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ABSTRACT 

In developing surface mvlagetrcnt techniques to reduce soil structural problems and enhance 
profile noisture stornge, thereby decreas~ng deep percolation losses and mod~fying solute m o v e ~ x n t .  
rillage, rcgidues, conditioners and surface roughness are iniportant consi<lerations. Experinants were 
conducted ui the rainy season of 1995 and 1996 to evalunte the petfonmice of scoops, crop residues, 
polyvinyl alcohol (PVA) and revegetation treatments in co~iiparison with an untreated control under 
crop and fallow condltlons The impact on profile moisturr storage, deep percolation and solute 
movement. In a rando~nised complete split plot design, were tnonitored. Bromide was used as a 
tracer to study the solute movenrnt under the different surface management techniques. 
Revegetatton treatmnt recorded the highest moisture storage in the soil profile and the least water 
flux at 2.00 m depth than PVA, crop residue, scoop and control treatlnent In that order. The most 
rapid brotnide flux was observed in the revegetation plots at all the depths than in PVA and crop 
residue treatrrent. Brotlvde flux was least in the control treatmnt at all depths with scoop treatment 
showing Ihiglicr bronude flux. Between the sub trcarments, fallow treatmnts have shown the higher 
profiie moisture storage and lower deep percolation losses of water than the crop treatmnts. The 
solute nwvemnt (bromide flux) was higher in the fallow than the crop sub treatmnt in all the main 
treatments. It can be speculated that the higher profile moisture storage and bromide flux and 
reduced deep percolation losses in the revegetation. PVA and crop residue treatmnts, in that order. 
results 6om an alteration in soil aggregation and aggregate stability. This has k e n  accompanied by 
changes in porosity, pore size distribution, pore geolrrtry and soil structure. Scoop treatment has 
also shown higher moisture storage and lower deep percolation losses than control because of surface 
roughness which enhances aggregation and aggregate stability. The pearl tnillet crop also yielded 
better in the revegetation plots followed by PVA, crop residue, scoop and control plots. Various 
surfdce tmnagement techniques can therefore be adopted for improving the soil structure which 
enhance the moisture storage capacity of the soil and reduce deep percolation losses. However, it 
would also increase solute movemnt, and possibly increase leaching loss of nutrients. 



INTRODUCTION 



CHAFTER I 

INTRODUCTION 

In order to mlintain and increase food production, f m r s  have to deal with soil chemical and 

biological fertility which includes problems with nitrogen and phosphorus nutrition, problelns with 

other nutrients, as well as biological problems. They also [nust deal with physical aspects of soil 

fertility which include infdtration, water retention and proper soil structure for adequacy of seedling 

emergence and root penetration. All of these physical properties pose problem to fumers.  

Intiltration, if poor, reduces the quantity of water available to tlie crop, potentially reduces the 

recharge of ground water, increases runoff which  night increase erosion and have other downstream 

effects. Water retention, ) f i t  IS reduced, meamis less water available to crops, liiore frequent water 

stress during gowth  cycles, poor growth of crop canopy and roots. Poor soil structure can lead to 

seedling ellmrgence problena due to crustmg, the consequences of wliich are uneven stand with less 

yield, need for re-sowing which adds to cost (for purchase of seeds), and reduced yield due to late 

sowing (for example when drought occurs during grain filling), less nitrogen available to re-seeded 

crop, weeds which are unaffected get advantage, intercrops are out of synchrony. Root penetration 

problem also occur due to hardpans which give increased drought frequency. less available water 

for crops. One major consequence may be a reduction in the range of crops that can be grown, or 

only a single crop instead of double crop. 

An understanding of the various physical factors which affect crop growth such as water 

retention, water infdtration, soil structure, deep percolation losses of water, nutrient movement etc. 

is iqeratmve to m a g e  them for tetter production. There is knowledge of these physical processes 
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h.omre%arch in different pans of the world on different soil types, from which we can conclude that 

a well-structured soil has lower production risk. This is less researched in soils of the Semi-Arid 

Tropics (SAT) in develop~ng countries. Therefore it is desirable to leun more about these physical 

processes in the Indian SAT Alfisols. 

Alfisols are an important soil order, occupying 59.6 tnillio~l hectares in India (Venkateswarlu. 

1987). Alfisols are welldrained soils possessing low water storage capacity. The main reason for 

low water storage capacity is the structural illstability of these so~ls. The lack of structural 

develop~rent is due to low content of h e  chy panicles, presence of clay minemls of low activity (e.g. 

kaolin) and relatively low nlliounts of organic matter within the soil Inlatrlx. Clay content plays an 

important role for u~lprovi~lg aggregation In soils as clays are involved in binding with the organic 

m t t e r  and inpruvi~ig tlie structure of the soil. Poor soil structure is llxii~lly because of a tendency 

of these coils to sl.ile a11d rapidly seal the surface following rainfall 41ld to crust with subsequent 

drying. The structural ~~lstability of Altisols often leads to consolid:ttion of a considerable depth of 

soil profile or slumping of the plough layer which adversely affects seedling establishment and water 

infiltration into the soil profile. Because infiltration is affected by crusti~lg and sealing, solute 

movement will also k affected. The unstable structure of these soils enhances the tendency to 

develop surface seals that reduce infiltration and prome recharge even under Inoderate rainfall. 

A rainfall of 700-1000 mm (the range received in ~nuch of the SAT) is sufficient for crops like 

millet, sorghum, groundnut, provided the rain water can fully penetrate and be stored in the soil. 

Most of the deep Alfisols in the semi-arid regions have an effective soil ~noisture storage capacity. 

The crit~calfactor to be considered here is the degree to which the surface condition allows the rain 
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water to penetrate into the soil. Since m s t  Alfisols are prone to sealing i.e. formation of a thin layer 

(1-5 nun) at the soil surface which is dense and hard without any pores, rain water cannot penetrate 

into the soil. When this happens, most of the rain water is lost due to runoff. As a result the water 

storage potenrial of rhe soil is not being used to its mximuln. This would affect both deep 

percolation and solute n-avelxnt within the soil profde. A good structure for plant growth requires 

the presence of pores for tlie storage of water available to plants, pores for trans~nissioii of water and 

air and pores in which roots can g o w .  In AUfsols due to for~wtion of surface seals which cause 

blocking of the pores as a result of dispersion and sertli~ig of clay between and within tlie soil 

particles, the water holding capacity of the soil decreases which in turn reduces the water storage 

capacity of these soils. Therefore a good distribution of pores throughout a soil is vitally i~nportant 

for crop growtli slnce pores determine the structural i~iiprovelilerit of soils and porosity, pore 

geomrry and pore size clistrlbution which are important for w;iter. air alnl iiutrienl~ to circulate in 

the soil. 

Soil structure is a11 imponant physical characreristic of tlie soil which uifluences various soil- 

plant-water relationships. The structural characteristics of the soil have a m j o r  i~npact on crop 

growth and transpon of warer and agricultural chemicals. Soil structure is defined as the organization 

of prinury particles into aggregates and arrangement of pores between and within the aggregates. 

Alteration in soil structure can be observed as a result of surface mnagement, since it influences the 

pore geometry, pore sizediitribut~on, bulk density etc, which are i~nportant indices of soil structure. 

Soil structural stability can be measured for several purposes, one of which is to assess new 

nanagement practices m tenw of their @act on structural stability. Soil structure needs to be stable 

for a range of agricultural reasons. In an unstable soil structure as is the case of SAT Alfisols 
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seedbeds can collapse and crusts can form on the surface which impede shoot emrgence. Surface 

m a g e m n t  affects soil structure which in turn influences the pore geometry, pore size distribution, 

bulk density, soil aeration. deep percolation, solute Inovelrent, soil water storage, rainfall infiltration, 

erosion and runoff. Surface m n a g e m n t  of the soils lnwy retard degradation of soil physical 

properties and improve tlie soil considerably. An insight iiito tlie influence of structure on soil 

processes can te gained from an examination of soil water behavior in the salw soil manipulated to 

produce different structures. 

A chaUenge for sustoi~iable agriculture is to identify those ~ i a n : ~ g e ~ ~ ~ n t  practices whlch are 

niost efficient In for~nlng stable soil structure and incorporating tlie~ii in the Imnagemnt system 

thereby improving productivity. Soil management practices sliould aim at increa~ing surface storage 

by increasing the infiltration capacity. Due to sealing, water that would nor~nally infiltrate into the 

soil will be lost to runoff during rainstorm because the direct imp;ict of raindrops can break down 

aggregates which block pores that would norlmlly conduct water. The overall effect of sealing is 

reduction in porosity and permeability of soil surface. Relixdial ;rtion for sealingprone soils 

involves repeated tillage operntions, increasing organic Imtter. ~nulching etc. as these operations will 

increase water penetration u ~ t o  the soil. But these methods are difficult in the SAT Alfisols because 

the organic ratter would get oxidized quickly during the hot dry season and continuous tillage is not 

always possible. Appbcation of artificial soil conditioners  my be a solution to reduce sealing. 

T i g e ,  wMch leaves crop residue on the surface (zero or minimum tillage), limits runoff by 

preventing direct impact of raindrops. Generally syste~ns which leave substantial amounts of residue 

on t k  surface are termed conservation tillage. Thus, soil surface management can profoundly effect 
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infiltration and evaporation leading to increased soil water storage as well as deep percolation 

(kyond 2 mdepth) and solute m v e m n t .  Iris necessary to hnprove and protect the structure of the 

soil surface to promote infiltration and suppress evaporation through either tillage operations or 

mulching or application of natural or synthetic conditioners. If depressions are created in these soils 

then they would enhance the infiltration of rain water into the soil profile, since these depressions are 

generally mare stable and act as receiving basins for water storage. Such depressions (termed as 

scoops or pits) enhance rainfall acceptance by the soil thereby increasing the water storage in the soil 

profile. 

Research is still In progress to determilie the Inost feasible nxtliod for improving ~noisture 

storage in soil profile through increased uifiltration by surface ~nodification of soil structure and its 

effects on thedeep percohtio~i of water and losses of nutrients due to le;tching along with water. Not 

nwny repons m available 011 the effect of zero tillage, large illputs of residue (~nulching), use of pits 

to store water on surface and use of soil conditioners for ~liiproving the profile water storage 

capacity, deep percolatioii and solute rnovelnent in Alfisols. The present investigation aims at the 

follow~ng objectives : 

I. To study the effect of soil surface managelrent on profile water storage of an Alfisol. 

2. To study the effect of soil surface managemnt on deep percolation of an Alfisol. 

3. To study the effect of soil surface managemnt on solute Inovemnt of an Alfisol. 
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CHAPTER I1 

REVIEW OF LITERATURE 

AUisols are the third most important soil order in the world and cover a large area of 

potentially arable and grazeable land. The loamy sand texture of the lop soil, predominance of 

k a o h t e  clay minerals and very low concentrations of organic lmtter make these soils structurally 

unstable. Swctural instabllity in these soils can lead to crusting and surface sealing. Soil structure 

is defined in t e r n  of spatial distribution of solids and voids at macroscopic and ~nicroscopic level. 

Suriace managemnt of these soils alters the pore geonietry and thereby changes the soil structure. 

Changes can occur witlii~i a growuig season. The associated chilnges in porosity and pore-size 

distributron give i~nponait data on soil suucture, because pons deter~nine various physical properties 

rmportant to plants. The n3tural conlplexity of pore size distribution, pore shape and the relalive 

position of the aggregates 11d pores play an inlponalt role in determining soil structural changes due 

to surface management. Change in soil structure can affect ~mtiy  of the so11 properties such as 

porosity, pore size.dlstnbut~on, aggegation, root growth, seedling elxrgence, microbial activity, soil 

water status, rainfall infiltration, deep percolation, solute movement, erosion and runoff Change in 

soil shuctwe due to surhce nunagerent can k direct through cultivation or indirect due to exposure 

to raindrop impact. 

Good soil slructure is just as imponant for sustained agricultural production as are adequate 

water and nutrients. A soil wilh open structure is dominated by large pores, drains rapidly and m y  

dry out after rains before seedlings are properly established. The problem in this case is that water 

holding capacity is small in such a SOL On the other hand, a soil without large pores and many s m l l  



pores suffers from lack of aeration, and easily k c o m s  waterlogged. A good distribution of pore 

sizes throughout a soil is vitally important for proper growth of the crops. Within the soil crumb, 

structure f o d d u e  to aggregation a whole range of pore sizes exits, allowing air to penetrate and 

water to be retained and leaving passages through which roots can grow (Page, 1983). Soils with 

exceptionally good structure have very high hydraulic conductivity and thus have the potential to 

transport water and solutes beyond the rooting zone. In recent t i m s  increasing interest has 

developed in substances able to improve soil phystcal properties, puticularly structure, such as 

organic and inorganic soil conditioners. 

Rainfall plays m important role in affecting the soil structure it1 red soils of the SAT regions. 

If we consider structure as comprising of individual agererates it1 o continuum of void space, then 

rainfall, will result in increasing the number of isolatetl voids in tlie soil tmtrix continuuln 

Breakdown of aggregates can occur due to raindrop impact and by percolating water. This leads to 

closure and isolation of the pores caused by the settling of tlie detached materials. High rainfall 

intensity results in deueasing the macroporosity of the soil and also changes the form of the structure. 

Changes in the structural features produced as a result of surface management may be relatively 

transient but they have a marked effect on many of the soil properties (Hatnblin, 1982). It is not 

necessary to review the whole literature on this topic. Instead this review will focus on the way soil 

structure can be bqroved by surface managemnt, and its relationships with moisture storage, deep 

percolation and solute movemnt. 



2.1 Tillage and  ils effecl on soil physical properties 

2.1.1 Tillage a n d  its effect on soil structure 

The usual objective of tillage is to rmnlpulate a soil to cliange its structure, strength or 

position in order to improve conditions for crop production. The direct ~nechanical action of tillape 

affects the so11 space and can thereby strongly influence soil transmission properties and root growth. 

T h g e  also increases the microbial activity by ilnproved aeration, better distribution of bacterial and 

fungal hyphae and exposure of previously occluded organic lilatter to ~nicrobial attack. All these 

changes lead to a decrease in soil structural stability due to decrense 111 organic nutter content by 

increased microbial activity (Gibbs and Reid. 1988) Tilloge practices also influence many soil 

physical properties, ~tructural stability k i n g  one of the~n. Structural stability In turn has an ilnpact 

on a wide range of processes that il~fluence rain water infiltr~tion, rnoisture storage and transport of 

agro-chemicals. 

Soil structure is vely sensitive to human activity and the ~ncreasing intensity of cultivation on 

a n b k  land leads to deterioration of sod structure (Watts el 01.. 19963). Various tillage practices over 

a period of years lead to deterioration of soil physical properties including soil structure. Intensive 

cultivation and monoculture cause deterioration of soil structure (Ketcheson. 1980). Similarly, 

cultivation of crops on land, previously in grass also leads to rapid deterioration of soil structural 

stability due to tillage, traftic and loss of soil organic matter. Structural deterioration also resulted 

in decreasing the crop yields considerably (Doyle and Hamlyn. 1960). This indicates that a stable soil 

structure is inlpunant to ~mintain the agricultural productivity. 
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Soil structure is influenced not only by tillage practices but also by water content, wetting, 

drymg, roots and microbial bionuss (Utomo and Dexter, 1982). The magnitude of influence of other 

factors on soil structure is determined by climatic conditions. Perfect e ra / .  (1990a) have observed 

that the influence o f c h t i c  conditions on the aggregate stab~lity, an index of soil structure, nuy  be 

as large as or even larger than the variations caused by change in tlie tillage practices. In general, wet 

aggregate stability increased showing fluc~uations in soil structural stability due to different cropping 

system. 

Change in cropping system also increases tlie response of soil structural stability to drying 

(Caron eia1.,1992). Sod structural srabity thus benetits fro111 drying as it increases soil cohesion by 

favoring particle-to-particle contact, bond fornwtion and adsorptio~~ of ~~iorganic and organic 

compounds with a subsequent increase in stability. Increase in so11 \tructurnl stability due to drying 

is important as it leaves [lie soil surface aggregates less vulncrdble to [lie disruptive action of 

raindrops. Similar observations were m d e  by Caron and Kay (1992) wlierein ctability of aggregates 

was found to increase on drying. This is of agrono~nic i~nporta~ice because it implies that a 

magenlent-induced decrease in the moisture content of the soil could unprove the stability of the 

aggregates. Management practices which enhance the particle to particle bonding will increase the 

stability o f  aggregates. Increase in structural stab~lity will in turn reduce clay dispersion and the 

susccptibity of the soil to surface sealing. 

Aggregate size distribution, an index of soil structure, is a dyna~nic properly and it shows 

changes due to tillage practices as well as climate (Kay and Dexter. 1990). Large aggregates are 

more sensitive to moisture content and m a g e m n t  practices. Dispersible clay was used as an index 
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to study the influence of m n a g e m n t  practices on soil structural stability. An increase in 

mchanicauy disperstble clay with decreasing aggregate stability and increasing specitic aggregate 

su~face m a  was observed. Wet aggregate stability and dispersible clay both are strongly influenced 

by water content (Rasiah el a/.,  1992). There was a linear decrease in wet aggregate stability with 

increasing water content and linear increase in dispersible clay with increasing water content. Wet 

aggregate stability was also found to increase with increase in clay and organic m t t e r  content. These 

studies provide an example of how Dispersible Clay (DC) can be used as an index of structural 

stability. Elsewhere Dispersible Clay was found to k a function of total clay content, organic tmtter 

content and tmisturr contelit at the tiirr: of sampl~ng, all of whicli effect soil structure (Perfect cr 01.. 

1990a; Pojasok and Kay, 1990). 

Soil structural srabiljty is the result of complex interactiotis betwee11 biological, chemical atid 

physical factors. Alteration of structural stability can k achieved by ~wnipulation of these factors. 

Stability will also depend on tlie trwnagemnt practices since it affects tlie quanttty and characteristics 

of organic matter in the soil. Change in tmnageinent practices influences both the surface area of 

aggregates exposed and the dispersibility of the clay. The presence of roots and microbial hyphae 

also stabilize the aggregates against breakdown. Cultivation s o m t i i w ~  speeds up the decoinposition 

of these roots and cause the aggregates to become unstable (Tisdall and Oades. 1980). Different 

mnagement practices will decrease the stability of m c r o  aggregates. 

T i a g e  afTects the soil structural stability minly through its influence on soil moisture (Kay, 

1990; Perfect cia/.. 1990b). Accumulation otorganlc m t t e r  occurs in soils where tillage is reduced 

to a minimum (zero-tillage). In a study conducted by Carter (1996) an increase in the microbial 
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biomass was observed in soils subjected to zero tillage which resulted in greater stability of 

aggegates. Zero tillage offers enviromntal benefits over conventional tillage systems as it enhances 

organic matter accuinulation on the surface and cause associated improve~xnt in physical condition 

of surface soil. Oleschko cr al. (1996) observed that cultivat~on has a significant impact on air dry 

aggregates, bulk density as well as soil microstructure and thus i~~flue~ices tlie soil structure. 

2.1.2 Tillage and  its effecl on profile water storage 

Tillage has a significant effect on soil water as it iiifluences infiltration, runoff, evaporation 

and precipitation storage. lricrease in water storage in soil profile srerlls from increased warer 

infiltration (Dao, 1993). Zero tillage increases the water storage capacity of the soil thereby 

increasi~ig the available water for crop growth (Larney and Lindwall. 1995). In their ten-year study, 

it was observed that maintenance of stubble on tlie surface enhanced tlie capacity to store soil water 

reserves under zero tillage but not under convent~onal rillage. The precipitation storage efficiency 

during fallow was found to be greater under mini~nu~ii tillage thdii conventional cultivation. Greater 

infiltration and lower surface evaporation are the advantages associated with the soil structure 

created by non-inverting tillage (reduced tillage). 

Tillage accompanied by crop residue management is importarit for recharging the soil profile 

to the m i m u m  extent. Reduced tillage is an effective practice for improving soil water retention. 

Efficient soil water storage requires prevention of water use by weeds, which can be controlled 

mhanically or chemically. However, mhanica l  weed control hastens the evaporation of soil water 

by inverting the surface soil and exposing moist soil. T i a g e  also buries crop residues, which when 
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retained on the surface as mulch, conserve soil water by reducing runoff and by retarding evaporation 

(Lopez el a/., 1996). On the other hand, mechanical disruption breaks the surface seals on AUisols, 

improving infiluation, and induces surface roughness, providing temporary storage of mnoff water. 

Radford e la l .  (1992) studied the @act ofzero tillage with stubble mulch on so11 water retention and 

found that zero tillage gave highest yields during dry years and stubble retention also increased the 

soil water content. 

Rapid infiltration of rain water in the undisturbed soils co~npued to ploughed soils was 

observed, consequently water storage was higher under dry conditions in the direct-drilled soil (i.e. 

undisturbed soils) compared to ploughed soils (Goss el ul.. 1978). Greater water content in the 

undisturbed soils is attributed to s d e r  volume of untilled soil occupied by pores which drain readily 

under gravlty and also to mulch of plant debris left on the so11 surface. Similar observations were 

nude by Lafond el  01. (1992) wherein zero and ~ni i l i~nu~n tillage increased the profile water storage 

compared to conventland tiliage. Jones o o l .  (1968) andBlevins c i o l .  (1971) showed that minirnuln 

tillage resulted in higher soil water contents than conventional tillage practices, with residues of 

gnsses and cereal crops k i n g  beneficd for increasing soil water contents. Other factors contributing 

to higher water contents were greater water infdtration and lower evaporation resulting from crop 

residues maintained on the soil surfaces by the minimum tillage cropping practices. 

Volumetric water content is usually greater in soils ~mintained under no-tillage than under 

conventional tillage system. Blevins ern / .  (1971) attributed this increased water storage to reduced 

evaporation and greater ability to store water under zero tillage, resulting in greater water reserve. 

The increased capability to store soil water can be attributed to the rearrangement of the pore size 
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distribution and residue cover. Conservation of the soil water m y  carry the no-till crop through short 

drought periods without developmnt of severe moisture stress. 

2.1.3 Tillage and its effect on deep percolation and infiltration 

A known benefit of cultivation is increased infiltration rates during subsequent irrigation or 

precipitation. Cultivation results in temporary increase "1 pore space and leads to improved 

infiltration which also hnproves the saturated hydraulic conductivity and would increase the deep 

percolation (Poletika and Jury, 1994). Cultivation may reduce tlie flow of water by minimizing the 

role of the largest pores in tlie transport processes. One interpretation from this is that ~mnipulation 

of the top 25 mm of the soil profde produces important changes in the flow pattern that can be 

~neasured at depths of 0.3 m and below. This indicates that surkice managelnent of soils would 

defmitely affect deep percolation of water. 

The surface layer of arable soils that is deformd by surface nwtlagetnent practices thus plays 

a sigruficant role in the behavior of soil water, not only within the top 0.10 cm layer, but also through 

its influence upon the deeper portions of the soil profile that accormnodate plant roots (2 m). T i a g e  

influences the pore geomtry of the top soil and in turn affects the soil water behavior and its 

mvelnent through the soilprofde leading to deep percolation. Infiltration of rain water into the soil 

is a basic and important process controlling directly surface runoff, soil erosion, soil water storage 

and deep percolation. Infiltration in turn depends on various factors such as surface texture, aggregate 

stability, bulkdensity, porosity, surface roughness etc. Knowledge of the disposition of water after 

it has been applied on the surface is important in determining the arnount of water available for crop 
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use and evaporation and the amount lost to deep percolation beyond the root zone. It is hnponant 

to know how much water passes through the root zone to determine deep percolation. for which the 

flux of water telow the root zone must t e  known. Water moves through the soil matrix by traveling 

through macropores and cracks, as it trles to move through the area of least resistance to its flow. 

The inherent variabihty of the soil also effects the movemnt of water and deep percolation beyond 

thcrooting zone. An insight into the influence of structure on soil processes should be gained hom 

an examination of soil water behavior in the same soil manipulated to produce different structures. 

Distribution of water down the fust 70 cm of the profile reflects the surface soil differences. 

Ploughed treatments were found to have tnaximum water content in the deeper layers of the soil 

profile during the early part of the rainy season. Therefore, it was co~~cluded that differences in 

surface m n a g e m n t  treatnunts will affect the soil and crop water status. As a result of different 

tillage treatmnts,  differences were observed in pore size dirrribution, toral porosity, and pore 

geomtry which had a considerable effect on rlrasured and observed aspects of water movement and 

retention not only in the topsoil but at deeper layers also, leading to deep percolation of water 

(Hamblin and Tennant. 1981). Improvemnt in aggregate stability resulted in increasing the 

infiltration rate by 18%. Clay content, silt content, aggregate stability and dispersion coefficient 

jointly contribute to 87% increase in infiltration which in turn leads to deep percolation (Mathan and 

Mahendran. 1994). 

Infdtration is a consequence of porosity and it also influences porosity by detaching, 

transporting and relocating soil particles through its mchanical action. Change in porosity leads to 

change in water ,movement through the soil profile. In sandy soils the decrease in porosity was less 
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and it was mximum in soils having higher clay content. This invariably leads to decrease in water 

nnven-ent through soil profile and deep percolation (Painuli and Pagliai. 1996). Low water holding 

capacity of the SAT Alfisols can be attributed to the fact that little water is transmitted to deeper 

layers of the proflle due to poor porosity as a result of seal forlintion. Gravel was found to play a 

significant role in causing variability in the saturated hydraulic conductivity of SAT Alfisols (Bonsu 

and Laryea. 1989). The total porosity is usually low in the gravelly murrum layer therefore, it has a 

significant impact on the water transmission properties of the soil at deeper layers. 

Important aspects of tillage in relation to infiltration are develop~nent of surface crusts and 

stability of surface roughness and plow layer porosity. Tillage increases infiltration when it loosens 

surface crusts, disrupts dense soil layers or provides surface depressions for temporary storage of 

water. Unfer (1992) observed vi increase in infdtration with tillage on  oils having low crop residues 

on the surface. Tillage reduces surface residue, increases surface porosity, surface roughness and 

weakens soil structure. Tillage creates voids leading to preferential water flow paths through the soil 

profile increasing the water intake rate. Hence, it may improve perlneability of the soils initially but 

as the season advances it causes slumping and closure of the soil pores thus reducing the permability. 

