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Abstract 

 

Selection and use of genetically diverse genotypes are key factors in any crop breeding program to develop 

cultivars with a broad genetic base. Molecular markers play a major role in selecting diverse genotypes. In 

the present study, a reference set representing a wide range of sorghum genetic diversity was screened with 

40 EST-SSR markers to validate both the use of these markers for genetic structure analyses and the 

population structure of this set. Grouping of accessions is identical in distance-based and model-based 

clustering methods. Genotypes were grouped primarily based on race within the geographic origins. 

Accessions derived from African continent contributed 88.6% of alleles confirming the African origin of 

sorghum. In total, 360 alleles were detected in the reference set with an average of 9 alleles per marker. 

Average PIC value was 0.5230 with a range of 0.1379 to 0.9483. Sub-race, Guinea margaritiferum (Gma) 

from West Africa formed a separate cluster in close proximity to wild accessions suggesting that Gma 

group represents an independent domestication event. Guineas from India and Western Africa formed two 

distinct clusters. Accessions belonging to Kafir race formed the most homogeneous group as observed in 

earlier studies. This analysis suggested that the EST-SSR markers used in the present study have greater 

discriminating power than the genomic SSRs. Genetic variance within the subpopulations was very high 

(71.7 %) suggesting that germplasm lines included in the set are more diverse. Thus, this reference set 

representing the global germplasm is an ideal material for breeding community, serving as community 

resources for trait-specific allele mining as well as for genome-wide association mapping. 

 

Key words: Sorghum, EST-SSRs, reference set of sorghum, genetic diversity, community resources, 

association mapping. 
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Introduction 

 

Sorghum [Sorghum bicolor (L.) Moench, 2n = 2x = 20] is the emerging model crop species for the tropical 

grasses with C4 photosynthesis. Sorghum has a genome size of 740 Mb (Paterson et al. 2009). The 

complete genome sequence of sorghum was made available to public use in early 2008 (http://genome.jgi-

psf.org/Sorbi1/Sorbi1.info.html, Paterson et al. 2009), which enabled the sorghum geneticist to understand 

the complex traits at sequence level. Sorghum is the fifth most important cereal crop and occupies the 

second position among the staple food grains in semi-arid tropics. It is well adapted to withstand harsh 

conditions, which are the characteristic feature of tropical regions.  

 

During the initial stages of molecular markers‟ evolution, RFLP markers played a significant role in 

identifying the genomic regions responsible for agronomically important traits, genetic diversity analyses 

and comparative genome mapping. In the later stages, SSR markers proved highly useful in applied 

breeding programs because of their reproducibility and co-dominant nature. In sorghum, SSR markers have 

been developed by different research groups (Brown et al. 1996; Taramino et al. 1997; Bhattramakki et al. 

2000; Kong et al. 2000; Schloss et al. 2002, Ramu et al. 2009, Srinivas et al. 2008, 2009, Li et al. 2009). 

Genetic diversity studies in sorghum were initiated early in 1990‟s using molecular markers especially 

using RFLP probes (Deu et al. 1994, 1995, 2006). During the initial stages, no separate clustering was 

observed according to race or with their geographic origin. This may be because of using less number of 

markers for their differentiation and also inclusion of less number of samples. Later, differentiation 

according to race and origin was first established by Deu et al. (1994) using RFLP probes. Later on, 

diversity analyses were carried out using different marker systems, AFLP (Menz et al. 2004) RAPD 

(Agrama and Tuinstra 2003), SSRs (Folkertsma et al. 2005; Barnaud et al. 2007; Caniato et al, 2007; Deu 

et al. 2008, Ng‟uni et al. 2011; Bouchet et al. 2012), and using next-generation sequencing technologies 

(NGS) between sweet and grain sorghums (Zheng et al. 2011). SSRs were used widely for linkage mapping 

and diversity analyses of selected germplasm subsets, ranging from a core collection (Deu et al. 2006) to 

more specific a locally adapted lines (Deu et al. 2008, 2010; Barro-Kondombo et al. 2010, Ng‟uni et al. 

2011; Ji et al. 2011; Ngugi and Onyango 2012) and trait-specific germplasm sets for aluminum tolerance 

(Caniato et al. 2007) and sweet sorghum lines (Ali et al. 2008; Murray et al. 2009; Wang et al. 2009). 

 

The major disadvantage associated with the anonymous SSR is the high cost of development and time-

consuming process. Alternatively, molecular markers/tools in a particular crop can be developed rapidly 

and in inexpensive way through data mining (Kantety et al. 2002; Varshney et al. 2002; Jayashree et al. 

2006; Ellis and Burke 2007). Nowadays, because of NGS technologies and genome sequencing projects, a 

vast amount of nucleotide sequences are flooding in the public databases. This includes both genomic and 

genic sequences. Genic sequences (Expressed Sequence Tags or ESTs) are derived from either ends of 

cDNA of plant genome expressed regions. ESTs or cDNA sequences have gained much attention in this 

http://genome.jgi-psf.org/Sorbi1/Sorbi1.info.html
http://genome.jgi-psf.org/Sorbi1/Sorbi1.info.html
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functional genomics era. SSRs have their usefulness even in this functional genomics era because of their 

reproducibility, and multi allelic nature and high-throughput nature. Identification of SSRs from ESTs 

(genic microsatellites) is the preferred alternative for rapid and inexpensive marker development (Gupta et 

al. 2003; Kantety et al. 2002; Varshney et al. 2002; Jayashree et al. 2006; Ellis and Burke 2007). ESTs, if 

found with SSRs, can be linked directly to the genes, which may have some agronomic importance.  

 

Unlike anonymous SSRs, EST-SSRs are derived from the expressed portion of genome and, thus, have the 

better chances of transferability across the species/taxa. EST-SSRs were successfully developed in different 

crops through data mining, e.g., in rice (Cho et al. 2000), sorghum (Ramu et al. 2009; Srinivas et al. 2008, 

2009), pearl millet (Senthilvel et al. 2008), barley (Eujayl et al. 2002; Thiel et al. 2003), wheat (Gupta et al. 

