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Summary

Pigeonpea sterility mosaic virus (PPSMV) is transmitted by the eriophyid mite, Aceria cajani,
and is very closely associated with sterility mosaic disease (SMD) of pigeonpea (Cajanus cajan) in
the Indian subcontinent. Antiserum produced to purified PPSMV preparations detected a virus-specific
32 kDa protein in sap of SMD-affected pigeonpea plants by ELISA and Western blotting. PPSMV
was transmitted mechanically in sap of SMD-affected pigeonpea leaves to Nicotiana benthamiana.
Ultrastructural studies of symptom-bearing leaves of two pigeonpea cultivars, (ICP8863 and ICP2376)
and N. benthamiana infected with PPSMV, detected quasi-spherical, membrane bound bodies (MBBs)
of ¢. 100-150 nm and amorphous electron-dense material (EDM). These structures were distributed
singly or in groups, in the cytoplasm of all cells, except those in conductive tissues. Fibrous inclusions
(FIs), composed of randomly dispersed fibrils with electron lucent areas, were present in the cytoplasm
of palisade cells and rarely in mesophyll cells of the two pigeonpea cultivars but were not detected in
infected N. benthamiana plants. In the PPSMV-infected pigeonpea cultivars and N. benthamiana,
immuno-gold labelling, using antiserum to PPSMV, specifically labelled the MBBs and associated EDM,
but not the FIs. The MBBs and associated inclusions are similar in appearance to those reported for
plants infected with the eriophyid mite-transmitted High Plains virus and the agents of unidentified
aetiology associated with rose rosette, fig mosaic, thistle mosaic, wheat spot chlorosis and yellow

ringspot of budwood. The nature of these different inclusions is discussed.
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Introduction

Eriophyid mites transmit the agents of several
economically important diseases of crop plants
(Oldfield & Proeseler, 1996). All characterised
eriophyid mite-transmitted viruses have flexuous rod
shaped particles and belong to either the genus
Rymovirus, Tritimovirus (in the family Potyviridae)
or Alexivirus (Van Regenmortel et al., 2000). An
exception is the recently characterised Blackcurrant
reversion virus (family Comoviridae, genus
Nepovirus) that has isometric particles (summarised
by Jones, 2000). However, for several diseases
caused by other eriophyid mite-transmitted agents,
especially those affecting dicotyledonous plants, no
disease agents have been isolated and characterised
(Oldfield & Proeseler, 1996). In 1931, one such
disease, named sterility mosaic (SMD), was identified
affecting pigeonpea (Cajanus cajan) in the Indian
subcontinent (Reddy et al., 1998). Affected plants
showed mosaic symptoms on leaves (Fig. 1A) and
ceased flowering but a few SMD-tolerant pigeonpea
cultivars showed only chlorotic ringspots without
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significant effects on flowering (Fig. 1B). SMD has
subsequently emerged in all the pigeonpea growing
countries in the Indian subcontinent and has gained
considerable importance because of its devastating
effect on pigeonpea yield (Kannaiyan et al., 1984).
In nature, the causal agent of SMD is transmitted by
the eriophyid mite, Aceria cajani, but it is not
transmitted through seed, pollen or soil (Reddy et
al., 1998). The mite vector is highly host-specific
and, because of this, the natural host range of SMD
is restricted to pigeonpea and a few of its wild
relatives (Kumar et al., 20015). Experimentally,
SMD is transmitted by grafting (Ghanekar et al.,
1992). All previous studies on the SMD causal agent
indicated that it is likely to be a virus or virus-like
agent (Ghanekar ef al., 1992; Nene, 1995) but
attempts to isolate and characterise the putative virus
have not been successful (Reddy ez al., 1994; Singh
et al., 1999).