This affects the deep percolation and water rnove~nent m the so11 profile. Freebairn ct 01. (1989) 

observed that in the absence of crust. the soil is highly permable (>200 mm h') while in surface 

crusted soil the permabiity is as low as 10 mm h'. 

Lindstrom and Onstad (1984) observed that no-till system f o r m  an undesirable surface 

condition characterized by high bulk density, high penetration resistance and low hydraulic 

conductivity thus pro~lloting rapid water runoff. Infiltration rates, however, may be high with a no-till 
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system because the surface is stable and mcropores develop that can transport large quantities of 

water. An effective way to reduce runoff losses is to establish a soil condition with a high infiltration 

rate which can be maintained even during periods of high-intensity rainstortns. 

Primarj tillage operations increase infdtration by illcreasing soil porosity and establishing 

channels and voids in the surface layer of soil that conduct water into the soil profile. Whereas 

secondary i i g e  operations reduce soil porosity to some extent atid break the continuity of channels 

and fill most large voids. Breakdown of soil aggregates occurs due to tillage that reduces soil 

porosity by filling uiteraggregace voids. Sealing of surface soil also occurs wliicli leads to a decline 

in the infiltration rate. The doliiinant procesqes for formation of porosity differ between tilled and 

untilled cropping system. Tilled cropping system pores are fornxd by rearrangement of the solid 

phase by the tillage tools. Pores ill the untilled croppitig sy5teln are fortiled by biological activity of 

microorganisms, earthwornls and roots. As a result, pore size distributio~i and pore continuity vary 

between these two types of surface nunagement (Benjamin, 1993). The no-till Inanagerent showed 

greater water rwvement due to larger pores leading to greater infiltration and deep percolation of rain 

water. 

Rice (1975) in a study observed the diurnal and seasonal soil water uptake and water flux at 

120 cmdepth. 7he esttmated amount of water lost to deep percolation below 120 cm was 0.15 cm 

or 22% of the water uptake by crop roots. Warrick el ul.  (1977) observed a decrease in the flux of 

water at 180 cmdepth with i i .  At t=O, wherein water was pounded on the surface, the mean flux 

value was 31.9 cm day-' which decreased to 0.40 cm day at [=lo. There was also a decrease in 

volumtric water content with t u x .  Thk indicates that during heavy rains loss of water through deep 
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percolation increases due to increase in water flux at deeper layers of the soil profile leading to deep 

percolation losses. 

The distribution and Inovelwnt of water within the soil profile are unportant from the stand 

point of providing water to piatit roots. Stone er 01. (1973a) calculated the water flux at various 

depth layers using hydraulic potential gradtents and detertnined tlie hydraulic conductivity vs soil 

water content relationsliips. During the 31 day study period 6.0 cln of water was lost from the 150 

cm soil prorile by flux below the root zone. This lliustrates t l~e  unportancc of considering water loss 

due to deep percolation or flux below the root zone even in crop s~tui~tions. 

2.1.4 Tillage and its effect on solute movement 

Solute lmvelirnt occurs In tlir soil during leaching, cmp irrigation, reclamt~on of soils and 

other similar processes. This Inoverrent determines tlir presence or absence of beneficial or 

detrinrntal solutes in the so~lprofile The ~mgnitude and degree of variat~on of solute Inovemnt in 

a soil depends on various soil factors, the most unportant factor being soil structure. Ilnprovelwnt 

in soil structure resulting froln various tillage practices leads to increased infiltration and water 

movement into the soil. This m turn influences the movemnt of solutes within the soil and its loss 

beyond the root zone. Solute movemnt mostly relates to the movetwnt of nitrates, which being 

negatively charged are easily lost due to leaching along with tl~e percolating water. Chloride and 

bromide are used as tracers to study nitrate movemnt because they move tkough soil similar to 

nitrates. Bramide is more useful as it is seldom encountered in significant concentration in the soil 

(Bicki and Guo, 1991; Silvenooth el 01.. 1992). Another factor which effects the solute distribution 
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within a soil profde is the quantity and distribution of rainfall infiltration. Soils having higher 

hydraulic conductivity result in greater bromide movement th~ougln the soil profile to lower depths 

in high intensity rainfall (Bruce e t a / . ,  1985). 

The principalmechanism of solute transfer in the soil are convection (transportation by the 

moving liquid phase) and diffusion. The convective transfer of solutes can be studied most 

conveniently in the absence of interfermg chemica! processes. Different tillage practices result in 

increased infiltration rate of water, decreased water evaporation and surface runoff and increased 

water content in the sol1 profile (Beven and Germnn, 1982). Incredsed infiltration and permability 

of so~ls  under different tillage will also increase the potentidl for groundwater contamination from 

m v e m n t  of agricultural chenuc:lb through the soil beyond the root zone Rapkl movemnt of agro- 

chemicals and  nitrates below tlie root zone has been attributed to Inlacropore flow which occurs 

following high intensity s tor~m.  I~nliltration of water in no-till soil, is attributed to the movelnent of 

water through large, surface-co~~~iected. continuous voids. 

Studies on solute mveinrnt tluough the soil profde, as stated earlier, employ tracers such as 

chloride (0) and bromide (Br) anions to evaluate water and chemical movelmnt. The depth of 

penetration of the tracer in tlie soil profile and its concenlration at various depths is used as a measure 

to determine the effect of surface management on the movement of solutes in the soil profile as was 

used in our study also. This approach relies upon the concept of flow of solutes along with water 

within the soil profde. Usually bromide is preferred over chloride as an indicator of nitrate movement 

in the soil because its native concentration in soils is very low and thus movements of even small 

amunts  may kdetected (Smith and Davis, 1974). Observations ~ m d e  by Onken eta/ .  (1977) also 
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indicate that nitrate and bromide r o v e  similarly in soils under tield conditions. But Smith and Davis 

(1974) observed that the movenrnt of bromide relative to that of nitrate is identical in the subsoils 

and variable in surface soils. Differences in the apparent relative lnovenmnt of the two anions is 

attributed to microbial activity involving nitrates on the surface. In fact, this is 3 case of convection 

with reaction (for nitrates), co~iiparrd with convection alone (for bromide). Convection with reaction 

(this i i  chemical) is the usual case with divalent anions (e.g. SO,") or trivalent (e.g. PO,"). Even 

then bromide has utility for following potential path of nitrate lnovelnent through soils. 

Tyler and Tho~nls  (1977) obqervcd greater losses of nitrate nitrogen and chloride, used as a 

tracer of nitrate ion, under the no-tillage system co~npared to convelitional tillage. Concentration of 

nitrate and chloride io~ls in the leacllote indicates that these mobile, surface applied anions can be 

washed much deeper into tile so11 along with water moving througll so11 cracks and channels after 

intense rains. The loss of nitrate nitrogen was greater undcr inn-tillage than under conventional 

tillage. 

Similarly under high uitensity rainfall greater bromide ~novenxnt occurrcd in the soil profde 

managed under continuous long-tenn no iffl compared to other tillage techniques namly  mouldboard 

plow, chisel plow, disk plow aid para-till. These reports indicate that bromide tnovelnent in the soil 

involves an interaction between tillage system and rainfall intensity. Greater bromide movement in 

the no-till managemnt was attributed to higher hydraulic conductivity and lnacropore continuity 

observed in this system (Bicki and Guo, 1991). 
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Water and nutrient movenrnt through field soils is of great unportance in relation to plant 

uptake and the p o t e n i i  pollution of subsurface gound water. Being negatively charged, nitrates are 

m r e  readily lost due to leaching within the soil prome and the presence of large soil pores between 

structural units will also influence ion movement of nitrates and chlorides. This indicates that 

improvement in aggregation due to surface managemnt will lead to increased solute movelnent 

through the soil profde. Both nitrates and chlorides moved vertically with water through the soil 

profile (Shuford et al., 1977). This is not the case always, the anions can also move laterally in 

duplex soils. 

Deeper and more rapid movelnent of bromide is usually observed in the non-tilled soil 

co~npared to tilled soil. rile exception would be when a deeper layer limits the flow. The difference 

in solute rmvelnznt in the tilled a ~ a l  non-tilled soil can be attributed to tlle i~nproved soil structure in 

the non-tilled surface soil (Fleniing and Butters. 1995). T~llage pr,lctices dircctly affect the soil water 

movemnt and leaching character~stics of the soil by disturb~ng the 1n:icropores in the upper 30 ctn 

of the soil profile. No t~ l l  ~mintaioed a lower nitrate level in the upper 0-30 cm layer after two rains 

compared to the moldboard ploughed plots which can be attributed to the movement of nitrates 

beyond 30 cm in the no t~ l l  so11 (Kanwar et ol., 1985). 

Water tends to infiltrate the soil at a greater rate under conhervation tillage than flow-tillage 

due to maintenance of vertical nwcropores sequence fro111 ~nlcrobial activity, decayed root channel 

cracks etc. inconservation tillage. This indicates that the movelnent of agro-chemicals through soil 

is affected by soil tillage practices. Rapid movement of agrochcmicals llirough soil macropores has 

been identified as the major pathway. Stan and Glotfelty (1990) observed movement of bromide 



is vitally imponant for having a good water-holding capacity as well os proper aeration, both k i n g  

essentizlrequirenrnts of the crops Scirn~ists have long sough! for an effective substitute for organic 

matter in the shape of synthetic  lurer rials which can be used to iliiprove soil structure. The use of 

synthetic polymxs for increasing the stability of so11 aggregates 1h:rs proinpred n nuinber of 

invcstigauons on their eNect iii htabllinng the aggregates and influencing the v;triaua soil physical and 

chemical properties. These studies have provided basic inforlnation oil the type of synthetic soil 

condi~ioner whlch c:ln k used to srabllize the existing soil ilggregdtes thereby improving the soil 

structure (Stetanson. 1973). So11 conditioners have potential import;~nce in [lie arid and senu arid 

regions of t k  world where rllere 1s ;III awareness of iriipl~catloll of soil crosioli and inefficient water 

use. So11 conditioning ill>pllcs i~lllirove~lrnt of hoil's pl~ysiu;lI properlicr, thus per~iiitting more 

effecuve utlltzet~o~i of 5011 ;t~lil iv.ltcr resources. Sucli iiwtcrials c;ill fdv~ir;lhly ~niudlfy soil water 

relationships especially retentloll :11icI trans~issions. 

Change in soil structure IS  observetl due to fluctuation in the levels of organic stabilizing 

constituents. Aiiwng blologlcal a i i rndmnts  which influence the stability of aggregates, organic 

mauer is one of the in051 llllportant constituents. Growing of grasses will also lead to strllctural 

Improvement as a result of physical enmeshment of roots and hpllae. The effect of live grass on 

stability of aggregates m y  also be due to release of organic m u e r  into the soil kcause  of presence 

ofdecomposing roots and Living ruots (Tisdall and Oades, 1979). The Increate in stability is partly 

due to polysaccharides and partly due to organkc polymers bound to the surface of clay particles. 

Structural stability is effected differently by dLfferent management practices. 



The root exudates effect the structural stability due to clielarion WIIII iron and aluilliniuni 

which are involved in riiinerdl-~ixtal-org~nic m t te r  linkage Root erudates also increase the wet 

aggregate stability 11d decreasc dipers~blc cL?y coiiteiit (Pojasok and Kay. 1990) Different ~interidls 

m the rhizosphere thus can have different effects on structural stabll~ty. The rliizospl~ere of actively 

gowing roots contams Lipids, enzyiirs, cellular iiuterial from tlie root and ~nicrobi;il biunwss, all of 

which act as stabilizing rrwter~als arid Increase the stability of aggreptes Sod structural stability is 

svongly influenced by the contciit of organic Inutter (Cliai~ey and Swift. 1984). Soil carbohydrates 

are the organic constituents wl i~cl i  are ]most closely ~iivolved 111 :~ggregiitio~~ (Sparling and Clieshire, 

1985). They are more closely 1c1,ired with aggregate stability t l i i i i~ the totiil soil organic liuitter 

content 

Haynec and Francis (1993) observed hlglier content c~ f  aug;irs o f  inicrobial orifln in the 

carbohydrate fractioli whlcli IS ~nvulved 111 aggregate stablllty. In  another study Ball et al. (1996) 

observed h~gher concentrauon oiorgdn~c carbon and cxbohydrnles Iicar thc wrface in zero tilinge 

soils but these were unfonnly distributed with depth m tlie plouglied sull. Zero tilled soil had greater 

svuclural stability compared to plouglied sot1 indicating a positive correlation wlth total carbon and 

total carbohydrates. Froin tills study it can be concluded that greater stability of the so11 in zero 

lllhge n nuinly due to preence of lxge amunt of carbohydrates on the surixe. Carter (1992) also 

observed a s~gnificant increase 111 the m a n  weight d la l l~ ter  and aggregation index (indices of soil 

Stnlcturd stability) of soh  having high organic carbon and microbial biomass. Thesc studies indicate 

that s l ~ c t u r a l  stability increases with increase in organic m t te r  and microbial biomass. 
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Organic r rwted  r e k ~ d  by roots stabilizes the aggregates providing ;i source of energy for 

microorganisms in the rhizosphere wli~ch in turn produce aggregate stabilizing materials. Part of 

increase in structural stability is due to polysaccharides and part to organic polynlers bound to the 

surface of clay panicles by polyvalent cations (TisdaU and Oades. 1979). Fila~ixntous fungi arc also 

capable of binding panicles of soil ~ n t o  stable aggregates because particles of soil adhere to [he 

niucilage on the surface of the hyphae 

Soil organic la t te r  hiiproves soil resistance to defornlation [lierefore, even a s~rwll cliaiige in 

orgmic inattercm influence the stability of a g p g a t e s  to a p a t  exreor. Carter (1992) observed that 

increase in the level of soil organic ~ m t t e r  resulted in increasing the aggregate stability. A linear 

relationship was observed between organic carbon and mean weight disllxter (MWD), an index of 

so11 structure. 

Application of aggregatuig agents like organic Inalter. Fe(O1-I) , CaCO, resulted in increasing 

the aggregation due to flocculation as well as bridging with cations to form organomtallic 

compkxes. Cations of Fe ard Ca help to stabilize aggregates and also i~nprove the bulk density and 

hydraulic conductivity of the soil. Bulk density decreasul due to increase In aggregation and porosity 

which resulted in increased hydraulic conductivity (Sar~na and Das. 1996). 

Mechanism of fortnation of so11 aggregates is one of the most important phases of the soil- 

suucture problem and the stabiity of aggregates is a m j o r  factor involved in forming and preserving 

good structural relationships in soil. Reuhewein and Ward (1981) observed that synthetic 

POlyelectrolytes provide an excellent means of stabilizing aggregation in  oils. Synthetic polymers 
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not only improve soil structure but also the soil permeability. PVA is a cotmwn pol>iirr used 

experimentally for soil structural u~iprovement. It is a linear uncharged pol)iner fonietl by the 

hydrolysis of polyvinyl acetate. Application of PVA leads to considerably ilnproved aggregate 

stability in soil systems. PVA gets adsorbed on clays W;c gibbsite and geotllite and f o m  aggregation 

resulting in good structure (Kavanagh e l  al., 1976). Shiular observations were twde by other 

investigators such as Greenland. (1963). Emerson and Raupach (1964), and Willia~iu PI ul .  (1966). 

2.2.2 Soil amendments nnd their efTect on prolile water storage 

Soilconditioning hnpiies inyrove~i-ent of the soil's physical properties, thus permitting more 

effecuve utilization of soil and water resources. Soluble conditioners undergo physico-chemical 

reactions with sod constituents, especially the clay fractio~i. Upon dryi~ig, an ~~isoluble irreversible 

nutrix LF f o n d  which results in unproved aggregation, poroslty ant1 Iiy<iraulic conductivity. Nilwh 

elal .  (1983) observed that applications of conditioners to the soil resulted in itnproving aggregatton, 

decreasing bulk density and itnproving porosity. These factors contribute to an improvement in 

permability which increases the nmvemnt of water through the soil profile thus leading to increased 

profde water storage. 

A b b t t  and McKenzie (1986) observed that application of gypsum on soil surface improves 

the sbucturc of s o m  hard-setting solk tkreby increasing the soil water storage. Doyle e l  01. (1980) 

also observed an improvement in drainage due to application of gypsum this resulted in increased 

Crop establkhmnt tkreby reducing the risk of soil compaction. Doyle and Hamlyn (1960) reported 

an increase in water stable aggregate and porosity by application of VAMA, a synthetic soil 
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conditioner. This in turn resulted in increasing the profile water storage and yield of crops. 

Application of VAMA i n c r e d  the yields signitkantly particuhrly in soils whose pliysical properties 

showed Featest improvemnt due to VAMA. 

Sen et a/. (1995) observed that application of synthetic conditioners suppressed evaporation 

due to change in transmissivity of the surface soil as a result of s~abil~zu~ioii  of aggregates and thus 

resulted in increasing the profile water storage. Polyelectrolyte so11 conditioners increase the supply 

of available water to the plants. Use of these synthetic conditionerr enhances tlre infiltration of rain 

water into the soil and encourages deeper plant root pelletration tlius enabling pklnts to extract water 

from a greater volulm of soil. They also increase the profile water storage cap:~city of the soil due 

to enhanced infiltration (Peters er 0 1 ,  1953). 

Wlll~ams cf 01. (1966) used poly(viny1 alcohol) (PVA) and ~leter~iiinetl its effect on soil 

aggregation, becau3e it was thouglit that an uncharged poly~ner would be able to penetrate ]nore 

readily into the negatively charged porous structure of soil aggregates than would either a negatively 

or a positively charged polymr. PVA adsorption is Inore if size of aggregating particles is small 

irducing greater aggregate stability. Natural neutral polymrs are responsible for greater stabilizing 

of soil aggregates. PVA is one such uncharged s p t k t i i  organic polymer lnvolved in the stabilization 

of soil aggregation. The attachmnt between polymer and clay surface is probably by hydrogen 

bonding between the hydroxyl goups  of PVA and oxygen on the clay surface (Elnerson. 1956). This 

would lead to increased infiltration and increased water storage in the soil profile. Stefanson (1973) 

also observed that application of PVA to the soil enhances the stability of pores and prevents the 

blocking of these pores by detached soil materials. Thus PVA has k e n  shown as an effective 
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stabilizer of surface s o h .  It enhaxed tlie capacity of the soils to absorb rainfall and decreased runoff, 

thereby increasing the hater storage capacity of the soil. 

The stability of aggregates can k increased by use of synthetic soil co~lditioners such as poly 

(vinyl alcohol) (PVA) which offers a rapid m a n s  of stabilizing aggregates near the surface of the soil 

against various m h a n i s ~ m  of disrupt~ons. Oades (1976) observed th;lt applicat~on of PVA stabilized 

the surface structure and prevented crust fomt ion .  Rainfall infiltration was i~nproved in soils treated 

with PVA, Increased intiltration also led to an increase in water storage and ;\bout 12% increase in 

water available to wheat crop was observed. Botha el 01.. (1981) also observed that incorporation 

of PVA in fine sandy soils resulted in fomt ion  of stable aggregates. PVA enhances the aggregation 

ofsoil panicles and the stability of aggregates as a result it i~iiproves rain water Inovelwnt illto the 

sod. 

Application of Hygromull (a urea forlnaldehyde soil co~lclitioner) i~nproved the hydraulic 

conductivity by increasing the porosity of clay soils whereas Agrosil LR (contlitioner) decreased the 

hydraulic conductivity of sandy soils and improved the aggregation in these soils which lead to an 

increase in water storage (Nunah cr a/., 1983). Painuli and Pagliai (1990) observed that polyvinyl 

alcohol and dextran (soil conditioners) improved the soil structure considerably and soils treated with 

these conditioners produced nurrerous fine cracks, s d l e r  clods and inparted greater stability against 

water wMh is important in agriculture. Profile water storage was enhanced due to increase in rain 

water infiltration as a result of improved aggregation in soils treated with PVA and dextran. 



In another study conducted by Painuli er a/ .  (1990) an increase in the porosity was observed 

due to PVA application. PVA was rrnre etficient in improving the conli~luity of the pore system than 

dextran, consequently it also increased ram water infiltration and water storage. PVA and dextran 

dso increased the water retention agalnst gravity. Application of so11 co~ld~r~oner  (Krilium) resulted 

in a nurked increase in the yield of cauliflower due to Improvell-ent in soil structural stability which 

also resulted in increasing the available water through improvetl illfiltratio~l (Low, 1973). 

Botha era/.  (1981) observed that PVA unproved so11 aggregar~ull without altering other soil 

physical properties. Most effective ~ilethod of application was in solution form to a wet soil which 

gave a k t te r  degree of ag-mgat~on. The penwable film of soil contl~tioner, in ;aidition to stabilisi~ig 

:he soil, was found to reduce runoff and thus increate water infiltrat~oli :111d water storage capacity 

of the soil. PVA enhances the s tab~l~zat~on of soil thus iricre;~s~ng the rate uf elnergence of wheat 

seedlings (Stefanson, 1974). 

Application of PVA improved the pore space by improving aggregation thus resulting in 

improved rainfall infiltration and water storage in the soil. Application of PVA was also found to 

change the specific surface area and pore size distribution due to adsorption by aggregates, this 

results in strengthening the aggregates and prevents their breakdown due to external disruptive forces 

(Williams et a[., 1967a). Increasing the amount of PVA adsorbed on clay surfaces results in 

increasing the tensk suength of aggregates (Wdliams e t a / . ,  1967b). But as water content increased 

there was a decrease in the tensile strength of aggregates of the soil-PVA complexes. 
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H e m M  and Nofziger (1981) observed that application of super slurper, (hydrolyzed starch 

pol)aclyloniuiie grift c o p o l ~ m r  comimnly called "super slurper") a soil conditioner, decreased the 

crust smngth and increared water hlfdtration and retention. hmmy s a d  and sandy loam soils treated 

with super slurper retained nmre water than the untreated soil. Infiltration rate was also reduced for 

clay loam and loamy sand soils treated with 0.4% super siurper. 

Conserving rainfd in the soil profk is very important for growing successful crop in the SAT 

regions. Aujla and Chee~na (1983) observed that use of evaporation retardants. straw mulch. 

herbicide as well as tillage are useful in conserving m r e  soil ~noisture in the 180 cm deep soil profile. 

These moisture conservation practices iniproved plant stand, profile water use and yield of roinfed 

chickpea. Polyihene and straw mulch showed greatest increase in profile water storage leading to 

iugher yields c o m p d  to the other treatnrnts. Tllhge which fonis a fine mulch of soil particles w2.i 

very effective in maintaining soil nx~i\ture. 

2.2.3 Soil amendments and  their eNect on deep percolalion and infiltralion 

One of the undesired important consequence of mode111 farming is the deterioration of soil 

mcture. The responce to crops to water and fenilizer is much less in structurally deteriorated soils. 

In recent i i s  the emphasis is on maintaining a good soil structure and the use of conditioners is one 

promising approach in order to attain this objective. Pores ranging from 0.5 to 50 p m d i a m t e r  are 

[he storage pores, and pores ranging from 50-500 g m  are transmission pores. Paitiuii er ai. (1990 

observed an increase in the elongated, transmission pores in soils treated with PVA and dext 

PVA anddexuan also improved other physical properties of the so11 such as hydraulic condu 



water retention, porosity, pore shape, pore size distribution and pore con~inu~ty. These pualwrers 

are fundamental in maintaining a good soil structure and consequen~ly they regulate rhe water 

movement in the soil. Improvement in water movemnt also increases the deep percolation losses 

of water beyond the rooting zone. 

Treatmnt of soils with conditioner resulted in 1.5 to 3 fold increase in soil-warer diffusivity 

over the whole range of volumetric water contents as was observed by Kijne (1967). Rate of 

movement of wetting front also increased as a result of treatment with soil conditioners. Bath 

Krilium and PVA have a stabilizing influence on tile soil structure wliicli in turn improves the water 

conducting qualities of the soil. A higher rate of infiltralion was observed ill PVA treated soils 

compared to Kriiliu~n. Thic indicates that PVA treatment is Illore effective in stabilizing the soil 

particles and the pores between them compared to Kriliuni. Therefore, PVA due to its mode of 

artachmnt, is found most effective in influencing the water contlucti~ig properties of soils. 

PVA application increws cracking and hence the movelnent of water Into the soil profile in 

clay soils is also increased. The addirion of t k s e  neutral organic conditioners, modify the wettability 

of the soil ard therefore the interactions with water are also enhanced leading to improved transpon 

ofwater in the soil profile. Both PVA and dextran enhance the stability of soil structural aggregates 

against water by resisting cmsting. This results in improved infdtration and deep percolation losses 

Of water which are also enhanced (Painuli and Pagliai. 1990). 



2.2.4 Soil amendments and  their e rec t  on solute movement 

Bromide is usually present in soils at very low concentration (Bowlmn, 1984) and is not 

subjxt to chemicaland biological tnnsfomtion. lkrefore ,  moven-ent of bromide in soils has k e n  

used widely to evaluate nitrate mobility because of the similarity of nitrate and bromide mobility 

(Jones and Schuab, 1993; Silvertooth er 01.. 1992). Clays and other soluble and insoluble products 

eluviate from the surface soil to lower layers in the soil profile and thus effect the movelrent of 

solutes since they block the pores. 

In mechanized agriculture, pwicularly in developetl countries, use of lieavy machinery in 

fields changes the soil pore geotretry and pore size distributio~i which In turn influences solute 

rnovenxnt. Bulk density and pore size distribution influe~icc both water and bromide transport 

through the soils. Moverrent of bromide is mare rapid through uniform-sized and larger pores which 

nuy occur in soils treated with conditioners (Smith el a/ . ,  1995). Very little literature is available on 

the study of the effect of conditioners on solute mavemnt. Most of the work on conditioners relates 

to improvement in structural stability and its effect on water movemnt, hydraulic conductivity, 

infiltration etc. and therefore work on the effect of conditioners on solute movemnt is less. Much 

infomution on the effect of tillage practices on solute movemnt is available as can be observed from 

the literature reviewed in section 2.1.3. 



