined the effects of exogenous glycine 

betaine on biomass production of maize seedlings under osmotic stress and found 

reduction in the fresh weight of the control plants upto 61%. When 1 mM of glycine 

betaine was applied, in our experiment, as illustrated in tables 4.8.1 to 5, drought (ESD) 

depressed the TDM and pod dry weights when compared with the irrigated control. 

Sinclair el al., (1990) found decreases in maize grain yield induced by water deficits near 

anthesis to be closely correlated with decreases in biomass production. The significant 

effect of glycine betaine on the PDM could be one to more number of pods m '* followed 

by glycine betaine treatment. 



Three levels of water deficit were studied (8.6. 39.9 and 67.5%). Water deficit of 

8.6% was found to produce 93% more pod dry weight than that of 67.5% WD treatment. 

B2 treatment, i.e., 3 kg ha" glycine betaine application produced a pod dry weight of 442 

g m '2 whereas, it was only 383 g m in water sprayed plants i.e.. control plants. (Table 

4.8.1). Peg addition rates increased from 2.88 to 6.62 with betainc treatment. 'The 

percentage reduction due to ESD was 87% in control plants whereas it was only 22% in 

betaine treated plants. Similar trend was observed for SP and TP addition rates, betaine 

treatments were found to increase the CGR by 20%, PGR by 33%, HI by 15% and NAR 

by 28%. On an average, net photosynthetic rate was 15.9 p mol 2 m " sec whereas 

with betaine treatments it increased upto 18.9 p mol m '2 sec 'I. RWC was only 75% in 

BO and 86% in B2 treatments (Table 4.8.4). Mc Donnell el al . ,  (1988) and Naidu el ul., 

(1990) reported that glycine betaine was accumulated during proeressive stress 

development in wheat the increase in PDM could have compensated by an increase in 

PGR and no, of pods m ". The relatively high residual glycine betaine concentrations 

(Table 4.8.5), 60-90 mM in betaine treated plants confirm its stability in plant systems. as 

reported by Storey (1976), Hanson and Wyse (1982) and Agboma el ul., (1996). This 

implies that drought protection for the treated plants can last for a considerable time. The 

apparently high residual leaf glycine betaine level would have resulted from the plant's 

ability to translocate glycine betaine. 

In these field studies, aqueous glycine betaine, foliarly applied to drought stressed 

groundnut at their critical growth stages, improved dry matter, production, pod yield. 

Three weeks after application, residual concentrations of leaf tissue glycine betaine in 



groundnut were comparable to levels in notable glycine betaine accumulating species 

(Wynjones and Storey 1981). The stability of glycine betaine in plants could mean that 

treated plants are drought tolerant for a long time after treatment. 'She overall results 

from the field indicate the application of glycine betaine could reduce yield losses of 

groundnut grown under water limited conditions. 

It is now a well known fact that glycine betaine plays a protective role for proteins 

or membranes even when present at too low concentrations for an osmotic role. 

Other solutes may play a protective role in plants suffering drought or salinity 

stress. Salt stressed tomato has previously been shown to accumulate proline, glucose 

and sucrose (Hever and Feigin, 1993; Alarcon er al., 1994a, Bolarin el al., 1995, Balibree 

er al., 1997). The adaptive significance of proline accumulation in non halophytes has 

been questioned by several workers (Rabe 1990). Por tomato, Bolarin el a/ . ,  1995 have 

argued that, since proline accumulation occurs only after high levels of sugar accumulate, 

proline accumulation is a consequence of reduced protein synthesis. Further more, 

proline accumulation has been reported to be higher in the leaves of salt sensitive rather 

than salt tolerant tomato genotypes (Balibree el ul., 1997). 

Larhar et 01.. (1996) found that glycine betaine supply to leaf discs of osmotically 

stressed turnip rape resulted in lower accumulation of proline. Makela el ul. (1998), 

found that exogenously applied glycine betaine did not affect the levels of protein in the 

leaves, so that the physiological effects of glycine betaine absorbed from foliar 

applications was not linked to changes in tissue proline concentration. 



In conclusion, the results of these experiments suggest that plants when treated 

with glycine betaine confer increased tolerance to high temperature, water stress and 

salinity. Either seed treatment or foliar application of glycine betaine can increase the 

yield increasing parameters in the groundnut plants and will reduce the yield losses under 

limiting or stress conditions. 

However, many higher plants do not accumulate glycine betaine and this has led 

to interest in the metabolic engineering of the glycine betaine biosynthesis pathway a an 

approach for enhancing stress resistance. 



Summary 



CHAPTER VI 

Summary 

Many of the biotic and abiotic stresses faced by grain legumes contributr to the large 

yield gap between potential and realzed yields. Abiotic stresses occurring at critical growth 

stages in groundnut affect productivity by reducing the total dry matter, pod yield and 

quality. Present study investigates thc role of glycine bctninc in nllevintiny cll'ccts of the 

three major abiotic stresses i, e., drought, heat and salinity on selected groundnut genotypes. 

The investigation was conducted in 3 phases (a) effect of betaine on tolerance of groundnut 

seedlings to heat and salinity stress conditions, (b) effect of betaine on isolated plants 

growing in pots subjected to drought, heat and salinity, and ( c) effect of betaine on tolerance 

of groundnut genotypes to simulated drought under field conditions. The experiments were 

conducted during 1996- 98 period at ICRISAT centre, Patancheru in laboratory, glass 

house, growth chamber and field. (a) The seedlings were subjected to high temperature and 

salinity stress conditions in laboratory with and without glycine betaine trcatmcnt, under 

high temperature stress conditions, the seedlings with betaine treatment are able to produce 

root and shoot lengths (34 and 40%) than seedlings without betaine treatment, in the non 

induced treatments, there was a 122% greater growth in betaine treated seedlings compared 

to untreated ones, correspondingly the gel electrophoresis results indicated that betaine 

treatment was able to produce four new proteins with molecular weights of 76.4, 60.6, 54.6 

and 16.5 kDa. Similarly under salinity stress conditions, the betaine treatment was able to 

produce 30 and 32% more root and shoot growths. The protein profiles indicated that betaine 

treatment was able to produce four new proteins with molecular weights of 65.4, 37.8, 35.4 

and 16.5 kDa. These stress shock proteins which are produced under high temperature and 



salinity stress conditions were implicated as molecular mechanisms to enhance the 

adaptation of the tissues to stress conditions. (b) isolated plants of groundnut which are 

pretreated with glycine betaine were studied in glass house and growth chamber under heat, 

drought and salinity stress conditions. Under salinity stress conditions, the betalne treatment 

could enhance the growth in root, shoot and total biomass by 135%. 2S0/u aid 28% 

respectively when compared with B,. Correspondingly the net photosynthetic rate was 

observed to increase by 35% with betaine treatment. Under heat stress conditions, seed 

treatment with glycine betaine could increase the root and shoot development by 150 and 

32% and total dry matter by 20%. There was a relative increase in net photosynthetic rate 

and FvIFm ratios, decrease in leaf water potential. Similarly with high temperature stress 

conditions, the seed treatment with glycine betaine could increase the root and shoot 

development by 22 and 43%, total dry matter was increased by 23%. There was a relative 

increase in relative water content by lo%, dccrense in leaf water potential by 25%. The 

empirical fluorescence parameter (PvlFm) which is an index of PSI1 quantum yield was 

reduced in stresses plants without betaine when compared with betaine treated stressed 

plants. These results indicate that glycine betaine accumulation confers protection against 

the photochemical reaction of PS I1 in vivo. ( c) In field studies, glycine betaine was foliarly 

applied to plants (at 3, G and 9 kg ha" and a control)in mid season atld end season drought 

conditions to establish whether its application could ameliorate the effects of drought on the. 

yield of groundnut. Drought significantly reduced the biomass production (P<0.01). Pod dry 

matter was also significantly depressed (P<0.01) by drought. The percent decrease in growth 

rates due to mid season and end season droughts was greatly reduced by the betaine 

application at 3 kg ha".This corresponds to a high residual tissue glycine betaine 
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concentrations in betaine treated plants at 100DAS. The positive effects of glycine betaine 

treatment appear to be linked not only to its physiological role as a plant os~noticum that 

improves drought tolerance but also to a protective role for proteins and membranes even at 

low concentrations. The results of the present study suggest that foliar application of glyci~ie 

betaine may be used to improve stress tolerance and economic yield of groundnut. 

While agronomic applications of glycine betnine are exciting, genetic variation in 

natural accumulating ability could be used in plant improvement research. It may be possible 

to select, breed or genetically engineer cultivars for higher glycine betaine content to 

increase crop performance in saline, dryland and high temperature conditions in groundnut. 