Recently, using a new purification method, slender
highly flexuous filamentous virus-like particles
(VLPs) of ¢. 3-10 nm in diameter were isolated from
SMD-affected pigeonpea (Kumar et al., 2000,
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Fig. 1. Leaf symptoms of PPSM V-infected, (A) pigeonpea cv. ICP8863 showing severe mosaic, healthy leaf on left, (B)
cv. ICP2376 showing chlorotic ringspots, and (C) N. benthamiana showing mild chlorosis and necrotic spots.

2001a, unpublished data). The VLPs are believed to
be those of the agent of SMD, provisionally named
Pigeonpea sterility mosaic virus (PPSMV). The
particles are difficult to purify and are highly unstable
in vitro, but they were partially characterised and a
polyclonal antiserum to PPSMV VLP preparations
produced. Using this antiserum in ELISA and
Western blotting has shown the specific association
of PPSMV with SMD. The purified VLP
preparations of PPSMV contained a major virus-
specific polypeptide of 32 kDa and up to 6 RNA
species of ¢. 1.1-3.5 kb. The nucleotide sequence of
some cDNA clones made to PPSMV RNA and the
analysis of the virus-specific 32 kDa protein by

matrix-assisted laser desorption ionisation-time of
flight (MALDI-ToF), showed no significant sequence
matches to any known viral sequences in database
searches (Kumar et al., 2001a, unpublished data).

Although the purified PPSMV VLP preparations
were not infective to plants, PPSMV was transmitted
experimentally to Nicotiana benthamiana by
mechanical inoculation of fresh leaf sap extracts of
SMD-affected pigeonpea. Systemically infected
leaves of N. benthamiana plants developed mild
chlorosis and some necrotic spots (Fig. 1C; Kumar
et al., 2001a).

Although the taxonomic relationship of PPSMV
to other viruses is as yet unclear, the morphology of
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the VLPs in purified preparations and the number
and sizes of its apparent nucleoprotein components
has some similarities to members of the genus
Tenuivirus and to the recently reported High Plains
virus (HPV) (Jensen et al., 1996; Falk & Tsai, 1998).
PPSMYV and HPV are each transmitted by eriophyid
mites, and infected plants contain a virus-specific 32
kDa protein and up to six RNA species (Jensen ef
al., 1996; Kumar et al., 2001a, unpublished data;
Mirabile et al., 2001). However, the two viruses are
serologically unrelated and differ in host range and
in the vector mite species involved in transmission
(Kumar et al., 2001b; Jensen et al., 1996).
Ultrastructural studies of plants affected with HPV
detected large ovoid bodies ¢. 100-200 nm in diameter
(Ahn et al., 1996, 1998). These bodies were reported
to have a double membrane and were therefore
termed, ‘double membrane bound-bodies’ (DMBs).
It is difficult to unequivocally identify two distinct
membrane layers in the electron micrographs in these
and in our studies reported here. Because we make
frequent reference and comparisons with this earlier
information we refer to them throughout this paper
in a generic way as membrane-bound bodies
(MBBs).

Similar MBBs were also detected in tissues of
plants infected with the uncharacterised mite-
transmitted agents of several other diseases such
as, fig mosaic, rose rosette, thistle mosaic, wheat
spot mosaic and yellow ringspot of budwood
(Bradfute & Nault, 1969; Appiano, 1982; Roberts
& Jones, 1997; Ahn et al., 1996, 1998). Some workers
have suggested that these MBBs are novel virus-
like particles and this was strengthened when in situ
immuno-gold labelling (IGL) using antiserum to HPV
preparations heavily labelled the MBBs present in
HPV-infected tissues (Jensen et al., 1996; Ahn et
al., 1996, 1998).

In this paper, we report the ultrastructural effects
of PPSMYV in its natural host, pigeonpea, and in an
experimental host, N. benthamiana, and report the
occurrence of quasi-spherical MBBs in these
infected plants, and their labelling with antiserum to
PPSMYV in immuno-gold labelling studies. The viral
nature of the PPSMV MBBs is discussed in the light
of these findings.