2.3 Crop residue and its elfecl on soil physical properfits 

2.3.1 Crop residue and its efTecl on soil structure 

Crop residues at the soil surface will protect the soil fro111 excessive radiation and rainfall 

energy, retain infiltration capacity by retarding the formation of surface seal froln the hnpact of 

rainfall and provide a conduit during saturated conditions where water can be conducted into and 

through the soil. However incorporation of crop residues is not as effective as leaving [he residue 

on the surface where it decolnposes less rapidly and continues to replenish the cementing products 

for a longer period (Dubey e l  al.. 1995). Skldlnore el  01. (1986) observe~l that incorporation of 

residue had less influence on soil physical properties md did not affect the wet aggregate stability and 

porosity as compared to surfdce ~mintenance of residue. 

Straw managelrent tends to have a greater impact on soil properties than does tillage 

nunagemnt. Straw m n a g e m n t  has been reported to influence aggregate stability thus enhancing 

the water inliltration into the soil (Sharratt. 1996). Black (1973) reported a decrease in bulk density 

as t k  amount of straw applied on soil surface increased. The decrease in bulk density is an indication 

of improved soil structural features. This is because bulk density influences porosity which in turn 

is effected by soil structural arrangement. Edwards et al. (1988) also observed that presence of 

nucropores created by earthworm in the no-till soils, where the surface residue has been retained. 

results m @roving t k  soil structure by enhancing the structural stability and aggregation. This also 

lead? to sustained high infiltration rates due to improved soil structure as the macropores are 

important channels for rapidly infdtrating water. 



2.3.2 Crop residue and  ils eNw1 on pmfile water storage 

Maintaining crop residue on the surface is an effective ~ m t h o d  of conserving moisture and it 

also improves infiltration and reduces runoff. Organic debris left on the surface of the soil due to 

crop residue also has m n y  physical, chemical and biological effects which are beneficial to crops 

@uky and RusseL 1939). Lafond er ol. (1992) in their studies observed that ~iwintenance of residue 

at the soil surface improved water infiltration and reduced evaporation thereby increasing water 

storage in the soil profile. Placing of wheat straw beneath the surfdce way also found to reduce the 

water loss and thus enhance water stored in the soil profile but the effect was only for a short duration 

(Sembiring el ol , 1995). 

Continuous stubble rcteiitio~i was found to increa~c t l ~ c  ynil watcr co~itent and soil water 

extraction during crop growth thus increasing dry rrwtter prnductio~i ;iod soil water accu11iul;ltion 

during fallow and reducing runoff (Radford er 01.. 1992). S~nika and Unger (1986) stated that 

add~tio~ial water for crop use can be provided by increasing infiltret~on a1111 reducing evaporation by 

using residue management practices. Surface residues enhance infiltration and decrease runoff. It 

affects not only infiltration and redistribution of water but also deep perculation. Because infiltration 

Is increased more water will be stored in the soil, provided the soil has the capacity to store the 

additional water. Otherwise, the excess water is lost through deep percolation and runoff. 

Tanaka (1985) observed that management of residue on the soil surface can reduce 

evaporation by decreasing air mavemnt  immediately above the soil, changing albedo and insulating 

the soil surface thereby increasing soil water storage during fallow. Surface residue can be maintained 
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by reducing m h a n i c a l  tillage and adopting chemical fallow, i.e, use of herbicides to control weeds. 

This results in greater ponion of the residue k i n g  mintained above the soil surface and therefore 

enhvlces the water stonge capacity than stubble - mulch fallow (Fenster a ~ a i  Peterson, 1979; Good 

and Smka, 1978). 

Unger (1978) reported that ~lnintaining straw mulcl~ on the surface increased the water 

stonge and also increased the yield of sorghun~ These results i~idicate that presence of straw niulch 

increases water storage during fallow compared with no residues. In allother study Unger (1976) 

reported an increase in the amount of water accumulated in soils wit11 increase in the rate of surface 

residue and water application. Maintenance of mulch on tlie so11 surface increases the soil profile 

water storage for the subsequent wheat crop as was observed by Dubey er 01. (1995). Mulching also 

increased the yield of wheat crop, ant1 mulch application left mole rcs~dual w:lter in the soil during 

the post monsoon period. 

Decreased water loss is a c o n q u e n c e o f  a reduction in the turbulent transfer of water vapor 

to the atmosphere, decreased capillary continuity, capillary flow and wster-holding capaclty of soil 

surface layers. Any kind of layer or profile discontinuity w~l l  decrease water movenrnt, and 

elimination of tillage enhances precipitation storage (Dao. 1993). In areas wliere soils have low 

water-holding capacity, additional water for crop use can te provided by increasing infiltration and 

nducing evaporation. Stubble m n a g e m n t  of surface soil can reduce runoff and retard flow across 

the surface. This results in increasing infiltration, and more water is stored in the soil, provided the 

$03 has the capacity to store the additional water. 



2.3.3 Crop residue a n d  its eflect on deep percolation a n d  infiltration 

Crop residues retained on the soil surface enhances infiltration by dissipating raindrop energy. 

thus minimizing aggregate dispersion and surface sealing, and retarding surface water flow, thus 

providing more  ti^^ for infiltration. Surface nwnagemnt and crop residue ~iwnagelnent practices 

alter the pattern of water e n y  into the soil. As these practices yield different soil surface roughness. 

surface residue distribution, organic carbon concentration, aggregate-size ilistributioli and aggregale 

stability, they will in turn influence water infiltration and deep percoli~tion (Unger, 1992). 

Infitration was higher in the more porous no-till soil surface than ploughed soil surface, and 

remained unchanged througliout the season thus reducing the potential for runoff losses of water 

because of nwintenance of residue un tlir surf~ce in the no till soil. In the no-till soil, reductioli in soil 

seal and crust formation enhanced water infiltration resulting in increased volu~i~etric-water liolding 

capacity and precipitation storage. It also leads to increased infiltr~tinn and finally deep percolation 

of water (Dao, 1993). 

Phl el a/. (1990) also observed that a para-plowed stubble mulch treatlnent had less decrease 

in macroporosity and more water infiltration and storage in the soil profde than a chiseled stubble 

N k h  t m t m n t .  'Ihis indicates that trwintenance of stubble mulch improved the water storage in the 

soil profile by improving the surface soil structure and infdtration and reduced the runoff. 



2.3.4 Crop residue and its eflect on solute movement 

Soil surface aggregates and nwcropores which are influenced by surface residue have the 

potential to greatly influence the lranspon of surface-applied agricultural chemicals in soil and to 

groundwater. The flow of water through soil is often considered as bulk rnove~rent which can bc 

described by Darcy's law (Nielsen and Bigger, 1961). For the purpose of defming movelxnt of 

solutesdissolvedin thls water, which nwy not move with the water front, it is important to masure  

such movemnt using mcers. The vdcer nwvenxnt tiuough the soil also gives illformtion regarding 

the nwvemnt of water. Day and Forsyihe (1957) concluded th;lt the Inoverrent of dissolved solutes 

In the soil moisture stream cannot be deter~n~ned adequately Iron1 the average fluid velocity. 

Hyirodynamic dispersion is also an ullponmt process through wiiicli solutes move and which should 

be taken into account when dealing w~th  solute Inovenxnt. 

Heathmn el 01. (1995) observed that presence of lnacropores in residue-covered soils 

allowed bromide ions to r o v e  down below the niain wetting front. Tl11.i was explained as for~nation 

of aggregates or1 the surface due to surface res~due which increased the amount of bromide 

tnnsfemd to the mqcropore flow. These studies suggest that prormting surface soil aggregation will 

cause leaching of surface-applied agricultural chemicals especially where surface runoff is not a 

problem such as under no-till or where residues cover the surface and in soils with high infiltration 

capacity. 

Results of experimnts conducted by Thomas ef at. (1973) show that a large proponion of 

nibate was lost fromthe top 90 cm of soil under mulch treatment (killed-sod mulch plot) but that no 
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nitrate was lost from the conventionnlly-tilled soil. The loss of nitrate was attributed to lower 

evaporation t o m  the mulched soil causing deeper penetration of water and nitrates through larger 

p r c s  in the wetter, mulched soil. Hence rainfall resulted in removing nearly half of the nitrate from 

the mulched soil due to deep penetration compared to conventionally tilled soil. 

Similarly Watts and Hall (1996) observed greater herbicide loss due to leaching ui ~nulch 

t i g e  than conventional tillage. Therefore, any rrwnagemnt of the surface which enhances surface 

roughness and increases infiltration, as is the case in mulched soils, will decrease runoff losses of 

chemicals and increase the movemnt of such chemicals through the soil profile. 

There is strong relationship between surface managellrnt practices and the abundance of 

macropores which influence the infiltrat~on capacity of the soil. Gerthr~~hn cr oi. (1984) observed that 

bromide had m v e d  deeper into soil profile, along with water, in soils lhaving a very good macropore 

system, as in a non-ploughed soil w ~ t h  surface mulch. Kissel rr 01. (1973) also observed rapid 

movement of chlorides through large connected pores which can be observed in soils subjected to 

minimum tillage having surface residue. In a soil with good structure, the large pores play a major 

role in conducting the percolating soil water and solutes. 

Mulching with killed-sod resulted in removing essentially all of the chloride and nitrate from 

the 90 cm soil profile. These results suggest that nitrate losses are commonly due to leaching in 

mulched soils whereas, in conventionally t i  soil the loss of nitrate was only half of that of mulched 

treatment. This indicates that improved infiltration due to mulching can lead to greater solute 

mvetmnt  and leaching losses of nitrates (McMohan and Thomas, 1976). 
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2.4 Surface roughness a n d  its eflecl on soil physical properties 

2.4.1 Surface roughness and  its effecl on profile water storage, deep percolation and  

infiltralion 

Surface roughness is a !mans of improving in-situ soil and water conservntion. It can affect 

the soilphysicalpropenies and have a direct bearing on uidltration of rain water and its storage in the 

soil profde. Changes in sod physical properties that occur as a result of surface roughness include 

the improvement in the intake capacity of the soil and reduced runoff, both of which increase the 

inoisture storage in the sod profile. However, quai~litative i~~forrnatiotl on the effect of surface 

roughness on soil physical properties such as water movelmnt, solute muvcnrnt, deep perculatioi~, 

mdltration etc.. is scarce. 

An important means to mcreaye surface roughness is by nlaki~lg scoops or pits. Scoops 

(pitting), or shallow pits made in the soil, store most of the rain in the depress~ons thus reducing 

runoff and soil loss. For example, scoops reduced seasonal runoff by 67% (ICRISAT. 1991) thus 

increasing water storage in the soil. Scoops were also found to increase crop yields significantly 

C o q d  to tlat cullivation whjch can be attributed to the addittonal water stored in the soil profile. 

Scoops were found to be m r e  stable during high intensity rainfall compared to tied ridges. 

Soil stnrctun has a marked influence on the m u n t  of water that infdtrates into a soil profde. 

This is imponant in Alfisols where the surface is prone to sealing and crusting. Pathak and Laryea 

(1991) observed that scoops were effective in reducing runoff and increasing infdtration and the 
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scoops were found to have greater stability than tted ridges. A decrease in the scoop capacity 

o c c d  as the season progressed, the decrease k i n g  nrore in bare soil than in cropped soil. Studies 

on scoops and their effect on profile water storage, deep percolation and solute movement are very 

few. Mostly the studies relate to runoff and soil loss and do not refer to the amount of water stored 

in the soil profde. 

Surface rougllness can also be used as a m a n s  to improve the profile water storage of the soil 

and increase the infiltration leading to deep percolation. Path& and Laryea (1995) used scoops as 

a m a n s  of improving the profde water storage. The tmin effect calix from the increased t i m  for 

water to infiltrate into [lie soil. This led to increased storage of water 111 the roil profile and also to 

deep percolation of water below the root zone. Tlic 1iwi11 advatitage of \cuups over flat cultivation 

occurred dur~ng early part of the crop growing season. Thic was due to the so11 being Inure protie 

to surface crusting and sealing because of sparse vegetation cover during this period, this k i n g  Inore 

evident in the flat cultivation. 

2.4.2 Surface roughness a n d  its erec t  on solute movement 

The distribution and movement of water within the sod profile are imponant from the 

standpoint of solute transport and providing water to plant roots. Surfice roughness fnprovcs 

infiltration leading to deep percolation of water, which a unportant in determining the depth to which 

%lutes will move in the soil. Studies on the processes involved in water and solute movement due 

to deep percolation as a result surface roughness is important because of contamination of 

DOundwaur by nitrates and pesticides and off-site pollution of the environment due to erosion. With 



40 

downward flow of water in the soil as a result of surface roughness, there can k an associated 

downward m v e m n t  of water-soluble chemicals. The flow of water transports salts into the root 

zone (Kanwar er al., 1985). 

Ahuja el 01. (1983) observed that increasing surface roughness will also increase the amount 

of a mobile soil chemical released to runoff. Increasing surface roughness also delayed runoff and 

increased infiltration by 2.5 thlps compared with the control, and yet the bromide concentration in 

runoff was high indicating that surface roughness can also increase the loss of chemicals through 

runoff. This indicates that increasing surface roughness enhances the nmcropores and results in 

greater leaching losses and solute lmvelxnt compared to the no-till system. Granovsky el a / .  (1993) 

also observed that the no-1111 trentlient tra~ls~nitted larger volu~les of water and chemicals indicating 

greater solute mvemellt in these soils. This is attr~buted to the developnrnt of a stable !nucropore 

nctwork in the no-till soil due to uninterrupted eanhworlii and mnicroblal act~vity and the waterflow 

though these macropores is a possible ~lpchanism for accelerated transport of chemicals (Thomas 

and Phillips, 1979). 

2.5 Crop efTect o n  profile water storage, deep percolation and infiltration 

Another factor which is important in determiniig water content in soil profile is the role of 

tk plant canopy in redismbution of rain water. Plants m y  act as "reverse umbrellas" which intercept 

t k  falling water and direct it inwards to the stem or trunk (Clothier, 1988). Plants may also Create 

ad h t a i n  m y  of the large, continuous macropores that are easily exploited by free surface water. 

All agricultural crops are involved in directing water to the soil surface. 
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Zhai el a / .  (1990) observed that soil warcr recharge fro111 rainfall was disrribured 

systemaricaUy because of canopy interceprion and subsequent stetnflow. Soil water conrent in no- 

tilled soil was higher than in convenriotlal rilled soils. Surface recharge o f  soil water was less in rhe 

n o - W  soilcompared to convenrional culled soil due lo storage and flow of  water in deeper layers, 

which leads to greater deep percolation in no tilled soils than in convenriouial rilled soils. 

Surface sealing by raindrop itlipact plays an itnponant role in co~itrollitig itifiltration and water 

movenlent through soil profile. Surface sealing is prevented by conipletz crop and residue cover 

whkh increases intake rate l e d i g  ro deep percohrion. Fenility level is also tuiiportanr in dererlnining 

the infiltration because ir  leads to additiollal crop cover and bio-IIUSF producrio~i (Zuzel et 01.. 1990). 

Srone er a/. (19732) in a 3 1-day study observed tliat 35% of tot:ul water was losr due to flux 

loss 6otn the root zone. 111 their studies they emphasized [lie iuiiport;utlce of consideritig flux below 

the roo1 zone when attetnpting to dereruii~uie evaporation losses. Van Bavel el ul., (1968) also have 

discussed the rmgnitudes of deep profile water tmvemnt and the error involved when [his movemnt 

is not considered in p h t  warer use studies. The m u n t  of water traving Into or out o f  rhe root zone 

was greatly iniluenced by the amount o f  water added on the surface. The presence of  a crop also 

influences the amount o f  water lost ro deep percolarion. The less frequent the application o f  water, 

then the less water was lost due to deep drainage from the soil profile (LaRue eta / . ,  1968). 
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CHAPTER 111 

hlATERlALS AND METHODS 

3.1 Experimental site 

The experuwnt was conducted during 1995 and 1996 rainy seoson ( thorm at [lie 

International Oops  Research Institute for the Semi Arid Tropics (ICRISAT). The site is located at 

IXQN 78" E in Patanckru village, 26 km northwest of Hyderabad at an altitltrle of 545 rn above sea 

level (ICRISAT. 1985). 

3.2 Climate 

ICRlSAT is located in the Set111 Arid Troplcal bell cliaracteri\ed by a \hurt rniny season (3-4 

~mnths) and prolonged dry weather (8-9 ~iw~nths) (ICRISAT, 1989). There ;Ire three dlstinct seasolis 

which characterise the environment. The rniny season (ihorifl lxgins in June alid extends into early 

October. The post rainy winter seasoti (rubi) follows from middle of October to January, and that 

is followed by the hot dry summer season from February to June when the rains begin again. The 

average annual rainfall is 760 mm of which >80% faUs during the rainy season. 

3.2.1 Weather conditions during the experimental period 

In the 1995 rainy season, 1108 mm of rainfall was received which is 44 % above the long term 

average (ICRISAT. 1995). The rainfall was higher in 1996. enough to result in crop lodging. 

Metmrologicd data pertaining to rainfall, minimurn and &urn temperature, relative humidity and 

Pan evaporation ncorded during the period of t k  e x p e r h n t  are presented in Figure 1 and Appendix 

I. 
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Figure 1. Rainfall, evaporation and telnperature data during the experimnlal period. 



3.3 Soil 

The e x p e k n t  was conducted on a deep Aifisol located in the ICRISAT watershed area 

(RW3-C). These Alfsols are reddish-brown soils derived from granite-gneiss and which belong to 

mixed isohypenhermic family of Udic Rhodustalfs (Soil Survey Staff, 1975). Texture of the soil is 

sandy clay loam to sandy loam and they occur mostly on flat gently undulating uplands. The 

dominant clay mineral is kaolinite with varying proportions of 2: 1 clay minerals and sesqui-oxides. 

Akisols are well drained soils with moderate permeability. These soils have medium available water 

holding capacity with granite and weathered rock fragments occurring co~nmonly at lower depth in 

the profile. 

3.4 Layout of the Experiment 

The four main treatments in the experumntal field were : 

Control Normal cultivation (fust control) . 

Scoops As for control but pitting (size of the scoops were approximately 30 

x 30 cm and 15 cmdeep, (5555 pits ha" (app.)). The pits were made 

by labourers using traditional hand tools after sowing. 

Clop residue As for control and with application of unchopped pearl millet straw @ 

5 t ha" placed on the surface after sowing. 

Polyvinyl alcohol As for control and with polyvinyl alcohol (a soil conditioner which 

improves the soil structure) applied @ 100 kg ha.' (25%) by power 

sprayer after sowing (PVA). 
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Revegetation area Revegetation plots where the soil was not disturbed for the last 30 

years (second control) (Reveg). 

The sub-treatments were : 

Cropped (pearl millet was sown) (C). 

Fallow (kept bare) (F). 

The treatments were repeated during 1996 rainy season (kharm on the s a m  field. The 

e x p i m n t  consisted of the five main ueat~nents each with two sub-treatments and three replications. 

The four imposed main treatments were laid out in a simple split plot design. The imposed tmin 

ueatmnts (control, crop residue, scoops and polyvinyl alcohol) were located together, whereas the 

revegetation area treatment was 2 kmaway. The e x p e r i i n t  a i m  to study the influence of mthods  

of surface management of soil on profile moisture, deep percolation and solute movement. These 

mthods are compared with a control treatlirnt in which the soil had not been disturbed for the last 

30 years (Revegetation plot). No field operations were done on the revegetation plot except for 

sowing which was done manually. 

Each main plot s i i  was 15 X 20 n divided equally into two subplots. At 5 m away from the 

lower bund a microplot was created by inserting an aluminium wall (10 X 5 m for each subplot) to 

20 cmdeep with 5 cm above soil surface. In this area potassium bromide (KBr) was sprayed at 134 

kg ha" (50% concentration) bmmide for the solute movement studies. The layout of the e x p e k n t  

is presented in Figure 2. 



Figure 2. Layout of the experimental field. 
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3.5 Influence of different rates of PVA application on profile soil moisture of an  Alfisol 

The pilot study conducted during the 1994 post rainy season was to determine the rate of 

application of polyvinyl alcohol (PVA) soil conditioner to be used as one of the ueatmnts  in the 

min e x p e r h n t  during 1995 and 1996 rainy seasons. In this experilrent, the effect of different rates 

of PVA on water storage in soil profle under simulated rainfallcondition was studied, Infiltration 

ofrain water and its storage in the soil was taken as a measure of the improvement in soil structure 

by application of PVA. Theexpefumnt llad six treatments, PVA at 0, 25, 50, 100, 150 and 200 kg 

ha'' and threereplications. A nozzle type of rainfall simulator developed at ICRISAT (Thomas and 

El-Swalfy, 1989) was used to create ra~~lfall of 60 mm h'l inte~ls~ty. T h ~ s  intensity of rainfall was 

chosen as it is arate known to destroy the soil structure in this t p e  of red soil. It is also close to the 

maximum average intensity of rainfall on the red soils at ICRlSAT which was 58.7 ?c 4.5 mm h" 

during the past decade. 

3.6 Field operations 

The experimental field had been fallow for the past 6 years. The field was prepared using 

bullock-drawn cultivator (during both seasons) so as not to disturb unduly the soil structure. Weeds 

were controlled by spraying glphosate irrudiately after sowing. AU the other plant protection 

operations were canied manually. 



Table 1: Physical andchemical characteristics of the Alfisol sail profile at the exper i in ta l  site 
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Ropedes  

I PHYSlCAL 
I) Paniclesize analysis 
a) Sand (%) 
b) Sill (41) 
C) Clay ($1 
2) BUB density(M8 m l )  
3) Panicle Dewily 

Mg m') 
4) Total Porosity (41) 
5) Wet aggregate a n a l ~ i s  
a) MWD (mm) 
b) GMD lmm) 
6) ~ o r p t i v i t ~  (mm h.3 
7) Hylraul~c conductivity 
(mm h-0 

8) Steadysfate flow rale 
(m h'l) 

9) Mean pore size (mm) 

U CHEMICAL 
1) pH 
2) EC (dS ml)  
3) Organic cvbon (%) 
4)To!alN(mgkg'l) 
5)AvailableN(mgkg.') 
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10) Exchangeable Na 
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3.7 Characterization of the  experinlental soil 

Composite soil samples were collected at random from the field from depths up to 2.10 m 

prior to conducting the experiment. These samples were analysed for their pllysical properties viz. 

particle sizt analysis, bulk density, particle density, total porosity, wet aggregate analysis, hydraulic 

conductivity, sorptivity, steady state flow rate, m a n  pore size and chemical properties viz pH, EC, 

CEC, organic carbon, total nitrogen, available phosphorus and potassium, exchangeable calcium, 

mgnesium and sodium In any study based on soil structure, estimates of these above components 

is essential to determine the chemical atid physical stability of the soil. These results are presented 

in Table 1 and Figure 3. 

3.7.1 Soil physical properties 

Soil physical properties were masured using the composite soil swnples collected initially and 

after the e x p e k n t .  Since our study deals with soil structural improvement and its influence on soil 

properties, this aspect was given more importance. Soil structure refers to the physical constitution 

of soil mteiial as expressed by size, shape and arrangemnt of soil particles and voids. Measurement 

of soil structure is complex and there is no simple, definitive masure of it. Fundamntal soil 

properks such as texture, totalporosity, density etc provide the most useful indices of soil structure 

and are used here. 



3.7.1.1 Particle size analysis 

Mechanical composition of the soil was determined using the Bouyoucos hydrometer method 

(Bouyoucos, 1962) for soil depth horn 0 to 2.10 m at 0.15 In depth incre~nents upto 0.60 rn and at 

0.30 rndepth increment upto 2.10 m, and the sand, silt and clay percentages were calculated. 

3.7.1.2 Bulk density 

Bulk density was determined before starting the experhnent and again at the end of 

e x p e k n t  during both the seasons by core sample method (Dakshinamurthy and Gupta, 1967) and 

expressed as Mg mn". Bulk density was also masured upto 2.10 In at 0.15 rn depth incremnt for 

calibration of the neutron molsture nater, tile bulk den.;ity values are as follows 1.62, 1.70, 1.58, 

1.52, 1.56, 1.66, 1.65, 1.65, 1.66, 1.61, 1.53, 1.61, 1.67 and 1.70 Mp m 3  for the various depths. 

3.7.1.3 Particle densily 

Particle density was determined using pycnometer by the procedure given by Blake and 

Hange (1982) and is found to be 2.65 Mg m?. 

3.7.1.4 Total porosity 

Total porosity of top soil layer (0-15 crn) was determined both before and after the 

exPeriment by using the equation : 



f = 1 - ( ~ a l ~ p )  

where, f = Total porosity 

Pa = Bulk density (Mg m") 

p, = Particle density (Mg m.') 

3.7.1.5 Moisture characteristics of the soil 

?he plot of moisture content versus moisture potential is tertred the moisture characteristic 

of the soil. The moisture content at pressures 0.033,0.1,0.2,0.33,0.5. 1.0. 1.2 and 1.5 MPa was 

determined, before starting the experimnt, for soil depths 0 to 210 cm at 15 cm increments using a 

pressure plate apparatus at a constant room temperature 23f2 "C. Tlie results are presented in 

Figure 3. 

3.7.1.6 Wet aggregate analysis 

Stabiity of soil aggregates is also an unponant index of soil structure. Aggregates are groups 

of primary particles that cohere to each other strongly. A stable aggregate is one which does not 

disintegrate under the influence of disruptive forces. The different size aggregates were determined 

before and after the experimnt during both the seasons by following Yoder's procedure (1936) 

modified as suggested by Kemper and Rosenau (1982). The Mean Weight Diamter (MWD) and 

Geomtric Mean diameter (GMD) were calculated and expressed as mm 



Moisture content (m' m') 

Figure 3. Moisture characteristic curves of the experimental soil at different depths 



3.7.1.7 Surface h y d n u l i c  properties 

The disc p e m a m e t e r  m i t e  el al., 1989) was used to measure in-situ surface hydraulic 

properties of the experimental soil. It enables rapid masurenrnt  of hydraulic conductivity, 

sorptivity, steady-state flow rate and charactelistic man pore size with minhml soil disturbance. The 

IT& advantage of disc p e m a m l e r  is that one can apply water to soil at different tensions, usually 

bctween 1 and 15 cm of water. This way, the contribution of various pore sizes (ranging from 3.0 

mm to 0.2 mm) to water flow into the soil can be determined. Another advantage is that it can be 

placeddirectly on a soil surface with mini~nulndisturbance. This makes it useful for investigating the 

changes in the surface structure of soils due to management. 