2003; Yu et al. 2004), tall-fescue grass (Saha et al. 2004), sugarcane (da Silva and Solis-Gracia 2006), rye 

grass (Studer et al. 2008), etc., for different purposes including linkage mapping (Ramu et al. 2009; 

Srinivas et al. 2008, 2009 in sorghum, Yu et al. 2004 in wheat, Thiel et al. 2003; Varshney et al. 2006 in 

barley), diversity analysis (Cho et al. 2000 in rice, Leigh et al. 2003; Gupta et al. 2003 in wheat, Eujayl et 

al. 2002; Varshney et al. 2008 in barley) and transferability testing (Saha et al. 2004; Balyan et al. 2005; 

Mian et al. 2005; Zhang et al. 2006). 

 

In sorghum, EST-SSR markers were limited to transferability study across the other cereals (Wang et al. 

2005) and have not yet been used for assessing diversity of germplasm subsets. Therefore, the present study 

aimed to assess the pattern of genetic diversity using EST-SSR markers and test their discriminative power 

in comparison with the genomic SSRs in a reference set of sorghum. 

 

Materials and methods 

 

Plant material 

 

A Sorghum Reference set was defined based on a genetic diversity analysis of global composite germplasm 

collection (GCGC, 3367 accessions) using 41 genomic/neutral SSR markers in the frame of a project 

sponsored by the Generation Challenge Program (GCP) of the CGIAR. The reference set captured 78% of 

the sorghum GCGC genetic diversity (Billot et al. 2013). A complete list of 384 accessions along with 

passport information is provided in Supplemental table S1. This set was built to represent along with wild 

relatives, all five basic races and their intermediate races from sorghum worldwide distribution (47 

different countries). Trait-specific and most commonly used genotypes in breeding programs were also 

included. 

 

DNA extraction and quantification 
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Seeds for the reference set were collected from ICRISAT, Patancheru, India and CIRAD, Montpellier, 

France. These seed were grown in pots under natural conditions. DNA was isolated from 10-days old 

seedlings using the protocol developed by Mace et al (2003). After extraction, 1 µl of DNA sample for all 

accessions was loaded in 0.8% agarose gels. Uncut λ DNA was loaded as a control to assess the quality and 

the quantity of DNA. Based on uncut λ DNA standards, DNA samples were normalized to a uniform 

concentration (2.5 ng/µl) and used for SSR genotyping. 

 

Genotyping with EST-SSR markers 

 

Forty-five EST-SSR markers were selected from the set of 55 SSRs developed and mapped at ICRISAT 

(Ramu et al. 2009). These markers had reasonable coverage on sorghum genome representing all ten 

linkage groups of sorghum. EST-SSR markers were grouped into different multiplex sets based on their 

amplicon sizes in internal standard genotype, BTx623 (Table 1). In addition, three pooled control panel 

DNAs were used as standards (Billot et al. 2012; http://sorghum.cirad.fr/SSR_kit), to check the consistency 

of each run in ABI 3130xl Genetic Analyzer. 

 

The forward primers were synthesized adding the M13-forward primer sequence 

(5‟CACGACGTTGTAAAACGAC3‟) at the 5‟end. A fluorescently labelled M13-forward primer sequence 

was also added in the PCR mix to amplify the fluorescently labelled PCR product, which can help further 

screening in ABI 3130xl genetic analyzer. PCR was performed in 5 μl reaction volume with final 

concentrations of 2.5 ng DNA, 2 mM MgCl2, 0.1 mM of dNTPs, 1X PCR buffer, 0.08 pM of M13-tailed 

forward primer, 0.16 pM of M13-labelled and reverse primers and 0.1 U of Taq DNA polymerase 

(AmpliTaq Gold
®
, Applied Biosystems, USA) in a GeneAmp

®
 PCR System 9700 thermal cycler (Applied 

Biosystems, USA) with the following cyclic conditions: initial denaturation at 94˚C for 15 min (to activate 

Taq DNA polymerase) then 10 cycles of denaturation at 94˚C for 15 sec, annealing at 61˚C for 20 sec 

(temperature reduced by 1˚C for each cycle) and extension at 72˚C for 30 sec. This was followed by 40 

cycles of denaturation at 94˚C for 10 sec, annealing at 54˚C for 20 sec and extension at 72˚C for 30 sec 

with the final extension of 20 min at 72˚C. Amplified PCR products according to their multiplexes with 

internal ROX-400 size standard were run through ABI 3130xl Genetic Analyzer. 

 

Data analysis 

 

Raw data produced from ABI 3130xl Genetic Analyser was first scanned through GeneScan 3.7 (Applied 

Biosystems, USA) and further fragment analysis was carried out using Genotyper 3.7 software (Applied 

Biosystems, USA). Based on relative migration with internal size standard (ROX-400, Applied Biosystems, 

USA), PCR amplicon sizes were scored in base pairs (bp). These raw data was further processed through 

AlleloBin program (http://www.icrisat.org/bt-software-downloads.htm) to get the perfect allele calls.  

http://sorghum.cirad.fr/SSR_kit
http://www.icrisat.org/bt-software-downloads.htm
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Five EST-SSR markers (Xisep0209, Xisep0621, Xisep0728, Xisep1128 and Xisep1150) were deleted from 

the data analysis due to poor data quality (many missing data points). Allele numbers, gene diversity, 

heterozygosity and polymorphic information content (PIC) were calculated with PowerMarker v3.25 

software (Liu and Muse 2005). Between samples, genetic distances were assessed through simple matching 

index as implemented in DARwin v5 software (Perrier et al. 2003, Perrier et al. 2006). A dendrogram was 

constructed using the neighbour-joining (NJ) method as implemented in the same software. 

 

Analysis of population structure and AMOVA 

 

Bayesian cluster analysis, a model-based approach, as implemented in STRUCTURE 2.2 (Pritchard et al. 