Materials and Methods

Plant material and virus inoculation

For ultrastructural studies, two pigeonpea cultivars
were used; the highly SMD-susceptible cv. I[CP8863
that shows severe mosaic symptoms and sterility,
and the SMD-tolerant cv. ICP2376 that shows only
chlorotic ringspot symptoms and little or no sterility.
Pigeonpea seedlings at the primary leaf stage (11-
15 days old) were inoculated with 4. cajani cultures
maintained in growth cabinets using the leaf stapling

technique (Nene & Reddy, 1976). Inoculated plants
were kept in growth cabinets maintained at 27°C
with 55% humidity during the day and 18°C and 35%
humidity during the night.

Symptomatic leaves of SMD-affected pigeonpea
were extracted in three volumes of 2% nicotine
solution and the inoculum rubbed immediately onto
corundum-dusted leaves of N. benthamiana plants
that were then kept in an insect-proof glasshouse
maintained at 18-26°C.

Antiserum production

A polyclonal antiserum to PPSMV was raised in a
rabbit by immunising with purified PPSMV
preparations made from infected pigeonpea (Kumar
et al.,2001a, unpublished data). Immunoglobulin G
(IgG) from four bleeds of this polyclonal antiserum
was precipitated with ammonium sulphate as
described by Van Regenmortel (1982) and assessed
for reactivity in IGL experiments. To minimise the
non-specific reaction of these IgGs to healthy plant
proteins, IgG dilutions were cross-absorbed for 6-7
h with healthy pigeonpea protein, prepared as
described by Da Rocha er al. (1986).

Electron microscopy

Fresh leaves from infected pigeonpea cv. ICP8863
showing severe mosaic (Fig. 1A), cv. ICP2376
showing chlorotic ring spots (Fig. 1B), and M.
benthamiana showing veinal chlorosis and necrotic
spots (Fig. 1C), were harvested from two different
batches of infected material and sliced immediately
into small pieces (c. | mm x 4 mm) with a new
scalpel blade and transferred into fixative solution
(5% glutaraldehyde in 0.1 M PIPES, pH 8). These
pieces of tissue were processed immediately or, for
samples taken in India, left in fixative in transit (4-6
days) and the embedding procedure completed upon
receipt.

The tissues sampled for thin sectioning studies were
from symptom-bearing areas of c. 45 day-old
pigeonpea cv. ICP8863 but from c¢. 80 day-old cv.
ICP2376 because this cultivar develops symptoms
to PPSMV only slowly. PPSMV is also slow to
multiply in N. benthamiana plants and can be
detected usually only a relatively long time after
inoculation (~45 days post inoculation (dpi)).
Samples from this herbaceous host were therefore
collected c. 80 dpi. Leaves from healthy pigeonpea
and N. benthamiana plants of similar age were
processed in parallel as controls.

Tissue samples were processed for ultrathin
sectioning as described by Fasseas er al. (1989).
As post-fixation in osmium tetroxide and uranyl
acetate affects antigenicity (Bendayan & Zollinger,
1983; Roberts, 1994) this step was omitted for the
tissue samples used for IGL experiments. Embedded
tissues were sectioned with glass knives, heat
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stretched (Roberts, 1970) and mounted on pyroxylin-
filmed nickel grids (100 mesh). Sections were post-
stained with 5% aqueous uranyl acetate followed by
lead citrate and examined in a JEOL 1200 EX or
Philips CM10 transmission electron microscope
operating at 80 kV.

