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INTRODUCTION 

Pigeonpea (Cajanus caian (L.) Millspaugh), also known as red gram, is the 

sixth most important grain legume crops grown in the tropics and sub- tropics 

between 30°N and 30"s latitudes. Pigeonpea is cultivated in about 50 countries of 

Asia, Africa and Americas. This crop is adaptable in a number of cropping systems 

and is grown on marginal to rich lands. Pigeonpea is cultivated in almost 4 million 

hectares worldwide. In India, this crop is grown over 2.9 million hectares for 

multiple uses such as food, fodder and fuel (Nene and Sheila, 1990). &ah  legumes 

or pulses are the major source of dietary protein in developing countries. The high 

protein content and relatively low cost of these food legumes has earned them the 

title, "Poor man's Meat" which effectively underlines their vital importance in 

developing nations. Legumes have also played a major role in patterning the 

agricultural systems in the tropicsJ 

Insects are the most important among biotic constraints to pigeonpea 

production worldwide, causing losses of more than $ 1000 million every year. More 

than 200 species of insects feed on pigeonpea, of which Helicoverpa armigera, 

Maruca vitrata, Melanagromyza obtusa, Clavrgralla spp., Nezara viridula and 

Callosobruchus spp. are the most important (Lateef and Reed, 1992). b f  these, 

legume podborer, Helicoverpa armigera, is the most destructive and notorious pest 

of the field crops (Lateef and Reed, 1992). It is widely distributed from the Cape 

Verde Islands in Atlantic Ocean, through Africa, Asia and Australia to the South 

Pacific Islands and from Southern Qurope to New Zealand (Reed and Pawar, 1982). 

It is the most difficult insect due to its wide host range, high fecundity and strong 

migratory ability of adult moths, and the ability to undergo a facultative diapause 

(Fitt, 1989). It is a polyphagous pest and has been recorded feeding on 181 cultivated 

and uncultivated plant species belonging to 45 families; 40 of dicots and 5 monocots 

(Manjunath et al., 1989). However, most serious losses have been recorded on crops 

such as pigeonpea, chickpea, tomato, cotton, sorghum, pearl millet, peas and 

groundnut. The productivity of chickpea (Reed et al., 1987) and pigeonpea (Singh el 



al., 1990) crops is drastically affected by H armigera. Helicoverpa causes an 

estimated loss of US$ 927 million in chickpea and pigeonpea, and possibly, over 

US$ 2 billion on other crops worldwide. A conservative estimate is that over US$ 1 

billion is spent on insecticides to control this pest. 'Therefore, in addition to huge 

economic losses caused by the pest, there are several indirect costs h m  the 

deleterious effects of pesticides on the environment and human health (Sharma et al., 

2001). Continuous use of insecticides and chemicals has led to the insecticide 

resistance in this insect, which resulted in several crop failures. Therefore, host plant 

resistance plays an important role in the management of this pest. It offers a viable 

economic solution in this situation.] 

The identification and utilization of cultivars resistant or tolerant to 

H. armigera would have a number of advantages, particularly for a few relatively 

value crops such as pigeonpea. Notwithstanding the availability of vast germplasm 

with wide degree of variability for various economic characters withim the cultivated 

types, little progress has been made in evolving varietieshybrids with durable 

resistance to biotic stresses. Resistant and less susceptible cultivars would provide 

an equitable, environmentally sound, and sustainable pest management tool. More 

than 14,000 pigeonpea accessions have been screened at ICRISAT center and in the 

national agricultural research programs. Though, several genotypes have been 

identified, which suffer no or less pod damage, these genotypes have not been widely 

used. The level of tolerance in the cultivated genotypes is low, and some of the 

genotypes are susceptible to major pigeonpea fungal and viral pathogens. Wild 

relatives of Cajanus species, especially C. scarabaeoides, have been identified as a 

potential source of resistance (Pundir and Singh, 1987; Saxena et al., 1990; 

Shanower et al., 1997). There is also some evidence that the wild species have 

different mechanisms of resistance against podborer than in the cultivated types. The 

genes from the wild relatives can be tapped through wide hybridization for use in the 

crop improvement to divenify the basis of resistance to these pests. However, 

despite the availability of a wide array of wild sources of resistance, their utility in 

pigeonpea improvement has not been fully explored. A few isolated reports of 

utilization of these wild species in pigeonpea breeding include their exploitation as 



sources of resistance to podborer, pod wasp and Phytophthora blight (Rcddy et al., 

1982; Saxena et al., 1996; Sharma et al., 2000). 

Recent studies at ICNSAT have focused on identifying and characterizing 

physical and biochemical parameters/components which may contribute to the insect 

resistance in wild species of C. scarabaeoides and C. platycarpw. Among the 

physical components, trichomes and the nature of pod wall surface are being 

investigated. The distribution of trichomes in different accessions and pigeonpea 

varieties and their correlation with mechanisms of resistance and inheritance of the 

various types of trichomes are yet to be investigated. 

Compounds in trichome exudates ana I or on the pod surface may stimulate 

or deter H armigera larvae from feeding. Acetone extracts from the pod surface of 

C. scarabaeoides have shown some antifeedant activity, which was absent in 

C. cajan. It is possible that the feeding stimulant in the susceptible species is 

associated with the presence of phagostimulants or absence of antifeedant 

compounds that are released from the glandular trichomes on the surface of the pods. 

Pest management strategies of Helicoverpa include cultural management of 

the crop and its environment; biological control using predators, parasites and 

microbial pesticides; sex pheromones for population monitoring and mating 

disruptions; host plant resistance, and chemical control. Environmentally safe 

technologies are not yet ready, in a form, to be delivered to farmers, although all 

agree that use of integrated pest management (IPM) strategies can reduce the 

negative environmental effects of chemical pesticides (Sharma et al., 2001)J 

Continuing efforts to conserve the germplasm of diverse array of species of 

Cajanus and to transfer the desirable genes from these wild plants into cultivated 

Ccajan have emphasized the need to understand the genetic diversity and 

phylogenetic relationships among the crop species in more detail (Pundir, 1981; 

Pundir and Singh, 1985; Saxena et al., 1990). Wild relatives of pigeonpea serve as 

a rich source of disease and insect resistance that can be introgressed into the 

cultivated genotypes (Shanower, 1999). The use of wild relatives in pigeonpea 



improvement for various qualitative haits has been reported long back but to a very 

limited extent. The attention paid towards pigeonpea improvement, with the use of 

the wild relatives, though start* in early 19709, yet, remarkable improvements in 

this area have been very few.' Plant breediig history shows that diverse gene pools i 
are the foundations for effective crop improvement programmes. Exotic gemplasm 

from weedy species has been used nearly exclusively as a source of genes for 

improving qualitatively inherited characters, such as disease resistance. The 

assessment of diversity has focused mainly on cultivated types in the primary 

genepool and little is known of the extent of variation or the nature of traits 

available in wild species belonging to other genepools. Further, the taxonomic 

confusions and lack of evaluation information on traits of interest, particularly with 

reference to resistance to serious pests and diseases seem to have precluded their 

intensive study and utilization. 

The primary objective in plant breediig is to widen the genetic base of a 

cultivated species. If the needed variation is limited, as in the case of pigeonpea, 

the options for the breeders are incorporation of alien variation, induction of 

mutations or exploitation of Somaclonal variation. The other and possibly the most 

viable resource of introducing variation into a species is through transfer of genetic 

material from one species to another by hybridization. The genetic potential of 

wild relatives is widely demonstrated in plant breeding and in the evolutionary 

studies. Wild relatives have helped to fill the voids in traditional breeding 

programmes. Pigeonpea is the only cultivated species under the genus Cajanus and 

the rest 31 species belonging to this genus are wild. Of these, 13 are endemic to 

Australia, 8 to Indian subcontinent and Myanmar, and the rest of them occur in 

more than one country. Apart from C. cajan, only the other species, Cajanus 

scarabaeoides, is common and widespread throughout South and Southeast Asia, 

the Pacific Islands, and northern Australia (Van der Maesen, 1986). In addition to 

India, the greatest diversity of wild species of Cajanus is found in Myanmar, 

Yunnan-China, and northern Australia. Several species, such as C, villosus, 

C. elongatus, C. granadiflorus and C. niveus that were earlier collected or known 

to occur in northeastern India are either rare or extinct. Wild relatives of pigeonpea 



possess several valuable traits, including cytoplasmic, genetic male sterility 

systems (Reddy and Faris, 1981; Ariyanayagam et al., 1995). partially 

cleistogamous trait, which ensues very high purity of genotypes (Saxena et al., 

1998), podborer resistance (Lateef et a/. ,  1981; Dodia et al., 1996; Shanower et a/. ,  

1997), nematode resistance (Sharma et a[., 1993), and salinity tolerance (Subba 

Rao, 1988). With the possibility of large-scale adoption of transgenic techniques to 

combat intractable problems in pigeonpea, there is a possibility of gene escape into 

the non-target organisms, including wild and weedy relatives through gene flow. 

This could result in the loss of valuable traits that are required for future breeding 

programs. To develop precautionary measures to arrest this problem, knowledge on 

the possibility of gene flow between pigeonpea and various wild relatives needs to 

be gained. This will help in preserving the valuable species by following necessary 

regulatory measures. 

The objective of the backcross method is to improve one or two specific 

defects of a high yielding variety, which is well adapted to the area and has other 

desirable characteristics. The character(s) lacking in this variety are transferred to it 

from a donor parent without changing the genotype of this variety, except for the 

genes being transferred. Thus, the end results of a backcross programme will be a 

well-adapted variety with one or two improved characters. Backcross method has 

been used to transfer simply inherited characters, mostly insect and disease 

resistance, from wild or related species into a cultivated species. For example, 

transfer of resistance into wild fire and black fire from Nicotiana longij7ora to 

N. tobaccum leaf and stem rust resistance from Triticum timopheevii, T. 

monococcum, Aegilops speltoides and Secale cereale (rye) to T. aestivum; and black- 

arm resistance from several Gossypium species to G, hirstutum 

Scientific approaches for conservation and utilization of plant genetic 

resources require an accurate assessment of the amount and distribution of genetic 

variation within a gene pool. An important pre-requisite for using wild species is the 

identification of closely related species as potential gene donors and finding useful 

genes for pigeonpea improvement. Traditionally, phenological and morphological 



characters have been used for the identification of pigeonpea cultivars and their wild 

relatives. Among the 271 accessions of 47 wild species, related to Cajanus available 

in the gene bank at ICRISAT (Remanandan et al., 1988), Cajanus scarabueoides is 

the most widely distributed. Since, C. scarabaeoides can be easily crossed with 

pigeonpea, its useful genes can be utilized in the improvement of the latter. Except 

the morpho-taxonomical description of the species (Van der Maeson, 1986) no 

information is available on the variation within the species for economical traits, and 

only a limited molecular work has been carried out (Sivararnakrishnan et al., 2001). 

A large number of methodologies exist for the assessment of genetic diversity 

in plant species. A combination of morphological traits and protein profiling 

methods, such as isozymes (Nevo et a[., 1986), allozymes (May, 1992) and seed 

storage proteins (Doll and Brown, 1977) have conventionally been applied. 

However, such traits are influenced by environmental factors and so the results 

elucidated based on such studies do not provide a true measure of genetic diversity. 

The advent of environmentally neutral molecular markers will allow better 

quantification of genetic diversity (Clegg, 1984; Gepts, 1995). New technological 

developments have expanded the range of DNA polymorphism assays for genetic 

fingerprinting and for investigating genetic diversity and genetic relatedness. 

Assignment of Levels and distribution of polymorphism (usually conceptualized as 

'allelic richness' and 'allelic evenness') in a crop, permit the sampling and utilization 

of genetic resources in a more systematic and efficient manner, and also allow an 

enhanced understanding of evolutionary relationships both for breeding and 

conservation. These technologies include restriction fragment length polymorphism 

(RFLP) (Botstein and White, 1980; Rafalski and Vogel, 1996), random amplified 

polymorphic DNA markers (RAPD) (Bowcock et al., 1994), amplified fragment 

length polymorphism (AFLP) (Zabeau and Vos, 1993), and simple sequence repeats 

or micro-satellites (SSR) (Tantz, 1989, Weber and Powell, 1992). These methods 

detect polymorphism by assaying subsets of the total amount of DNA sequence 

variation in a genome. Polymorphisms detected with AFLP and RFLP assays reflect 

restriction size variations. RFLPs have been used to characterize the genetic diversity 

in cultivated pigeonpea and its wild relatives (Beckmann and Soller, 1983; Tanskley 



and Miller 1990; Wang et al., 1992; Sivaramakrishnan eta/ . ,  2001). Then are many 

advantages of RFLPs in the estimation of genetic relationships (Melchinger et al., 

1991 ; Smith and Smith, 1991; Stuber, 1992). AFLP methodology has been used to 

assess genetic diversity in rice (Zhu et al., 1998), lactuca (Hill  et al., 1996), Soybean 

(Sharma et al. 1996, Maughan et al., 1997;), sunflower (Hongtrakul et al., 1997). 

SSRs are highly polymorphic and are becoming the marker of choice in both animal 

and plant species (Condit and Hubell, 1991; Akkaya et al., 1992; Morgante and 

Oliveri, 1993; Wang et al., 1994). 

There are no reports, in pigeonpea, for diversity analysis using AFLP 

markers. The cultivated pigeonpea lines were studied for variation at genomic level, 

using SSR primers but there are no reports of diversity analysis in wild pigeonpea 

accessions (Malcolm, 2001). However, the cluster analysis of southern blot 

hybridization, data with 15 restriction enzyme - probe combinations placed various 

species of pigeonpea into ten major groups and revealed a phylogenetic relationship 

among these groups. This study suggests that RFLP of mt DNA can be used for the 

diversity analysis of pigeonpea. The variations in mitochondria1 DNA hybridization 

patterns also suggest the extensive rearrangement of the organelle genome among the 

Cajanus species (Sivaramakrishnan et al., 1999). 

Assessment of genome relationships is a first step in the exploitation of wild 

species in the improvement of any cultivated species. The next step is utilization of 

such hybrids in the breeding programme before which it would be essential to study 

the inheritance pattern and also assess the quantum of variability generated. Studies 

on inheritance provide information on the possible number of genes governing a 

character and their interaction. Evaluation of variation in Fz generation helps in 

understanding the extent of recombination and variability. Genetic studies provide a 

clear direction for handling the segregating generations. Few studies have been made 

on the genetics of qualitative and quantitative traits in pigeonpea (Deshpande and 

Jeswani, 1956; D'Cruz and Deokar, 1970; Munoz and Abrams, 1971; Pandey, 1972; 

Sharma et al., 1972, Joshi, 1973; Choudhary and Thombre, 1977; Dahiya and Brar, 



1977; Dshiya et ab. 1977; Kapur, 1977; Malhotra and Sodhi, 1977; Reddy et al., 

1979; Singh et al., 1997). 

Most of the interspecific hybridization work done at ICRISAT, in pigeonpea, 

was mostly confined to breeding for high protein lines (Reddy et a/., 1979) and to a 

limited extent for breeding for insect resistance, dwarfs and isolation of cytoplasmic 

male sterile involving a few wild accessions of Cajanur (Saxena et al., 1990). 

Genome relationships between wild and cultivated Cajanus species are still obscure. 

C. cajanfolius, which is morphologically very similar to Cajanur cajan, except for 

the seed strophiole, was identified as early as 1920 (Van der Maesen, 1980) but an 

attempt to cross-these two species was not reported until 1981 (Pundu, 1981). The 

studies on the hybrid progenies of C. cajan x C, scarabaeoides cross suggested that 

the antibiosis mechanism of resistance was governed by a single dominant gene 

(Verulkar et al., 1997). 

Thus, with an aim of further understanding of wild Cajanus species and their 

potential significance in pigeonpea improvement for pest resistance, to understand 

the genetic basis of different qualitative and quantitative traits, including the 

resistance against podborer, the present investigation was undertaken with the 

following objectives: 

Morphological, molecular and biochemical characterization of wild Cajanus 

scarabaeoides accessions. 

To screen the C. scarabaeoides accessions for resistance against podborer and to 

identify the highly resistant ones to involve them in the hybridization programme. 

To incorporate the podborer resistant gene(s) from the wild C, scarabaeoides 

accessions to the cultivated C. cajan genotypes through backcross programme and 

wide hybridization. 

To study the genetic basis of qualitative and quantitative traits 

To study the genetic basis and different mechanisms of resistance against podborer. 





Pigeonpea (Cajanus cajan (L.) Millspaugh) is one of the major grain legumes 

of the tropics and subtropics. Small and marginal farmers in India, Myanmar, Kenya, 

Malawi, Uganda and a few countries of Central America produce it commercially. It 

belongs to the family Leguminosae, subfamily Papilionidae, tribe Phaseolae and 

subtribe Cajaninae. After the merger of genus Atylosia with Cajanus, the latter has 

32 species (Van der Maesen, 1986) of which C. cajan is the only cultivated species. 

Diversity analysis 

Pigeonpea was originated in India, as evidenced by the presence of several 

wild relatives (including the nearest one), larger diversity of crop gene pool, ample 

linguistic evidence, a few archeological remains and wider usage in daily cuisine. De 

(1974) and Vernon Royes (1976) prepared reviews that including discussions on the 

pigeonpea's origin. The later considered it in favor of Indian origin. Further 

considerations also clarified this (Van der Maesen, 1980). Several authors considered 

eastern Africa as the " Center of origin ", since pigeonpea seems to occur wild in 

Africa. The scarce but often cited archeological evidence of one seed in an ancient 

Egyptian tomb and the wild occurrence in Africa made many authors (Purseglove, 

1968; Rachie and Roberts, 1974) favor an African origin. However, the range of 

diversity of the crop in India is much larger, and this made Vavilov (1951) list 

pigeonpea as of Indian origin. 

Pigeonpea is the only cultivated food crop of the Cajaninae subtribe of the 

economically most important leguniinous tribe Phaseolae, which contains many bean 

species consumed by man (e.g., Phaseolus, V~gna, Cajanus, Lablab, Macrotyloma). 

The cultivated pigeonpea stands alone as a crop species in the subtribe, of which 

most of the species belong outside the pigeonpea gene-pool, or at the most in its 

tertiary genepool, while sevekl Cqanus species can be placed in the secondary gene 

pool. The different species of C. cajan and other related genera are grouped into 

different gene pools as follows 



Galklml Genus 1 s w c l a  

Primary gene p l  Cultivar collections 

Secondary gene pool Cajanus aculifolius, C. albicans, C.cajanifolius, 
C.lanceolarus, C.latisepalus, C.lineatw, 
C.reticulatus, C.scarabaeoides var. 
scarabaeoides, C.sericeur, C.hinervius 

Tertiary gene pool C.goemis, C.heynei, C.kerstingii, C.mollis, 
C.plarycarpus, C.rugosus, C.wlubilis, and 
other Cajanus spp. Other Cajaninae (e.g., 
Rhynchosia, Dunbaria, Eroisema 

Use of wild accessions 

The collection and study of wild species assume crucial significance as the 

discovery and incorporation of alien genes provide an active means to sustain crop 

improvement, particularly when levels of resistance in the cultigens are low and 

virulent strains of pests and pathogens overcome host plant resistance. Further, an 

assessment of the levels and pattems of genetic diversity within and among wild 

relatives would substantially help in understanding the static and dynamic properties 

of genetic variation in natural populations and evolutionary processes of 

domestication and utility of wild gene pools in further plant breeding programmes. 

Additionally, critical reviews of the state of diversity within various gene pools of a 

crop would help to provide a more objective basis for determining the most 

appropriate way to over come a suspected bottleneck, and in choosing the most 

suitable approach. 

Very little information about morphological and molecular diversity analysis, 

interspecific hybridization and backcross breeding program is available in 

pigeonpea. 

Morphological diversity 

Data on ecogeographic pattems of variability in crop species, including their 

wild and weedy relatives, are useful for basic studies on crop evolution (Jain and 

Singh 1972; Harlan, 1975; Simmonds, 1976; Jain, 1977), for planning efficient 



gennplasm collection expeditions (Moseman and Craddock, 1976; Cristopher er at., 

1984) and for selecting parents to usa them in plant breediig programmes (Wad 

1962; Munck et at., 1970; Bartual er al., 1985; Dale er at., 1985). 

For several crop species, evaluation of entries in germplasm collections has 

provided large data bases on the plant traits that can be used to study patterns of 

genetic diversity (Harlan, 1975; Frankel and Hawkes, 1975; Kumar et aL, 1984; 

Polignano and SpagnolettiZeuli, 1985). 

Saxena et al. (1990) evaluated 33 accessions of C. scarabaeoides for 

variation in some of the useful traits to identify parents for inter-generic 

hybridization. A large variation was observed for leaf components, seed size, pod 

length, seeds/pod, days to flowering, seed protein, sulphur containing amino acids, 

resistance to cyst nematode, phyrophthora blight, sterility mosaic,furarium wilt, pod 

borer, pod fly and pod wasp. Only four accessions were found to have more than 

28.5% protein content. Methionine and cysteine contents were marginally higher 

than in cultivated pigeonpea but the variation was not large enough to utilize them in 

the breeding program. In C, scarabaeoides accessions resistant to Furarium wilt, 

Phytophtora blight, sterility mosaic, and cyst nematode were detected. Compared to 

pigeonpea, the C, scarabaeoides accessions were less susceptible to the 

Lepidopteran borer and were immune to pod fly damage. The accessions ICPW 89, 

ICPW 11 1 in short duration - (100-120 days), and ICPW 94 and ICPW 118 in the 

medium duration (140-180days) were identified as potential parents for use in 

interspecific hybridization. 

One hundred and ninety six genotypes from the local germplasm collections 

of Cajanus cajan were grown in a randomized block design with three replications to 

study the variation in harvest index (Singh and Srivatsava, 1977). Results indicated 

that these genotypes did manifest marked variation in harvest index and growth 

characteristics under different planting systems. 

Plant population effects on interrelationship of seed yield and its components 

on the pigeonpea genotypes were studied (Satpute, 1994). Correlation and path 
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analysis in the populations based on the genotype-plant density combinations 

revealed that the dry matter production, number of pods per plant, seeds per plant 

and harvest index were closely associated with the seed yield. The direct effect of 

these characters on seed yield was not similar. Over the seasons and plant densities, 

the number of seeds per plant and dry matter yields were identified to be the 

important yield characters. 

Molecular diversity 

Classical methods of estimating genetic diversity and / or relatedness among 

groups of plants relied upon phenotypic traits. However, these have two 

disadvantages: firstly the traits were subject to env'ironmental influences and 

secondly the levels of polymorphism (allelic variation) are limited. These limitations 

were significantly overcome by development of environment- neutral biochemical 

makers (Isozymes) and protein electrophoresis (Hunter and Markert, 1957) and 

molecular markers that focus directly on the variation controlled by genes. The 

higher resolution of molecular markers makes them a valuable tool for a variety of 

purposes, such as fingerprinting, facilitates appropriate choice of parents for 

breeding programs, analysis of quantitative traits, location and detection of 

quantitative trait loci (QTLs), gene mapping, marker assisted selection and gene 

transfer, understanding evolutionary pathways, and for the assessment of genetic 

diversity of plant germplasm. Hillis (1987) recommended that morphological work 

on large samples combined with molecular analysis on smaller samples maximize 

both information and usefulness. Kresovich and Mc Pherson (1992) believed that 

molecular markers could resolve biological, operational and logistical questions 

dealing with four broad areas of germplasm characterization: the determination of 

correct identity of an individual (whether it was true to type, duplicate etc.) the 

estimation of degree of similarity among individuals understanding of hierarchical 

structure and partitioning of variations among individuals, accessions, populations 

and species, and identification and detection of the presence of particular alleles in 

individuals, accessions, populations, chromosomes or cloned DNA segments. 



The range of molecular markers (Table 1) that can be relatively easily used 

on most plant germplam is quite extensive (Mohan et al., 1997; Gupta and Varshney. 

2000). Techniques vary &om identifying polymorphism in actual DNA sequence to 

the use of DNA hybridization methods to identify RFLPs (Restriction Fragments 

Length Polymorphism), or the use of PCR - based (Polymerase Chain Reaction) 

technology to find polymorphisms using RAPD (Random Amplified Polymorphic 

DNA), SSR (Simple Sequence Repeat) and AFLP (Amplified Fragment Length 

Polymorphism). The different methods differ in their cost, ease of application, type 

of data generated dominant or Co- dominant markers), the degree of polymorphism 

they reveal, the way they resolve genetic differences, and in the taxonomic levels at 

which they can be most appropriately used (Karp et al., 1997). 

The application of different techniques to genetic diversity analysis have 

been well reviewed (Malyshev and Kartel, 1997; Newbury and Ford - Lloyd, 1997; 

Westman and Kresovich, 1997; Karp et al., 1998). Assignment of levels and 

distribution of polymorphism (usually conceptualized as ' allelic richness' and ' 
allelic evenness') in a crop permit the sampling and utilization of genetic resources 

in a more systematic and efficient manner, and also allow an enhanced understanding 

of evolutionary relationships both for breeding and conservation. Some applications 

of diversity analysis using molecular marker tools including: identification of genetic 

diversity (Hamrick and Godt, 1990), determining collection priorities and sampling 

strategies (Schoen and Brown, 1991), guiding the designation of in situ or on farm 

conservation strategies (Bonierbale et al., 1997), monitoring genetic erosion (Robert 

et a1.,1991) or vulnerability (Adams, 1977), guiding the management of ex situ 

collections (Kresovich et al., 1997), maximizing the genetic diversity in core 

collections (Gepts, 1995), comparing agronomically useful regions of genomes of 

different crops (Paterson et a!., 1995), defining the identity of improved varieties or 

other plant genetic resources (Lee et al., 1995), monitoring the movement of plant 

genetic resources ( Hardon et al., 1994) and assisting in taxonomic evolution and 

enhancing understanding of relationships between crop gene pools (Gepts, 1995), 

achieving precise, unambiguous and accurate identification of germplasm at species 1 

subspecies levels (Wang and Tanksley, 1989; Virk et al., 1995; M a i n  et at., 1997; 
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Table 1: Molecular marker techniques 
S.No Acronym Technique l reference 
1 / AFLP I Amplified Fragment Length Polymorphism 
4- - - L"oselal1l99S -_---- -- -- ---- 

2 / ALP ' Amplicon Length Polymorphism 

*- 
I Ghare azie et a / ,  199: 

- 3  - AP-ER &bi&ly Primed PCR 
I ' Welsh and Mac Clek!d,1_98_0.. _ - . _ _ - 

7 IASTCZ---] A I I ~ I ~  swzc PCR 
Sarkar et a / ,  1990 t cleaved Amplified Polymorphic Sequence 

1 L ~ ~ i c h e v  et a'. 1993.. . _ -- _ . - - - . .A  

I - ~ N A  Amplified Fingerprints 
Caetano- Anolles et a1 , 1991 _ _ - _ _ _  -- , - - ... . . 
Inter-MITE (Miniature Inverted-Repeat Transposable Elements) 

. *I-- Pol o hism, Chan e et a1, 2001 - 
IM = ISSR / h e r  g R  Amplzc:tion = Inter Simple Sequence Repeat 

1 Zietkiewiez et a / ,  I994 - 
9 ! M P  - PCR ' Microsatelllte -Primed PCR 

I i M e ~ r  el a / ,  1993 . - - - - - - . . - . . -. - -. -. . . . . - -. -- - - 
10 [ RAhis 1 Randomly Amplified ~crosatelll te 
. - Ender et a / ,  1996 - 

1 1  RAP^) 1 Random -Amplified Polymorphic DNA 
Williamsetal 1990 

12 IRE- i Retrotransposon - ~~crosatelli te Amplified Polymorphism 
+ . - .- - . . .. -. .- . - - 

I Kalender et 01, 1999 .. . - .- -- .. RFLP 
Restricted Fragment Length Polymorph~sm 
Botstein el a / ,  1980 

14 & -  i spec$c - Amplicon ~olymorphism 
. - - - - . ..--. - j Williams et a / ,  199 1 - - 

15 ' SCAR i Sequence Charactenzed Ampl~fied Region 
I W~ll~ams et a1,1991 - - - 

16 [SNP Single Nucleot~de Polymorph~sm , Niki&ov erpL1994 
17 SSCP Single Strand Confi~matlon Polymorphism 

I , %its e d ,  1989 .. 
18 SSLP ' Microsatellite Simple Sequence ~eng th  ~~lymorphism -. 

1 1 Ronpven etfil, 1995 
19 iSSLP Min~satellite S~mple Sequence Length Polymorphism 
- - Janvan and Wells, 1989 -- ' *  - -  .- -- 
20 1 Simple Sequence Repeat 

2 1 
~akemann and seller, 290 -. . _ -  - .-..-- _ -*T-L Sequence Taged Sites 

1 Fukuoka et (11, 1994 

Heame et a1 , 1992 
STMS Sequence Tagged Micro Satellite sites 



Zhu et al.. 1998), identifying duplicates withii collections particularly in gene banks 

(Virk et a[., 1995). The genetic variability of 38 grape fruits (Citrus paradbr] and 

three pummelos (C.maxima) accessions was evaluated using RAPDs and SSRs 

analyses. Approximately 49% of the 198 RAPD were polymorphic and 4.6 alleles 

per SSR loci were identified (Corazza-Nunes, 2002). 

The AFLP system (Vos et 01.. 1995) has been shown to be effective and 

reproducible for analysis of genetic linkage and gene mapping (MacKill et 01.. 1996; 

Voorrips et al.. 1997), map based cloning (Cnops et a/., 1996), plant evolution 

(Huem et al., 1997). Biodiversity technology has been applied to wheat in localized 

situations (Parker et al., 1998; Barren and Kidwell, 1998; Bykhamer et a!., 1998; 

Law et a/. ,  1998; Ma and Lapitan, 1998; Hartl et al., 1999; Bai et al., 1999; Bhon et 

a1.,.1999; Singh et al., 1999). No studies have been reported in pigeonpea for 

diversity analysis using AFLP markers. RFLP analysis, using genomic single copy 

probes, has been generally used to characterize the variation among wild and 

cultivated species (Miller and Tanskley 1990. Jena and Kochert 1991; Gawel et al., 

1992; Janet et al., 1992). Variation in chloroplast DNA (Close et al., 1989) and 

mitochondrial DNA (Deu et al., 1995; Moeykens et al., 1995; Tozuka et a/. ,  1998) 

has been used to study the diversity of cytoplasm in crop species like soyabean, an 

out-crossing species like pigeonpea. Compared to chloroplast genome, the 

mitochondrial genome has many variations within or between closely related species 

(Close et al., 1989; Grabau et al., 1992, Deu et al., 1995.). Diversity in 28 accessions 

of pigeonpea and its wild relatives representing 11 species belonging to six sections 

of genus Cajanus, and four species of genus Rynchosia was assessed by analyzing 

the mt DNA hybridization patterns (Sivaramakrishnan et al., 1999). Highly 

polymorphic hybridization banding patterns with maize mt DNA probes in RFLP 

were observed both in the wild and cultivated accessions. Cluster analysis of 

southern blot hybridization data with 15 restriction enzyme - probe combinations 

placed various species of pigeonpea into ten major groups and revealed phylogenetic 

relationship among these groups. This study suggests that RFLP of mt DNA can be 

used for the diversity analysis of pigeonpea. The variations in mitochondrial DNA 

hybridization patterns also suggest the extensive rearrangement of the organelle 
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genome among the Cajanw species (Sivaramakrishnan et 01.. 1999). Twenty four 

accessions representing 12 species of four genera (Cajanw, Dunbaria, Eriosema and 

Rhyricosia ) were examined to determine phylogenetic relationships in the genus 

Cojanw suficient RFLP polymorphism were detected among species to resolve in 

- group taxa into distinct clusters. Topologies of trees from parsimony and similarity 

matrix analyses were similar but not identical, and clustering patterns agreed broadly 

with published phylogenies based on seed protein data and to a lesser extent, data 

from cytology and breeding experiments (Nadipalli and Jarret, 1993). The 

cultivated pigeonpea lines were studied for variation at genomic level, using SSR 

primers but there are no reports of diversity analysis in wild pigeonpea accessions 

(Malcolm, 2001j. 

Biochemical diversity 

Proteinase inhibitors 

Plants use proteins as a part of their defense strategies. An interesting class of 

defense protein is the inhibitors of digestive enzymes that occur in many plants. The 

two main classes of inhibitors discovered so far are the protease inhibitors and the 

amylase inhibitors. Among them, protease inhibitors play an important role in 

defense of plants against herbivorous insects. They act as competitive inhibiton of 

enzymes by binding tightly to the active site of the enzyme. The antimetabolic 

activity of the protease inhibitors is due to direct inhibition of the larval proteolysis 

and utilization of proteins leading to the death of larvae by slow starvation. 

Proteinase inhibitors are widely distributed in the plant kingdom, particularly 

in seeds and tubers, where they often represent several percent of total protein 

(Liener and Kakade, 1969; Ryan, 1973; Richardson, 1977). They have been most 

extensively studied in leguminoseae, graminae and solanaceae, presumably because 

of the large number of species in these families, (Richardson, 1977). According to 

specificity, proteinase inhibitors can be divided into four classes, inhibiting serine, 

cysteine, metallo- or aspartyl proteases. Several non-homologous families of 

protease inhibitors are recognized among the animal, microorganism, and plant 
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kingdoms ( Laskowski et 01.. 1980). In plants about ten protease inhibitor families 

have been recognized (Garcia et al., 1987). Members of the s e ~ e  and cysteine 

proteipse inhibitors have been more relevant to the area of plant defense than 

metallo- and aspartyl proteinase inhibitors, since only a few of these latter two 

families of inhibitors have been found in plants. 

Trypsin inhibitors 

Soyabean trypsin inhibitor (Kunitz inhibitor) was the first plant inhibitor to 

be well characterized. Its isolation and crystallization from soyabean and that of its 

complex with trypsin is one of the classic achievements of the inhibitor chemistry 

(Kunitz, 1947). It has a molecular weight of 20,000 to 25,000 with relatively a few 

disulphide bonds and posses a specificity, which is directed primarily towards 

trypsin. Trypsin (Mw 23,300) is the main intestinal digestive enzyme responsible for 

the hydrolysis of food proteins. Due to the ability of this inhibitor to inhibit trypsin 

from the insect gut, it has received much attention as a target for the coho1 of insect 

pests. Steffens et al.,(1978) reported that when trypsin inhibitor and the weak 

inhibitor of trypsin from corn were fed to larvae of European corn borer larvae at 2- 

5% of diets, SBTI inhibited growth of larvae and delayed the pupation, whereas the 

corn inhibitors have no effect on the growth or metamorphosis of the larvae. 

Soyabean trypsin inhibitor retarded larval growth of Maruca sexta, when added to 

the artificial diet at 5% level (Shukle et al., 1983). Broadway and Duffey (1986) 

tested the effect of purified SBTI and potato inhibitor I1 ( an inhibitor of both trypsin 

and chymotrypsin) on the growth and digestive physiology of larvae of Helicoverpa 

zea. Soyabean trypsin inhibitor significantly affected the growth and digestive 

physiology of H. armigera, when 0.84% (dry weight) incorporated into the artificial 

diet, SBTI significantly reduced the high alkaline trypsin-like enzyme activity by 

18% (Wang et al.. 1996). Potato proteinase inhibitor 1 was most effective in reducing 

growth rate, followed by Soyabean trypsin inhibitor (Manvick et al., 1995). 



Many plant species contain carbohydrate biidng proteins, which are 

commonly called as lectins or agglutinins. Lectins b i d  'rrversibly to the specific 

mono- or oligo saccharides. The first description of a lectin, the Ricin, a toxic 

ferment contained a miniature of toxic rich molecules and non- toxic agglutinins, in 

seeds of Ricinus communis and in some other euphorbiaceae species. For the first 

time the term 'Blutkorperchenagglutinin' (hemagglutinin) was introduced as a 

common name for all the plant proteins that cause clumping of cells (Elfstrand, 

1898). The idea that toxicity is an intrinsic property of lectins was abandoned in the 

beginning of the century and reported the presence of nontoxic lectins in the 

legumes, Phaseolus vulgaris , Pisum sativum, Lem cullinaris and Vicia sativa 

( Lanmdstenier and Raubitschek 1907). Later more non-toxic plant haemagglutinins 

were discovered. The lectins are now defined as all plant proteins possessing atleast 

one non-catalytic domain, which binds reversibly to a specific mono- or 

oligosaccharide (Peumans and Van Damme, 1995). Lectins are found abundantly in 

many plant tissues in storage organs and protective structures of some of the plants. 

They have been isolated from various plant tissues, the seeds being the richest source 

(Etzler, 1986). This is especially true among the members of leguminosae family 

(Strosberg et al., 1986). 

Effect of protein on the normal development of insects was first reported that 

phytohemagglutinin (PHA), in the black bean, Phareolus vulgaris, produced 

deleterious effects on the larvae of bmchid beetle, Callosobruchus maculatu 

(Janzen et al., 1976). 

Murdock et al. (1990) screened seventeen plant lectins and found that at 

dietary levels of 0.2 and 0.1% (wlw) of orange (Maclurapamifea), peanut (Arachis 

hypogea ), potato (Solanum tuberosum), jimson weed (Datura s@amonium) and 

wheat germ (Triticum aestivum) delayed the developmental time of C. maculatus. 

Each of the three germ isolectins showed similar effect against cowpea 

weevil. N-acetylglucosamine binding lectins from m a  sativa and Urtica dioica 
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also showed increased mortality and increased development time when fed to the 

cowpea weevil (Huesing et al., 1991b). Gatehouse et al. (1992) showed that lectins 

from Allium sativum and Galanthus nivallis (snowdrop) affected the survival of 

cowpea weevil larvae. Larvae reared on artificial seeds containkg 2% lectin suffered 

90% mortality compared to the control larvae. Larval mortality was more than 50% 

at I% level of lectin. The bioassys with soyabean lectin inhibited larval growth of M. 

sexta incorporated into an artificial diet at 1% level (Shukle and Mudrock, 1983). 

Biology, nature of damage and management of H. armigera 

H. armigera is a pest of world wide agricultural importance. It feeds on a 

wide range of wild and cultivated host plants. The larvae, particularly the later 

instars, feed on the reproductive parts of the plant. In India, it is a dominant pest on 

cotton, pigeonpea, and chickpea. On pigeonpea and chickpea, it commonly destroys 

more than half of the grain yield. The biological characteristics such as high 

fecundity, extensive polyphagy, strong flying ability and facultative diapause 

contribute to the devastating pest status of H. amigera (Fin, 1989). The ability to 

feed on various plants enables H. armigera populations to develop continuously 

during the entire cropping season (Bhatnagar et a]., 1982). 

The biology of H. armigera is typical of noctuidae. ~ o r ~ h o l o ~ ~  of various 

life stages has been described by Pearson (1958), Jayraj (1982) and Zalucki et al., 

(1986). Distinguishing features have been described by Dominguez Garcia- Tejero 

(1957), Hardwick (1965), King (1994) and Mathews (1999). The legume pod borer 

females lay eggs singly, on the upper surface of the leaves along the midrib, flowers, 

pods and stems. The number of eggs per female ranges from 387 to 1364 on different 

host plants (Dhandapani and Subramaniam, 1980). The eggs are white and nearly 

spherical when freshly laid, and darken with age. Eggs hatch in 2-5 days. Larval 

duration varies from 8 to 28 days (Singh and Singh, 1975), and there are 5 to 7 larval 

instars, which vary with temperature and the host plant. Pupation takes place in soil, 

and the adults emerge in 7 to 10 days. One generation can be completed in just over 

4 weeks under favorable conditions. The number of generations vary according t o  



agroclimatic conditions. It passes through four generations in Punjab (Singh and 

Singh, 1975), seven to eight generations in Andhra Pradesh (Bhatnagar, 1980), and 

five generations in Uttar Pradesh (Tripathi, 1985). 

The lepidopteran borers viz., Helieoverpa armigera. Exelastis atomosa, 

Maruca testualalis and dipteran pod fly, Melanagromyra obhcra have been reported 

as the most damaging at the reproductive phase of the plants (Singh and Singh, 

1978). Insecticides have been an important component of the management strategy 

for pigeonpea pests, especially borers. 

The young larvae of R armigera feed by scraping green tissues and wander 

about nibbling various parts of the plant until they find a flower bud or flower, when 

a bud is hollowed out, leaving an empty shell. In pigeonpea and chickpea, the older 

larvae chew voraciously into the buds, flowers, and pods, leaving characteristic 

round holes. In conon, older larvae feed on the buds and young bolls and habitually 

feed with only the front portion of its body inside the hole thus commonly showing 

an accumulation of larval faces between the surface and the enclosing bracteoles. 

The estimated crop losses due to R armigera vary in different countries viz., 

US $ 600 million in chickpea and pigeonpea per annum in semi-Arid tropics 

(ICRISAT, 1992); AS16 million in 1979 (Alcock and Twine, 1981), A$23.5 million 

(Wilson, 1982), and As25 million annually in Australia (Twine, 1989). In India, crop 

losses in pulses, chickpea and pigeonpea were estimated at over $300 million per 

annum (Reed and Pawar, 1982). 

H, armigera is a pest of major importance in most areas, damaging a wide 

variety of food, fiber, oilseed, fodder and horticultural crops. Its major pest status is 

rooted in its mobility, polyphagy, high reproductive rate, and diapause, all of which 

make it well adapted to exploit transient habitats such as man-made agro - 

ecosystems. The natural control means, chemical or the integrated control methods 

need to be adopted to minimize the losses due to this pest. The key issue of moth 

immigration, and movement in general, is of general relevance to the long-term 

effectiveness of any control strategy aimed to suppress more than one generation. It 
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may have little value if crop infestation is mainly by the immigrant moths of distant 

origin. 

Integrated pest management strategies for Helicoverpo require' integration of 

different control tactics to implement a threshold based on the relationship between 

population density and economic loss. It is often difficult to obtain precise data on 

relationship because many extraneous factors, both environmental and socio- 

econonomic, influence it. Tactics that have been evaluated against Helicoverpa 

include cultural manipulation of crop and its environment, biological control 

including the use of microbial pesticides, sex pheromones for population monitoring 

or mating disruption, sterile backcross techniques, chemical control and host plant 

resistance. 

Evaluation for podborer resistance 

Several workers have reported serious lepidopteran boreres damage on 

determinate clustering and early and medium maturing pigeonpea cultivars (Lateef 

and Reed, 1980; Reddy et al., 1983; Yadava et a[., 1988). Mali and Patil (1993) in 

field screening of some pigeonepa varieties against Pod borers, reported minimum 

percentage of damage due to H. armigera on variety T-21 (8.98), Sehore - 68 

(12.07%) and maximum damage on variety, ICPL-87 (32.77%). 