2000, Falush et al. 2003) was employed to detect the population structure and to assign the individuals in 

reference set of sorghum into subpopulations (K) based on the 40 EST-SSR markers data. An admixture 

model with correlated allele frequencies was used with burn-in length of 100,000 and 200,000 Monte Carlo 

Markov Chain (MCMC) replicates with five independent runs for each K ranging from 5 to 15. After 

obtaining optimum number of subpopulations, an analysis of molecular variance (AMOVA) was performed 

using Arlequin ver. 3.1 (Excoffier et al. 2005) to estimate the genetic variance components within 

subpopulations and between subpopulations.  

 

Results 

 

All EST-SSR markers used in this study were polymorphic across accessions of the sorghum reference set. 

Availability of markers data ranged from 91.4 % (Xisep0108) to 100 % (Xisep0101) with a total of 1.83 % 

missing data. These markers yielded a total of 360 alleles with an average of 9 alleles per marker (Table 1). 

Out of 360 alleles observed, cultivated sorghum accessions alone contributed 320 alleles (88.9 %), whereas 

the wild genotypes alone contributed 257 alleles (71.4 %). The number of alleles per locus ranged from 3 

(Xisep1038) to 39 (Xisep1012) (Table 1). Complete marker data produced across 384 reference set 

accessions with 40 EST-SSR markers are included in Supplemental table S2. 

 

Unique and rare alleles 

 

Cultivated sorghum genotypes accounted for 103 (28.6 %) unique alleles while wild genotypes showed 40 

unique alleles (11.1 %). Among 40 unique alleles in wild genotypes, 8 were contributed by only one 

accession, IS 18868, which belongs to verticilliflorum subspecies that purportedly originates from the USA. 

A total of 217 alleles were detected in common between cultivated and wild genotypes. A large number of 

alleles (134 alleles, 37.2 %) were found as „rare alleles‟ (frequency <1 %). Rare alleles were not observed 
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for two markers viz., Xisep0523 and Xisep1029, whereas the maximum number of rare alleles were noted 

for Xisep1012 (13 alleles) followed by Xisep0829 (11 alleles).  

 

PIC values for these markers in the reference set of sorghum varied from 0.1379 (Xisep0120) to 0.9483 

(Xisep1012) with an average of 0.523. Xisep1012 was the most informative, with the most alleles and 

highest PIC value. Observed heterozygosity varied from 0.0 (Xisep1038) to 0.1076 (Xisep1103) with a 

mean of 0.039. Gene diversity varied from 0.1429 (Xisep0120) to 0.9505 (Xisep1012) with an average of 

0.5690 (Table 1). 

 

Allelic distribution according to the race 

 

Maximum numbers of alleles were present in bicolor race (212 alleles, 58.89 %), followed by caudatum 

race (208 alleles, 57.78 %). Durra and guinea (excluding guinea margaritiferum (Gma)) race accessions 

contributed 177 (49.17 %) and 180 alleles (50 %), respectively. Kafir race contribution was limited to only 

107 alleles (29.72 %). Among the guinea race, guinea margaritiferum (Gma) contributed 91 alleles (25.28 

%). All EST-SSR markers screened were found polymorphic in bicolor and guinea races. Five markers 

(Xisep0114, Xisep0422, Xisep0829, Xisep1038 and Xisep1231) were found monomorphic across the kafir 

race accessions. Xisep0120 and Xisep0422 markers were found monomorphic in caudatum and durra race, 

respectively. Within the guinea race, Gma race accessions had nine monomorphic markers, namely, 

Xisep0242, Xisep0422, Xisep0444, Xisep0607, Xisep0639, Xisep0824, Xisep0829, Xisep0948 and 

Xisep1035.  

 

Allelic distribution according to geographic origin 

 

All the markers were polymorphic across all the genotypes originated from Africa continent. Genotypes 

originated from Africa continent had 319 alleles (88.61 %) whereas those from other parts of world 

contributed 306 alleles (85.0 %). Among the African origin genotypes, those from Central Africa 

contributed 183 alleles (50.83 %), Eastern Africa 251 alleles (69.72 %), Southern Africa 212 alleles (58.89 

%) and Western Africa 225 alleles (62.50 %). 

  

Reference set accessions from Asian continent were grouped into three, namely, Eastern Asia, Middle East 

and India. All the markers were polymorphic in the genotypes India origin contributed 174 alleles (48.33 

%). Genotypes from Eastern Asia contributed 119 alleles (33.05 %), whereas those from Middle East 

contributed 139 alleles (38.61 %). Five markers, Xisep0203, Xisep0422, Xisep0805, Xisep1038 and 

Xisep1231 were found monomorphic in Eastern Asia accessions while Xisep0422, Xisep0449, Xisep0504 

and Xisep1231 were monomorphic in Middle East accessions. In both cases, Xisep0422 and Xisep1231 

markers were found monomorphic. 
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Cluster analysis 

 

References set accessions were clustered according to geographic origin and by race within each origin. 

Factorial analysis (FA) (Fig. 1a, 1b) and NJ analysis (Figure 2) have clearly identified the different clusters 

according to their race and geographic origin. Guinea margaritiferum race genotypes from Western Africa 

were clustered on top of the second quadrant (II) (Fig. 1b) of FA, when axis 2 and 3 were considered. Wild 

genotypes were clustered in the middle of the intersection point between quadrant I and II. Genotypes 

belonging to kafir race were clustered in III quadrant, while genotypes belonging to races caudatum and 

guinea were grouped in IV and I quadrants. The durra race grouped together between quadrant I and IV 

when viewed on axis 1-2 of FA. On these axes, caudatum accessions grouped in quadrant II, while bicolor 

race accessions were grouped between durra and caudatums. 

 

For a better understanding, the dendrogram produced by NJ analysis was divided into eight major clusters. 