Literature cited 



LITERATIIRE CITED 

Acevedo E and Fereres E 1993 Resistance to abiotic stresses. In Plant Breeding eds. 
M.D. Hayward N.0  Bosemark and I Romagosa , pp. 406-421. Chapman and 
Hall, London. 

Ackerson R C 1983 Comparative physiology of water relations of two corn hybrids 
during water stress. Crop Science 23: 278-283 

Agboma PC, Peltonen Sainio P, Hinkkanen R and Pehu E 1996 Effect of foliar 
applied glycine betaine on yield components of drought stressed tobacco 
Nicotiana tabaccum L. Plants Expatal. Agric. UK in press. 

Agboma PC, Jones MGK, Sainio P Rita H and Pehu E 1997 Exogenous glycine 
betaine enhances grain yield of maize, sorghum and wheat grown under two 
supplementary watering regimes. J. of Agronomy and Crop Science 178: 29- 
37. 

Ahmad I, Larher F and Stewart G R 1979 Sorbitol, a compatible osmotic solute in 
Plantago maritima. New Phytologist. 82:671-8. 

Akbar M 1986 Breeding for salinity tolerance in rice. In: IRRl eds Salt - affected 
soils of Pakistan, India and Thailand, pp. 39-63, lnternational Rice Research 
Institute, P.O. Box 933, Manila, Philippines. 

Akbar M, Ponnamperuma F N 1980 . Saline soils of South and Southeast Asia as 
potential ricelands. In: lRRl eds Rice Research strategies for the future, pp. 
265-281. lnternational Rice Research Institute, P.O. Box 933. Manila, 
Philippines. 

AIarcon JJ, Bolarin MC, Sanchez-Blnco MJ and Torrecillas A 1994a. Growth, yield 
and water relations of normal fruited and cherry tomato cultivars irrigated with 
saline water. Journal of Horticultural Science 69,283-288. 

Alarkon, N L, Larionova, N A ; Minina, E G, Mitrofanova, T K, and Tolkachev, 0 
N 1979 Amino acids of pollen of Siberian pine. Fiziol. Rast. Moscow 
12:855-857. 

Alexandrov, V Y 1964 Cytophysiological and cytoecological investigation of heat 
resistance of plant cells toward the action of high and low temperature. 
Quarterly Review of Biology 39:35-77. 



Ali M 1990 Pigeonpea: Cropping systems. In: The Pigeonpea. Eds: Y.L. Nene. 
Susan D. Hall, and V.K. Sheila. C.AB. International, Wallingford. Oxon 
0 x 1 0  8DE, UK P 279-302. 

Andersen MN and Aremu JA 1991 Drought sensitivity, root development and osnlotic 
adjustment in field grown peas. Irrigation Science. 12:45-51. 

Arkley R J 1963 Relationship between plant growth and transpiation. Hilgardio. 
34559-584. 

Armond PA, Bjorkman 0 and Staehelin LA 1980 Dissociation of supramolecular 
complexes in chloroplnst membranes; a manifestation of heat damage to the 
photosynthetic apparatus. Biochimica et Biophysics Acta 601, 433.442, 

Ashwani P, Singla SL, Grover A 1997 Salt responsive proteinsigenes in Crop plants In: 
Strategies for improving stress tolerance in crop plants Oxford and IBH. New 
Delhi pp 365-391. 

Baker, N R, M Bradbury, P K Farage, C R Ireland and S P Long, 1989 
Measurements of quantum yield of carbon assimilation and chlorophyll 
fluorescence for assessment of photosynthetic performance of crops in the 
field. Phil. Trans. R. Soc. London 0. 323: 295-308. 

Baker NR 1991 A possible role for photosystem I1 in environmental perturbations of 
photosynthesis. Physiologa Plantarum 81.563-570. 

Balibrea ME, Rus Alvarez AM, Bolarin MC and Perez-Alfocea F 1997 Fast changes 
in soluble carbohydrates and proline contents in tomato seedlings in response 
to ionic and non ionic iso-osmotic stresses. Journal of Plant Physiology 15 1, 
221 -226. 

Bagnall D G and King R W 1991 Response of peanut Arachis hypogaea L. to 
temperature, photoperiod and inadiance. 2. Effect of peg and pod 
development. Field crop Research 26:279-293. 

Bar-Tsur A, Rudich J and Barvedo, B 1985 High temperature effect on CO, gas 
exchange in heat tolerant and sensitive tomatoes. Journal of Amateur Society 
of Horticultural Science 110:582-586. 

Beadle C L 1993 Growth analysis. In: Photosynthesis and Production in a Changing 
Environment: A Field and Laboratory Manual. Eds: D.O. Hall, J.M.O. 
Scuslock, H.R. Bolhar-Nordenkampf, R.C. Leegood and S.P. Long. Published 
by Chapman and Hall 1993 , P 37-46. 

Begg J E and Turner NC 1976 Crop water deficits. Advanes in Agronomy, 28:161- 
217. 



Ben-Hayyim G, Faltin Z, Gepstein S, Camoin L, Strosberg AD and Eshdat Y 1993 
Isolation and chnracterisation of salt-associated protein in cirrus. Plant Sci. 
88: 129-140. 

Bernstam V A 1978 Heat effects on protein biosynthesis. Annual Review Plant 
Physiology 29:25-46. 

Bieurhuizen J F and Slatyer R 0 1965 Effect of atmospheric concentration of water 
vapour and CO, in determining transpiration-photosynthesis relationships of 
cotton leaves. Agricultural Meteorology, 2:259-70. 

Blunden G, Gordon SM 1986 Betaines and their sulphonio analogues in marine algae. 
Prog. Phycol. Res. 439-80. 

Bolarin MC, Santa Cruz A, Cayuela E and Perez Alfocea F 1995 Short tern1 solute 
changes in leaves and roots of cultivated and wild tomato seedlings under 
salinity. Journal of Plant Physiology 147. 463-468. 

Boote KJ, Varnell KJ and Duncan WG 1976 Relationship of size, osmotic 
concentration and sugar concentration of peanut pods to soil water. 
Proceedings Soil Crop Society Fla, 35:47-50. 

Boote KJ, Stansell JR, Schubert AM and Stone JF 1982 Irrigation, water use and 
water relations, in Peanut Science and Technology, eds IIE Pattee and CT 
Young American Peanut Research and Education Association, Yoakum, Texas 
pp 164-205. 

Borowitzka LJ 1981 Solutc accu~nulation and regulation of cell water activity. In: LG 
Paleg and D Aspinall eds., The Physiology and Biochemistry of Drought 
Resistance in Plants, pp. 97-130. Academic Press, Sydney. 

Borowitzka LJ 1986 Osmoregulation in blue-green algae Prog. Phycol. Res. 4:243-56. 

Bradford, M M 1976 A rapid and sensitive method for the quantitation of microgram 
quantities of protein utilizing the principle of protein-dye binding. Analytical 
Biochemistry 27:248-254. 

Bradford K J, Shaskey T D and Farquhar G D 1983 Gas exchange, stomata1 
behavior and C" values of the flora tomato mutant in relation to abscisis acid. 
Plant Physiology, 72: 245-250. 

Bray EA 1988 Drought dnd ABA induced changes in polypeptide and mRNA 
accumulation in tomato leaves. Plant Physiology 88: 1210-1214. 

Bray EA, 1993 Molecular responses to water deficits. Plant Physiology 103: 1035-1040. 



Brouquise R, Weigel P, Rhodes D, Yocum C F and Hannon A D 1989 Evidence for 
a ferredoxin-dependent choline monooxygenase from spinach chloroplast 
stroma. Plant Phyiology 90: 322-329. 

Brouquisse R, Weigel P, Rhodes D, Yocum C F, Hanson A D 1989 Evidence for a 
ferredoxin-dependent choline monooxygenase from spinach chloroplast 
stroma. Plant Physiology. 90,322-329. 

Bunting A H and Kasnam A H 1988 Principles of crop water use, dry matter 
production and dry matter partitioning that govern choices of crops and 
systems. In: Drought Research Priorities for the Dryland Tropics. Eds: I:.K. 
Bindinger and C. Johansen. Patanchem, A.P. India: ICRISAI'. P 43-62. 

Campbell JA, Naiidu BP, Weich KR and Wilson JR 1996 Preliminary investigations 
of the effect of foliar application of betaine on the sucrose content of 
sugarcane. Sugar 200 Symposium in press. 

Cao J and Govindjee 1990 Chlorphyll a fluorescence transient as an indicator of active 
and inactive photosystem 11 in thylakoid membranes. Biochimica et 
Biophysica Acta 1015, 180-188. 