Mechanisms of resistance 

The mechanism of resistance needs to be understood for any genetic 

enhancement programme. An empirical approach was proposed by Painter 

(1 936,194 1 and 195 1). Painter's proposed mechanism of resistance was grouped 

into three main categories 1) Non-preference is avoidance of insect by plants and is 

often projected as a property of the plant. For this reason Kogan and Ontman (1978) 

proposed to substitute antixenosis for the term 'non-preference'. It is a parallel term 

to 'antibiosis' and conveys the idea that the plant is avoided as a bad host. 2) 

Antibiosis includes all adverse effects exerted by the plant on the insect's biology 

including development, reproduction and survival. 3) Tolerance includes all plant 



responses resulting in the ability to withstand infection and to support insect 

populations that would severely damage susceptible plants. Plant physical characters 

(Southwood, 1986) an.prime factors to be considered for host plant resistance. 

Biochemical (Isoprenoids, acetogenins, aromatic derived from shikmic acid and 

acetate, alkaloids, protease inhibitors and nonprotein aminoacids and glycosides) and 

morphological basis of resistance (thickening of cell walls, rapid proliferation of 

plant tissues, toughness of stem, trichomes effect on feeding and digestion, on 

oviposition, as a mechanical barrier to locomotion, attachment, association with 

allelochemical factors, incrustation of minerals in cuticles, surface waxes and 

anatomical adaptations of organs) were reported . 

Antibiosis 

Antibiosis, one of the three types of mechanisms of resistance proposed by 

Painter (1951) is described as those adverse effects on the insect life history when a 

resistant host plant variety is used as food. The adverse effect on the insect can be in 

the form of reduced fecundity, decreased size, abnormal shortened life andlor 

increased mortality. Antibiotic effect (Dodia el al., 1996) of C, scarabaeoides, 

C. cajanifolius, C. reticulalus, C. sericeus and Fl hybrids of cross, (C. scarabaeoides 

x C. cajan), and the cultivated pigeonpea lines were observed on H. armigera. The 

results of the study clearly showed that the larval and pupal mass fed on wild 

pigeonpea flowers and FI hybrid was significantly lower than those larvae fed on the 

cultivated pigeonpeas. The developmental period of larvae fed on wild pigeonpea 

flowers was longer than those fed on the cultivated pigeonpea flowers. Similarly, 

pupal size of larvae fed on the FIS and the wild species was significantly reduced 

compared to the cultivated pigeonpeas. Growth index and larval fecundity were 

adversely affected for larvae reared on the wild species and Fls. The studies on the 

hybrid progenies of a C, cajan x C. scarabaeoides cross by V e ~ l k a r  el al. (1997) 

suggested that the antibiosis mechanism of resistance was governed by single 

dominant gene. 



Trichomes 

Trichomes are unicellular or pluricellular outgrowths fivm the epidermis of 

leaves, shoots and roots (Uphof, 1962). The collective trichome cover of a plant 

surface is called pubescence. Several authors have attempted to classify the variety 

of plant trichomes (Uphof, 1962 and Hummel and Staesche, 1962). Structure, color, 

growth habit pubescence of plants and chemical composition of plants confer 

resistance against insects. Levin (1973) discussed the ecological functions of 

trichomes as defense against herbivores. 

Plant hairs were reported to be associated with resistance against insects in at 

least 19 plant genera (Webster, 1975). Poos and Smith (1931) reported that potato 

leafhopper (Empoasea fabea) heavily infested and seriously injured the glabrous 

soybeans, whereas the rough hairy varieties were relatively free 6om leafhoppers. 

Genung and Green (1962) reported that growing soyabean varieties, with dense 

hairiness of foliage manifested non-preference to female leafhoppers for oviposition. 

Afzal and Abbas (1943) and Parnell et al. (1949) reported a very close 

relationship between hairiness of cotton and resistance to jassids (Empoasea spp.). 

Without exception, all distinctly hairy types have been found highly resistant and all 

the non-hairy types fully susceptible. Intermediate degrees of hairiness were 

associated with intermediate degrees of resistance (Parnell et al., 1949). They found 

such a relationship between varieties of G. hirsutum and G. barbadense species and 

also in the segregating progenies of the hybrids between the two species, the lack of 

hairiness in the early stages of the growth was associated with the lack of resistance. 

Hairiness and resistance to jassids develop concurrently. Length of hairs was shown 

to be of prime importance and densities without adequate length were ineffective. 

Two pairs of genes, HI and Hz, appear to play a role in the genetic control of 

pubescence of leaves in cotton, G. hirsutum, HI seems to induce lengthy hair and 

density, and is incompletely dominant to hl. The H2 allele seems to induce hairiness 

but to a small degree. It acts additively to HI, giving profusely hairy plants. Effects 

of pubescence on pink bollworm (P. gmsypiella) damage were studied in strains of 
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cotton (G. hirsutum). Damage was lower in TM 1, a densely pubescent strain 

carrying the pilose ailele Hz, than in most other strains tested, but the levels of 

pubescence below that of TM 1 did not ensure resistance (Wilson and Wilson, 1977). 

Pods of mustard (Brmsica hirta) with stiff hairs showed no significant flea 

beetle (Phyllotreta crucifers) damage, while adjacent plots of rapeseed showed 

heavy pod damage. Removal of hairs from mustard pods caused an increase in 

feeding damage by the flea beetle (Lamb, 1980). 

The damage caused by bollworm (H zea) to the glanded and glandless 

version of 12 diverse lines in cotton was compared (Oliver et al., 1970). The data on 

oviposition and damage to squares and bolls by larvae showed significant differences 

between two versions. Glabrous cottons were reported to suppress the population of 

cotton bollworm and tobacco bud worn (H. virescens) by reducing the total number 

of eggs deposited by the adults (Lukefahr et al., 1971, Shaver and Luefahr, 1971 and 

Robinson et al., 1980). However, the glabrous condition causes greater susceptibility 

to thrips (Lee, 1971). 

In tomatoes, a correlation between resistance to spider mites and 

concentration of glandular hairs on the leaves was observed (Stoner et al., 1968). 

Glandular hairs on leaves and stems stuck onto naturally occurring aphids in field 

plants of Solanum polyadnium and had fewest free aphids (Gibson, 1976 a). 

Glandular hairs of this species of potato also provide a form of resistance to larvae of 

Colorado beetle, Leptinotarsa decemlineata (Gibson 1976b). 

Wheat leaf pubescence was reported to confer resistance to cereal leaf beetle, 

Oulema melanopus (Gallun et al., 1966) and to Hessian fly, M.destructor, (Robberts 

et al., 1979). Significant correlation between larval weight of cereal leaf beetle and 

pubescence density in common wheat, Titicum aestivum was observed (Ringlund and 

Everson, 1968). The resistance to oviposition was due to greater hair density and hair 

length in wheat (Webster et al.. 1975). Three dominant genes governed pubescence 

density in Triticum turgidum. The genes might be operating in additive manner to 

determine the length of pubescence (Liesle, 1974). Starks and Merkle (1977) noted 

24 



that the dense and long hairs did not necessarily result in resistance to green bugs 

(Schizaphis graminum) in wheat. 

In cultivated 'tobacco, three major types of trichomes were recognized; 

glandular, simple and hydathodes. Differences for trichome traits among Nicotiana 

species and genotypes of N. tabaccum have long been known (Barrera et al., 1966; 

Delon, 1979). Johnson (1988) reported that analyses of the F2 data for presence and 

absence of the glandular trichomes indicated that some of the genotypes in tobacco 

had alleles at two loci and some others alleles at three loci. Genes at these loci may 

affect glandular trichome density and presence or absence of Glandular trichomes. 

The discovery of erect glandular trichomes, in various Medicago species, 

condition a high level of resistance to several key alfalfa insect pests (Shade, 1979; 

Thompson, 1975; Johnson, 1980a,) has created an interest in the utilization of this 

character to produce alfalfa cultivars with multiple insect resistance. The genetic 

mechanism governing the expression of glandular hair character appears complex 

and polygenic. Observations on interspecific crosses have indicated that expressivity 

of this character is much greater in some crosses than in others. A study was 

conducted to determine the magnitudes of genetic and non genetic variance 

components, an interspecific cross between erect glandular haired, tetraploid 

population of alfalfa, involving Medicago sativa and M, prostrata with adequate 

density of hairs for resistance to several insect pests (Kitch, 1985). Parent offspring 

regression analysis gave an estimate of 0.55 for the narrow sense heritability. The 

phenotypic variance was partitioned into additive (29%), non-additive (16%), 

general environmental (29%), and specific environmental (26%) variances were 

calculated. 

The combining ability and heritability of pubescence and its relationship with 

resistance to potato leaf hopper, Empowca faba , was investigated in the progeny of 

fixed set of clones in two alfalfa (Medicago sativo) populations (Elden, 1986). 

General and specific combining ability effects were highly significant in all crosses. 

Heritability estimates were non-significant for stem and very low (0.28, P<O.05) for 



leaf Pubescence. Significant negative correlation for all crosses and clones were 

found between stem pubescence, and potato leaf hoppers feeding damage and 

nymphal populations. 

In a study, two groups of near-isogenic strains of soybean, Glycine mar, with 

different types of pubescence,) it is reported that glabrous strains were damaged more by 

the Potato leaf hopper than pubescent strains (Broersma et al., 1972). The orientation of 

hairs was more important for resistance to leaf hopper than the density of hairs. Campell 

el al. (1976) working with a large number of peanuts, demonstrated that potato leaf 

hopper resistance was associated with high percentage of long and straight trichomes 

extending outward at a 45 angle. Susceptible lines had appressed trichomes. The major 

plant factor affecting potato leaf hopper nymphal population, on two cultivars of snap 

beans, Phmeolus vulgaris , was density of hooked trichomes (Pillemer and Tigey, 

1978). A negative correlation between trichome density and insect pest abundance and I 

or damage has been observed in a number of crops including cowpea for Maruca 

testulalis (Oghiakhe et al., 1992) and strawbemy for Othiorhychus sulcatur by (Doss et 

a l ,  1987). Chickpea trichomes and exudates have a negative impact on growth, 

development time and swival  and of Helicoverpa armigera larvae (Shrivastava and 

Shrivastava, 1990). 

Presence of trichomes play an important role in resistance against insects. Van der 

Maesen (1986) reported glandular and non-glandular trichomes on vegetative and 

reproductive plant parts of Cajanus spp. Bisen and Sheldrake (1981) reported three types 

of trichomes in C.cajan viz., simple nonglandular, yellow bag like and tubular glandular 

trichomes. Shanower et a[., (1996) reported the presence of five types of trichomes on 

pods of C.cajan and they play a major role in protection against H.armigera. 

Interspecifc hybridization 

Inter-varietal or intra specific crosses are preferred because the hybrids 

possess maximum fitness value. That is, such hybrids are viable and fertile, hence 

favored under both nature and domestication. In contrast, wide crosses or more 

precisely inter-specific and inter-generic hybrids suffer either from non-viability or 
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sterility or from both. As a consequence, the forces of natural selection promptly 

eliminate such distant hybrids of wide crosses. In crop improvement progmmma the 

parents used in the hybridization are generally differed varieties,of the same specics. 

But, in many cases, it may be desirable or even necessary, to crosses individuals 

belonging to two different species or genera. In certain crops, plant breeders in the 

20' century have increasingly used interspecific hybridization for transfer of genes 

from a non-cultivated plant species to a crop variety in a related species. 

The first recorded interspecific hybrid was in 1717 between carnation and 

sweet William by Thomas Fairchild (Allard, 1960). The first man- made cereal, 

"Triticale " was an outcome of intergeneric hybridization. Extensive studies on 

distant hybridization have been made in crops like wheat (Sears, 1972; Sears, 1975) 

barley (Bothmer and Hagberg, 1983), maize (Mangelsdrof, 1974; Harlan and De wet, 

1977), Solanum (Swaminathan and Magoon, 1961; Motskaitis and Vinitskus, 1975), 

cotton (Blank et al., 1972; Meyer, 1973; Meyer, 1974), Nicotiana (Mann el 01.. 

1963; Smith, 1968; Berbec, 1974), tomato (Rick, 1982), and rice (Nayar, 1973). 

Distant hybridization studies have also been carried out in several important 

legumes such as, Phaseolus, Vigna, Vicia, Pisum, Arachis. Species of genus 

Phaseolu~ have been a subject of wide interest. The possibility of gene exchange 

between species had led to several studies on interspecific hybridization, especially 

between P.vulgaris and P.coccineus (Mendel, 1866; Tschermak-Seysenegg, 1942; 

Lamprecht, 1948; Rudrof, 1953; Kedar and Bemis, 1960; Thomas, 1964; Al-yasiri 

and Coyne, 1966; Rutger and Beckman, 1970; Smartt, 1970; Marechal, 1971; Haq et 

a1.,1980; Savova, 1981; Shii et al., 1982 ; Conti, 1983). Hybridization with other 

Phaseolus species including the wild forms has received wide attention (Honma, 

1956; Coyne, 1964; Smam, 1970; Braak and Koistra, 1975; Le Merchand et al., 

1976; Tan Boun Suy, 1979; Hwang, 1979). Interspecific hybridization in phaseolur 

in recent years has ben widely used in the improvement of phaseolus species with 

respect to disease resistance, insect resistance, nitrogen fixation and several 

agronomic characters (Lapinskas, 1980; Alvarez, 1981; Bannerot et 01.. 1981; Zapata 

et al., 1982; Hunter et al., 1982). Wide hybridization has also received a fair degree 



of attention in the genus Glycine. Studies on hybridization between G.max and 

G.soja have been extensive (Karasawa, 1936; T i g ,  1946; Williams, 1948; Tang and 

Chen, 1959; Tang and Tai, 1962; Ahmed et al.. 1977 and 1979; Kiazuma et a/. ,  

1980). 

Interspecific hybridisation in cajanus dates back to 1956 when Deodikar and 

Thakur (1956) made the first cross between C. cajan with C, linearus. The hybrid 

was fairly fertile. Kurnar et al. (1958) extended the earlier work on to hybrid 

cytology and found regular bivalent formation in the hybrid. A hybrid between 

C. cajan and C. scarabeoides was obtained by Roy and De (1967) and expressed the 

doubts about the generic status of Cajanus. Reddy (1973) analysed pachytene 

chromosome pairing in Cajanus cajan, C. lineata, C, scarabaeoides and C. sericeus 

and their hybrids. These pachytene studies in general revealed a high degree of 

chromosome homology between C. cajan and the three species of Wild Cajanus. 

Ariyanayagam and Spence (1978) reported hybrids between C. cajan and 

C. platycarpus while further attempts (Reddy el a/.,  1980; Pundir, 1981) to cross 

Cajanus cajan with C. platycarpa failed. Further attempts in C. cajan and wild 

relatives hybridization by Pundir (1981) involved karyotype comparisions between 

cultivated and wild species and meiotic pairing in the FI hybrids. These studies 

revealed a great degree of karyotypic similarities between species. All the studies on 

Cajanus - wild hybridization revealed a close relationship between the species and 

regular pairing in their hybrids which nevertheless exhibited a fair degree of sterility 

(Table 2). 

Most of the interspecific hybridization work was done at ICRISAT and was 

mostly confined to breeding high protein lines (Reddy el al., 1979) and to a limited 

extent for breeding for insect resistance, dwarfs and isolation of cytoplasmic male 

steriles involving a few wild accessions of Cajanus. Genome relationships between 

wild and cultivated Cajanus species are still obscure. C, cajanifolius, which is 

morphologically very similar to Cajanus except for the seed strophiole, was 

identified as early as 1920 (Van der Maesen, 1980) but an attempt to cross these two 

species was made by Pundir (1981). 



Table 2 : Interspecific hybridization in Cajanus 

Cajanus species Author(s) 

C lineatus Deodikar and Thakur (1 956) 

C. lineatus Kumar et al. (1 958) 

C. scarabaeoides Roy and De (1967) 

C. lineatus, C. scarabaeoides and Reddy et al. (1973) 
C. sericues 

C. platycarpus Ariyanayagam 
and Spence (1978) 

C. albicam,C. sericeus,C. lineatus, Pundir (1981) 
C. scarabaeoides, C. trivervea 

and C. cajanifolius 

C. reticulatus (sub-sp. Reticulata), Dundas (1 984) 
C. pluriflorus and C. acutifolius 

C. sericeus Singh et al. (2000) 

Distant hybridization is mostly aimed at introducing new genetic variability 

or to achieve a new genomic constitution in such a way that the characters of the 

parental species are recombined effectively. These possibilities are directly related to 

the degree of genetic relatedness between the parents. It has been found that, the 

closer the genome relationship between the cultivated and the wild species the 

greater the amount of genetic recombination, and consequently variability. 

Assessment of genome relationships is a first step in the exploitation of wild 

species in the improvement of any cultivated species. The next step is utilization of 

such hybrids in the breeding programme before which it would be essential to study 

the inheritance pattern and also assess the quantum of variability generated. Studies 

on inheritance provide information on the possible number of genes governing a 

character and their interaction. Evaluation of variation in the F2 generation helps in 



understanding the extent of reumb'ition and variability. Genetic shldies provide a 

clear direction to handling of segregating generations. A few studies have been made 

on the genetics of qualitative and quantitative traits .in Pigeonpea (Deshpande and 

Jeswani, 1956; D'Cruz and Deokar, 1970; Munoz and Abrams, 1971; Pandey, 1972; 

Sharma et a/., 1972, Joshi, 1973; Choudhary and Thombre, 1977; Dahiya and Brar, 

1977; Dahiya et al., 1977; Kapur , 1977; Malhotra and Sodhi, 1977; Reddy et al., 

1979). 

Though, today pigeonpea is an unsophisticated tall and is beset with number 

of problems it serves the farmer well, and is not unsuited to the modem agriculture. 

Since 1925, the scientific attention has been paid to improvement of this crop mainly 

in India, where emphasis on improvement is now centered at Indian Council of 

Agricultural Research, the International Crops Research Institute for Semi-arid 

Tropics, and in various agricultural Universities. 

Inheritance of qualitative traits in pigeonpea 

Deshpande and Jeswani (1952) and Deokar and D'Cruz (1971) reported that 

the prostrate growth habit was recessive to normal erect type, and controlled by a 

single gene. However, Patil and D'Cruz (1965) and Shinde el al. (1971) observed the 

F2 ratio of 13 normal: 3 creeping types. Deokar et al. (1971) observed that the growth 

habit was controlled by three genes Cgr,, Cgrb and Cgr, giving a ratio of 45 erect: 9 

creeping: 10 prostrate in the F2generation. 

A number of genetic studies have been reported on plant height and 

branching habit (erect, compact, spreading). Sen et al. (1966) identified bushy dwarf 

pigeonpea phenotypes where the dwarfless was controlled by a recessive gene, d. 

Waldia and Singh (1987b) reported that dwarf phenotype in the Do dwarf line was 

governed by two non - allelic recessive genes tr and t2 Saxena et al. (1989a) studied 

inheritance of three dwarfs D6, PDI, and PBNA and reported that the dwarfing trait 

in each line was controlled by a single recessive gene. Shaw (1931) observed 

dominance of erect growth habit over spreading type. D' C w  and Deokar (1970), 

reported that a single dominant gene, Sbr controlled spreading habit, and the erect 
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types were homozygous recessive. According to De Menezes (1956) branching angle 

is quantitatively inherited. D'Cruz et al., (1971) observed that the branching habit 

was governed by three duplicate complementary factors Sbra, S b ~ 2  and Sbrd, 

giving an F2 ratio of 54 spreading: 10 erect types. 

In general, the trifoliate leaflet of pigeonpea is lanceloate, but some 

morphological variations in the leaflet shape have been reported. The first report of 

inheritance of leaflet shape in pigeonpea was published by Pandey et al. (1954). 

They referred to both obovate and round shaped leaflets and reported a F2 ratio of 3 

lancelolate: 1 rounds leaflets. The monogenic inheritance of lanceolate leaflet shape 

was also confirmed by Patil and D'Cruz (1967), Deokar et al., (1971), D'Cruz and 

JSeokar (1970), and D'Cruz et al., (1971). Deshpande and Jeswani (1956) observed 

segregation ratio of 3:l for lanceolate and 15:l for obcordate leaflets in the F2 

generation of two different crosses. D'Cruz et al. (1971) reported a ratio of 117 

oblong or oval (round) leaflets with obtuse apecies: 75 lanceolate leaflets with acute 

apecies: 64 obcrodate leaflets with retuse apecies in the F2 population of a cross, 

involving obcordate and round leaflet types. D'Cruz et al. (1973) reported 

monogenic inheritance in round x obcordate leaflet types, and assigned the gene 

symbols Iltr and [It. They concluded that three allelic genes Llt, lltr, and [It are 

involved in the inheritance of lanceolate, round, and obcordate leaflet shapes. 

The predominate stem color in pigeonpea germplasm of Indian origin is 

green; while in African germplasm predominant color is purple. In certain cases, 

unstable purple stem pigmentation due to the exposure of stems to direct sunlight is 

observed. Purple stem color was found dominant to green and was found to be 

controlled by a single factor, Pst (D'Cruz and Deokar, 1970; D'Cruz er al. 1971; 

D'Cruz et al. 1974). However, in a cross between cultivars, N. Black x Purple 

grained, Deokar and D'Cruz (1972) reported an FZ ratio of 45 purple: 19 green, and 

suggested that three genes Psta, Pstb, and Pstc. These simply inherited contrasting 

stem colors i.e., have been used as markers to detect the extent of natural out- 

crossing in pigeonpea (Bhatia et al., 1983). 



Some Cajnaus species are characterized by the presence of a prominent 

strophiole on the seed surface. Reddy (1973) reported 9:7 F2 ratio, from a muss 

between C. cujan and Atylosia species, suggesting that the involvement of two genes 

with cokplementary gene action. Reddy el al. (1981a), Kumar et al., (1985) reported 

that in C. scarabaeoides, C. sericeus and C. albicans the presence of strophiole was' 

controlled by two genes (NS and SDI) with inhibitory action. But Pundir and Singh 

(1985) reported that seeds with strophioles in Cajanus spp. are due to the presence of 

two genes (sl and s2) with duplicate gene action. Singh et al. (2000) reported that the 

strophioled character is dominant over the non- strophioled character and is governed 

by a single gene. 

Pundir and Singh (1985) studied inheritance of seed colour in C. 

scarabeoides and C. cajanifolius in crosses with orange seeded pigeonpea lines. 

They reported that a single partially dominant gene, Osc, governed the dark seed 

color of Cajanus spp. Reddy et al. (1981a) and Kumar eta] . ,  (1985) found that seed 

mottling, was controlled by two complementary genes, Msd, and Msdb. 

Pods of C. scarabaeoides have dense hairs on their surface. Reddy (1973) 

and Pundir and Singh (1985) reported that a single dominant gene, designated as Hp, 

governed this trait. Singh et al. (2000) reported F2 segregation of 3 hairy: 1 non-hairy 

in crosses of C. cajan with four accessions of C. sericeus, suggesting that the 

character is expressed by a single gene Ph with complete dominance of hairiness 

over non-hairiness of pods. However, Reddy et al. (1980) observed two phenotypic 

ratios, 3:l and 13: 3 in crosses between C. scarabaeoides and two different 

accessions of pigeonpea. 

The obovate leaflet shape in C. scarabaeoides and C. albicans was found to 

be controlled by a single partially dominant gene (Reddy, 1973, Kumar et al. 1985; 

Pundir and Singh, 1985). Pundir and Singh (1985) designed the gene symbols Lt and 

L2 However, in a cross between C. cajan and C. lineatus, Reddy (1973) reported 

dominance of lanceolate over ovate leaflet shape. Singh et al. (2000) observed that in 

the F1 generation in all the plants of all four crosses of C. cajan with C. sericeus, the 



leaflet shape was observed to be intermediate to both the parents suggesting the 

incomplete dominance. In the Fz generation the individuals segregated in a ratio of 

1 (oblance ovate): 2 (intermediate): 1 (lanceolate) in all the crosses. 

Kumar ef 01. (1985) and Pundir and Singh (1985) reported the twining growth 

habit of C. scarabaeoides and C. albicans, controlled by two genes with epistatic 

gene action resulting in a ratio of 13 non- twining : 3 twining The erect growth habit 

of pigeonpea was dominant to the spreading growth habit of C. scarabaeoides. The 

plants were intermediate between erect and spreading habit and in F2 generation they 

observed a ratio of I erect: 1 spreading: 14 intermediate, suggesting that two genes 

(Egl and Eg2) with partial dominance were responsible for the growth habit. Pundu 

and Singh (1986) studied inheritance for pod length and ovule number in six 

interspecific F2 populations. The interspecific crosses of C. lineatw and 

C. scarabaeoides showed transgressive segregation for pod length, However, in the 

interspecific crosses involving Pigeonpea a restricted segregation was observed 

which was attributed to a negative gene interaction in the two species. 

Singh et a[. (2000) reported that in crosses of C. cajan with C. sericew the F1 

generation of all the crosses the individuals had the seeds of intermediate shape with 

respect to the parents. In F1 generation of these crosses the plants segregated in a 

simple Mendelian ratio of 1 (flat): 2 (intermediate): 1 (round) suggesting that the 

seed shape was controlled by a single gene Ss with incomplete dominance. 

Gene action in quantitative traits 

Besides estimates of genetic parameters, inbreeding depression in pigeonpea, beyond 

the F2 generation, indicates that dominance is not an important genetic variance 

component for yield in this crop. Knowledge of plant characteristics is essential for 

planning an effective breeding programme. This is useful in selection of individuals 

with adaptation to different agro- ecological zones. Measurement of genetic 

variability and understanding of inheritance of characters is of prime importance in 

pigeonpea to formulate a sound crop improvement program. 



Sharma et al. (1972) reported predominance of additive gene action for the 

seed size h m  a 10 - parent diallel study. However, the genes controlling smaller 

seed size were found to be dominant over the genes controlling the larger seeds. 

Gupta et al. (1981) confirmed additive gene action and reported that only two or 

three genes governed the seed size. 

For days to flower Gupta et al., (1981) reported the predominance of additive 

gene effects, while Pandey (1972), Sharma et al., (1973b), and Dahiya and Satija 

(1978) observed additive gene action with partial dominance for earliness. 

Plant height was studied in a nine-parent diallel by Sharma (1981). He 

reported the importance -of both additive and dominance gene effects. Genes 

controlling tall stature were dominant over genes controlling short stature. Only a 

very few studies have been conducted so far on the genetics of wild X cultivated 

crosses in Pigeonpea (Reddy et a[. 1980 ; Pundir, 1981). 

Time of flowering plays an important role when growing season is restricted 

by climatic factors like drought and high temperature. Duration of flowering period 

is a major yield determinate in the indeterminate growth habit of certain pigeonpea 

genotypes. Sharma el at., (1973a), Dahiya and Brar (1977), Dahiya and Satija 

(1978), Gupta et a[. (1981), Reddy et al. (1981b) reported additive gene action for 

days to flower, and non - additive gene action was reported by Reddy er al., (1 981 b). 

Both additive and non-additive gene action for days to flower was reported to be by 

Sidhu and Sandhu (l981), Saxena et al. (1981b) and Chaudhari et a[. (1980). 

Pandey (1972) and Sharma et at. (1972) reported additive gene action for 

days to maturity While Kapur (1977) and Sidhu and Sandhu (1981) reported both 

additive and non-additive gene action. 



Sharma et al. (1973a) and Sharma (1981) reported additive gene action for 

plant height, whereas Pandey (1972) and Reddy et al. (1979) reported non-additive 

gene action for days to maturity. Kapur (1977). Sidhu and Sandhu (1981), Saxena et 

al. (1981b) and Reddy el al. (198lb) reported additive and non-additve gene action. 

Chaudhari et al. (1980) reported additive gene action for number of primary 

and secondary branches. Pandey (1972), Saxena el al. (1981b) and Mohamed er al. 

(1985) reported the additive gene action for number of seeds per pod while 

Venkateshwamlu and Singh (1982) and Kapur (1977) reported both additive and 

non-additive gene action. 

Pandey (1972), Sharma et al. (1973a), Chaudhari el a[., (1980) and Saxena et 

a[. (1981b) reported additive gene action for grain yield. Dahiya and Brar (1977), 

Sidhu and Sandhu (1981) and Laxman Singh and Pandey (1974) reported the non- 

additive gene action for yield and yield components. Reddy et al. (1981b), 

Venkateshwarulu and Singh (1982) and Sidhu and Sandhu (1981) reported of both 

additive and non-additive gene action. 

Pandey (1972) reported additive gene action for protein content. Sharma et 

a/. (1973b) and Sharma et a[. (1974) reported the non-additive gene action for the 

seed protein content. Sharma et al. (1974) reported the predominance of both 

additive and non-additive gene action. 

Heritability 

Heritability is the ratio of genetic variance to the phenotypic variance (Singh, 1977) 

expressed in percent. It is a good index of transmission of characters from parents to 

offspring (Falconer, 1989). The knowledge of heritability helps in predicting the 

behavior of succeeding generations and making desirable selections. It depends on 

the variability present in the material and the environmental effects it. Heritability 

estimates provide guidelines on the efficiency of selection as they refer to the 

proportion of phenotypic variance that is due to genetic variance. A high heritability 

estimate suggests that the character can be easily selected in the test environment. 



The estimate can also be used to calculate the genetic advance under a given 

selection intensity, and hence helps in determining the population size necessary to 

exercise selections. However, the heritability estimate is valid for a given population, 

and the environment in which it was obtained. Therefore, it is difficult to generalize 

heritability estimates from one population to another (Dudley and Moll, 1966). In 

pigeonpea, a number of reports on heritability estimate for various quantitative traits 

have been published. For the sake of convenience, the estimate has been grouped as 

high (>75%), medium (50-75%) and low (<SO%). 

Munoz and Abrams (1971), Khan and Rachie (1972), Rubaihayo and Onim 

(1975), Dahiya and Brar (1977) and Sidhu and Sandhu (1981) reported medjum 

heritability for days to flower and high heritability values were reported by Munoz 

and Abrams (1971), Khan and Rachie (1972), Pandey (1972), Shanna et a1.(1973b) 

and Sidhu and Sandhu (1981) reported low heritability values for days to maturity 

and medium heritability was reported by Dahiya and Satija (1978). Kumar and 

Reddy (1982) Sidhu et al. (1985) reported high heritability. 

Munoz and Abrams (1971). Khan and Rachie (1972), Sidhu and Sandhu (1981) and 

Sharma (1981) reported low heritability for plant height. Medium heritability was 

reported by Pandey (1972), Kumar and Reddy (1982) and Sidhu et al. (1985). High 

heritability values were reported by Munoz and Abrams (1971), Khan and Rachie 

(1972). Sharma et al. (1973a), Rubaihayo and Onim (1975) and Sheriff and 

veeraswamy (1977). 

Kumar and Reddy (1982) reported medium heritability for pod bearing length and 

number of secondary branches. Kumar and Reddy (1982) reported low heritability 

values for number of primary branches. 

Sharma et al, (1973a) and Sidhu and Sandhu (1981) reported low heritability 

values for number of seeds per pod. Kumar and Reddy (1982) reported medium 

heritability. Munoz and Abrams (1971), Khan and Rachie (1972), Shanna et al. 

(1973a), Sharma et al. (1973b) and Rubaihayo and Onim (1975) reported low 

heritability values for grain yield. Medium heritability values were reported by 
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Munoz and Abrams (1971), Pandey (1972), Malhotra and Sodhi (1977) and 

Sidhu et 01.. (1985). Khan and Rachie (1972) and Sharif and Veeraswamy (1977) 

reported high heritability values. 

Sharma et al. (1973b), Sharma et al. (1974), Rubaihayo and Onim (1975) and 

Dahiya et al. (1977) reported the low heritability values for protein content. Pandey 

(1972) and Dahiya et al. (1977) reported medium heritability. 

Heterosis 

Heterosis is the superiority in the performance of hybrid over both the 

parents. Commercial exploitation of heterosis in crop plants is regarded as a major 

breakthrough in the realm of plant breeding. It has lead to considerable yield 

improvement of several cereals and other crops (Rai, 1979). 

Solomon et al. (1957) were the first to report the hybrid vigour in pigeonpea 

in ten inter-varietal crosses. In some crosses they observed hybrid vigow over the 

better parent upto a maximum of 24.5 % for grain yield together with; plant height, 

plant spread, stem girth, number of fruiting branches and leaf length and width. 

Singh, et al. (1983) reported upto 22.1% mid parent heterosis in the cross Mukta 

(medium - duration) x UPAS - 120 (short -duration). Evaluation o f  medium and 

short duration pigeonpea hybrids in multi- locational trials has shown 20 to 49% 

heterosis over the well adapted, control cultivar (Saxena et al. 1986b). 

Generally a high level of hybrid vigour is observed among crosses involving 

parents with diverse phonologies. Hybrids involving different species of Cajanus 

manifest very high vigour for vegetative growth 

Backcross breeding 

In the Backcross, the hybrid and the progenies in the subsequent generations 

are repeatedly backcrossed to one of their parents. As a result, the genotype of 

backcross progeny becomes increasingly similar to that of the parent to which the 

backcrosses are made. At the end of 6-8 backcrosses, the progeny would be almost 
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identical with the parent used for backcrossing. The objective of the backcmss 

method is to improve one or two specific defects of a high yielding variety, which is 

well adapted to the area and has other desirable characteristics. The characters 

lackin; in this variety are transferred to it h r n  a donor parent without changing the 

genotype of this variety, except for the genes being transferred. Thus the end result 

of a backcross programme will well-adapted variety with one or two improved 

characters. 

Back cross method has been used to transfer simply inherited characters, 

mostly insect and disease resistance, from related species into a cultivated species. 

For example, transfer of resistance into wild fire and black fire from Nicotiana 

longflora to N. tobaccum a leaf and stem rust resistance from Triticum timopheevii, 

T, monococcum, Aegilops speltoides and rye (S. cereale) to T. aestivum, of black-arm 

resistance from several Gossypium species to G. hirstutum etc. Interspecfic transfer 

of genes is easy when the chromosomes of the two species pair regularly. But often 

chromosomes of the concerned species are differentiated by structural changes that 

reduce pairing between also transferred along with the desirable gene. Another 

difficulty in interspecific gene transfers is that the transferred gene may not be able 

to function in the same way in the genetic environment of the new species. 

Wild relatives of wheat are a rich source of new genes for resistance to 

various wheat pathogens (Sharma and Gill, 1983; Gale and Miller, 1987; Jauhar, 

1993; Jaing et al., 1994; Friebe et al,, 1996; Hajit-Singh et al., 1998). A number of 

new genes for resistance to various wheat diseases included the three rust viz., leaf 

rust (Puccinia econdita f, sp. Tritici), stripe rust (P. striiformis) and stem rust 

(P. graminis tritici), have been transfered from closely and distantly related wild 

species (Mclntosh, 1998). A number of genes for disease resistance transferred from 

wild relatives of wheat Viz. Lr9, Yr9, Pm8, Lr26 etc. have been overcome by the 

emergence of virulent pathotypes of pathogens when deployed in wheat cultivars. 





MATERIALS AND METHODS 

The present investigation was undertaken mainly to study the following: 

I .  Diversity analysis among the accessions of Cajanur scarabaeoides 

2. The genetic basis podborer resistance and other qualitative and quantitative 

characters; and incorporation of podborer resistance gene(s) through wide 

hybridisation. 

Diversity analysis 

In the present investigation, 30 accessions of C.scarabaeoides, a wild 

relative of pigeonpea, and six cultivated varieties of C.cajnn (Table 3 )  were used. 

Wild accessions were selected from the world germplasm collection available at 

Rajendra S. Paroda GeneBank, at the International Crops Research Institute for 

Semi-Arid Tropics (ICRISAT). Morphological, molecular and biochemical diversity 

analysis, among the accessions, for various characters, including podborer resistance, 

was done. Experiments were conducted in 2000 and 2001 Kharif seasons at 

ICRISAT, situated at an altitude of 545111 above the mean sea level, 17W latitude, 

and 78" E longitudes. 

Morphological diversity analysis 

Thirty accessions, belonging to C.scarabaeoides and six cultivars of C.cajan 

were morphologically characterised (Table 3). Plants were gown in deep black 

vertisols. The experiment was laid in Randomized Complete Block Design (RCBD), 

with three replications. Seeds of each accession were sown on a 4 m long ridge with 

an inter- plant spacing of 10 cm and an inter-row spacing of 60 cm. Normal 

agronomic practices were followed to raise the crop. The crop was occasionally 

irrigated and minimal quantities of insecticides were sprayed to reduce the crop 

damage to capture the maximum diversity. Observations on different qualitative and 

quantitative characters (Table 4) were recorded on five randomly selected plants from 

each accession following the morphological and taxonomical descriptors (ICRISAT, 

1993) during the 2000 and 2001 Kharif seasons. Mean of five observations on five 

plants was used for statistical data analysis. 





Table 4 : Description of qualitative and quantitative characters in pigeonpea 

Estimation of seed protein - (Technicon Auto Analyzer method) 

The protein content of seeds was estimated in the Crop Quality Service 

Laboratory at ICRISAT by adopting the following procedure. The seeds of each 

plant were ground in Udy cyclone grinding mill and passed through 0.4 mm mesh to 

obtain flour. Sixty mg of flour was transferred to a Technicon digestion tube (75 ml) 

and 3 ml of acid mixture, consisting of 5 parts (vlv) of orthophosphoric acid in 100 

parts of sulphuric acid and one kjel tab containing 1.5g K2S04 and 7.5 mg selenium, 

were added to each tube. Each set of 40 tubes, consisting of 36 unknown samples 

under study, 2 standard checks and 2 blanks were included to estimate the protein41 



content. The set was heated to 36UC for 1 h IS min for digestion in a block digestor. 

The digest was cooled and dissolved in 75 ml of water and was mixed thoroughly. 

Aliquotes of sample was transferred into a Technicon sample cup for analysis using 

TAA. Protein content was estimated by multiplying the total nitrogen content, 

obtained by TAA, with a factor 6.25. 

Statistical analysis 

Data on quantitative traits was subjected to preliminary statistical analysis. 

Data was analyzed for RCBD using REML (Residual Maximum Likelihood) 

analysis using random effect model on GENSTAT 6.0, considering season as fixed 

and genotype as random. The components of variance, due to wild and cultivated 

individually and together, and their interactions with environment, were estimated 

for all traits to know whether the genotypes differed or interacted with environment 

as a group or not. Genotype x environment analysis, considering all the genotypes as 

one group, was done and the components of phenotypic variance (6' p), due to 

genotypic variance (6' g), genotype x environment variance (62 ge), and residual ( s ~  

e) and their standard errors were calculated. Heritability (broad sense) was estimated 

from the phenotypic and genotypic components of variance using the formula: 

Heritability (h2) = genotypic variance (ti2 g) I phenotypic variance (fi2 p) 

where 6' p = 6' g + 6' ge 1 n, + 6' el (n, x n,) ; where n, is the number of 

environments I seasons and nr is the number of replications. Assuming asymptotic 

normality, the ratio of the variance component estimate to its standard error was 

compared to standard normal deviate, at 5 and 1 percent levels of significance to test 

the significance of variance component estimates. Data on qualitative characters was 

summarized for the wild and cultivated genotypes. Data on quantitative characters 

was standardized. 

The mean observations for each trait were standardized by subtracting the 

mean value of the character and subsequently dividing by its respective standard 

deviation for each observation. This resulted in the standardised values for each trait 

with an average of 0 and standard deviation of 1. The standardised values were used 

to perform the cluster analysis. Phenotypic relationships, among accessions were 42 



assessed using Euclidean distance (Sneath and Sokal, 1973). Statistical analysis was 

done using NTSYS - PC version 2.11 (Rholf, 1992). The resulting phenotypic 

distance matrix was subjected to non-metric Multi-Dimensional Scaling (MDS) to 

graphically visualize 'any evidence of clustering among the accessions in the two- 

dimensional Euclidean space. The inter-relationships among accessions in MDS plot 

was confirmed by subjecting the distance matrix to sequential agglomerative 

hierarchical non-overlapping (SHAN) cluster analyses using the average linkage 

unweighed pair group arithmetic mean (UPGMA) clustering algorithm. Co-phenetic 

correlation coefficients were estimated to assess the degree of agreement between the 

observed similarity matrix and their resultant dendrogram and MDS plots. 

Molecular diversity analysis 

For molecular characterization, four accessions of C.sericeus and one 

accessions of C. reticulatus were also included in the study along with thirty one 

accessions of C. scarabaeoides and six varieties of pigeonpea and thus in all, 42 

genotypes were included (Table 3) Molecular marker diversity was assessed among 

the wild and cultivated pigeonpeas using AFLP (Amplified Fragment Length 

Polymorphism) with 5 primer combinations, RFLP (Restriction Fragment Length 

Polymorphism) with 9 maize mitochondria1 probe - enzyme combinations and 10 

SSR (Simple Sequence Repeats) primer pairs. 

Isolation and purification of genomic DNA 

In the present study, CTAB procedure (Murray and Thompson, 1980) was 

adopted for isolation of genomic DNA with a few modifications Seeds were grown 

in the green house in 20cm diameter pots with sterilized potting mixture (Alfisol: 

sand; 2: 1). 

About 3 - 5 g of tender leaves were collected and ground to a fine powder 

with liquid nitrogen using a pre-cooled mortar and pestle. About 70 mg of PVP 

(Polyvinyl pyrrolidine) was added during the process to avoid phenol formation. The 

powder, without being allowed to thaw, was transferred to 50 ml polypropylene 

tubes containing 15 ml of CTAB extraction buffer (100 mM Tris-HCI pH 8.0, 50 

mM EDTA pH 8.0, 100 mM NaCl and 2% SDS), mixed gently by inversion, and43 



incubated for 90 min at 6 5 ' ~  in a water bath. An equal volume (15 ml) of 

chloroform-isoamyl alcohol (24:l) was added to the tubes containing sample and 

buffer. They were mixed by gentle inversion for 5 min and centrifuged at 8000 rpm 

for 10 min at 2 0 ' ~  in RC-5 Sorval centrifuge. The top aqueous phase was transferred 

to fresh 50 ml polypropylene tubes. Chloroform- isoamyl (24:l viv) alcohol 

extraction was repeated, and later, an equal volume of chilled isopropanol was added 

to the clear supernatant. The solution was mixed gently by inversion and kept at 

room temperature for lh. The DNA was then spooled out with a bent pasteur pipette 

and suspended into 15 ml falcon tubes containing 70 O/O ethanol, washed twice with 5 

ml of 70% ethanol and air dried. Four ml of TsoElo (50 mM Tris-HCI pH 8.0 and 10 

mM EDTA pH 8.0) buffer was added and DNA was allowed to dissolve. 

Subsequently, 8 0 ~ 1  of RNase (10 mgi ml) was added and incubated overnight at 

3 7Oc. 

For purification of extracted DNA, an equal volume (4 ml) of chloroform- 

phenol (I:  I) was added, mixed gently by inversion, and centrifuged at 5000 rpm for 

10 min. The clear supernatant was transferred to a fresh tube and the previous step 

was repeated. An equal volume (4 ml) of chilled isopropanol and 200 ml of sodium 

acetate was added to the supernatant, mixed gently by inversion and DNA was 

allowed to precipitate. The DNA was hooked into 1.5 ml eppendorfs containing I ml 

of 70 % ethanol. The eppendorfs were centrifuged at 10,000 rpm for 5min at 4 °C  

ethanol was decanted and the DNA was air-dried for 30min. Depending upon the 

pellet, 80-300 p1 of TI&, (10 mM Tris-HCI and 1 mM EDTA pH 8.0), was added 

and the tubes were stored at 4 ' ~  for further use. 