Accessions originated from Western Africa (AfricaW) were grouped into two separate clusters. One cluster 

was exclusively made up of accessions belonging to guinea margaretiferum (Gma) in VIIa cluster which 

formed a group along with wild genotypes (Fig. 2). Another cluster consisted of mostly guinea (G) and 

guinea gambicum (Gga) and their intermediate races (cluster II). Cluster III was formed mainly with the 

accessions belonging to kafir (K) race, most of which originated from Southern Africa (AfricaS). This 

cluster also included other accessions derived from Southern Africa belonging to race bicolor (B) and from 

Eastern Africa belonging to intermediate race durra-caudatum (DC). Accessions that originated from India 

were mainly grouped into two clusters. One group of accessions belonging to the guinea race was grouped 

in cluster IV along with some other intermediate races, which were derived from South Africa. Another 

group of accessions were clustered in Cluster Va which belong to durra race. Durras from Middle East 

were clustered in Cluster Vb. Cluster VI was divided into two subgroups, a and b. Cluster VIa mainly 

consisted of bicolor and intermediate races from Eastern Asia, whereas VIb consisted of durra and 

intermediate accessions with durra from Africa being grouped together. Accessions belonging to caudatum 

race derived from Eastern Africa (AfricaE), Central Africa and Western Africa were largely grouped in 

cluster I.  This cluster also hosted the accessions having the intermediate races between caudatum and 

guinea. 

 

 

Most of the wild genotypes were grouped in cluster VIIb. There was no specific cluster differentiation 

according to their geographic origin (Fig. 2). But there was clear demarcation in grouping pattern according 

to their subspecies. Most of arundinaceum and aethiopicuum subspecies accessions were grouped together, 

while verticilliflorum and drummodii subspecies accessions formed another group. Some of the landraces 

were also grouped into the same cluster along with wild genotypes in cluster VIIc. Cluster VIII consisted of 
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accessions from different geographic origins. A dendrogram was also constructed without wild accessions 

(Supplemental figure S3), which does not affect much of the grouping pattern of other germplasm. 

 

STRUCTURE and AMOVA 

 

This reference set representing the global sorghum germplasm collection representing all basic races and 

intermediate races from all geographic origins. Hence, cluster analysis (distance based) in combination with 

STRUCTURE (model-based) analysis was used to identify possible number of subpopulations. Cluster 

analysis clearly showed that Gma accessions were separated from guinea race and clubbed with wild 

accession. STRUCTURE analysis also clearly assigned the individuals into subpopulations according to 

their geographic origin followed by race. Gma race accession were separated from guinea and wild 

accessions when K = 6. This K was taken as prime source of number of subpopulations to investigate 

further. In this, southern Africa derived accessions (Kafir and Guinea races) were grouped as single 

subpopulation. When K = 7, Southern Africa derived accessions [Kafir (cluster III) and guinea races 

(Cluster IV)] were separated into two sub groups. Further at K= 8, cluster V and VI were separated to three 

subpopulations separating Middle East and East Asia derived accessions as a single population from Indian 

durras and intermediate races from Africa continent. When K increased to 10, accessions from Middle East 

and East Asia were further separated into two subpopulations. Hence, K = 10 was taken as the possible 

number of subpopulations present in the reference set of sorghum (Fig. 3). AMOVA was performed with 

these 10 subpopulations and observed more genetic variation within the subpopulations (71.7 %) than 

between the subpopulations (28.3 %).  

 

Discussion 

Any crop improvement program starts with identification of variability among the genotypes. Diversity 

analysis at molecular level using PCR based markers is the cheapest and rapid method of identifying the 

relationship among the genotypes. The user-friendly nature of SSR markers was successfully exploited in 

crop species for better understanding the genetic diversity, domestication process, and geographic 

divergence and distribution. 

 

During the early stages, RFLP markers were used for diversity analysis (Aldrich et al. 1992, Tao et al. 

1993). Because of very few numbers of genotypes included in those studies, the prevailing structure could 

not be deciphered well using RFLP and RAPD markers. However, an assessment of population structure 

mainly depends on the type and number of markers used and representativeness of the samples analyzed. In 

the present study, samples were selected from global genetic diversity analysis using SSR markers. A 

reference set of sorghum (Supplemental table S1) was selected for diversity analysis representing a 

significant portion of genetic variation with all five basic races, their intermediate races and wild 
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genotypes. Markers selected for screening (Table 1) have complete genome coverage across 10 linkage 

groups of sorghum. 

 

All of the EST-SSR markers (40) used in this study were polymorphic (100 %). Gupta et al. (2003) 

identified only 55 % of 20 EST-SSR markers used were polymorphic among 52 wheat accessions.  Eujayl 

et al. (2002) reported a lower level of polymorphism (25 %) when 42 EST-SSR markers screened against 

64 durum wheat germplasm lines. This clearly indicates that the percentage of polymorphism depends on 

number and nature of the material used under analysis. In the present study, data analysis was carried out 

with 40 EST-SSR markers. Five markers (Xisep0209, Xisep0621, Xisep0728, Xisep1128 and Xisep1150) 

were removed from the analysis because of missing data. The AlleloBin program, used for converting raw 

allele calls to perfect allele calls, uses a step-wise mutation model (SMM; Kimura and Crow 1964). In the 

present study, 33 EST-SSR markers followed SMM model, whereas 7 markers (Xisep0203, Xisep0523, 

Xisep0617, Xisep0630, Xisep1038, Xisep1140 and Xisep1202) did not follow SMM model. But these seven 

markers fit well in an alternative model called „infinite alleles model‟ (IAM; Ohta and Kimura 1973), 

which assumes that each mutation (insertion and deletion) creates a new allele. A similar pattern of allele 

scoring was observed with genomic SSR markers in Folkertsma et al. (2005). 

 

In total, 40 EST-SSR markers produced 360 alleles with an average of 9 alleles per marker (Table 1). This 

is the maximum number of alleles per markers reported using EST-SSR markers in any cereals to date. In 

case of tall fescue grass, an average of 2.78 alleles/marker were reported (Saha et al. 2004), while 1.8 

alleles/marker in bread wheat (Gupta et al. 2003) with 20 EST-SSRs, 4.5 alleles/markers in durum wheat 

with 42 EST-SSRs (Eujayl et al. 2002), 3 alleles/markers in 54 barley accessions using 38 EST-SSR 

markers (Thiel et al. 2003), and 4.6 alleles/marker in Crotalaria species (Wang et al. 2006). Compared to 

results obtained with neutral genomic SSRs, the average number of alleles per marker detected in this study 

is comparable to that found in limited size core collection (Caniato et al. 2007), or on geographically 

limited studies (e.g. Barnaud et al. 2007, Deu et al. 2008), but is lowest than found on the same material 

(Billot, Ramu et al., accepted). This illustrates that although EST-SSR markers present a high 

discriminating power, they are however under selective pressure. 