Carangal V R, Rao M V and Siwi B 1986 Limits imposed by management ia irrigated 
farming system. In: Food Legume improvement for Asia Farming Systems. 
Proceedings of an International Workshop, Khon Kaen, Thailand. 1-5 Sep, 
ACIAR. 

Chapman S C 1989 The effect of drought during reproductive development on the 
yield of cultivars of groundnut Arachis hypogaea L. . Ph. D. Thesis. 
University of Queensland, Brisbanc. 

Chauhen Y S 1987 Screening for tolerance to salinity and waterlogging: Case studies 
with pigeonpea and chickpea. In Adaptation of Chickpea and Pigeonpea to 
Abiotic Stresses. Proceedings of the Consultants' Workshop, 19-21 December 
1984, ICRISAT Center, India, pp. 93-103. Patanchew, India: ICRISAT. 

Chauhan Y S and Senboku T 1997 Evaluation of groundnut genotypes for heat 
tolerance. Annals of Applied Biology 131: 481-489. 

Chandler PM, Walker SM, King RW, Crouch M, Close TJ 1988 Expression of ABA 
inducible genes in water stressed cereal seedlings. Journal of cell biochemistry 
12C: 143 (Abstract). 

Constable G A and Hearn A B 1978 Agronomic and phyiological responses of 
soybean and sorghum crops to water deficits. I. Growth, development and 
yield. Australian Journal of Plant Physioloogy 5:159-67. 



Covell S, Ellis R H, Roberts E H, and Summerfield, R J 1986 Journal of 
Experimental Botany 37:705-715. 

Cox, F R 1979 Effect of temperature on peanut vegetative and fruit growlh. Peanut 
Science 6: 14- 17. 

Csonka, L N Hanson, A D 1991 Prokaryotic osmoregulation: genetics and 
physiology. Annual Review of Microbiology. 45,569-606. 

Czarnecka E, Edelman L, Schoff F, Key JA 1984 Comparative analysis of physical 
stress responses in soybean seedlings using cloned heat shock CDNAS. Plant 
molecular biology 3:45-58. 

Davieu, D R , Berry, C J , Heath, M C and Dawkins T C K 1985 In Grain Legume 
crops eds R J Summerfield and E H Roberts, London: Collins. Pp 147-198. 

Daviea W J 1986 Transpiration and the water balance of plant. In: Plant Physiology. 
Eds.: F.C. Steward, J.F. Sutcliffe and J.E. Dale. Academic Press, Inc. New 
York, P-49-154 

Davies W J , Metcalfe, J , Lodge, T A and Costa, A R 1986 Plant growth 
substances and the regulation of growth under drought. Australian Journal of 
Plant Physiology. 13: 105-123. 

De Wit C T 1958 Transpiration and crop yields. Versl. 1,andbouwk. Orderz, 64.6 
Institute of Biological and Chemical liesearch on Field Crops and Herbage, 
Wageningen. The Netherlands. 

Delauney A J, and Verma D P S 1993 Proline biosynthesis and osmoregulation in 
plants. Plant Journal 4,215-223. 

Devries JD, Bennett, JM, Albrecht SL and Boote K.1 1989a Water relations 
nitrogenase activity and root development of three grain legumes in response 
to soil water deficits. Field Crops Research. 21:215-26. 

Dryer 1980 Growth response of peanuts Arachis hypogeae with different fruiting zone 
temperatures. Ph. D. Thesis, University of Florida. 

Ellis, R H, Hong, T D and Roberts, E H 1985 Handbook of Seed Technology for 
Genebanks. Volume 1. Principles and Methodology. Rome: IBPGR. 

Epstein, E 1985 Salt tolerant crops: Origins, development and prospects of the 
concept. Pant and Soil 89, 187-198. 

Epsteln, E and Rains, D W 1987 Advances in salt tolerance. Plant and Soil. 99, 17- 
29. 



Esaka M, Hayakawa H, Hashimoto M, Matsubora N 1992 Specific and abundant 
secretion of a novel hydroxyproline rich glycoprotein from salt adapted winged 
bean cells. Plant Physiology 100: 1339 - 1345. 

Farquhar G D 1978 Feedfoward responses of stomata to humidity. Australian 
Journal of Plant Physiology, 5: 787-800. 

Fender SE, 0' Connell MA 1989 Heat shock expression in thennotolerant and 
thennosensitive lines of conon. Plant cell reports 8: 37-40. 

Fischer, R A and Turner, N C 1978 Plant productivity in the arid and semi-arid 
zones. Annual Review of Plant Physiology. 29:277-317. 

Fischer, R A 1981 Optimising the use of water and nitrogen through breeding of 
crops. Plant and Soil. 58:249-78. 

Flowers T J , Yeo A R 1981 Variability in the resistance of sodium chloride salinity 
within rice varieties. New Phytology 88:363-373. 

Flower DJ and Ludlow MM 1987 Variation among accessions of pigeonpea in osmotic 
adjustment and dehydration tolerance of leaves. Field Crops Research, 17:229- 
243. 

Ford, C W 1984 Simultaneous determination of proline and betaines by hhigh 
performance liquid chromatography. J. Sci. Food Agric. 35381-86. 

Gaff D F 1980 Protoplasmic tolerance of extreme water stress. In: Adaptation of 
Plants to Water and Nigh Temperature stress. P 207-230. Eds: N.C. Turner 
and P.J Kramer. Wiley, New York. P 207-230. 

Garcia-Perez, A , Burg, M B , 1991 Renal medullary organic osmolytes. Physio. 
Rev. 71:1081-115. 

Gibbons RW 1980 The ICRISAT Groundnut Program p. 12-16. In Proc. Int. 
Workshop on Groundnuts. Int. Crops Res. Inst. Semi-Arid Tropics, 13-17 Oct 
1980. ICRISAT, Patanceru, AP, India. 

Godoy JA, Lunar R, Torres-Schumann S, Moreno J, Rodrigo RM and Pintor-Toro 
JA 1994, Expression, tissue distribution and subcellular localization of 
dehydrin TAS 14 in salt-stressed tomato plants. Plant Mol. Biol, 26: 1921- 
1934. 

Gomez K A and Gomez A A 1985 Statistical Procedures for Agricultural Research. 
2" Edition. John Wiley and Sons, Inc. 680 p. 



Gounaris K, Brain APR, Quinn P J  and Williams WP 1983 Structural and functional 
changes associated with heat induced phase separations of non-bilayer lipids in 
chloroplast thylakoid membranes. FEBS letters 153,47-52. 

Grieve, C M , Maas, E V , 1984 Betaine accumulation in salt-stressed sorghum. 
Physiol. Plant. 61: 167-71. 

Grumet R, TG Isleib & AD Hnnson,, 1985 Genetic control of glycinebetaine level in 
barlcy. Crop Science 22618-622. 

Grumet, R , Albrechtsen, R S , Hanson, A D , 1987 Growth and yield of barley- 
isopopulations differing in solute potential. Crop Science 27:991-95. 

Guiltnan MJ, Manohewa NR, Quatrano RS, 1990 A plant leucine protein that 
recognises an abscissic acid response element. Science 250: 267-271. 

Gulmon S L and Turner N C 1978 Differences in root and shoot development of 
tomato Lycopersicon esculenrum L. varieties across contrasting soil 
environments. Plant and Soil, 49: 127-136. 

Gurley WD, Key LJ 1981 Transcriptional regulation of the heat shock response : a 
plant perspective. Biochemistry 30: 1-2. 

Hall A E and Schulze E D 1980 Drought effects on transpiration and leaf water 
status of cowpea in controlled environments. Australian Journal of Plant 
Physiology, 7: 141-147. 

Hall AE and Grantz DA 1981 Drought resistance of Cowpea improved by selecting for 
early appearance of mature pods. Crop Science, 21 :461-464. 

Hall, A E 1992 Breeding for heat tolerance. Plant Breeding Review 10: 129-168. 

Hanks RJ, Keller J, Rasmussen VP and Wilson GD 1976 Line source sprinkler for 
continuous variable irrigation crops production studies. Soil Science Society 
of America Journal 40: 426-429. 

Hanson A D , Rathinasabapathi B , Rivoal, J , Burnet M, Dillon M 0 and Gage D 
A 1994 Osmoprotective compounds in the Plumbaginaceae: a natural 
experiment in metabolic engineering of stress tolerance. Proceedings of the 
National Academy of Science USA 91,306-3 10. 

Hanson AD & Wd Hitz, 1982 Metabolic responses of mesophytes to plant water 
deficits. Annu. Rev. Plant Physiol, 33: 163-203. 

Hanson, A D 1980 Interpreting the metabolic responses of plants to water stress. Hort 
Science 15: 623-629. 