Qualitative and quantitative estimation of DNA 

To test the quality of DNA, the OD values were recorded at 260 and 280nm 

and the ratio of OD260 to OD280 was calculated to check the purity of each DNA 

sample. Pure DNA preparations show the values of ratio OD260 to ODzsO between 1.7 

and 1.8 (Maniatis et al., 1982). Further, to test the quality of DNA, samples were 

also subjected to gel electrophoresis, using 0.8% TAE-agarose gel as described by 

Maniatis et al. (1982). Gels were stained with ethidium bromide and viewed on a 

UV-transillumninator, photographed with a camera fitted with W filter and checked 
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for RNA contamination. DNA quality was assessed by comparing with different 

concentrations of undigested lambda DNA sample. DNA was quantified based on 

the ~~ectrophotometer measurements of W absorption at 260 nm, assuming 1 OD at 

260 nm is equal to 50 ng of DNA (Maniatis et al., 1982). 

Molecular diversity analysis using AFLP 

AFLP analysis of the wild and cultivated pigeonpeas (Table 3) was carried 

out using the commercial kit (Life Technologies, USA) following the manufacturer's 

protocols with slight modifications. Five AFLP primer combinations viz., E - ACG 

M-Cm, E- ACG M-CAT, E- ACG M CTA, E-ACT M-CTC and E- AGG M-CAC, 

were used for the analysis. DNA samples were diluted to 80 nglpl. 

The AFLP technique involved five major steps: (a) restriction digestion of 

DNA by restriction endonucleases, (b) ligation of fragments by adapters, (c) PCR 

pre-amplification of the restriction fragments, (d) selective amplification of pre- 

amplified products, and e) gel analysis of the amplified fragments. 

Restriction digestion of genomic DNA 

About 250 ng of genomic DNA was digested with 1.5 units each of EcoRl 

and Mse 1, 2 . 5 ~ 1  of 10X reaction buffer was added and made upto a final volume of 

12.5p1 with distilled water in 1.5 ml micro-centrifuge tubes. The contents were 

mixed gently by centrifugation and incubated at 37'C for 2 h. The mixture was 

further incubated at 7 0 ' ~  for 15 min to inactivate the restriction endonucleases. The 

tube was then placed on ice and the contents were collected after brief centrifugation. 

Ligation of digested DNA 

To 5 ml of digested DNA, 4 p1 of adapter ligation solution and 1p1 of Tq 

DNA ligase were added, mixed gently by brief centrifugation, and incubated at 20°C 

for 2 h. 



Pre-amplijieaion of restricted DNA jragments 

Ten folds diluted the ligated sample. To 2p1 of ligated diluted DNA sample, 

which was used as the template in a PCR reaction, 1 6 ~ 1  of pre-amplification primer 

mix, 2p1 of 10 x PCR buffer, 1 unit (0.2~1) of Taq DNA polymerase (~mersham, 

Pharmacia, U.K), were added along with distilled water to make up the volume to 

20p1. The contents were mixed gently and samples were pre-amplified in a Perkin- 

Elmer 9600 Thennocycler with the following conditions: 30 cycles were performed 

at 94 "C for 30 sec followed by 30 cycles at 56 OC for 60 sec and finally for 30 cycles 

at 72 "C for 60 sec. The pre-amplified samples were diluted by 50 times with TE 

buffer. 

Selective amplification of pre-amplified products 

In a 50p1 reaction, 5 p1 of 10 X buffer, 16p1 of [y32 P] dATP (3,000 Ciimmol) 

and 2pl of T4 PNK were added to 18pl of the selected ECoRI primer (E-ACG or E- 

ACT or E-AGG), mixed gently by brief centrifugation and incubated at 37 "C for l 

h. The enzyme was heat inactivated at 70 'C for 10 min. AFLP ladder was labelled 

by mixing 2p1 of 30-300bp unlabelled AFLP ladder, IpI of 5 x exchange buffer, 1p1 

of [ y ' 2 ~ ]  dATP (3,000 Ciimmol) with 1p1 of Tq PNK in a total reaction mixture of 

5p1. The reaction mixture was incubated at 37 'C for 30 min. Reaction was 

terminated by incubating the mix for 15 min at 70 "C. To this, 5 pl of TI& and 25 p1 

of loading buffer (19% formamide, 10 mM EDTA, 0.1% bromophenol blue and 0.1 

O/O xylene cyanolene cyanol) were added and stored at -20°C for further use. 

For each primer, selective amplification was performed by adding 2 .5~1  of 

the diluted pre-amplified DNA, 0 .25~1 of the labelled ECoRI primer, 2 .25~1  of Mse I 

primer containing dNTPs, 4pl of sterile distilled water, 1 p1 of 10X PCR buffer and 1 

unit of Taq DNA polymerase. The PCR conditions for selective amplification of 

DNA were as follows: one cycle was performed at 94 "C for 30sec, 65 OC for 30 sec, 

and 72 OC for 60 sec; during the next 12 cycles the annealing temperature was 

progressively lowered by 0.7 OC; and 23 cycles were performed at 94 'C for 30 sec, 

56 OC for 30 sec and 72 "C for 60 sec. 



Gel electrophoresis 

AAer PCR, an equal volume (IOpl) of formamide dye (19% formamide, 10 

mM EDTA, 0.1% bromophenol blue and 0.1 Oh xylene cyanolene cyanol) was added 

to each reaction. The samples were heated for 3 min at 95 OC and placed on ice 

immediately. The fragments were separated using model S2 sequencing unit 

(GIBCO BRL). Six percent polyacrylamide was poured (20:l: acrylamide : bis; 7.5 

M urea; 1 X TBE buffer) into gel plates with 0.4 mm spacers and shark-tooth combs. 

The gel was pre-electrophoresed at 1500 V for 20 min. A sample of 3p1 was loaded 

on the gel and electrophoresed at 1700 V until xylene cyanol reached two-thirds 

down the length of the gel. The gel was dried using a Bio-Rad gel drier. The gel was 

transferred to Whatman 3 filter paper, covered with Saran wrap and dried under 

vacuum for I h at 80 OC. Autoradiograms were obtained by exposing the gel for 

varying periods in a cassette with intensifying screen using Kodak-X-OMAT film. 

Fragment sizes were determined using end labelled AFLP marker (30-300 bp; Life 

technologies, USA). The autoradiogram was manually scored for the presence and 

absence of bands for each locus for all the accessions. The dried gel was exposed to 

X-ray film at room temperature overnight and developed. 

RFLP analysis using maize mitochondria1 DNA probes 

RFLP analysis of wild and cultivated pigeonpeas (Table - 3) was carried out 

to study the diversity among them. The RFLP technique involved five major steps, a) 

restriction endonuclease digestion of DNA, b) separation of DNA fragments by gel 

electrophoresis, c) transfer of DNA fragments to a nylon membrane, d) hybridisation 

of DNA fragments using radioactively labelled probe, and e) autoradiography 

analysis of results. 

Restriction enzyme digestion 

Genomic DNA (1 5pg) of each accession was separately digested with EcoR1, 

EcoRV and Hind 111 restriction endonucleases following the supplier's instructions 

(Amersham Pharmacia Biotech, Ltd.). The digestion was carried out in a total 

volume of 30 p1 and incubated overnight at 3 7 ' ~ .  The reaction was terminated by 

addition of 3 p1 of loading buffer (25% sucrose, 0.1% bromophenol blue and 20 mM 47 



EDTA) to each 30 pl sample. Digestion was contimed by running the samples on 

0.8% agarose gel in TAE buffer and viewing on a W trans - illuminator after 

staining with ethidium bromide. 

Gel electrophoresis 

Fragments of digested DNA were separated by electrophoresis in 0.8% TAE- 

agarose in a horizontal slab gel (Bio-Rad DNA Sub cellT") electrophoretic unit (Owl 

Separation Systems Model N0.A-I) for 16 h at 38 V cm.' in TAE buffer (0.04 M 

Tris-acetate. 0.001 M EDTA, pH 7.8). Gels were prepared in the same buffer that 

was used for electrophoresis. Hind 111 digested lambda DNA was used as molecular 

size markers with fragment sizes of23.1 kb, 9.4 kb, 6.6 kb, 4.4 kb, 2.3 kb and 2.0 kb. 

Gels were stained in 0.5 pg ml-' of ethidium bromide for 15 min, destained for 30 

min in distilled water, viewed on a UV trans-illuminator and photographed to assess 

the digestion quality. 

Preparation ofsoutlrern blots 

The electrophoretically separated DNA fragments were transferred from 

agarose gel to a Hybond - N+ nylon membrane (Amersham Pharmacia Biotech, 

Ltd.) following the procedure of Southern (1975). The gel and membrane were 

placed on a sponge which was partially dipped in an alkali solution of 0.4 M NaOH 

to serve as a denaturing agent and vehicle for a capillary transfer of DNA fragments. 

As the alkali solution passes through the gel, DNA fragments are carried out of the 

gel and bound to the nylon membrane. The membranes with DNA fragments were 

soaked in 2x SSC for 2 min to neutralize the alkali, air dried and cross linked using 

Strtagene W cross linker (Stratagene, Germany), wrapped with cling film and 

stored at - 2 0 ' ~  for future use. 

Hybridisafion of DNA fragments using labelled probes 

Maize clones, containing known mitochondria1 (mt) DNA genes, were 

obtained for use as probes in Southern blot hybridizations. The atp 6 clone (FIFO 

ATPase subunit 6 ,  Dewey et a/., 1985), as purified plasmid DNA with corresponding 

inserts, was supplied by C.S Leveings 111, Department of Genetics, North Carolina 
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State University, Raleigh. NC, USA. Clones, cox I (Cytochrome Oxidase Subunit 1; 

lssac et al., 1985), and atp a (Issac et al., 1985) were provided by C.J.Leaver, 

Department of Plant Science, University of Oxford, Oxford, U.K. 

The random-primed method of Feinberg and Vogelstein (1983) was used for 

labelling DNA with u-'~P. A purified insert DNA sample of 4 p1 was denatured by 

heating at 9 5 ' ~  for 10 min, then quenched on ice for 5 min and labelled using a- 3 2 ~  

- deoxyadenosine 5 triphosphate (dATP), supplied by the New England Labs, 

labelling kit. The probe was labelled in 50p1 reaction mixture containing about 25- 

50ng of denatured probe DNA, 1 x labelling buffer, 2 ml equimolar concentrations of 

dCTP, dGTP and dTTP and 1.5 units of klenow enzyme. The reaction mixture was 

incubated at 37 'C for 1 h. The reaction was again terminated by adding 400p1 of 

200mM EDTA. The labelled probe was again denatured by heating at 9 5 ' ~  for 10 

min. Lambda Hind 111 marker was also labelled similarly and added to the reaction 

mixture prior to hybridization. 

Southern blots were pre-hybridized, overnight at 65-G with 30 rnl of pre- 

hybridization solution (7% SDS, 1% BSA, 0.5 M Na2HPOd and 20 mgl ml sheared 

and denatured salmon sperm DNA) per hvo blots (20 x 15 cm) in standard 

hybridization bottles (30 x 3.5 cm) for 6 h in case of new blots and 1 h for stripped 

blots in a Techne Hybridizer (HB-ID). While placing the blots in the bottle, care was 

taken to remove all air bubbles trapped between the blots and the sides of the bottle. 

Hybridization was carried out by adding labelled probe to the pre- 

hybridisation solution and incubating for 16 h at 6 5 ' ~  in hybridization oven (Hybaid, 

U.K). Care was taken to remove air bubbles present between the blot and the 

hybridization bottle. Following hybridization, the blots were washed four times with 

of 50 ml each of I2p-wash solution for 15 min at 65 'C in hybridization bottles in 

hybridization oven. The first two washes were done using wash 1 solution (100 ml 

20 x SSC, 25 ml 20 % SDS and diluted to a volume of 1 liter with distilled water) 

followed by two washes with wash 2 solution (10 ml of 20x SSC, 25 ml of 20 % 

SDS and diluted to a volume of 1 L with distilled water). Blots were dried between 

sheets of tissue, enclosed in saran wrap in cling films. 



Autoradiography 

Autorad~ography was conducted at -70 'C by exposlng the membrane to 

photograph~c film (Kodak, x-OMAT"~ and XK-5) uslng Kodak ~ntenslfylng screens 

In a cassette for var~ous exposure tlmes dependtng on rad~oactlv~ty counts The X-ray 

films were developed wtth Kodak developer for 2 mm followed by treatment for 1 

mln in 1% acetic acid, fixed w~th Kodak fixer for 5 mln, washed ~n running tap water 

and then alr dr~ed The autorad~ograms were photographed uslng Kodak 100 ASA 

color pnnt films The fragment slzes were determined uslng lambda Hlnd 111 

standard marker 

S~mple  Sequence Repeat (SSR) analys~s 

Ten sets of SSR pnmers (Table - 5 ) ,  suppl~ed by Un~vers~ty of Brlmlngahm, 

were used for genotyplng the w~ld and cultlvated plgeonpeas (Table - 3) The 

analysis lnvolved two steps (a) PCR ampl~ficatron and slte spec~fic annealtng of 

genomlc segments flanked by repeats and (b) gel electrophores~s 

Table 5: SSR prlrner sets In genotyplng of w~ld and cultlvated plgeonpeas 

No 
Locus Composltton of 

repeats (SSRs) 
Denaturing 

temp 

Fragment size 
In ICPL 
860 12 

No of alleles ln 
&verse set In 
C cqan 

Slze range of 
alleles In &verse 

set 



PCR amplifiaiwn 

PCR reactions were carried out in a PTC-100 Thermocycler (MI Re-h 

tnc, USA.). Each 25p1 reaction contained 25 ng of genomic DNA, 1 X PCR buffer 

(50& KCI, 20mM Tris-HCI pH 8.4)), 10 pmol of each primer, 2mM MgC12,200 

pM each of dCTP, dGTP, dTTP, dATP and 1 pCi of [ a - 3 2 ~ ] - d A ~ ~  and 1 unit of Taq 

DNA polymerase (Amersham Pharmacia, UK) using the following PCR programme 

at 94 OC for 5 min, denaturation at 94'C for 1 min and the annealing temperature at 

50 OC or 55 "C depending on the Primer set used (Table - 5) for 50 sec, extension was 

carried out at 72 T for 50 sec and final extension at 72 OC for 5 min, in all 30 cycles 

were carried out. 

Electrophoresis 

PCR products were electrophoresed on a denaturing polyacrylamide gel (6% 

acrylamide, 7.5 M urea, 1 X TBE) at 1500 V for 2 h. The gel was transferred to 

Whatman 3 filter paper, covered with saran wrap and dried under vacuum for 1 h at 

80°C. Autoradiograms were obtained by exposing the gel for varying periods in a 

cassette with intensifying screen using Kodak-X-OMAT film. Fragment sizes were 

determined using end labelled AFLP marker (30-300bp; Life Technologies, USA). 

The autoradiogram was manually scored for the presence or absence of the band for 

each locus for all the accessions. 

Statistical analysis 

For each accession, polymorphism was scored as 1 for the presence and 0 for 

absence of a band and data were analyzed using NTSYS-PC version 1.70 (Rohlf, 

1992). Allele sharing or the proportion of alleles, Ps (Bowcock, 1994) shared 

between two of the accessions screened, averaged over the loci, was used as a 

measure of similarity for all marker types, This corresponds to the simple matching 

coefficient (Sokal, 1958) for the dominant marker (AFLP) and the Dice indices or 

Nei and Li coefficient (Nei and Li, 1979) for co-dominant markers (RFLP and SSR). 

The genetic distance between individuals (u,v) was calculated as duv = (1 -Puv) 

resulting in N x N matrix D={duv). The distance matrix, D, was subjected to 
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sequential agglomerative hierarchical cluster analysis (SHAN), based on the 

similarity matrices, using unweighted pair group method arithmetic average 

(UPGMA) and relationship between accessions were visualized as dendrograms 

(Rohlf , 1992). Differences between dendrograms were .tested by generating 

cophenetic values for each dendrogram and the assembly of the cophenetic matrix for 

each marker type. The mantel correspondence test was used to compare the similarity 

matrices, to define the degree of congruence in the estimation of genetic relationships 

for each marker type. 

Arithmetic mean heterorygosity, Eflective Multiplex ratio, and Marker Index 

The efficiency for polymorphism detection was analyzed for each marker type 

using different indices. Expected heterozygosity for each of the genetic marker was 

calculated from the square of sum of the allele frequencies (Nei, 1973). The 

Arthimetic mean heterozygosity was calculated for each marker class (AFLP, RFLP 

and SSR). Gene diversity (Hj or Hav), also termed as the polymorphism information 

content, and expected heterozygosity were calculated as 

Hav = z ( l - ~ ~ i ~ ) / n ,  

where (1-zpi2) is the expected heterozygosity, was estimated for each individual 

locus as follows: j =l ... n (Nei ,1973 and 1987), Hj= p/(N-I)] to account for the 

effect of sampling from a finite population. Nei (Nei and Li, 1973) derived Hj, is the 

estimated probability that the two members of a population, chosen at random without 

replacement, differ in their allelic composition. As evident from the equation, gene 

diversity Hj at a locus j depends on the number of detected alleles aj, their frequencies 

Pij and the sample size N, the average gene diversity (Hij) was estimated as, 

n 
Hav = l-zpi2 , 

i= 1 

Where, P is the frequency of the ith allele of each marker (Nei and Li, 1973) and n is 

the number of alleles. Anderson et al., (1993) suggested that the gene diversity is the 

same as the polymorphism information content (PIC). The Marker Index can be 

calculated according to Powell (1996), as MI=EMRMav (P). The Effective Multiplex 
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ratio (EMR-) is the number of polymorphic loci in the germplasm and 

P ( 14l(n, + b)) is the polymorphic fraction. 

A Principal Co-ordinate Analysis (PCoA) was carried out on the distance 

matrix and the (D) to visualize the genetic interrelationships among the accessions in 

two-dimensional PcoA plots, with resultant scores for samples on the first two 

components plotted pairwise in each case. Multidimensional scaling (MDS) plots 

were constructed on the Distance Matrix, D, and the stress values have been 

calculated. 

Biochemical estimation 

In the present study, total content of protein, trypsin inhibitors, and the 

lectins of pods, of the wild and cultivated pigeonpeas (Table 3). at different 

developmental stages viz, juvenile or the milk stage, immature and the mature stages, 

were estimated. 

About lg  of pod, along with seeds at three developmental stages was ground 

separately in 8 ml of 0.0025 M HCI. The ground paste was transferred to 25 ml 

centrifuge tubes for centrifugation at 10,000 rpm for 10 min. The supernatant was 

collected in 1.5 ml eppendorff tubes and was used for the estimation of total protein, 

trypsin inhibitors and lectins. 

Protein Estimation 

Protein content in the pods of the wild and cultivated pigeonpeas was 

estimated using Lowry's (1977) method. The following solutions were required for 

the protein estimation 

1. Solution A - 2 % Sodium carbonate, was dissolved in 200 ml of 0.1M NaOH. 

2. Solution B - 5% Copper sulphate. 

3. Solution C - 1 % Potassium sodium tartarate. 

4. Solution D - 192 ml of solution A + 4 ml of solution B + 4 ml of solution C. 



5. Solution E - Follin Ciocalten Reagent with a dilution of 1:1 (15 ml of distilled 

water + 15 ml Foflins reagent). 

A total of 300pl of sample was prepared. Two dilutions, one with 2 7 5 ~ 1  of 

distilled water and 2 5 ~ 1  of the supernatant and the other with 250p1 of distilled water 

and 50pl of the supematant, were prepared. To both the dilutions, 2.5 ml of solution 

D and 2 5 0 ~ 1  of solution E were added. The ingredients were incubated at room 

temperature f ~ r  30 min and protein was estimated at 600nm. Bovine Serum Albumin 

(BSA) was used as the standard at a concentration of 2 mgl ml. Protein content in 

each sample was calculated using the following formula. 

For dilution 1 - 

0 .D  value of the sample x 8.192 = protein in mg 

For dilution 2 - 

0.D value of the sample x 4.816 =protein in mg 

Estimation of trypsin inhibitor (s) 

The supernatant used for protein estimation was also used for estimating the 

content of trypsin inhibitor. Trypsin inhibitor content was estimated using BAPNA 

((N-a-Benzoyl-DL-Arginine P-Nitroanilidine Hydrochloride - C19H22N604. HCI) 

(Erlanger er al., 1961). Following method was used in estimating the trypsin 

inhibitor. The solutions to be used in the estimation should be prepared afresh before 

the experiment the following . Reagents are used in the estimation of trysin 

inhibitors. 

BAPNA (Sigma Ltd,):- This solution is a chromogenic trypsin substrate and 

dissolves only in Dimethyl Sulphoxide (DMSO) at room temperature. In 2 ml of the 

DMSO, 60 mg of BAPNA was dissolved. The resulting solution was mixed in 20 ml 

of Tris HC1 buffer pH 8.0 and 4 ml of 1 M CaC12 . The total volume was made upto 

200 ml with sterile distilled water. 

Trypsin Solution : -Five grams of m s i n  (Amersham Life Sciences; source - 

Bovine pancreas crystalline powder : 2,739 units/ mg powder to be stored at -20°C) 
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powder was dissolved in 100 ml of 0.0025M HCI (500p1 of HCI in 100 ml of 

distilled water) and stored at 4 ' ~ .  

Ac& Acid : Acetic acid, 15 ml, was mixed in 35 ml of distilled water. 

For the trypsin inhibitor activity, 1:l dilution of the supernatant (100~1 of 

supernatant with 100p1 of sterile distilled water) was used. Diluted sample, IOpl, was 

dissolved in 990p1 of sterile distilled water. Two sets of the sample, with and without 

trypsin were prepared. In each accession, a set of three samples each from juvenile, 

immature and mature pods were included. In the first set with trypsin, 400pl of 

trypsin solution was added and the second without trypsin, only 400pl of distilled 

water was added. The samples were incubated at room temperature for 15 m?. 

Later, 1.5 ml of BAPNA solution was added to above samples and incubated at 37 'C 

for 30 min. AAer incubation, 300p1 of 30 % acetic acid were added to the tubes and 

optical density was measured at 4 10 nm. One standard each for the samples with and 

without trypsin were maintained. To 1 ml of distilled water without any sample, 1.5 

ml of the BAPNA and 300 p1 of the 30 % acetic acid were added. To the standard 

with trypsin, 400 p1 of the trypsin solution and to the other standard without trypsin 

400 p1 of distilled water were added. 

Trypsin inhibitor activity was calculated with the following formula and the 

activity was expressed in the units of inhibition per mg protein. 

% trypsin inhibited = 

0.D value of sample with trypsin - 0.D value of the sample without trypsin 
............................................................................................ X 100 

1.038 

No. of trypsin units inhibited = % trypsin inhibited x 0 . 0166 

Estimation of lectin by haernagglutination 

Lectin activity was calculated in the wild and cultivated pigeonpeas (Table - 
3). For measurement of haemagluttinating activity, rabbit red blood cells were used. 

Rabbit blood was collected in an equal volume of Alsever solution (20.5 g glucose + 
0.80g Na-citrate + 0.42g NaCl in 100 ml distilled water and adjusted to pH 7.2 with 
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10% citin: acid ), containing 2 drop of heparin15 rnl Alsever. Cells were wllcoted 

by centrihgation ( 1500 rpm for I5 min), washed 5 times with saline buffer pH 6.5 

(100 mg of azide and 4.5 g of NaCl were dissolved in 500 ml of sterile distilled 

water) to give 4% ( vlv) suipension. The lectin samples were serially diluted in a 

microtiter plate with equal volumes of saline, pH 6.5, to give a final volume of 0.025 

ml. To each dilution 0.05 ml of the rabbit erythocytes suspension was added. After 2 

hh, the end point of the titration was estimated visually as the lowest dilution, which 

showed the agglutination (titer). The lctin content is expressed in the form if specific 

haemagglutination units (HAU) and is calculated as , 

Specific Haemagglutination units (HAU) = 
(agglutinat-ion titer 1 protein content) x dilution factor 

Trichome density 

Trichomes generally play an important role in plant-insect interactions 

(JefFree, 1986; David and Easwarmoorthy, 1988; Smith, 1989; Peter et al., 1995). 

Therefore, the study was conducted to identify different types of trichomes and their 

distribution in cultivated pigeonpeas and C.scarabaeoides accessions. A minimum 

of 10 pods was collected from each accession, in all the three replications in both 

the seasons. The pods were preserved in a fixative (Acetic acid: absolute alcohol:: 

1:3) and examined under the light microscope at a magnification of lOOx with an 

ocular measuring grid to identify different types of trichomes and also their 

distribution. Because of obvious differences in density among trichome types, they 

were counted in an area of 4.84 mm2 (A, B and D) and in 1.21 mm2 (Type C). 

Calculations for density of trichomes were based on the mean values of 10 pods in 

each accession, in 3 replications and two seasons. The pods were scanned under the 

Scanning Electron Microscope (SEM) using the methodology described by Reddy et 

al.. (1995). Electron Micrographs were taken with a JEOL ISM 35 CF. 

Screening for podborer resistance 

Pigeonpea cultivars and C. scarabaeoides accessions (Table 3). were 

screened for podborer resistance in field under multi-choice conditions during the 

2000 and 2001 kharif seasons. Eleven plants of each accession w e n  grown at a space 
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of 30 c m  in the plots of 10 mws, spaced 75 cm apart on black vertisols. Thc material 

was classified into three groups based on the days to flowering (early = 50 - 75, 

medium = 76 - 100 and late = 101-125 days). The plants wen raised in thm 

replications, in each experiment, in a RCBD. Appropriate susceptible (ICP 8863) and 

resistant (ICPL 332) genotypes were included as controls 1 checks in the screening. 

Plant protection measures, such as spraying of insecticides, were not taken so as to 

capture the maximum damage ratings. 

The data was recorded for number of eggs and larvae per inflorescence and 

the percentage of buds, flowers and pods damaged on five random plants in each 

row. Two inflorescences, 30 - 40 cm long, per plant at flowering stage, were tagged, 

and observations were recorded on the marked areas. Data were recorded on 5'. 7'. 

1 I ~ ,  21' and 31st day after tagging the inflorescences. 

Interspecific hybridization 

Five accessions of C. scarobaeoides (ICPW 94, ICPW 116, ICPW 125, 

ICPW 130 and ICPW 141) and two cultivated varieties of C.cajan (ICP 26 and ICP 

28) were used in the study. The wild accessions were selected based on their 

resistance levels against Helicoverpa armigera (Sharma et al., 2001). The two 

cultivated varieties, are the popular high-yielding varieties grown all over India . 

The study was carried out at ICRISAT, Patanchem during 2000, 2001 and 

2002 Kharif seasons. Seeds were sown in the field (Alfisol) manually at a spacing of 

60 cm and at an interrow distance of 75 cm. Mechanical support was provided to the 

wild creeping types. As the seeds of wild C. scarabaeoides accessions possess a hard 

seed coat, the seeds were scarified with a scalpel to remove the seed coat opposite to 

the coleoptiles to enable it to germinate. Irrigation was provided at regular intervals 

and endosulphan was sprayed to check insect damage. Crop was covered with nylon 

nets to avoid any cross pollination and pest damage. 

For interspecifc hybridization, manual emasculation and pollination was 

done. In C. cajan, flower opening begins in the morning at about 7 AM with the 

anthesis continuing until late in the afternoon. 'Ibe flowers remain open for 20 - 24 h 

and the anthem dehisce before flower opening. The accessions of C.scarabaeoide~~~ 



have similar floral biology except that they have delayed flower opening. For 

hybridization, buds of the appropriate size wen opened with the help of forceps and 

the anthers were removed without injuring the stigma. The forceps was dipped in 

spirit after each emasculation and immediate pollination. Pollinated flowers were' 

tagged to differentiate h m  the unpollinated ones. In the interspecific hybridization 

studies, ten crosses each in the direct (C.cajan as female and C.scarabaeoides as 

male) and reciprocal (C.scarabaeo~des as female and C.cajan as male) crosses w e n  

made. 

At maturity, pods were harvested from individual plants separately and their 

identity maintained. The FI seed from each cross were scarified and sown in Alfisol 

field in a single row covered by nylon cages, with an interplant spacing of 75cm to 

obtain the progeny. FI seeds of their reciprocals were avoided, as very less seed was 

available from each cross. Duriig the time of flowering, selfed plants could be 

visually identified and were removed from the field. 

Hybrid seed of individual FI plants from each of the seven crosses (ICP 28 x 

ICPW 94, ICP 28 x ICPW 125, ICP 28 xICPW 130, ICP 28 x ICPW 141, ICP 26 

xICPW 94, ICP 26 x ICPW 125 and ICP 26 x ICPW 130) were sown, in fifteen 

rows, after scarification. Seeds of other three crosses and reciprocals were not sown 

because of shortage of hybrid seed. One row of parents were also sown along with 

each F2 population under the cover of nylon cages. Appropriate plant protection 

measures were taken by providing irrigation and weeding at regular intervals. Seed 

was harvested from each individual F2 plant and stored separately. 

The Fj seeds of three crosses (ICP 28 X ICPW 94, ICP 28 X ICPW 130 and 

ICP 26 X ICPW 125) were sown in the field to raise F3 generation. Twenty seeds 

from each F2 family were sown and the crop was covered with nylon nets. Seeds of 

individual plant were harvested separately in each cross. 

Pollen fertility 

Pollen fertility was tested with 1% acetocarmine stain. All shriveled, 

unstained, and poorly stained pollen were counted as sterile. Three microscopic 

fields per flower of five flowers per plant were observed for pollen fertility.58 



Observations for pollen fertility were made on all the plants in both the p m t s  

(C.scarabaeoides and C.cajan) , FI and F2 generations. 

Screening for podborer resistance 

Plants were screened for podborer resistance under multi- choice conditions 

in the field, following the method of Sharma et a/. (2001). The crop was maintained 

without any insecticidal spray during the screening period and the plants were 

exposed to natural infestation. Two inflorescences per plant were tagged and 

observations were recorded on 5" , 7", 11" , 21' and 31" day of tagging for the 

number of buds, flowers and pods damaged ; and the number of eggs and larvae on 

each inflorescence. This screening was done on plants of each of the FI, Fz, Fj and 

backcross progenies before carrying it to the next generation. 

Production of backcross progenies 

After screening, the FI plants showing resistance against podborer was 

selected for further crossing work. Only three crosses (ICP 28 x ICPW 94, ICP 28 x 

ICPW 130, and ICP 26 x ICPW 125) were selected for the production of backcross 

generations. The plot was maintained in insecticide free conditions during the first 

few days of screening. After screening the plants were covered with nylon nets and 

2% endosulfan was sprayed to protect the plants from insect damage. Screening was 

done during the first week of September and continued for over a month's time. 

Resistant FI plants were used as male in backcrossing and C cajan as the female 

parent. At the time of harvest, the seed from each BCI plant was harvested separately 

and stored for further use. 

BCI seeds of three crosses were sown at an interplant distance of 60cm and 

at an inter row spacing of 75 cm, as the plants were spreading in habit. 

BC, plants in all three crosses were screened for podborer resistance and 15 resistant 

plants were chosen for further backcrossing. The BC2 seed from each individual 

plant was harvested and stored separately for further use. 

BC2 seeds were sown in three rows with an interplant distance of 60 cm and 

the inter-row distance of 75 cm. The BC2 plants were screened for podborer 
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resistance and the resistant plants were used as male and the C.cajan were used as 

the female parents in the backcrossing program. BC, seed was collected from each 

individual plant separately and stored for further use. 

Genetic basis of qualitative and quantitative characters 

Qualitative characters 

Data was recorded on parents, F, and F2 plants in all seven crosses for the 

following qualitative characters: Plant habit (erect, semi-spreading and spreading), 

leaflet shape (lanceolate, intermediate and obovate), stem color (purple, mixed and 

green), seed strophiole (presence or absence), seed mottles (presence or absence) and 

pod hair (glabrous or pubescent) (Table 4). Plants were classified into above distinct 

categories and 2 test was used to test the goodness of fit of the observed ratio. 

Quantitative traits 

Inheritance of quantitative traits was studied in two different experiments; (a) 

in 2001 kharif, the F2 plants along with parents and Fls were evaluated for all the 

characters (Table - 4) in all the seven crosses (ICP 28 x ICPW 94, ICP 28 x ICPW 

125, ICP 28 x ICPW 130, ICP 28 x ICPW 141, ICP 26 x ICPW 94, ICP 26 x ICPW 

125 and ICP 26 x ICPW 130). Heterosis, broad sense heritability and inbreeding 

depression were calculated for all the characters in all the seven crosses. and (b) in 

2002 kharif season, the parents, FI, F2, Fj and BCI (C.cajan x FI ) plants were 

evaluated for all the characters (Table 4) and the data was subjected to Cavalli's 

scaling test. The five- parameter generation mean analysis was used to study the 

gene effects. This analysis was done for three crosses (ICP 28 x ICPW 94, ICP 28 x 

ICPW 130 and ICP 26 x ICPW 125). For the other four crosses data was recorded till 

F2 generation and means and variances were reported for different characters. 

Inheritance of trichorne type and density 

Data on type and density of hichomes were ncorded for two crosses (ICP 28 

x ICPW 94 and ICP 26 x ICPW 125). Five podg from ten plants each of the four 

parents (ICP 28 and ICP 26; ICPW 94 and ICWP 129,  ten plants each of their Fls 

and 250 plants of F2 and 75 plants of BCl progeny were evaluated for the type and60 



density of trichomes. The pods w e n  observed under a light microscope with a 

magnification of 100 x and also scanned under a JEOL JSM 35 CF Scanning 

electron microscope (SEM) and electron micrographs were also taken Trichome 

density was estimated using light microscope with an oculai measuring grid. 

Because of the differences in the density among trichome types, trichomes were 

counted on an area of 4.84mmz (Types A, B and D) or 1.21 mm2 (Type C). For data 

analysis, means of five pods per plant at three microscopic fields were used. The x2 
test was used to test the goodness of fit of the observed ratio (high density of 

trichomes : low density of trichomes ) of segregation in the F2 and BCIFI 

generations. 

Genetic basis of mechanisms of resistance against podborer 

Mechanisms of resistance against podborer was recorded as antixenosis and 

antibiosis. The antixenosis mechanism was studied in the field under multi- choice 

conditions while the antibiosis was studied in the laboratory under no- choice 

condition. 

Antirenosis or Non-preference mechanism of resistance 

The parents (PI and P2), FI, F2 and the BCI ( C. cajan x FI)  hybrids of three 

crosses (ICP 28 x ICPW 94, ICP 28 x ICPW 130 and ICP 26 x ICWP 125) were 

screened in the field for podborer resistance under multi-choice conditions in 2001 

Kharif season. Plants were exposed to multi-choice conditions and were allowed 

natural infestation by pests. The plot was divided into 4 m long rows with an inter 

plant distance of 30 - 40 cm and an inter - row spacing of 75cm inveiw of the semi- 

spreading nature of the plants. One row each of the parents (C.scarabaeoides ICPW 

94, ICPW 130, ICPW 125 and C.cajan; ICP 26 and ICP 28), their F ~ s ,  20 rows of the 

F1 population of each cross and 5 rows of BCI (C.cajan x FI)  were grown. During 

the Kharif 2002, 125 F, families in cross ICP 28 x ICPW 94, 116 families in cross 

ICP 28 x ICPW 130 and 109 families in cross ICP 26 X ICPW 125 were screened. 



For screening of plants against podborer, two inflorescences, of 25 - 30 cm in 

length per plant were tagged with plastic ribbons. Observations were recorded on 5". 

7*, 1 I*, 214 and the 3Is'day of tagging. All plants in a single cross (Parents, FI and 

F2) were tagged on the same day and thus the plants in three crosses were tagged on 

three consecutive days. Observations on total number of buds, flowers, and pods 

present and the number of buds, flowers, and pods infected by podborer per 

inflorescence were recorded. Data on number of eggs and larvae present in each 

inflorescence were also recorded. 

Data analysis 

Average damage caused by insets to buds, flowers and pods on the s*, 7h, 

1 lth, 21" and the 31" day, from the day of tagging, was used for analysis. The 

average was expressed as the percentage of buds, flowers, and pods damaged and 

average number of eggs and larvae present per inflorescence per plant. Based on the 

percent damage of buds, flowers and pods, the damage rating was given. Rating was 

given a scale of 1 - 5 with 1 as no damage to the pods, 2 as < = 10 % damage . 3 as 

< = 20 % damage with minimum of two egg masses and one larvae, 4 as c = 30 % 

damage with more than three egg masses and two larvae and 5 as > 40 % damage 

with more than five egg masses and five larvae . 

The plants in each generation was classified into resistant and susceptible 

categories according to the percentage damage. Plants with damage rating between 1 

and 2 were grouped into resistant types and those with damage rating from 3 to 5 

were grouped into the susceptible types. X2 test was used to test the goodness of fit of 

the observed ratio of segregation for the antixenosis mechanism in the F2 and BCIFl 

population in all the three crosses. The results were further confirmed by comparing 

with the data on F, families following the same approach. 

Antibiosis mechanism of resistance 

Pods obtained from the progeny of only one cross (ICP 28 X ICPW 94) were 

screened in the laboratory against podborer to study the antibiosk,mechanism of 

resistance. pods from 20 plants each of the two parents (C. scarabaeoides and62 



C. cajan), 10 plants of FI, 250 plants of F2 and 70 plants of BCI population w e n  

collected in polythene bags in the morning and screened for podborer resistance in 

the insect tearing laboratory of ICRISAT. 

To culture the H. armigera in the laboratory, 75 g of chickpea flour, 12 g 

yeast, 1.175 g L-ascorbic acid, 1.25 g of methyl -4-hydroxylbenzoate, 0.75 g of 

sorbic acid and 2.875 g of aureomycin and were mixed in 1 ml of formaldehyde, 2.5 

ml of commercially available vitamin stock solution and 112.5 ml of water were 

added to it and mixed thoroughly. To this, 4.375 g of agar in 200 ml of water was 

added and mixed thoroughly to obtain media with even consistency. This diet was 

then poured into small plastic cups and allowed to cool in a laminar flow cabinet. 

Neonate larvae were reared individually at 27'C under photoperiod of 12:12 (L:D) h. 

The larvae and adults of H armigera used in the feeding tests and oviposition 

experiments, were obtained from the laboratory culture maintained at ICRISAT, 

Patanchem, India. The culture was established and maintained by providing with 

field-collected larvae at regular intervals. Larvae were reared on chickpea diet at 

2 2 C  (Armes et al., 1992). Adults were kept at 25'C in a cage and mappylinous were 

provided as a substrate for oviposition. The moths were provided 10% honey 

solution on absorbent cotton for oviposition. 

In the present study the pods were screened under no - choice conditions, 

where in each the third instar larvae was given no other option but to feed on the pod 

provided to it. Moistened filter paper was kept in alcohol-cleaned petridishes. The 

third instar larvae were released into the petridish containing only five pods from 

single plant. These petridishes were covered with lids containing moistened filter 

paper. The petriplate was tightened with a rubber band, as a precautionary measure, 

to prevent the larvae from escaping out of the petriplate. The filter papers were 

moistened at regular intervals to provide enough moisture to the larvae for their 

survival. Three replications, each with five pods per plant were screened. 



Weights of larvae were noted down before their release into the petridishes. 

Gain or loss in the larval weights was recorded. Observation of the pods after 72 h 

under a magnifier gave the damage rating of the pods. Damage rating of pods was 

scored on a scale of 1-9. Ratings were given after observation under magnifier so 

that the minute details of the damage could be captured without fail. The damage 

rating was given based on the mortality and loss or gain of weights and also pod 

damage by the insects. Pods without any damage and caused the death of insects 

were given a rating of 1 but on the other hand the insects gained weight by eating 

pods and did not cause the death of insects were given the damage rating of 9; and 

the others were given rating from 2 to 8 depending on the proportionate damage 

caused to the pods. The plants with pods in the damage rating of 1-4 were clustered 

as the resistant types, while those falling under 5 - 9 were categorized as the 

susceptible types. The J analysis was used to test the goodness of fit of the observed 

ratio of resistant : susceptible to the expected ratio of segregation for the damage 

rating in the F2 population and backcross generations. 

Statistical methods 

Data on the various aspects of interspecific hybrids was analysed using 

different statistical methods. The hybrid vigour among Fls was calculated in the 

form of mid-parent and better- parent heterosis. The inbreeding depression was 

calculated from data on FI and F2 generation. Heritability and genetic advance were 

calculated from the variances of the parents, FI hybrids and F2 generation in each 

cross. The components of variance (d, h, I, j and i) were calculated. 

Generation mean analysis 

Generation mean analysis was used to estimate the components of genetic 

variation. Testing of epistasis was necessary before estimating the components of 

genetic variation to decide the method of analysis for components of variation. 

Components of genetic variation were estimated for days to flower and mahuity, leaf 

length and width, pod length and width, pod bearing length, number of locules and 



seeds Per ~ o 4  loo-seed weight, number of primary and secondary branches and 

harvest index. 

Sealing test 

The test of adequacy of scales is important because in most of the cases the 

estimation of additive and dominance components of variance is by assuming the 

absence of gene interaction. Cavalli (1952) and proposed the following tests for 

estimating the scale effects: 

The variances were calculated using the following formula: 

When the scale is adequate, the values of A, B, C and D should be zero 

within the limits of their respective standard errors. However, in the present study the 

B scales could not be estimated because of the absence of the backcross progeny 

with the other parent. 

Five parameter model: 

This model was proposed by Hayman (1958) and is used in the absecse of 

backcross progenies (BCI and BCz) and instead when F, is available. Analysis is 

based on five populations viz., PI,  P2, FI, FZ and FI generations of a single cross. 

Five parameters, m, d, h, i and 1 were estimated. 'Ihis model does not provide 

information about additive x dominance type of epistasis and requires three crop 

seasons for generation of material and the fourth season for evaluation. 



The gene effects are estimated as follows: 

The variances of these estimates were calculated as below: 

V, = VFl, 

vd = (%) (VPl+ vP2) ; 

Vh = (1136) (16VFl + 144VF2 + 256VF3) 

V, - VPI + VF2 + ('A) (VPI + VP2 + Vh) + (1116) V1 

Vl= (119) (256 VF3 + 576 VF2 + 64VFl); 

Their standard errors are estimated as follows: 

S.E.m =(V,)"; S.E. d=(Vd)"; S.E. h = ( V h ) " ; s . ~  ,=(v, )" ;  S.E I=(VI)" 

In this model the parameters were estimated with increased precision and it 

also provides XZ test for the model. 

Test of significance 

The significance of the above parameters is tested with the help o f t  value. 

The t value was calculated for each component by dividing the value of gene effect 

of respective components by their S.E. The calculated value o f t  was compared with 

1.96, which is the table value o f t  at 5% level of significance. If the calculated value 

is greater than 1.96, it is considered as significant. 