 

The PIC values of markers can provide an estimate of discrimination power in a set of accessions by taking 

not only the number of alleles, but also the relative frequencies of each allele (Smith et al. 2000). The 

average PIC value of EST-SSR markers (0.5230) was a bit higher in this references set of sorghum in 

comparison with previous studies using EST-SSR markers for genetic diversity analysis in other crops, e.g.,  

0.443 in bread wheat (Gupta et al. 2003), 0.45 in barley (Thiel et al. 2003). However, the average PIC value 

was lower compared to PIC values of genomic SSR markers in sorghum [0.62 in both studies of Agrama 

and Tuinsta (2003) and Caniato et al. (2007)]. However, this is higher than PIC value reported by 

Folkertsma et al. (2005) using 100 guinea race accessions and 21 genomic SSR markers and Ali et al. 
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(2008) using 72 sorghum accessions with 41 SSR markers. This is on par with PIC (0.54) reported by 

Wang et al. (2009) in a study involving 96 sweet sorghum lines and 95 SSRs. High PIC values and large 

number of alleles per markers can also be attributed to the nature of the materials studied. As the reference 

set was derived from global germplasm collection covering worldwide origins and racial characterizations, 

and including wild samples, it is expected to produce a large number of alleles. SSR markers containing di-

nucleotide repeats produced more alleles and hence, greater PIC values (Table 1). These results were in 

harmony with previous studies by Smith et al. (2000), Agrama and Tuinstra (2003), Casa et al. (2005) and 

Deu et al. (2008). 

 

Allelic distribution 

 

The maximum number of alleles was reported in bicolor race (58.89 %) followed by caudatum race (57.78 

%). Five markers were found monomorphic across the kafir accessions, while nine markers found 

monomorphic among Gma accessions. A large number of monomorphic markers and low percentage of 

allele contribution from Gma and Kafir (25.28 % and 29.72 %, respectively) to the total alleles are the 

major reason for their separate clusters as compared to other races. 

 

Genotypes from the African continent reported the maximum number of alleles (88.61 %) suggesting that 

maximum diversity was found in that continent and also greatly supporting the idea that sorghum 

originated from Africa. In Africa, Eastern African accessions contributed the maximum number of alleles 

(69.72 %) supporting greatly the idea that sorghum originated from Eastern Africa. No marker was found 

monomorphic in African-originated accessions, whereas five markers were found monomorphic among the 

accessions derived from Eastern Asia and four markers were monomorphic among the accessions derived 

from Middle East. In both these cases, Xisep0422 and Xisp1231 were found monomorphic. 

 

Wild species are the most diverged (capturing 71.39 % of total alleles) in the present study as reported by 

Deu et al. (1994, 2006). Cultivated and wild genotypes shared 217 alleles in common. Among 40 unique 

alleles reported by wild accessions, 8 were contributed only from one wild accession, IS 18868, which 

belongs to S. bicolor subspecies verticilliflorum. This accession has passport data indicating its origin as the 

USA, but this likely means that it entered the global germplasm collection via the USA rather than as a 

direct field collection from Africa. These rare alleles may be a target of plant breeders if these alleles 

having any significant role in trait-specific characters. A large number of rare alleles in the present study 

(37.2 %) were detected due to presence of more number of unique alleles in wild and cultivated germplasm. 

Two markers did not detect any rare alleles and they had only few alleles. 

 

 

Structure of genetic diversity 
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Based on floral and grain morphology, sorghum cultivars were grouped into five basic races and ten 

intermediate races. Reference set accessions were grouped primarily according to race within the 

geographic origin (Fig. 2) and in agreement with previous studies using RFLP markers (Deu et al. 1994, 

2006), SSRs and RFLPs (Menz et al. 2004), SSRs (Deu et al. 2008) and recently by using DArT markers 

(Mace et al. 2008, Bouchet et al. 2012). Cluster analysis of accessions based on EST-SSR allelic variation 

divided them into eight groups (Fig. 2). On a finer discrimination level, a racial pattern was found within 

eight clusters on the dendrogram. Racial discrimination by markers was first observed by Deu et al. (1994) 

in sorghum.  

 

Average gene diversity (He, also known as expected heterozygosity) among the reference set is 0.5690 with 

40 EST-SSR markers (Table 1). As expected with EST-SSR markers, this is lower in comparison with 

previously published results in a small set of highly polymorphic SSRs in materials from Morocco (He = 

0.84) by Dje` et al. (1999), in Eritrea (He = 0.78) by Ghebru et al. (2002), Niger accessions (He =  0.61), in 

South Africa (He = 0.60) by Uptmoor et al. (2003) and in Kenyan sorghums (0.6627) by Ngugi and 

Onyango (2012). Observed heterozygosity reported in the present study is much less (0.039), which 

confirms the single loci/single copy detection and is expected from accessions maintained in collection by 

several generations of enforced self-pollination. Besides, the large differences between expected and 

observed heterozygosity is reinforced by population structure. 

 

In previous studies, accessions belong to bicolor race were found scattered across all clusters and 

considered as the most heterogeneous and the most ancient race with wider geographical distribution and 

diverse uses (forage, broom-corn and sweet stalks) (Doggett 1988; Dje` et al. 2000; Deu et al. 2006; Mace 

et al. 2008). However, in the present study, EST-SSR markers showed their ability to differentiate the 

bicolor race mainly into two major groups (Fig. 2). African bicolors were grouped in cluster III along with 

homogeneous kafir race derived from Southern Africa. Some of bicolor accessions derived from Africa 

were grouped closely with wild accessions in cluster VIIc. A couple of bicolor accessions derived from 

India were grouped in cluster Va and VIa. Grouping of bicolor race with wild accessions confirms their 

resemblance to spontaneous weedy sorghum and also the most primitive grain sorghum (Casa et al. 2005) 

and also sharing the rare alleles with wild sorghum. This suggests that EST-SSR markers have good 

discriminating power in relation to the bicolor race. Similarly, Mace et al. (2008) also found the grouping 

of one bicolor race (IS 12179C) with wild genotypes.  