Immuno-gold labelling

Immuno-gold labelling of thin sections was done
essentially as described by Fasseas er al. (1989).
Serial sections were blocked for 1 h with IGL buffer
(0.05 M PIPES buffer, pH 7.5 containing 0.5%
bovine serum albumin, 0.5% Tween-20 and 0.01%
sodium azide). Grids were then transferred onto 25
ul drops of PPSMV IgG diluted 1:100 in IGL buffer
and incubated overnight (16-18 h) at room
temperature. Grids were washed with IGL buffer
and incubated for 5 h on 15 nm colloidal gold
conjugated anti-rabbit IgG (AuroProbe, Amersham
Life Sciences, Buckinghamshire, UK). After
washing with 0.05 M PIPES buffer, pH 7.5 followed
by washes with distilled water, the grids were stained
with uranyl acetate and lead citrate as above and
examined in the electron microscope. To confirm the
specificity of the IGL to PPSMV antigen, three kinds
of experimental controls were used: (i) immuno-gold
labelling with antiserum to PPSMYV of sections from
leaves of healthy pigeonpea and N. benthamiana,
(i1) treatment of sections of PPSMV-infected tissues
with an antiserum to a heterologous virus (7obacco
mosaic virus, TMV) and (iii) treatment of the
sections with the gold conjugate alone.

Results

General cell structure

The cellular leaf structure of healthy and PPSMV-
infected pigeonpea showed some distinctive features.
The central vacuoles of some palisade cells were
often filled with electron dense material similar in
appearance to that sometimes found both in healthy
tissues and in tissues of blackcurrant infected with
Blackcurrant reversion virus and raspberry
infected with Rubus yellow net and Raspberry vein
chlorosis viruses (I M Roberts, unpublished data).
This material occurred as a single large mass or as
several smaller clumps in a single cell. It was also
observed in smaller amounts in mesophyll cells, but
never in the cells of conductive tissue. In PPSMV-
infected pigeonpea, the cell cytoplasm was granular
and chloroplasts were often deformed by large starch
grains and there were large intercellular spaces
typical of leaves of this age. All the other organelles
appeared normal.

In cells of healthy and PPSMV-infected N.
benthamiana, the chloroplasts were also deformed
by large starch granules and there were large
intracellular spaces. The cytoplasm was sparse and

appeared granular, and many cell organelles were
deformed. However, it is likely that some of these
structural features could be due to the age of the
plants sampled.

Cytopathology of infected cells

Electron microscopy of ultrathin sections detected
two types of inclusions in cells of PPSMV-infected
pigeonpea (cvs ICP8863 and ICP2376) plants: (i)
quasi-spherical membrane-bound bodies (MBBs) of
¢. 120-150 nm in diameter (Figs 2, 3, 5) frequently
found in association with amorphous electron-dense
material (EDM) (Fig. 4), and (ii) fibrous inclusions
(FIs) (Fig. 3) which were regularly found adjacent
to the cell nucleus. In infected N. benthamiana,
MBBs and EDM, but not FIs, were observed (Figs
2, 4). None of these structures were observed in
healthy plants.

In size, shape and appearance, the MBBs observed
in the two pigeonpea cultivars and in N.
benthamiana were similar (Fig. 2). The MBBs were
found singly only in low numbers throughout the
cytoplasm but were more commonly found in groups
(Figs 2, 3, 5). Serial sections conclusively showed
that these MBBs were discrete, quasi-spherical
structures, although a few appeared as dumb-bells
(Fig. 5). No crystalline or paracrystalline arrays of
MBBs were observed. MBBs were present in all
cell types except those of the vascular bundles, and
were rarely observed in bundle sheath parenchyma
cells. The MBBs were often found lying close to the
plasmalemma, but this may reflect their position
relative to the paucity of the cell cytoplasm. The
bounding membrane of each MBB was sometimes
obscure or incomplete and we found no convincing
evidence that they had a double membrane (Fig. 5).
The central area of some MBBs was semi-electron
opaque and some were filled with EDM (Figs 2, 4,
5). In some cells, partially formed MBBs, elongated
vesicles or dumb-bell shaped structures were seen
(Figs 2, 5). In some cells, patches of EDM were
found closely associated with groups of MBBs (Fig.
5) and with membranes that appeared to be derived
from the ER. Although in a few cells, EDM was
observed on its own in the cytoplasm (Fig. 5SB), this
may be because the association with the MBBs may
be out of the plane of the section. In a few cells of
PPSMV-infected N. benthamiana, a sponge-like
network of membrane-bound electron-dense material
was found that had the same IGL specificity as the
MBBs seen elsewhere (Fig. 4).