Hanson, A D , Wyse, R 1982 Biosynthesis, translocation, and accumulation of betaine 
in sugar beet and its progenitors in relation to salinity. Plant Physiology. 70, 
1191-1 198. 

Harris D, Matthews RB, Nageswara Rao RC and H'illiams J H  1988 The 
physiological basis for yield differences between four genotypes of groundnut 
Arachis hypogaea t. in response to drought. 111: Develop~nental processes. 
Experimental Agriculture, 21 1 :215-226. 

Harris D, RB Matthews, RC Nageswara Rao and J H  Williams 1988 The 
Physiological basis for yield differences between four genotypes of groundnuts 
Arachis hypogaea in response to drought. 111. Developmental Processes. Exp. 
Agric. 24:215-226. 

Hasegawa PM, RA Bressan, DE Nelson, Y Samaras and D Rhodes 1994 Tissue 
culture in the improvement of salt tolerance. In: AR Yeo and TJ Flowers Eds. 
Monographs on Theoretical and Applied Genetics 21. Soil Mineral Stresses. 
Pp. 83-1 25, Springer-Verlag, Berlin Heidelberg. 

Havaux M 1992 Stress tolerance of photosystem 11 in vivo: antagonistic effects of 
water, heat and photoinhibition stresses. Plant Physiology 100,424-432, 

Hetherington AM, Quatrano RS 1991 Mechanisms of actions of abscissic acid at thc 
cellular level. New Physiologist. 119: 9-32. 

Heuer B and Feigin A 1993 Interactive affects of chloride and nitrate on photosynthesis 
and related growth parameters in tomatoes. Photosynthetica 28,549-554. 

Holmstrom KO, Welin B, Mandal A, Kristiansdottir I, Teeri TH, Lamark T, Strom 
AH and Palva E T  1994 Production of the Escheriichia coli betaine aldehyde 
dehydrogenase, an enzyme required for the synthesis of the osmoprotectant 
glycine betaine, in transgenic plants. Plant Journal 6, 749-758. 

Howarth C J  1990 Heat shock proteins in sorghum and pearl-millet ethanol, sodium 
arsenite, sodium malonate and the development of thermo tolerance. Journal 
of experimental botany. 41 : 877-833. 

Hsiao T C , O'Toole J C , Yambao E B and Turner N C 1984 Influence of 
osmotic adjustment on leaf rolling and tissue death in rice Oryza saliva L. 
Plant Physiology, 75: 338-341. 

Hubick K T Parquhar, G D and Shorter R 1986 Correlation between water-use 
efficiency and carbon isotope discrimination in diverse peanut Arachis 
germplasm. Australian Journal of Plant Physiology, 13:803-816. 



Hurkman WJ, Fornari CS and Tanaka CK 1989, A comparison of the effect of salt on 
polypeptides and translatable mRNAs in roots of a salt tolerant and a salt- 
sensitive cultivar of barley, Plant Physiol, 90: 1444-1456. 

Incharoensakdi, A , T Takabe and T Akazawa, 1986 Effect of betaine on enzyme 
activity and subunit interaction of ribuloe-1.5- bisphosphate 
carboxylaseloxygenase from Aphanothece halophytica. Plant Physiol. 
81:1044-1049. 

Johanson CB, Baldev JB, Brouer W, Erskine WA, Jermyn LJ, Lang BA, Malik AA, 
Miah and SSN Silim 1994 Biotic and abiotic stresses constraining 
productivity of cool season food legumes in Asia, Africa and Oceania, In: 
Expanding the production and use of cool season Food Legume pp 175-194. 
Muehlbauer FJ and WJ Kaiser, Eds Kluwer, Academic Publishers, Dordrecht, 
The Netherlands. 

Jolivct, Y , Lnrher, F , and Hamelin, J 1982 Osmoregulation in halophytic higher 
plants: the protective effect of glycinebetaine against the heat destabilisation of 
membranes. Plant Sciencc Letters 25, 193-201. 

Jones R G W , and Corham J 1986 He potential for enhancing the salt tolerance of 
wheat and other important crop plants. Outlook in Agriculture 15, 33-39. 

Kanemasu, E T 1983 Yield and water use relationships: Some problems of relating 
grain yield to transpiation, n Limitations to Efficient Water Use in Crop 
Production, eds H.M Taylor, W R Jordan and T R Sinclair American 
Society of Agronomy, Crop Science Society of America, and Soil Science 
Society of America, Madison, Wisconsin, USA. Pp. 413-417. 

Kemble, A R , and Macpherson, H T 1954 Liberation of amino acids in perennial rye 
grass during wilting. Biochemical Journal 58,46-9. 

Ketring, D L 1984 Temperature effect on vegetative and reproductive development of 
peanut. Crop Science 24:877-882. 

Kishitani, S.K. Watanabe, S Yasuda K Arakawa and T Takabe 1994 Accumulation 
of glycinebetaine during cold acclimation and freezing tolerance in leaves of 
winter and spring barley plants. Plant Cell Environ. 17:89-95. 

Kowal J M and Kassam A H 1978 "Agricultural ecology of Savanna: A study of 
West Africa" Oxford, U.K. 

Krishnan M Nguyen HT, Burke JJ, 1989. Heat shock protein synthesis and thermal 
tolerance in wheat. Plant Physiology 90: 140-145. 



Kuo, C G ; Chen, K M ; and Ma, L H 1986 Effect of high temperature on proline 
content in tomato floral buds and leaves. Journal of Amateur Society of 
Horticultural Science 11 1 :746-750. 

Ladyman, J A R , Ditz, K M , Grumet, R , Hanson, A D , 1983 Genotypic variation 
for glycinebetaine accumulation by cultivated and wild barley in relation to 
water stress. Crop Science. 23:465-68. 

Larher F, Rotival Garnier N, Lemcsle P, Plasman M and Bouchereau A 1996 The 
glycine betaine inhibitory effect on the osmoinduced proline response of 
rapeleaf discs. Plant Science 113,21-31. 

Laurie S and Stewart CR 1990 The effect of compatible solutes on the heat stability of 
glutamine synthetase from chickpeas grown under different nitrogen and 
temperature regimes. Journal of Experimental Biology 44: 45-422. 

Lawlor, D W 1979 In Stress Physiology in Crop Plants eds H Mussell and R C 
Staples, John Wiley and Sons, New York pp. 303-326. 

Lo Rudulier, D , Bernard, T , Goas, G , Hamelin, J 1984 Osmoregulation in 
Klebsiella Pneumoniae: enhancement of anaerobic growth and nitrogen 
fixation by proline betaine, -butyrobetaine, and other relnted compounds. 
Can. J .  Microbial. 30:299-305. 

Levitt J , 1969 Society of Experimental Biology Symposium 23:395-448. 

Levitt J, Wiebe HH, Boyer JS, McWilliam JR, Ritchie JT, Blum A and Bidinger F 
1980 Adaptation of plants to water and high temperature stress: Summary 
and synthesis. In: Adaptation of Plants to Water and High Temperature 
stresses. Eds: NC Turner and PJ Kramer. Wiley, New York. P 437-456. 

Lovitt, J 1980 Responses of plants to environmental stress. Vol I .  Chilling, freeqing 
and high temperature stress. Academic press, New York, USA. 

Lin CY, Roberts J, Key JL, 1984 Acquisition of thennotolerance in soybean seedlings. 
Synthesis and accumulation of heat shock proteins and their cellular 
localization. Plant Physiology 74: 152-160. 

Lin, C Y , Y M Chen and J L Key, 1985 Solute leakage in soya bean seedlings under 
various heat shock regimes. Plant Cell Physiol. 26: 1493-1498. 

Lindquist S, Craig EA 1988 Heat shock proteins. Annual Review of Genetics 22: 631- 
677. 

Ludlow, M M , Fisher, M J and Wilson, J R 1985 Stomata1 adjustment to water 
deficits in three tropical grsses and a tropical legume grown in controlled 
conditions in the field. Australian Journal of Plant Physiology. 



Makela P, Jokinen K, Kontturi M, Peltonen-Sainio P, Pehu E and Somersalo S 1998 
Foliar application of glycine betaine - novel product from sugar beet - as an 
approach to increase tomato yield. Industrial Crops and Products 7, 139-148. 

Makela P, Muns R, Colmer TD, Condon AG and Sainio PP 1998 Effect of foliar 
applications of glycine betaine on stomata1 conductance, abscisic acid and 
solute concentration in leaves of salt - or drought stressed tomato. Aust. J. 
Plant Physiol. 25,655-663. 

Makela P, Peltonen-Sainio P, Jokinen K, Pehu E, Setala H, Hinkkanen R and 
Somersalo S 1996 Uptake and translocation of foliar applied glcinebetaine in 
crop plants. Plant Science 121,221-230. 