 

Caudatum is the race of greatest interest because it provides the genes responsible for higher grain yields 

with excellent seed quality (Mace et al. 2008), whereas guinea race is of interest to breeders due to their 

great genetic diversity (Deu et al. 1994, 1995). Caudatum race was grouped mainly into three different 

clusters (Fig. 2), which were largely geographic origin specific. Most of the African caudatums were 
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grouped in cluster I, where as a group of accessions from Eastern Africa (AfricaE) were grouped in cluster 

IV. East Asia and North America origin caudatums were grouped in cluster VIa. A couple of caudatum race 

accessions from Eastern Africa (AfricaE) were grouped with wild accessions (VIIb).  

 

Durra race accessions were grouped primarily in cluster Va (Fig. 2), largely comprised of durra genotypes 

originating from India. Most of the durras were considered as drought tolerant genotypes based on their 

adaptations to very high temperatures and/or receding moisture conditions (Deu et al. 2006). Durra 

accessions and intermediate races with durra, durra-caudatum (DC) genotypes from Middle East were 

grouped in cluster Vb. A group of DC was grouped in cluster VIII. This is contrary to the conclusions 

drawn by Deu et al. (2008) where all intermediate races with durra were clustered in the same cluster of 

durra. 

 

Kafir race is grouped in only cluster III primarily derived from Southern Africa (AfricaS) (Fig. 2). 

Interestingly, an intermediate race with caudatum (KC) also grouped in the same cluster. This suggests that 

kafir race is the least divergent and expected to be the most homogeneous group among all the races. The 

same conclusions were drawn in the previous studies (Deu et al. 1994, 1995, 2006; Cui et al. 1995; Menkir 

et al. 1997; Dje` et al. 2000). The homogenous nature in kafir race was supported by presence of lower 

number of alleles (29.72 %) and five monomorphic markers. These results are in agreement with the recent 

origin and restricted geographic distribution of kafir race (Doggett et al. 1988, Deu et al. 2006). 

 

Because of the diverse nature, the guinea race has become the choice of breeders (Deu et al. 1994, 1995, 

Folkerstma et al. 2005) in crop improvement programs. Guinea race exhibits a moderate level of genetic 

diversity and is grouped into three major clusters according to their origin and distribution (Figure 2). 

Similar grouping patterns were observed with isozymes, RFLP probes and SSRs (Deu et al. 1994, 2006, 

2008; Cui et al. 1995; Folkertsma et al. 2005, Barnaud et al. 2007). Guinea accessions derived mainly from 

Western Africa (AfricaW) were grouped into two separate clusters, margaritiferum and non-

margaritiferum. Guinea guineense (Ggu) and guinea gambicum (Gga) were grouped with some other 

guinea lines in cluster II, whereas Gma accessions clustered in a small group (cluster VIIa), in close knit 

with wild accession, which were mainly derived from Western Africa (AfricaW) (Fig. 2). Hence, Gma may 

be considered as a recently evolved “„primitive forms‟ of guinea race”. Guinea accessions originated from 

India were grouped separately in cluster IV and closely with Southern African guineas (including guinea 

roxburghii, Gro) suggesting a recent introduction of Asian forms from Southern Africa. Deu et al. (2006) 

also found a separated cluster for guineas derived from Asia. 

 

The singularity of Gma race accessions is in accordance with previous studies (Deu et al. 1994, 1995, 2006, 

2008; Cui et al. 1995, de Oliveira et al. 1996, Folkertsma et al. 2005, Barro-Kondombo et al. 2010). The 

singular nature of Gma was due to presence of only 25.27 % of alleles found across the sorghum reference 
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set and a maximum of nine monomorphic markers. All Gma accessions in cluster VIIa originated from 

Western Africa (AfricaW). The distinct nature of Gma from other guinea race subgroups is remarkable, 

since both are infertile and cultivated in sympatry in the same season by the same farmers (Deu at al. 2006). 

The Gma subgroup was distinct from other guinea races and closer knit with wild genotypes than other 

cultivated sorghums suggesting that Gma group represents an independent domestication event. An 

accession of Southern Africa origin (IS 19455) was not grouped with Western African margaritiferum, but 

with other guineas originating from Southern Africa. Grouping of this accession is in agreement with 

previous studies by Deu et al. (1995, 2006). This suggests that Southern African margaritiferum shares a 

common ancestor with Western African margaritiferum and the change in its genetic background as 

compared to Western African guinea margaritiferum is due to their isolation and selection pressure (Deu et 

al. 2006). Grouping of accessions is not much affected by removal of wild accessions from cluster analysis 

(Supplemental figure S3).  

 

 

STRUCTURE analysis clearly identified ten subpopulations according to their race with in the geographic 

origin in the reference set germplasm lines. This in agreement with clustering observed in distance-based 

method, with AMOVA results indicating that large amount of variation (71.7 %) is present within the 

subpopulations. This confirms that the reference set used in this study includes diverse germplasm lines and 

is suitable for allele mining and association mapping.  

 

Geneflow in sorghum 

 

Exchanging of genes is one of the major factors in evolution of domesticated plant species (Harlan 1992). 

Gene flow from cultivated to wild, weedy and feral relatives disturbs the size and dynamics of wild and 

weedy populations. Resulting in the disturbance of natural gene pools and endangering the wild relatives. 

This in turn leads to loss of natural genetic diversity (Akimoto et al. 1999; Snow et al 2003). Molecular 

analysis clearly identified the existence of gene flow in crop plants (Mariac et al. 2006, Sagnard et al. 