3.7.1.7.1 Description of disc permeamctcr 

The disc is made of clear polycarbonate sheet. The bottomn of the disc is milled to form a 

shallow reservoir, which is enclosed by a water supply membrane, i.e a fme mesh nylon screen (63 

wm Nytal). The membrane is supported by a steel mesh backing and two or more layers of 

supporting m a t e d ,  Vylene. The Vylene and Nytal are attached to the disc with silicon sealant and 

a m e w  c h p .  A graduated and calibrated water reservoir of clear polycarbonate tubing is attached 

to thedisc. The reservoir is filled by placing a vacuum on the one-way valve or stopcock at the top 

ofthe reservoir. T k r e  is a bubble tower attached to the side made of same material which provides 

the pathway for air entering the reservoir as intiltration proceeds. The height of water in the bubble 

tower is used to control supply potential. The bubble tower has a small d iamter  tube for air to enter 
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the tower from the outside and an identical tube to supply air h o ~ n  the tower to the reservoir. The 

water potential at the membrane surface is varied by altering the water level in the bubble tower. 

3.7.1.7.2 Principle of operation 

When a source of water, such as a wet circular disc, is placed on the soil surface, the initial 

stages of the flow into the soil are dolninated by the soil's capillary properties. As t i rx  progresses 

both the geometry of water source and the force of gravity influence flow rate. A t k  is reached 

where the flow rate f?om the source beco~nes steady. This steady-state flow rate is governed by 

capillarity, gravity, the size ofthe disc and the pressure at which water is supplied to the soil surface. 

In this technique, we make use of both the initial and steady-state flow rates to separate the 

capillarity and gravity contributions to sea-water flow. In addition, by selecting the water supply 

pressure we can determine the sizes of pore sequences or fissures which participate in the flow 

process. 

3.7.1.7.3 Pmcedure for measuring the sorptivity 

Prepare the site at which observations are to be recorded by making a contact layer usually 

by applying sand. Place a rubber ring of 3 m thickness on the surface, fdl it with sand which is 

srmothed across the top of the ~ g ,  then ren-ove the ring carefully. Place the disc pemameter  filled 

with water on the sand and begin i i g  as soon as the bubbling begins. Record the scale reading and 

as often as possibk during early stages of infiltration. Continue taking the readings unii the flow 
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rate becomes constant. At the completion of infitration remove the disc and scrape aside the sand 

and sample top 2-3 mm of soil with spatula for moisture content. The m t h o d  for calculation of 

various soil hydraulic properties is presented in Appendix 111. 

3.7.2 Soil chemical analysis 

3.7.2.1 Soil reaction (pH) 

The procedure as descrikd by McLean (1982) was followed to determine the pH in 1:Z.S soil 

water suspension and a Systronix pH nmter (model 335) with combined electrode. 

3.7.2.2 Electrical conductivity (EC) 

The method as described by Richards ct 01. (1954) was used to determine the electrical 

conductivity of the soil in 12 .5  soil to water extract using an electrical conductivity meter (Elico 

Model EM 88) and expressed in dS m'.  Conductivity of the saturation extract indicates the salt 

content of the soil, which is important to determine the chemical stability of soil structure. 

3.7.2.3 Organic carbon 

The organic carbon content of the soil was estimated both before and after the experiment as 

per the procedure given by Nelson and S o m r s  (1982) and expressed in percentage. 



3.7.2.4 Total Nitrogen 

The procedure given by Bremner and Mulvaney (1982) was used to determine total N and 

it was expressed in t e r n  of mg kg ' .  

3.7.2.5 Available phosphorus 

O k n  & S o m r s  (1982) procedure was used to determine P using Olsen's reagent and it was 

expressed in mg kg". 

3.7.2.6 Available Potassium 

The procedure given by Knudsen ct al. (1982) was followed to determine available potassium 

content of the soil and was expressed in mg kg-'. 

3.7.2.7 Exchangeable sodium, calcium and magnesium 

Exchangeable sodium, calcium and magnesium of the soil samples were determined as 

described by Thornas (1982) and the results expressed in C.mol kg'' of soil. 



3.8 Package of practices of pearl millet 

3.8.1 Crop 

Pearl millet crop variety WC C 75 was used in the study. The plants were mdium tall in 

height (190-210 cm) with two to four tillers. In general the variety is vigorous, th ick .s temd and 

Wy. The variety flowers in 5 2  to 55 days and matures in 85 to 90 days. Heads are medium (22-28 

cm) semi-cylindrical, slightly tapering and compact having perfect seed setting. Seeds are bold and 

plump having slate g e y  colour. It has good resistance to downy mildew and has low susceptibility 

to ergot. 

3.8.2 Sowing and fertilizer application 

Sowing was done (on 7th July 1995 and 6th July 1996) manually, furrows were opened at 30 

cmspacing and seeds were placed at 15 cm apart, and the furrows closed. Fertilizer was applied as 

bards along the seed beds 5cm away from the seed rows at the rate of 40 kg N and 20 kg P per ha. 

Nitrogen was applied along the crop rows in split application. Fifteen to 20 days after sowing, the 

rows were thinned to an inter-plant spacing of 15 cm and gaps were flled in order to ensure a 

uniform plant stand, after which the second split of N was applied. 



3.8.3 Interculture and plant protection operation 

Weeds were controlled by spraying glyphosate. Hand weeding was not done so as not to 

disturb the soil surface. There was no pest infestation, hence no plant protection measures were 

necded. 

3.9 Observations and measurements 

Observations made during the experimnt include soil tnoisture content, bromide in soil 

samples from the KBr-treated area and moisture potential readings during the crop growth season. 

Other measurements such as scoop capacity, light interception readings were taken at 15-20 days 

interval during the crop growth period. Precautions were taken to prevent the impact of treading on 

the plots by d i g  small pathways along which to move within the plots for taking readings and 

samples. 

3.9.1 Soil moisture content 

The soil moisture of the proflle was masured as described by Gardner (1982) using the 

neutron probe moisture meter (Troxler Model 4302 Soil Moisture Gauge). The neutron probe 

equipment consists of a source of fast neutrons (Americium-Beryllium), a detector for thermalized 

mutrons, and a scaler for registering the counts. Access tubes made of aluminium were installed in 

t k  soilto 2.25 mdepth kaving 10 cm above soil surface. The top of the tubes was stoppered. The 

pmbe was placed over the access tube and initial standard counts were taken while the probe was in 



the shkki T k n ,  t k  probe was lowered into the tube to the desired depth and readings taken for 30 

seconds. Readings were taken at every 15 cm interval. The probe was calibrated and the calibration 

curve (Appendix 11) was used to calculate the volumetric moisture content from the count ratio. 

Count ratio is the ratio of t k  observed count and the standard count. Gravimtric moisture samples 

were also collected from the top 0-15 cm to get the surface moisture readings. 

3.9.2 Soil moislure potential 

Moisture potential was determined at depths of 1.80. 1.95 and 2.10 m using the procedure 

described by Cassell and Klute (1982). Tensio~mters were installed in the fields to the specified 

depths, filled with deaerated water and closed with a septum stopper. The SMS Tensiometer, which 

consists of a digital read out transducer connected to a needle, was used to masure  the tension in 

millibars. The needle attached to the transducer is penetrated into the septum stopper of the 

tensiomter and the output is recorded from the digital read out. The potential readings at 1.80 and 

2.10 m were used to calculate the water flux in a vertical one-dimnsional soil system at 1.95 m depth 

using Darcy's equation as follows : 

w h e r e ~ i s  soil water flux (W), H is the hydraulic head (L), K is a proportionality factor called the 

hydraulic conductivity (W), and z is verticaldistance or depth (L). 



3.9.3 Hydraulic conductivity 

Thc hydraulic conductivity was tmasured at 1.95 m depth using the constant head mthod as 

described by Klute and Dirksen (1982). The estimation of hydraulic conductivity at this depth was 

essenid to masure the water flux at that depth using the Darcy's equation as given in equation (3) 

above. The water flux was used to masure the deep percolation losses of water bcyond 2.00 m 

under diferent surface managemnt practices and also to measure the cumulative water loss from the 

top 2.00 m soil profile. 

3.9.4 Bromide estimation 

Soil samples were collected (on 3, 13, 16.35,47,55, 67, and 72 DAS iii 1995 and 7, 12, 19, 

32, 35, 42, 48, 55, and 73 DAS in 1996) from depths to 2.10 In at 15 cm intervals, the day after 

rainfall of more than 10 tmm was recorded, from the area where bromide was sprayed at 134 kg ha" 

(50%). The samples were dried at 105 "C in the oven, sieved through 2 m seive and analysed for 

bromide concentration by the procedure given by Adriano and Doner (1982). The PHM 85 precision 

pHmeter (Radiometer NS, Copenhagen, Denmark) with a radiometer B r  electrode (Type F 1022 

Br') was used to determine the bromide concentration in the soil sample. The bromide selectrode is 

a solid-state mmbrane electrode whose sensing e lemnt  is a single crystal of pure silver bromide 

(AgBr). Calomlelectrode (Type K 711) was used with double salt bridge as a reference electrode. 

'Ihe procedure given by B N C ~  et a1 (1985) was used to extract bromide. To 50 g of soil sample 50 

nd of 0.5M calcium nitrate was added, stirred and allowed to stand overnight. The extract was then 

filtered and the bromide was determined using the ion selective electrode. 



3.9.5 Scoop capacity 

?he capacity of the scoops in the scoop treatment was measured as volutx of water held per 

scoop. T o  masure  this, the scoop was covered with polphene sheet and the hollow filled with 

water. Care was taken so that there was no air space. The water from the polphene sheet was then 

transfed to a bucket and the volum of the water was measured. The results are depicted in Figure 

5. The capacity of the scoops decreased drastically from 13.20 lit (app.) to 6.40 lit within 10 days 

after sowing and later decreased slowly as the season proceeded. The scoop capacity was higher in 

thecropped sub treatmnt than in fallow at harvest. The reason tnay be attributed to the protection 

provided by the crop cover from the direct impact of rainfall. 

3.9.6 Light interceplion by pearl millet 

The interception of photosyithetically active radiation (PAR) readiigs were taken for 

determining the growth of the pearl millet canopy under different treatlxnts. For taking the PAR. 

a battery operated h e a r  PAR ceptometer (Model PAR-80) was used. This has 80 independent 

sensors located in a weatherproof enclosure at one centimeter intervals in combiiation with an 

integral data logger. The instrument measures the PAR in the 400 to 700 nm waveband, which 

represents the portion of the spectrum which plants use for photosynthesis. To take the readings. 

level the probe in a position above the canopy to collect the above-canopy readings of PAR. This 

serves as a reference or standard count for the amount of light entering the canopy. Standard counts 

were taken at the begining of each data set or any t h  during the m a s u r e m n t  process when the 
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level of total available PAR changes (cloudy condition). The probe is then levelled below the canopy 

to take below-canopy readings. Total of 6 masuremnts  were taken at different locations in each 

of the cropped sub treatmnt. 

3.10 Yield of pearl millet 

To determine the influence of various surface managemnt practices on the crop growth the 

yield of the pearl millet crop was recorded. The yield data of  nill let was collected at harvest (crop 

hmestedon4th November in 1995 and 2nd November in 1996) from the cropped sub treatmnt of 

the e x p e k n t .  Yield data was collected kom an area of 4 ~ n '  in three replications within each of the 

cropped sub treatmnt. Both the grain and straw yield of the pearl millet were recorded. 

3.11 Statistical analysis 

The e x p e k n t a l  data were analysed statistically by analysis of variance as given by G o m z  

and G o m z  (1984) using Split-plot Randomised Design. Statistical significance was tested by F value 

at 0.05 level of probability. The revegetation treatmnt (second control) was compared with the 

other four treatment using the paired t-test. The results were depicted in tabular form and also by 

graphical representation with standard error and critical difference. 



RESULTS 



CHAITER IV 

RESULTS 

The various soil structural parameters n m l y  bulk density, porosity, aggregate stability, 

sorptivity, steady state flow rate, hydraulic conductivity, characteristic m a n  pore size, organic carbon 

etc. were found to be significantly influenced by the different surface managemnt practices both 

under crop and fallow sub treatments, the results for which are presented in Tables 2 to 12. Figures 

6 to 13 present the effect of various surface managemnt practices on profile water storage, deep 

percolation losses and solute movement. 

4.1 Influence of soil surface management on soil structural parameters 

4.1.1 Bulk Density 

Bulk density in the 0-15 cm layer of the soil was found to be significantly influenced by 

surface managemnt of the Alfisols both under crop and fallow situation. The bulk density before 

starting the e x p e h n t  was 1.62 i 0.013 Mg m". In both the cropped and fallow treatments. 

innease in bulkdensity was observed significantly in the control (1.69 and 1.73 Mg m 3  in 1995 and 

1996) as well as scoop treatmnt (1.67 and 1.72 Mg m.' in 1995 and 1996). There was also increase 

in bulkdensity h m o n e  season to the next indicating that bulk density increased dueto  cultivation. 

Similar vend of increase in bulk density due to cultivation was observed in the revegetation areas. 

The results arc presented in Table 2. 
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In the crop residue and PVA treatmnts decrease in bulk density from the initial value was 

observed. Maximum decrease was observed in the PVA faUow treatmnt where the bulk density 

decreasedhm 1.62 to 1.58 Mg m" in 1995 and 1.60 Mg m"in 1996. Crop residue fallow treatment 

also showed a decrease of 1.60 Mg m 3  in 1995 from 1.62 Mg ~il' but in 1996 the bulk density 

increased to 1.63 Mg m". There was increase in bulk density during the second year of the 

e x p e h n t  in all the treatments. When comparing between the main treatments, revegetation 

matment showed least increase in bulk density with cultivation foUowed by PVA and crop residue 

treatment. Control as weU as scoop treatmnts showed highest increase in bulk density. Among the 

subtreatmnts, fallow showedlower bulk density compared to cropped sub-treat~nent in aU the m i n  

treatments. 

4.1.2 Porosity 

Significant differences in the porosity were also observed between the treatments. Porosity 

was highest in the revegetation treatmnt (Table 3). Cultivation led to a decrease in porosity since 

lower porosity readings were obtained during the 1996 cropping season in all the treatmnts. Porosity 

at the beginning of the e x p e r i i n t  was 0.37 + 0.005. Decrease in porosity was observed in the 

control and scoop main treatmnts in the cropped sub treatmnt,  whereas fallow sub treatment did 

not show any change in porosity during the fust season but it decreased in the second year to 0.35 

and 0.36 in the fallow sub treatmnt of control and scoop main treatmnt,  respectively. 

Porosity increased in the crop residue, PVA and revegetation treatmnts. In the revegetation 

treatment, porosity increased to 0.41 during the end of second season in the fallow treatment and 



Table 2. Iniluence of soil surface managemnt on buk density (Mg m'j) of surface (0-15 cm) layer 
of the ALfisol. 

Table 3. Influence of soil surface managemnt on porosity of surface layer (0.15 cm) of the Alfisol. 
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0.40 in the cropped treatment. PVA treatment also showed an average porosity of 0.40 at the end 

of both the seasons. In all the rrain treatmnts the fallow sub-treatment had higher porosity than the 

cropped sub treatment. Of  the main treatmnts, porosity was highest in the revegetation treatlnent 

with PVA and crop residue treatmnts showing lower porosity. AU the four treatmnts were 

compared with the revegetation treatmnt using the paired t-test, the revegetation plots showed 

significantly better and higher porosity readings compared to the other four treatments. 

4.1.3 Organic carbon 

' h e  organic carbon content was also deter~nined at 0-5, 5-10 and 10-20 cm layer of the soil, 

the data for which are presented in Tables 4.5 and 6 respectively. Organic carbon was significantly 

higher in therevegetation treatments wluch had remvned uncultivated for the last 30 years and hence 

had resulted in accumulation of the organic carbon. Crop residue and PVA treatmnts have shown 

lower organic carbon values than revegetation treatment. Crop residue treatlnent showed higher 

organic carbon content than PVA treatment which may be due to presence of millet straw on the 

surface which must have undergone humification thereby increasing the organic carbon content of 

the surface layer. Organic carbon is also involved in improving the soil structure, through its biding 

action on the soil panicles leading to the formation of soil aggregates. Organic carbon content was 

found to tehigher in t h e m p  sub treatmnt than the fallow sub treatment in all the main treatments. 

There was adecrease in the organic carbon content in 1996 in all the treatments except crop residue 

 here it r e m i d  constant or increased. Decrease in the organic carbon content was also observed 

with depth (Tables 4 ,5  and 6). 
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Table 4. Influence of soil surface managemnt on organic carbon (5%) of 0 - 5 cm soil layer of the 
AlfKoL 

Table 5. Influence of soil surface m n a g e m n t  on organic carbon (%) of 5 - 10 cm soil layer of the 
AlfKol. 



Table 6. Influence of soil surface managemnt on organic carbon (%) of 10 - 20 cm soil layer of 
the f f i so l .  



4.1.4 Aggregate stability 

Assessmnt of soil suuctural i q r o v e m n t  war also nude by m a s u ~ g  the aggregate stability 

p m t e r s  nan-ely m a n  weight d i i t e r  (MWD) and g e o m ~ c  m a n  diameter (GMD). The results 

of MWD and GMD are presented in Table 7 and 8, respectively. There was significant effect of 

surface management on MWD and GMD. 

The MWD before starting the experimnt was 25.6 f 0.07 m. There was increase in the 

MWD in all the treatments except control ueatnrnt which showed a decrease in MWD at an average 

of2.85 f 0.45 mm (Table 7). Highest MWD was observed in the revegetation and PVA treatment 

with crop residue treatmnt showing next lower value. The scoop treatlnent did not show much 

increase in the MWD. The t-test cornparision sl~owed that the revegetation treatment has significantly 

higher MWD than the other treatmnts duriig both the years, except PVA treatlnent which shows 

non significant diierences in the MWD with revegetation. The fallow sub treatments showed 

significantly higher MWD compared to the cropped sub treatment indicating that fallow improves 

aggregate stability. Among the various main treatmnts the revegetation treatment showed highest 

MWD values of 39.4 mm higher than the PVA treatment. Control treatment had the lowest MWD 

of 22.4 mm in 1995 which increased by 0.93 mm during 1996. AU the treatmnts showed increase 

in MWD during the second season though the increase was very small and almost negligible. 

Revegetation fallow treatment showed the highest MWD of 40.4 mm duriig 1996. 



Ti-e GMD data presented in Table 8 also showed similar trend as the MWD. The initial GMD 

before starting the experiment was 0.19 t0.075 mm Tbere was increase in GMD in all the treatments 

except control treatment. Highest GMD of 0.51 mm was recorded in the revegetation fallow 

treatment during 1996. GMD also increased from one season to the next ~minly in the crop sub 

treatment, even though the increase was not very high. Of all the treatmnts revegetation treatmnt 

showed highest increase in GMD than PVA and crop residue treatments. Fallow sub treatmnt 

showed signiticantly higher GMD values in all the main treatlxnts than the cropped sub treatlxnt. 

The t-test cornparision of the revegetation treatmnt with the other treatlmnts was significant 

indicating that the revegetation fallow treatmnt has the highest GMD values higher than the 

revegetation crop treatment. The results of the GMD suggests that aggregate stability increases 

during fallowing, and cropping causes the deterioration of aggregates. Consequently, fallowing is 

important to maintain the soil structure for better crop growth. 

4.1.5 Surface hydraulic properties 

Disc p e m a m t e r  was used to masure the in-situ hydraulic properties such as sorptivity, 

hydraulic conductivity, steady-state flow rate, macroscopic capillary length and characteristic pore 

size with minimum soil disturbances. The results for these measurements on the soil surface are 

presented in Tables 9 to 12. 
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Table 7. Influence of soil surface rmnagemnt on MWD (rmn) of surface layer of the Alfisol. 

Table 8. Influence of soil surface tnnnagenxnt on GMD (mm) of surfttce layer of the Alfisol. 



4.1.5.1 Sorptivity 

The sorptivity data for 1995 and 1996 are presented in Table 9. Initial sorptivity before 

starting the e x p e k n t  was 44.6 f 1.71 mm h-". Sorptivity decreased significantly in control and 

scoop treatment but increased in the other treatments. Sorptivity was found to decrease from one 

season to the next. Highest sorptivity was recorded in the revegetation fallow treatment than in PVA 

fallow treatmnt. h n g  the sub utatmnts, fallow showed significantly higher sorptivity values than 

cropped. The main treatments also showed significant differences ul which revegetation treatment 

hadhigher sorptivity than the PVA and crop residue treatmnts. PVA and crop residue treatments 

didnot show significant differences in sorptivity. Similarly sorptivity was higher in scoops treatment 

but was not significantly different from control treatment. Sorptivity decreased in 1996 in all the 

treatmnts. 

4.1.5.2 Steady-state flow rate 

The steady-state flow rate is obtained during the last pan of the infiltration processes at which 

stage the tihe required for infiltration becomes nearly constant. Table 10 presents the data for the 

steady-state flow rate during 1995 and 1996. The initial steady-state flow rate was 172.1 f 4.21 mm 

h''. %re was adecrease in the steady-state flow rate in the control treatment whereas it increased 

in Ihc other fxatmnts. In the scoop treatment the steady state flow rate did not show much increase. 

Infilhationnte was strongly related to inputs of organic materials, such that revegetation treatment 

has shown infiluationnte higher than PVA > crop residue > scoop which has shown infiltration rate 

not significantly d i e r e n t  !?om control treatment. 
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Table 9. Influence of soil surface management on sorptivity (mm h.") of surface layer of the Alfisol. 

Table 10. Influence of soil surface Iwnagelxnr on steady-state flow rare (mln h") of surface layer 
of the Alfisol. 
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The steady-state flow ratedid not vary much in 1996. Similarly cropping and fallowing also 

did not make much difference on infiltration rate. Though fallow sub treatmnt showed significantly 

higher s a y  slate flow rate compared to crop with t k  highest steady state flow rate observed in the 

revegetation fallow treatmnt during 1995. The results suggests that manipulation of the surface soil 

significantly influences the steady state flow rate due to improvement in soil structural features. 

4.1.5.3 Hydraulic Conductivity 

Surface hydraulic conductivity of the sail at the potential at which the m a s u r e m n t  was being 

nude (-10 m )  was calculated kornequation (4) (White er al., 1989) presented in Appendix 111. The 

data for hydraulic conductivity during 1995 and 1996 presented in Table I I suggests that improving 

the soil structure, due to surface managetnent, improves the hydraulic conductivity. The initial 

hydraulic conductivity was 98.8 'r 2.8 nun h ' ,  which has increased in all the treatments except the 

control treatment. Scoop and control treatlnent did not show significant differences in hydraulic 

conductivity. Of the sub treatments, fallow plots had higher hydraulic conductivity than cropped 

plots in all the treatmnts. Revegetation treattnent showed the highest hydraulic conductivity than 

PVA and crop residue treatment, among the main treatments. Hydraulic conductivity was slightly 

but consistently less in 1996 than in 1995. 

4.1.5.4 Characteristic mean pore size (A,) 

The initial characteristic mean pore size was 0.32 'r 0.02 m which decreased to 0.20 and 

0.21 nmn in the control crop and control fallow plots (Table 12). It increased in all other treatmnts, 



except for the treatmnt with the scoops. In this treatmnt it decreased in 1995 and then remained 

constant in the fallow sub treatlmnt. Highest m a n  pore size of 2.85 !run was observed in the 

revegetation fallow during 1995. Among the rmin treatmnts m a n  pore size (A,) was significantly 

higher in the revegetation treatmnt, and the PVA and crop residue treatments were also high. 

Control and scoop treatmnts had the lowest m a n  pore size. Among [he sub treatmnts fallow 

showed signikantly higher b, compared to crop. There was a small significant decrease in the m a n  

pore size from one season to the next. 

4.2 Influence of differen1 rates of PVA application on soil moisture 

The results of the pilot study conducted to determine the rate of PVA to be used are presented 

in Figure 4 andTable 13 and 14. The moisture content is highest in the soil profile where PVA was 

applied at the rate of 200 kg ha" (Figure 4). Table 13 presents the initial and final moisture content 

(cm' cnil) at different depths in the six treatmnts and Table 14 presents the moisture storage in 

m i l h t e r s  for the top 1.50 m soil profile for different treatmnts. The highest amount of moisture 

of 130 m u  was stored in thc 200 kg h3" treatment (Table 14). But there was no significant difference 

between the three treatments ie .  100, 150 and 200 kg ha.' of PVA, in the amount of moisture 

Storedin thc top 1.50 m profile (Table 14). So also the profile moisture curves of the 100, 150 and 

200 kg ha" m t m e n t s  are close to each other indicating that they have nearly similar moisture profiles 

which are not significantly different (Figure 4). 



Table 11. Influence of soil surface managemnt on hydraulic conductivity (nun h.') of surface layer 
of the Alfisol. 

Table 12. Influence of soil surface tmnogemnt on characteristic m a n  pore size (A,) (mm)of 
surface layer of the Alfisol. 



Moisture content (ml m.') 

Figure 4. Moisture content of an Alfisol soil profile after application of different 
rates of PVA. 



I Table 13. Initial and final profde moisture content (cm3 cm.') in different treatments of an Alfisol. 



Fromtheresults of the pilot study, we conclude that the test treatmnt which can be used in 

therrain experirrent is the 100 kg ha.' PVA application as it does not differ significantly from the 150 

and 200 kg ha' treatmnts and would also be economical. Therefore based on these results wc have 

used the PVA application at the rate of 100 kg ha '  in the main exper i in ts  during 1995 and 1996 

as one of the matmnts .  In Figure 4 for the sake of simplicity and easy understanding the averages 

of the initial moisture content (cm3 cm.') of all the treatments were taken and presented as a single 

curve along with the standard error (SE) bars. 

4.3 Scwp capacity 

The capacity of the scoops (one of the treatmnts in the main experiment) was masured and 

the data are presented in Figure 5 and Table 15. The scoop capacity was the same in both the sub 

treatments at the start of the e x p e f i n t .  There was a decrease in the capacity of the scoops as the 

season advanced in both years F~gure 5). The decrease in the scoop capacity was more in the fallow 

sub treatment than in the crop sub treatmnt. The protection from the direct impact of rainfall that 

the crop canopy provides to the pits slows the process of flling of the pits by slumping of the soil. 