Heritability 

Heritability (h2) for 13 quantitative traits along with trichome density was 

estimated using the formula of Falconer (1 989). 

Genotypic variance VF2 - VE ((VPI + VPI + VFI))/3 
h2b, = ---....-.--------------- X 100 = ------ -------------------------- ---- X 100 

Phenotypic variance VF2 
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VE, VPI, VP2. VFI, and VFz arc the variance of environment, variance of 

parent one , variance of parent two, variance of Fl and variance of F2 nsp t ive ly .  

VE was provided by the variate in the non-sewgating generation, PI,  P2 and FI. 

The variation in F2 consists of both environment and genetic variance. 

Heterosis 

The performance of hybrid in relation to its parents can be expressed in two 

ways; Mid parent heterosis (average heterosis) is the performance of a hybrid 

compared to the average performance of both of its two parents. Better parent 

heterosis (heterobeltiosis) is the comparison of the performance of the hybrid with 

that of better parent. Heterosis is usually expressed as percentage and computed by 

using the formula of Fehr (1987). 

Mean of F I - Mean of parents 
Mid parent heterosis (%) = ---- - ...................................... x 100 

Mean of parents 

Mean of F I - mean of better parent 
Better parent heterosis (%) = ........................................ X 100 

Mean of better parent 

Inbreeding depression 

The inbreeding depression refers to decrease in fitness and vigow due to 

inbreeding was calculated using the following formula given by Phundan Singh and 

Narayanan (1997). 

Mean of FI - Mean of Fl 
Inbreeding depression (%) = ............................... x 100 

Mean of Fl 

The significance of heterosis and inbreeding depression was tested with the 

help of critical difference (CD). The general formula for estimation of CD = SE 

difference x t value at 5% or 1% level. Mean error variance from combined analysis 

of variance of parents, Fls and FIS is used for calculating the SE of difference. 

Chi - square ( X 2 )  analysis 

Chi- square test (%') to fmd the goodness of fit was calculated as per the 
formula given by Panse and Sukhatme (1967). 
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(Observed frequencies - Expected frequencies) 
X 2  = 2 ---- ------ 

Expected fkquencies 

Calculated Chi- square values were compared with the table values given by 

Fischer and Yates (1963). 

Test of significance of means 

Test of significance of means is a procedure for distinguishing whether the 

observed difference corresponds to any real difference among the genotypes or can 

be ascribed to mere sampling fluctuations. In the present study, t test was used to 

test the significance of differences for the quantitative characters studied between the 

means of both the parents used in the crossing program using the formula of Kapur 

and Saxena (1969). 

I Mean of PI - mean of PZ I 
t = ------------------------------------------------------.*-------.------------- 

Standard deviation of the population 4 (I / nl + n2) 

Where nl and n:! are the sizes of the samples for parent I and 2 respectively. 

S, and S2 are the standard deviations for parent 1 and 2 respectively. 

Correlation coefficient 

Changes in one variable may be accompanied by changes in the other, 

indicating the relationship between the two variables. Correlation coefficient (r) is 

the measure of direction and degree of closeness of the linear relationship between 

two variables. Simple correlation coefficients among different characters were 

calculated using the formula suggested by Panse and Sukhatme (1967). 

Cornlation coefficient (r) = ---------------- ----- 
e x .  cry 

Z f. dx. dy 
aXy = ------------- - 

N 



oX Y = The co variance between X and Y 

oX = standard deviation of X 

o Y  = standard deviation of Y 

dx and dy =deviations. 

Significance of correlarion coeJj'icient 

r is the estimate obtained from n pairs and compared to standard 't' value at 

5% and 1% level of significance (Snedecor and Cochran,1968). 





In the present investigation; morphological, molecular and biochemical 

diversity analysis, among 30 accessions of C. scarabaeoides and six varieties of C. 

cajan (Table 3), for various characters (Table 4), including podborer resistance has 

been done (Fig 1). Further, the study includes the incorporation of podborer 

resistance gene(s) from the wild accessions of C. scarabaeoides to cultivated 

C. cajan through backcrossing programme, and inorder to investigate the genetic 

basis of various characters by raising F1, F2, FI and backcross generations. 

Diversity analysis 

Morphological diversity analysis 

Morphological diversity analysis, among 30 different accessions of C. 

scarabaeoides and six varieties of pigeonpea (Table 3) for 14 traits (Table 4) 

including density of trichomes on pods, was done in 2000 and 2001 Kharif seasons. 

Season was found to be significant for days to flower, pod width and number of 

locules per pod. Significant differences were found for days to flower and maturity, 

leaf area, leaf dry weight, specific leaf area, pod length and width, number of locules 

per pod, number of seeds per pod, 100 seed weight and number of secondary 

branches for habit (the wild and cultivated pigeonpea). Interaction between season 

and the accessions/varieties was significant for days to flower and leaf area. 

Interaction between season and wild accessions was significant for days to flower, 

leaf dry weight and 100 - seed weight. The interaction of season and cultivated 

pigeonpeas was significant for days to maturity and leaf area (Table 6). Genotype 

was found significant for days to flower, leaf dry weight, specific leaf area, pod 

length, number of locules per pod, number of seeds per pod, 100- seed weight , 

number of secondary branches and total seed protein (Table 7). Genotype x season 

interaction was significant for leaf area, leaf dry weight, pod length and width. Habit 



Table - 6: Significance ofdifferences between seasons,habits and their interaction in Cajanus 
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x wild interaction was significant for leaf dry weight and pod width (Table 7). Habit 

x cultivated interaction was significant for days to flower and maturity, leaf dry 

weight, leaf specific area, pod width, number of locules and seeds per pod and 100- 

seed weight. Heritability was high for all the traits studied, ranging from 70.00 to 

97.75 % except for number of primary branches (Table 7). 

Days to flower 

Among the C, scarabaeoides accessions, lCPW 98 was the earliest to flower 

in 50.5 days and ICPW 308 was the last to flower in 104.6 days (Table 11). Among 

the C. cajan genotypes, ICP 26 was the earliest to flower in 52.3 days and the 

genotype ICP 14722 took maximum of 71.8 days to flower. As a group, on an 

average C, scarabaeoides flowered in 75.7 days while C. cajan in 63.7 days, with an 

overall mean of 73.15 days (Table 8). 

Days to maturity 

Among the C. scarabaeoides accessions, ICPW 86 was the earliest to mature 

in 85.83 days. However, this accession flowered later (54.01 days) than the earliest 

flowering ICPW 98. The accession, 1CP.W 147 took maximum of 156.7 days to 

mature. The mean number of days for maturity of wild accession was 11 8 (Table 

l I). Among the cultivated, ICP 14770 matured earliest in 93 days compared to 106.1 

days of ICP 8863, with a group mean of 99.5 days and with an overall mean of 113.7 

days (Table 8). 

Leaf area 

Leaves of different C, scarabaeoides genotypes were comparatively smaller 

than those of C. cajan. Among the C. scarabaeoides accessions, the leaf area ranged 

from 17.36 mm2 in ICPW 302 to 42.1 1 mm2 in ICPW 101, with a group mean of 

32.55 mm2, whereas, among the C. cajan genotypes the leaves were smallest in ICP 

28 with an area of 32.95 mm2 and that of ICP 14722 were the largest with an area of 



Table - 8: Mean of different quantitative t n i b  in C.scarabacoidrs and C,cajan 



50.83 mm2. The mean leaf area of C. cajan group was 41.38 nun2 and the overall 

mean was 34.01 mm2(~able  8). 

Leaf dry weight 

Among the C. scarabaeoides accessions, ICPW 83 had a leaf dry weight of 

0.10 g and ICPW 90, with highest dry weight of 0.28 g, with a group mean of 0.20 g 

whereas, in C. cajan genotypes it ranged from 0.19 g (ICP 8518) to 0.32 g (ICP 26) 

with a group mean of 0.25 g and with an overall mean leaf dry weight of 0.21 g 

(Table 8) 

Specific leaf area 

Specific leaf area was greater in the wild accessions compared to C. cajan 

genotypes. Among the C. scarabaeoides accessions it ranged from 133.1 1 mm2 1 g in 

ICPW 94 to 193.13 mm2 I g in ICPW 138 with a group mean of 161.52 nun2 1 g. 

Among the C. cajan genotypes it ranged between 144.21 mm2 I g in ICP 8863 to 

194.62 in ICP 14722 with a group mean of 168.9 nun2 1 g and with an overall mean 

of 162.70 mm2 1 g (Table 8). 

Pod length 

Pods of C. cajan genotypes were longer than the wild types. Among the C. 

scarabaeoides accessions, pods of ICPW 315 were the shortest with a mean length 

of 1.91 cm whereas, those of ICPW 130 were the longest with a length of 2.64 cm 

and a group mean of 2.42 cm . Among the C. cajan genotypes, ICP 14770 with a pod 

length of 4.67 cm had the shortest pods and ICP 8863 with a mean length of 5.62 cm 

had the longest pods. The C. cajan group mean pod length was 5.24 cm, with an 

overall mean length of 2.89 cm (Table 8). 



Pod width 

C. scarabaeoides accessions and C. cajan varieties had comparable pod 

width. ICPW 310 had the least pod width of 0.53 cm, whereas it was the maximum 

of 0.75 cm in ICPW 138, with a group mean of 0.65 cm . Among the C. cajan 

genotypes it ranged from 0.58 cm in ICP 14770 to 0.79 cm in ICP 28 with a group 

mean of 0.69 cm and with an overall mean of 0.66 cm (Table 8). 

Number of locules per pod 

Among the C. scarabaeoides accessions, the number of locules was least in 

lCPW 86 and ICPW 310 (3.9 locules), whereas the highest number of 5.9 locules 

was in ICPW 132,while among C. cajan genotypes the number of locules ranged 

from 4.5 in ICP 14722 to 5.6 in ICP 8863. The C. scarabaeoides group mean (4.99 

locules) was slightly higher than the C. cajan group mean (4.82 locules). Overall 

mean for this trait was 4.98 locules 1 pod (Table 8). 

Number of seeds per pod 

ICPW 86 had the least number of seeds per pod (3.9) compared to the 

highest number (5.7) in ICPW 95 among the wild types, with a group mean of 4.9 

seeds per pod. Among the cultivated, ICP 28 had the least number of 3.9 seeds per 

pod and ICP 8863 had a maximum of 4.9 seeds , with a group mean of 4.6 seeds per 

pod. The overall mean was 4.8 seeds per pod (Table 8). 

100 - seed weight 

C, cajan genotypes had larger and heavier seeds (12.35 g) compared to C. 

scarabaeoides seeds (2.27 g )  . Among the C. scarabaeoides accessions the 100 - 
seed weight ranged from 1.52g in ICPW 305 to 3.450 in ICPW 138 and among the 

C. cajan genotypes it was from 10.45g in ICP 8518 to 14.60g in ICP 14722. The 

overall mean of 100 - seed weight was 3.950 (Table 8) 



Number of primary branches 

Among the C. scarabaeoides accessions, ICPW 90 had the least number of 

priisry branches (8.2) compared to the highest number 17.6 in ICPW 147 with a 

group mean of 11 branches. Among the C. cujan genotypes the mean number of 

primary branches ranged from 6.1 in ICP 26 to 11.9 in ICP 14770 with a group mean 

of 9.2 and with an overall mean of 10.7 branches (Table 8). 

Number of secondary branches 

Secondary branches were more in C. scarabaeoides accessions compared to 

the cultivated. Among the wild types, ICPW 111 had the least number of 8.4 

branches compared to the maximum number of 41 branches in ICPW 116. The C. 

scarabaeoides group mean was 21.7 branches. Among the C. cajan genotypes the 

mean number of secondary branches ranged from 2.8 in ICP 14722 to 8.9 in ICP 

8863. The C. cajan group mean was 5.0, with an overall mean of 18.9 branches 

(Table 8). 

Seed protein 

Compared to the cultivated genotypes, the wild accessions had higher content 

of seed protein. Among the wild, ICPW 152 had the least protein content of 21.54 % 

compared to the highest content of 29.58 % in ICPW 96, with a group mean of 25.71 

%. Among the C cajan genotypes the protein content ranged from 19.71 % in ICP 

8518 to 23.84 % in ICP 28 with a group mean of 21.34 % and with an overall mean 

protein content of 24.98 % (Table 8). 

Interrelationships among accessions for morphological traits 

The MDS clustering (Fig 3) of 42 accessions based on combined data of all 

the 13 traits revealed that the wild and cultivated accessions belong to different 



Fig. 2 UPGMA dendrograrn of 36 genotypes for morphological and 
agronomic characters. List of accessions is given in Table 3. 



Fig. 3 MDS plot for of genotypes for various morphological and agronomic 
characters (r = 0.98). List of accessions is given in Table 3 



clusters. Under the major cluster of wild the accessions of Indian, Sri Lankan and 

Australian origin formed different subclusters. The accessions belonging to 

Phillipines and Myanmar, were grouped into another single sub cluster under the 

major wild cluster. Whereas, the cultivated genotypes formed only single cluster 

different from the wild accessions. The UPGMA grouping (Fig 2 )  of the combined 

data revealed hierarchical nature of the accessions for different characters. The 

grouping pattern observed in MDS (Fig 3)  and UPGMA exhibited similar clustering 

and s u b  clustering of the accessions. 

Molecular diversity analysis 

Molecular diversity among the wild and cultivated pigeonpeas was studied 

using RFLP, AFLP and SSR markers. 

RFLP analysis with maize mitochondrial DNA probes 

The three maize mitochondrial DNA probes (atp 6, atp a and cox I) in three 

restriction enzyme (EcoR I, EcoRV and Hind 111 ) combinations hybridized to 42 

accessions, representing three wild species (C. scarabaeoides, C.sericeus and 

C.reticulates) and one cultivated pigeonpea, C. cajan . A high level of polymorphism 

was detected among various accessions by 9 enzymes - probe combinations (Table 

9). Representative hybridization patterns are shown in (Fig 4 a, band c). 

The EcoR1- atp 6 combination generated a maximum number of 14 

hybridization bands ranging from 2.1 to 23.1 Kb. The ECOR V - cox 1 combination 

was least polymorphic yielding only 5 bands ranging in size from 2 to 11.2 kb 

respectively (Table 9). With high levels of polymorphisms detected, the different 

enzyme - probe combinations were able to uniquely fingerprint (distinguish) all the 

42 accessions, except EcoR V - atp a and EcoR V - cox 1 which could not 

distinguish the accessions of C. reticulatus From C. sericeus. Number of unique 

banding patterns 1 haplotypes ranged from 8 in EcoR V - atp a to 10 in Hind 111 - 



Fig. 4: RFLP Southern blot, of wild C, scarabaeoides accessions and 

cultivated pigeonpea varieties, obtained using maize mt DNA probes 

a) Eco RI - atp a b) Eco RI - atp a 

M is the marker Hind 111 h DNA 

The accessions in the gel from L to R are listed in Table - 3. 
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Fig. 4. RFLP Southern blot, of wild C. scarabaeoides accessions and 

cultivated pigeonpea varieties, obtained using maize mt DNA probes 

c) Eco RI - atp 6 d) Eco RI - atp 6 e) Hind 111 - atp 6 

M is the marker Hind 111 h DNA 

The accessions in the gel from L to R are listed in Table - 3. 
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Table - 9: Polymorphism and range of band sizes in Cajanus spp. with maize mt probes 

Enzyme - 
Probe 
combination - 
ECoRl-arp6 
Hind 111 -alp6 
ECoRV - atp6 

Table - 10: RFLP Banding pattern in species of Cajanw 

ECoR1-alp a 
Hind 111 -a tpa  
ECoRV - alp a 

No. of 
bands 

14 
10 
6 

sericew and I shared between Cscarabaeoides and 

13 
10 
8 

Enzyme - 
combination 
ECoR1-atp6 
Hind 111 - afp 6 
ECoRV - atp6 

I l l !  

ECoR1-cox 1 / 7 1 1 / 1 1 2 / I I ( I  shared between C,scaraboeoides and Cseriew; 2 / 

No. of 
polymorphic 

bands 
14 
9 
5 

13 
10 
7 

C.sc 

7 
6 
3 

Diversity 
index 
0.88 
0.89 
0.84 

Hind 11 1 -cox I 
ECoRV - cox I 

0.82 
0.87 
0.82 

C,se 

2 
1 
1 

I I shared beween Cscarabaeo,des and C cajan ) 
S 2 I 0 ' ? 1 9 )(none s h a d  between species) 

7 

2 I 0 2 5 (none shared bemen species) 

Effective 
Multiplex 

Ratio 
14.00 
8.10 
4.17 

Csc = C.~caraboeoides: C.se = C.sericeus: C.re = C.reticulafus: C.ca = C. caian 

13.00 
10.00 
6.13 

C.re 

1 
1 
0 

Marker 
Index 

12.32 
7.21 
3.50 

Size fib) 
of bands 

2.1 to23.1 
2.0 to 9.2 
3.0 to 14.8 

10.66 
8.70 
5.03 

C.ca 

3 
2 
2 

2.0 to 15.8 
7.7 to 14.4 
2.11011.2 

No. of unique patterns across species 

13 (2 shared between C.scarobaeoides and C.cajan) 
I0 (none shared between the species ) 
6 (none shared between the species) 

1 



arp 6 combination (Table 10). More hybridizing restriction fragments were revealed 

in C. scarabaeoides accessions than C, cajan. 

EcoR V - atp 6 and EcoR V - atp a were the only two combinations in which 

none of the 6 and 8 patterns generated respectively were shared between any of the 

genotypes (Table 10). 

The effective multiplex ratio ranged from 5.00 in EcoR V- cox 1 to 14.00 in 

EcoR 1 - atp 6 combination with an average value of 12.33 k 5.56. Marker Index 

ranged between 4.10 in ECOR V- cox 1 to 12.32 in ECOR 1 - alp 6 with an average 

value of 10.65 f 4.99 (Table 9). 

Inter-relationships among the accessions 

The diversity index (Hav) ranged from 0.81 in Hind 11 1 - cox 1 combination 

to 0.94 in EcoR 1 - cox 1 combination. Pair wise similarities (Sij) among the C. 

scarabaeoides accessions ranged from 0.52 to 1.00 with an average of 0.71f0.21. 

Accessions belonging to the same geographical region grouped together with 

similarity values for accessions of Indian origin (Sij = 0.61f0.12), Australian origin 

(Sij = 0.70i0.1 l), Sri Lankan origin (Sij = 0.64k0.04) and accessions from Indonesia 

and Myanmar (Sij = 0.62 fO.1 I) (Fig. 5). Further, the C. scarabaeoides accessions 

from Australia were the most distinct from that of Indian and SriLankan origin 

accessions. The similarity values for the accessions of C.sericeus were Sij = 

0.75f0.14, C.reticulatus Sij = 0.24 and C. cajan Sij = 0.71 f0.15 (Fig. 5). 

The MDS plot (Fig. 6) revealed four distinct groups. First group of C. 

scarabaeoides comprises four distinct sub - groups. The accessions from India, Sri 

Lanka and Australia belong to three different subgroups while the accessions from 

Phillipines and Myanmar formed the fourth subgroup lying in between the Indian 

and Sri Lankan subgroups. The accessions of C, sericeus , C.reticulatus and the 

genotypes of C. cajan formed the other three major groups. The stress value was r = 



Fig. 5 UPGMA Dendrogram of 42 genotypes of wild and cultivated Cajanus spp. using 
RFLP markers (r = 0.98). Accession identities are listed in Table 3. 



Fig. 6. MDS plot of 42 genotypes of wild and cultivated pigeonpea using 
RFLP markers (r = 0.95). 



0.95. The UPGMA dendrognun (Fig 5) revealed the hierarchical structure of 42 

accessions. UPGMA dendrogram distinguished the four groups of C. scarabaeoides, 

C.sericeus, C.reticulatus and C. cajan . The four sub-groups of C. scarabaeoides 

accessions from Indian, ~ r i~ankan , '~us t r a l i an  and ~ h i l l i ~ i n e s  and Myanmar were 

placed in group I. Group 2 comprised of four accessions of C.sericeus, Group 3 

comprises only the single accession of C. reticulatw and group 4 comprises the 

genotypes of C. cajan. 

AFLP analysis 

AFLP analysis, of forty-two accessions belonging to four species, was done 

using five primer pair combinations; E- ACT M-CTC, E - AGG M - CAC, E-ACG 

M- CAT, E-ACG M- CTA and E-ACG M-CTT. Representative AFLP profiles were 

given in Fig 7 a, b and c. A total of 438 scorable bands were detected across the 42 

accessions. All bands that could be reliably read on the autoradiogram were treated 

as individual dominant loci and scored as 1. The alternative form of an allele was 

scored as zero. The number of scorable bands ranged from 69 for E- ACG M- CAT 

to 129 for E -ACT M- CTC. Fraction of polymorphic bands (P) ranged from 0.94 in 

E-AGG M-CAC to 0.97 in E-ACG M-CTT, with an average value of 0.97 f 0.02 

(Table 1 I).Polymorphism, gene diversity, Effective Multiplex ratio and Marker 

Index values are given in Tables 11 and 12. The gene diversity (Hav) ranged form 

0.66 for E-AGG M- CAC to 0.83 for E-ACG M-CAT. The Effective Multiplex ratio 

ranged from 55.61 in E- ACG M- CAT to 113.74 in E-ACT M-CTC (Table 11). 

Inter relationships among accessions 

Jaccards pair wise similarity coefficient (Sij) for all the 42 accessions ranged 

from 0.24 to 1.00 with an average of 0.51 t 0.26. In C. scarabaeoides, the similarity 

coefficient for accessions of Indian origin was 0.64f0.14, Australian origin was 0.75 

* 0.05 and Sri Lankan origin was 0.72 f 0.12. Two separate groupings for accessions 



Fig. 7: AFLP profiles of wild and cultivated pigeonpeas 

The primer combination: 

a) EACT MCTC 

The accessions in the gel from L to Rare listed in Table - 3. 
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Fig. 7: AFLP profiles of wild and cultivated pigeonpeas 

The primer combination: 

b) EACG MCAC; c) EAGG MCTT 

The accessions in the gel from L to R are listed in Table - 3. 





Table - 11: Diversity index, effective multiplex ratio and Marker Index for AFLP 
markers. 

Bootstrap value (0.85 - 0.91) at 95% confidence interval 

Table - 12: Polymorphism and gene diversity in pigeonpeas using A n P s  

0.82 1 0.76 1 0.82 1 0.75 
Combined I P(%) / 92.6 ( 78.07 1 a / 80.76 
primer 
combinations 
P = Polymorphism (%); G = Gene diversity(Hav); Boot strap at 95% confidence level (0.85 - 0.91) 

a = only one accessions in this species was included 

G (Hav) 0.8&0.07 0.72k 
0.13 

0.79f0.0 
3 

0.76k0 
.87 



Fig. 8 UPGMA Dendrogram of 42 genotypes of wild and cultivated Cajanw spp, using 
AFLP markers (r = 0.98). Accession identities are listed in Table 3. 





of C. scarabaeoides from India were seen, the early flowering group (Sij = 0.79 f 

0.12) and the medium flowering group (0.62 f 0.14) separated by late flowering Sri 

Lankan accessions (Sij = 0.75 f 0.04) and medium to late flowering Indonesian and 

Myanmar accessions (Sij = 0.71f0.05). The Australian origin medium flowering 

accessions formed a completely different group (Sij = 0.84 f0.07). Similarity 

coefficient values were 0.81M.10 for C.sericeus and 0.56 f0.21 for C. cajan . The 

least similarity to all other species was found in C.reticulatus (Sij = 0.24) (Fig 8). 

The MDS plot (Fig 9) grouped the 42 accessions into four distinct major 

clusters. The hierarchical structures of these clusters were revealed in UPGMA based 

dendrogram (Fig 8). All C. scarabaeoides accessions clustered together, were 

subclustered based on the geographical regions viz ;.the Indian, Sri Lankan 

Australian and Myanmar and Indonesian origin. C.sericues, C.reticulatus and C. 

cajan formed the other three different groups with no specific sub- clusters (Fig 8). 

SSR analysis 

Ten SSR primer pairs were used to study the diversity among 42 accessions 

of 4 Cajanus species, of which only eight primer pairs amplified the alleles in all the 

accessions. High polymorphism was observed among the C, cajan accessions where 

all the eight pairs amplified the alleles, while among the wild species C. 

scarabaeoides, C.sericeus, and C.reticulatus only seven out of eight amplified the 

alleles (Fig 10 a, b and c). 

A total of 71 alleles were detected with an average allelic richness of 7.63 

alleles per locus (Tablel3). The number of alleles ranged from 3 for CCB4 to 14 for 

CCBI. Gene diversity was generally high, ranging from 0.62 to 0.92, with an 

average of 0.85 over all the loci (Table 13). When classified at the species level, the 

gene diversity was highest for C. cajan (0.80) followed by C. scarabaeoides (0.71), 

C.sericeus (0.68) and C.reticulatus (0.41) (Table 14). Primer pairs CCB4 amplified 

only in C, cajan (3 alleles) and failed to amplify in all other species. The number of 



Fig. 10. SSR profiles of wild and cultivated pigeonpeas 

The primer combination: 

a) CCB3 

The accessions in the gel from L to R are listed in Table - 3. 



Fig: 10 



Fig. 10: SSR profiles of wild and cultivated pigeonpeas 

The primer combination: 

b) CCB 5; c) CCB 7 

The accessions in the gel from L to R are listed in Table - 3. 
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Table - 13: Polymorphism and gene diversity in wild and cultivated Pigeonpeas with SSRs 

Table - 14: Gene diversity and polymorphism in four species of Cajanus with S S b  

S.No Locus 
name 

Total 
No, of 
alleles 

C.scarabaeoides 

Bootstrap -based on 95% Confidence level (0.89 - 0.94) 
*H Gene dlverslty 

C.sericeus 
2 

0 
2 
3 
2 
2 
2 
3 
16 

I CCEEI 
2 CCB2 
3 CCB3 
4 CCB4 
5 CCB5 

H* 

14- ~ 0 8 9 1  I 0 8 5  

No. of 
alleles 

C.cajan 
0 0 0  5 , 0 7 9  

I 

I 
4~1 3 J35 
0 8 2 1  3 075 
0 7 1  2 068 

3 0 8 4  
0 6 8 1  3 0 8 2  

0 0 0  3 088- 
0 7 2 ,  5 0 8 9  

C 27 -- 
041 , OF 

I 
90% 100% 

* * 
* * 
3 1 0 6 2  
8 091 

CCB6 9 0 8 6  - 
7 CCB7 5 092- 

089  
OX2 
0 8 9  

Total I 

Avg H , 0 89 
I 

Polymorph~sm (%) I 100% 

C.reticulatus 
0 6 2  I 

I 
I 

l o 0 0  
0 5 6 -  
084 

0 7 9  

H* 

0 
2 
2 
1 

* 
0 I l l o o  

4 
- 2 

'066- 2 
5 1 

084 i 2 
I I1 

068 1 
I 

1M)%1 

5 
081 

-071 

No. of 
alleles 

0 8 9  

3 'x 
2 7x5 i -- 
7 0 8 9  

3 1 
0 7 1  

1 82% 

H* No. of 
alleles 

H* No. of 
alleles 

H* 



observed alleles was highest in C. scarabaeoides (31) followed by C. cajan (27). 

C.sericeu.9 (16) and C.reticulatu.9 (1 1). The Effective Multiplex ratio ranged from 

3.00 for locus CCB4 to 14.00 for locus CCBI. The Marker Index ranged from 1.47 

in CCB4 to 12.46 in locus CCB1. Bootstrapping value, based on 95 % confidence 

interval, ranged from 0.89 to 0.94 (Table 13). 

Interrelationships among accessions 

The accessions belonging to different regions (India, Sri Lanka, Australia, 

Phillipines and Indonesia) were significantly differentiated based on the MDS 

clustering (Fig. 12) pattern at a stress value of r = 0.94. All the four different species 

C. scarabaeoides, C.sericeus, C. reticulatus and C, cajan formed four different 

clusters. The hierarchical structure of these clusters was revealed in UPGMA based 

dendrogram (Fig. 11). The Indian origin C. scarabaeoides accessions (both early and 

medium duration flowering) formed only one group, separate from the Sri Lankan, 

Australian and Indonesian and Phillipines clusters. C.sericeus accessions clustered 

into two different groups, one sub group of Indian origin and the other of Australian 

origin. C.reticu1atu.s was placed between C. cajan and C.sericues (Fig. 11). 

Among the three markers, 100% polymorphism was observed for SSR 

markers, followed by the AFLPs and RFLPs, but the highest effective multiplex ratio 

of 80.94 and marker index value of 60.71were observed for AFLPs. The diversity 

index was maximum for SSRs (0.89) (Table 15). 

Screening for podborer resistance 

Season was not found to be significant for any of the parameters, of the 

podborer resistance, studied. Habit was found to be significant for percentage bud, 

flower and pod damage, number of eggsiinflorescence and number of larvae I 

inflorescence (Table 16). Season x habit interaction was non- significant for all the 

parameters recorded except for number of eggs per inflorescence. However, the 

season x wild habit was found significant for number of eggs and larvae per 



Fig. 11 UPGMA Dendrogram of 42 genotypes of wild and cultivated Cajanus spp. 
using SSR m k e r s  (r = 0.95). Accession identities are listed in Table 3. 



Fig. 12. MDS plot of 42 genotypes of wild and cultivated pigeonpea 
using SSR markers (r = 0.95). Accessions are listed in Table 3. 



Table - 15: Relative effectiveness of Molecular Marken 





inflorescence (Table 6). Season x cultivated habit was significant for percentage pod 

damage, number of eggs and larvae I inflorescence (Table 6). 

Damage on C. scarabaeoides accessions was less compared to the pigeonpea 

genotypes. The percentage bud, flower and pod damage; and the number of eggs and 

larvael inflorescence on C. scarabaeoides accessions were less compared to 

pigeonpea genotypes. 

Bud damage 

Nine (ICPW 94, ICPW 98, ICPW 116, ICPW i30, ICPW 141, ICPW 147, 

ICPW 278, ICPW 281 and ICPW 305) of the thirty C. scarabaeoides accessions 

screened showed 0.00 % bud damage, 11 accessions (ICPW 82, ICPW 86, ICPW 96, 

ICPW 115, ICPW 122, ICPW 132, ICPW 142, ICPW 144, ICPW 302, ICPW 310 

and ICPW 315) showed less than 1.00 % (Table 16). Among the C. scarabaeoides 

accessions, ICPW 308 showed the maximum bud damage of 3.32 % which was 

however lower than the resistant pigeonpea check ICPL 332 (4.33 %), which was 

included as a control. Among six C. cajan genotypes (excluding ICPL 332), ICP 

8863 showed minimum bud damage of 13.32 % while ICP 8518, the susceptible 

check, exhibited the maximum damage of 27.84 % (Table 16). The mean damage in 

this group was 17.65 % and an overall damage mean was 4.33 % (Table 16). 

Flower damage 

Sixteen accessions (ICPW 82, ICPW 94, ICPW95, ICPW 96, ICPW 98, 

ICPW 111, ICPW 115, ICPW 116, ICPW 122, ICPW125, ICPW 132, ICPW 137, 

ICPW141, ICPW147, ICPW 152 and ICPW 281) showed 0.00 % flower damage 

(Table 16). Ten accessions showed less than 1.00 % flower damage. ICPW 308 

showed the maximum damage of in this group of 4.32 %. The mean flower damage 

was 0.77 %. Among the six C. cajan genotypes the flower damage ranged from 4.22 

% in ICP 28 to 27.91 % in ICP 26 with a group mean of 14.99 % (Table 16). Two 

genotypes, ICP 28 and ICP 14722 had significantly lower flower damage than the 



resistant check ICPL 332 (8.40 %) while ICP 26 and ICP 14770 exhibited 

significantly higher flower damage than the susceptible check ICP 8518 (14.23 %) 

(Table 16). 

Pod damage 

Six (ICPW 94, ICPW 141, ICPW 116, ICPW 130, ICPW 125 and ICPW 281) of the 

thirty C. scarabaeoides accessions showed a pod damage of 0.00 %. Nine accessions 

exhibited less than 1.00 percentage damage. The maximum damage of 4.25 

percentages was observed in ICPW 278, in this group, with a group mean of 1.77 

percentages. Among the six C. cajan genotypes, the pod damage ranged from 12.41 

percentage in ICP 14722 to 36.1 1 percentage ICP 8863 with a group mean of 

26.34 percentage (Table 16). All the C. cajan accessions showed significantly higher 

damage compared to the resistant check ICPL 332 (6.23 percentage) while four 

accessions (ICP 26, ICP 28, ICP 14770 and ICP 14722) exhibited significantly lower 

damage than the susceptible check ICP 8518 (32.33 percentage). The overall mean 

percentage of pod damage was 6.23 percentage (Table 16). 

Number of eggs / inflorescence 

Nineteen accessions of C, scarabaeoides (ICPW 82, ICPW 86, ICPW 94, 

ICPW 98, ICPW 101, ICPW 11 1, ICPW 115, ICPW 116, ICPW 122, ICPW 125, 

ICPW 130, ICPW 132, ICPW 138, ICPW 141, ICPW 147, ICPW 152, ICPW 278, 

ICPW 281 and ICPW 305) did not have eggs on their inflorescences (Table 16). The 

remaining accessions had on an average less than 1.00 egg per inflorescence. In this 

group, the mean number of eggs per inflorescence was 0.07. Among the C. cajan 

genotypes ICP 14770 had the lowest (2.43) number of eggsl inflorescence and ICP 

28 had the highest (5.62) number of eggs I inflorescence, with a group mean of 4.03 

eggs I inflorescence. All the C. cajan genotypes had higher number of eggs I 

inflorescence compared to the resistant check ICPL 332 (1.25 eggs 1 inflorescence) 

and hence, all of them had less number of eggsl inflorescence than the susceptible 

check, ICP 85 18 (7.13 eggs I inflorescence) (Table 16). 
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Numbar of larvae / inflorescence 

Twenty-one (ICPW 82, ICPW 86, ICPW 94, ICPW 98, ICPW 101, ICPW 

1 1 1, ICPW 1 15, ICPW 1 16, ICPW 122, ICPW 125, ICPW 130, ICPW 132, ICPW 

138, ICPW 141, ICPW 147, ICPW 152, ICPW 278, ICPW 281 and ICPW 305, 

ICPW 310 and ICPW 315) of the thirty C. scarabaeoides accessions had 0.00 larvae 

on the inflorescence and a maximum of 0.21 was noticed on ICPW 96 with a group 

mean of 0.04 larvae per inflorescence. Among the C. cajan genotypes ICP 26 had 

lowest number of larvae (4.59 larvae1 inflorescence) and ICP 14772 had the highest 

number (6.98 larvae 1 inflorescence) with a group mean of 5.49 larvae I 

inflorescence. All C. cajan genotypes had more number of larvae than the resistant 

pigeonpea check ICPL 332 (0.96 larvae I inflorescence), but less number of larvae 

compared to the susceptible check ICP 8518 (8.97 larvae I inflorescence). The 

overall mean number of larvae 1 inflorescence was 0.96 for all the 36 genotypes 

(Table 16). 

Biochemical diversity analysis 

Trypsin inhibitors and lectins play an important role in conferring resistance 

against podborer. The quantification was carried at three pod stages, the juvenile, 

immature and mature. Juvenile, immature and mature stages were found significant 

for protein and lectin contents, but wild and cultivated habit was significant for 

protein and trypsin inhibitor content. Stage x habit interaction was significant for 

only trypsin inhibitor content. Genotype and genotype x stage interaction was 

significant for all the three traits studied. Genotype x wild habit was significant for 

protein and lectin content, while it was non- significant in the cultivated habit (Table 

17). 

Protein content 

In C, scarabaeoides accessions, mature pods had maximum protein content 

(3.19g) followed by immature (3.08g) and juvenile pods (2.76g) (Fig. 13). In the 
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Table - 17: Significance of differences between three maturity stages, habit and their interaction in wild and cultivated Cajanus 



Fig: 13 Protein content in the pods of C.scarabaeoides 

C.scarabaeoides accessions 





juvenile pods, the highest protein content was observed in ICPW 147 (4.14g) and 

the least in ICPW 9q1.68~). In the immature pods the highest protein content was 

observed in ICPW 302 (4.95g) and the least in the ICPW 125 (1.79g). The mature 

pods of ICPW 281 showed the highest protein content (5.15g) and ICPW 138 the 

least with 2.35g proteins (Fig. 13). However, in C, cajun the protein content was 

equal in the juvenile and immature pods stages with a mean of 1.96 g followed by 

1.80 g in the mature pods (Fig 14). In the juvenile pods, it was highest in ICP 8863 

with 2.71g and the least content was in ICP 28 with 1.37g. The immature pods of 

ICP 8863 contained the highest protein content (2.41g) while ICP 8518 had the 

lowest (I .38g). The mature pods of ICP 8863 contained the highest protein content 

(2.91g) while ICP 28, the lowest (1.38g). The overall mean of both the wild and 

cultivated genotypes, the protein content was highest in mature pods (2.95g) 

followed by immature pods (2.888) and the juvenile pods (2.62g) (Table 18). 

Trypsin inhibitor 

The three pod stages of all the 30 wild accessions did not differ in the mean 

trypsin inhibitor content. The content of trypsin inhibitor was 1.55 unitslmg in 

mature, 1.54 unitslmg in immature and 1.55 unitslmg in juvenile pods (Fig 15). 

Similarly, among the C. scarabueoides accessions, significant differences were not 

observed in the trypsin inhibitor content in the juvenile (1.60 unitslmg), immature 

(1.62 unitslmg) and the mature pods (1.64 unitslmg). However, individually the 30 

C, scarabaeoides accessions differed significantly for trypsin inhibitor contents at 

the juvenile, immature and mature pod stages. In the juvenile pods, maximum trypsin 

inhibitor content was observed in ICPW 302 and ICPW 122 (1.79 unitslmg) and the 

least in ICPW 11 1 (0.39 unitsl mg). At the immature stage, maximum content was 

observed in ICPW 308 and ICPW 137 (1.85 unitsimg) and minimum content in 

ICPW 11 1 (1.03 unitsl mg). In the mature pods, maximum trypsin inhibitor content 

(1.86 unitslmg) was found in ICPW 152 and the least content (1.44 unitslmg) in 

ICPW 11 1. In the cultivated genotypes, the three pod stages differed significantly in 

their trypsin inhibitor content (Fig. 16). The juvenile pods had highest mean trypsin 
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Table - 18: Content of protein, hypsin inhibitor nnd lectins at three maturity stages (juvenil~ 







content (1.31 unidmg) followed by immature (1.14 units Img) and mature pods 

(1.10 uniwmg). The juvenile pods of ICP 26 contained maximum trypsin inhibitor 

content (1.57 units/mg) followed by ICP 28 (1.54 units/mg) and ICP 8863 (1.40 

unitslmg). ICP 14722 contained loweit trypsin inhibitor (1.11 unitdmg). The 

immature pods of ICP 8863 had the highest trypsin inhibitor (1.24 unitdmg) 

followed by ICP 14722 (1.17 unitslmg) and ICP 28 (1.16 units 1 mg). ICP 26 

contained the least trypsin inhibitor (1.07 unitslmg). The mature pods of ICP 14722 

had the highest trypsin inhibitor (1.25 unitdmg) followed by ICP 26 (1.09). ICP 

14770 had the lowest trypsin inhibitor in its mature pods (0.97 unitdmg) (Table 18). 

The three pod stages differed significantly for lectin content (Fig.18). 

Dilution plates showing the agglutination pattern are shown in figure 17. The 

juvenile pods contained maximum mean lectin content of 51 8.6 HAUlmg, followed 

by immature pods with a mean value of 75.0 HAUlmg. The mature pods did not 

contain any lectin in any of the 36 genotypes (Fig. 18). In 30 C. scarabaeoides 

accessions, juvenile pods had mean lectin content of 501.14 HAUlmg and immature 

pods with 53.9 HAUlmg. The juvenile pods of ICPW 138 showed maximum lectin 

(2057 HAUlmg) followed by ICPW 98 (1220 unitslmg). ICPW 281 had the lowest 

lectin content in its juvenile pods (12 HAUImg). The immature pods of ICPW 130 

had a maximum lectin of (250 HAUlmg) followed by ICPW 96 (170 HAUImg). No 

lectin content was detected in the immature pods of 11 accessions; ICPW 98, ICPW 

115, ICPW 119, ICPW 122, ICPW 125, ICPW 132, ICPW 152, ICPW 278, ICPW 

280, ICPW 281 and ICPW 308. In the C. cajan group also mean lectin content was 

maximum in the juvenile pods (605 HAUimg) followed by immature pods (180 

HAUlmg) (Fig. 19). In the juvenile stage, maximum content was observed in ICP 28 

(934 HAUImg) followed by ICP 26 (736 HAUlmg) and ICP 14770 (732 HAUImg) 

(Fig. 19). ICP 8518 had the lowest lectin content (224 HAUImg). In the immature 

stage, the highest lectin content (323 HAUlmg) was observed in ICP 26 followed by 



Fig. 17: Haemagglutination profiles of lectins in wild and cultivated 
pigeonpeas 

a)  Con A - Standard used in the Iectin assay 

b) Wild accessions ICPW 94 and ICPW 130 

c) Wild accessions ICPW 1 16 and ICPW 125 

d) C. cujnn, ICP 26 and ICP 28 

J = Juvenile stage of pod 

IM = Immature stage of pod 

M = Mature stage of pod 
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ICP 8863 (266HAUImg). ICP 8518 had the least lectin content of 58 HAUlmg) 

(Table 18). 

Density and type of trichomes 

Five morphologically distinct types of trichomes (A, B, C, D and E) were identified 

on pods of 30 C. scarabaeoides accessions and 6 pigeonpea genotypes by light and 

scanning electron microscopy (Fig 20.21 a and b ). Type A had a long tubular neck 

containing a clear viscous fluid. It is longer than other trichomes except the type D. 

The base of type A trichomes is enlarged and consists of 6 to 10 cells and the neck 

comprises of 4 to 8 cells (Fig 21 b). Type B is yellowish, unsegmented globular sac. 

Its contents are released only afler the cell wall is ruptured. Unsegmented, 

nonglandular trichomes were separated into short (Trichome C) and long (Trichome 

D) trichomes (Fig 20). Type D was 4 to 11 times longer than Type C in all the 

accessions. In addition, electron micrographs showed a small, multi- lobed fifth 

glandular trichome (Type E), attached to the pod surface by a short stalk (Fig 21 a). 

Type E was too small to measure the density using light microscope hence its density 

was not recorded. 

Season was significant for densities of trichomes A and B. Habit (Wild and 

cultivated) was significant for densities of trichomes A, B and C (Table 6). 

Interaction between season and habit was significant for density of trichome A. 

Interaction between season and wild habit was significant for density of trichome A, 

B and C. Interaction of season and cultivated habit was significant for density of 

trichome A (Table 6). Genotype was significant for the densities of four types of 

trichomes. Genotype x season and habit x wild interaction was non - significant for 

all the trichome types. Habit x cultivated was significant for densities of B, C and D 

trichomes (Table 7). Heritability was high for all the trichome types (Table 7). 