In the cytoplasm of palisade cells of each
pigeonpea cultivar, FIs composed of randomly
dispersed fibrils, and often associated with the cell
nucleus, were seen (Fig. 3). The fibrils in FIs were
of indeterminate length and showed no crystalline or
paracrystalline aggregation patterns, but appeared
to be disjointed or twisted with large electron lucent
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Fig. 2. Electron micrographs of sections showing groups of MBBs in palisade cells of PPSM V-infected (A, C) pigeonpea,
and (B, D) N. benthamiana. Sections in ‘A’ and ‘B’ were post-fixed with osmium tetroxide. Sections ‘C’and ‘D’, were
fixed in glutaraldehyde alone and immuno-gold labelled using anti-PPSMV IgG. Note the labelling of the MBBs. Bars
=200nm.
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Fig. 3. Electron micrographs of sections of PPSMV-infected pigeonpea showing FIs. (A) leaf tissue fixed in
glutaraldehyde alone and (B) leaf'tissue post-fixed in osmium tetroxide showing an FI with MBBs (arrow) nearby. Bars
=500 nm.

areas between them (Fig. 3A). The FlIs were not
membrane bound and occurred in various sizes,
sometimes as large as the cell nucleus and also
occurred as small discrete patches interspersed in
the cytoplasm. The FIs could be differentiated from
the rest of the cytoplasm by the absence of ribosomes.
FIs and MBBs were found in the same cell (Fig.
3B). The FIs were most common in palisade cells,
less common in mesophyll cells and were not found
in epidermal or vascular cells. These inclusions were
most clearly seen in tissues fixed in glutaraldehyde
alone (Fig. 3A), and were less obvious in tissues post-

fixed with osmium tetroxide (Fig. 3B). FIs were not
detected in any of the sections of PPSM V-infected
N. benthamiana plants examined.

Immuno-gold labelling of ultrathin sections

PPSMV IgG purified from four different bleeds
gave similar binding specificities; for most of the
assays described here, IgG obtained from bleed-2
was used. Cross-absorption of the PPSMV antiserum
dilution with an extract of healthy pigeonpea markedly
improved the label specificity by decreasing the
amount of background gold. Examination of the thin
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Fig. 4. Electron micrograph of a section of a PPSM V-infected N. benthamiana leaf showing (A) a sponge-like network
in the condensed cytoplasm of a mesophyll cell, and (B) a higher magnification of the area marked in (A). Note the
specific IG labelling of the electron-dense material and the bulbous regions in some parts of the network (arrows). Bars
=(A) 1 pm, (B)200 nm.

Fig. 5 (left). Immuno-gold labelled sections of PPSM V-
infected pigeonpea showing (A) a clearly defining
membrane surrounding, or partially surrounding MBBs
and specific labelling of these bodies, and (B) a discrete
mass of EDM showing specific IG labelling. Bars = (A)
50 nm, (B) 100 nm.

sections of infected pigeonpea (cvs ICP2376,
ICP8863) and N. benthamiana immuno-gold
labelled using PPSMYV IgG showed that gold particles
were specifically localized on the MBBs and
associated EDM (Figs 2, 4, 5). The EDM observed
in infected cells, whether present together with
MBBs, or alone, was more heavily labelled with gold
particles than were the MBBs (Fig. 5). The Fls found
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in infected pigeonpea were not labelled by PPSMV
IgG but some non-specific labelling of the nucleus
and cell wall was observed. Control experiments
using heterologous antiserum, treatment of sections
with gold conjugate alone, and IGL experiments on
sections from healthy plants, produced only sparse,
randomly scattered gold particles binding to sections.