In the crop sub treatmnt the decrease in scoop capacity was moderate (a scoop of 6.47 cm3 at the 

beginning of the season was reduced to 3.97 cm3 at harvest in 1995). In contrast, the decrease in 

scoop capacity in the fallow sub treatmnt was relatively high (a scoop of 5.79 cm3 at the beginning 

of the season was reduced to 2.93 cm' at harvest in 1995). Increase in rainfall intensity resulted in 

a huther decrease in storage capacity of the scoops. 



U Flllov (1995) 
-0- Crop(l975) 
4- Fallow ( lR6)  
9- Crop 11996) 

Days after sowing of crop (d) 

Figure 5. Capacity of the scoops made in scoop treatment during the experimental 
period. 



Table 14. Moisture stored in the top 1.50 rn depth of the Affisol soil profile as affected by different 
rates of PVA. 

Table 15. Capacity of the scoops (liters) duriig the entire crop growth season in the two sub 
treatmnts on the Alfisol. 



4.4 E h t  of surface management on profile moisture storage 

ll!e data for profile moisture storage in the top 2.00 m soil profde in different treatments are 

presented in Figure 6 and Table 1 in Appendix IV for 1995, and Figure 7 and Table 2 in Appendix 

N for 1996. %moisture stored was highest in the no-till revegetation plots during both 1995 and 

1996 season (Figures 6 and 7) suggesting that a high amount of moisture is stored in the 2 m soil 

pro& in revegetated soil in which the soil structure is very good. Lower moisture storage in PVA 

and crop residue treatments were recorded in both years (Figures 6 and 7). In 1995 all the curves 

in thediferent treatments aredistinctly separate (Figure 6) whereas the curves are very close in 1996 

season (Figure 7). The difference can be attributed to the very heavy rains in 1996 during the khorif 

season compared to 1995 (Figure 7). Statistical a~ialysis indicates that the moisture stored in the 

profile is significantly different in all the treatments. 

Control and scoop treatmnts show nearly identical moisture storage though they are 

significantly different statistically (Tables I and 2 in Appendix IV). In all the main treatments the 

fallow sub treatments have higher amounts of moisture stored in the profde than in the crop sub 

matmnts. 'Ibis could k due to part of the moisture being used by the crop for its growth thereby 

deneasing thc anaunt of moisture stored in the soil profile in the crop sub treatmnt. Improvement 

in soil structural parameters during the fallow period may also contribute to higher soil moisture 

storage in the fallow sub treatmnt than in crop sub treatment. Fallowing is thus important in 

improving thc water storage capacity of the soiL Of the main treatments, revegetation has shown the 

highest amount of water storage, with PVA and crop residue next k s t .  Application of PVA 



Days after sowing of crop (d) 

Figure 6. Moisture stored in the top 2.00 m soil profile in different treatments during 
1995 season, for (a) cropped and (b) fallow. Error bars (I ) are seen when the 
symbol is small. 



a) Crop 

500 . M. scoop 

.I 

250 

600 f b) Fallow 

Days after sowing o f  crop (d) 

Figure 7. Moisture stored in the top 2.00 m soil profile in diffeerent treatments during 
1996 season, for a) cropped and b) fallow. Error bars (I ) are seen when the 
symbol is small. 



increased the amount of water stored in the soil profde. This may be because of improved soil 

smctural condition which has kd to higher infiltration of rain water into the soil thereby reducing the 

runoff losses. In the crop residue treatment, the runoff was reduced because most of the rain water 

infiltrated into the soil due to the presence of straw mulch on the surface. 

Significantly higher misture storage was observed in the scoop treatmnt than in the control 

treatmnt. Rain water was retained in the scoops thus reducing mnoff and allowing more t i  for 

the rain water to infiltrate into the soil. The maxhnum amount of water (598 ~m) was stored in the 

revegetation fallow treatment at 11 1 days after sowing (DAS) in 1995 because rainfall of 133 mm 

was received in a seven days period. 

During 1996 heavy rainfills were received, the highest teiig 95.6 nun at 56 DAS (28' August 

1996). The amount of rainfall stored in the revegetation fallow treatmnt on this day was 540 nun 

Another high rainfall of 67 nun was recelved at 71 DAS (12' Sept. 1996) during which the water 

storage in the soil profile in revegetation fallow treatment was 560 mm The moisture storage was 

highest in the revegetation treatmnt, whereas PVA and crop residue showed lower water storage 

in that order throughout the season in both 1995 and 1996 season. In Figure 7 the difference was 

srrall but they were significant. Thus even with heavy rainfall conditions it is possible to have better 

moisture storage where there is well developed soil structure. 



4.5 Effect of surface management on deep percolation 

The data presented in Tabk 3 and Table 4 in Appendix IV are the soil water flux data at 1.95 

mdepth indicating deep percolation losses fromdifferent treatmnts during 1995 and 1996. These 

data are presented graphically in Figures 8 and 9 for seasons 1995 and 1996. The soil water flux is 

presented on days when &all was received. During both years maximum soil water flux was in the 

conmltreatmnt with scoop treatmnt showing lower flux values than control treatmnt. Least soil 

water flux and deep percolation losses were in the revegetation plots. The percolation losses when 

there was heavy rain, show that heavy rains increase the deep percolation losses of soil water. In both 

1995 and 1996 soil water flux at 1.95 m depth was highest in control treatmnt with scoop treatmnt 

showing lower flux with the curves quite similar. Because of heavy rains in 1996 very good soil 

water flux curves occurred (Figure 9). The highest sod water flux was at 54 DAS in 1996 when 95.6 

mm of rainfall was received (F~gure 9). Of the sub treatmnts, cropping showed higher soil water flux 

at 1.95 mdepth than the fallow. The crop used sol% water for its growth, but the effect of the crop 

seemed to be overshadowed by the soil structural effect on soil water flux. Another factor to be 

considered is that during both years above average rains were received. Therefore, the soil water 

losses due to deep percolation are higher than normal in all the treatments in both the years as 

indicated by the soil water flux at 1.95 m depth. 

These results are consistent with the tnolsture storage data. In those treatmnts where 

moisture storage is high, the soil water flux is less since most of it is stored in the top 2.00 m of the 

soil pro&, andin the a e a t m n u  where the moisture storage is low (e.g. control treatments) the soil 

water flux is high indicating that soil water losses have occurred due to deep percolation. The results 
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Figure 8. Soil-water flux at 1.95 m depth in different treatments for days when rains were 
received during 1995 crop growth period indicating deep percolation, for a) cropped and 
b) fallow. Error bars (I ) are seen when the symbol is small. 
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Figure 9. Soil-water flux at 1.95 rn depth in different treatments for days when rains were 
received during 1996 crop growth period indicating deep percolation, for a) cropped and 
b) fallow. Error bars ( I )a re  seen when the symbol is small. 
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Figure 10. Cumulative soil-water flux by deep percolation from the 1.95 m profile 
versus time for different treatments in 1995 season, for a) cropped and b) fallow. 
Error bars (1 ) are seen when the symbol is small. 
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Figure 11. Cumulative soil-water flux by deep percolation from the 1.95 m profile 
versus time for different treatments in 1996 season, for a) cropped and b) fallow. 
Error bars ( I ) are seen when the symbol is small. 



indicate that by improving the soil structure it is possible to byrove  the profile moisture storage and 

thereby decrease deep percolation losses due to reduced soil water flux. Relatively higher amounts 

of moisture can be stored in the soil profile and loss due to deep percolation can be reduced 

considerably. Negative soil water fluxes were also observed duriig s o m  of the days, indicating the 

upward movement of water born the 1.95 m depth towards surface. The negative soil water flux 

occurred when there was a lengthy period without rainfall. 

Sam: data were used to masure  the cu~nulative soil water flux at 1.95 m depth (Figures 10 

and 11) for all the treatmnts. The cumulative soil water flux was highest in the control treatmnt 

with the other treatmnts in the order scoop, crop residue, PVA and revegetation. Both revegetation 

and PVA treatmnts have shown the lowest cumulative soil water flux at 1.95 m depth. 

Of the sub treatments, fallow has consistently lower cumulative soil water flux at 1.95 m depth 

than the crop sub treatmnt. The soil water flux differed significantly in all the treatmnts duriig both 

years. The soil water flux was lower duriig 1995 than during 1996. This may be due to a 

deterioration in soil structure after one year of cultivation which may have led to increased soil water 

fluxin 1996. Less water would be stored in the soil profile due to poor smucture and hence the soil 

water flux at 1.95 m depth would increase. These results suggest that cultivation increases the soil 

water flux thereby reducing the moisture storage capacity of the soil. The cumulative soil water flux 

was also higher in 1996 than in 1995 in all the treatmnts. 



4.6 ENwt of surface management on  solute movement 

Solute movement was studied using bromide as a tracer, and measuriig the bromide flux at 

ditIerent depths in the soilprolik to 1.95 rn In this study it was assumed that there was no bromide 

uptake by the crop and bromide is not toxic to plants (Martin. 1966: Smith and Davis, 1974: 

Silvertooth et al., 1992). Movemnt of bromide in the soil profde in different treatments is presented 

in Figures 12 and 13 (Tables 5 and 6 in Appendix IV). There were significant differences in the 

bromide flux at Merent depths in all the treatments. The bromide flux was highest at the surface O- 

15 cm layer and it decreased with depth. Least bromide flux was observed at 1.95 m depth which 

was the lowest depth measured. 

The bromide flux is highest in the revegetation treatmnt where the soil structure was good 

(Figures 12 and 13). For all the depths the bromide flux was higher in the revegetation treatment than 

all other matmnts. Thus m v e m n t  of solutes is m r e  in soils where the structure is well developed 

and hence in such soils there are more chances of nutrient losses. PVA and crop residue treatments 

also showednlatively higher bromide flux. Bromide flux was least in the control treatment with the 

scoop t rea tmnt  showing higher flux. Of the sub treatments, bromide flux was higher in fallow 

treatmnt than crop treatment. This was the trend in aU the five main treatments. The flux curves 

are almost linear and the bromide flux decreases with depth (Figures 12 and 13). Flux at 1.95 m 

depth was minimum indicating that at this depth there is least movement of solutes. 



Bromide Ow:  (mol m" day") 

Figure 12. Bromide flux at different depths during 1995 for different treatments, 
for a) cropped and b) fallow. Error bars (H) are seen when the symbol is small. 
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Figure 13. Bromide flux at different depths during 1996 for different treatments, 
for a) cropped and b) fallow. Error bars ) are seen when the symbol is small. 
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4.7 Effect of surface management on interception of photosynthelically aclive radiation 

(PAR) by t h e  pearl millet crop 

Interception of PAR was masured for the crop sub treatment duriig the crop growth period. 

Significant differences were observed in interception between all the treatments (Figure 14 and Table 

16). In figure 14 PAR interception increases initially which indicates the develop~xnt of leaves up 

to 45 to 55 DAS after which it decreases. The decrease in PAR interception at later stages maybe 

due to the leaffalland senescence. This decreases the amount of light that is being absorbed by the 

crop thereby decreasing photosynthesis. In tire initial stages lower PAR interception is due to less 

number of leaves when the crop is snull and the leaves are smaller during that stage. The peaks in 

the curves in Figure 14 indicate the stage of ~nuxunu~n growth of the crop when it has highest 

photosynthesis and hence the interception of PAR is also high. 

PAR interception was higher in the revegetation treatment than the PYA and crop residue 

treatments. This indicates that by improving the moisture storage in the soil profile it is possible to 

improve the crop growth and its light absorption capacity. At all the stages of crop growth the PAR 

interception was highest for the revegetation treatment. In 1995 there was no significant difference 

in PAR interception between control and scoop treatments, and between crop residue and PYA 

treatments, but they were all significantly different from revegetation at 32 DAS (initial stages). At 

45 and 60 DAS a l l t k  ueatmnts were significantly different whereas at harvest (76 DAS) only crop 

residue and PVA treatments were not significantly different. In 1996 control and scoop treatmnts 

were not significantly different 6om each other and crop residue, PVA and revegetation treatments 



Time (days) 

Figure 14. Light interception readings during the crop growh period, for a) 1995 
and b) 1996 in the cropped subtreatment. Error bars ( T  ) are seen when the 



Table 16. Mluence of soil surface m a g e m n t  on interception of photosqnthetically active radiation 
(PAR) (pml  m" s-') by pearl millet in different treatmnts of the Alfisol. 



were not significantly dieerent at initial stages (26 and 44 DAS). All the treatmnts were signiticantly 

different at 54 DAS. Of all the treatmnts, revegetation treat~nent has shown the highest PAR 

interception at all the stages than the PVA and crop residue treatments. Control and scoop 

ueatmnts have shown nearly similar PAR interception. 

4.8 Effect of surface management on yields of pearl millet crop 

Straw and grain yield were also taken as an index to determine the effect of surface 

m a g e m n t  of soil on the pearl millet performance. Of all the treatlwnts, revegetation treattialit has 

the highest grain yield of millet and this is significantly different from all the other treatmnts. The 

data for grain yield of pearl millet crop are presented in Table 17. There was significant difference 

between the millet yields in all the treatnents. Control treatnent showed the lowest grain yield of 

millet with the scoop treatment showing next higher yields. 

'Ihe pearl d e t  straw yields showed a s u n l a  trend as the grain yields (Table 17) with highest 

straw yield in the revegetation treatmnt than the PVA and crop residue treatmnts showing lower 

straw yields in that order. Lowest straw yields were in control and scoop treatmnts. The yields 

were lower in 1996 than in 1995. This m y  be attributed to the heavy rains in 1996 which mused the 

crop to lodge which reduced the millet yields considerably. 
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Table 17. Intluence of soil surface mnagement on pearl millet yields (kg ha1) of the Alfisol. 



DISCUSSION 



CHAPTER V 

DISCUSSION 

In the results reported in the previous chapter, it was shown that various t p e s  of soil surface 

managemnt affected soil suucture, which in turn affected soil properties such as profile moisture 

storage, deep percolation and solute movement. In this chapter, I will consider the implications of 

these results and draw conclusions. 

5.1 Soil surface management in relalion to soil structure 

Agricultural managemnt practices have their greatest impact on the structural stabil~ty at the 

level of macroaggregates and macropores (Tisdall and Oades, 1980). Materials responsible for 

bonding soil particles together m y  be inorganic or organic in nature. Recovery of soil structural 

stability when external forces are removed or reduced can contribute to recovery of the structural 

form The impact of management practices on structural characteristics can be managed through 

various surface management practices such as use of crop residue, soil conditioners, surface 

roughness etc. 

Soil m u r e m e n u  nude in the e x p e k n t  reponed here for an Alfisol indicate that different 

surface w g e m n t  practices result in soil surface conditions that differ with respect to bulk density. 

porosity, aggregate stability, organic carbon percentages, surface roughness, etc.. aU of which arc 

related to soil structure which influences the profde moisture storage, deep percolation losses and 

solute nwvemnt. Surface managemnt practices are recognised for their value in protecting the soil 
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surface against the impact of falling raindrops thereby minimising aggregate breakdown and surface 

sealing in the weakly-structured red soils. 

Most of the soil physical paramters measured were found to be influenced by the surface 

management practices tested. An increase in the Mean Weight Diameter (MWD) and Geometric 

Mean Diameter (GMD), two of the parameters of aggregate stability, was observed in the crop 

refdue treatrrent over control treatment. Similarly, increase in the aggregate stability and GMD was 

observed by Skidmore et a/ (1986) by application of residue on the surface. The increase in 

aggregation was attributed to increased organic matter content of the plots. The MWD and GMD 

was higher in the PVA treatmnt than in crop residue treatmnt which may be due to the strong 

interparticle bonding as a result of improved contact between PVA molecules and soil panicles 

(Williams et a/., 1966) Therefore, there is an increase in the stability of PVA treated aggregates 

showing greater resistance to Frequent disruption. Tables 7 and 8 present the MWD and GMD data 

from which it is clear that the soil aggregation is better in PVA treated plots compared to crop 

residue, scoop and control treatment (Kavanagh, 1976, Botha et al.,  1981). The revegetation 

treatment shows higher aggregate stability among all the treatments which can be related to its 

undisturbed condition for the past 30 years. Soil aggregate stability is an important factor which 

influences the moisture content of the soit In all the treatments surface management has affected the 

soilsmcture, thereby effecting rainfall acceptance and moisture storage capacity of the sail. Scoop 

treatrent has shown greater stability of aggregates than control treatmnt,  this can be attributed to 

improvement in surface roughness of the soil (Benjamin, 1993). 



A reduction in the MWD and GMD was observed in cropped plots compared to fallow. The 

results were i n c o n f i t i o n  with U t o m  and Dexter (1982) who observed a decrease in the stability 

of aggregates by tillage operation. Different surface m a g e m n t  techniques such as tillage, 

application ofconditioners, surface roughness or mulching would cause a change in the stability of 

aggregates and may increase or decrease the aggregate stability depending upon the type of 

m g e m n t  techniques adopted. Application of conditioner or residue increases the stability of the 

aggregates, but tillage results in weakening of the aggregates. 

The revegetation soil has shown the highest degree of aggregate stability which was 

mintained nearly constant during both 1995 and 1996. Carter (1992) also recorded higher MWD 

values in the direct drilling tillage (revegetation), l l i e  MWD and GMD of the revegetatlon treatment 

was the highest. Aggregate stabity was reduced in the control treatmnt suggesting that cultivation 

without any surface management practices leads to a decrease in aggregation. Both the indices of 

aggregate stabity,  i.e MWD and GMD, decreased in control and scoop treatmnt.  These results 

suggest that agricultural practices cause breakdown of aggregates thereby leading to deterioration 

of soil structure. MWD decreased by 3.92 nun in control crop treatmnt and 2.02 nun in control 

fallow heafmnt from the initial MWD value of 25.65 m GMD also showed a reduction of 0.1 19 

mn in conml  crop (highest denease) and 0.047 nun in conuol fallow vca tmnt  from the initial GMD 

value of0.190 nun From these results, it is clear that fallowing shows greater degree of aggregate 

stabity compared to cropping. 
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In the crop sub treatment the aggregates get weakened due to growth of the roots even 

though in s o m  cases tine roots and hyphae m y  act as binding agents for formation of aggregates. 

but their effect on stability of aggregates is very kss. The crop sub treatment shows lower aggregate 

stability, lower porosity and lower MWD M G M D  values. Of all the crop sub treattxnts, PVA crop 

treatment has shown greater stability than crop residue crop treatment. Least stability of aggregates 

was observed in the control crop treattxnt. Tisdall and Oades (1979) have shown that stabilization 

of aggregates is related to the root length. Therefore, crops help to improve aggregation to some 

extent but there is no build-up of stable aggregates in the crop area. However, in the fallow sub 

treatment there is a build-up of the aggregates leading to better soil structure. This m y  be related 

to the better soil structure, aggregation and stability of aggregates in the fallow sub treattxnt 

compared to crop sub treatment. 

Revegetation treatment has shown higher organic carbon percentage than other treatmnts 

at all the depths. Beare el a/. (1994) have also shown that no-tillage m n a g e m n t  has higher organic 

carbon content than conventional tillage. The differences in organic carbon content in the different 

treatments m y  te attributed to differences in the assimilation and decomposition of the organic 

matter in all the treatmnts. In PVA-mated soils the formation and stabilization of aggregates occurs 

due to application ofthtconditioner so even though the organic carbon is lower it has shown better 

moisture storage capacity than crop residue treattxnt. In crop residue treatmnt higher organic 

carbon is related to the humification of straw applied on the surface. Repeated cultivation of soils 

enhances the decomposition of the organic matter thereby changing the composition of the residual 

organic m t t e r  which increases the dispersibility of clay (Oades. 1984). Humification of the native 

organic mt ter  m y  have b&n more npid in tht PVA applied treatmnt, therefore the organic carbon 
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content was higher in the PVA treated soils than in control or scoop treatmnt and was nearly sunilar 

to crop residue t m t m t .  Crop residue treatmnt has shown higher organic carbon percentage than 

PVA treatmnt. Doyle and Hamlyn (1960) have made similar observation using VAMA as 

conditioner. 

Decrease in stability of aggregates was associated with a decrease in percentage organic 

carbon. The revegetation plots have shown the highest stability of aggregates; they also had the 

highest percentage of total organic carbon (Tables 4. 5 and 6). In the revegetation, non-cultivated 

soils, plant materials are continually k i n g  added to the soil thus resulting in higher organic carbon 

content. In all the main treatmnts the crop sub treatmnt has shown higher organic carbon 

percentage than fallow, at the three depths. This m y  k because plant materials are being added to 

the soil surface in the cropped sub treatnrnt. Lack of cultivation (fallow) is just as important, if not 

m r e  imponant than organic inputs alone. Uncultivated fallows normlly increase the organic carbon 

(Doran and Smith, 1987). In the fallow sub treatlnent m i n i l  amount of phnt material are being 

added and more of the organic material is k ~ n g  oxidised. Therefore. the organic carbon content is 

Less in all the fallow sub treatmnts. In the crop residue treatmnt higher organic carbon is due to the 

presence of surface mulch which on decomposition adds extra organic matter to the soil thereby 

increasing the organic carbon. 

Higher organic carbon was recorded when there was direct drilling (no-till) than when there 

was conventional cultivation (Ball et a/., 1996). The greater stability of soil structure in the 

revegetation m a t m n t ,  as can te observed from most of the soil structural paramters, is also due 

to presence of !age m u n u  of organic carbon. Similarly the organic carbon also causes a lowering 



of the bulk density since organic m t t e r  is considered as an imponant deternunant of soil bulk density. 

The surface soils of the revegetation plots accu~nulate organic carbon as a result of humification 

therefore higher levels of organic carbon were observed in this treatment. Caner (1992) also 

observed higher organic carbon in the no-till (direct dr ied)  soil than w ~ t h  conventional ploughing. 

This he attributed to the decomposition and accumulation of organic matter at the soil surface. In 

tk crop residue treatment due to application of straw nlulch the organic carbon is higher colnpared 

to PVA treatment. In the crop residue treatmnt,  organic carbon content is higher than the other 

aeatmnts, but it is lower than in the revegetation treatment. This may be because the crop residue 

cover was only for one year in that treatlent whereas in the revegetation the plant ~mterial was 

retained for the past 30 years. 

The organic carbon percentage was Iowcr in 1996 than 1995 season. The soil was cultivated 

for one year which resulted in increasing the microbial activity thereby leading to oxidisation and 

decomposition of the organic Inutter, thus decreasing the organic carbon content during the second 

year of the e x p e f i n t .  The extra stability of aggregates in the revegetation plots not attributed to 

total carbon may be due to the distribution and type of organic rmtter and presence of microbial 

b i o m s .  7he organic colloids and mineral panicles are more intlnately associated in the revegetation 

soils (Low, 1973). One year of cultivation of a soil of this type decreases the stability of the soil 

aggregates considerably by physical disruption of the aggregates and exposing the soil panicles on 

the surface to further physical disruption by raindrop impact. The resistance to external physical 

dirmption was also higkr in t k  aggregates of the revegetation plots which can be one of the reasons 

for their greater stability. Similarly, the aggregates in the PVA treated soils, due to the application 
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of the conditioner, have also shown greater resistance to the external disruptive forces by the 

formation of stable aggregates. 

Porosity, an important soil structural p a r m t e r ,  was also influenced by the surface 

m a g e m n t  techniques. Increase in porosity was observed in the soils subjected to PVA and crop 

residue treatment. The increase in porosity in the PVA treatnrnt m y  be related to fornution of 

strong and stable aggregates which increase the pore spaces between the soil particles thereby 

increasing the porosity. Similu increase in poros~ty was observed by Doyle and Hamlyn (1960) by 

application of VAMA, a soil conditioner. Poroslty is a function of aggregate size and stability 

therefore it can safely be stated that application of so11 conditioner PVA has resulted in increased 

aggregation and higher porosity. Suidarly crop residue cover also increases aggregation, therefore 

porosity in crop residue treattrent was also higher than control treatmnt but lower than PVA 

treatmnt. In control and scoop treatmnts there was a decreasc in porosity From the initial porosity. 

I l k  is consistent with cultivation causing breakdown of aggregates and therefore reduced porosity. 

Highest porosity was recorded in the revegetation plots where the soil had not been disturbed for the 

past 30 years. Cultivation of the soil leads to a decrease in porosity, and there was decrease in the 

porosity in the second year of cultivation. Within one year, porosity decreased by 0.01 in the 

revegetation crop treatment and by 0.02 in the revegetation fallow treatmnt. In all other treatments 

there was adccrease in porosity in 1996. PVA-treated soils also showed decrease in porosity which 

suggests that application of conditioners under cultivation will also cause a change in porosity. 

Changes in bulk density is one of the foremst paramter studied wherever soil structural 

changes are involved There was sigmkant @act of different surfact m n a g e m n t  practices on bulk 
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density. The lowest bulk density (1.56 Mg m") was recorded in the revegetation fallow treatment. 

BuLk density of crop residue treatment was lower than scoop treatment but higher than the PVA 

m m n t .  Maintenance of straw on the surface would lead to lowering in the bulk density (Table 2). 

Application of conditioner PVA has also resulted in decreasing the bulk density which naans that 

mulching and conditioner application are two best m a n s  which can be adopted to improve the soil 

structure in t e r n  of bulk density. The lowest bulk density was recorded in the revegetation 

m m n t  ard t k s e  results are consistent with the findings of Oleschko el 01.. (1996). In their studies 

also they have observed that the no-till soil has shown lower bulk density than the cultivated soils. 

Highest bulkdensity was recorded in the control crop treatment with scoops treatlrmt showing lower 

bulkdensity. These results suggest that surface roughness reduces the bulk density to some extent. 

Bulkdensity increasedduring second yeu of the experiment as a consequence of one year of tillage. 

The bulk density in 1996 was higher in all the trrnulmts than in 1995 (Table 2). Chan and Heenan 

(1996) also observed that cultivation of the soils results in increasing the bulk density. 