Malik R S , Dhankar J S and Turber N C 1979 Influence of soil water deficit on 
root growth of cotton seedlings. Plant and Soil, 53: 109-1 15. 

Marcotte WR, Russel SH, Quatrano RS 1989 Abscissic acid responsive sequence 
from the em gene of wheat. Plant Cell. I: 969-976. 

Martin, B , and Thorstenson Y R 1988 Stable carbon isotope composition "C , 
water use efficiency, and biomass productivity of Lycopersicon esculentum, 
Lyca persicon pennelii and the F, hybrid. Plant Physiology 88: 2213-217. 

Mathews, R B Harris, D , Nageswara Rao, R C et al 1988a The physiological 
basis for yield differences between four genotypes of groundnut Arachis 
hypogaea in response to drought. 1. Dry matter production and water use. 
Experimental Agriculture, 24: 191 -202. 

Matoh T, Watanahe J and Takahashi E 1987 Sodium, potassium chloride and betaine 
concentrations in isolated vacuoles from salt-grown Atriplex gmelini leaves. 
Plant Physiology 84, 173-177. 

Mc Alivter L and Finkelstein DM 1980 Heat shock proteins and thermal resistance in 
yeast. Biochemical Biophysical Research Communications. 93: 71 9-824. 

McCue KF and Hanson AD 1990 Drought and salt tolerance: towards understanding 
and application. Trends in Bioechnology 8,358-362. 

McCue, K F and A D Hanson 1990 Drought and salt tolerance: towards 
understanding and application. Trends Biotechnol. 8: 358-362. 

McCue, K F and Hanson A D 1992 Drought and salt tolerance : towards 
understanding and application. Trends Biotechnology. 8, 359-3621 

MeCue, K F , Hanson, A D 1990 Drought and salt tolerance: towards understanding 
and application. Trends Biotechnol. 8,358-362. 



Mc Donnell E, Jones RGW, Wyn Jones RG 1988 Glycine betaine synthesis in 
unstressed and salt stressed wheat. Journal of Experimental Botany, 39: 421- 
430. 

McWilliam J R and Dillon J L 1987 Food legume crop improvement: Progress and 
constraints. In: Food Legumes improvement for Asian Farming System. 
Proceedings of an International Workshop held in Khon Kaen, Thailand, 1-5 
Sep 1986 Eds: E S Wallis and D E Byth, ACIAR Proceeding. No. 18, 
ACIAR, Canberra P 83-98. 

Morales et al , 1991 Chlorophyll fluorescence and photon yield of oxygen evolution in 
iron deficient sugar belt beta vulgaris L, leaves. Plant Physiology. 97386- 
893. 

Morgan J M 1983 Osmoregulation as a selection criterion for drought tolerance in 
wheat. Australian Jour~lal of Agricultural Research. 34: 607-614. 

Morgan J M and Condon A (; 1986 Watcr use, grain yield and osmoregulation in 
wheat. Australian Journal of Plant Physiology, 13: 523-532. 

Morgan, J M , 1984 Osmoregulation and water stress in higher plants. Ann. Rev. 
Plant Physiol. 35, 299-319. 

Morrison J 1 L 1985 Sensitivity of stomata and water use efficiency to high CO,. 
Plant Cell Environment, 8: 467-474. 

Muchow R C 1985a Phenology, seed yield and water use of grain legumes grown 
under different soil water regimes in a semi-arid tropics environment. Field 
Crops Research, 11: 81 -97. 

Muchow R C and Sinclair T R 1986 Water and nitrogen limitation in soybean grain 
production. 11: Field and model analysis. Field Crops Research, 15: 143-156. 

Murata N, Mohanty PS, Hayashi H and Papageorgiou GC 1992 Glycine betaine 
stabilizes the association of extrinsic proteins with the photosynthetic oxygen- 
evolving complex. FEBS Leters 296, 187-1 89. 

Muthukumarasamy, M ; Panneerelvam, R 1997 Amelioration of NaCl stress by 
triadimefon in peanut seedlings. Plant Growth Regulation 22 3 :157-162. 

Mutters, R G ; Ferreira, L G R ; and Hall, A E 1989 Proline content of the anthers 
and pollen of heat-tolerant and heat-sensitive cowpea subjected to different 
temperatures. Crop Science 29:1497-1500. 

Nageswara Rao R C , Singh S , Sivakumar M V K , Srivastava K L and Williams J 
H 1985a Effect of water deficit at different growth phases of peanut. 
I. Yield respones. Agronomy Journal, 77: 782-786. 



Nageswara Rao R C , Singh S , Sivakumar M V K , Srivastava K L and Williams 
J H 1985b Effect of water deficit at different growth phases of peanut. 11. 
Response to drought during pre-flowering stage. Agronomy Journal, 
80: 431-438. 

Nageswara Rao RC 1989 Some crop physiological approaches for groundnut 
improvement. Journal of Oilseeds Researh 9: 286-296 1992. 

Nagcswara Rao RC, J H  Williams and Murari Singh 1989 Genotypic sensitivity to 
drought and yield potential of peanut. Agron. J. 81:887-893 1989. 

Nageswara Rao, R C Wadia, K D R Hubick, K T  and Farquhar, G D 1992 Crop 
growth, water-use efficiency and carbon isotope discrimination in groundnut 
Arachis hypogaea L. genotypes under end-of-season drought conditions. 
Annals of Biology, 122:357-67. 

Nageswara Rao RC J H  Williams, KDR Wadia,KT Hubickand GD Farquhar. 1993 
Crop growth, water use efficiency and carbon isotope discrimination in 
groundnut Arachis hypogaea L. genotypes under end of season drought 
conditions. An. Appl. Biol 122: 357-367. 

Naidu, R P , Jones, G P , Paleg, L G , Poljakoff-Mayber, A 1987 I'mline analogues 
in Metaleuca species: response of Melaleuca lanceolata and M, llncinata to 
water stress and saliinity. Australian Journal of Plant Physiology. 14:669-77. 

Naidu BP, Paleg LG Aspinall D, Jenniings AC and Jones GP 1990 Rates of 
imposition of water stress alters the accumulation of nitrogen containing 
solutes by wheat seedlings. Austral. J. Plant Physiol. 17, 653-664. 

Naidu BP, Paleg LG, Jones GP 1992 Nitrogenous compatible solutes in drought 
stressed Medicago spp. Phytochemistry 3 I: 1195-97. 

Naidu B P, P K Morris, and D FCameron 1995 Unpublished 'l'reatmcnt with 
Glycinebetaine to increase seed germination, seedling vigour and yield of 
cotton. 

Naidu BP 1995 Seed treatment with glycine betaine to increase germination, seedling 
vigour and yield, A patent application by CSIRO, PCT 1 AUS 95 / 00357. 
Provisional application lodged on 20 Jun 1994. 

Naidu BP, Thumma BR, Cameron DF, and Hacker J B  1996 A biochemical 
approach to improving survival of salt-or drought stressed plants Abstract 
Tropical Grasslands, 30, 141. 

Paleg L G , Stewart, G R , Styarr R , 1985 The effects of compatible solutes on 
proteins. Plant and Soil 89: 83-94. 



Paleg L G ; Douglas, T J ; Vandall, A; and Keech, D B 1981 Proline, betaine and 
other solutes protect enzymes against heat inactivation. Australian Journal of 
Plant Physiology. 8:107-114. 

Paleg LG, Stewart GR, Starr R 1985 The effect of compatible solutes on proteins. 
Plant and Soil 89, 83-94. 

Paleg, L G , Douglas, T J , Van Daal, A , and Keech, D B 1981 Proline, betaine and 
other organic solutes protect enzymes against heat inactivation. Australian 
Journal of Plant Physiology 8, 107-14. 

Palfi, G L ; Pinter, L; nand Palfi, Z 1981 The proline content and fertility of the 
pollen of inbred maize lines. Acta Botanical Academy Sci. Hung. 27:179-187. 

Pallas J F  Jr, J R  Sansell and Tg Koske 1979 Effects of drought on Florunner peanuts. 
Agron. J. 71:853-858. 

Pandey, R K , Herrera WAT, and Pendleton, J W 198411 Drought responses of 
grain legumes under irrigation gradient I. Yield and yield components. 
Agronomy Journal. 76549-53, 

Papagcorgiou GC, Fujimura Y and Murata N 1991 Protection of the oxygen- 
evolving Photosystem 11 complex by glycine betaine. Biochimica et 
Biophysics Acta 1057,361-366. 