Discussion

Our ultrastructural studies of the two pigeonpea
cultivars infected with PPSMV by viruliferous mites
and of N. benthamiana plants infected by
mechanical inoculation with sap extracts from SMD-
affected pigeonpea detected MBBs and EDM very
similar to those reported in plants infected with other
mite-transmitted agents (Ahn et al., 1996, 1998). The
very similar cytopathology of the two pigeonpea
cultivars (the SMD-susceptible cv. ICP8863 and the
SMD-tolerant cv. ICP2376) infected with PPSMV
indicates that the different symptomatology in these
two cultivars following infection with PPSMV is due
to host factors as suggested from earlier studies
(Reddy et al., 1998; Kumar et al., 20015). Immuno-
gold labelling using antiserum to PPSMV indicated
that the MBBs and EDM found in infected pigeonpea
and N. benthamiana contain the 32 kDa antigen
that is present in purified PPSMV VLP preparations
and in leaf sap extracts from PPSM V-infected plants
(Kumar et al., 2001a, unpublished data).

The detection of MBBs and EDM in PPSMV-
infected N. benthamiana, that are indistinguishable
in structure and specific labelling from those found
in infected pigeonpea (Fig. 2), confirms the
mechanical transmission of PPSMV to this
herbaceous plant. This is a very significant finding
because several decades of work on eriophyid-mite
transmitted agents of unknown aetiology have
suggested that these agents are not transmitted
mechanically and have a restricted host range. HPV
is reported to be transmitted mechanically in sap to
moist maize seed by vascular puncture (Loui &
Seifers, 1998; Forster et al., 2001), but this disease
agent seems restricted in host range to species in
the Graminae (Forster et al., 2001). By contrast, the
mite-transmitted agent of fig mosaic was transmitted
from its natural host, fig (Ficus carica: Moracea),
to periwinkle (Caranthus roseus: Vinceae) by its
mite vector, Aceria ficus, and the cells of the infected
periwinkle plants contained MBBs indistinguishable
from those present in infected fig (Credi, 1998). More
recently, Rohozinski et al. (2001) reported the
mechanical transmission to Nicotiana species of a
virus-like agent from multiflora rose affected with
rose rosette disease, another disease caused by a
virus-like agent transmitted by eriophyid mites
(Amrine et al., 1988; Epstein & Hill, 1995). However,
in their ultrastructural studies of infected Nicotiana

plants they failed to detect the MBBs that are known
to be present in rosette-diseased multiflora rose
(Gergerich et al., 1989; Ahn et al., 1996) suggesting
that the agent in their experimental host may not be
that inducing rosette disease. Furthermore,
measurements of the isometric particles they
reported in crystalline arrays in cells of infected
Nicotiana plants (Rohozinski et al., 2001), measure
10 nm or less in diameter, very close to that expected
for peroxisome catalase. If these are indeed catalase
crystals, it is possible that the absence of a bounding
membrane around them is due to cell autolysis.

In pigeonpea, in addition to MBBs and EDM, FIs
were found but these were not labelled with PPSMV
antiserum (Fig. 3). FIs were not detected in infected
N. benthamiana, but it is possible that in this host
FIs may be growth stage-specific or, because of the
poor state of the N. benthamiana tissue due to age,
they are not identifiable. The FIs were not observed
in cells of plants infected with other eriophyid mite-
transmitted agents of unknown aetiology (Ahn et al.,
1996, 1998). Fls have some similarities to the
amorphous semi-electron opaque inclusions found
abundantly in plant cells infected with tenuiviruses
(Ammar et al., 1985; Espinoza et al., 1991, 1992)
and that contain a non-capsid virus protein (NCP).
In tenuivirus and tospovirus infections, NCP
inclusions can occur in various forms depending on
the developmental stage of plants (Espinoza ef al.,
1992; Kitajima et al., 1992). It is possible therefore
that the FIs in PPSM V-infected plants may be a NCP
of PPSMV. However, it is necessary to characterise
more fully the PPSMV genome to assess this
possibility further.