The different suucture m d m g  ability of the various surface mnagellxnt techniques could 

k related to t k  effectiveness with which aggregates are f o r m d  and the stability of these aggregates 

as well as the method of f o m t i o n  of the aggregates either by binding action with conditioners as in 

the case of PVA, or  by the microbial action and production of organic matter as in case of crop 

residue or by the f o m t i o n  of aggregates due to surface roughness as in the case of scoops or due 

to n o - t i  management as in the case of revegetation treatment. 

Some of the other important soil structural paramters include sorptivity, steady state flow 

rate ( i t ra t ion) ,  hydraulic conductivity ard characteristic man pore sire. AU these parameters were 
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found to be influenced by surface management techniques. These parameters are influenced by 

change in porosity and aggegate stability, therefore any change in these two soil factors would affect 

these surface hydraulic properties. 

Revegetation neatmnt has shown the highest sorptivity (130 mm h" in fallow sub treatment) 

than PVA, crop residue, scoop and control treatmnt in that order. Higher sorptivity in the 

revegetation m a t m n t  is due to better porosity, higher m a n  pore size and greater aggregate stability. 

PVA-treated soils also have shown relatively higher sorptivity because of greater aggregation, better 

pore size distribution and aggregate stability than crop residue [reallrent. PVA, being a conditioner. 

is adsorbed on the soil particles, improving aggregation and leading to higher sorptivity. Scoop 

treatnmt, due to surface roughness, has better aggregation, therefore, it has shown higher sorpt~vity 

thancontrol neatmnt, where the soil structure collapses easily. Sorptivity was higher in the fallow 

sub treatment than the crop. Better aggregation and porosity, as well as higher aggregate stabihty 

and m a n  pore size in the fallow sub neatmnt, are consistent with the higher sorptivity hi the fallow 

than cropped sub treatmnt. 

Surface hydrauhc conductivity was also found to be influenced by the different surface 

management practices. Hydraulic conductivity was greater hi the revegetation treatment both in 

mopped and fallow sub m a t m n t  than the o t k r  treatmnts. Sharratt (1996) also has recorded higher 

hydraulic conductivity readings in the no-tillage sod compared to conventional tilled soil. These 

differences in hydraulic conductivity in all the treatmnts can be related to s t ~ c t u r a l  differences as 

all the m g e m n t  techniques were found to influence soil structure considerably. Higher hydraulic 

conductivity in the revegetation treatmnt may be related to better soil structure in this soil. 



Cultivation has led to deterioration in soil structure which resulted in the decrease in hydraulic 

conductivity between 1996 and 1995 (Table 11). Between crop residue and PVA treatments the 

latter has shown better hydraulic conductivity (Skidmore er a1 , 1986). The differences in hydraulic 

conductivity m y  be related not only to soil structure. Other mechanisms are also operative such as 

organk carbon content, porosity, aggregate stability, aggregate size distribution, mean pore size etc., 

allof which are influenced by the various surface management practices and therefore would affect 

hyhul ic  conductivity. Skidmore er a/.  (1986) recorded an increase in the hydraulic conductivity by 

nuintaining a surface cover. Incorporation of crop residue is not as effective as leaving the residue 

on the surface where it decomposes less rapidly and continues to replenish the cementing products 

for a longer period. PVA treattmnt has recorded higher hydraulic conductivity which may be due 

to greater aggregate stability and higher ]man pore size produced by PVA than crop residue 

treatment (Stefanson. 1973). The soil aggregates from the PVA plots were more stable than 

aggregates from crop residue plots. These factors may be involved in Increasing the hydrnulic 

conductivity in the PVA treatmnt compared to crop residue treatment. 

The m a n  pore size in the revegetation plots was highest with PVA and crop residue 

treatmnt showing lower values flable 12). Because of t k  larger m a n  pore size 11 is to be expected 

for such soils to admit water readily, have adequate oxygen diffusion and allow rapid root 

developmnt. The nvegetation soil is characterised by a system of continuous wide pores stretching 

kom the surface to t k  depth of rooting. Pons  of > 50 pm are required to allow water to drain freely 

and p o n s  of 0.50 to 50 pm are required for water storage in the soil to be used by the plants, which 

arc present adequately in the revegetation plots. Similar type of pore size distribution can bc 
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obscwed in Ihe PVA treatment which shows the next highest mean pore size. Scoop treatment have 

shown higher characteristic mean pore size bccause of surface roughness than control treatment 

which causes collapse of the seedbed. 

7he characteristic m a n  pore size decreased in 1996 in all the treatmnts, which may be due 

to degadation of the soil structure as a result of cultivation. The m a n  pore size was always higher 

in the fallow sub treatment which can k attributed to tetter aggregation and greater continuity of the 

pores in fallow than cropped sub treatment. Higher infdtration and more stable aggregates are 

generally associated with fallow soilconditions and are essential requiremnts for a good tilth. These 

nlay be the reasons why the characteristic m a n  pore size was always higher in the fallow sub 

treatment in all the main treatments compared to the crop sub treatnant. 

5.2 Rate of application of polyvinyl alcohol (PVA) on profile soil moisture of nn Alfisol 

Increase in the rate of application of PVA resulted in increasing the amount of moisture stored 

in the soil profde (Figure 4). In the control treatmnt on application of rainfall by the sl~nulator 

relatively higher runoff was recorded cornpued to the PVA treated soils. The soil in the control 

fxatmnt collapsed imrrPdiately after receiving rainfall of 60 m h' intensity but the soils which were 

treated with PVA remained stable maintaining aggregation on the surface. The PVA treated soils 

were also seen to be m r e  porous compared to control which on receiving rainfall became smooth 

and compact in nature. Oades (1976) also observed that the PVA treated soils (red brown sandy 

loam t w )  were highly porous and aggregated compared with untreated soils. 
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This increase in aggtegation in the PVA-treated soils resulted in high amount of moisture 

storage in thc soil profile in all treatments of the PVA-treated soils over control. The higher profile 

moisture storage can be attributed to the improvement in the soil structure due to application of 

conditioner PVA to the soil surface. PVA gets sorbed on the soil panicles and results in binding the 

particles together thereby increasing stability of aggregates. There is also a linear increase in the 

moisture storage capacity of the Alfisol soil in the top 1.50 m soil profile (Table 11). Stefanson 

(1973) has also recorded an increase in the rainfall acceptance with increase in application rate of 

PVA. In his studies he found that the optimum application rate of PVA was 30 to 60 kg ha.', which 

compares with Blavia e t a / .  (1971) who found it to be 70 to 100 kg ha1 PVA. In the present study 

also PVA at the n t e  of 100 kg ha-' was found desirable for use in the nuill experiment as one of the 

main treatments since it has shown highest moisture storage in the soil profile which is not 

sigmkantly different !?om the 150 and 200 kg ha' rate of PVA application. PVA stabilises the large 

pores in the soil and prevents the blocking of these pores by derached soil lmterials thereby increasing 

rainfall infiltration and its storage in the soil. PVA has a very high degree of effectiveness in 

improving aggregation and stability of aggregates. Based on the results of the pilot experi~wot PVA 

at the rate of 100 kg ha.' was used in the main experkrent. 

5.3 Soil surface management in relation to profile moisture storage 

PVA treatment was more effective than crop residue, scoop and control treatments in 

increasing the profile moisture storage when applied on the surface of the soil. The differences in 

increasing moisture storage by PVA treatment compared to crop residue treatment may be related 

to its effect on the soil structural parameters. PVA was found to have a greater impact on all the 
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p a m ~ t c r s  which a8wt soil structure c o m p d  to crop residue. This resulted in improved moisture 

storage in the PVA-tfeated soils compand to crop residue-treated soils. Scoop treatmnt was found 

to have a better moisture storage capacity than control treatlnent. The greater moisture storage by 

scoop ueatmnt may be attributed to the excess water retained on the surface for a longer period of 

t i  in the pits resulting in lesser runoff losses. This also allowed more tela for water to infiltrate 

into the soil leading to higher moisture storage than in control treatmnt in which the excess water 

was lost as runoff. 

Application of PVA and crop midue on the surface would help to preserve the soil moisture 

by increasing infdtration and decreasing runoff losses. By using such nunagemnt practices water 

conservation can be increased tecause the potential for increased water storage and decreased runoff 

is greater due to PVA and crop residue. Higher moisture storage was reconled in the crop residue 

m t m n t  throughout the growing season than control treaumnt. Unger (1978) also observed that 

bare soil without any mulch cover (eg, conuol fallow treatment) has lower ~noisture storage capacity 

compared to mulched soil (eg. crop residue fallow treatment). 

Application of PVA increases the time required for runoff to occur which means that most 

of the rain wafer is allowed to infdtrate into the soil. Similar observations were made by Oades 

(1976) wherein there was an increase in the t i n t  for runoff and decrease in the volume of runoff by 

application of PVA, i d k a l i g  that most of the rainfall had entered into the sod and was stored in the 

soilpmfil:andve~ylittle was lost as runoff. In the crop residue treatmnt also the infdtration of rain 

water into the soil was more and runoff was less. In crop residue treatment the decrease in runoff 

was mainly due to the presence of mulch on the surface which enhanced infdtration and retaned the 
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flow m s s  the surface, whereas in PVA treatment it was due to the formation of stable aggregates 

andimease in porosity which increased infiltration and reduced runoff. The moisture storage was 

always higher in the PVA-treated soils. This m a n s  that improving the stability of aggregates is 

superior to mulching for increasing the profile moisture storage. Stabilization of surface structure 

innuences several factors and in6ltration of Mall is one of the most significant alnong them (Oades. 

1976). Inneased infiltration leads to greater water storage as was the case in this study. Steady state 

flow rate ( i t r a t i o n )  was higher in the PVA-treated soils compared to the other treatments except 

revegetation trcatmnt (Table 10). Scoop treatmnt had higher water storage than control, but lower 

than PVA and crop residue treatments. The increase in water storage in the so11 profile in the scoops 

t rea tmnt ,  over control, may be due to greater tune available for the water retained in the pits to 

infiltrate into the so~l .  Because infiltration is increased more water will be stored in the soil profile 

provided the soil has the capacity to store the additional water. lncrea~ing the moisture storage 

capacity of the soil, increases the available water to the crops. These results suggest that by 

improving the moisture storage capacity of the soil through adoption of surface mmnagenxnt 

techniques, it is possible to fill the soil profile moisture reservoir of the red soils in the SAT 

conditions. 

The soil water use by the millet crop has also innuenced the water storage capacity of the soil 

considerably. Moisture storage in the crop sub treatment in all the main treatments was lower than 

in fallow. 'IhiF is related to the water used by the crop for growing (Unger. 1978). The revegetation 

cmp sub t r e a m n t  has shown higher moisture storage than PVA and mop re<idue crop sub treatment, 

even after the crop utilization. Desirable ii th and better soil structure in the revegetation crop 

treatmnt compared to the other treatments has resulted in the higher moisture content in this 
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m a t m n t  s o o p  crop treatment has shown h~gher molsrure storage compared to control crop 

Thc presence of stmdmg water m the scoops, w k h  has allowed Inore water to uifiitrate uito the sod 

may te responsible for the h~gher molsrure storage m the scoop crop treatment Addmtmonal water 

stored m the so11 protile and effective use of seasonal rainfall on the revegerarlon, PVA and crop 

res~due treatments resulted m nducmg the plant water stress thereby allowing greater response of 

pcarl d e t  to precmpltauon 

In the fallow sub treatment h~gher molsture storage than crop sub treatment m y  be related 

to the tetter aggregation and sod structure as well as to absence of crop for uslmig the stored wdrer 

Fa l lowg n usually suggested for rejuvenation of the sod structure and to allow the ram water to be 

stored m the sol1 so as to replenish the deple~ed molsture Fallow sub Ireallrent has shown greater 

e k s n c y  m stomg mlsture m the soml profde whlcli 1s comnparable wltli reports In Imterature (Lopez 

e t a / ,  1996) Greater mfdtratlon IS the mam advantage asso~mdted wlth fdllow~ng whlch resulted m 

h~gher molsture storage m the fallow sub treatment than the cropped 

The varlous surface managemnt techn~ques have resulted m dfferent amount of molsture 

storage m the same red sod These dfferences are a reflection of the d~fferences m sod structure 

whlch occur as a result of apphcatlon of e~ther  a conditioner or straw mulch or surface roughness 

whrh affect the so11 structural features such as poros~ty, hydrauhc conduct~v~ty, sorpt~v~ty, m a n  pore 

sue  etc (Chan ad Heenan, 19%) Depth of water pcnetratlon 1s a m j o r  factor m lncreasmg the sod 

water storage m the so11 profile and thn 1s influenced by sod structural Improvement 
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Revegetation plots have shown the highest moisture storage in the soil profile both in the crop 

and fallow sub treatmnts. The highly developed soil structure and aggregation in the revegetation 

plots may be related to the high moisture storage in this ueatmnt  (Watts e ~ a l . .  1996). Many soil 

factors are likely to enhance or limit the long tenn effects of surface managelxnt on soil structural 

condition and in turn on the pro& moisture storage capacity of the soil. Revegetation plots (no-till) 

were very effective in improving the soil water storage capacity. Better moisture storage capacity 

in the revegetation plots is due to the favourable soil structure and accumulation of organic material 

on the soil surface over the years which lead to increased infdtration and profile moisture storage. 

In the revegetation plots there is greater number of continuous minute fissures which enhance 

infilmtion of rain water into the soil. F u n h e m r e  large number of earthworms and eanhworm casts 

observed in these plots, produce additional channels for the rapid infiltration of rain water thus 

increasing the profile moisture storage (Goss cr 01.. 1978). Another contributory factor is the greater 

stability of the surface soil which reduces the extent to which channels are obstructed by the 

deposition of colloidal and other fme materials carried downward by rainfall. All these factors 

conhibute to the rapid infiltration of rain water in the undisturbed revegetation plots. These factors 

vary in their importance depending on the soil type and other soil factors 

SigniFfant differences in soil water storage resulting from the effect of surface management 

techniques on structure occurred on nearly every parameter of the soil structure. The untilled 

treatment (revegetation) provided structure which was very stable to various disruptive forces, 

whereas in the disturM aeatmnts  (PVA, crop residue, scoop and control) it was less stable and in 

s o m  cases collapsed, leading to lower moisture storage compared to revegetation treatment. 

Control m a t m n t  showed the greatest collapse in soil structural paramters (Hamblin, 1982). It can 
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be postulated then that the influence of higher organic mtter,  higher pore size, greater stability, better 

p o x  continuity and fissures, have resulted in greater maisture storage in the revegetation treatment 

as against PVA and crop residue treatments. 

Smctural differences between revegetation, PVA, crop residue, scoop and control treatments 

are known to give verymerent flow ntes  which in turn influence the profile moisture storage of the 

red soils (Cassel el a/., 1974). The condition of the so11 surface, in all these treatments, as a receptor 

a d  transmitter of water in liquid and vapour phases thus plays a critical role in affecting the moisture 

storage capacity and may account for the variations in the moisture storage capacity in all the 

treatments. 

From the results it is evident that while disturbed soil surfaces (PVA, crop residue, scoop, 

control) initially contained larger number of conducting pores and hence conducted water into the 

subsoil at a faster rate, this situation is transient. In the undisturbed soil (revegetation) the advantage 

is at a later stage in relation to the unsaturated water movement (sorptivity and steady state 

infiltration rate) which are more relevant to water gain and loss. The relative accumulation of organic 

matter on the surface l a ~ r  in the revegetation treatments may have been responsible for maintaining 

greater stabiity of pore geometry compared to the other four treatmnts. 

In the results presented here there is substantial evidence that differences in porosity. 

aggregate stabiity, hydraulic conductivity, sorptivity, characteristic m a n  pore size and pore 

gearreny arise as a result of adoption of various surface management techniques. These differences 

have a considerable iniluence on the masured aspects of water retention and m v e m n t  not only in 
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the top soil but also at depth. The most pronounced difference occurred between the control 

treatmnts and the revegetation treatments. Significant differences in moisture storage was also 

observed in the other treatmnts namely PVA, crop residue and scoop (Hamblin and Tennant. 1981). 

Fmmthese results it can be inferred that most of the soil water could be lost through deep drainage 

in the disturbed ueatmnts  as water moves more rapidly within the ploughed profile than in the 

revegetation treatmnt. The differences noted in the fust year of the experiment, persisted over the 

second year also. 

5.4 Infiltration and deep percolation in relation t o  soil surface management 

Soil water flux (cm day ') was n ~ a s u r e d  at the depth of 1.95 m using the hydraulic gradient 

and hydraulic conductivity values. Soil water flux was highest in the control crop treatmznt with the 

next lower soil water flux in the control fallow treatrreot. PVA treatrrrnts have shown lower soil 

water flux whereas crop residue treatmnt has shown higher soil water flux with revegetation plots 

showing the Least soil water flux. Results from the cumulative soil water flux data (Figures 10 and 

11) suggest that conuol treatmnt shows the maximum loss of water due to deep percolation at 2.00 

m depth. Revegetation and PVA treatments have shown the least loss of water due to deep 

percolation losses. 

Infilmtion is an inqmrtant basic process which conbols surface runoff, soil water storage and 

deep percolation. Soil factors which affect infdtration rate and finally the deep percolation include 

aggregate stability, hydraulic conductivity, characteristic m a n  pore size, bulk density, etc. Any 

change brought about in these factors, due to surface m g e m n t ,  would affect the moisture storage 



118 

and deep percolation losses. In the present study changes in most of the above soil factors due to 

surface management techniques were observed which resulted in changing the infiltration and thus 

affecting both profile moisture storage and deep percolation. 

In the revegetation plots water moves through the continuous mcropores, resulting in 

sustained high infiltration rates. Most of the rain water which has infiltrated into the soil was stored 

in the soil pro& therefore t k  water flux at 1.95 m depth was less leading to lower deep percolation 

losses. Hence the loss of water due to deep drainage was the least in revegetation treatmnt. In the 

PVA treatment there was improvement in aggregation due to application of the conditioner which 

resulted in i n p v i n g  the pore geomtry thereby increasing the infiltration and improving the profile 

moisture storage of the soil thus reducing the deep percolation losses. Therefore the soil water flux 

at 1.95 mdepth is lower in the PVA-treated soils than in crop residue treatlnznt. 

For deep drainage to occur it is necessary that the soil profile is fully charged with moisture. 

Only after the storage capacity of the soil profile has reached saturation would it lead to runoff on 

the soil surface and deep percolation losses at greater depths within the soil profile. In control and 

scoop tna tmnt  the soilshowed lower moisture storage, therefore in these two treatments water flux 

was the greatest at 1.95 mdepth suggesting larger deep percolation losses (Edwards el 01.. 1988). 

Measurements m d e  under field conditions reveal that type of surface management has an 

influence on infiltration, water storage capacity and hence on deep percolation. Soil measurements 

rradc in conjunction with soil water flux at 1.95 rn depth indicated that different surface management 

practices resulted in soil surface conditions that differed with respect to aggregate stability, organic 
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carbon concentration, surface roughness, m a n  pore size, all of which are related to water infiltration 

and storage in the soil profile. Surface managemnt techniques also affected the length of t i m  that 

water had to be applied to attain constant influation rates. Aggregate stability had a strong influence 

on infiltration rate and it may be dominant factor involved in the deep percolation losses. 

The diierent surface mnagement techniques help in protecting the soil surface against the 

impact of falling raindrops and thereby minimise the breakdown of aggregates and prevent surface 

sealing, wMch can reduce infiltration considerably. Scoop treatment had higher infiltration than 

control m a t m n t  and thedeep percolation losses were also less, because of higher moisture storage 

in the soil profde. Greater infiltration in the scoop treattnent than in control treatmnt can be 

attributed to disruption of surface crust, roughening of the soil surface and presence of surface 

depressions @its) to temporarjly store water on the surface, thus providing Inore time for infiltration 

(Unger. 1992). 

Mathan andMahendran (1994) observed that aggregate stability, bulk density, exchangeable 

sodiumpercentage (ESP), porosity are some of the factors which influence infiltration rate and deep 

percolation losses. Application of PVA enhances the pore geomtry, this can be attributed to the 

physical bonding between soil constituents which increases infiltration and moisture storage thereby 

decreasing the deep percolation losses. Moreover the addition of such organic compounds can 

mdQ the wettabiity of the soil surface, thereby improving the interaction with water (Painuli and 

Pagliai. 1990). This results in in-proved infiltration and water storage thereby decreasing the deep 

percolation losses. In crop residue treatment the decomposition of the residue results in the 

production of stable soil aggregates which have a long term effect on increasing infdtration as well 
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as water storage which lowers the deep percolation losses (Chaney and Swift. 1984). In the scoop 

treatmnt a major baction of the rainfall was stored in the depressions, which gets lost as runoff in 

control treatmnt. This water stored in the scoops @its) will have more t i n  to infiltrate into the soil 

thereby leading to moisture storage, or causing deep percolation losses, depending on the capacity 

of the soil. 

Deep water m v e m n t  is a significant p m  of the total water lost due to flux at 1.95 m depth. 

Flux below the root zone at 1.95 m depth is important in studies related with lnoisture storage to 

determine the deep percolation losses. Water flux in all the treatmnts was higher on days when 

heavy rams were received whereas flux was less when low rains were received. But at all t i n ~ s  flux 

was highest in the control treatmnt. Soil water flux was lowest in revegetatioll treatlre~lt with PVA. 

crop residue and scoop treatmnts having lhigher flux in that order. 

O f t k  sub treatmnts, flux was higher in the crop sub treatment than fallow sub treat~rent in 

a!l the nuin treatmnts. The improved pore size distribution, greater nuniber of large size pores and 

higher moisture storage capacity in the fallow sub treatmnt maybe related to the lesser deep 

percolation losses in fallow sub treatmnt. Lower infiltration, poor soil structure and reduced soil 

misture storage capacity may have enhanced the deep percolation losses which has resulted in higher 

flux at 1.95 mdepth in the cropped sub treatment for all the nub treatmnts. 

The cumulative soil water flux was also highest in the control treatment. Revegetation 

treatment has shown the lowest cumulative soil water flux than PVA, crop residue, and scoop 

treatmnt in that order, which indicates lesser deep percolation losses in the revegetation treatmnt 
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than in PVA, crop residue and scoop treatment. The major factors contributing to higher water 

content and lesser cumulative soil water flux in the revegetation treatment were greater infdtration 

resulting Born better pore size distribution, larger pores, and greater aggregate stability. Surface 

r m g e m e n t  techniques change the porosity of the soil surface considerably, thereby influencing the 

water storage capacity of the soil, which in turn influences the soil water flux causing deep 

percolation losses. 

In the PVA-treated soils the increase in infiltration and profile moisture storage can be 

attributed to the modification induced by the PVA, to the pore shape, as the increase in elongated 

pores, which resulted in lesser deep percolation losses than crop residue, scoop and control 

treatments. In crop residue treatment the beneficial effect was the protection provided to the soil 

surface covered with mulch against rainfall impact energy and dissipation of the energy. Surface 

cover also reduces evaporation by preventing the vapour to move to the surface. These factors 

contribute towards increasing the profile moisture storage thus reducing the deep percolation losses 

(Aujla and Cheema, 1983). 

Soil is a medium where water movement depends not only on the pores but also the 

interaction occuning ktween the water and soil matrix. The roughness of the soil particles and the 

actual pore geometq are important factors to be considered during water movement, but the 

influence of these factors on water movement is d i icul t  to assess. The adsorption of uncharged 

polymr molecules like PVA results in lining of the soil pores which stabilizes the aggregates and 

thenby improve the water flow through the soil. The contact angle would also be decreased leading 

to better water flow. Therefore, the water storage in PVA-treated soils is higher compared to crop 
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residue-treated soils. PVA, due to its mode of attachmnt, is most effective in influencing water 

conductingpmpcrties of the soil thereby affecting deep percolation losses. PVA-treated soils show 

lower deep percolation losses than crop residue, where the water storage is ~nainly due to reduced 

evapotansp'mtion losses, hence in this h-eatmnt the deep percolation losses were more than in PVA 

aeatmnt. The differences in deep percolation losses between scoop and control treatmnt may be 

due to greater roughness and surface storage in the scoop treatment than in the control treatmnt 

(Freebairn et a/., 1989). Stable porosity due to application of PVA facilitates easy transmission of 

water through the soils and this leads to increase in infiltration rates. By adopting different surface 

management techniques there is a possibility to increase the potential for water storage in the soil. 

thus reducing the deep percolation losses. Water was able to lnove into the soil profile instead of 

teiig lost as surface runoff which resulted in better water storage and lower deep percolation losses 

by using these surface management techniques (Manneriig and Meyer. 1963). Depending on the 

frequency of rainfall, even small amounts can be effective in keeping the soil surface wet and 

contribute to the soil water reselvoir when approptiate surface managemnt techniques are employed 

to increase infiltration and reduce deep percolation losses. 

In the conhol m t m n t  soildries rap'idly to depth of tillage whereas in crop residue and PVA 

k a t m n t  this is not the case and in xoop water retained in the depressions will help to replenish the 

water lost from the tiiage layer. Crop residue and PVA treatment extend the t i m  that the surface 

l a p  of the soil remains wet, thereby there is improvement in profde water storage and this reduces 

the deep percolation losses (Aase and Tanaka, 1987). 



5.5 Soil surface management in relation to solute movement 

As stated in section 5.2 soil surface nmagement increases infdtration rate, decreases surface 

runoffand enhances water storage in the soil profile. Greater infdtration and per~iaability of the soils 

under different surface m a g e m n t  conditions would increase the potential for the transport of 

agricultural chemicals from the surface to deeper layers. Preferential flow of water occurs through 

macropores under saturated condit~ons due to movement of water through the large surface 

connected, continuous pores. Along with water, movement of various agricultural che~nicals like 

nitogen, herbicides etc. also occurs through the nucropore flow. Bromide has been used as a tracer 

to documnt the chemical moverrent through [lie soil profile subjected to various surface management 

practices in this study. 

Bromide flux was m u r e d  as it moved along with water. Dispersion of bromide in the soil 

probably occurred as a result of the t i m  delay between rainfal! and soil sampling. Bromide was 

detected even at 1.95 m depth in all the treatmnts during both seasons, which can be attributed to 

the heavy rainfalls received during both years. Bromide flux in the soil involves an interaction 

between the surface management techniques adopted and its effect on the soil structural features 

through either their improvement or deterioration. 