Fig. 20: Types of trichomes on pods of C. scarabaeoides accession, 

ICPW 94 

B = Type B trichome 

C = Type C trichome 

D = Type D trichome 





Fig. 21. Types of trichomes on pods of wild and cultivated pigeonpeas 

a) E = Type E trichonle on pods of C. scarabaeoides accession 

ICPW 116 

b) A, B, C & D = Type A, B, C & D trichomes on pods of C, cajan 

genotype ICP 26 



b 
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Variation in trichome density 

Types B, C and D trichomes were present on pods of all the C. scarabaeoides 

accessions and C. cajan. Type A was absent in most of the C. scarabaeoides 

accessions and present only in a few accessions with less density. Density of each 

trichome type differed significantly among the pods of wild and cultivated 

accessions. Pods of C. scarabaeoides were more pubescent than pods of C, cajan 

because of the higher densities of types B, C and D trichomes. Pods of C. 

scarabaeoides had more of non-glandular trichomes types C and D and glandular 

type B, compared to only a few number of glandular trichome type A. However, the 

densiv of glandular trichome type A was more on the pods of C. cajan, compared to 

the C, scarabaeoides accessions. Trichome types A, B, C and D were found on pods 

of all pigeonpea genotypes studied (Table 19). The densities of types A, C and D 

trichomes varied significantly among the wild genotypes. Significant seasonal 

variation for type and density of trichomes was not found in wild and cultivated 

genotypes. 

Density of trichome A 

Among the C. scarabaeoides accessions, trichome A was absent and even if 

present in some of the accessions, the frequency was very low. For example, 

accessions ICPW 82, ICPW 94, ICPW 119, ICPW 130, ICPW 141, ICPW 147, 

ICPW 152, ICPW 308 and ICPW 315 did not have type A trichomes on their pods. 

ICPW 95 and ICPW 278 had only 0.13 trichomeslmm2and remaining accessions had 

0.03 - 0.11 trichomeslmm2 (Table 19). The mean density of trichomes on C. 

scarabaeoides was only 0.04 trichomes 1 mm2. Among the C. cujan genotypes the 

density ranged from 3.67 trichomes I mm2 in ICP 26 to 5.53 trichomes/mm2 in ICP 

8863 with a group mean of 4.81 trichomelmm2. The overall mean density of 

trichome A was 0.84 trichomes imm2 (Table 19). 





Density of trichome B 

Though trichome B was present both in the wild and cultivated genotypes, a 

slightly higher density was seen in the wild than in the cultivated accessions. 

Density of trichome B ranged from 1.07 /mm2 in ICPW 101 to 4.80 /mm2 in ICPW 

119 with a group mean of 2.82 lmm2 (Table 22). Among the C. cajan genotypes, the 

density of trichomes ranged from 0.80 lmm2 in ICP 8518 to 1.73 /mm2 in ICP 28 

with a group mean of 1.27 lmm2. The overall mean density of trichome B was 2.56 

lmm2 (Table 19). 

Density of trichome C 

Trichome C was more densely found on pods of both C. scarabaeoides and 

C. cajan genotypes and more than any other trichome types on pods of both wild and 

cultivated. The density of type C is four to five times more on C. scarabaeoides 

accessions compared to on C, cajan genotypes. The density of this trichome ranged 

from 116.07 1 mm2 in ICPW 86 to 190.40 I mm2 in ICPW 94 with a group mean of 

151.70 I mm2 (Table 19) Among C. cajan genotypes it ranged from 22.41 I mm2 in 

ICP 14770 to 29.33 /mm2 in ICP 28 with a group mean of 25.31 1 mm2, with an over 

all mean of 130.68 trichomes I mm2 (Table 19). 

Density of trichome D 

Trichome D was present on pods of both C. cajan and C, scarabaeoides 

accessions, with significant differences in the density of this trichome in the wild 

and cultivated genotypes. Among the C. scarabaeoides accessions the density ranged 

from 4.73 trichomes 1 mm2 in ICPW 280 to 13.20 trichomes 1 mm2 in ICPW 83 with 

a group mean of 8.32 trichomes I mm2 (Table 19), while among the C. cajan 

genotypes the density ranged from 1.07 trichomes 1 mm2 ICP 14770 to 3.07 

trichomes / mm2 in ICP 28 with a group mean of 1.85 trichomes I mm2and with an 

overall mean density of 7.20 trichomes I mm2 (Table 19). 



Correlation between different traits 

The phenotypic, genotypic and environmental correlation coefficient values 

obtained for various characters are presented in tables 20,21 and 22 respectively. 

Phenotypic correlation 

Density of trichome A 

Density of trichome A was significantly correlated positively with pod length 

(0.50), seed weight (0.63), percentage flower damage (0.65), bud damage (0.69), pod 

damage (0.82), number of eggs (0.77) and number of larvae (0.74) but significantly 

correlated negatively with density of trichome B (-0.68), trichome C (-0.89), 

trichome D (-0.73), number of secondary branches (-0.44) and seed protein content 

(-0.35). 

Density of trichome B 

Density of trichome B was significantly correlated positively with density of 

trichome C (0.77), trichome D (0.66) and seed protein content (0.42) but correlated 

negatively with pod length (-0.43), seed weight (-0.52), percentage bud damage (- 

0.65) and flower damage (-0.63), pod damage (-0.71), number of eggs (-0. 71) and 

number of larvae (-0.70). 

Density of trichome C 

Density of trichome C was significantly correlated positively with density of 

trichome D (0.68), days to flower (0.37), days to maturity (0.41) and number of 

secondary branches (0.38) but was significantly correlated negatively with pod 

length (-0.51), seed weight (-0.63), percentage bud damage (-0.77), flower damage 

(-0.73), pod damage (-0.81), number of eggs (-0.82) and number of larvae (-0.82). 





Density of trichome D 

Density of trichome D was significantly correlated negatively with pod 

length (-0.35), seed weight (-0.42), percentage bud damage (-0.55), flower damage (- 

0.57). pod damage (-OH), number of eggs (-0.65) and number of larvae (-0.63). 

Days to flower 

Days to flower was significantly correlated positively with days to maturity 

(0.80) but was significantly correlated negatively with percentage bud damage (- 

0.31). 

Days to maturity 

Days to maturity was significantly correlated negatively with leaf area (-0.33) 

and specific leaf area (-0.34). 

Leaf area 

Leaf area was significantly correlated positively with leaf dry weight (O.89), 

pod length (0.49) and seed weight (0.46) but was significantly correlated negatively 

with number of primary branches (-0.24) and number of secondary branches (-0.35). 

Leaf dry weight 

Leaf dry weight was significantly correlated positively with pod length (0.41) 

and seed weight (0.36) but was correlated negatively with specific leaf area (-0.31) 

and number of primary branches (-0.26). 

Leaf specific area 

Leaf specific area was significantly correlated positively with pod width 

(0.37), 100- seed weight (0.97). percentage flower damage (0.40), pod damage 

(0.52), number ofeggs (0.57) and number of larvae (0.54) but correlated negatively 

with number of secondaty branches (-0.58), total protein (-0.61). 
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Pod length 

Pod length was significantly correlated positively with pod width (0.35), seed 

weight (0.96), percentage bud damage (0.30), flower damage (0.37). pod damage 

(0.51), number of eggs (0.54) and number of larvae (0.52) but was significantly 

correlated negatively with number of secondary branches (-0.57) and seed protein (- 

0.61). 

Pod width 

Pod width was not significantly correlated with any of the characters studied. 

Number of locules per pod 

Number of locules per pod was significantly correlated positively with seed 

protein (0.88) . 

Number of seeds per pod 

This character was not correlated with any of the characters studied. 

Seed weight 

Seed weight was significantly correlated positively with percentage bud 

damage (0.39), flower damage (0.44), pod damage (0.62), number of eggs (0.62) 

and number of larvae (0.59) but was significantly correlated negatively with number 

of secondary branches (-0.61) and seed protein (-0.63). 

Number of primary branches 

This trait was not correlated with any of the characters studied. 



Number of secondary branches 

This trait was significantly correlated positively with seed protein (0.40) but 

was significantly correlatkd negatively with percentage bud damage (-0.31). flower 

damage (-0.35), number of eggs (-0.45) and number of larvae (-0.43). 

Total seed protein 

Seed protein was significantly correlated negatively with percentage flower 

damage (-0.31), pod damage (-0.38), number of eggs (-0.43) and number of larvae (- 

0.41). 

Bud damage 

Percentage bud damage was significantly correlated positively with the 

percentage flower damage (0.74), pod damage (0.66), number of eggs (0.74) and 

number of larvae (0.75) . 

Flower damage 

Percentage flower damage was significantly correlated positively with the percentage 

pod damage (0.74). number of eggs (0.82) and number of larvae (0.82). 

Pod damage 

Percentage pod damage was significantly correlated positively with the 

number of eggs (0.79) and number of larvae (0.74). 

Number of eggs 

Numbers of eggs were significantly correlated positively with number of 

larvae (0.99). 



Genotypic correlation 

Density of trichome A 

Density of trichome A was significantly correlated positively with pod length 

(0.51), seed weight (0.63), percentage flower damage (0.72), bud damage (0. 91), 

percentage pod damage (0.84), number of eggs (0.81) and number of larvae (0.78) 

but significantly correlated negatively with density of trichome B (-0.69), trichome C 

(-0.90), trichome D ( -0.74), number of secondary branches (-0.45) and seed protein 

content ( 0.36) . 

Density of trichome B 

Density of trichome B was significantly correlated positively with density of 

trichome C (0.72), density of trichome D (0.67), days to maturity (0.34), number of 

secondary branches (0.33) and seed protein content (0.42) but was significantly 

correlated negatively with pod length (-0.44), seed weight (-0.53), bud damage (- 

0.82) and flower damage (-0.68), pod damage (-0.71), number of eggs (-0.74) and 

number of larvae (-0.74) . 

Density of trichome C 

Density of trichome C was significantly correlated positively with density of 

trichome D (0.69), days to flower (0.37), days to maturity (0.42) and number of 

secondary branches (0.33) but was significantly correlated negatively with pod 

length (-0.52), seed weight (-0.63), bud damage (-0.96), flower damage (-0.80). pod 

damage (-0.82), number of eggs (-0.86) and number of larvae (-0.84) . 

Density of trichome D 

Density of trichome D was significantly correlated negatively with pod 

length (-0.36), seed weight (-0.43), number of primary branches (0.62), bud damage 





(-0.73), flower damage (-0.63). pod damage (-0.67), number of eggs (-0.69) and 

number of larvae (-0.67). 

Days to flower 

Days to flower was significantly correlated positively with days to maturity 

(0.81) and number of secondary branches (0.36). 

Days to maturity 

Days to maturity was significantly correlated negatively with leaf area (-0.34) 

and seed weight (-0.37), while it significantly correlated positively with number of 

primary branches (0.64). 

Leaf area 

Leaf dry weight was significantly correlated positively with leaf dry area 

(0.90), pod length (0.49) and seed weight (0.46) but was significantly correlated 

negatively with number of primary branches (-0.72) and number of secondary 

branches (-0.35). 

Leaf dry weight 

Leaf area was significantly correlated positively with pod length (0.42) and 

seed weight (0.37) but was significantly correlated negatively with number of 

primary branches (-0.77). 

Specific leaf area 

Specific leaf area was not significantly correlated with any of the characters 

studied. 



Pod length 

Pod length was significantly correlated positively with pod width (0.37). seed 

weight (0.97), flower damage (0.40), pod damage'(0.52), number of eggs (0.57) and 

number of larvae (0.54) but was significantly correlated negatively with number of 

primary branches (- 0.59), number of secondary branches (-0.58) and seed protein (- 

0.61). 

Pod width 

Pod width was significantly correlated positively with seed weight (0.35). 

Number of locules per pod 

Number of locules per pod was significantly correlated positively with seeds 

per pod (0.93). 

Number of seeds per pod 

Number of seeds per pod was not significantly correlated with any of the 

characters studied. 

Seed weight 

Seed weight was significantly correlated positively with percentage bud 

damage (0.49), flower damage (0.47), pod damage (0.63), number of eggs (0.64) 

and number of larvae (0.62) but was significantly correlated negatively with number 

of primary branches (-0.49), number of secondary branches (-0.61) and seed protein 

(-0.63). 

Number of primary branches 

Number of primary branches was not significantly correlated with any of the 

characters studied. 



Number of secondary branches 

Number of secondary branches was significantly correlated positively with 

seed .protein (0.40) but was significantly correlated negatively with percentage 

flower damage (-0.37), pod damage (-0.33), number of eggs (-0.47) and number of 

larvae (-0.45) . 

Total seed protein 

Seed protein was significantly correlated negatively with pod damage (-0.38), 

number of eggs (-0.44) and number of larvae (-0.43) . 

Bud damage 

Percentage bud damage was significantly correlated positively with the 

percentage flower damage (0.89), pod damage (0.83), number of eggs (0.96) and 

number of larvae (0.94). 

Flower damage 

Percentage flower damage was significantly correlated positively with the 

percentage pod damage (0.81), number of eggs (0.91) and number of larvae (0.91) . 

Pod damage 

Percentage pod damage was significantly correlated positively with the 

number of eggs (0.82) and number of larvae (0.76). 

Number of eggs 

Numbers of eggs were significantly correlated positively with number of 

larvae (0.99). 



Environmental correlation 

Denslty of trichome A 

Density of trichome A was significantly correlated positively to number of 

secondary branches (0.24) but significantly correlated negatively with percentage 

bud damage (-0.34) and number of larvae (-0.22). 

Density of trichome B 

Density of trichome B was significantly correlated positively with the leaf 

area (0.26). 

Density of trichome C 

Density of trichome C was significantly correlated positively with leaf area 

(0.23). 

Density of trichome D 

Density of trichome D was significantly correlated negatively with pod 

length (-0.36), seed weight (-0.43), numbre of primary branches (0.62), bud 

damage (-0.73), flower damage (-0.63), pod damage (-0.67), number of eggs (-0.69) 

and number of larvae (-0.67). 

Days to flower 

Days to flower were significantly correlated negatively to flower damage (- 

0.24). 

Days to maturity 

Days to maturity did not show any significant correlations with any of the 

characters studied. 





Leaf area 

Leaf area was significantly correlated positively with leaf dry weight (0.39) 

and seed weight (0.31). 

Leaf dry weight 

Leaf area was significantly correlated positively with total protein (0.47) but 

was significantly correlated negatively with specific leaf area (-0.90), number of 

secondary branches (-0.26). 

Specific leaf area 

Specific leaf area was significantly correlated positively with total protein 

(0.28). 

Pod length 

Pod length was not significantly correlated with any of the characters studied. 

Pod width 

Pod width was not significantly correlated with any of the characters studied. 

Number of locules per pod 

Number of locules per pod was significantly correlated positively with total 

protein (0.26) but negatively significantly correlated with percentage bud damage. 

Number of seeds per pod 

Number of seeds per pod was significantly correlated negatively with number 

of primary branches (-0.23). 



Seed weight 

Seed weight was not significantly correlated with any of the characters 

studied. 

Number of primary branches 

Number of primary branches was not significantly correlated with any of the 

characters studied. 

Number of secondary branches 

Number of secondary branches was significantly correlated negatively with 

percentage flower damage (-0.28). 

Total seed protein 

Seed protein was not significantly correlated with any of the characters 

studied. 

Bud damage 

Bud damage was significantly correlated positively with the percentage 

flower damage (0.36). 

Flower damage 

Flower damage was not significantly correlated with any of the characters 

studied. 

Pod damage 

Percentage pod damage was significantly correlated positively with the 

number of eggs (0.23) and number of larvae (0.23). 



Number of eggs 

Numbers of eggs were significantly correlated positively with number of 

larvae (0.39). 

Interspecific hybridization 

The second part of the present study includes the incorporation of podborer 

resistance gene (s) from the wild accessions of C. scarabaeoides to cultivated C. 

cajan through back cross programme and also to study the genetic basis of various 

characters by raising FI, F2, FI and BCIFI generations. 

Interspecific hybrids were produced by crossing the wild accessions of C. 

scarabaeoides (ICPW 94, ICPW 116, ICPW 125, ICPW 130 and ICPW 141) (Fig. 

22) with cultivated varieties of C. cajan (ICP 28 and ICP 26) (Fig. 23). Though, 

C. scarabaeoides falls under the secondary genepool it has 90 - 95 % is crosses 

compatibly with cultivated pigeonpeas giving fertile hybrids. 

Production of Fa, F2, F3 and backcross progenies 

In the present wide hybridization programme the following crosses were 

made to raise different generations. 

F1 generation 

ICP 28 x ICPW 94 ** ICP 26 x ICPW 94* 

ICP 28 x ICPW 116 ICP 26 x ICPW 116 

ICP 28 x ICPW 125' ICP 26 x ICPW 125** 

ICP 28 x ICPW 130** ICP 26 x ICPW 130* 

ICP 28 x ICPW 141* ICP 26 x ICPW 141 

* crosses involved in raising F2 generation 

** crosses involved in raising F2, F3, BCIFI, BCIF~ ,  BC~FI. BC2F2 and BC3 



Fig. 22. C. scarabaeoides parents used in the crossing program 

a) ICPW 94 

b) lCPW 125 

c) ICPW 130 







Fig. 23. C, cajan parents used in the crossing program 

a) ICP28 

b) ICP 26 



The data regarding the number of pollination made in FI, BCtFl and BC2Fl and 

BCIFl is presented in Tables 23, 24 and 25 respectively. While the percentage of 

seed germination in FI ,  F2. F3, BCland BC2 is presented in Tables 26, 27, 28 and 29 

respectively. 

In every generation, the plants were screened for podborer resistance and 

only the resistant lines were used in the subsequent generations. 

Evaluation of parents for different characters 

Differences among means of parents, involved in the crosses, were evaluated 

using t- test. The t - values and the p - values for differences among the cultivated 

(ICP 28 and ICP 26) and wild (ICPW 94, ICPW 116, lCPW 125, ICPW 130 and 

ICPW 141) parents are presented (Tables 30 and 31). Highly significant differences 

were recorded among the parents for all the characters viz., days to flower and 

maturity, leaf length and width, pod length and width, pod bearing length, number of 

locules per pod, number of seeds per pod, 100 - seed weight, number of primary and 

secondary branches, seed protein, density of trichome A, B, C and D. 

Pollen fertility 

Percentage pollen fertility in the hybridisation FI, F2 and BCIFI, in all the; 

interspecific crosses is given in Table 32. The pollen fertility in pigeonpea cultivars 

of ICP 28 is 96.27 % and ICP 26 is 94.21 %; while in the C. scorabaeoides 

accessions is ICPW 94 it is 96.27 %, ICPW 116 it is 90.58 %, ICPW 125 is 90.58 %, 

ICPW 130 is 89.27 % and ICPW 141 is 81.45 %. Among the FI hybrids; ICP 28 

ICPW 94 the most fertile hybrid with a mean of 87.02 % and ICP 28 x ICPW 116 

was the least fertile hybrid with mean percentage hybrid fertility of 66.25 %. Among 

the FI population, the most fertile plants were from ICP 28 x ICPW 94 segregants 

with a mean pollen fertility of 69.68 % and the least fertile hybrids belonged to ICP , 
28 x ICPW 125 with a mean pollen fertility of 40.44 %. Among the FI hybrids, ICP 

26 x ICPW 125 was the most fertile hybrid with a mean of 80.57 % and ICP 26 x 
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Table 23: Number of pollinations to produce F, seed 

Table 24 : Number of  pollinations to produce BCIFl seed 



Table 25: Number of pollinations to produce BC2F1 and BQFI seed 



Table 26: Percentage of  seed germination in F, generation 

Table 27: Percentage of seed germination in F, generation of seven crosses 

Cross No. of seeds 1 sown , 1 Germination% 

Germinated 1 
1CP 28 X ICPW 94 

ICY 28 X ICPW 125 

ICP 28 X lCPW 130 

ICP 28 X ICPW 141 

ICP 26 X ICPW 94 

1CP 26 X ICPW 125 

ICP 26 X ICPW 130 

500 

275 

263 

249 

262 

272 

28 1 

472 

245 

25 1 

232 

252 

247 

250 

94.4 

89.1 

95.4 

93.2 

96.2 

90.8 

88.9 



Table 28: Perctntage of seed germination in the F, generation of tbrte cro~ses 

/ ICP28 x ICPW 94 ( 125 1 2256 / 2013 1 89.29 1 

Cross 

Table 29: Percentage of seed germination in BC1 and BCz generations 

No, of F3 
families sown 

ICP 28 x ICPW 130 

ICP 26 x ICPW 125 

I Cross No. of seeds Germination 

Sown Germinated 

116 

109 

I [ICP 28 x(lCP 28 x ICPW 94)] 1 75 70 / 93.3 1 

Germination % No, of seeds 

Sown 

2141 

2000 

1 [ ICP 28 x (ICP 28 x(ICP 28 x ICPW 94)] 110 / 95 86.4 1 

Germinated 

[ICP 28 x (ICP 28 x ICPW 130)] 

[ICP 26 x (ICP 26 x ICPW 125)] 

1 [ ICP 28 x(1CP 28 x (ICP 28 x ICPW 130)I 1 125 I 112 89.6 

1963 

1800 

91.69 

90.00 

81 

60 

[ ICP 26 x (ICP 26 x (ICP 26 x ICPW 125)] 

71 

50 

87.7 

83.3 

95 80 84.2 







Table - 32: Pollen fertility in parents, F1, Fz & BCIFl hybrids 

( Pollen fertility I I Pollen fertility1 Range I 

BClFl not produced 



ICPW 116 was the least fertile hybrid with mean percentage hybrid fertility of 57.69 

%. Among the Fz hybrids the most fertile plants were of ICP 26 x ICPW 94 

segregants with a mean pollen fertility of 62.58 % and the least fertile belonged to 

ICP 26 x ICPW 116 cross with a mean pollen fertility of 45.69 %. Among the three 

backcross populations, [ICP 26 x (ICP 26 x ICPW 125)] population was the most 

fertile with a mean of 84.66 % and ICP 28x (ICP 28 x ICPW 94) was the least fertile 

with a mean of 78.66 %. 

Mid parent and better parent heterosis and inbreeding 

depression 

Mid parent and Better parent heterosis were calculated for the 

tnorphological (days to flowering and maturity, leaf length and width, pod 

length and width, number of primary and secondary branches), agronomic (pod 

bearing length, number of locules and seeds per pod, 100- seed weight and 

harvest Index) and resistance related characters (density of trichomes A, B, C, 

and D). In the wide crosses of C. scarabaeoides with ICP 28 the mid parent 

and bener parent heterosis and inbreeding depression values are presented in 

tables from 33 to 37; while in the crosses with ICP 26 they were presented in 

tables from 38 to 42. The FI interspecific hybrids produced are s h o w  in 

figures 24,25 and 26. 

Days to flower 

In crosses of C. scarabaeoides with ICP 28 the mid parent heterosis for days 

to flower ranged from -17.71 in ICP 28 x ICPW 130 to 1.68 in ICP 28 x ICPW 116 

and in crosses with ICP 26 the values ranged from - 4.80 in ICP 26 x ICPW 141 to 

4.65 in ICP 26 x ICPW 125. Bener parent heterosis in crosses with ICP 28 ranged 

from -9.49 (ICP 28 x ICPW 141) to 15.48 (ICP 28 x ICPW 130) and in crosses with 

ICP 26 from 0.39 in (ICP 26 x ICPW 94) to 21.22 in (ICP 26 x ICPW 125). 

The inbreeding depression values for days to flower in crosses of C. scarabaeoides 



Table - 33 Heterosis and Inbreeding depression for different traits in ICP 28 x ICPW 94 



Table - 34: Heterosis and Inbreeding depression for different traits in ICP 28 x ICPW 116 
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Table - 37: Heterosis and Inbreeding depression for different traits in ICP 28 r ICPW 141 

Density of Trichome A (No. / mm') 
Density of Trichome B (No. / mm2) 
Density of Trichome C (No. 1 mm2) 
Density of Trichome D (No. / n d )  
#=Not estimated; * = Significant at 5% level; ** = Significant at 1% lev61 

2.9 
3.3 

104.6 
5.6 

4.6 
4.4 

178.6 
7.7 

0.7 
4.4 

168.8 
6.5 

# 
# 
# 
# 

-75.79* 
32.83* 

61.37** 
17.20* 

-85.13** 
0.00 

-5.34 
-14.84** 

# 
# 
# 
# 



Table - 38: Heterosis and Inbreeding depression for different traits in ICP 26 x ICPW 94 





Table - 40: Heterosis and Inbreeding depression for different traits in ICP 26 x ICPW 125 



Table 41: Heterosis and Inbreeding depression for different traits in ICP 26 x ICPW 130 





Fig. 24: F.i hybrids and its parents used in wide hybridization 
\ 

a) ICP 28 x ICPW 130 

b) ICP 28 x ICPW 116 
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Fig: 24 



Fig. 24: FI hybrids and its parents used in wide hybridization 

c) ICP 28 x ICPW 94 

d) ICP 26 x ICPW 1 16 
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Fig. 25: FI hybrids produced in wide hybridization 

a) ICP 28 x ICPW 125 

b) ICP 28 x ICPW 130 





Fig. 25: FI  hybrids produced in wide hybridization 

c )  ICP 28 x ICPW 94 

d) ICP 28 x ICPW 1 16 





Fig. 25:  FI hybrids produced in wide hybridization 

e )  ICP 26 x ICPW 125 

f) ICP 28 x ICPW 141 
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accessions (ICPW 94, ICpW 125, ICPW 130, ICPW 141) with C. cajan ICP 28, 

ranged from 0.92 (ICP 28 x ICPW 125) to 5.33 (ICP 28 x ICPW 130) and in crosses 

with ICP 26 the values ranged form 2.42 (ICP 26 x ICPW 94) to 3.04 (ICP 26 x 

ICPW 130) (Tables 33 - 42). 

Days to maturity 

Days to maturity, in crosses with ICP 28 the mid- parent heterosis ranged 

from - 4.799 (ICP 28 x ICPW 116) to 1.91 (ICP 28 x ICPW 94) and with ICP 26 it 

ranged from -7.81 (ICP 26 x ICPW 116) to 2.65 (ICP 26 x ICPW 94). Better parent 

heterosis in crosses with ICP 28 ranged from - 8.20 (ICP 28 x ICPW 130) to 9.16 

(ICP 28 x ICPW 94) and in crosses with ICP 26from -13.08 (ICP 26 x ICPW 94) to 

5.31 (ICP 26 x ICPW 130). Inbreeding depression for days to maturity the values 

ranged from 1.43 (ICP 28 x ICPW 141) to 4.20 (ICP 28 x ICPW 125) and in crosses 

with ICP 26 it ranged from 1.87 (ICP 26 x ICPW 130) to 2.69 (ICP 26 x ICPW 94) 

(Tables 33 - 42). 

Leaflet length 

Mid parent heterosis for leaflet length in crosses with ICP 28 ranged from - 

10.22 (ICP 28 x ICPW 125) to 0.90 (ICP 28 x ICPW 94) and in crosses with ICP 26 

from -12.05 (ICP 26 x ICPW 94) to 1.62 (ICP 26 x ICPW 116). Better parent 

heterosis for leaflet length, in crosses with ICP 28, ranged from -25.63 (ICP 28 x 

ICPW 116) to 17.14 (ICP 28 x ICPW 125) and in crosses with ICP 26 from -25.36 

(ICP 26 x ICPW 94) to -18.44 (ICP 26 x ICPW 125). Inbreeding depression in 

crosses with ICP 28 ranged from 28.88 (ICP 28 x ICPW 141) to 73.79 (ICP 28 x 

ICPW 125) and in crosses with ICP 26 from 16.30 (ICP 26 x ICPW 130) to 70.42 

(ICP 26 x ICPW 94) (Tables 33 - 42). 



Leaflet width 

Mid parent heterosis for leaflet width, in crosses with ICP 28, the values 

ranged from 2.25 (ICP 28 x ICPW 130) to 59.38 (ICP 28 x ICPW 141) and in 

crosses with ICP 26 from -20.18 (ICP 26 x ICPW 130) to 15.47 (ICP 26 x ICPW 

141). Better parent heterosis in crosses with ICP 28 ranged from -15.22 (ICP 28 x 

ICPW 130) to 44.34 (ICP 28 x ICPW 141) and in crosses with ICP 26 from -3.26 

(ICP 26 x ICPW 125) to 15.46 (ICP 26 x ICPW 116).Inbreeding depression values 

ranged from 6.31 (ICP 28 x ICPW 125) to 56.64 (ICP 28 x ICPW 141) and in 

crosses with ICP 26 from 9.16 (ICP 26 x ICPW 94) to 48.31 (ICP 26 x ICPW 125) 

(Tables 33 - 42). 

Pod length 

Mid parent heterosis for pod length, in crosses with ICP 28, ranged from - 
16.02 (ICP 28 x ICPW 116) to 2.61 (ICP 28 x ICPW 141) and in crosses with ICP 26 

from -15.17 (ICP 26 x ICPW 130) to 1.50 (ICP 26 x ICPW 141). Better parent 

heterosis for pod length, in crosses with ICP 28, ranged from - 40.69 (ICP 28 x 

ICPW 116) to -25.7 (ICP 28 x ICPW 94) and in crosses with ICP 26 from - 41.41 

(ICP 26 x ICPW 130 to - 32.47 (ICP 26 x ICPW 141). Inbreeding depression for pod 

length, in crosses with ICP 28, ranged from 22.29 (ICP 28 x ICPW 130) to 37.24 

(ICP 28 x ICPW 125) and in crosses with ICP 26 from 25.81 (ICP 26 x ICPW 130) 

to 41.31 (ICP 26 x ICPW 125) (Tables 33 - 42). 

Pod width 

For pod width, in crosses with ICP 28, the mid parent heterosis ranged from 

33.33 (ICP 28 x ICPW 130) to 83. 61 (ICP 28 x ICPW 125) and in crosses with ICP 

26 the mid parent heterosis ranged from 14.29 (ICP 26 x ICPW 130) to 53.45 (ICP 

26 x ICPW 116). Better parent heterosis ranged from 6.94 (ICP 28 x ICPW 130) to 

64.71 (ICP 28 x ICPW 125) and in crosses with ICP 26 from 14.29 (ICP 26 x ICPW 

130) to 35.90 (ICP 26 x ICPW 94). Inbreeding depression for pod width the values 

170 



ranged from 11.1 1 (ICP 28 x ICPW 94) to 25.56 (ICP 28 x ICPW 125) and in 

crosses with ICP 26 from 1.30 (ICP 26 x ICPW 130) to 9.52 (ICP 26 x ICPW 94) ) 

(Tables 33 - 42). 

Pod bearing length 

Mid parent heterosis for pod bearing length, in crosses with ICP 28, the values 

ranged from -22.03 (ICP 28 x ICPW 130) to 9.27 (ICP 28 x ICPW 125) and in crosses 

with ICP 26 from -25.80 (ICP 26 x ICPW 94) to 28.37 (ICP 26 x ICPW 116). Better 

parent heterosis, in crosses with ICP 28, ranged from - 46.51 (ICP 28 x ICPW 130) to 

-19.55 (ICP 28 x ICPW 125) and in crosses with ICP 26 from - 48.31 (ICP 26 x 

ICPW 94) to -14.38 (ICP 26 x ICPW 116). ~nbreedin~ depression for pod bearing 

length ranged from 4.40 (ICP 28 x ICPW 125) to 15.45 (ICP 28 x ICPW 94) and in 

crosses with ICP 26 from 3.59 in (ICP 26 x ICPW 94) to 89.13 (ICP 26 x ICPW 130) 

(Tables 33 - 42). 

Number of locules per pod 

Mid parent heterosis for number of locules per pod, in crosses with ICP 28, 

ranged from -15.11 (ICP 28 x ICPW 130) to 9.1 1 (ICP 28 x ICPW 94) and in crosses 

with ICP 26 from -13.58 (ICP 26 x ICPW 130) to 10.53 (ICP 26 x ICPW 94). Better 

parent heterosis for number of locules per pod, in crosses with ICP 28, ranged from 

- 27.38 (ICP 28 x ICPW 130) to 4.61 (ICP 28 x ICPW 94) and in crosses with ICP 26 

*om - 27.38 (ICP 26 x ICPW 130) to 5.25 (ICP 26 x ICPW 94). Inbreeding 

depression in crosses with ICP 28 ranged from 9.23 (ICP 28 x ICPW 94) to 44.54 

(ICP 28 x ICPW 125) and in crosses with ICP 26 from 23.01 (ICP 26 x ICPW 125) to 

34.92 (ICP 26 x ICPW 94) (Tables 33 - 42). 

Number of seeds per pod 

Mid parent heterosis for number of seeds per pod, in crosses with ICP 28, 

ranged from -20.17 (ICP 28 x ICPW 130) to 12.83 (ICP 28 x ICPW 94) and in 

crosses with ICP 26 ranged from -21.21 (ICP 26 x ICPW 130) to 10.56 (ICP 26 x 
171 



ICPW 125). Better parent heterosis for number of seeds per pod, in crosses with ICP 

28 ranged ffom - 30.00 (ICP 28 x ICPW 130) to 13.42 (ICP 28 x ICPW 94) and in 

crosses with ICP 26 from -30.53 (ICP 26 x ICPW 130) to 5.72 in (ICP 26 x ICPW 

94). The inbreeding depression for number of seeds per pod the values ranged h m  

9.20 (ICP 28 x ICPW 141) to 44.37 (ICP 28 x ICPW 125) and in crosses with ICP 26 

from 20.33 (ICP 26 x ICPW 125) to 43.53 (ICP 26 x ICPW 94) (Tables 33 - 42). 

Number of primary branches 

Mid parent heterosis for number of primary branches, in crosses with ICP 28, 

ranged from -49.59 (ICP 28 x ICPW 141) to -13.10 (ICP 28 x ICPW 125) and in 

crosses with ICP 26 ranged from -33.15 (ICP 26 x ICPW 141) to 23.06 (ICP 26 x 

ICPW 130). Better parent heterosis in crosses with ICP 28 ranged from -59.74 (ICP 

28 x ICPW 141) to 23.09 (ICP 28 x ICPW 94) and in crosses with ICP 26 from 

-59.60 (ICP 26 x ICPW 141) to -19.32 (ICP 26 x ICPW 130). The inbreeding 

depression for number of primary branches, in crosses with ICP 28, ranged from 2.87 

(ICP 28 x ICPW 125) to 12.21 (ICP 28 x ICPW 130) and in crosses with ICP 26 from 

3.14 (ICP 26 x ICPW 130) to 14.01 (ICP 26 x ICPW 125) (Tables 33 - 42). 

Number of secondary branches 

Mid parent heterosis for number of secondary branches in crosses with ICP 28 

ranged from 9.99 (ICP 28 x ICPW 141) to 84.75 (ICP 28 x ICPW 116) and in crosses 

with ICP 26 ranged from 3.60 (ICP 26 x ICPW 141) to 68.81 (ICP 26 x ICPW 94). 

Better parent heterosis, in crosses with ICP 28 ranged from 41 .86  (ICP 28 x ICPW 

141) to 48.72 (ICP 28 x ICPW 116) and in crosses with ICP 26 from -41.53 (ICP 26 

x ICPW 141) to 21.62 (ICP 26 x ICPW 116). Inbreeding depression in crosses with 

ICP 28 from 20.23 (ICP 28 x ICPW 130) to 51.51 (ICP 28 x ICPW 125) and in crosses 

with ICP 26 from 24.86 (ICP 26 x ICPW 94) to 77.74 (ICP 26 x ICPW 130) (Tables 

33 - 42). 



100 - seed weight 

Mid parent heterosis for 100 - seed weight, in crosses with ICP 28, ranged 

from -30.37 (ICP 28 x ICPW 141) 10 5.29 (ICP 28 x ICPW 116) and in crosses with 

ICP 26 from -39.90 (ICP 26 X ICPW 94) to -19.68 (ICP 26 x ICPW 130). Better 

parent heterosis for 100 seed- weight, in crosses with ICP 28, ranged from-58.80 (ICP 

28 x ICPW 141) to - 43.92 (ICP 28 x ICPW 116) and in crosses with ICP 26 from 

- 62.28 (ICP 26 x ICPW 94) to -51.64 (ICP 26 x ICPW 130). The inbreeding 

depression, in crosses with ICP 28, ranged from 7.23 (ICP 28 x ICPW 130) to 37.67 

(ICP 28 x ICPW 141) and in crosses with ICP 26 from 8.41 (ICP 26 x ICPW 130) to 

16.37 (ICP 26 x ICPW 125) (Tables 33 - 42). 

Seed protein 

Mid parent heterosis for seed protein, in crosses with ICP 28, ranged from - 

11.06 (ICP 28 x ICPW 130) to 4.43 (ICP 28 x ICPW 94) and in crosses with ICP 26 

from -11.40 (ICP 26 x ICPW 125) to -1.75 (ICP 26 x ICPW 94). Better parent 

heterosis in crosses with ICP 28 ranged from -20.17 (ICP 28 x ICPW 141) to -4.85 

(ICP 28 x ICPW 94) and in crosses with ICP 26 from -22.78 (ICP 26 x ICPW 125) to 

-14.87 (ICP 26 x ICPW 130) (Tables 33 - 42). 

Harvest Index 

Mid- parent heterosis for harvest index, in crosses with ICP 28, ranged from 

26.00 (ICP 28 x ICPW 116) to 64.62 (ICP 28 x ICPW 116) and in crosses with ICP 

26 from 30.87 (ICP 26 x ICPW 125) to 58.34 (ICP 26 x ICPW 130). Better parent 

heterosis, in crosses with ICP 28, ranged from -19.50 (ICP 28 x ICPW 141) to 3.34 

(ICP 28 x ICPW 125) and in crosses with ICP 26 from -6.49 (ICP 26 x ICPW 94) to 

5.10 (ICP 26 x ICPW 130). The inbreeding depression in crosses with ICP 28, ranged 

from 2.92 (ICP 28 x ICPW 130) to 25.13 (ICP 28 x ICPW 125) and in crosses with 

ICP 26 from 1.70 (ICP 26 x ICPW 94) to 6.23 (ICP 26 x ICPW 130) (Tables 33 - 42). 



Density of trichome A 

Mid parent heterosis for density of trichome A, in crosses with ICP 28, ranged 

from -76.87 (ICP 28 x ICPW 116) to 48.88 (ICP 28 x ICPW 94) and in crosses with 

ICP 26 ranged from -72.73 (ICP 26 x ICPW 116) to 37.91 (ICP 26 x ICPW 130). 

Better parent heterosis, in crosses with ICP 28, ranged from -90.08 (ICP 28 x ICPW 

94) to -85.13 (ICP 28 x ICPW 141) and in crosses with ICP 26 from -84.02 (ICP 26 x 

ICPW 116) to 13.91 (ICP 26 x ICPW 130) (Tables 33 - 42). 

Density of trichome B 

Mid parent hetersois for density of trichome 9, in crosses with ICP 28, ranged 

!?om 32.65 (ICP 28 x ICPW 125) to 68.00 (ICP 28 x ICPW 116) and in crosses with 

ICP 26 from -19.62 (ICP 26 x ICPW 125) to 85.53 (ICP 26 x ICPW 94). Better parent 

heterosis, in crosses with ICP 28, ranged from -14.47 (ICP 28 x ICPW 125) to 3.65 

(ICP 28 x ICPW 130) and in crosses with ICP 26 from -55.91 (ICP 26 x ICPW 125) to 

6.02 (ICP 26 x ICPW 94) (Tables 33 - 4). 

Density of trichome C 

Mid parent heterosis for density of trichome C, in crosses with ICP 28, the 

values ranged from 39.23 (ICP 28 x ICPW 94) to 68.88 (ICP 28 x ICPW 125) and in 

crosses with ICP 26 from 47.42 (ICP 26 x ICPW 141) to 72.54 (ICP 26 x ICPW 94). 

Better parent heterosis, in crosses with ICP 28, ranged from -19.06 (ICP 28 x ICPW 

94) to 0.81 (ICP 28 x ICPW 125) and in crosses with ICP 26 from -16.27 (ICP 26 x 

ICPW 141) to -2.41 (ICP 26 x ICPW 116) (Tables 33 - 42). 

Density of trichome D 

Mid parent heterosis for density of trichome D, m crosses with ICP 28, the 

values ranged from 8.49 (ICP 28 x ICPW 94) to 40.10 (ICP 28 x ICPW 116) and in 

Crosses with ICP 26 from -21.56 (ICP 26 x ICPW 125) to 35.70 (ICP 26 x ICPW 94). 

Better parent heterosis in crosses with ICP 28 ranged from -23.69 (ICP 28 x ICPW 94) 
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to 0.24 (ICP 28 x ICPW 116) and in crosses with ICP 26 from 45 .23  (ICp 26 x ICpW 

125) to -12.98 (ICP 26 x ICPW 94) (Tables 33 - 4). 

Genetic basis of quantitative characten 

In the present investigation the genetic basis of 13 quantitative characters 

viz., days to flower, days to maturity, leaf length, leaf width, pod length, pod width, 

pod bearing length, number of locules per pod, number of seeds per pod, number of 

primary and secondary branches, 100 - seed weight and harvest index has been 

studied. To determine the genetic basis of the above traits the means and variances 

for various characters have been calculated in ICP 28 x ICPW 94, ICP 28 x ICPW 

130 and ICP 26 x ICPW 125 crosses. Fz populations grown in nets are shown in 

Figure 27. Different F2 and FJ segregants are shown in figures 28 and 29 

respectively. The BClFl plants are s h o w  in figure 30. 

Days to flower 

ICP 28 x ICPW 94 

The mean number of days to flower (52.9 f 0.31) in FI generation was less 

than the mean of ICP 28 (66.40 * 0.163) and ICPW 94 (53.20 i 0.533). The F2 mean 

(50.2 f 0.057) was less than the means of FI, ICP 28, and ICPW 94. Mean of BCIFI 

(ICP 28 x FI) (54.79 * 0.141) was less than the mean of ICP 28 but greater than the 

means of ICPW 94, FI, and Fz The F3 mean (54.78 + 0.179) was equal to the mean of 

BCIFl but greater than the means of lCPW 94, FI, and FZ but less than ICP 28 (Table 

43). 

The variance in FI (2.976) was greater than the variance in ICP 28 (0.27) and 

ICPW 94 (2.84). Variance in F2 (9.808) was greater than the variances in ICP 28, 

ICPW 94, and FI. Variance in BCIFl (ICP 28 x FI) (6.21) was greater than the 

variances in ICP 28, ICPW 94, and FI but less than the variance in Fz. Variance in F3 
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population (9.524) was greater than the variances in ICP 28, ICPW 94, FI ,  and 

BC 1 FI but less than the variance in F2 population (Table 44). 

The estimates of d (additive), h (dominance), I (dominance x dominance) 

were significant but i (additive x additive) was non- significant (Table 45). The 

maximum contribution was from h (81.86%) followed by d (3.7%), and 1 (2.97%) in 

explaining variance of this trait (Table 46). 