Papendiek R I , Chowdhury S L and Johanscn C 1988 Managing systems for 
increasing productivity of pulses in dryland agriculture P 232-255. In: World 
Crops: Cool Season Food Legumes. Eds: R J Summerfield, Academic 
Publishing. 

Passioura JB  1977 Grain Yield, harvest index and water use of wheat. Journal of 
Australian Institute Of Agricultural Sciences 43:25 

Pathak S.R , Patel M S , Qureshi A  U , and Ghodasara G V 1988 Effect of water 
stress on yield and diurnal change of biophysical parameter of groundnut. 
Legumes Research, 11 4 : 193-195. 

Plaut Z 1995 Sensitivity of crop plants to water stress at specific developmental stages: 
reevaluation of experimental findings. Israel Journal of Plant Sciences 43, 99- 
11 1. 

Poljakoff-Mayber, A ,  Symon, D E , Jones, G P , Naidu, B P , and Paleg, L G 1987 
Nitrogenous compatible solutes in native South Australian plants. Australian 
Journal of Plant Physiology 14,341-50. 

Pollard, A S , and Wyn Jones, R G 1979 Enzyme activities in concentrated solutions 
of glycine, betaine and other solutes. Planta 144, 241-8. 



Quinn, P J 1989 Membrane stability under thermal stress. In: P.A Biacs, K Gruiz and 
K Kremmer Eds . Biological role of lipis. Plenum Publications New York. 
USA,pp 511-515. 

Rabe E 1990 Stress Physiology : the functional significance of the accumulation of 
nitrogen-containing compounds. Journal of Horticultural Science 65,23 1-243. 

Ramagopal S 1987 Salinity stress induced tissue specific proteins in barley. Plant 
Physiology 84: 32-331. 

Rathinasabapathi B, Me Cue KF, Cage DA, and Hanson Ad 1994 Metabolic 
engineering of glycine betaine synthesis: plant betaine aldehyde 
dehydrogenases lacking typical transit pepties are targeted to tobacco 
chloroplasts where they confer betaine aldehyde resistance. Planta, 193, 155- 
162. 

Rathinasabhapathi B, McCue KF, Gage DA and Hanson AD 1994 Metabolic 
engineering of glycine betaine synthesis : plant betaine aldehyde 
dehydrogenases lacking typical transit peptides are targeted to tobacco 
chloroplasts where they confer etaine aldehyde resistance. Planta 193, 155- 
162. 

Reddy M S and Willey R W 1982 Improved cropping systems for the deep vertisols 
of the Indian semi-arid tropics. Experimental Agriculture, 18: 227-287. 

Reviron MP, Vartanian N, Sallnntin M, Huet J-C, Pernollet dC and d Vienne D 
1992 Characterizatioin of a novel protein induced by progressive or rapid 
drought and salinity in Brassica napus leaves, Plant Physiol. 100: 1486-1493. 

Rhodes D , Hanson, A D , 1993 Quaternary ammonium and tertiary sulfonium 
compounds in higher plants. Annual Review of Plant Physiology, Plant 
Molecular Biology. 44, 357-384. 

Rhodes D and Rich P J  1988 Preliminary genetic studies of the phenotype of betaine 
deficiency in Zea mays L. Plant Physiol. 88: 102-8. 

Rhodes, D , and Hanson A D , 1993 Quaternary ammonium and tertiary sulfonium 
compounds in higher plants. Ann. Review of Plant Physiology. Plant Mol. 
8101 44,357-384, 

Riehterr A and Popp M 1992 The physiological importance of accumulation of 
cyclitols in Viscum album L. New Physiologist 121,431-438. 

Ristic Z, Gifford DJ, Cass DD 1991 Heat shock proteins iin two lines of Zea mays L. 
that differ indrought and heat resistance. Plant Physiology 97: 1430-1434. 



Robinson SP and Jones GP 1986 Accumulation of glycine betaine in chloroplasts 
provides osmotic adjustment during salt stress. Australian Journal of Plant 
Physiology 13,659-668. 

Robinson, S P and G P Jones, 1986 Accumulation of glycine betaine in chloroplasts 
provides osmotic adjustment during salt stress. Australian Journal of Plant 
Physiology. 13: 659-668. 

Roy R C , Stonchouse D P , Francois B and Brown D M 1988 Peanut responses to 
imposed drought conditions in southern Ontario. Peanut Science. 
15 2 : 85-89. 

Sarma PS and Sivakumar MVK 1990 Evaluation of groundnut response to erly 
moisture stress during the rainy and pos rainy seasons. Agricultural 
Meteorology 49 1 (123-133). 

Saneoka H Nagasaka Hahn ST, Yang NJ, Premachandra GS, Joly RJ, Rhodes D 
1995 Salt tolerance of glycine betaine deficient and containing maize lines. 
Plant Physiology 107: 63 1-638. 

Sanders, T H , Blankenman, P D , Cole, RJ  and Hill, R A 1985 Temperature 
relationship of peanut leaf canopy, stem and fruit in the soil of varying 
temperature and moisture Peanut science 12:86-89. 

Sapra, V.T and A 0 Anaek, 1991 Screening soya bean genotypes for drought and 
heat tolcrance. Journal of Agronomy. Crop Science 167:96-I 02. 

Saxena NP, C Johansen MC Saxena and SN Silim 1993: Selection for drought and 
salinity tolerance in cool season food legumes. In: Breeding for Stress 
tolerance in cool seson food legumes pp 245-270 Singh KB and MC Saxena 
cds, Wiey lJK. 

Schaff, D A , C D Claybcrg and G A Williken, 1987 Comparison of TTC and 
electrical conductivity heat tolerance screening techniques in Phaseolus. Hort 
Science 2542-645. 

Schneider, S H 1989 The changing climate. Scientific American 261 3 : 70-79. 

Schulze E D and Hall A E 1982 Stornatal responses, water loss and CO, assimilation 
rates of plants in contrasting environments. P 181-230. In: Physiological 
Plant Ecology. 11: Water relation and carbon assimilation. Eds: 0 L Lange, 
P S Nobel, C B Osmond and H Ziegler Encyclopedia of Plant Physiology, 
New Series, Vol 12B. Berlin, Federal Republic of Germany: Springer-Verlag. 



Senadhira D 1987 Salinity as a concept to increasing rice production in Asia. In: 
Proc. Regional Workshop on Maintenance of Life Support Species in Asia- 
Pacific Regions, 4-7 April 1987, NBPGR, New Dellhi, India. 

Shackcl K A and Hall A E 1983 Comparisioon of water relation aid osmotic 
adjustment in sorghum and cowpea under field condition. Australian Journal 
of Plant Physiology, 10: 423-435. 

Sharp R E and Davies W J 1979 Solute regulation and growth by roots and shoots 
of water stressed maize plants. Planta, 147: 43-49. 

Sharp R E and Davics W J 1985 Root growth and water uptake by maim plants in 
drying soil. Journal of Experimental Botany, 36: 1441-1456. 

Shcn, Z Y and Li, P H 1982 Heat adaptability of the tomato. llorticultural Science 
17:924-925. 

Shirahrshi, K , Hayakawa, S , and Sugiyama, T 1978 Cold lability of pyruvate, 
orthophosphate dikinase in the maize leaf. Plant Physiology 62, 826-30. 

Shomar Ilan, A ,  and Waisel, Y 1986 Effects of stabilizing solutes on salt activation 
of phospho enolpyruvate carboxylase from various plant sources. Physiologia 
Plantarum 67,408-1 1. 

Simpson G M 1981 Global perspectives on drought. In: Water strew on plants. 
New York, USA. P 1-33. Praeger. 

Sinclair TR, Bennett J M  and Muchow RC 1990 Relative sensitivity of grain yield and 
biomass accumulation to drought in field grown maize. Crop Sci. 30,690-693. 

Singh NK, Handa Aneel Koti, Hasegawa PM, Bressan RA 1985 Proteins associated 
with adaptation of cultured tobacco cells to NaCl Plant Physiology 79: 126- 
137. 

Singh, T N , Aspinall, D , and Paleg, L G 1972 Proline accumulation and varietal 
adaptability to drought in barley: a potential metabolic measure of drought 
resistance. Nature London 236, 188-90. 

Skriver K, Mundy J 1990 Gene expression in response to abscissic acid and osmotic 
stress. The Plant Cell. 2: 503-512. 

Slabbers, P J Herrcndorf, V S and Stapper, M 1970 Evaluation of simplified 
water crop yield models. Agricultural Water Management, 2:95-129. 

Smirnoff N 1993 The role of active oxygenin in the response of plants to water-deficit 
and desiccation. New Physiologist 125,27-58. 