Bromide flux was higher in the revegetation plots than in PVA, crop residue, scoop and 

conaoltnatmnts. Greater flux of bromide in the revegetation plots m y  be attnbuted to the better 

porosity and hiilhation leading to macropore flow (Bicki and Guo. 1991). Bromide flux was lower 
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in t k  conholtreatment than in scoop which has shown higher flux, whereas bromide flux was higher 

in PVA treatment than in crop residue treatment. These results indicate that a substantial potential 

exists for nihate !caching thmugh soil profile under difiennt surface management practices to depths 

below 1.95 mdepth as indicated by the bromide flux curves (Figures 12 and 13). 

Higher bromide flux is observed at depths 0 - 15 cm and the bromide flux decreases with 

depth. Potential for leaching of nitrates is more during heavy rainfalls and early in the season, when 

consumptive use and plant uptake is less. Therefore there is a need to minirnise early or presowing 

application of fertilizer nitrogen and sphtting application of nitrogen fert~lizer into smaller ones 

throughout the growing season would minimise the potential of nitrate loss under these surface 

management conditions, othenvise most of the nitrogen would be lost due lo leaching as indicated 

by the bromide flux data. 

Differences in physical characteristics of the soil surface as a result of surface management 

techniques result in affecting the bromide flux through the soil protile and produce observable 

differences in bromide movement (Bruce el 01.. 1985). In soils having better aggregation (eg. 

revegetation) the bromide flux was found to be higher than in soils having poor aggregation (eg. 

control). The bromide flux in the revegetation was highest at all depths which can be attributed to 

the better aggregation, porosity, pore size distribution, pore geometry and higher infiltration rates in 

this m m n t .  PVA has also s h o w  higher porosity and stable aggregates which has lead to the next 

highest bromide flux being in this treatment rather than in crop residue treatment. In control 

m t m n t  all the soil structural parameters were poor, hence in this treatment the bromide flux was 

lower than all other treatments including the scoop treatmnt.  



In the nvegetation plots which is characterised by the presence of macropores, the bromide 

Qux would have occurred through these macropores. These macropores are a pan of the basic soil 

structure. It is the Same in PVA treatment where the soil conditioner resulted in improved 

aggregation, forming macropores which have led to higher bromide flux than in the crop residue. 

scoop andcontrol treatments. In the control as well as the scoop treatment, lnovemnt of bromide 

may occur through the h e  soil pores, either kcause  macropores are lacking (as in scoops) or 

because of the presence of a crust (as in control), which did not allow the bromide movemnt to 

occur through the mcropores that were present. This may be the contr~butory factor for the lower 

bromide flux in the control and scoop treatments. 

Each ofthe structures in all the treatlrents show a significant difference in the bromide flux. 

This illusmtes that management of the sod surface results m d~fferent well-defmed textural poroslty 

or basic soil structure which exhibits variation in solute (bromide) movemnt within the soil profile 

due to changes in the soil structural features. The effect of large continuous pores due to stable 

aggregation (as observed in the revegetation treatment) was very apparent with bromide movement 

k i n g  highest at all depths in revegetation treatment. Solute flux r n y k  primarily through the 

rnacropores in this treatmnt.  Soil mrphological studies emphasize the description of larger pores 

as individuals, in t e r n  of size, shape and arrangement which are f o r m d  as a result of improved 

aggregation, leading to greater bromide flux (Bourn  and Anderson, 1977). However, in control 

t r ra tmnt ,  presence of the h e r  pores affects the solute (bromide) flux and hence lower flux rates 

w e n  observed in this treatment. 
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Leaching losses of nitrates were always higher in the mukll plors (killed sod applied as mulch) 

as compared to conventionally tilled plots as observed by McMahon and Thorns  (1976). This can 

b: attributed to intensive leaching in the mulched plots. Similarly in the present study also brolnide 

flux was higher in the crop residue treatmnt than in scoop and conrrol treatment. But higher 

bromide flux was observed in the well aerated PVA-treated soils, which may k relared to k t rer  

water movement through the soil profile, greater aggregation, better porosity, higher hydraulic 

conductivity and better pore size disaibution in thi? treatmnt than in crop residue, scoop and control 

treatment. Scoop treatmnt has also shown higher bromide flux than conrrol treatment which may 

be attributed to the @roved soil physical characterisrics and higher infiltration as a result of surface 

roughness (Granovsky ef a/. ,  1993). High surface roughness will enhance the movement of mobile 

soil chemicals into the soil profde (Ahuja er a/ . ,  1983). 

Anions like bro~nide and nitrate move through the so11 along with water flow and hence are 

lost due to leaching. Mostly anions like bromide and nitrare do not associate with the soil inatrii 

because of the electrical repulsion which prevents the association of bromide and nitrate even with 

water near the negatively charged soil surface. Hence bromide and nitrate move through [he soil 

along with water. Differences in the movement of bromide through the soil profile in all the 

t m m n t s  m y  be attributtd to the differences in the soil structure as a result of imposing the various 

surface managemnt practices (Smith and Davis, 1974). In the control treatmnt, due to tillage effect, 

the soil aggregates are pulverized This physical disturbance would eliminate the larger pores creating 

s m k r  pores, consequently reducing the bromide flux which is related to the lower flux of bromide 

at all depths in this treatment. The soil hydraulic properties are significantly influenced by surface 

m g e n n t  techniques, thereby leading to differences in bromide flux in all the treatments with the 
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h g k t  flux obscrved m thcrevege(at10n uearnmt wlth PVA and crop rcs~duc showmg lower fluxes 

lh study &ales that large connected pores as observed m revegetatlon and PVA treatments are 

lmponant pathways for b m d e  m v e m n t  and woukl wrem the bmnwle tlux w~thln thc so11 profilc 

( G s e l  er a / ,  1973, Shuford er a / ,  1977) 

ConnccL~nry among mcropores IS also llilponant for brollude flux ro oLcur and the FOIIS m 

the revegetation treatmnt have a good network of pores whlch resulted m h~ghcr brormdc flux m 

these soils (Germann el a / .  1984) Maintenance of crop reslcluc also resultr 111 uicreascd bro~nldc 

flux Thls IS because of two factors Fsstly the upward Inovemnt of salrs 1s colnpletely ?topped 

because evaporaton from the so11 surface m the crop residue tredtrrent IS n11 ~o~i ipared  to evaporrrlon 

from bare sod surface (control trear~lrnt) Seconllly runoff I F  r edu~ed and enure rrln water moves 

mto the sod thereby m v m g  the bronlxle along wlih ~t whrh IS aL\o thc re.~\on for lhlgllcr brolnlde flux 

m scoop a a t m n t  than m control mrurent In PVA treated \u~ls  the liwLruporcs forlird ds a rerult 

of aggregation result In [he development of a nciwork of pores whlch allow grerter ~nfiltrruon of 

ramwater thereby causmg brormde io m v e  mio the so11 profile leading ro bro~lude flux wl~lch IS 

higher than m crop res~due treatmnt Most of the water flow occurs In the larger pores m a weU 

aggregated so~l(revegela[~on and PVA Ircatmnt) causlng brormde to move into the soil profdc The 

m u l u  rndrare that q r o v m g  the sod aggregation by no-tdl management (revegetat~on plots) or by 

t&tmnofcodtmners (PVA treatmnt) leads to large losses of solute Mulchmg of [he so11 surface 

(crop resdue trcatmcnr) would also rcsult m solute losses, but thcse are lesser compared ro orher 

trcaurcnu (PVA, rcvegctatmn u e a t m r s )  Control treatment has shown the least loss of solutes as 

the bromtde flux e lowest m t h s  vea tmnt  due to cmstmg problem but loss In this treatmnt m y  

occur due to runoff 
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Water flowmg b o m  the large flow channels carry the dissolved brolnldc deep Into the sod 

profikalong mth 11. showmg greater bromide flux near the surface and lesser brollude flux at greatcr 

depths In well-suucturcd soils Y e  revegetatlon plots and PVA-treated p lo~s large a ~ i i o u ~ l t ~  o f  

surface a p p M  bromde IS lost due to grcater and deeper turbulent transfer of bromde In a Ixge 

number of mcroporcs f o d  (Tyler and Thomas. 1977) 

Pore geomlry, pore conncctmvlty, un~forni~ty, pore size dmstrmbut~on and pore shape play nn 

q o r l a n t  role m solute movement Soml havlng h~gher pore slze d~st r~but~on and lower bulk dens~ty 

(revegetauon, PVA matments) would cause nwre of the bromale to be eluvl,!ted to greater depth? 

In  solute transpon througli soils that are char.icterlzed as havmng greater proportion of  larger pores 

as m revegelauon and PVA treatment, a large frait~on of the bro~i i~de could be transported k i a u ~ e  

bromide concentrates In pore centre? and lilove? wmth the 1no5t r.~pally I1~1w11ig water Uciao\e of 

repuls~on of bmmde anlons from the so11 surface very l~tt le of !he?e broln~le .Illlons nwybe enterlrig 

smaller pores or pores w ~ t h  constr~cted openlng? Therefore a i~lwll fractmon of  the brommde would 

be transponcd through so11 wmth a snwller proponlon of largcr pores, as In control and sioop 

treatmnt, s m e  smaller amounts o f  bromide would concentrate In the centres o f  ~ntcrmed~ate and 

smaller-sued pores whlch are found In lmre abuntlance m the control and scoop treatments 

Therefore the bronudc flux e h lgk r  m the rcvegetauon and PVA trcatmnts wlth crop resmdue and 

scoop showvlg lower bromde flux and control showmg the leat  bromide flux (Smth el a / ,  1995) 

The v o l u m  of  water requued to remove samc amount o f  bro~n~de hom the sods havmg larger 

n u d e r  o f  large pores (revcgctat~on and PVA treatments) and smaller number o f  large pores (crop 

res~due, rcoop and control treatments) would be greater m soils havmg less proponlon of larger 

pores 
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The  bromde flux was h~gher m the fallow sub treatmnt and lower In the cropped sub 

treatment among the mun lreatmnts Fallowing unprovcs so11 structural features thenby 11 

enhances the water mfiltrat~on There 1s also unprovemnt m porosity, Inran pore sue, pore slze 

bmbutron and p o x  geomuydue to fallowmg All these factors contr~bute tu hlghcr brolrllde flux 

m Ihc fallow sub treatitnt than mcropped In t k  crop sub matlncnt lower bronllde flux 1s recurded 

whlch may be attributed to the lower poroslty and poor pore geoitrtry Bronilde flux depends on 

h presence of m r o p r e s  w l c h  are founl m luge numbers m the fallow sub tredtnxnt and 111 lesser 

numbers m the crop sub treatmnt Th13 may be attributed to the higher broiliale flux In the fdllow 

sub treatmnt compared to cropped 

5.6 Soil surface managemenl in relation to pearl millet growth and yield 

The dflemnt surface i m a g e l x n t  techni(lile7 were ohterved tu have \lgnlficdnt lllflucllie un 

pcxl  nullet growth and yeld Growth of pearl mlllct was mdsurcrl In tertnv of lnterceptiun of the 

photosynthet~caUy active radlatlon (PAR) lnterccpt~on of PAR was significantly affected by 

urpmvement m sol1 smcture and profile mlsture storage capaclty Interccpt~on of PAR was hlghest 

m the revegetation treatmnt followed by PVA, crop rcs~due, scoop and control The hlgher PAR 

~nterceptlon m the revegetatlon treatmnt m a n s  that them IS better plant growth and leaf 

developmnt rates due to avadabhty of sufficient m s t u r e  at all the stages of the pearl nullet crop 

p w t h  The cmp dd not face any rrmlsturc stress during 11s growth therefore the leaf developmnt 

was good w h r h  msulted m hlgher PAR mterceptlon Proper developmnt and good growth of the 

leaves In the mvegetat~on and PVA treatmnts has resultcd m h~gher PAR mterceptlon at all the 

siagcsof b m p  m these two treatmnts In control treatmnt the leaves could not Intercept PAR 



130 

cfficrntly l h  multed m lower PAR mtcrccption m control as well 3s scoop treatnwnt Pcxl  nullet 

crop dd not show sigukant Merences m Lght mterccptlon at m~tlal stages but at nwxonulii growth 

stage (45 to 55 DAS) t k r c  was slgruficant dfference m PAR interception durlllg both seajonb Thc 

dflerences agam d~sappeared when mllet crop reached marunty and hmesung 

Soils tealed with conditioner resist crustlng and also provide a k t t e r  environnmt for crop 

growth and mot dcvclopmnt by provviing very good nctwork of pores m the so11 duc to dggrcgation 

(Pau~uh and Paghal, 1990) H~gher misture storage in the soil profile results In mcreaslng the soil 

water use efficiency of the crop espec~ally In revegetatlon. PVA and crop rcsldue treatnrnt! r l ~ c  

higher so11 water use resultmg fronigreater infiltration and iiioisture \torage in the soil durlng the 

growmg season, resulted m better leaf developlien[ thereby increas~iig the l~glit i~ltercept~o~i abil~ty 

of the mUet crop 

Addtlonal water stored m the so11 profilc in revegetation PVA and crop revduc trcatliriits 

at planting and the mreeffect~ve use of seaonal rainfall d u c d  the plailt water rtregs and pernutted 

&rater response ofpearl rmllet to preclpltation especdly dumg cntlcal stages like booung, flowcrmg 

and gram f d h g  whlch had a bcncficial affect on the gram yield also In scoop trcatmnt also peal  

rmUct showed k t t c r  response to the mlsture stored m the so11 profilc thereby showlng k t t c r  leaf 

developmnt, hgher hght mvrccption and greater yelds compared to control treatment 

By adoptmg Merent surface management tcchn~qucs. it IS poss~ble to ~ncrease the available 

sod water for plant growth by unprovmg t k  preclp~tation storage m the sol1 Ths results m 

dbcnasmg the water strcss for the mLkt crop at cntral growth stages It would also help to mcrease 
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vegetative growth and leaf developmnt thereby increasing light interception and the fmal yields as 

this would lead to higher production of photosynthates which arc required for pea l  millet crop 

devclopmnt and growth. 

Pearl millet grain and straw yields wcre also s~gnificantly influenced by adopting ~l~lferent 

surface m g e m n t  technqucs. The available soil water at planting and also during the entire crop 

gmwth period influence the millet yields considerably. Because of high profile nwisturc storage the 

water availability was also good and t h ~ s  has resulted in higher yields in the revegetation and PVA 

treatmnt than incrop residue ad scoop maurents. In the control Ire;~t~nent Ilie ;lniount of lnoisturc 

storage in the soil profile was lower and hence water available to the ~ir~llet crop was less, thereby 

reducing the crop yields. The greater response of pearl rn~llet to water storoge obtained in the 

revegetation, PVA, and crop residue treatments indica~e an acldit~onal beneficial effect of these 

surface management practices througli !lure efficient use o f  tlie growing seitson rainlall. 

In this study ~ncreased prec~pitat~on storage as so11 water due to adoption of different surbcc 

m g c m n t  tcchruques resulu in increaimg the available waler and also I t  impruvcd the precipitallon 

u s  cfciency thereby resulting in producuon of higher dry rmttcr and greater yields. Due to increase 

in m i s t u n  storage the grain yields were nwre than doubled in the revegetation and PVA trcatmnts 

corrgarcd to conml, during bath the seasons. Lawer yields during 1996 was due to lodging of the 

crops as a result of heavy rains. 

The differences in the yields a m n g  the different trcatmnts can be solely ascribed to the 

inprovemnt in the soil structural features which have resulted in increased moisture storage in the 
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rodpmtik &cause care war laken to see that aU the other factors such as nurrlenl supply, pest and 

t k a x s  control ctc were s~rmiar for all the treatrents dunng both years Therefore any dlfferencc 

m p l  rmUct pcrfomunce a attributed to the sod structural unprovcmrnt and the var~ous favournblc 

lduences tt has on profile water storage, nutnent status and deep percolat~oll losses 

By lmprovmg the sod structure there 1s a chance for bcuer develop~irnt of the root systeln 

and this results m unprovmg the capnclty of pearl mlllet to obtaln water lroln the so11 even liom 

greater depths AU these factors u e  responsible for gettlng hlgher y~ekls In the revcgetatloli. PVA 

and crop resldue treatrrents than m scoop dnd control (Low. 1973. Stefdnson. 1974) Slgnlficdnt 

increase In the ylelds of t o m t o  with increase In aggregation. total pore sp.ice and porosity was 

observed by Doyle and Hunlyn (1960) In thls study dlso an Ilnprovenrnt In soil structurdl fedturcs 

have resulted m mcreaslng the ylelds nf pedrl nullet crop 

5.7 Conclusions 

l l ~  results suggest that applrat~on of cond~trorer and crop cover slgn~ficantly Increabc all the 

sod structural p a m t e r s  relatlve to control treatlnent Such surface rmnage~rent.lnduced changes 

pmndc Lhc mans to enhance the structural stability of these mherently unstable red soils of SAT m 

a nlat~vcly shon t m  Methods of the study used to quant~fy the degree of so11 structural stablllty 

suggest that reduced or m u n u m  llllagc (revegetatlon) can provlde the potcntlal for an unproved 

dumbuuon of stablc aggregates for optmum Iranspon of au and water However, the low rcslrtance 

of these red soils to slumpmg due lo heavy rams and thew h t e d  potential for rcgeneratlon of 

adequate mroporos l ty ,  wlthout any addltlon of mulch or cond~t~oner or surface roughness, 
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emphasiscs the nced to combine improved surfacc nunagerent techniques, as listed above, which 

reduce excessive soil compaction and improve aggregation and aggregate stability, if the potential 

kncfits of soil structural stability are to k realiscd. 

The soil srructural differences developed as a result of surface nunagentlit arc well 

characteriscd by theu hydnul'ic propenies as well as by a description of porosity, aggregate stability. 

pore s i i  distribution etc. All lhese p a r a t e r s  3~ involved in uriproving the profile moisture storage 

of the soil i n M e n n t  Ueatmnts. The value of water stored in the so11 for obtaining favourable yields 

in the red soils of the arid and semi arid regions has long k e n  recogliiretl. The value of surface 

m g e m n t  by using conditioners, or by crop res~duec, or surface roughness or no tillage ~nxtl~ods 

to hnprove profile moisture storage hdve been only recently realized. The atlditional water k i n g  

stored in the soil as a result of surface n run age rent has rcsulted from an increase in water infiltr;~lion 

due to development of favourable so11 structure. These practices also lhelp to conserve the li~ruted 

soil and water resources in the arid and scrnl arid regionc 

Higher water storage in the revegetation soils can k attr~buted to greater ability to storc 

water under zero tillage compared to conventional tillage, resulting in greater water reserve. This 

inrrcascd capacity to storc water is attributed to the rcarrangemnt of the pore size distribution and 

inpmvcd soil stnxturc (Zhai er a / . ,  1990). The influence of surface mnagement techniques on soil 

w a r  characteristics willdepend on the t m  of surface managcmnt technique adopted, c l ' i t e  and 

soil propcnics. 
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The pattern of water flow within a soil profile does not provide sufiicient infomution to 

describe the physical conditions controlling water flow nor the precise locations in trnnspon vo lum 

where the uniform applied fluxes o f  water were redistributed. Based on the results of deep 

percolation losses we arrive at the following conclusions: surface lmnagelnent techniques affect the 

soil s t m c t d  features such as aggregate stability, m a n  pore size, porosity and surlace roughness. 

therefore water infiltration is increased. This kads to greater water storage depending on the capacity 

of the soil Once the water storage of the soil profile is saturated it leads to deep percolation losses. 

Surface hs'idues (a. m crop residue treatment) were found to increase infiltration. Loosening o f  [lie 

soil by scoops and creating surface roughness is effective in increaring water infiltration into tlie soil 

and can be used in areas where residue are limited. Using PVA also enhances infiltration due to 

developmnt o f  stable aggregates. The PVA treatlient has resulted in lhiglier infiltration and water 

storage capacity o f  the so11 profile than the other treatmnts and tlie soil structural featurer ill this 

treatment were resembling that of the revegetation plot5 

Improvemnt in soil physical propenics xs a result of d~fferent surface Imnagemnt techniques 

would kad to better pro& moisture storage and thereby reduce the deep percolation losses. There 

is i n c w  in porosity due to surface mnagemnt  compared to control which led to the observable 

increase in hydraulic conductivity as well as infiltration rates due to improvemnt in the water 

transmitting ability o f  the soil. This has resulted in improved water storage and reduced deep 

percolation losses. 

The results presented show a dramatic effect of surface management techniques on the 

movement o f  a mobik chemical, bromide, in soil. This chemical is transported through the various 
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macropores to deeper layers into the soil profde. These fmdings have an important implication for 

i n t e ~ n t i n g  the transpon of surface applied fenilirers and herbicides under field conditions. These 

fmdings suggest that promoting surface soil structural improvenvnt througli surface mmnagemnt 

techniques would result in leaching of surface-applied agricultural cheliucals in general, especially 

where surface runoff is not a problem like in revegetation. PVA and crop residue treatlixnts. The 

results show that improving aggregation results in developlnent of a ~ietwork of pore systenl which 

causes leaching of m b k  c h e k a l s  such as bromide and niuate through the soil mtr ix .  Tlie broiiude 

flux curves indicate that the flux decreases with depth and it is minitnum at 1.95 m deptli. 

These findings have an iqaf lant  application in selecting the surface Imoagement techniques 

and fertilization application, including timing, depth of placelnenr and for111 of fertilizers ~nee(le(l to 

minimize the loss of surface applied chemicals due to solute movenxnt. These results are Important 

to determine the surface nunagelent techniques wlilch can he ;adopted in rlie red soils of SAT to 

improve moisture storage and reduce deep nutrlent losses through various l e a n s  I~ke timing, 

placement, split appl~cat~on etc. for better crop growth. 

From t h  study it can k concluded that use of conditioner like PVA would help to improve 

the a i l  structure to induce the status of the revegetation plots. In this study revegetation plots are 

taken as the xcond or m i n  control with which the other treatmnts are colnpared to check which 

of Ihe surface nranagerrent techniques would *rove thc soil structural features so that it approaches 

the revegetation treatment. PVA-treated soil was found to improve the soil structure which has 

multed in sigruficantly inneasing the pro& moisture storage over control (cultivated control plots). 

Thc w o f  surtacecover not only enhances the organic carbon content of the sod, but also improves 
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the profile moisture storage over control plots, but is less efficient than PVA. SCOOPS is not 

pnfenbk as it is not very effective in improving the soil structure and profile inoisture storage and 

requires disturbing the soil. Therefore, ailmng all the treatnents PVA treaulrnt unproves the soil 

suuctural features substantially compared to crop residue and scoop and would outdo these 

treatmnts in bringing the soil structure opproochiig the revegetation plots. 



SUMMARY 



CHAPTER VI 

SUMMARY 

Soil structure is an imponant soil physical aspect which influences not only m n y  other soil 

propenjes but also the crop gmwih and yieM. Many surface lmnagemnt techniques can be adopted 

which affect soil structure through formation as well as stabilization of aggregates. The changes 

brought about in the soil shuctural features are reflected in soil physical properties such as porosity. 

bulk density, aggregate slabity, sorptivity, hydraulic conductivity, steady-state flow rate, m a n  pore 

size etc. Soil shucture is not a static property and changes with water content and other agencies of 

stress. The formation of aggregates and pores and their stabilization is very ilnportant to m~intain 

a good soil structure and to increase productivity of the soils. Stable aggregation and proper pore 

size distribution determine a good soil tilth. Crus~ing and sealing :ire the ~n?jor con~traints related 

with the red soils of the SAT. Thew mi soils are cllaracteriwl by lack of structural developll~nt due 

to low content of fme clay particles and poor organic m u e r  in the surface layers. Due to poor 

sbucture and unstable aggregation these so~ls  tend to form crusts and thereby adversely affect crop 

establishmnt. These soils also have low water retention characteristics as a result the profile 

moisture storage is also less. 

In experimnts conducted at ICRISAT Asia Centre during kharifseason of 1995 and 1996, 

Werent surface rranagemnt technrques were adopted to dctemune their effect on the soil structure. 

The treatmnu include control ( n o d  cultivation), scoops (depressions excavated with hand tools). 

crop residue at 5 t ha1 on the surface, polyvinyl alcohol (PVA) at 100 kg h'a and revegetation 

(second control) with two sub m m n u  ie. cropped (sown with pearl millet) and fallow (kept bare). 
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with thrrc replications in a simple completely randonuzed split-plot design. It was assunrd that by 

modifyylg the soil structure, infiltration of rain water into the soil profile r a y  increase. Consequently 

there is increase in the precipitation storage capacity of the soil. Since any soil has a finite water 

storagecapacity therefore the increased rain water infiltration would then enhiince deep percolation 

losses. As water percolates it will c m y  dissolved solutes with it thereby leading to movelxnt of 

solutes kpnd the rooting mne. Measuremnts taken included those related with soil structure such 

as porosity, bulkdensity, organic carbon. MWD. GMD, sorptivity, steady-state flow rate, hydraulic 

conductivity and man pore size. Moisture content readings were takcn at 15 cm depth intervals 

using the neutron probe moisture l x l r e  for determining the moisture storage capacity of the soil. 

Moisture potential readings were takcn froni tensiollxters installed in the field for determining the 

soil-water flux and deep percolation losses. For solute nwvement study, bromide was used as a tracer 

and soil samples were collected from depths at 15 cm intervals for broliiidr estimation. 

Bulk density, an imponant soil structural feature, decreased in all the treatments except in 

control and SCOOP Veatmnts. Lower bulk density readings indicate an i~iiprove~nent in soil structure 

as observed in the PVA and crop residue treatments both in the crop and ftillow sub treatment. 

Lowest buLk density was observed in the revegetation plots. PVA-treated plots have reduced bulk 

density such that it is comparable to revegetation plots indicating that it can be used to improve the 

soil structure. Fallow sub treatments have shown lower bulk density values than cropped. 

Incrcav in porosity was also observed in all the treatments except control treatment in which 

porosity d m c a m .  Porosity influences many ofthe soil hydrological properties through its effect 

on pore sizedktribution, pore shape, pore g w m t r y  etc.. hence it is imponant in any study involving 
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soil s m ~ c t u n  improverrent. Pomsity was highest in the revegetation plots. PVA-treated plots have 

shown lower porosity values than revegetation plots, but it can be more effectively used to improve 

the soil shucture than crop residue or scoop treatmnt. Porosity decreased in the control treatment 

indicating deterioration of soil structure. Porosity values were lower during 1996 than 1995. 