2011). In the present study, some of the landraces were grouped with wild genotypes and most of them 

were derived from Africa (Fig. 2). A wild accession (IS 21691, S. drummondii from Western Africa) was 

grouped in cluster III along with kafir and a couple of wild accessions were grouped with guinea race in 

cluster II. This can be attributed to gene flow between landraces or cultivars and wild genotypes. This may 

be because of wild accessions growing around the cultivated sorghums in Africa as observed by Tesso et al. 

(2008) and Sagnard et al. (2011). Existing cultural practices in Africa (growing side by side or in close 

proximity) are the major source of gene flow from cultivated to wild genotypes and vice versa. Wild 

accessions were found in Africa in crop margins, barren lands, hill bottom areas, and in the fields where 

crops were abandoned due to severe drought, pest and weeds infestation or extreme nutrient deficiency 

(Tesso et al. 2008). This suggests that wild accessions have the desirable alleles to resist to these factors. 
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This would encourage sorghum breeders to use wild alleles to transfer into locally adapted improved 

varieties in their crop improvement programs.  

 

In conclusion, functional diversity analysis with proper phenotyping in multiple locations will help the 

breeders to mine for trait-specific alleles and to facilitate an effective way of identifying the gene/QTL for 

different agronomic traits through association mapping (Abdurakhmonov and Abdukarimov 2008; Zhu et 

al. 2008, Casa et al. 2008, Upadhyaya et al. 2012). Thus, sorghum diversity panel representing global 

genetic diversity can be used as community resource for allele mining and genome-wide association 

mapping using SNPs generated through NGS technologies. Combination of association mapping with 

physical mapping helps in identifying the gene sequences underlying a particular trait. This further helps in 

better understanding of the variation at the sequence level which in turn helps to identify the genomic 

location responsible for different traits in closely related crops through comparative genome mapping. 
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Table 1 

Details of sorghum EST-SSR markers screened across the reference set of sorghum 

Figure 1 

Factorial analysis with 40 EST-SSR markers screened against a reference set of sorghum. Basic races have 

been represented with different colors [B-Bicolor in blue; C-caudatum in violet, D-durra in pink, G 

(excluding Gma)-guinea in green; Gma-guinea margaritiferum in light-green; K-kafir in orange, wild in 

red] 

 

Figure 2 

NJ dendrogram for sorghum reference set based on the allelic data of 40 EST-SSRs. Cluster numbers and 

color codes are the same as those used in the STRUCTURE analysis presented in Fig. 3  

 

Figure 3 

STRUCTURE analysis identified ten subpopulations among reference set accessions of sorghum. Labels 

below refer to the cluster number in NJ analysis.  

 

Supplemental table S1: List of 384 accessions included in reference set of sorghum and their passport 

information 

 

Supplemental table S2: Data matrix of allele calls used in the present study for 384 accessions across 40 

EST-SSR markers. Missing data points were scored as numerical zero (“0”).  

 

Supplemental figure S3: Dendrogram of reference set without their wild relatives. Cluster analysis with 

(Figure 2) and without (supplemental figure S3) wild accessions suggest that they have greater similarity in 

grouping patterns according to their races within geographic origins.     
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Table 1: 
         

           

S. 

No Marker Repeat 

Linkage 

Group Forward Primer sequence (5'-3') Reverse primer sequence (5'-3') 