Smirnoff N and Cumbes, Q J 1989 Hydroxyl radical scavenging activity of 
compatible solutes. Phytochemistry 28, 1057-1060. 

Smirnoff N , Cumbes, Q J 1989 Hydroxyl radical scavenging activity of con~patible 
solutes. Phytochemistry 28: 1057-60. 

Smirnoff, N , and Cumbea, J 1989 Hydroxyl radical scavenging activity of 
compatible solutes. Phytochemistry 28, 1057-60. 

Somero GH 1986 Protons, osmolytes and fitness of internal milieu for protein function. 
Am. J. Phyiol. 251:R 197-R213. 

Sommer C , Thonke B and Popp M 1990 The compatibility of D-pinitol and 1D-l- 
o-methyl-mucoinoitol with malate dehydrogenase activity. Botanica Acta 103, 
270-273. 

Squirc G R , Ong C K and Monteith J L 1986 Crop growth in semi-arid 
environments. In: Proceedings of the International Workshop on Pearl 
Millet. ICRISAT, I-lydcrabad, India. 1' 219-232. 

Srinivasan, A , Takeda, H , and Senbku, T 1996 Heat tolerance in food legumes as 
evaluated by cell membrane themostability and chlorophyll fluorescence 
techniques. Euphytica 88:35-45. 

Stansell J R and Pallas J E 1985 Yield and quality response of florunner peanuts to 
applied drought at several growth stages. Proceedings, American Peanut 
Research and Education Society, Inc. P 17-66. 

Stewart, G R , and Lee, J A 1974 The role of proline accumulation in halophytes. 
Planta 120, 279-89. 

Stewart, J I Hagan, R M Pruitt, W 0 et a1 1977 Optimizing crop production 
through control of water and salinity levels in the soil. Utah Water Research 
Laboratory, Utah State University, Logan Publication No. PRWG 151-1. 

Storey, R , and Wyn Jones, R G 1975 Betaine and choline levels in plants and their 
relationship to NaCl stress. Plant Science Letters 4, 161-8. 

Storey R 1976 Salt resistance and quaternary ammonium compounds in plants. PhD 
thesis, Univ, of Wales, Cardiff. 

Storey, R , and Wyn Jones, R G 1979 Responses of Atriplex spongiosa and Suaeda 
monoica to salinity. Plant Physiology 63, 156-62. 

Subbarao GV, Johansen C, Slinkard AE, Nageswara Rao RC, Saxena NP and 
Chauhan YS 1995 Strategies sfor improving drought resistance in grain 
legumes. Plant Sciences 146: 469-523. 



Summerfield, R J , Virmani, S M Roberts, E H , and Ellis, R H 1990 Adaptation 
of chickpea to agroclimatic constraints. In: Van Rheen H.A and Saxena. M C 
eds Chickpea in Nineties, pp. 61-72. Patancheru, India: ICRISAT. 

Suss KH and Yordanov IT 1986 Biosynthetic causes of in-vivo acquired 
thrmotolerance photosynthetic light reaction and metabolic responses to 
chloroplasts to heat tolerance. Plant Physiol. 81: 192-199. 

Sutcliffe, J 1977 Plants and Temperature. London: Edward Arnold. 

TaI, M , 1985 Genetics of salt tolerance in higher plants: Theoretical and practical 
considerations. Plant and Soil 89. 199-226. 

Tanner, C B and Sinclair, T R 1983 Efficient water use crop in production: research 
or re-search. In Limitations to Efficient Water Use in Crop Production Eds 
H.M. Taylor, W R Jordan and T R Sinclair , pp 1-27. Madison. USA: 
American Society of Agronomy. 

Thomas J C , DeArmond R A and Bohnert H J 1992 Influence of NaCl on 
growth, proline, and phosphoenolpyruvate carboxylase levels in 
Mesembryanthemum crystallinum suspension cultures. Plant Physiology 98, 
626-63 1. 

Tseng MJ, Li PM, 1991 Changes in protein synthesis and translatable messenger RNA 
populations associated with ABA induced cold hardiness in potato. 
Physiologia Plantemm 87: 349-358. 

Turk K J and Hall A E 1980 Drought adaptation of cowpea. 111. Influence of 
drought on water use and relations with seed yield. Agronomy Journal, 72: 
434-439. 

Turk K.J , Hall A E and Asbell C W 1980 Drought adaptation of cowpea. I .  
Influence of drought on seed yield. Agronomy Journal, 72: 41 3-420. 

Turner, N C , Begg, J E , Rawson, H M et a1 1978 Agronomic and physiological 
responses of soybean and sorghum crops to water deficits. Ill. Components of 
leaf water potential, Leaf conductance, CO, photo$ynthesis, and adaptation to 
water deficits. Australian Journal of Plant Physioogy. 5:179-194. 

Turner N C and Jones M M 1980 Turgor maintenance by osmotic adjustment: A 
review and evalluation. In: Adaptation of Plants to Water and High 
Temperature Stress. P 87-103. Eds: N.C Turner and P J Kramer Wiley, 
Interscience, New York. 

Turner N C 1986a Adaptation to water deficits: A changing perspective. Australian 
Journal of Plant Physiology, 13: 175-190. 



Turner  NC 1986a Crop water deficits: A decadeof progress. Advances in agronomy, 
39: 1-51. 

Turner N C 1986b Crop water deficits: A decade of progress. Advances in 
Agronomy, 39: 1-51. 

Turner  N C 1988 Measurement of plant water status by the pressure chamber 
technique. Irrigation Science, 9: 289-308. 

Uma S 1987 Transpiration quotient TQ and water use efficiency in different C, and 
C, species and its relationship with biomass and productivity under moisture 
stress conditions. M. Sc. Thesis, University of' Agricultural Sciences, 
Bangalore. 

Uma S, Prassad T C  and Udays Kumar M 1995 Genetic variability in recovery 
growth and synthesis of stress proteins in response to polyethylene glycol and 
salt stress in finger millet. Annals of Botany 76 : 43-49. 

Vernon D M and Bohnert H J 1992 A novel methyl transferase induced by osmotic 
stress in the facultative halophyte Mesembryanthemum crystallinum. The 
EMBO Journal 11,2077-2085. 

Vierling E, 1991 The roles of heat shock proteins in plants. Annual Review of Plant 
Physiology and Plant Molecular Biology 42: 579-620. 

Vierling E, Nguyen H T  1992 Heat shock protein gene expression in deploid wheat 
genotypes differing in thermal tolerance. Crop Science 32: 370-377. 

Warrag, M 0 A ; and Hall, A E 1983 Reproductive responses of cowpea to heat 
stress: Genotypic differences in tolerance to heat at flowering. Crop Science 
23: 1088-1092. 

Weigcl, P , Weretilnyk, E A , Hanson, A D , 1986 Betaine aldel oxidation by spinach 
choroplasts. I'lant Physiology 82, 753-759. 

Weigel, P , Weretlinyk, E A and Hanson, A D 1986 Betaine aldehyde oxidation by 
spinach chloroplasts. Plant Physiology. 82, 753-759. 

Wery J, Salim SN, Knights EJ, Malhotra RS, Cousin R 1994 Screening techniques 
and sources of tolerance to extremes of moisture and air temperature in cool 
season food legumes. Euphytica 73:73-83. 

Wheeler A W  1973 Endogenous growth substances. Reports of rothamstead 
experimental station part 1. 101-102. 

Willey RW, Natarajan M, Reddy M and Raoa M R  1986 Cropping system with 
groundnut: Resource use and productivity. In: Agrometeorology of 



Groundnut. Proceedings of an International Symposium, ICRISAT Sahelian 
Center, Niamey, Niger. P 193-206. 

Williams J H , Nageswara Rao R C ,  Matthews R and Harris D 1986 Response of 
groundnut genotypes to drought. In: Agrometeorology of Groundnut. 
Proceedings International Symposium, ICRISAT Sahelian Center, Niamey, 
Niger: P 99-106. ICRISAT, Patancheru, A.P. 502324. India. 

Williams WP, Brain AYR and Dominy PJ 1992 Induction of non-bilayer lipid phase 
separations in chloroplast thylakoid membranes by compatible co-solutes and 
its relation to the thermal stability of photosystem 11. Biochimica ct 
Biophysica Acta 1099, 137-144. 

Wilson J R, Fisher M J, Schulze E D, Dolby G  R and Ludlow M M 1979 
Comparison between pressure volume and drew point hygrometry techniques 
for determining the water relation characteristics of grass and legume leaves. 
Oecologia, 41: 77-88. 

Wood I M and Myers R J K 1986 Food legume in farming systems in the tropics 
and sub-tropics. In: Food Legumes Improvement for Asian Farming 
System. Proceedings of an International Workshop held in Khon Kaen. 
Thailand, 1-5 Sep, 1986. Eds: E S Wallis and D E Byth AClAR Proceeding 
No. 18, AClAR Cnnbem. P 34-45. 