Organic carbon which is also an important factor contributing towards soil structural 

impmvemnt through its b i g  action on soil particles was also recorded. Highest organic carbon 

percentage was observed in the revegetation treatment. Crop residue treatment showed higher 

organiccarbon than PVA treatment but lower than the revegetation treatmnt. The humification of 

the millet straw resulted in increasing the organic carbon percentage in the crop residue treatment. 

Control veatment had the lowest organic carbon and the scoop treatment was a tittle higher in 

organic carbon than the control. Of the sub treatlrents, fallow treatments showed lower organic 

carbon than crop treatments. This is attributed to the addition of organic matter to the soil due to 

the presence of crop through leaf fall, roots and stubble remaining in the crop treatmnt. 

Results for aggregate stability indicate that the aggregation is better in PVA treatment than 

crop residue treatment and that the revegetation plots have the highest aggregate stability. Scoop 

t n a t m n t  has shown k t t e r  agpgat ion  than control treatmnt due to better surface roughness. 

These results suggest that surface managemnt by various m a n s  such as conditioner, mulching, 

surface roughness etc.. help to i q r o v e  aggregation. 

Surface hydraulic propertics such as sorptivity, steady state flow rate, hydraulic conductivity 

and mean pore size were also determined and the results also suggest that application of the 
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conditioner, PVA, is superior to crop residue cover or scoop treatmnt in improving all the surface 

hydraulic properties. Higher solpdvity, steady state flow rate, hydraulic conductivity and m a n  pore 

size was recorded in the PVA treatmnt than in crop residue, scoop and control treatments, and hence 

the PVA-treated plots can be said to improve the soil hydraulic properties. The revegetation plots 

have shown the highest values for solptivity, steady state flow rate, hydraulic conductivity and m a n  

pore size. In scoop treatmnt also all the surface hydraulic properties showed an improvement over 

contmltreatment. These results suggest that application of conditioner like PVA is the best means 

of improving soil structure to get better aggregation and stabilization of the aggregates. 

A study was conducted to determine the effect of rate of application of PVA during 1994 post 

rainy (rabl) season. Application of PVA increased the amount of water stored in the soil profile. The 

rate of 100 kg ha" was superior to either 50 or 25 kg hr '  and on par with 150 and 200 kg hd of 

PVA application. Based on this study, PVA at the rate of 100 kg ha" could be used as one of the 

main treatmnts in the surface managemnt studies. 

Different surface n-anagemnt techniques were studied to determine their effect on moisture 

storage in the soilproli!e through soil structure irrplrovemnt. Of all the treatments, revegetation (no- 

till) has shown the highest misture storage. Better infiltration rate, higher hydraulic conductivity. 

larger pore size and presence of large number of macropores m y  have resulted in the greater capacity 

of these soils to store the moisture. PVA treatmnt has shown better moisture storage than crop 

residue, the better aggregation and pore geomtry may have led to higher moisture storage in this 

treatment and hence PVA conditioner can be used to improve the moisture storage capacity of the 

soil Scoop m t m n t  has also shown higher moisture storage than control treatmnt, which may be 
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related to the w a t e r  surface roughness and longer t i m  of standing water in the pits allowing water 

to infiltrate fully into the soil and reducing runoff. 

Deep percolation losses were higher in the control treatmnt than the other treatmnts. This 

can be attributed to the lower moisture storage in the soil profile in control treatment due to poor 

pore geometry and lower porosity leading to greater deep percolation and runoff losses. Thus, the 

amount of moisture entering into the soil and the storage of rain water in the soil profile are both 

reduced. Deep percolation losses were lesser in the PVA treatment than in crop residue, which is 

attributed to the higher moisture storage in the PVA treated plots than crop residue plots. This 

resulted in greater deep percolation losses in the crop residue treatment than in PVA treatmnt. 

Revegetation plots have shown the least deep percolation losses because of the higher amount of 

moisture stored in the profile of these soils due to better porosity and pore size distribution. 

Fallowing has resulted in higher moisture storage than cropping, in all the ~ m i n  treatments. Therefore 

deep percolation losses are lower in the fallow than the crop sub treatment. These results suggest 

that fallowing improves moisture storage capacity of the soil and reduces the deep percolation losses. 

Movement of bromide through the soil profile was studied to evaluate the effect of surface 

m g e m n t  techniques on solute movement within the soil profde. Bromide flux was highest in the 

revegetation plots with PVA and crop residue treatment showing lower fluxes. At aU the depths in 

the soil pro*, bromide flux was higher in the revegetation plots than in PVA and crop residue 

treatments. PVA treatment has shown higher bromide flux than crop residue treatmnt which can 

be attributed to better aggregate stability and higher aggregation in the PVA-treated plots than in 

crop residue-mated plots. These results are consistent with the idea that bromide moves with the 



bulk water through the mcropores, and since there was a higher porosity and better pore geometry 

in the revegetation and PVA-treated plots, they have shown the highest bromide flux. Scoop 

treatment had higher bromide flux than control treatment, due to better surface roughness in the 

scoop W m n v j .  Of the sub m t m n t s ,  fallow has shown higher bromide flux at all depths in all the 

treatmnts than the crop sub treatments. 

Pearlmillet growth a n d p e r f o m c e  was also influenced by the various surface management 

techniques. The highest photosynthetically active radiation (PAR) interception duriig the crop 

growth period was in the revegetation plots than in PVA, crop residue, scoop and control treatments 

in that order. PAR interception increased with growth of pearl millet and was highest at maxilnum 

growth stage (i.e 45 to 55 DAS), and decreased at later stages due to senescence of leaves. 

Significant diierences in PAR interception were observed only at 45 to 55 DAS when pearl millet 

was at its maximurn growth. PAR interception affects the formation of photosynthates and hence the 

growth and developmnt of a crop. Therefore, diierences in the PAR interception between the 

treatmnts was reflected in the pearl millet yields. Revegetation plots had higher yields than the PVA 

and crop residue treatments. The ;eduction in incidence of moisture stress at all the stages in the 

revegetation, PVA, and crop residue treatments resulted in higher pearl millet yields in these 

treatmnts than in the scoop and control treatmnts. Control treatment was in turn lower yielding 

than the scoop treatmnt. 



Future research needs 

There are a range of surface management techniques available that mod~fy the soil structure. 

They involve the use of organic inputs, as with conditioner, and crop residues, a combination of 

organif inputs and lack of disturbance as in no-till management, or surface roughness ~nanipulation 

to mntion a few. A better understanding of the effects of various surface managemnt techniques 

on soil structure and other soil properties may lead to the developmnt of even better surface 

managemnt techniques. 

Much work has been done on the effect of residue managemnt and tillage on soil properties. 

There has been much less research on the effect of conditioners on soil physical and chemical 

properties. One of the imponant drawbacks is the high cost of the conditioners, which Limits their 

use in the field where it might be required in large amounts. Research on the effect of conditioners 

on soil structure, aggregation and aggregate stability is available, but there has been little research on 

the effect of conditioners on moisture storage, deep percolation and solute movement. Literature 

cited suggesu that very little work has been done on the effect of surface roughness on soil properties 

such a .  mis ture  storage and deep percolation and there is little known about the effect of surface 

roughness on solute movemnt. Therefore, funher research needs to be done on the effect of surface 

roughness on soil properties such as deep percolation, moisture storage and solute movement. 

Scoops are also an important m a n s  for improving the moisture storage in the soil profile. 

Much research has been done on moisture storage and deep percolation losses by using 

residue cover ard zero tillage. But research on the effect of residue cover and zero tillage on solute 
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m v e m n t  is very less. There is a need to study the effect of residue cover and no-till management 

on nutrient losses leading to ground water contamination due to leaching of surface applied 

ckmjcals. In this study t k  bromide flux was measured with the assumption that anions move along 

with the bulk water movemnt through the soil which can be described by Darcy's law. This 

description may not be adequate for defming the movemnt of dissolved anions. It is necessary to 

measure the tracer concentration distribution moving through a soil-water system so that the 

mhanismof  both anion and water movemnt is more clearly understood. The distance that anion 

travels through the soil is determined by the tortuosity of the total path length. The path followed 

by each ion will vary and depend on the convection, diffusion and chemical processes which occur 

in different soils. 

It may not be possible to produce sufficient crop residue to influence soil structure in the arid 

and semi-ad regions. Use of PVA is not economcal, and making of scoops is time consuming and 

requires manual labour. Consequently additional research, in searching for new and cheap soil 

conditioners, or developing new surface roughness techniques, or using the crop residue available 

more effectively etc., is needed to develop suitable systems for improving profde moisture storage 

for all soils so that crop production potential will be maintained or improved. Only by adequately 

conscning the soiland water resources can we be assured that future generations will have adequate 

resources for producing food. There is a need to develop approaches which are cheap, easily 

availabb andcan be easily adopted by the f m r s  to overcome the problems of soil structure in the 

Alfisols of the SAT regions. Once the soil structural problems such as crusting and sealing have been 

solved by adopting surface rranagemnt techniques, it m y  be possible to increase the yields of crops 

to m t  tine demand of the growing population. 
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Figure 1. Neutron probe calibration curve for three depths from 0 to 45 cm. 
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Figure 2. Neutron probe calibration curve for three depths from 45 to 90 cm. 
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Figure 3. Neutron probe calibration curve for three depths from 90 to 135 cm. 
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y = 0.9951 * x - 0.6962 

- 
P = 0.998 
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- 

- 
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Figure 4. Neutron probe calibration curve for three depths from 135 to 180 cm. 
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Figure 5. Neutron probe calibration curve for two depths from 180 to 210 cm. 



APPENDIX Ill 

The lhethod for determining soil hydraulic properties from disc penmameter lneasuremnts 

in the 6eld is given by White el a/., (1989) and is based on an analysis (Wooding, 1968) of the three- 

dimnsional flow 6 o m  a shallow circular pond or surface disc. 

For a pond or disc of radius r,, on the soil surface, Wooding showed that when water is 

supplied at a potential of Yo the steady-state volumtric rate q is 

q = nr,'(K, - K,) + 4r,p (1) 

The k s t  term on the right essentially represents the contribution of gravity to the total flow 

fromthe surface disc and the second termcontains the contribution due to capillarity. In the gravity 

t e t m b i s  the hydraulicconductivity at the supply potential Y,, and '& is the hydraulic conductivity 

at the initial soil water potential Y,. For relatively dry materials Y, is much smaUer than K, and we 

can safely ignore its effect. Thecapillarity term contains the matric flux potential p, which is related 

to the conductivity by p = &A,. 

The macroscopic capillary length A, is related to the sorptivity, S and the hydraulic 

conductivity (White and Sully. 1987) 

8,is theinitial moisture content at Y,, 8, is the moisture content at the supply potential Yo, 

So is the sorptivity at Y ,  with supply potential Yo and b is a dimensionless constant whose value lies 
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between Ih and xI4. For field soils a m a n  value for b is 0.55. We can now rewrite equation (I) as 

Dividing by the area of the disc, we find the steady-state flow rate per until area 

Rearranging equation (3) to fmd the conductivity, we have 

During the early stages offlow 6om the disc capillarity dominates flaw irrespective a f  the size of the 

disc. At short infiltration times the system behaves as if it were one-dimensional. In this case [he 

cumulative infiltration is given by (Philip, 1969) 

Where Q is t k  total volum of water infdtrated and t is time 6om the commencement of infdtration. 

Sorptivity, then, is the slope of the cumulative infdtration versus tH plot. 

To calculate hydraulic conductivity t o m  equation (4), the masuremnts  required are the 

sorptivity, the steady-state flow rate, the initial volumtric moisture content and the volumtric 

moisture content at the supply potential. 
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The sorptivity So is calculated from the early time data. To find So plot Qlnr,' on the Y asks 

versus the square root of time tH on the X axis. The slope of the straight line portion is sorptivity and 

has units of lengthItimeH. 

The steady state flow rate is found by plotting the cu~nulative infiltration during the last pan 

ofthe infiltration as a function of time. The plot should be linear at large time. The slope of this line 

is the steady-state flow rate. 

Hydraulic conductivity of the soil at the potential at which the measurement is being made is 

calculated from equation (4) 

q 4bS,' 
KO = . . . . . . . . . . . . . . . . . . . . . . 

nr,' nro (8, - 8.) 
where r, is the radius of the ring. 8, is the volumtr~c  ]moisture content at the measurelxnt potential, 

8, is the volumtrlc moisture content at initial potential, and b is approximately 0.55. Moisture 

contents are expressed as decimal fractions. 

The Macroscopic capillary length A, is a scaling length which simplifies the treatment of 

multidimensional soil-water flows (Philip, 1985). It is defined as 

Since A, is a K-weighted m a n  potential, we can relqte A by simple capillarity theory to a 

characteristic pore dimension A, : 



U'kre o is the aidsoil-water surface tension, pis the soil-water density, and g is the acceleration due 

to gravity. For estimating 1, in the field as shown by White and Sully (1987) 

For pure water at 20°C equation (6) becomes 

where I. and I, are in mm 







Table 2. Profile moisture storage (mm) in different treatments during the crop growth period i~ 
1996 season. 

Cmlml 
Cmlml 
C m M l  
smop 
Smop 

2 n , i d " c  
Cmp midus 
Cmp midue 
PVA 
PVA 
PVA 
Rrvtgdlltan 
R ~ t g a a l i o n  
Rrvegdllion 
M w  
Hw 
SEm ( t )  
SEm I t )  
SEm (t) 
CD (0.05) 
CD (0 01) 
CD (0.05) 

C ~ P  
Fallav 
M u n  
Cmp 
R l low  
M u n  
Cmp 
Fallow 
M u n  
Cmp 
Rl law 
M u n  
CmP 
F*llo\u 
M u n  

Contml CmP 3W 331 329 327 320 334 343 333 
Cmlml Fallow 367 353 388 405 4 M  4W 415 405 
Cmlml M u n  333 345 358 366 360 369 319 369 
Smop C ~ P  340 313 356 366 358 374 362 351 

smOp Fallow 384 390 414 437 424 446 450 432 
S-P M w  362 382 385 401 391 410 4% 394 
Cmp ruidue Cmp 369 4W 383 391 381 396 377 382 
Cmpn8iduc Fallow 440 453 458 468 464 490 480 470 
Cmpetiduc M u o  405 426 420 432 426 443 428 426 

PYA Clop 391 433 440 424 413 418 413 414 
PVA R l l a v  481 481 474 486 488 106 520 495 
W A  Hun 439 460 457 455 450 462 471 4% 

Rnegdation Cmp 458 489 483 464 442 457 473 465 
Rcvcgetcon Pallow 511 539 110 511 514 531 540 126 
Rwcgttstion M a n  495 514 496 488 478 494 507 495 

Mun c q  371 4 M  398 396 384 396 391 390 
M u n  Fallow 444 448 449 461 458 475 481 465 
SEm I t )  hh in tmmcn l  220 3.20 3 48 3.35 3 31 374 4 32 4.30 
S h  I t )  Subtrulmcnt 4.09 6 096 1.49 241 1.05 3.48 439 
SEm If) lowndioneued 6.10 4.42 3.74 3.96 476 4.73 654 7.55 
CD(OO5) M a m l r u M m l  9.92 14.38 15.67 1508 I492  1681 1944 1934 
CD(o.05) Sublrumrn! 16.08 8.47 3.78 185 9 47 8 05 13.65 17 24 
CD(OO5) I n l m d i o n t U m  21.39 14.89 14.80 I 4 2 0  15.95 16.33 2188 2548 



Dayrafter rowing 
Trcatmcntr 62 65 69  71 76 78 82 86 

CmMl 
Cmuol 
Cmlml 
S w  
SmOp 

$mid., 
Cmq ruidue 
Cmp ruidus 
PVA 
PVA 
PVA 
Revqarlion 
Rwcgbrlian 
Rwcgulion 
Mun 
Mun 
Sem (i) 
sem I*) 
SEm It) 
CD (0.05) 
CD (0.05) 
CD (0.05) 

cmp 
Fallow 
Mun 
cmp 
F~l les  
Mun 
cmp 
Fallow 
Mun 
C ~ P  
Fallow 
Mun 
C ~ Q  
Fallow 
Mun 
cmp 
Rl les  
Main lmlmml 
Sub lmvncn~ 
lntcnaion rum 
Main lrutmcnl 
Sublrovnml 
Inlmfllon elTed 

(Table 2 conimucd.. ) 

sm; 
Cmp nriduc 
Cmp rrridut 
C w  midue 
PVA 
PVA 
PVA 
Revegarlion 
Revegarnim 
Rmgaalim 
M a  
Mun 
SEm I*) 
SEmli) 
SEm I*) 
CD (0.05) 
CD (0.05) 
CD (0.05) 

Mun 
Cma 
Fallow 
M w  
Cmp 
Fallow 
Mun 
cmp 
Fallow 
Mun 
cmp 
Pallor 
h(rin truvnrn, 
Subumlmml 
lnvnaion rEca 
Main lmtmenl 
Sublmlmml 
lnknaion efia 





Dap alter swing 
73 78 96 97 101 I04  106 I20  
(24 01 (9.6) (9 2) (10.0) 133 4) 134.81 (64 8) (7.4) 

Cmtrnl 
CmMl  
C m M l  * 
S - Y  

S r m p  cmprutdvc 

cmpruiduc 
cwru idus  
PVA 
PVA 
PVA 
Rn~gdnllon 
Rnrgcllflon 
Rw*grUtlon 
Ma" 

cmp 
F.ll0L" 
M"" 
cmp 
Fnllow 
M"" 
Cmp 
Fdlow 
M"" 
cmp 
F.tl0," 
M u n  

CmP Fallow 

MLM 
cw 
Fdlov 
Mat" ,rutmen< 
Sub lmMcnl 
Inlmet1.n ciTcn 
Main lruYnrnl 
S u b t ~ ~ n e n t  
I"llrnC(l0" 



Table 4. Soil-water flux (cmday.') a t  1.95 m d e p t h  in d i f fe ren t  t r e a t m e n t s  on d a y s  when h e a v y  r a i n s  

were received during 1996 crop g r o w t h  period i n d i c a t i n g  deep p e r c o l a t i o n .  

b l m l  CmP 40.24 66.91 21.01 5.05 2018 44.16 1611 30.52 40.89 
Coolml Fallow 36 14 64.23 19.95 4.08 19.W 39.81 13.32 29.62 1865 
Cmtml M u n  38.19 65.57 20.48 4.56 19.59 42.W 1472 10.07 39.77 
SrmP CmP 31.42 6 0 M  17.51 3.63 1719 35.69 1108 26.61 35.81 
smOp Fnllow 3060 56.66 16.13 313 15.44 31.72 887 2490 12.92 

M u n  31.01 58.35 16.82 318 16.31 11.70 997 25.78 34.38 
$ruidue Crop 27.96 53.11 I544  265 13.38 28.81 7.95 22.13 10.86 
Cmp midue Fallow 25.53 49.59 14.93 205 11.52 2 6 W  6.84 21.27 27.34 
Crop midue M u n  2674 51.35 15.18 215 12.45 27.45 1.40 21.70 29.10 
W A  CW 23.02 46.57 1293 1.59 1067 24.69 562 20.56 2619 
PVA F8llov 2290 45.87 11.01 1.31 9.28 23.95 3.93 1826 2397 
W A M u n  2296 46.22 11 97 I 4 5  997 24.32 4 78 1941 25.08 
Rc"cgu.lisn C q  20.75 4226 1040 1.01 883 21.91 2.43 1676 21.83 
R o r g r ~ l i o n  Fallow 1751 3829 7.98 0.87 6.98 19.38 1.93 14.78 I988  
Rcvcg&lion Muvl 19.13 4028 9.19 095 7.91 20.64 2.18 15.77 2085 
M u n  C ~ P  28.68 53.78 1546 279 I405 I I W  8.64 23.32 1112 
M u n  Fallow 26.54 5093 14W 229 12.44 28.19 6.98 21 77 2855 
SEm (ii Msinlrratlncn! 0.48 083 027 0.04 0.72 059 0.54 007 0.46 
SEm (B Subtrrsunent 0.39 045 029 0.05 0.21 0.13 0.18 050  046 
SEm (ii IntrnitioncIlcct 073 105 049 OW 078 0.75 060  0.71 080 
CDlO.05) M l i n l r u m e a  2 3.72 1.23 0 . 5  2 4  1.65 I 4 5  0.13 106 
CD(0.05) Svbtmaunrnl I 5 4  1.77 1.11 021  0.81 1.21 070  0.60 058 
CD 10.05) InlmnioncEra 1.45 1 61 l 25 030  I 05 1 59 1 10 1 52 l 34 

figurer in parentheses indiwle t h c m o u n t  of reinfall (mm) receivedon that b y )  ( ~ a b l o  4 canmucd. ) 

h t m l  C ~ P  71.45 37.12 1785 64.55 1956 2601 24.71 19.77 
Cootml Fallow 67.99 3548 1596 61 99 1871 2402 2282 18.25 
Cm!ml Mern 69.72 36.30 16.90 6327 19 11 2501 21.79 1901 * C m ~  64.19 3297 13.90 57.99 1603 2159 21.90 14.63 
S W P  Fallow 6151 30.96 12.20 55.36 15.47 20.91 20.16 12.93 
$map M a  62.85 11.97 1305 56.68 15.15 21.25 21.03 1378 
Croprrriduc Cmp 57.56 29.84 11.99 5258 1380 18.21 19.25 11.28 
Cropruidus Fallow 55.03 27.86 10.11 49.51 12.10 17.85 17.64 1012 
Cropnriduc M u n  56.29 28.85 11.06 51.05 12.95 18.04 18.45 I I W  
W A  CrnP 53.87 26.64 9.47 46.07 11.11 16.89 16.07 9.12 
PYA Fallow 51.51 2429 809 43.52 10.72 1577 I522  8.30 
W A  M u n  52.69 25.47 8.78 44.79 10.92 1611 15.64 8.71 
Rwcgaruan Clop 4985 25.W 7.W 40.33 983 14 84 14.16 1 12 
Rwcgeulioo Fallow 47.82 22.02 6.31 37.99 8.15 13.99 1387 4.47 
Rmcprulon M u n  48.83 23.51 6.66 39.16 8.99 I 4  41 I4 01 589 
M u n  CmP 5938 30.32 1204 5230 1407 1951 1923 12.42 
M u n  F l l l ov  56.77 28.12 10.54 4967 11.03 18.51 1794 10.91 
SEm I*) Mainlruvnmt 0.61 0.53 0.22 0.59 062  0.15 011  0.44 
SEm (t) S v b l m m l  0.46 0.41 019 046  010  0 13 039 025 
SEm (t) h !znd ion~Uca  0.89 0.79 0.59 0.88 0.64 023 057 0.57 
CD(O.05) M.in!nnmmt 1.25 123 0.99 1.24 I 8 1  065 0.48 1.93 
CD(O.05) SublmMcnt 0.90 0.92 0.53 094 018 0.50 012 0.98 
CD(O.05) h l m a i m e R ~ ( (  1.42 1.31 102 1.33 172 0.77 102 0.82 

figurn in parenlhsser indicate the amount of &fdl (mm) received on that day), 



Table 5. Bromide flux (mol day1) at different depths during 1995 season for different 
treatmnts. 

Depth (cm) 
I 5  30 45 60 15 90 I05 

h t m l  
Cmlml 
Cmlml 
scmp 
SW 
smop 
Cmpnriduc 
Cmp rvidue 
Cmp rcridur 
PYA 
PYA 
PVA 
Rnegdalon 
Rolcprulim 
Rolepdalim 
M u n  

M u n  
C ~ P  
Fallow 
Me." 
cmp 
Fallow 
M u n  
cmp 
Fallow 
Mainlnumcnt 
Sub tNMe", 
Insmaion cRca 
Main lnrtmmt 
Svbtnuvnmf 
ln!mfllon rllm 

Dcplh (an) 
120 135 150 165 180 195 

Cmtml 
Cmlml 
Cmlml 
S C ~ P  
Somp 
Somp 
Cmp midue 
Crop nr~dvc 
Cmp nriduc 
PVA 
PYA 
PVA 
R w g a r t i m  
Rwegdation 
Roiepdalim 
M u n  
M u n  
SErn(t1 
SEm (5) 
SEm ( i l  
CD (0.05) 
CD (0.051 
CD (0.05) 

Cmp 1.36 0 7  093 0.71 061 043 
Fallow 2.24 1.51 0.60 0.59 5 2  042 
M w  1.80 129 0.76 065 057 043 
C ~ P  2.91 1.92 0.79 056 0 12 0 54 
Fallow 3.34 207 0.94 064 0.68 0.41 
M u n  3.12 1.99 0.87 060 060 0.47 
cmp 4.08 253 1.18 0.74 065 050 
Fallow 4.84 2.90 1.91 095 097 060 
M u n  4 46 2.72 1 54 0.85 0 81 a55 



Table 6. Bromide flux (mol m.' day") at d i f fe ren t  d e p t h s  d u r i n g  1996 season f o r  d i f fe ren t  

treatments. 

Cmlml 
Cmlml 
Cmlml 
bmp 
bmp 
S q  
Cmpruiduc 
Cmpruidue 
Cmphcihrr 
PVA 
PVA 
PVA 
Rwc8dllron 
Rwrgcutian 
Rwcgurlion 
M a  
M u n  
SEm It) 
SEm (d 
SEm(i) 
CD (0.05) 
CD (0.05) 
CD (0.05) 

cw 
Fallaw 
M u n  
cmp 
Fallow 
Ma" 
cmp 
Fallow 
M u n  
CmP 
Fallow 
M u n  
Cmp 
Fallow 
Y w  
cmp 
Fallow 
Mtln lmlmta 
Sublrulmal 
Inknnion e K a  
Main tnrmml 
Sub lrulmsnl 
Inmaion e f l a  

Deplh (cln) 
120 135 I50 165 180 195 

Cmlml 
Cantml 
Cmtml 
Scmp 

E2 
Cmp  EL.^". 
Cmp midue 
Cmpruiduc 
PVA 
PYA 
PVA 
Rmcgeuiion 
Rmlual ion 
Rmegeulian 
M u n  
M u n  
SEm (i) 
SEmli) 
SEm l i l  
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