ICP 28 x ICPW 130 

Mean of FI (56.1k0.597) was less than the means of ICPW 130 (70.0f0.298) 

and ICP 28 (66.4f0.167). Mean of F2 (53.1f0.399) was less than the means of FI,  

ICP 28, and ICPW 130. The BCIFI (ICP 28 x FI) mean (64.27k0.243) was greater 

than the means of FI and F2 but less than that of ICP 28 and ICPW 130. The FJ mean 

(60.64k0.290) was greater than FI and F2 but less than ICP 28, ICPW 130, and 

BCIFl (Table 47). 

Variance in FI (3.567) was greater than the variances in ICP 28 (0.277) and 

ICPW 130 (0.889). Variance in F2 population (40.002) was greater than the variances 

in ICP 28, ICPW 130, and FI. Variance in BClFl (ICP 28 x FI) (3.314) was greater 

than ICP 28 and ICPW 130 but less than that in FI and F2. Variance in F, (16.954) 

was greater than that of ICP 28, ICPW 130, FI and BClFl but less than the F2 

variance (Table 48). 

The estimates of d, h, 1 and i were significant (Table 49), and the contribution 

of h (57.49%) was maximum, followed by 1(22.63%), d (14.68%), and i (5.19%) in 

explaining the variation in this character (Table 46). 

ICP26x ICPW I25 

The FI mean (68.9 k 0.407) was greater than the mean of ICP 26 (56.80 f 0.249) but 

less than ICPW 125 (74.80 k 0.133). Mean of FI (67.23 * 0.353) was greater than 















the mean of ICP 26 but less than the means of ICPW 125 and FI. The BCIFl (ICP 26 

x FI)  mean (62.99rt0.175) was greater than the mean of ICP 26 but less than the 

means of ICPW 125, FI, and F2. Mean of F, (66.72*0.308) was greater than the 

means of ICP 26 and BCIFI but less than ICPW 125: FI, and F2 means (Table 50) 

Variance in FI (1.656) was greater than variances in ICP 26 (0.622) and 

ICPW 125 (0.178). Variance (7.002) in F2 was greater than that in ICP 26, ICPW 

125, and FI. Variance in BCIFI (ICP 26 x FI) (5.582) was greater than the variances 

in ICP 26, ICPW 125, and FI but less than F2. Variance in F, (23.667) was greater 

than ICP 26, ICPW 125, FI,  F2, and BCIFI (Table 51). 

The estimates of d h I and i were significant (Table 52) and the maximum 

contribution was from d (86.564%) followed by h (9.08%) and i (3.48%), in 

explaining the variation in this character (Table 46). 

Days to maturity 

ICP 28 x ICPW 94 

The mean number of days (93.47 * 0.351) for FI plants was between the 

means of ICPW 94 (85.60 f 1.127) and ICP 28 (97.80 * 0.442). The F2 mean (91.2 

k 0.1 1) was greater than the mean of ICPW 94 but less than the means of ICP 28 and 

FI . Mean of the BCIFl (ICP 28 x FI) (98.43 f 0.143) was greater than the means of 

ICP 28, ICPW 94, FI and F2. The Fj mean (103.79 It 0.126) was greater than FI, F2, 

ICP 28, ICPW 94, and BClFl means (Table 43). 

Variance in FI (1.233) was less than ICP 28 (1.96) and ICPW 94 (12.71). 

Variance in F2 (12.884) was greater than the variance in ICPW 94, ICP 28, and FI 

Variance in the backcross population BClFl (ICP 28 x FI) (5.256) was greater than 

the variance in ICP 28 and FI but less than that in ICPW 94 and F2. Variance in the 

F3 population (13.256) was greater than the variances in ICPW 94, ICP 28, FI,  F2, 

and BClFl (Table 44). 
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The estimates of d, h, 1 and i were significant (Table 45), the contribution was 

maximum for i (47.78%) followed by 1 (36.30%). and h (15.37%) in explaining the 

variation in this character (Table 46). 

ICP 28 x ICPW I30 

Mean of FI (105.80kO.919) was in between the means of ICP 28 (98.00k0.418) and 

ICPW 130 (123.40i0.805). The F2 mean (102.1f0.238) was greater than ICP 28 but 

less than ICPW 130, and FI.  Mean of the backcross progeny BClFl (ICP 28 x FI)  

(126.54i0.369) was greater than ICP 28, ICPW 130, FI ,  and F2. The F3 mean 

(102.39f0.257) was similar to F2 but greater than ICP 28 and less than ICPW 130, 

FI,  and BClFl means (Table 47). 

The variance in FI population (8.444) was greater than ICP 28 (1.750) and 

ICPW 130 (6.489). The variance in F2 (14.253) was greater than ICP 28, ICPW 130, 

and F I .  Variance in BClFl (ICP 28 x FI) (7.650) was greater than ICP 28 and ICPW 

130 but less than Fl and F2 generations. The variance in F3 (13.256) was greater than 

ICP 28, ICPW 130, Fl,  and BCIFl, but less than F2 generation (Table 48). 

The estimates of d, h, I and i were significant (Table 49) and the maximum 

contribution was from d (69.35%) followed by i (15.67%) and h (14.33%) in 

explaining the variation in this character (Table 46). 

The Mean of F, (103.2+0.326) was equal to ICP 26 (103.00i0.21 I) but less 

than ICPW 125 (112.00k0.596). F2 mean (101.2f0.572) was less than ICP 26, 

ICPW 125, and FI  means. The BCIFl (ICP 26 x F I )  mean (118.95i0.382) was 

greater than FI ,  F2, ICP 26, and ICPW 125. F3 mean (10.23i0.263) was equal to F2 

but less than ICP 26, ICPW 125, F1,andBClFl means (Table 50). 

Variance in FI (1.067) was greater than that in ICP 26 (0.444) but less than 

the variance in ICPW 125 (3.555). Variance in F2 (18.356) was greater than the 
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variances in ICP 26, ICPW 125, and FI. BCIFI variance (ICP 26 x FI) (30.642) was 

greater than ICP 26, ICPW 125, FI,  and Fa. Variance in the F, population (17.221) 

was greater than ICP 26, ICPW 125, and FI but less than F1, and BCIFl (Table 51). 

The estimates of d (additive), h (dominance), and i (additive x additive) were 

significant but 1 (dominance x dominance) was non-significant (Table 52) in 

explaining the variation in this character. The maximum contribution was from i 

(55.78%) followed by d (35.37%), h (8.87%) in explaining the variation in this 

character (Table 46). 

Leaflet Length 

ICP 28 x ICPW 94 

Mean length (5.63f0.054) of leaflet was between the means of ICP 28 

(6.36k0.044) and ICPW 94 (4.80-tO.073). The F2 (3.79f0.042) was less than ICP 28, 

ICPW 94 and FI .  The BClFl mean (ICP 28 x FI) (3.2f0.05) was less than the means 

of ICP 28, ICPW 94, FI, and F2. The F3 mean (3.67f0.039) was greater than the 

mean of BClFl but less than ICP 28, ICPW 94. FI and F2 means (Table 43). 

Variance in FI (0.029) was greater than the variance in ICP 28 (0.020) but 

less than that in ICPW 94 (0.053). Variance in Fr (0.440) was greater than the 

variances in ICP 28, ICPW 94, and Fl. Variance in BCIFI (ICP 28 x FI) (0.159) was 

less than that in Fz but greater than ICP 28, ICPW 94 and FI. Variance in F3 (0.324) 

was greater than ICP 28, ICPW 94, FI and BClFl but less than F2 variances (Table 

44). 

The estimates of d, h, i and I were significant (Table 45), however, the 

maximum contribution was from i (60.36%), followed by d (35.67%) and 1 (3.70%) 

in explaining the variation in this character (Table 46). 



ICP 28x  ICPW 130 

The FI  mean (5.53H.054) was equal to ICPW 130 (5.54f0.04) but less than 

ICP 28 (6.36f0.048). The F2 mean (3.01fl.035) was less than ICP 28, ICPW 130, 

and FI .  BCIFI (ICP 28 x FI) mean (3.09f0.074) was less than ICP 28, ICPW 130 and 

FI mean but greater than F2 mean. The F3 mean (3.68f0.04) was less than ICP 28, 

ICPW 130 and FI but greater than the means of F2 and BCIFl (Table 47). 

Variance in FI (0.429) was greater than the variance in ICP 28 (0.322) and 

ICPW 130 (0.416). Variance in F2 (0.308) was less than that in ICP 28, ICPW 130, 

and FI .  BCIFI variance (ICP 28 x FI) (0.306) was less than the variance in ICP 28, 

ICPW 130, FI ,  and F2. Variance in F3 (0.522) was greater than the variance in ICP 

28, ICPW 130, FI,  F2, and BCIFI (Table 48). 

The estimates of d, i and I were significant but h is non-significant (Table 

49). The contribution of i (71.89 %)was maximum followed by d (26.16 %), l(1.92 

%) in explaining the variation in this character (Table 46). 

The FI  mean (5.66 f 0.03) was less than the mean of ICP 26 (6.94 f 0.034), 

but greater than that of ICPW 125 (5.38 f 0.039). The F2 mean (2.58 f 0.074) was 

less than ICP 26, ICPW 125, and FI means. BCIFI (ICP 26 x FI)  (2.81 f 0.039) was 

greater than the F2 but less than ICP 26, ICPW 125, and FI means. The F3 mean (3.99 

f 0.05) was greater than F2 and BCIFl but less than ICP 26, ICPW 125, and FI 

means (Table 50). 

The FI variance (0.089) was greater than the variance in ICP 26 (0.061) and 

ICPW 125 (0.05). Variance in F2 (0.310) was greater than ICP 26, ICPW 125, and 

FI.  The BCIFI (ICP 26 x FI) (0.315) was equal to F2 meanbut greater than the means 

of ICP 26, ICPW 125, and FI. The variance in F3 (0.628) was greater than ICP 26, 

ICPW 125, FI ,  F2, and BCIFl variance (Table 51). 
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The estimates of d, h, i and 1 were significant in explaining the variation in 

this character) (Table 52). The maximum contribution was from i (65.78%) followed 

by 1 (16.24%), d (14.84%) and h (3.2%) in explaining the variation (Table 46). 

Leaflet width 

ICP 28 x ICP W 94 

The FI mean (3.2 * 0.032) was greater than ICP 28 (2.12 f 0.014) and 

ICPW 94 (2.98 -1 0.033). The F2 mean (1.65 -1 0.024) was less than ICP 28, ICPW 

94, and FI means. The BCIFI (ICP 28 x FI) (1.37 -1 0.023) was less than ICP 28, 

iCPW 94, FI ,  and F2 means. The F3 mean (1.66 * 0.028) was equal to the F2 mean 

but less than ICP 28, ICPW 94 and FI and greater than BClFl means (Table 43). 

Variance in FI (0.010) was equal to the variance in ICPW 94 (0.011) but 

less than that in ICP 28 (0.02). The F2 (0.15) was greater than ICP 28, ICPW 94, and 

FI variances. Variance in BClFl (ICP 28 x FI) (0.133) was less than F2 but greater 

than ICP 28, ICPW 94 and FI. Variance in F3 (0.162) was greater than the variance 

in ICP 28, ICPW 94, FI, F2, and BCIFI (Table 44). 

The estimates of d, h, i and 1 were significant (Table 45), with the maximum 

contribution from i (76.78%) followed by d (10.34%), 1 (10.27%) and h (2.68%) in 

explaining the variation in this character (Table 46). 

ICP 28x ICPW 130 

The FI mean (2.72 -1 0.021) was greater than ICP 28 (2.12 -1 0.014) but less 

than ICPW 130 (3.22 -1 0.049). F2 mean (1.33 + 0.017) was less than ICP 28, ICPW 

130, and FI means. The BCIFl (ICP 28 x FI) mean (1.32 -1 0.034) was approximately 

equal to F2 mean but less than ICP 28, ICPW 130, and FI mean. F3 mean (1.67 -1 

0.028) was less than ICP 28, ICPW 130 and FI but greater than the means of F2 and 

BClFl (Table 47). 



Variance in FI (0.054) was greater than the variance in ICP 28 (0.032) and 

ICPW 130 (0.024). Variance in F2 (0.072) was greater than the variances in ICP 28, 

ICPW 130 and FI.  Variance in BCIFI. (ICP 28 x FI) (0.067) was greater than 

variance in ICP 28, ICPW 130. and FI but less than F2. F3 variance (0.162) was 

greater than ICP 28, ICPW 130, FI, F2 and BCIFI (Table 48). 

The estimates of d, 1 and i were significant but h (dominance) was non- 

significant (Table 49), with the maximum contribution from i (58.79 %) followed by 

1 (26.89 %), d (1 1.56 %) in explaining the variation in this character (Table 46). 

ICP 26 x ICPW I25 

Mean of FI  (2.67f0.030) was less than the mean of ICP 26 (3.58f0.013) but 

greater than ICPW 125 (1.94M.034). Fz mean (1.38f0.049) was less than ICP 26, 

ICPW 125 and FI means. The BClFl mean (ICP 26 x Fl) (1.29f0.019) was less than 

ICP 26, ICPW 125, FI, and F2 mean. F3 mean (1.67k0.025) was less than ICP 26, 

ICPW 130 and FI  but greater than the means of F2 and BClFl (Table 50). 

Variance in FI (0.019) was greater than the variance in ICP 26 (0.012) and 

ICPW 125 (0.012). Variance in F2 (0.136) was greater than ICP 26, ICPW 125, and 

FI variances. Variance in BClFl (ICP 26 x FI) (0.072) was greater than ICP 26, 

ICPW 125, and FI variance but less than the variance in F*. Fl (0.164) was greater 

than ICP 26, ICPW 125, FI,  F2 and BClFl variances (Table 51). 

The estimates of d, I and i were significant but was non-significant (Table 

52), with the maximum contribution from d (70.46 %) followed by i (23.76 %) and I 

(4.15 %) in explaining the variation in this character (Table 46). 



Pad length 

ICP 28 x ICPW 94 

The FI mean (4.06 f 0.051) was greater than ICPW 94 (2.50 + 0.026) mean, 

but less than mean of ICP 28 (5.48 f 0.039). F2 mean (2.99 f 0.037) was greater 

than the means of ICPW 94 but less than ICP 28 and FI .  The BCIFl (ICP 28 x FI) 

mean (3.25 f 0.039) was greater than the means of lCPW 94 and F* but less than ICP 

28 and FI.  The F3 mean (2.90 f 0.04) was greater than ICPW 94 but less than ICP 

26, FI ,  Fz, and BCIFI means (Table 43). 

Variance in FI (0.025) was greater than the variance in ICP 28 (0.02) but less 

than the variance in ICPW 94 (0.04). Variance in F2 (0.304) was greater than ICP 

28, ICPW 94, and FI variances. BClFl (ICP 28 x FI) (0.097) was greater than 

variances in ICP 28, lCPW 94, and FI but less than F2. Variance (0.335) in F, was 

greater than ICP 28, ICPW 94, FI ,  F2, and BCIFI (Table 44). 

The estimates of d, h, I and i were significant (Table 45) with the maximum 

contribution from d (87.50 %) followed by l(8.17 %), i (2.79 %), and h (1.53 %) in 

explaining the variation in this character (Table 46). 

ICP 28 x ICPW 130 

FI mean (3.41 f 0.063) was less than ICP 28 (5.49 + 0.040) but greater than 

ICPW 130 (2.24 f 0.041). F2 mean (2.7f0.023) was less than means of ICP 28 and 

FI but greater than ICPW 130. The BCIFl (ICP 28 x FI) (3.13 f 0.053) was less than 

ICP 28 and F I  but greater than ICPW 130 and F2. The F3 mean (3.90 + 0.041) was 

less than ICP 28 but greater than ICPW 130, FI ,  Fz, and BCIFI means (Table 47). 

The variance in FI (0.040) was less than the variance in ICP 28 (0.216) but 

greater than ICPW 130 (0.016). Variance in F2 (0.200) was greater than that in, 

ICPW 130, and FI but less than in ICP 28. The variance in BCIFI (ICP 28 x FI)  

(0.156) was greater than ICPW 130 and FI but less than ICP 28 and F2. Variance in 20 1 



~3 (0.334) was greater than the variances in ICP 28, ICPW 130, FI, FI. and BCIFl 

(Table 48). 

The estimates of d, h, i and 1 were ;ignificant (Table 49) with the maximum 

contribution from d (47.79%) followed by 1 (13.79%), h (13.75%) in explaining the 

variation in this character (Table 46). 

ICP 26 x ICPW 125 

FI mean (3.8 f 0.09) was less than the mean of ICP 26 (5.18 f 0.09) but 

greater than ICPW 125 (2.54 + 0.06). F2 (2.23 f 0.07) was less than the means of 

ICP 26, ICPW 125, and FI. The BClFl mean (ICP 26 x FI) (3.13 f 0.033) was 

greater than means of ICPW 125 and F2 but less than ICP 26 and FI. The F3 mean 

(3.97 0.041) was less than ICP 26 but greater than ICPW 125, F1 F2, and BCIFI 

means (Table 50). 

The FI variance (0.028) was less than the variances in ICP 26 (0.099) and 

ICPW 125 (0.073). Variance in F2 (0.242) was greater than the variances in ICP 26, 

ICPW 125, and F1. Variance in BClFl (ICP 26 x FI) (0.228) was greater than ICP 26, 

ICPW 125, and FI but less than F2 The Fj variance (0.429) was greater than ICP 26, 

ICPW 125, FI, F2, andBClFl (Table 51). 

The estimates of d, h, i and 1 were significant (Table 52) with maximum 

contribution was from 1 (77.71 %), followed by i (20.18 Yo) and d (1.88 Yo) in 

explaining the variation in this character (Table 46). 

Pod width 

ICP 28 x ICPW 94 

FI mean (0.85k0.014) was greater than the means of ICP 28 (0.74M.014) 

and ICPW 94 (0.540f0.017). F2 mean (0.81f0.022) was less than the mean of FI but 

greater than that of ICPW 94 and ICP 28 means. Mean of BCIFI (ICP 28 x FI) 
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(0.70f0.008) was less than the means of ICP 28, Fl and F2 but grater than ICPW 94. 

The F3 mean (0.78fl.006) was less than Ft and F2 means but grtater than the ICP 28, 

ICPW 94, and BCtFl means (Table 43). 

Variance in FI (0.07) was greater than the variances in ICP 28 (0.01) and 

ICPW 94 (0.03). Variance in F2 (0.1 18) was greater than the variances in ICP 28, 

ICPW 94, and FI. Variance in BClFt (ICP 28 x FI) (0.054) was less than the 

variance in F2 and FI  but greater than in ICP 28 and ICPW 94. Variance in F, (0.058) 

was greater than that in ICP 28, ICPW 94, and BCIFI but less than FI and Fz(Table 

44). 

The estimates of d, h and I were significant bit i was non-significant (Table 

45) and the maximum contribution was from h (48.86 %) followed by 1 (46.58 %) 

and the contribution of in explaining the variation in this character (Table 46). 

ICP 28 x ICPW 130 

FI mean (0.77 k0.022) was greater than ICPW 130 (0.72 i 0.014) and ICP 

28 (0.54f0.017). F2 mean (0.72 f 0.006) was equal to lCPW 130 less than F1 but 

greater than ICP 28. The BCIFl (ICP 28 x FI) (0.72 * 0.010) was equal to ICPW 130 

and Fz, less than Fl but greater than ICP 28. The F, mean (0.78 iZ 0.006) was greater 

than ICP 28, ICPW 130, Fl, Fz, and BClFt (Table 47). 

Variance in FI (0.015) was greater than the variances in ICP 28 (0.012) and 

ICPW 130 (0.012). The variance in F2 (0.056) was greater than the variances 1CP 

28, ICPW 130, and Ft. Variance in BCIFt (ICP 28 x FI) (0.016) was equal to 

variance in FI but greater than in ICP 28 and lCPW 130 but less than Fz. Variance in 

F, (0.018) was equal to BCIFl and FI but greater than ICP 28and ICPW 130, but less 

than F2 (Table 48). 



The estimates of d, h, i and I were significant (Table 49) with maximum 

contribution from i (70.59 %) followed by d (17.59 %), l(11.39 %), in explaining the 

variation in this character (Table 46). 

ICP 26x ICPW 125 

FI mean (0.76 f 0.027) was greater than ICP 26 (0.62 f 0.013) and ICPW 

125 (0.68f0.013). Mean in F2 (0.7 f 0.019) was greater than ICP 26, ICPW 125 but 

less than the FI mean. The BCIFI mean (ICP 26 x FI) (0.74 f 0.003) was greater than 

ICP 26, ICPW 125, and F2 but less than FI mean. The FJ mean (0.78f0.005) was 

greater than the means of ICP 26, ICPW 125, FI,  Fzand BClFl (Table 50). 

Variance in FI (0.017) was equal to variance in ICP 26 (0.017) but less than 

that in ICPW 125 (0.022). Variance in F1(0.167) was greater than the variances in 

ICP 26, ICPW 125, and FI. Variance in BCIFI (ICP 26 x FI) (0.065) was greater than 

variance in ICP 26, ICPW 125, and Fl but less than F2. The F3 variance (0.098) was 

greater than ICP 26, ICPW 125, FI ,  and BCIFI variances but less than that in F2 

(Table 5 1) 

The estimates of d, h, i and I were significant (Table 52) with the maximum 

contribution from 1 (81.57 %) followed by h (13.87 %), i (3.84 %), in explaining the 

variation in this character (Table 46). 

Pod bearing length 

ICP 28 x ICPW 94 

FI mean (I 1.2 f 0.592) pod bearing length was greater than the mean of ICP 

28 (5.90 f 0.384) but less than that of ICPW 94 (23.50 k 0.601). Mean of F2 (9.50 f 

0.201) was less than the means of ICPW 94, and FI but greater than ICP 28 means. 

The BCIFl mean (ICP 28 x Fl)  (10.48 f 0.289) was greater than the means of ICP 28 

and F2 but less than ICPW 94 and FI. The Fj mean (13.77f0.44) was less than ICPW 

94, but greater than the means of ICP 28, FI, F2 and BCIFI (Table 43). 204 



Variance in FI (3.48) was less than the variance in ICPW 94 (3.61) but 

greater than that in ICP 28 (1.21). Variance in F2 (10.093) was p a t e r  than ICP 28, 

ICPW 94, and FI  Variance,in BCIFI (ICP 28 x FI) (5.1 I) was less than F2 but greater 

than ICP 28, ICPW 94 and FI .  Variance in FS (39.909) was greater than the variances 

in ICP 28, ICPW 94, FI, F2 and BCIFI (Table 44). 

The estimates of d, h , i and 1 were sipificant (Table 45), and the maximum 

contribution was from i (60.89 %) followed by d (34.79 %) and h (3.88 %) in 

explaining the variation in this character (Table 46). 

ICP 28 x ICPW I30 

FI mean (10.04 t 0.67) was greater than the means ICP 28 (4.78 f 0.307) 

but less than ICPW 130 (14.80 k 1.289). F2 mean (9.6 f 0.480) was greater than ICP 

28 but less than ICPW 130 and FI means. BCIFl mean (ICP 28 x F1) (4.04 f 0.201) 

was less than ICP 28, ICPW 130, FI ,  and F1. F1 mean (11.77 k 0.444) was greater 

than ICP 28, FI,  F2, and BClFl but less than ICPW 130 mean (Table 47). 

Variance in F1 (4.489) was greater than that in ICP 28 (0.944) but less than 

in ICPW 130 (4.622). Variance in F2 (12.956) was greater than that in ICP 28, 

ICPW 130, and Fl. The BCIFl variance (ICP 28 x F1) (2.257) was greater than that in 

ICP 28 but less than ICPW 130, FI ,  and F2. Fl (19.713) variance was greater than that 

in ICP 28, ICPW 130, FI,  F2, and BCIFI (Table 48). 

The estimates of d, h, i and I were significant (Table 49), with the maximum 

contribution from h (64.35%) followed by i (29.39%) and d (6.35 %) in explaining 

the variation for this character (Table 46). 

ICP 26 x ICPW 125 

FI mean (1 1.2f0.731) was greater than ICP 26 (6.00i0.516) mean but less 

than the mean of ICPW 125 (27.00t0.506). F2 (10.72i0.894) mean was greater than 

ICP 26'but less than ICPW 125, and F,. The BClF, mean (ICP 26 x FI) (4.14k0.095) 
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was less than means of ICP 26, ICPW 125, FI, and FI. The F3 (15.77f0.402) mean 

was less than the means of ICPW 125 but greater than the means of ICP 26, FI, F2 

and BC IFl (Table 50). 

Variance in FI (5.344) was greater than the variances that in ICP 26 (2.667) 

and ICPW 125 (3.67). Variance in Fz (14.749) was greater than that in ICP 26, 

ICPW 125, and FI. Variance in BCIFI (ICP 26 x FI) (1.851) was less than that in ICP 

26, ICPW 125, FI, and Fz. The F3 variance (14.300) was greater than ICP 26, ICPW 

125, BCIFl andF1 but less than Fz(Tab1e 51). 

The estimates of d, h , i and 1 were significant (Table 52), however, the 

maximum contribution was from d (61.84 %) followed by 1 (22.58 %), i (9.24 %), in 

explaining the variation in this character (Table 46). 

Number of locules per pod 

ICP 28 x ICPW 94 

FI mean (4.30 k 0.1 33) for number of locules per pod was greater than the 

means of ICP 28 (3.80 0.133) and ICPW 94 (4.0 i 0.21). The F2 mean (3.91 f 

0.029) was less than ICPW 94, and FI but greater than ICP 28 . The BCIFl (ICP 28 x 

FI) mean (2.99f0.034) was less than ICP 28, ICPW 94, FI ,  and F2 means. The F3 

mean (4.06 f 0.025) was greater than ICP 28, ICPW 94, F2, and BCIFI but less than 

FI (Table 43). 

Variance in FI (0.18) was equal to the variance in ICP 28 (0.1 8) but less than 

ICPW 94 (0.44). Variance in F2 (0.606) was greater than the variances in ICP 28, 

ICPW 94 and FI .  Variance in BCIFl (ICP 28 x FI) (0.073) was less than the variance 

in ICP 28, ICPW 94, FI and Fz. Variance in F, (0.529) was less than F2 but greater 

than the variances in ICP 28, ICPW 94, Fl, and BCIFI (Table 44). 



The estimates of i and I were significant but the estimates of d and h were 

non-significant (Table 45) with the maximum contribution was from i (47.9%) 

followed by 1 (42.9%) in explaining the variation in this character (Table 46). 

ICP 28 x ICPW 130 

FI mean (3.81 * 0.133) was less than ICPW 130 (5.22 f 0.133) but was 

equal to ICP 28 (3.78 * 0.139). F2 mean (2.83f0.039) was less than the means of 

ICP 28, ICPW 130, and FI. The BCIFI (ICP 28 x FI) (2.08 f 0.072) was less than the 

means of ICP 28, ICPW 130, FI, and F1 means. F, mean (4.06 f 0.025) was greater 

than the means of ICP 28, FI,  F2 and BClFl but less than ICPW 130 (Table 47). 

Variance in FI (0.178) was similar to the variance in ICPW 130 (0.18) but 

less than ICP 28 (0.194). Variance in Fl (0.376) was greater than the variances in 

ICP 28, ICPW 130, and F1. Variance in BClFl (ICP 28 x FI) (0.288) was greater than 

ICP 28, ICPW 130, and FI but less than F2. The F3 (0.128) was less than ICP 28, 

ICPW 130, FI,  F2,and BClFl (Table 48). 

The estimates of d, h , i and I were significant (Table 49), however, the 

maximum contribution was from I (59.68 %) followed by h (37.28 %), i (2.48 %) in 

explaining the variation for this character (Table 46). 

FI mean (4.30 + 0.153) was greater than the mean of ICP 26 (4.0 f 0.21 1) 

but less than that of ICPW 125 (4.8f0.122). F2 mean (2.4f0.091) was less than the 

means of ICP 26, ICPW 125 and Fl.  The BClFl mean (ICP 26 x FI) (2.7f0.039) was 

less than the means of ICP 26, lCPW 125, and FI but greater than F2. The F3 (4.1 * 
0.023) was less than ICPW 125, and FI but greater than ICP 26, F2 and BCIFI (Table 

SO). 

Variance in FI (0.233) was less than that of ICP 26 (0.444) but greater than 

the variance in ICPW 125 (0.181). Variance in F2 (0.468) was greater than ICP 26, 207 



ICPW 125, 

variances in 

(0.130) was 

and FI. Variance in BCIFI (ICP 26 x Fl) (0.330) was less than the 

ICP 26 and F2 but @eater than that in ICPW 125 and F,. The F, variance 

less than ICP 26, ICPW 125, FI,  F2 and BCIFl (Table 51). 

The estimates of d, h , i and 1 were significant (Table 52) with maximum 

contribution was from h (45.56%) followed by 1 (30.49%), d (13.17%), and i 

(10.96%) in this character for explaining the variation (Table 46). 

Number of seeds per pod 

ICP 28 x ICPW 94 

FI mean (4.30 f 0.133) for number of seeds per pod was greater than ICP 28 

(3.25 f 0.13) and ICPW 94 (3.95 * 0.214). The F2mean (3.95 f 0.029) was less than 

ICPW 94, and FI but greater than ICP 28 means. The BClFl (ICP 28 x FI) mean 

(2.89f0.045) was less than ICP 28, ICPW 94, FI ,  and F2. The F3 mean (4.89 f 0.045) 

was greater than the means of ICP 28, ICPW 94, FI, F2 and BCIFI (Table 43). 

Variance in El (0.178) was similar to the variance in ICP 28 (0.18) but less 

than ICPW 94 (0.36). Variance in F2 (0.21) was greater than the variance in ICP 28, 

and FI but less than that in ICPW 94. Variance in BClFl (0.122) was less than ICP 

28, ICPW 94, Fl, and Fz. Variance in F3 (0.408) was greater than variances in ICPW 

94, ICP 28, F1, F2and BCIF, (Table 44). 

The estimates of d, h , i and I were significant (Table 45) with the maximum 

contribution from from 1(75.8%) followed by h (9.08 %), i (8.26 %), and d (6.81 %) 

in explaining the variation in this character (Table 46). 

ICP 28 x ICPW 130 

FI  mean (3.60 f 0.133) was less than ICP 28 (3.84 f 0.139) and ICPW 130 

(5.6 f 0.133). Ez mean (3.20 f 0.039) was less than ICP 28, ICPW 130, and FI .  The 

BCIFl (2.80 f 0.072) was less than ICP 28, ICPW 130, FI,  and Fz. The F3 mean (4.23 
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f 0.025) was greater than ICP 28, FI, F2, and BClFl but less than ICpW 130 (Table 

47). 

variance in FI (0.178) was equal to the variance in ICPW3130 (0.178) but 

less than that in ICP 28 (0.194). Variance in F2 (0.376) was greater than ICP 28, 

ICPW 130, and FI. Variance in BCIFI (0.288) was greater than in ICP 28, ICPW 

130, and FI  but less than F2. Variance in F3 (0.128) was less than variance in ICP 28, 

ICPW 130, FI, F2 and BCIFI (Table 48). 

The estimates of h, i and 1 were significant but the estimates of d (additive) 

was non-significant (Table 49), however, the maximum contribution was from h 

(65.06 %), followed by 1 (28.47 %) in explaining the variation in this character 

(Table 46). 

ICP26x ICPW I25 

FI mean (3.50 f 0.163) was less than means of ICP 26 (3.60 0.163) and 

ICPW 125 (5.40 1 0.163). F2 mean (2.50 1 0.091) was less than ICP 26, ICPW 125, 

and FI means. The BCIFl mean (2.69 f 0.039) was less than ICP 26, ICPW 125, and 

FI but greater than F2. The F3 (3.310.03) was less than ICPW 125, ICP 26, and FI but 

greater than F2, and BClFl means (Table 50). 

Variance in FI (0.266) was equal to the variance in ICP 26 (0.267) and 

lCPW 125 (0.267). Variance in Fl (0.465) was greater than the variances in ICP 26, 

ICPW 125, and FI. Variance in BCIFl (0.328) was greater than the variance in ICP 

26, ICPW 125, and FI but less than that in F2. Variance in F3 (0.209) was less than 

that in ICP 26, ICPW 125, BCIF~ ,  FI,  and F2 (Table 51). 

The estimates of d, h , i and I were significant (Table 52), however, the 

maximum contribution was from 1 (53.37 %) followed by h (42.77 %), d (3.46 %), 

explaining the variation in this character (Table 46). 



Number of priInar~ branches 

ICP 28 x ICP W 94 

FI mean (7.23 f 0.257) number of branches was less than ICP 28 (9.20 f 

0.133) and ICPW 94 (9.40 f 0.163). F2 mean (6.68 f 0.036) was less than ICP 28, 

ICPW 94 and FI means. The BCIFI (ICP 28 x FI)  (9.66 f 0.163) was greater than 

ICP 28, ICPW 94 and FI but Less than F2. The F, mean (6.09 f 0.089) was less than 

ICP 28, ICPW 94, F2, FI, and BCIFI (Table 43). 

Variance in Fc (0.661) was greater than the variance in ICP 28 

(0.178) and in ICP 94 (0.267). Variance in F~(1.33) was greater than the variance in 

ICP 28, ICPW 94, and FI. Variance in BCIFI (1.626) was greater than the variances 

in ICP 28, ICPW 94, Fz, and FI. Variance in F3 (1.629) was greater than variances in 

ICP 28, ICPW 94, FI,  F2, and BCIFI (Table 44). 

The estimates of d, h, i and I were significant (Table 45) the maximum 

contribution was from h (50.49 %) followed by d (43.70 %), 1 (5.8 %) in explaining 

the variation in this character (Table 46). 

ICP 28 x ICPW 130 

FI mean (8.30 & 0.249) was less than the means of ICP 28 (9.22 f 0.139) 

and ICPW 130 (10.20 f 0.133). F2 mean (7.3f0.106) was less than ICP 28, ICPW 

130, and Fl .  Mean in BCIFl (8.15 f 0.046) was less than the means of ICP 28, ICPW 

130, and FI  but greater than Fz. The F3 mean (4.3i0.04) was less than the means of 

ICP 28, ICPW 130, FI,  F2 and BClFl (Table 47). 

Variance in FI (0.622) was greater than the variances in ICPW 130 (0.178) 

but less than in ICp 28 (0.658). Variance in F2 (2.808) was greater than variances in 

ICP 28, ICPW 130, and FI. Variance in BClFl (1.121) was less than F2 but greater 

than the variances in FI,  ICp 28 and lCPW 130. Variance in F3 (1.365) was greater 



than FI. ICP 28, and ICPW 130 and BCIFI variances but less than variance in F2 

(Table 48) 

The estimates of d, h , i and I were significant (Table 49)- with maximum 

contribution was from i (52.59 %) followed by h (27.03 %), l(19.38 %), and d (1 .I9 

%) in explaining the variation in this character (Table 46). 

ICP 26 x ICPW 125 

FI mean (5.7 f 0.213) was less than ICPW 125 (7.6 i 0.163) but greater 

than ICP 26 (3.2 f 0.133). F2 mean (4.9f0.036) was less than ICPW 125, and FI but 

greater than ICP 26. The BCIPI mean (3.7f0.013) was less than ICPW 125, FI and 

F2 but greater than ICP 26. The F3 (4.3f0.04) was less than ICPW 125, F2 and FI but 

greater than ICP 26, and BCIFI (Table 50). 

Variance in FI (0.456) was greater than the variance in ICP 26 (0.178) and 

ICPW 125 (0.267). Variance in F2 (1.174) was greater than the variances in ICP 26, 

ICPW 125, and F1. Variance in BCIFl (0.137) was less than the variances in ICP 26, 

ICPW 125, F1, and FI.  Variance in F3 (1.307) was greater than the variances in ICP 

26, ICPW 125, BCIFI, F1,andFz (Table 51) 

The estimates of d, i and I were significant but h was non- significant (Table 

52) with the maximum contribution from d (44.69 %) followed by i (26.84 %) and I 

(21.49 %) in explaining the variation in this character (Table 46) 

Number of secondary branches 

ICP 28 x ICPW 94 

FI  mean (20.61*0.180) number of secondary branches was greater than ICP 

28 (12.40i0.267) and ICPW 94 (17.40f0.163). The F2 mean (13.92k0.059) was 

greater than ICP 28 but less than the means of ICPW 94, and FI means. The BCIFI 

(ICP 28 x F1) mean (6.1610.150) was less than the means of ICP 28, ICPW 94, FI, 
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and F2. The F3 mean (12.91f0.095) was less than the means of ICPW 94, FI, and F2 

but greater than ICP 28 and BClFl (Table 43). 

Variance in FI (1.32) was greater than the variance in ICP 28 (0.71 1) and 

lCpW 94 (0.267). Variance in F2 (3.87) was greater than the variance in ICP 28, 

ICPW 94 and FI. Variance in BCIFI (2.573) was greater than the variance in ICP 28, 

ICPW 94 and FI but less than the variance in F2. Variance in F3 (3.828) was greater 

than variance in ICP 28, ICPW 94, FI, and BClFl but less than that in F2 (Table 44) 

The estimates of h, i and 1 were significant but d was non - significant (Table 

45) with the maximum contribution from l(58.49 %) followed by i (28.25 %), and h 

(13.22 %), in explaining the variation in this character (Table 46). 

The FI mean (17.5 * 0.249) was greater than ICP 28 (4.61 f 0.139) and 

lCPW 130 (16.50 f 0.133). F2 mean (3.91t0.601) was less than the means of ICP 28, 

ICPW 130 and FI.  The BClFl mean (8.69 f 0.049) was less than ICPW 130, and FI 

but greater than ICP 28 and F2 means. The F3 mean (8.7i0.04) was equal to BCIFI 

but was less than, ICPW 130 and FI and greater than ICP 28 and F1 means (Table 

47). 

Variance in FI (1.622) was greater than in ICPW 130 (1.178) and in ICP 28 

(1.194). Variance in F2 (6.808) was greater than the variance in ICP 28, ICPW 130, 

and Fl. Variance in BCIFl (5.121) was less than variance in F2 but gteater than in 

ICP 28, ICPW 130, and FI. The F, (6.523) was greater than the variance in ICP 28, 

ICPW 130, F,,  and BCIFl but less than F~(Table 48). 

The estimates of d, h, i and I were significant (Table 49) with the maximum 

contribution from d (67.29 %) followed by 1 (30.38 %), i (2.09 %) in explaining the 

variation in this character (Table 46). 



ICP 26x ICPW 125 

Mean of FI (12.60f0.452) was equal to the mean of ICPW 125 (12.60 * 
0.163) but greater than ICP 26 (4.40 * 0.16). The F2 mean (6.7 f 0.122) was greater 

than the mean of ICP 26 but less than the means of ICPW 125 and FI . BCIFl mean 

(8.69 f 0.169) was less than ICPW 125, and FI but greater than ICP 26 and F2. The 

F, (9.27 f 0.072) was less than ICPW 125, and FI but greater than ICP 26, Fland 

BCIFI (Table 50). 

Variance in FI  (2.044) was greater than variance in ICP 26 (0.820), and 

ICPW 125 (1.267). Variance in F2 (4.57) was greater than the variance in ICP 26, 

ICPW 125, and FI.  Variance in BCIFI (5.865) was greater than variance in ICP 26, 

ICPW 125, F2, and FI.  Variance in F, (1.302) was greater than the variance in ICP 

26, ICPW 125, but less than Fz, BCIFI and FI (Table 51). 

The, estimates of d (, h, i and 1 were significant (Table 52) with the maximum 

contribution from d (80.48 %) followed by 1 (14.98 %) and i (2.'37 %) in explaining 

the variation in this character (Table 46). 

100 - seed weight 

ICP 28 x ICPW 94 

FI mean (5.53f0.112) 100 - seed weight was greater than ICPW 94 

(2.95i0.002) but less than ICP 28 (11.05f0.015). The F2 mean (4.96k0.016) was 

greater than the means of ICPW 94 but less than the mean of ICP 28 and FI. The 

BClF, (ICP 28 x FI )  (7.49*0.067) was less than ICP 28 but greater than the mean of 

ICPW 94, F1 and F2. The Fj mean (4.32f0.042) was less than ICP 28, FI and BCIFI 

but greater than ICPW 94 and F2 (Table 43). 

Variance in FI (0.12) was greater than the variances in ICP 28 (0.022) and 

ICPW 94 (0.01). The F2 (0.162) was greater than the variances of ICP 28, ICPW 94, 



Fl. Variance in BCIFI (0.276) was greater than ICP 28, ICPW 94. FI, and F2. F, 

variance (0.36) was greater than ICP 28, ICPW 94, FI,  F2. andBCIFl (Table 44). 

The estimates of d, h, 1 and i were significant (Table 45) maximum 

contribution from was from d (95.10 %) followed by h (4.67 %) and i and I being 

non- significant in explaining the variation in this character (Table 46). 

ICP 28x ICPW I30 

FI mean (5.97k0.119) was less than ICP 28 (1 1.06*0.014) but greater than 

ICPW 130 (2.33k0.001). F2 mean (5.50f0.052) was less than ICP 28, and FI but 

greater than ICPW 130 means. BCIFI (3.73f0.075) mean was less than ICP 28, FI 

and FZ but greater than ICPW 130. The F3 mean (7.70t0.060) was less than ICP 28 

but greater than ICPW 130, FI,  F2, and BClFl (Table 47). 

The Fl variance (0.412) was greater than the variances of ICPW 130 (0.014) 

and ICP 28 (0.042). The variance in F2 (0.675) was greater than ICP 28, ICPW 130, 

and FI .  Variance in BClFl (0.316) was less than FI and F2 but greater than ICP 28 

and ICPW 130. Variance in Fj (0.729) was greater than ICP 28, ICPW 130, FI, Fz, 

and BCIFl (Table 48). 

The estimates of d, h, i and 1 were significant (Table 49) with the maximum 

contribution was from d (98.59 %) but the contributions of I, h, and i were non- 

significant in explaining the variation in this character (Table 46). 

ICP 26 x ICPW 125 

FI mean (4.52k0.172) was less than ICP 26 (1 1.151k1.414) but greater than 

ICPW 125 (2.54f0.002). The F2 mean (3.9t0.271) was greater than ICPW 125 but 

less than ICP 26 and FI means. The BCIFl mean (7.63k0.259) was less than ICP 26 

but greater than ICPW 125, FI, and F2. The Fs (7.70f0.053) was less than ICP 26 but 

greater than ICpW 125, FI,  F2 and BCIFI (Table 50). 



Variance in FI (0.030) was greater than variance in ICP 26 (0.026) but less 

than in ICPW 125 (0.044). The F2 variance (0.073) was greater than the variances in 

F!, ICP 26 and ICPW 125..Variance in BCIFI (0.067) was greater than ICP 26 and 

ICPW 125 and F I  but less than and F2. Variance in F, (0.740) was greater than 

in ICP 26, ICPW 125, FI, F2, and BCIFI (Table 51). 