In leaf sap extracts and in purified preparations of
PPSMV and HPV, no structures comparable to
MBBs were detected. However, thin filamentous
VLPs ¢. 5-10 nm were observed in some highly
purified preparations but these were not infective to
plants (Ahn et al., 1998; Kumar et al., 2001a,
unpublished data). It is possible that these VLPs may
represent tightly packed structural components, such
as nucleoproteins, that are released from ruptured
MBBs during the purification process. If this is so,
then it may explain the requirement for detergent to
purify the VLPs. Alternatively, the VLPs may be
fragments of the FI seen in the cytoplasm of infected
pigeonpea cells. However, this later possibility seems
less likely because the FIs were not labelled with
antiserum to PPSMYV, that was produced by
immunisation with purified PPSMV VLPs, nor were
they detected in PPSMV-infected N. benthamiana.
It is therefore unclear if either the MBBs or the
filamentous VLPs represent the infective particles
of PPSMV. Our other studies have shown that
PPSMV infectivity is short-lived in sap (15 min)
(Kumar et al., 2001a, unpublished data). Possibly,
the lack of infectivity observed with purified
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preparations could be due either to the length of time
the VLPs are in vitro, or that intact MBBs, that are
destroyed in the purification process, may be required
for infectivity.

Intracellular inclusions induced by plant viruses can
be unique to particular viruses or virus genera and
have been used as valuable tools in virus identification
(Edwardson et al., 1993). Inclusions can consist of
virus particles, cell organelles, and virus-related
material such as amorphous, granular, fibrillar or other
proteinaceous structures with a conspicuous
morphology (Francki et al., 1985). The MBBs found
here, and in plants infected with HPV and other
eriophyid mite-transmitted agents of unknown
aetiology, are unusual and have a distinct morphology
(Ahn et al., 1998). Viroplasmic-like structures, such
as proliferated rough ER and EDM that are common
in viroplasms of many plant and animal viruses, were
found in association with MBBs in infected cells. It
is perhaps noteworthy that this sponge-like network
of EDM resembles the cisternal ER, although there
is no direct evidence of an association of the MBBs
and the ER in our sections. The EDM observed in
tissues infected with PPSMYV, HPV and thistle
mosaic are like those reported in plants infected with
some tospo-, caulimo- and phytoreo-viruses
(Shepherd, 1976; Stern et al., 1977; Francki et al.,
1985; Ahn et al., 1996, 1998; Kitajima et al., 1992).
Very occasionally, some sections suggested that the
MBBs may occur by budding from cell membranes
(Figs 2, 5). If this is so, then they resemble the
immature particles of animal and insect poxviruses
and of the immature particles of Tomato spotted
wilt virus (TSWYV) at an early stage of infection
(Milne, 1970; Francki et al., 1985; Kitajima ef al.,
1992).

Our ultrastructural studies reported here, together
with those of others, would indicate a close similarity
of PPSMV with HPV and the agents involved in fig
mosaic, rose rosette, thistle mosaic, wheat spot
mosaic and yellow ringspot of budwood (Bradfute
& Nault, 1969; Appiano, 1982; Roberts & Jones,
1997; Ahn ef al., 1996, 1998), each of which is
transmitted by eriophyid mites. This is supported
further by the similarities in biochemical properties
of purified preparations of the VLPs of PPSMV and
HPV that suggest that these viruses are distinct from
those assigned to current virus genera (Jensen et
al., 1996; Mirabile et al., 2001; Kumar et al., 2000,
2001a, unpublished data). Nevertheless, for PPSMV,
the morphology of'its VLPs in purified preparations,
the number and sizes of its nucleoprotein components,
and some ultrastructural features induced in plants
following infection, are similar to viruses in the genus
Tenuivirus and possibly the genus Tospovirus
(Ammar et al., 1985; Espinoza et al., 1992; Kitajima
et al., 1992). However, PPSMV differs from them
serologically, in host range and transmission (Kumar

et al., 2001b; Falk & Tsai, 1998). Only the
unequivocal identification of the infectious particle
of PPSMYV and the complete characterisation of the
PPSMYV genome will resolve the relationships, if any,
between PPSMV and member species of these, and
possibly other, virus genera.
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