Woodroof, J G  1983 Peanuts Production, Processing, Products, 3' edn. Avi 
Publishing Company. Inc. Westport, Connecticut. 

Wright G  C, Hubick K T and Farquhar G  D 1991 Physiological analysis of 
peanut cultivar response to timing and duration of drought stress. Australian 
Journal of Bxpcrimental Agriculture, 42: 453-470. 

Wright GC and Nageswara Rao RC, 1994 Water Use Efficiency and carbon isotope 
discrimination in peanut under water deficit conditions. Crop Science 34:92-7. 

Wright GC, Hubick KT Farquhar G 1988 Discrimination of carbon isotopes of 
leaves correlates with Water Use Efficiency of field grown cultivars. 
Australian Journal of Plant Physiology: 815-25. 

Wright J C ,  Nageswara Rao R C  and Farquhar G  D, 1994 Peanut cultivar variation 
in water-use efficiency und carbon isotope discrimination under drought 
conditions in the field. Crop Science, 34: pp 92-97. 

Wright, G C  Smith, R C G and McWilliam, J R 1983a Differences between two 
grain sorghum genotypes in adaptation to drought stress. I. Crop growth and 
yield responses. Australian Journal for Agricultural Research. 34:615-26. 



Wyn Jones, R G Storey, R, Leigh, R A, Ahmad, N, and Pollard, A 1977 A 
hypothesis on cytoplasmic osn~oregulation. In 'Regulation of Cell Membrane 
Activity in Plants'. Ed. E Marre and 0 Cifkri pp. 121-36 Biomedical 
Press: Amsterdam. 

Wyn Jones RG and Storey R 1981 Betaines In "The Physiology and Biochemistry of 
drought resistance in plants" Eds LG Paleg and D Aspinall pp 171-204 
Academic press: Sydney. 

Wyn Jones, R G 1984 Phytochemical aspects of osmotic adaptation. Rec. Adv. 
Phytochem. 1855-78. 

Wyn Jones, R C 1984 Phytochemical aspects of osmotic adation. Recent Advances 
in Phytochemistry 18,55-78. 

Yancey, P H M E , Clark, S C Hand, R D Bowlus and G N Somero 1982 Living 
with water stress: evolution of osmolyte systems. Science 217: 1214-1222. 

Yancey, P H , Clark, M E, Hand,SC, Bowlus, R D, Somero, G N 1982 Living 
with water stress: evolution of osmolyte systems, Science 217:1214-22. 

Yang G, Rhodes D and Joly RJ 1996 Effects of high temperature on membrane 
stability and chlorophyll fluorescence in glycine betaine deficient and glycine 
bctaine containing maize lines. Australina Journal of Plant Physiology 23, 
437-443. 

Yco A R, Flowers T J 1983 Varietal differences in the toxicity of sodium ions in rice 
leaves Physiolo Plant 59:189-195. 

Yco A R, Yeo M E, Flowers S A, Flowers T J 1990 Screening of rice Oryz saliva L. 
genotypes for physiological characters contributing to salinity resistance and 
thcir relationship to overall performance. 'Theor. Appl. Genet. 79:377-384. 

Zao Y, Aspinall D and Palcg L C 1992 Protection of membrane integrity in 
Medicago sativa L. by against the effects of freezing. Journal of Plant 
Physiology 140: 541-543. 

Zhang, H Q, Croes, A F 1983 Protection of pollen germination from adverse 
temperatures: a possible role of proline. Plant Cell Environment 6:471-476. 

Zhao Y, Aspinall D and Paleg LG 1992 Protection of membrane integrity in Medicago 
sativa L. by glycine betaine against the effects of freezing. Journal of Plant 
Physiology 140,541-543. 


	00000001.tif
	00000002.tif
	00000003.tif
	00000004.tif
	00000005.tif
	00000006.tif
	00000007.tif
	00000008.tif
	00000009.tif
	00000010.tif
	00000011.tif
	00000012.tif
	00000013.tif
	00000014.tif
	00000015.tif
	00000016.tif
	00000017.tif
	00000018.tif
	00000019.tif
	00000020.tif
	00000021.tif
	00000022.tif
	00000023.tif
	00000024.tif
	00000025.tif
	00000026.tif
	00000027.tif
	00000028.tif
	00000029.tif
	00000030.tif
	00000031.tif
	00000032.tif
	00000033.tif
	00000034.tif
	00000035.tif
	00000036.tif
	00000037.tif
	00000038.tif
	00000039.tif
	00000040.tif
	00000041.tif
	00000042.tif
	00000043.tif
	00000044.tif
	00000045.tif
	00000046.tif
	00000047.tif
	00000048.tif
	00000049.tif
	00000050.tif
	00000051.tif
	00000052.tif
	00000053.tif
	00000054.tif
	00000055.tif
	00000056.tif
	00000057.tif
	00000058.tif
	00000059.tif
	00000060.tif
	00000061.tif
	00000062.tif
	00000063.tif
	00000064.tif
	00000065.tif
	00000066.tif
	00000067.tif
	00000068.tif
	00000069.tif
	00000070.tif
	00000071.tif
	00000072.tif
	00000073.tif
	00000074.tif
	00000075.tif
	00000076.tif
	00000077.tif
	00000078.tif
	00000079.tif
	00000080.tif
	00000081.tif
	00000082.tif
	00000083.tif
	00000084.tif
	00000085.tif
	00000086.tif
	00000087.tif
	00000088.tif
	00000089.tif
	00000090.tif
	00000091.tif
	00000092.tif
	00000093.tif
	00000094.tif
	00000095.tif
	00000096.tif
	00000097.tif
	00000098.tif
	00000099.tif
	00000100.tif
	00000101.tif
	00000102.tif
	00000103.tif
	00000104.tif
	00000105.tif
	00000106.tif
	00000107.tif
	00000108.tif
	00000109.tif
	00000110.tif
	00000111.tif
	00000112.tif
	00000113.tif
	00000114.tif
	00000115.tif
	00000116.tif
	00000117.tif
	00000118.tif
	00000119.tif
	00000120.tif
	00000121.tif
	00000122.tif
	00000123.tif
	00000124.tif
	00000125.tif
	00000126.tif
	00000127.tif
	00000128.tif
	00000129.tif
	00000130.tif
	00000131.tif
	00000132.tif
	00000133.tif
	00000134.tif
	00000135.tif
	00000136.tif
	00000137.tif
	00000138.tif
	00000139.tif
	00000140.tif
	00000141.tif
	00000142.tif
	00000143.tif
	00000144.tif
	00000145.tif
	00000146.tif
	00000147.tif
	00000148.tif
	00000149.tif
	00000150.tif
	00000151.tif
	00000152.tif
	00000153.tif
	00000154.tif
	00000155.tif
	00000156.tif
	00000157.tif
	00000158.tif
	00000159.tif
	00000160.tif
	00000161.tif
	00000162.tif
	00000163.tif
	00000164.tif
	00000165.tif
	00000166.tif
	00000167.tif
	00000168.tif
	00000169.tif
	00000170.tif
	00000171.tif
	00000172.tif
	00000173.tif
	00000174.tif
	00000175.tif
	00000176.tif
	00000177.tif
	00000178.tif
	00000179.tif
	00000180.tif
	00000181.tif
	00000182.tif
	00000183.tif
	00000184.tif
	00000185.tif
	00000186.tif
	00000187.tif
	00000188.tif
	00000189.tif
	00000190.tif
	00000191.tif
	00000192.tif
	00000193.tif
	00000194.tif
	00000195.tif
	00000196.tif
	00000197.tif
	00000198.tif
	00000199.tif
	00000200.tif
	00000201.tif
	00000202.tif
	00000203.tif
	00000204.tif
	00000205.tif
	00000206.tif
	00000207.tif
	00000208.tif
	00000209.tif
	00000210.tif
	00000211.tif
	00000212.tif
	00000213.tif
	00000214.tif
	00000215.tif
	00000216.tif
	00000217.tif
	00000218.tif
	00000219.tif
	00000220.tif
	00000221.tif
	00000222.tif
	00000223.tif
	00000224.tif
	00000225.tif
	00000226.tif
	00000227.tif
	00000228.tif
	00000229.tif
	00000230.tif
	00000231.tif
	00000232.tif
	00000233.tif
	00000234.tif
	00000235.tif
	00000236.tif
	00000237.tif
	00000238.tif
	00000239.tif
	00000240.tif
	00000241.tif
	00000242.tif
	00000243.tif
	00000244.tif