The estimates of d, h, i, were significant but I was non - significant (Table 52) 

from maximum contribution in explaining the variation was from d (98.56 %) 

followed by h (2.56 %) but the contributions of 1 and i were non- significant (Table 

46). 

Harvest Index 

ICP 28 x ICPW 94 

FI mean (5.41 + 0.259) harvest index was less than mean of ICPW 94 

(6.23k0.129) and ICP 28 (18.24 + 1.255). The F2 mean (5.27 k 1.259) was less than 

ICP 28, ICPW94 and FI means. BClFl (FI x ICP 28) mean (10.24 + 2.563) was 

greater than ICPW 94, FI, and F2 but less than ICP 28. The F3 mean (5.12 f 1.256) 

was less than the means of ICP 28, ICPW 94, FI,  F2 and BCIFI (Table 43). 

Variance in FI (0.278) was less than variance in ICP 28 (0.42) but greater 

than ICPW 94 (0.1 1). The F2 variance (2.56) was greater than variances in ICP 28, 

ICPW 94 and FI. Variance in BCIFl (1.45) was less than Fz but greater than the 

variance in ICP 28, ICPW 94 and FI. The F3 (2.56) was equal to F2 but greater than 

the variances in ICP 28, BCIFl, ICPW 94, and FI (Table 44). 

The estimates of d, h, i and I were significant with the maximum contribution 

(Table 45) from d (94.56 %) followed by h (3.56 %) but the contribution of i and I 

being non - significant in explaining the variation (Table 46). 



ICP 28 x ICPW 130 

FI mean (8.46 f 1.259) was less than the means O ~ I C P  28 (18.23 f 1.259) 

but greater than ICPW 130 (7.41 f 2.598). F2 mean (7.92 t 0.865) was lesk than ICP 

28 and FI but greaterthan ICPW 130. BCIFI (FI x ICP 28) mean (10.42 f 1.256) was 

less than ICP 28 but greater than ICPW 94, FI,  and F2. Fj mean (7.14 f 1.256) was 

less than the mean of ICP 28, ICPW 94, FI,  F2,and BClFl (Table 47). 

Variance in FI (0.682) was greater than ICP 28 (0.486) and ICPW 130 

(1.316). F2 (1.589) was greater than variance in ICP 28, ICPW 130, and FI .  BCIFl 

(1.256) was greater than ICP 28, ICP 130 and FI,  but less than F1 Variance in F, 

(1.26) was greater than ICP 28, ICPW 130, and FI,  but less than F2 and BCIFl (Table 

48). 

The estimates of d, h, i and I were significant (Table 49) with the maximum 

contribution from d (98.0%) in explaining the variation in this character (Table 46). 

ICP 26 x ICPW 125 

F1 mean (6.39 f 0.956) was less than ICP 26 (17.42 f 0.126) but greater than 

ICPW 125 (5.41 2 1.255). F2 mean (5.41 !: 0.256) was less than ICP 26 and F1 but 

equal to ICPW 125 mean. BClF, (8.46 k 0.549) mean was less than ICP 26 but 

greater than ICPW 125, Fl,  and Fz means. F3 mean (5.59k0.563) was less than the 

mean of ICP 26, FI and BCIFl but greater than ICPW 125 and F2 (Table 50). 

Variance in FI (1.158) was greater than the variance in ICP 26 (0.089) and 

ICPW 125 (0.124). Variance in F2 (4.456) was greater than the variance in ICP 26, 

lCPW 125, and FI .  Variance in BCIFl (4.512) was greater than the variance in ICP 

26, ICPW 125, FI ,  and F1. Variance in Fj (3.1 12) was greater than the variances in 

ICP 26, ICPW 125 and F, but less than F2, and BCIFI (Table 51). 



The estimates of d, h, i were significant but I was non - significant (Table 52) 

with maximum contribution in explaining the variation was from d (97.28 %) 

followed by h (2.54 %) in explaining the variation in this character (Table 46). 

Means and variances for different characters in four crosses 

In addition to the above three crosses, the means and variances were 

calculated and the heritability of different characters was determined in ICP 26 x 

ICPW 94, ICP 28 x ICPW 125 , ICP 26 x ICPW 130, ICP 28 x ICPW 141 crosses, 

ICP 26 x ICPW 94 

Means and variances for various characters are presented in Table 53 and 54. 

Days to flowering 

The FI plants mean (53.40 * 0.367) number of days to flower was less than 

ICP 26 (56.80 f0.163) but greater than mean of ICPW 94 (53.20 f 0.533). Fz mean 

(52.1f0.269) was less than the means of ICP 26, ICPW 94 and FI means 

respectively. 

Variance in ICP 26 (0.67) was less than ICPW 94 (2.844). Variance in FI 

(1.344) was greater than the variance in ICP 26 but less than ICPW 94. Fz variance 

(18.02) was greater than ICP 26, ICPW 94, and FI variances. 

Days to maturity 

The FI mean (96.80 f 0.307) number of days to maturity was less than ICP 

26 (103.0 f 0.21 1) but greater than ICPW 94 (85.60 * 1.12). F2 mean (94.2 f0.293) 

was less than the means of ICP 26 and FI but greater than ICPW 94. 

Variance in ICP 26 (0.444) was less than ICPW 94 (12.71). FI 

variance (0.944) was greater than the variance in ICP 26 but less than ICPW 94. F2 

variance (21.344) was greater than ICP 26, ICPW 94 and FI variances. 
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Table - 53: Means values for various characters of ICP 26 x ICPW 94 

branches 
100 seed weight (g) 
Harvest index 

11.16k 0.002 
16.25 k 0.586 

2.95 k0.002 
4.56k0.412 

4.44M.040 
5.26f0.256 

3.933.059 
.69f0.598 





Leaflet length 

The FI mean (5.20f0.056) leaflet length was in between the means of ICP 26 

(6.94f0.034) and ICPW 94 (4.84f0.016) but the FL mean (1.51 f 0.024) was less 

than ICP 26, ICPW 94, and FI means. 

Variance in FI (0.31 1) was greater than the variances in ICP 26 (0.01 1) and 

ICPW 94 (0.003). F2 variance (0.41) was greater than the variances in ICP 26, 

ICPW 94, and Fl. 

Leaflet width 

The FI  mean (3.20f0.026) leaflet width was between the means of ICP 26 

(3.58 f 0.013) and ICPW 94 (2.60 1 0.021). The F2mean (2.91f0.045) was less than 

the mean of ICP 26 and FI but greater than ICPW 94. 

Variance in FI (0.001) was equal to variances in ICP 26 (0.001) and ICPW 94 

(0.001). The variance in F2 plants (0.512) was greater than the variances in ICP 26, 

ICPW 94, and FI variance. 

Pod length 

The FI mean (3.67k0.033) was pod length between the means of ICP 26 

(5.18t0.099) and ICPW 94 (2.5010.021). The F2 mean (2.5310.024) was less than 

the mean of ICP 26 and FI but greater than ICPW 94. 

Variance in FI  (0.01 1) was less than the variance in ICP 26 (0.08) but greater 

than ICPW 94 (0.001). The variance in Fz plants (0.15) was greater than the 

variances in ICP 26, ICPW 94 and FI variance. 



Pod width 

The FI mean (0.80.f 0.016) pod width was greater than the means of ICP 26 

(0.62 f 0.013) and ICPW 94 (0.54 f 0.016). The F2 mean (0.76 f 0.01lJ was less 

than FI ,  but greater than the mean of ICP 26 and ICPW 94. 

Variance in FI (0.02) was equal to the variance in ICPW 94 (0.03) but greater 

than ICP 26 (0.02). The variance in F2 plants (0.033) was greater than the variances 

in ICP 26, ICPW 94 and FI. 

Pod bearing length 

The FI mean (9.5f0.335) pod bearing length was between ICP 26 

(4.79f0.185) and ICPW 94 (17.80f0.827). The Fz mean (9. 10f0.514) was greater 

than the mean of ICP 26 but less than the means of ICPW 94 and FI.  

Variance in FI (1.122) was less than the variance in ICPW 94 (3.61) but 

greater than ICP 26 (1.128). The variance in F2 plants (65.778) was greater than the 

variance in ICP 26, ICPW 94 and FI .  

Number of locules per pod 

The FI  mean (4.20 f 0.163) number of locules per pod was but greater than 

the means of ICP 26 (4.00 i 0.21 1 )  and ICPW 94 (4.00 + 0.21 1) .  The F2 mean (2.74 

t 0.05) was less than the means of ICP 26, ICPW 94, and FI. 

Variance in F, (0.267) was less than the variances in ICP 26 (0.32) and ICPW 

94 (0.444). Tne variance in F2 plants (0.63) was greater than the variances in ICP 26, 

ICPW 94 and F,.  



Number of seeds per pod 

The FI mean (4.3 * 0.15) number of seeds per pod was greater than the 

means of ICP 26 (3.6 * 0.163) and ICPW 94 (3.8f0.133). The F2 mean (2.43 f 

0.039) was less than the means of ICP 26, ICPW 94, and FI. 

Variance in FI (0.233) was less than the variances in ICP 26 (0.266) but 

greater than ICPW 94 (0.36). The variance in F2 plants (0.49) was greater than the 

variances in ICP 26, ICPW 94 and FI variance. 

Number of Primary branches 

The FI mean (5.21 f 0.348) number of primary branches was between the 

means of ICP 26 (3.2*0.133) and ICPW 94 (9.4f0.163). The Fz mean (4.89k0.057) 

was less than the means of ICPW 94 and F, but greater than ICP 26. 

Variance in FI ((1.21) was greater than the maximum ICP 26 (0.23) and 

ICPW 94 (0.27). The variance in F1 plants (0.82) was greater than the variances in 

ICP 26 and ICPW 94. 

Number of secondary branches 

The FI mean (18.40 It 0.636) mean number of secondary branches was 

greater than the means of ICP 26 (4.4 k 0.163) and ICPW 94 (17.4+ 0.163). The F2 

mean (13.8 f 0.14) was greater than ICP 26 but less than ICPW 94 and F1 means. 

Variance in F, (4.044) was greater than the variances in ICP 26 (0.57) and 

ICPW 94 (0.67). The variance in F2 plants (0.54) was greater than the variances ICP 

26, ICPW 94 and FI variance. 



Seed weight 

The FI mean (4.44 * 0.040) seed weight was less than ICP 26 (11.16 f 

0.002) but greater than ICPW 94 (2.95 f 0.002). The F2 mean (3.90 f 0.059) was 

less than the means of ICP 26, and FI but greater than ICPW 94. 

Variance in FI (0.016) was greater than the variances in ICP 26 (0.001) and 

ICPW 94 (0.001). The variance in F2 plants (0.888) was greater than the variances in 

ICP 26, ICPW 94 and FI . 

ICP 28 x ICPW 125 

Means and variances of the following characters are presented in Table 55 

and 56. 

Days to flower 

The Fl mean (71.6 k 0.22) number of days to flower was less than the mean 

of ICPW 125 (74.70 + 0.15) but greater than ICP 28 (66.40 f 0.163). F2 mean 

(70.91t0.168) was less than the means of ICPW 125, and FI means but greater than 

mean of ICP 28. 



Table -55: Means values for various characters of ICP 28 x ICPW 125 

branches 
100 seed weight (g) 
Harvest index 

l l.05M.018 
18.25kO.569 

2.54i0.001 
5.62t0.236 

5.66f0.049 
5.26f 1.256 

5.1iO.172 
4.12M.856 





Variance in ICPW 125 (0.259) was less than the variances in ICP 28 (0.266). 

Variance in FI (0.489) was greater than the variances in ICP 28 and ICPW 125. F2 

variance (5.647) was greater than ICP 28, ICPW 125 and FI variances. 

Days to maturity 

The FI mean (103.30 * 0.597) number of days to maturity was between ICP 

28 (97.81 k 0.442) and ICPW 125 (112.60 f 0.427). F2 mean (99.0 f 0.271) was 

greater than the mean of ICP 28 but less than ICPW 125 and FI . 

Variance in ICPW 125 (1.822) was less than the variance in ICP 28 (1.955). 

Variance in F I  (3.567) was greater than the variance in ICP 28 and ICPW 125. F2 

variance (14.817) was greater than ICP 28, ICPW 125 and FI.  

Leaflet length 

The F I  mean (5.27 i: 0.139) leaflet length was less than the means of ICP 28 

(6.36 i: 0.045) and ICPW 125 (5.34 k 0.030). F2 mean (1.40 + 0.023) was less than 

the means of ICP 28, ICPW 125, and F I .  

Variance in ICPW 125 (0.009) was less than the variances in ICP 28 

(0.020). Variance in F I  (0.124) was greater than the variances in ICP 28 and ICPW 

125. F2 variance (0.156) was greater than ICP 28, ICPW 125, and F I  variances. 

Leaflet width 

The F I  mean (2.22 i: 0.036) leaflet width was greater than the means of ICP 

28 (2.12 i: 0.013) and ICPW 125 (1.98 f 0.033). F2 mean (2.1 i: 0.035) was greater 

than ICPW 125 but was equal to the mean of ICP 28 but less than FI means. 

Variance in ICP 28 (0.002) was less than the variance in ICPW 125 (0.010). 

Variance in F I  (0.013) was greater than the variances in ICP 28 and ICPW 125. F2 

variance (0.250) was greater than ICP 28, ICPW 125, and F I  variances. 



Pod length 

The F1 mean (3.79 f 0.038) pod length was between ICP 28 (5.48 f 0.039) 

and ICPW 125 (2.54 f 0.015). F2 mean (2.37 f 0.037) was less than the means of 

ICP 28, ICPW 125, and FI .  

Variance in ICP 28 (0.015) was greater than the variance in ICPW 125 

(0.002). Variance in FI (0.014) was less than the variance in ICP 28 but greater than 

ICPW 125. FZ variance (0.276) was greater than ICP 28, ICPW 125, and FI 

variances. 

Pod width 

The FI  mean (1.12 f 0.033) pod width was greater than ICP 28 (0.54 f 

0.016) and ICPW 125 (0.69 f 0.010). F2 mean (0.83 f 0.031) was less than FI mean, 

but greater than ICP 28 and ICPW 125. 

Variance in 1CP 28 (0.002) was greater than the variance in ICPW 125 

(0.001). Variance in F, (0.01 1) was greater than the variance in ICP 28 and ICPW 

125. F2 variance (0.195) was greater than ICP 28, ICPW 125, and FI variances. 

Pod bearing length 

The F, mean (12.30 f 0.578) pod bearing length was in between ICP 28 

(4.50 k 0.224) and ICPW 125 (14.10 i 0.407). F2 mean (1 1.72 f 0.424) was greater 

than ICP 28 but less than ICPW 125, and FI mean. 

Variance in ICP 28 (0.50) was less than ICPW 125 (1.655). Variance in FI 

(3.344) was greater than ICP 28 and ICPW 125. F2 variance (36.123) was greater 

than ICP 28, ICPW 125, and FI variances. 



Number of locules per pod 

The FI mean (4.40 f 0.163) number of locules per pod was in between ICP 

28 (3.8 f 0.13) and ICPW 125 (4.7 i 0.15). F2 mean (2.4 f 0.04) was less than ICP 

28, lCPW 125, and FI  mean. 

Variance in ICP 28 (0.178) was less than ICPW 125 (0.233). Variance in Ft 

(0.267) was greater than ICP 28 and ICPW 125. F2 variance (0.374) was beater than 

ICP 28, ICPW 125, and FI variances. 

Number of seeds per pod 

The FI mean (4.4 f 0.163) number of seeds per pod was between ICP 28 

(3.8f0.133) and ICPW 125 (5.40 f 0.163). F2 mean (2.47 f 0.044) was less than 

ICP 28, ICPW 125, and F1 mean. 

Variance in ICP 28 (0.178) was less than ICPW 125 (0.267). Variance in F1 

(0.267) was equal to ICPW 125 but greater than ICP 28. Fz variance (0.388) was 

greater than ICP 28, ICPW 125, and FI variances. 

Number of primary branches 

The FI mean (7.3f0.21) number of primary bmaches was less than ICP 28 

(9.2f0.13) and ICPW 125 (7.7f 0.15). F2 mean (7.0f0.02) was less than the means 

of ICP 28. ICPW 125, and FI . 

Variance in ICP 28 (0.178) was less than the variances in ICPW 125 

(0.233). Variance in FI (1.456) was greater than the variances in ICP 28 and lCPW 

125. F2 variance (2.059) was greater than ICP 28, ICPW 125, and FI variances. 

Number of secondary branches 



The FI mean (13.90 f 0.433) number of secondary branches was gnater than 

ICP 28 (2.4M.27) and ICPW 125 (12.7M.15). FI mean (6.7M.07) was less than 

ICPW 125 and FI mean, but greater than ICP 28. 

Variance in ICP 28 (0.711) was greater than the variance in ICPW 125 

(0.233). Variance in FI (1.878) was greater than ICP 28 and ICPW 125. F2 variance 

(3.936) was greater than the variances in ICP 28, ICPW 125, and FI variances. 

100-seed weight (g) 

The FI mean (5.66f0.049) 100- seed weight was less than ICP 28 

(11.05~0.018) but greater than ICPW 125 (2.54+0.001). F2 mean (5.1k0.172) was 

less than ICP 28, and FI but greater than ICPW 125 mean. 

Variance in ICP 28 (0.002) was geater than the variance in ICPW 125 

(0.000). Variance in FI (0.025) was greater than the variance in ICP 28 and ICPW 

125. F2 variance (5.92) was geater than ICP 28, ICPW 125, and FI variances 

ICP 26 x ICPW 130 

Means of the following characters are presented in Table 57 and variances in 

Table 58. 

Days to flower 

The FI  mean (61.6f0.65) number of days to flower was in between ICP 26 

(57.0f0.26) and ICPW 130 (69.8f0.83). F2 mean (59.7f0.09) was greater than ICP 

26, but less than ICPW 130, and FI means respectively. 

Variance in ICP 26 (0.667) was less than ICPW 130 (0.844). Variance in FI 

(4.273) was greater than ICP 26 but less than ICPW 94. F2 variance (23.289) was 

greater than ICP 26, ICPW 130, and FI variances. 



Table - 57: Means values for various characters of ICP 26 x ICPW 130 

branches 
I00 seed weight (g) 
Harvest index 

11.00i0.002 
17.25M.254 

2.95f0.002 
5.64f0.259 

5.6f0.044 
4.35f0.225 

5.1f0.059 
4.59f0.546 





Days to maturity 

The FI mean (108.7 f 1.18) number of days to maturity was greater than ICP 

26 (103.0 f 0.18) but less than ICPW 130 (123.4 f 0.81) Fz mean (106.7 f 0.31) 

was less than FI, and ICPW 130 means but greater than the means of ICP 26. 

Variance in ICP 26 (0.322) was less than the variance in ICPW 130 (6.489). 

Variance in FI (13.818) was greater than the variances in ICP 26 and ICPW 94. F2 

variance (17.232) was greater than ICP 26, ICPW 130, and FI variances. 

Leaflet length 

The FI  mean (5.52 t 0.052) leaflet length was equal to ICPW 130 (5.51 f 

0.038) but less then ICP 26 (7.00 * 0.037). F2 mean (4.62 k 0.059) was less than ICP 

26, ICPW 130, and FI means respectively. 

Variance in ICP 26 (0.014) was equal to ICPW 130 (0.014). Variance in FI 

(0.028) was greater than ICP 26 and ICPW 130. F2 variance (0.874) was greater than 

ICP 26, ICPW 130, and FI variances. 

Leaflet width 

The FI mean (2.73 f 0.020) leaflet width was less than ICP 26 (3.60 f 0.01 1) 

and ICPW 130 (3.18 f 0.039). F2 mean (1.51 f 0.027) was less than ICP 26, ICPW 

130, and FI means respectively. 

Variance in ICP 26 (0.001) was less than the variance in ICPW 130 (0.015). 

Variance in FI  (0.004) was less than ICPW 130 but greater than ICP 26. F2 variance 

(0.141) was greater than ICP 26, ICPW 130, and FI variances. 



Pod length 

The FI mean (3.41 f 0.060) pod length was in between ICP 26 (5.31 f 

0.088) and ICPW 130 (2.21 f 0.038). F2 mean (2.53 f 0.224) was less than ICP 26, 

and FI but greater than ICPW 130 means respectively. 

Variance in ICP 26 (0.078) was greater than ICPW 130 (0.014). Variance in 

FI (0.036) was less than ICP 26 but greater than ICPW 130. F2 variance (0.149) was 

greater than ICP 26, ICPW 130, and FI variances. 

Pod width 

The FI mean (0.77 * 0.020) pod width was greater than ICP 26 (0.60 f 0.015) 

and ICPW 130 (0.73 f 0.015). F2 mean (0.76 f 0.011) was less than FI mean but 

greater than ICP 26 and ICPW 130 respectively. 

Variance in ICP 26 (0.002) was equal to ICPW 130 (0.002). Variance in FI 

(0.004) was greater than ICP 26 and ICPW 130. F2 variance (0.033) was greater than 

ICP 26, ICPW 130, and FI variances. 

Pod bearing length 

The FI mean (10.20 f 0.426) pod bearing length was greater than mean of 

ICP 26 (5.70 f 0.335) but less than ICPW 130 (18.40 f 0.859) mean . F2 mean 

(19.31 f 0.051) was greater than ICP 26 ICPW 130 and FI means respectively. 

Variance in ICP 26 (1.122) was less than the variance in ICPW 130 (7.378). 

Variance in FI (0.164) was less than ICP 26 and ICPW 130. F2 variance (64.776) 

was greater than the variances in ICP 26, ICPW 130, and FI variances. 



Number of locules per pod 

The FI mean (3.8 f 0.13) number of locules per pod was in between ICP 26 

(4.1 f 0.18) and ICPW 130 (5.2 * 0.13). F2 mean (2.7 f 0.04) was less than ICP 26, 

ICPW 130, and FI means respectively. 

Variance in ICP 26 (0.322) was greater than the variances in ICPW 130 

(0.178). Variance in FI (0.164) was less than the variances in ICP 26 and ICPW 130. 

F2 variance (0.448) was greater than ICP 26, ICPW 130, and FI variances. 

Number of seeds per pod 

The FI mean (3.6 k 0.16) number of seeds per pod was equal to ICP 26 (3.6 f 

0.16) but less than ICPW 130 (5.2 * 0.13). F2 mean (2.5 k 0.04) was less than ICP 

26, ICPW 130, and FI means respectively. 

Variance in ICP 26 (0.267) was greater than the variances in ICPW 130 

(0.178). Variance in FI (0.255) was less than ICP 26 but greater than the variances in 

ICPW 130. F2 variance (0.476) was greater than ICP 26, ICPW 130, and FI 

variances. 

Number of primary branches 

The FI  mean (8.3 f 0.25) number of primary branches was greater than ICP 

26 (3.3 * 0.15) but less than lCPW 130 (10.2 * 0.13). F2 mean (8.0 k 0.07) was less 

than ICPW 130, and FI means but greater than ICP 26 mean respectively. 

Variance in ICP 26 (0.233) was greater than the variances in ICPW 130 

(0.178). Variance in FI (0.61 8) was greater than the variances in ICP 26 and ICPW 

130. F2 variance (1.1 12) was greater than ICP 26, ICPW 130, and FI variances. 



Number of secondary branches 

The FI mean (17.3 f 0.25) number of secondary branches was greater than 

ICP 26 (4.4 f 0.15) and ICPW 130 (16.3 * 0.13). F2 mean (3.8 f 0.07) was leks than 

ICPW 130, ICP 26, and FI means respectively. 

Variance in ICP 26 (0.233) was less than the variance in ICPW 130 (1.178). 

Variance in FI (2.618) was greater than the variances in ICP 26 and ICPW 130. F2 

variance (3.1 12) was greater than ICP 26, ICPW 130, and FI variances. 

100 -Seed weight 

The FI mean (5.6 f. 0.04) 100-seed weight was less than ICP 26 (1 1.00 f 

0.002) but greater than ICPW 130 (2.95 f 0.002). F2 mean (5.1 f 0.06) was less than 

ICP 26 and FI but greater than ICPW 130 means, respectively. 

Variance in ICP 26 (0.002) was greater than ICPW 130 (0.001). Variance in 

F I  (0.007) was greater than ICP 26 and ICPW 130. F2 variance (0.885) was greater 

than ICP 26, ICPW 130, and FI variances. 

ICP 28 x ICPW I41 

Means of the following characters are presented in Table 59 and variances in 

Table 60. 

Days to flower 

The FI mean (60.1 i 0.48) number of days to flower was less than ICP 28 

(66.4 + 0.16) and ICPW 141 (69.0 k 0.37). F2 mean (59.1 ?: 0.20) was less than FI 

mean but less than ICP 28 and lCPW 141 means respectively. 

Variance in ICP 28 (0.267) was less than the variances in ICPW 141 (1.33). 

Variance in FI (2.322) was greater than the variance in ICP 28 and ICPW 141. F2 

variance (9.764) was greater than ICP 28, ICPW 141, and FI variances. 
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Table - 59: Means values for various characters of ICP 28 x ICPW 141 

I 
' Character 

I 

branches 
No. of locules 1 pod 
No. of pods / pod 
100 seed weight (g) 
Harvest index 

ICP 28 
mean f SE 

3.80 f 0.133 
3.90f0.133 
11.05f 0.014 
18.21f 0.568 

lCPW 141 
mean f SE 

5.20 f 0.133 
4.90i0.163 
2.07 f 0.005 
5.48 f 0.253 

FI 
mean * SE 

FI 
mean f SE 

4.40f0.163 
4.40t0.213 
4.54f0.027 
5.63M.536 

2.82f0.039 
2.37M.035 
3.92f0.052 
5.14M.569 





Days to maturity 

The FI mean (96.5 * 0.39) number of days to maturity was less than ICP 28 

(97.8 f 0.44) and ICPW 141 (104.6 * 0.62). F2 mean (95.1 f 0.14) was less than ICP 

28, ICPW 141, and FI means respectively. 

Variance in ICP 28 (1.956) was less than the variances in ICPW 141 (3.822). 

Variance in FI (1.556) was less than ICP 28 and ICPW 141. Fz variance (4.797) was 

greater than ICP 28, ICPW 141 and FI variances. 

Leaflet length 

The FI mean (5.22 * 0.029) leaflet length was in between ICP 28 (6.36 f 

0.045) and ICPW 141 (4.72 f 0.049). F2 mean (3.71 t 0.046) was less than ICP 28, 

ICPW 141, and F1 means respectively. 

Variance in ICP 28 (0.020) was less than the variances in ICPW 141 (0.024). 

Variance in FI (0.008) was less than ICP 28 and ICPW 141. F2 variance (0.533) was 

greater than ICP 28, ICPW 141 and FI variances. 

Leaflet width 

The F, mean (3.06 * 0.052) leaflet width was greater than ICP 28 (2.12 f 

0.013) and ICPW 141 (1.70 f 0.042). F2 mean (1.33 f 0.017) was less than ICP 28, 

ICPW 141, and FI means respectively. 

Variance in ICP 28 (0.002) was less than lCPW 141 (0.018). Variance in FI 

(0.027) was greater than ICP 28 and ICPW 141. F2 variance (0.072) was greater than 

ICP 28, ICPW 141, and FI variances. 



Pod length 

The FI mean (3.93k0.047) pod length was in between the means of ICP 28 

(5.48 f0.039) and ICPW 141 (2.18k0.025). F2 mean (2.90-fO.037) was less than ICP 

28 and FI,  but greater than ICPW 141 means respectively. 

Variance in ICP 28 (0.015) was greater than ICPW 141 (0.006). Variance in 

FI (0.022) was greater than ICP 28 and ICPW 141. F2 variance (0.337) was greater 

than ICP 28, ICPW 141, and FI variances. 

Pod width 

The FI mean (0.77 It 0.021) was greater than ICP 28 (0.54 f 0.016) and 

ICPW 141 (0.68 f 0.025). F2 mean (0.72 f 0.006) was less than FI,  but greater than 

ICPW 141 and ICP 28 means respectively. 

Variance in ICP 28 (0.002) was less than ICPW 141 (0.006). Variance in FI 

(0.004) was greater than ICP 28 but less than ICPW 141. F2 variance (0.012) was 

greater than ICP 28, ICPW 141 and FI variances. 

Pod bearing length 

The FI mean (14.3 f 0.34) pod bearing length was greater than means of ICP 

28 (5.9 k 0.23) but less than ICPW 141 (17.4 k 0.40). F2 mean (13.1 f. 0.15) was 

greater than ICP 28 but less than the mean of ICPW 141 and FI respectively. 

Variance in ICP 28 (2.50) was greater than the variances in ICPW 14 I (1.60). 

Variance in FI (1.12) was less than the variance in ICP 28 and ICPW 141. F2 

variance (5.78) was greater than ICP 28, ICPW 141, and FI variances. 



Number of locules per pod 

The FI mean (4.4f0.16) number of locules per pod was greater than ICP 28 

(3.8f0.13) but less than ICPW 141 (5.2fl.I3).,F2 mean (2.8f0.04) was less than the 

mean of ICP 28, ICPW 141 and FI respectively. 

Variance in ICP 28 (0.18) was less than the variances in ICPW 141 (0.27). 

Variance in FI (0.62) was greater than ICP 28 and ICPW 141. F2 variance (2.81) was 

greater than ICP 28, ICPW 141, and FI variances. 

Number of seeds per pod 

The FI mean (4.4 f 0.21) number of seeds per pod was greater than ICP 28 

(3.9 f 0.13) but less than ICPW 141 (4.9 * 0.16). F2 mean (2.4 f 0.04) was less than 

the mean of ICP 28, ICPW 141 and FI respectively. 

Variance in ICP 28 (0.18) was less than ICPW 141 (0.27). Variance in FI 

(2.44) was greater than ICP 28 and ICPW 141. F2 variance (4.73) was greater than 

ICP 28, ICPW 141 and FI variances. 

Number of primary branches 

The Fl mean (6.3 + 0.25) number of primary branches was greater than the 

means of ICP 28 (5.2 i! 0.13) and ICPW 141 (4.4 i! 0.16). Fl mean (9.3 k 0.1 I) was 

greater than mean of ICP 28 , ICPW 141 and FI respectively. 

Variance in ICP 28 (0.18) was equal to variance in ICPW 141 (0.18). 

Variance in FI (0.27) was greater than ICP 28 and ICPW 141 variances. Fz variance 

(0.38) was greater than ICP 28, ICPW 141, and FI variances. 

Number of secondary branches 

The F, mean (20.3 i! 0.49) number of secondary branches was greater than 

the mean of ICP 28 (6.4 * 0.27) but less than mean of ICPW 141 (34.4 f 0.16). F1 
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mean (6.8 f 0.14) was greater than mean of ICP 28 but less than ICPW 141 and FI 

means. 

Variance in ICP 28 (0.71) was greater than ICPW 141 (0.27). Variance in FI 

(0.46) was greater than ICP 28 and ICPW 141. F2 variance (4.56) was greater than 

ICP 28, ICPW 141 and FI variances. 

100 -Seed weight 

The FI mean (4.54f0.027) 100 - seed weight was greater than the mean of 

ICPW 141 (2.07f0.005) but less than mean of ICP 28 (1 1.05 t 0.014). F2 mean (3.92 

f 0.052) was greater than mean of ICPW 141 but less than ICP 28 and FI means. 

Variance in ICP 28 (0.02) was greater than variance in ICPW 141 (0.01). 

Variance in FI (0.03) was greater than ICP 28 and ICPW 141. F2 variance (0.67) was 

greater than ICP 28, ICPW 141 and FI variances. 

Harvest Index 

The FI mean (5.63 f 0.536) was greater than the mean of ICPW 141 (5.48 * 
0.253) but less than the mean of ICP 28 (18.21 * 0.568). F2 mean (5.14 * 0.569) was 

less than the mean of ICP 28, ICPW 141 and FI. 

Variance in ICP 28 (0.25) was greater than ICPW 141 (0.21). Variance in FI 

(0.35) was greater than ICP 28 and ICPW 141. Fl variance (4.26) was greater than 

ICP 28, ICPW 141 and FI variances. 

Heritability 

Heritability was calculated for different characters on the population obtained 

from seven crosses involving four C. scrabaeoides parents (ICPW 94, ICPW 125, 

ICPW 130 and ICPW 141) and two Pigeonpea varieties (ICP 26 and ICP 28). 



Heritability values for all characters are presented in Tables 44, 48, 51, 54, 56, 58 and 

60 

For days to flower variance in F2 population was greater than the variances in 

both the parents and their FIS in all the four crosses involving ICP 28 parent and three 

crosses involving the ICP 26 parent. Broad sense heritability for days to flower ranged 

from 79.32 % in ICP 28 x ICPW 94 to 96.05 % in ICP 28 x ICPW 130 and fiom 88.26 

%in ICP 26 x ICPW 125 to 91.66 % in ICP 26 x ICPW 130. 

For days to maturity, the variance in F2 population was greater than the 

variances in both the parents and their Fls for all the four crosses involving ICP 28 

parent ind three crosses involving ICP 26 parent. Broad sense heritability, for days to 

maturity, ranged, from 48.42 % in ICP 28 x ICPW 125 to 79.58 % in ICP 28 x ICPW 

141 and from 60.09 % in ICP 26 x ICPW 130 to 90.81 % in ICP 26 x ICPW 125. 

For leaflet length, the variance in Fz population was greater than the variances 

in both the parents and their Fls for all the four crosses involving ICP 28 and three 

crosses involving the ICP 26. Broad sense heritability for leaflet length ranged from 

60.30 % in ICP 28 x ICPW 141 to 96.85 % in ICP 28 x ICPW 125 and from 80.65 % 

in ICP 26 x ICPW 125 to 92.1 1 % in ICP 26 x ICPW 94 .  

For leaflet width, the variance in Fa population was greater than the variances 

in both the parents and their Fls for all the four crosses involving ICP 28 parent and 

three crosses involving the ICP 26. Broad sense heritability ranged from 55.56 % in 

ICP 28 x ICPW 130 to 93.76 % in ICP 28 x ICPW 141 and 6om 81.56 % in ICP 26 x 

ICPW 130 to 98.18 % in ICP 26 x ICPW 94. 

For pod length, the variance in F2 population was greater than the variances in 

both the parents and theirFls for all the four crosses involving ICP 28 parent and three 

crosses involving the ICP 26 parent. Broad sense - heritability ranged from 55.00 % in 

ICP 28 x ICPW 130 to 93.14 % in ICP 28 x ICPW 141 and from 70.25 % in ICP 26 x 

ICPW 125 to 79.33 % in ICP 26 x ICPW 94. 
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For pod width, the variance in Fz population wss greater than the variances in 

both the parents and their FIS for all the four crosses involving ICP 28 parent and thm 

crosses involving the ICP 26 parent. Broad sense - heritability for pod width ranged 

from 68.93 % in ICP 28 x ICPW 94 to 88.89 % in ICP 28 x ICPW 141 and from 43.43 

% in ICP 26 x ICPW 130 to 89.82 % in ICP 26 x ICPW 125. 

For pod bearing length, the variance in F2 population was greater than the 

variances in both the parents and their Fls for all the four crosses involving ICP 28 

parent and three crosses involving the ICP 26 parent. Broad sense heritability for pod 

bearing length ranged from 69.89 % in 1CP 28 x ICPW 125 to 93.09 % in ICP 28 x 

ICPW 141 and from 73.63 %in ICP 26 x ICPW 125 to 97.03 % in ICP 26 x ICPW 94. 

For number of locules per pod, the variance in FZ population was greater than 

the variances in both the parents and their Fls for all the four crosses involving ICP 28 

parent and three crosses involving the ICP 26 parent. Broad sense heritability ranged 

from 44.47 % in ICP 28 x ICPW 141 to 87.31 % in ICP 28 x ICPW 125 and from 

38.81 % in ICP 26 x ICPW 125 to 50.59 %in ICP 26 x ICPW 130. 

For number of seeds per pod, the variance in Fr population was greater than the 

variances in both the parents and their Fls for all the four crosses involving ICP 28 

parent and three crosses involving the ICP 26 parent. Broad sense heritability ranged 

from 38.30 % in ICP 28 x ICPW 141 to 79.63 % in ICP 28 x ICPW 125 and from 

27.06 % in ICP 26 x ICPW 94 to 50.98 % in ICP 26 x ICPW 130. 

For number of primary branches, the variance in F2 population was greater than 

the variances in both the parents and their Fls for all the four crosses involving ICP 28 

parent and three crosses involving the ICP 26 parent. Broad sense heritability ranged 

from 63.75 % in ICP 28 x ICPW 141 to 82.62 % in ICP 28 x ICPW 130 and from 

30.45 % in ICP 26 x ICPW 94 to 74.1 1% in ICP 26 x ICPW 125. 

For number of secondary branches, the variance in FZ population was greater 

than the variances in both the parents and their Fls for all the four crosses involving 
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ICP 28 parent and three crosses involving the ICP 26 parent. Broad sense - heritability 

ranged from 75.06 % in ICP 28 x ICPW 141 to 89.47 % in ICP 28 x ICPW 125 and 

from 64.20 % in ICP 26 x ICPW 94 to 92.99 % in ICP 26 x ICPW 130. 

For 100- seed weight, the variance in Fz population was greater than the 

variances in both the parents and their F ~ s  for all the fow crosses involving ICP 28 

parent and three crosses involving the ICP 26 parent. Broad sense heritability ranged 

from 66.55% in ICP 28 x ICPW 125 to 77.04% in ICP 28 x ICPW 130 and from 

54.79% in ICP 26 x ICPW 125 to 88.76% in ICP 26 x ICPW 94. 

For harvest index, the variance in F2 population was greater than the variances 

in both the parents and respective FI'S for all the fow crosses involving ICP 28 parent 

and three crosses involving the ICP 26 parent. Broad sense heritability for harvest 

weight ranged from 63.14% in ICP 28 x ICPW 141 to 76.56% in ICP 28 x ICPW 94 

and fiom 68.65% in ICP 26 x ICPW 94 to 73.92% in ICP 26 x ICPW 125. 

Inheritance of qualitative characters 

The inheritance pattem of the qualitative characters (Plant growth habit, 

leaflet shape, seed strophiole, seed mottleness, pod hairiness) has been determined 

based on the results obtained from the seven interspecific crosses (ICP 28 X ICPW 

94, ICP 28 X ICPW 125, ICP 28 X ICPW 130, ICP 28 X ICPW 141, ICP 26 X 

ICPW 94, ICP 28 X ICPW 125 and ICP 28 X ICPW 141). 

Plant growth habit 

The seven different FI hybrids obtained from the seven different crosses 

involving different accessions of C, scarabaeoides and C. cajan varieties, exhibited 

semi- spreading plant habit, an intermediate type between the erect plant habit of C. 

cajan and spreading habit of C. scarabaeoides. The F2 population of all crosses 

involving ICP 28 and ICP 26, the cultivated parents, with the wild C, scarabaeoides 

accessions, a good fit was observed for the I: 2: 1 segregation ( X 2  = 7.66; P = 0.01- 



0.005) to erect: intermediate: spreading (Fig. 28) respectively, suggests that a single 

gene governs plant habit and is partially dominant/codominant natwe (Table 61) 

Stem color 

The stems of FI hybrids, in all the seven crosses , had a mixed stem color, 

between the green color of wild accessions and the purple of C.cajan. The F2 ratio in 

these crosses showed a good fit for 1:2:1, to green : mixed : purple ( 2 = 0.846; P = 

0.25 - 0.45) suggests the incomplete dominance of the gene controlling the stem 

color (Table 62). 

Leaflet shape 

The FI hybrids of all the seven crosses had an intermediate leaflet shape, 

between the obovate leaflet of the C. scarabaeoides and lanceolate leaflet of C. cajan 

. F1 ratio in these crosses showed a good fit for 1:2:1 to obovate: intermediate: 

lanceolate ( 2  = 0.650; P = 0.10-0.25) respectively, suggests the partial 1 co- 

dominance natwe of a single gene (Table 63). 

Seed Moiileness 

The FI mottled seed of all crosses indicated that the mottleness of C. 

scarabaeoides is dominant over the nonmottled natwe of C. cajan . In all the seven 

crosses, the Fz data contributed a good fit of 9:7 ratio (2 = 0.077; P = 0.75-0.90) 

indicating the involvement of two complementary genes in the expression of the 

mottleness (Table 64). 

Seed strophiole 

Seed strophiole is present in C. scarabaeoides accessions and absent in the C. 

cajan varieties. Strophioles were present in all the F1 hybrid seeds. The F2 population 

gave a good fit for 13 (strophioled): 3 (non-strophioled) ( 2 = 1.859; P = 0.10-0.25) 

indicating the inhibitory gene action governing the expression of this character 

(Table 65). 
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Table 61: Segregation of the FZ plants for plant habit 

Total No. of Segregation of X' value 
Cross ccajan Wild F1 plants in F, F~plants (1: 2: 1) P value 

Table 62 : Segregation of the Fz plants for stem color 



Table 63: Segregation of the F2 plants for Leaflet shape 

I 1 1970 1 476 1 1013 1 481 1 0.650 1 0.10-0.25 
L = lanceolate; 0 = Obovate; I = Intermediate; X2 heterogenity = 2.755; P value = 0.05- 0.10 

Table 64: Segregation of the Fz plants for mottleness of seed 



Table 65: Segregation of the Fz plants for strophiole on seed 

Total No. of Segregation X2 valu 
Cross Cacajan Wild FI plants in Fz in F2 (13:3) 

Table 66: Segregation of the F2 plants for pod hairiness 



Pod hairiness 

C. scarabaeoides accessions had hairy pods compared to the pods of 

C. cajan varieties (Fig. 31). In all the FI hybrids the hairiness of pads was dominant 

over the non-hairy nature of the Pigeonpea pods. The FI data, on all the seven 

crosses, showed a good fit of 3 (hairy): I (non-hairy) (X2 = 1,192; P = 0.25-0.50), 

indicating that a single dominant gene controls the pod hairiness (Table 66). 

Inheritance of trichome A, B, C and D 

Inheritance pattern of density and types of trichornes was studied in two 

crosses ICP 28 x ICPW 94 and ICP 26 x ICPW 125. Density on pods of 

C.scarabaeoides, FI and F2 pods are shown in Figure 3 1. 

Density of trichome A (glandular hair) (Fig. 21) on pigeonpea (ICP 28 and 

ICP 26) pods was higher than the density on C. scarabaeoides (ICPW 94 and ICPW 

125) pods. Density of trichome A on FI pods was similar to the C. scarabaeoides 

pods in both the crosses. In F2 generation, the mean density of trichome A was 

greater than the mean of C. scarabaeoides accessions, ICPW 94 and I or ICPW 125, 

but less than the C, cajan genotypes ICP 26 and I or ICP 28. In the backcross 

progeny (BCIF1), the mean density of trichome A was in between the densities of C. 

scarabaeoides parent and the pigeonpea parent, but greater than the FI and F2 means 

in both crosses (ICP 28 x (ICP 28 x ICPW 94) and (ICP 26 x (ICP 26 x ICPW125). 