Amplicon 

size in 

BTx623 

in bp 

Allele 

Number 

Gene 

Diversity 

(He) Heterozygosity PIC  

1 Xisep0101 TG(9) SBI-03 CAGATCTCCGGTTGAAGAGC TGAGCCGAGCTCAACATACA 231 15 0.8670 0.0755 0.8533 

2 Xisep0108 GGC(5) SBI-08 GTACGTTCCCCATCCTTCCT CTCCTGTTCTCTCCGCATTC 211 16 0.4354 0.0969 0.4178 

3 Xisep0114 GT(10) SBI-03 CTTCGCCGCCTAGATCTATTT GGGGATCATCAGATCACACA 216 15 0.4089 0.0316 0.4011 

4 Xisep0117 CCT(7) SBI-03 GGATGTACCAGCACCAGCTC GAGAACAGCCGAGGGAGAG 154 4 0.4503 0.0349 0.3656 

5 Xisep0120 CCGT(4) SBI-05 CACGAGGCACATCTATCCAC CTCGCTCCAGCAATCCTC 210 6 0.1429 0.0248 0.1379 

6 Xisep0125 CAA(6) SBI-09 TCAACAAGAACAACGCCAAC GGCTCTTGAACCTCTTGTCG 214 5 0.5280 0.0289 0.4808 

7 Xisep0131 CTGCT(4) SBI-07 TCAGTCTTGACACAAGCAAGC CGCTTCTTCCTGAGCTTGAG 248 7 0.7212 0.0899 0.6731 

8 Xisep0203 ATAC(3) SBI-08 CGATGGTGAGGATGGGTAAC TTCTGCACAACCATCTTTGG 227 8 0.6437 0.0394 0.5754 

9 Xisep0242 TACC(3) SBI-04 GCTGGAGAAGCTCAAGGAGA TCGTTGAATGTTGGAGTGGA 229 4 0.4886 0.0267 0.3817 

10 Xisep0327 GTT(4) SBI-04 CTGTTTGTGCTTGCAACTCC TCATCGATGCAGAACTCACC 216 6 0.6052 0.0341 0.5460 

11 Xisep0422 GCAT(3) SBI-06 TGCCCGTAATTAAGCCCATA CCCACTGCTCCAGGTAAGAA 289 4 0.1971 0.0053 0.1811 

12 Xisep0444 TG(7) SBI-06 ATGATCCGTCGGAGTTAGCA GGATGCAGGACAGCATCTCT 228 6 0.5746 0.0450 0.4878 

13 Xisep0449 TCA(7) SBI-06 CCGCTCATCAGTCATCACAT ACAAAATCCATCCCACAACG 212 6 0.6059 0.0471 0.5486 

14 Xisep0504 CTGC(6) SBI-01 GCTCAAGACCATCGAGAAGC TGATTGTGAAATAACAGCAGGAG 208 6 0.4418 0.0367 0.4159 

15 Xisep0522 CAG(8) SBI-02 TCATGGACCGTGTCATCG GCGTACTTGCTCCACCTCTC 352 9 0.5241 0.0264 0.4952 

16 Xisep0523 TGC(4) SBI-09 ACGACATGGACGACATCAGA AACAAAAACACACGGGAAGG 237 8 0.8358 0.0235 0.8150 

17 Xisep0550 GA(11) SBI-09 GCGGCGAGAGAGAGAGTTC CGAGCTTGATCTTCTCGTTGA 206 11 0.6823 0.0341 0.6449 

18 Xisep0604 CTC(15) SBI-10 GCACCTACGGCTTTTACTGC ACGGTGGATAATCGAGGATG 266 11 0.7504 0.0734 0.7127 

19 Xisep0607 AGA(4) SBI-10 CACGAGGATTTCACCAAACC TGCACGTGTTCGAAATAGGA 206 4 0.4702 0.0373 0.4206 

20 Xisep0617 GATC(3) SBI-06 GGCTGGGAGAGCTAGGAAGA GACGGCTCGTCCATCATC 220 7 0.6189 0.0371 0.5589 

21 Xisep0630 GTC(5) SBI-10 GATCGAGTCGTTCGTCGAGT AAATCCATCGACCAATCAGC 196 12 0.8410 0.0052 0.8212 

22 Xisep0639 TCT(6) SBI-10 TCGGACGGAGTCATCAGATA GCCTTCGTGTCTTCTGTCCT 218 7 0.4856 0.0346 0.4268 

23 Xisep0747 TCC(5) SBI-02 AGGCAGCCTGCTTATCACAA ACAAGCTCAGGTGGGTGGT 222 8 0.7126 0.0271 0.6689 
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24 Xisep0805 GT(8) SBI-07 CTCCCCCGTGATTTGATCT TAAGCAAAAGCACCATCAGC 211 8 0.5791 0.0267 0.4942 

25 Xisep0809 TATG(4) SBI-08 GGAAACTCTTGTGGGTTGGA TTGACCTCTCTACAAATGATCCAC 209 11 0.6380 0.0395 0.5791 

26 Xisep0824 CCG(4) SBI-03 TCCTGAAAGAAACGCACACA GAGGAGGGTGTGGAGGTGTA 212 4 0.3974 0.0394 0.3245 

27 Xisep0829 AG(6) SBI-07 CGCTGCCAAAATCTAAGCTC CACGGTGGTCACATCAGAAG 197 21 0.6848 0.0293 0.6481 

28 Xisep0841 GCA(10) SBI-02 TAGGAATGACGACACCACCA CAAAGGCAAGGGTTTTGCTA 234 11 0.7925 0.0500 0.7670 

29 Xisep0938 TGGGT(6) SBI-02 TGCTGTTCTTGAACGTGTTTG TTTTGCACAAAGTTGCGTGT 225 6 0.5350 0.0272 0.4419 

30 Xisep0948 TA(5) SBI-04 AGGCCGAATCACAATAATGG AGTGCATGAACAGGGCATC 217 4 0.2606 0.0325 0.2319 

31 Xisep0949 GCA(5) SBI-01 CAGTGCCAATAAGCTCGTCTC CATCGATCTCTGCTTCTGCTT 115 9 0.6407 0.0681 0.5729 

32 Xisep1012 TC(40) SBI-03 TAGCAAGCAGAAATCGACCA ACCATTGTCCCTCACTCCTG 226 39 0.9505 0.0420 0.9483 

33 Xisep1014 GT(5) SBI-09 ACCGCCGACGTCATAGTAAG GGCAGTAACATAGCATCCATCA 238 12 0.6858 0.0341 0.6375 

34 Xisep1029 GCAT(3) SBI-05 GACCCTCCTCCTCAACCACT CATGCATGCACAAGCAGATT 228 6 0.6296 0.0663 0.5587 

35 Xisep1035 TGAT(5) SBI-01 CACTTTCTACCGCTCCTTCG AGTGATGATGATGACCGAACC 169 7 0.4222 0.0446 0.3953 

36 Xisep1038 GCT(4) SBI-10 GGGCTCTAATCCTCCTCAGC GCTACCACTGCCTCCATTGT 228 3 0.3393 0.0000 0.2869 

37 Xisep1103 TCG(7) SBI-04 CTCTTCGAGGACACCAACCT AAGGCAAAGCACAAAGCCTA 217 8 0.6572 0.1076 0.5999 

38 Xisep1140 GAC(4) SBI-05 TGGGAGTACTACCCGGAGGT CGCACGTACACCCTTAATCTT 215 10 0.5349 0.0131 0.4901 

39 Xisep1202 ATA(6) SBI-05 CTACCTCGTGCACCAAATGA CGCAAACAGATCCTTGCTTT 212 8 0.6913 0.0133 0.6362 

40 Xisep1231 GT(11) SBI-08 CTGCTTATGCGCTTCGATTT CATAATGGGTGCACTCTAGCC 220 8 0.2912 0.0184 0.2771 

            Mean 9 0.5690 0.0392 0.5230 

      
Total 360       

      
Min 3 0.1429 0.0000 0.1379 

      
Max 39 0.9505 0.1076 0.9483 
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Figure 1 
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Figure 2 
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Figure 3 
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Legend:  
I : Caudatum and caudatum-intermediate accessions from Eastern, Central and Western Africa 

II : Guinea accessions from Western Africa 

III : Kafir and other accessions from Southern Africa 

IV : Guinea and other accessions from Southern Africa, Eastern Africa and Asia 

Va : Durra accessions from Middle East 
Vb : Durra and intermediate race with durra accessions from India 

VIa : Bicolor and intermediate accessions from Eastern Asia,  
VIb : Durra and DC accessions from Eastern Africa, North America and Middle East 
VIIa : Guinea margaretiferum accessions from    Western Africa 

VIIb : Bicolor and wild accessions 

VIIc : Bicolor and durra accessions from Eastern Africa 