(Table 67) 

The FI pods in both the crosses ICP 28 x ICPW 94 and ICP 26 x ICWP 125 

resembled the C. scarabaeoides pods indicating the dominance of the features of 

wild parent. Further, the 250 F2 plants screened in each cross, segregated to give a 

good fit of 3 (low density): 1 (high density) in cross ICP 28 x ICPW 94 (x' = 0.033; 

P= 0.75-0.90) (Table 68) and in cross ICP 26 x ICPW 125 (2 = 0.432; P = 0.50- 

0.70), indicating that the low density of trichome A is controlled by of a single 

dominant gene (Table 69). Further, the 75 plants screened in the backcross 
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Fig. 3 1 .  Electronmicrographs o f  pod wall surface 

a) C. scarabaeoides (ICPW 94) 

6) F I  hybrid (ICP 28 x ICPW 94) 

C) Fz segregarlt (ICP 28 x ICPW 94) 





generation gave a good fit of 1 (low density): 1 (high density) in cross ICP 28 x 

ICPW 94 (?= 0.654 P = 0.25-0.50) and in cross ICP26 x ICPW125 (2 = 0.334; P = 

0.50 - 0.75) (Table 69). Overall, both the crosses also fined well to a 3 (low density): 

1 (high density) ratio in F2 (2 = 0.384; P = 0.50 - 0.75) and 1: 1 ratio in the 

backcross generation (2 = 0.027; P = 0.75 - 0.90) confirming a monogenic 

inheritance (Table 70). The 2 due to heterogeneity was non-significant in both the 

crosses, F2 (2 =0.015; P = 0.90-0.95) and their respective backcross generations (? 
=0.961; P = 0.25 -0.50), indicating similarity of segregation in both the crosses. 

Density of trichome B (glandular hair) (Fig. 20) was more on the pods of 

C. scarabaeoides accessions than on the pigeonpea pods. ' h e  FI mean, was more the 

than mean of C. cajan , ICP 28, but less than the mean of C. scarabaeoides, ICPW 

94 in cross ICP 28 x ICPW 94. However, in cross ICP 26 x ICPW 125, the FI mean 

was equal to the mean of ICPW 125 and greater than ICP 26 mean. In the F2 

generation, the mean density of trichome B was higher than the means of ICP 26 and 

ICP 28, but less than the ICPW 94 and ICPW 125 means. In the backcross 

generation (ICP 28 x (ICP 28 x ICPW 94) and (ICP 26 x (ICP 26 x ICPW125) 

crosses, the mean density of trichome B was greater than the C. cajan mean but less 

than the means of C. scarabaeoides, FI and Fz(Table 67) . 

FI pods in both the interspecific crosses resembled the 

C. scarabaeoides pods, having higher density of trichome B. Further, the pods of 250 

F2 plants in each cross gave a good fit of I (low density): 3 (high density) in cross 

ICP 28 x ICPW 94 ( 2 = 1.181 P = 0.10-0.25) ( Table 68) and in cross ICP 26 x 

ICPW 125 ( 2 = 0.133 P = 0.50-0.75) (Table 69) . Further, 75 plants of the 

backcross progeny screened in each cross showed a good fit of 1 (low density) : 1 

(high density) in cross ICP 28 x ICPW 94 ( 2 = 0.654 P =0.25-0.05) and in cross 

ICP 28 x ICPW 125 ( 2 = 0.654 P = 0.25-0.50) (Tables 68 and 69) . Overall, both 

the crosses gave a good fit of 1 (low density): 3 (high density) ratio in F2 ( 2 = 

0.266; p = 0.50 - 0.75 ) and ](low density): ](high density) ratio in the backcross 

generation ( 2 = 0.000; P = 0.995 - 1 .OO ) confirming a monogenic inheritance 
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Table - 67: Mean values for type and density of different trichome in segregating 
generations of two interspecific crosses 

-3 based on mean of observations on 5 pods 1 



Table - 68: x2 test for trichome density FI and backcross, F, plants of ICP 28 r ICPW 94 



Table - 69: 2 test for trichome density FI, F1 and backcross of ICP 26 x ICPW 125 



(Table 69). The 3 due to heterogeneity was non-significant in both the crosses FI ( 2  

=1.048; P = 0.25-0.50) and backcross generations ( 2  =1.308; P = 0.25-0.50). 

indicating similarity in the segregation of both crosses (Table 70). 

Density of trichome C (non glandular trichome) (Fig. 20 and 21) was higher 

on the C. scarabaeoides, ICPW 94 and ICPW 125, pods than on the pigeonpea, ICP 

26 and ICP 28, pods. Pods of FI hybrid plants resembled the C. scarabaeoides pods a 

the mean greater than the pigeonpea mean, but less than the C. scarabaeoides mean. 

The F2 mean was less than the C. scarabaeoides and FI means but greater than the 

pigeonpea mean in both crosses. Mean of backcross progeny was greater than 

pigeonpea, ICP 26 and ICP 28 mean but less than Cscarabaeoides, ICPW 94 and 

ICPW 125, FI and F2 means in both the interspecific crosses. (Table 67). 

Pods on FI plants resembled C. scarabaeoides pods, in having a high 

density of trichome C. In the F2 generation, the 250 plants of both the crosses 

segregated to give a good fit of I(low density): 3 (high density), in cross ICP 28 x 

ICPW 94 ( 2  =1.204; P = 0.25-0.50) (Table 68) and in cross ICP 26 x ICPW 125 ( 12 
=2.352; P = 0.10-0.25) (Table 69). Further, 75 plants in the backcross progeny 

segregated to give a good fit of 1 (low density): 1 (high density) in cross ICP 28 x 

ICPW 94 ( 2  =0.123; P = 0.50-0.75) and in cross ICP 26 x ICPW 125( 2 =0.012; P 

= 0.90 - 0.95). Overall, both the crosses also fitted well to a 1 (low density): 3 (high 

density) ratio in F2 (2 = 3.083; P = 0.05 - 0.10) and ](low density): l(high density) 

ratio in the backcross generation ( 2 = 0.104; P = 0.50 - 0.75 ) confirming a 

monogenic inheritance (Table 69). The 2 due to heterogeneity was non-significant 

in both the crosses in F2 (X2 =0.473; P = 0.25-0.50) and backcross generations (x2 

=0.031; P = 0.75-0.90). indicating similarity in the segregation of both the crosses 

(Table 70). 

Density of trichome D ( non-glandular trichome) (Fig. 20 and 21) was higher 

on the pods of C, scarabaeoides, ICPW 94 and ICPW 125, accessions than on the 

pigeonpea, ICP 26 and ICP 28 pods. Mean of FI was greater than the pigeonpea 



Table - 70: Density of different QPU oftrichomes in the&, F2 and backcross generation 



mean but less than the C. scarabaeoides mean in cross ICP 28 x ICPW 94, and equal 

to C. scarabaeoides mean in ICP 26 x ICPW 125. The F2 mean was less than the FI 

and C. scarabaeoides means but greater than the pigeonpea mean in both crosses, 

ICP 28 x ICPW 94 and ICP 26 x ICPW 125. The mean in backcross population was 

greater than the means of FI, F1 and C. cajan parent but less than C. scarabaeoides 

parent in both ICP 28 x ICPW 94 and ICP 26 x ICPW 125 crosses (Table 67). 

The FI plants had pods with high density of trichome D, like the 

C scarabaeoides parent. The FZ generation segregated into 1 (low density): 3 (high 

density) in cross ICP 28 x lCPW 94 ( 2  =0.901; P = 0.25-0.50, but in cross ICP 26 x 

ICPW 125 ( ~ 2  =17.328; P = 10.001) did not give a good fit for the 1 (low density) : 3 

(high density) (Tables 68 and 69) . Further, 75 plants in the backcross generation 

gave a gave good fit for I (low density): 1 (high density) in cross ICP 28 x ICPW 94 

( 3  =0.121; P = 0.50 - 0.70) and in cross ICP 26 x ICPW 125, ( 3 =0.654; P = 0.25- 

0.50). Overall, both the crosses fitted well to a 1 (low density): 3 (high density) ratio 

in F1 ( 2 = 13.067; P = <0.005) and I(low density): I(high density) ratio in the 

backcross generation ( 2 =0.625; P = 0.50 - 0.75) confirming a monogenic 

inheritance (Table 70). The 2 due to heterogeneity was non-significant in both the 

crosses in F2 (X2 = 5.162; P = 0.01 - 0.025) and backcross generations ( 3  =0.15; P = 

0.50 - 0.75), indicating similarity in the segregation of both the crosses (Table 70). 

Genetic basis of podborer resistance 

Parents, F,, F2, F3 and backcross generations were screened in field, under multi- 

choice conditions for podborer resistance. Various reproductive parts attacked by 

podborer are shown in Figure 32. Cultivated pigeonpea (ICP 28 and ICP 26) and 

accessions of C. scarabaeoides (ICPW 94, ICPW 125 and ICPW 130) differed for 

bud, flower and pod damage, and number of eggs and larvae on the inflorescence. In 

a damage rating scale of 1-5; 1-2 scale were rated as resistant and 3-5 were scored 

as susceptible based on the pod damage. All the three C. scarabaeoides parents had 

no pod damage and were rated as 1, whereas, ICP 28 and ICP 26 parents showed 



56.65% and 65.45% pod damage respectively with a damage rating of 5.The FI 

hybrid plants had a mean damage rating of 1.5 f 0.01 in ICP 28 x ICPW 94, 

1.6f0.03 in ICP 28 x lCPW 130 and 1.8 * 0.01 in ICP 26 x ICPW 125, and were 

classified as resistant. In each cross, a population of 250 F2 plants was screened. The 

mean damage rating was 3.5f 1.21 in cross ICP 28 x ICPW 94, 3.84 *1.12 in cross 

ICP 28 x ICPW 130 and 3.72 f 1.24 in cross ICP 26 x ICPW 125. In each BCIFI the 

75 plants screened exhibited a mean damage rating of 4.2f0.95 in ICP 28 x ICPW 

94 cross , 3.94f0.69 in ICP 28 x ICPW 130 cross and 4.1t0.89 in ICP 26 x ICPW 

125 cross . 

Out of 250 F2 plants screened for podborer resistance, in a cross ICP 28 x 

ICPW 94, 185 were found resistant and 65 plants were susceptible giving a good fit 

of 3 (resistant): l(susceptib1e) (x2 =0.133; P = 0.50 -0.75) (Table 67). In the 

backcross generation, out of the 112 plants, 53 were found to be resistant and 59 

were susceptible, giving a good fit for 1 (resistant): 1 (susceptible) (X2= 0.322;P = 

0.504.75) (Table 71). In F3 generation, out of 116 progenies, only 56 showed 

segregation. Of the remaining 60 non- segregating progenies, 32 were resistant and 

28 susceptible. This gave a good fit for 1 non-segregating resistant: 2 segregating: 

1 non-segregating susceptible( = 0.414 ;P = 0.75-0.90). Further, the 56 F, 

segregating progenies gave a good fit for 3 resistant: 1 susceptible individually as 

well as overall (x2 = 1.937; P = 0.10 - 0.25) (Table 72). The X2 due to heterogeneity 

(x2 = 11.10; P = 0.995 - 1.000) suggested that these progenies were highly 

homogenous in segregation. The F2 generation and F3 segregating progenies were 

also homogenous (x2 = 0.947 ;P = 0.25-0.50) (Tables 73 and 74). 

In ICP 28 x ICPW 130 cross, out of 250 F2 plants screened, 183 were found 

resistant and 67 were susceptible which showed a good fit for 3 resistant: 1 

susceptible ($ = 0.432;P = 0.50 - 0.75) (Table 71). In BClFl generation, out of a 

total 106 plants, 51 were resistant and 55 were susceptible showing a good fit of 1 

(resistant) : 1 (susceptible) ratio (* = 0.151; P = 0.50 - 0.75) (Table 72). In F, 
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Table - 71: Resistance/susceptibility against pod borer in different generations. 

Table - 72: Segregation of F1 families into resistant and susceptible plants 



Table - 73: Segregation of 56 h families for pod borer resistance in cross ICP 28 x ICPW 94 









generation, out of 120 progenies, only 62 segregated, and of the remaining 58 non- 

segregating progenies, 28 were resistant and 30 families were susceptible, a ( 2  = 

0.200 ;P = 0.90-0.95) (Table 72). Overall, 62 F, segregating families did not show 

good fit for 3 (resistant): 1 (susceptible) with a 2 = 6.68 (P = 0.005 - 0.010) but 

exhibited good fit individually (Table 75). The heterogeneity value ( 2  = 0.182 ; P = 

0.90-0.95) suggests that the population was homogenous for the segregation. The FZ 

and F3 segregating progenies were heterogeneous at a X2 value of 2.935 (P = 0.050- 

0.100) (Table 74). 

In a crosses of ICP 26 x ICPW 125, 216 F2 plants segregated into 158 

resistant and 58 susceptible, showing a g ~ o d  fit for 3: 1 ratio with ( 2  = 0.395 ;P = 

0.50 4 .75 )  (Table 71). In BCIFI the 75 plants segregated into 1 resistant: 1 

susceptible with a ( 2  = 0.121; P = 0.50-0.75). Further, the 96 F3 families segregated 

into 26 resistant, 48 segregating progenies and 22 susceptible giving a good fit for I 

non- segregating resistant: 2 Segregating: I non- segregating susceptible, with a ( 4  = 

0.250 ; P = 0.75-0.90) (Table 72). Further, the segregating F3 progenies gave a good 

fit for 3 (resistant): 1 (susceptible) progenies ( 4  = 4.406; P = 0.025 - 0.050) (Table 

76) with a heterogenity of ( 2  = 0.155; P = 0.50-0.75) suggesting that the segregating 

F, population was homogenous. The F2 and F3 segregating progenies were 

heterogenous at a (X2 = 2.268; P = 0.050-0.100) (Table 77). 

In addition to the field screening; the parents, FI,  F2 and BCIFl plants of a 

cross ICP 28 x ICPW 94, were also screened, in the laboratory, for podborer 

resistance under no - choice conditions. Plants were given a damage rating based on 

the scale from 0-9. Plants with 0 - 3 damage rating were classified resistant and in 

the scale of 4 - 9 were susceptible. ICP 28, the susceptible parent, recorded a mean 

damage rating of 6.25 i: 1.064 and the resistant parent, ICPW 94 with a damage 

rating of 0.42 + 0.1 16. F, plants were resistant to podborer attack and recorded a 

damage rating of 0.72 f 0.51 1, while the mean damage rating of 2.50 + 1.400 in F2 

population and 3.31 * 1.957 in BCIFl plants were recorded. In F2 population of 250 

piants, 184 were found to be resistant and 66 were susceptible, with a good fit of 3 
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Table - 75: Segregation of 48 F3 families for podborer resistance in cross ICP 26 x ICPW 125 



(resistant): 1 (susceptible) (? = 0.261;P = 0.50 - 0.75) (Table 71). Further, the 

backcross population of 75 plants segregated into 36 (resistant): 39 (susceptible) 

giving a good fit for 1: 1:: resistant : susceptible with a (2 = 0.121 ;P = 0.50 4 .75)  

(~ablc'71).  

Correlation between trichomes and resistance to podborer 

Density of trichome A was positively correlated to the densities of trichome 

B and D in all three crosses (ICP 28 x ICPW 94, ICP 28 x ICPW 130 and ICP 26 x 

ICPW 125), but was significantly correlated negatively to the density of trichome C 

in ICP 28 x ICPW 94 (r = -0.19), ICP 28 x lCPW 130 (r = -0.15*) and ICP 26 x 

ICPW 125 (I = -0.19**). Density of trichome A was positively correlated with 

percent bud damage in two crosses ICP 28 x ICPW 94 and ICP 28 x ICPW 130, and 

was significantly correlated positively in ICP 26 x lCPW 125 (I = 0.19**). Highly 

significant positive correlation was observed behveen density of trichome A and 

percent flower and pod damage in all the three crosses, ICP 28 x ICPW 94 (I = 0.09 

and r = 0.25**), ICP 28 x ICPW 130 (r = 0.35** and r = 0.16**) and in ICP 26 x 

lCPW 125 (r = 0.34** and r = 0.45**) (Table 78). Density of trichome A was 

positively correlated to number of eggs and larvae on the inflorescences of F2 

plants. 

Density of trichome B was positively correlated to the densities of trichome 

C and D, percent bud , flower and pod damage, number of eggs and larvae, on the 

inflorescence, in all three crosses. 

Density of trichome C was significantly positively correlated with the density 

of trichome D in crosses ICP 28 x ICPW 94 (r = 0.15*) and ICP 26 x ICPW 130 (r = 

O.11*) and was positively correlated in ICP 28 x ICPW 130. Highly significant 

negative correlation was observed between density of trichome C and percent bud, 

flower and pod damage in ICP 28 x ICPW 94 (I = -O.SI**, -0.53** and -0.22**), in 

ICP 28 x IcpW 130 (r = -0.46**, -0.41 ** and -0.59**) and in ICP 26 x ICPW 125 ( 



Table -76: - Resistant and Susceptible Plants against Podborer in F, and Segregating F3 
Progenies 

Table - 77: Resistant and Susceptible Plants against Podborer in F2 , BC1 F1 and 
Segregating Fa Progenies 



Table 78: Correlations between the densities of different Trichome types with the percent damage in F2 populations of the 
interspecific crosses 

Density of Trichome B 
( no./mm2) 

Density of Trichome C 
( no./mm2) 

Density of Trichome 
D( no./mm2) 

Density of Density of Density of Density of 
Trichome Trichome Trichome Trichome % Bud %Flower % Pod Number of 

A B C D damage damage damage eggs 
( no./mmz) ( no.lmm3 ( no./mm2) ( no./mmi) 

-- 

0.11 , 
-0.5l8* 

% Bud damage -0.46** 

* Significant at I% level, Significant at 5% level . Cross 1 = ICP 28 x ICPW 94, Cross 2 = ICP 28 x ICPW 130 and Cross 3 = ICP 26 x lCPW 125 

-0.19** 
-0.06 
-0.07 
-0.06 
-0.09 
-0.2S8* 
-0.10 
-0.06 
-0.17- 
-0.06 
-0.02 
-0.05 
-0.04 
-0.05 
-0.19' 

F2z i ::: i 

% ,lo,ha, 

% Pod damage 

No. of eggs 

No. of larvae 

0.15' 
0.10 
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Ezz i 
Cross 3 

0.09 . ! 

. 1 ::: 
-0.19** 1 0.04 
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: ' 0'06 
0.05 
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-0.41" 
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-0.59" 
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-0.4Z8* 
-0.15' 
-0.21'. 
-0.15** 
4.25** 
-0.09 

Cross 3 / 0.19** j 0.06 

.+ 
0.51** 1 
0.228a 1 
0.19.' 

.~ 

! 

0.11. 
0.14. 
0.11 
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0.15. 
0.19' 
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0.03 

0.211* 
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0.32" 
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Cross 3 

0.18; / 0102 
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0.09 
0.08 
0.07 



negatively correlated to the number of eggs and larvae on the inflorescences in 

crosses ICP 28 x ICPW 94 (r = -0.42** and -0.15*), ICP 28 x ICPW 130 (r = -0.15' 

and -0.25**) and in cross ICP 26 x ICPW 125 (r = -0.21 ** and -0.09). 

Density of trichome D was significantly correlated negatively to the percent 

bud damage and flower damage in all three crosses, but was significantly negatively 

correlated to the percent pod damage in cross ICP 28 x ICPW 94 (r = -0.14**) and in 

cross ICP 26 x ICPW 125 (r = -0.19") and negatively correlated in cross ICP 28 x 

ICPW 130. In all three crosses, the density of trichome D was negatively correlated 

to the number of eggs and larvae (Table 78). 

Percent bud damage was significantly correlated positively to the percent 

flower and pod damage and number of eggs and larvae in all three crosses ICP 28 x 

ICPW 94 (r = 0.51**, 0.1 I*, 0.1 I* and 0.15**), ICP 28 x ICPW 130 ( r = 0.22**, 

0.14*,0.12* and 0.19') and ICP 26 x ICPW 125 (r = 0.19**, 0.1 l*, 0.15**, O.IS**) 

(Table 78). 

The percent flower damage was significantly correlated positively to the 

percent pod damage in all three crosses (I = 0.21**, 0.35** and 0.32**), and 

positively correlated to the number of eggs and significantly correlated positively to 

the number of larvae in all three crosses (r = 0.22**, 0.21** and 0.31**) (Table 78). 

Percent pod damage was significantly positively correlated to the number of 

eggs and larvae present per inflorescence in crosses ICP 28 x ICPW 94 (r = 0.54** 

and r = 0.2St*), ICP 28 x ICPW 130 (r = 0.42** and 0.39**) and ICP 26 x ICPW 

125 (r = 0.59** and 0.35**). Number of eggs per inflorescence was significantly 

positively correlated to the number of larvae in all three crosses (r = 0.54**, 0.26** 

and 0.29**) (Table 78). 











Sustained progress in purposeful plant breeding rests on the availability of genetic 

diversity, which refers to genome differences ranging from a single base pair to 

rearrangements of entire chromosomes. These variations in the genetic makeup, interacting 

with the environment, dictate the observable patterns of diversity shown by the multitude of 

living organisms. This genetic variation within and between species, generated by the 

process of mutation, sexual reproduction and selection, ensures its capacity in evolutionary 

change and ecological adaptation. Genetic diversity is also the basic raw material for 

developing improved genotypes aimed at maintaining and enhancing the productivity, 

stability and sustainability of agriculture. 

Pigeonpea , an important pulse crop of semi - arid tropics, has long been considered 

a genetically diverse species. Breeding programmes have been helpful in the development 

of hybrids suitable for diverse ago- climatic conditions. However, the genetic upgradation 

is critically limited by the lack of adequate variability, especially for the pest and disease 

resistance. Studies, so far, on the mechanisms of inheritance for pod borer resistance and 

characters positively correlated to resistance are very limited. 

Wild relatives of pigeonpea represent a potential genetic resource, which has not 

been explored in breeding, which could be used to effectively broaden the genetic base and 

enhance the pigeonpea breeding prospects. In view of this, the present investigation was 

undertaken to study the diversity among the wild pigeonpeas at the morphological, 

molecular and biochemical levels; and also to screen the accessions of C. scarabaeoides for 

pod borer resistance and to utilize the most resistant accessions in the breeding programs to 

introgress the pod borer resistant genes into cultivated background. Further, it is aimed at 

studying the genetic basis of qualitative and quantitative characters including mechanisms 

of resistance against pod borer and different types of trichomes. 



Diversity analysis 

In the present investigation, diversity among 30 accessions of wild C. scarabaeoides 

and 6 cultivated varieties of pigeonpea, for different characters, has been studied at the 

morphological, molecular and biochemical levels. 

Morphological diversity analysis 

Days to flower, pod width and number of locules per pod, among 13 traits studied, 

varied significantly in both the seasons, indicating the contribution of environmental 

influence governing these traits. Interaction between season and plant habit was also 

significant for days to flower, indicating that this trait was influenced by both the season 

and plant habit. Significant genotypic differences in all the traits except for days to maturity, 

leaf area, leaf dry weight and number of primary branches, indicated that accessions 

differed with each other significantly. 

C. scarabaeoides, as a group, took more number of days to flower and mature than 

the C, cajan genotypes. However, the early flowering accessions of wild (ICPW 83, ICPW 

86, ICPW 90, ICPW 96, ICPW 98 and ICPW 101) flowered earlier than the cultivated 

varieties. Heritability was high for all the traits studied, except for days to flower and 

number of seeds per pod, indicating that the environmental influence was very meager in 

explaining the expression of this triat. 

The PcoA and dendrogram of morphological data effectively brought out the 

intraspecific differences among the accessions. Accessions of C, scarabaeoides formed a 

separate group from that of the C, cajan varieties. The early, mid and late flowering 

accessions formed different subclusters under the major C. scarabaeoides cluster. 

Accessions, which are highly resistant to podborer, formed a separate s u b  cluster from the 

other moderately resistant accessions. A similar type of study in sorghum did not show 

intraspecific differences among the different accessions of a single species (Kamala, 2003). 



Molecular diversity analysis 

Genetic diversity, generated by selection, mutation and sexual reproduction, rests on the 

genome changes m g i n g  from a single base pair to rearrangements of 'the entire 

chromosomes. These nucleotide level changes are reflected in phenotypic differences among 

individuals, at increasingly higher levels of cellular organization, ranging from variations in 

amino acid sequences of proteins to morphological, physiological, chemical and behavioral 

characteristics. Classical methods of estimating genetic diversity and I or relatedness among 

groups of plants rely upon phenotypic (observable) traits. However, there are two 

disadvantages; the traits are subjected to environmental influences and the level of 

polymorphism (allelic variation) expressed could be limited. The deployment of environment 

neutral biochemical markers the isozymes, protein electrophoresis (Hunter and Marked, 

1957) and molecular markers have circumvented these limitations by focusing directly on the 

variation at the level of genes, the DNA itself. The higher resolution of molecular markers 

make them a valuable tool for a variety of purposes, such as fmgerprinting, facilitating the 

appropriate choice of parents for breeding programs, analyzing quantitative traits, location 

and detection of quantitative trait loci (QTLs), gene mapping, marker assisted selection, gene 

transfer, understanding evolutionary pathways and for assessing the genetic diversity of plant 

germplasm. 

Classical methods of estimating genetic diversity, and 1 or relatedness, among plants 

have relied on the morphological (phenotypic) traits. The present study revealed a large 

phenotypic variability and variation for resistance to podborer. Analysis of quantitative traits 

helped to obtain broad differences among C, scarabaeoides accessions. However, the 

relationships at lower levels of biological organizations were not evident. For instance, the 

accessions belonging to three different flowering duration groups (early, medium and late) 

were grouped separately for almost all morphoiogical and agronomic characters. But with the 

molecular markers, the differences within these subgroups could be better understood, though 

the basic grouping did not change. In order to better understand, the extent and distribution of 

diversity among the wild Cajanus species a subset of the accessions available at ICRISAT, 

were analyzed at the molecular levels using a). nine enzyme - maize mitochondria1 DNA 

probe combinations, b) five AFLP primer combinations and c) ten SSR primer pairs. 
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Diversity analysis using RFLP markers 

Hybridization of total cellular DNA to defined mitochondrial DNA sequences 

facilitates the'detection and characterization of organelle genomes without undertaking the 

complicated procedure of isolating purified DNA from small amounts of tissue, Thus, total 

DNA can provide suitable source for identifying mitochondrial gene in cases where the plant 

material is scarce. Studies in wheat ( Timms and Scott, 1985) suggest that sequences related 

to cox I probes are not present in the nuclear genome. Lonsdale (1985) reported that the 

sequences homologous to the chloroplast genome were absent for the cox I probes used. 

However, in the present study, the possibility of cross hybridization between mitochondrial 

and non- mitochondrial probes, to a limited extent, cannot entirely, be ruled out. 

Evidences from the data, obtained from different sets of molecular markers, revealed 

the inherent relationships among different species of the wild belonging to the secondary 

genepool, of the pigeonpea and the cultivated primary gene pool. The strong hybridization 

signals obtained with three mitochondrial DNA probes in all the 42 accessions belonging to 

four species reflect the high homology between the maize and pigeonpea mitochondrial 

DNA. Different sizes of bands were obtained with all the three multi - copy probes. Different 

relative intensities observed in some bands of EcoRl - atpa and EcoRl - atp 6 combination 

suggest variation in the copy number of these genes. Sivaramakrishnann et al. (2001), in the 

assessment of genetic diversity, observed similar results in six wild cajanus species. Only one 

of the banding patterns obtained by ECoRl - cox1 combination was shared among 

C, scarabaeoides, Csericeus and C, cqan and none other enzyme probe combinations were 

shared between any of the species suggests the highly conserved nature of the cox I genes. 

While two banding patterns each, were shared between these species for ECoRl - atp 6 and 

Hind 111 - atp a and one each for Hind Ill - atp 6 and ECoRl - atp a. Organellar genomes, 

such as mitochondrial genomes, were supposed to detect inter- specific variations more 

efficiently than the intra -specific variations. However in the present study that even intra- 

specific variation could be detected efficiently as exemplified in C. scarabaeoides. Similar 

results were reported in the intraspecifk variation studies of Sorghum bicior, S. halepsense 

and S. purpureoserium (Kamala, 2003). Wang et a!., (1996) reported that, the agempts to 



detect intraspecific differences in coding sequence of the mt genome have often proved 

unfruitful. 

The PcoA of RFLP data placed the C, scarabaeoides accessions of Australia, India and 

Sri Lanka in 3 different s u b  groups, based on geographic origin. This indicates the 
differences in the genetic makeup of these accessions. The use of mt. DNA probes RFLP 

marker for diversity analysis among Pigeonpea accessions of wild and cultivated pigeonpeas 

suggests the conserved nature of mitochondria1 genome among the cereals and legumes 

(Sivaramakrishnan et al; 2001). 

Diversity analysis using AFLP markers 

The AFLP markers revealed higher levels of polymorphism in the wild accessions 

C. scarabaeoides, C.  sericeus, C. reticulatus (97%) compared to the cultivated genotypes of 

C cajan (27%). The use of AFLP markers revealed high levels of polymorphism among the 

cultivated species of barley, maize, and millet ( Rao et al., 1997; Cervera et al., 1998; Law et 

ai., 1998) compared to the polymorphism exhibited by cultivated pigeonpeas in the present 

study. In contrast to the low levels of genetic variation observed among cultivated pigeonpea 

lines, the intraspecific variation among C, scarabaeoides accessions was significantly higher. 

This is evidenced by the larger diversity index values obtained from the AFLP profiles of 

cultivated and wild pigeonpea accessions. One of the accessions, ICPW 147 

(C.scarabaeoides, India), showed very unique AFLP banding pattern in all the primer 

combinations, and grouped separately from the other Indian accessions. This accession is 

highly resistant to podborer, in the field-screening and is used in the crossing program for 

introgression of pod borer resistance gene into pigeonpea cultivars. PcoA of RFLP data 

revealed distinct groupings of all the four species. Accessions of C, reticulatus formed a 

distinct group in all the marker techniques. The separation of C. reticulatus from other 

species agrees well with the distinct morphological and phenoloical characteristics of this 

species, such as plant habit, days to flower and maturity and the country of origin. 

Comparison of groupings obtained using different subsets of AFLP markers, with 

primer combinations, which generated more than 40 polymorphic bands were sufficient for 

classification of major groups in wild species of pigeonpea. The present study suggests, that 
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with appropriate reaction conditions and specific combination of selective primers, it is 

possible to yield a sufficient number of polymorphic bands to allow the meaningful 

comparison among cultivated and wild accessions and even within species. In some cases, a 

single primer combination was found to be capable of providing a sufficient number of data 

points @rimer combination E-ACG M-CTC >SO polymorphic fragments) to distinguish 

between highly related individuals. Using multiple primer combinations, it was able to build 

data sets providing clear and conclusive relationships among the accessions and defining 

evolutionary relationships among species. Similar results were observed in Nicotiana (Nan 

Rex et a/ . ,  2000). Approximately, one quarter of fragments amplified from the various 

accessions of C. cajan and C. scarabaeoides were polymorphic and provided sufficient 

resolution to distinguish closely related accessions. Interestingly, AFLP analysis indicates 

that accessions from different geographical locations with similar morphological characters 

and days to flowering tend to cluster based upon their profiles, supporting the fact that the 

traits have a genetically definable basis. Similar results were obtained in a study of 

morphological and molecular diversity analysis of cultivated and wild accessions of 

Nicotiana (Nan Rex et al., 2000) 

The groupings obtained by PCo Analysis are very much in agreement with the 

groupings derived from the dendrograms. Definite grouping, of different species, revealed the 

accurate resolution power of the marker system and its ability for its use in any of the 

interspecific linkage mapping. 

Diversity analysis using SSRs 

Seven out of ten microsatellites have amplified the alleles in all the accessions of wild 

and cultivated, while two of the remaining three (CCB 3 and CCB 4) microsatellites have 

amplified alleles only in the cultivated genotypes. This might be because the microsattelites 

in Cajanus were designed based on the genome of cultivated accessions. Though the SSR 

markers were limited in number, yet they were highly polymorphic and revealed maximum 

diversity index among the accessions. The high diversity obtained with SSRs is consistent 

with their known characteristics -that they are more variable, and provide higher resolution 

and higher expected heterozygosity than the RFLPs, RAPDs or AFLPs (Pejei el al., 1989; 



Powell el 01.. 1996, Taramino and Tingey, 1996). The high levels of polymorphism 

associated with SSRs are expected because of the unique mechanism responsible for 

generating SSR allelic diversity by replication slippage (Tautz and Renz, 1984; Tautz et al., 

1986) rather than by simple mutations, insertions or deletions. 

The interspecific variation was very clear in accessions of Australian, Sri Lankan and 

Indian origin (Fig. 11 and 12). Some SSR primer pairs (primers 5 and 6) revealed higher 

levels of polymorphism within the cultivated types than the wild genotypes. RFLP analysis 

using mtDNA showed variation at both inter- and intra-specific level which was similar to the 

earlier observations made in pigeonpea (Sivaramakrishnan er a/., 2001) and sorghum 

(Kamala, 2003). In the present study, RFLP markers could bring out the intra-specific 

variation among the C. scarabaeaides accessions and also differences among the cultivated 

varieties of pigeonpea. RFLP markers were found to be more efficient in bringing out the 

variation among the wild and cultivated species of pigeonpea in contrast to AFLP and SSR 

markers. But the RFLP markers were confined to the mitochondria1 genome and not to the 

whole pigeopea genome unlike the other two markers. 

Comparison of three molecular markers used in diversity analysis 

The analysis of data obtained by using RFLP, AFLP and SSR markers revealed 

significant differences among the four species. The major objective of the study was to 

determine the intraspecific variation among the C, scarabaeoides accessions, belonging to the 

secondary gene pool of pigeonpea. The species is easily crossable to cultivated and has many 

important features like high protein content, resistance to podborer and pod wasp. Only a few 

cultivated pigeonpeas were included to choose the most diverse parents based on the 

morphological molecular and resistance screening information. Very little information is 

available on the use of molecular variation at the inter- and intra- specific level among the 

wild and cultivated Cajanus species (Ratnaparkhe et al. 1999; Parani er al, 2000; 

Sivaramakrishnan et al. 2001). 

The present investigation clearly demonstrates that the use of all three marker 

techniques to study the genetic diversity among the wild and cultivated pigeonpea genotypes 

is very appropriate. 'Il10ugi-1, the results were more or less similar in all the three-marker 
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analysis the SSRs were found to be more efficient than AFLP and RFLP marken. The study 

suggests that only two or three AFLP primer combinations (82-121 markers) would be 

sufficient to estimate the similarities accurately between the major groups. Further, little 

advantage would be gained from generating larger sets of data. In practice, that any accession 

can be fingerprinted using only two or three tracks of sequencing gel. However, this 

observation is limited to the material under study, and clearly more markers are needed for 

more closely related varieties, such as cultivar collections or for pedigree analysis. Scoring is 

a drawback in AFLP, as the number of bands produced makes the job very tedious and 

strenuous. While the co-dominant nature of microsattelite marker (SSRs) and the almost 

100% transferability of the map positions makes them preferable to AFLP. More studies are 

required to compare the relative merits of the two approaches. In the present study, though 

SSR primers were designed based on the pigeonpea genome, the 10 primers used were able to 

bring out the diversity among the accessions. However, the RFLP assay requires large 

amount of DNA and frequent use of radioisotopes in detection method, makes it technically 

demanding, costly to characterize large number of samples. It is perhaps relevant to consider 

SSRs as the logical replacement of the RFLP, especially for the linkage studies and AFLP as 

more robust and productive replacement for RAPD technology. SSRs can be used to provide 

co-dominant anchor markers for mapping studies, but the development and application costs 

may hinder their application in large numbers needed to study large germplasm collections. It 

is likely that strategies utilizing the combination of two marker techniques might prevail in 

the coming years. 

The results of this study conclude that in accessions of the same region have more 

genetic similarities than do populations of the same species derived from different 

geographical regions. Similar results were obtained in a study of conspecificity of foxtail 

millet and green foxtail millet (Prasada Rao el al.. 1987 and Wang 1995a). 

The levels of polymorphism revealed by three techniques did not differ considerably, as 

all the marker techniques yielded highly polymorphic bands ranging From 93.5 % with RFLP, 

to 95.4% with AFLP to 100% with SSRs. Similar results were observed in wild and 

cultivated Sorghum species (Kamala, 2003), where the levels of polymorphism ranged form 

60% in AFLP~,  80% in WLPs and 100% in SSRs. Russel er al., (1997) compared SSRs with 
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AFLPs in barley where the polymorphism w a  49% in AFLPs and 10o0/o in SSRs. Most of 

the studies with SSRs have revealed the highest level of polymorphism compared to other 

.molecular markers (Wu and Tanskley 1993; Rus-Kortekas et a/ . ,  1994; Saghai Marwf et a/., 

1994 Morgante et al., 1994; Salimath et al., 1995; Maughan er al., 1995 ;Powell et al., 

1996;). Although, AFLPs do not offer high levels of polymorphism but they are the most 

efficient because they have the capacity to reveal many polymorphic bands in a single lane . 
In the present study, the average number of AFLP bands per lane, or per PCR, was 46 

compared to a single band per lane of SSRs. 

Gene diversity is a function of both allelic richness and allelic evenness. In this study, 

both allelic.richness, where 177 out of 182 loci were found to be polymorphic. Most of the 

alleles were present in all accessions except in C. reticulatus. This could be due to less gene 

diversity in C. reticulatur. Low values of diversity index were also seen in C. reticulatus 

with SSR markers (H = 0.41), compared to other species. This could be due to the 

involvement of only one accession in this species in this study. 

In the present study, the three molecular markers revealed close proximity between 

C, sericeus and C,  scarabaeo~des with that of C. cajan compared to C.reticulatus. RFLP 

analysis of r DNA by Parani et al , ,  (2000) revealed a close proximity between C. 

scarabaeoides with C. cajan while C. reticulatu was more closer to C. plalycarpus 

belonging to tertiary gene pool. 

All the molecular marker techniques revealed inter- and intra- species differences in 

pigeonpea. A similar study in sorghum did not bring out such diffrences suggesting that not 

only the marker systems but also the crop can make the difference (Kamala, 2003). Three 

marker systems were equally efficient in placing 31 accessions of C. scarabaeoides from 

India, Sri Lanka, Australia, Myanmar, Indonesia and Philippines into separate groups with 

minor differences. In the major cluster, at the subspecies level the subgroups were based on 

the geographical origin and maturity (early, medium and late flowering genotypes). All 

accessions of C, scarabaeoides originating from Sri Lanka were grouped together and those 

from Australia were in a different cluster. The grouping of C, scarabaeoides accessions of 

India further differentiated into subgroups based on days to flowering (early, medium and 



late) and also based on resistance to pod borer which was the criteria used in the initial 

selection of accessions. 

The similarities between accessions from the same geographical origin and also on the 

resistance levels against podborer revealed by the morphological groupings were fUtther 

confirmed by the molecular marker studies. The collective information can be used in the 

breeding programs, conservation of germplasm and management of genetic resources. 

Evaluation of landraces and wild relatives based on morphological, resistance related 

characters and biochemical characters along with molecular markers is critical to exploit the 

genetic potential for improvement of traits needed for pest resistance, protein content etc. 

Wild relatives represent a large proportion of the total genetic variation (Miller and Tanskley, 

1990) and may not display characters of interest but it is likely that they possess alleles that 

can improve the character. Genetic diversity can be used to maximize the level of variation 

present in segregating population by intermating the accessions with greater genetic distance. 

The results of this study, together with the results of other morphological, biochemical and 

resistance related characters might help in the selection of the most diverse parents for 

podborer resistance related characters and greatly expand the genetic variation in pigeonpea 

improvement. 

Biochemical diversity analysis 

In crop plants, resistance to insects can be mediated by a wide range of metabolic 

products; including lectins, proteinase and amylase inhibitors and secondary metabolites, 

like tannins, alkaloids, rotenoids volatiles etc. In the present study, the lectin content was 

more in the wild pods compared to the cultivated ones. Further, the pods at juvenile stage 

had more ]ectins than the immature pods, while the mature pods had no lectins indicating a 

decrease in the lectin levels with increasing pod maturity stages. ICPW 138 and ICPW 98 

juvenile pods had almost three times the lectin content compared to its content, in the 

juvenile pods of C. cajan genotypes. Stage and genotype x stage interaction were highly 

significant indicating the significant differences among the genotypes and pod stages for 

the lectin content. 



Similar results were obtained when the leaves and developing pods of two C @ n u  

species were assayed for lectin content. The lectin content was maximum in the juvenile 

pods followed by the immature pods while no lectins were noticed in mature pods (Sonali, 

2001). 

Trypsin inhibitors have been found to be effective insecticidal proteins. Maturity 

stage was found to be significant in C. scarabaeoides and C. cajan group. The inhibitor 

levels were higher in C, scarabaeoides accessions than in the cultivated genotypes. The 

mature pods of both in the cultivated and the wild accessions showed more trypsin 

inhibitor levels than the immature and juvenile pods. Unlike lectins, the levels of trypsin 

inhibitors increased with the increase in maturity levels of pods. However, Pichare and 

Kachole (1994) did not find any variability in the number of electrophoretic forms of 

proteinase inhibitors, among the 20 accessions of pigeonpea and ten related wild species 

analysed. No significant differences were observed in the trypsin and chymotrypsin levels 

in Harmigera tolerant and susceptible varieties. In the present investigation, both the 

lectins and trypsin inhibitors were found to be conferring resistance to the accessions; the 

lectins at the juvenile pod stage while the trypsin inhibitors at the mature pod stage. 

Trichome types and density 

The five types of trichomes described in pigeonpea by Romies, (1997) have been 

found on the wild species C. scarabaeoides accessions. C scarabaeo~des accessions 

differed significantly in the densities of different types of trichomes (A, B, C and D) on 

pods. The density of trichome trpe C was the highest followed by the trichome type B and 

type D. The density of type C and D trichomes, the two non-glandular types, was 2 to 20 

times higher on C, scarabaeoides pods than on the C, cajan pods. Similar observations were 

made on the trichome densities of C. cajan, C, scarabaeoides and C, platycarpus (Romies , 

1997). Trichome type A was found on the pigeonpea pods but was almost absent in most of 

the C, scarabaeoides pods and even if they were present, the density was very less. Romies, 

(1997) have reported the complete absence of the trichome type A on C. scarabaeoides 

pods. Density of trichome types A, C and D varied significantly among the pods of different 

pigeonpea genotypes. pods of pigeonpea had higher densities of trichome trpe C followed 
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by type D and A.  Type B was the rarest among the pigeonpea genotypes examined. Similar 

observations were made on the density of trichomes in ICPL 87, a cultivated pigeonpea 

genotype ( Romies. 1997). 

Exudates of glandular trichomes, such as type A, might act as deterrents against 

small, soft bodied insects (Obrycki, 1986; Peter et a/ . .  1995). But the type A exudates do 

not affect the hatchability of H armigera eggs and it is not known whether they trap and 

kill H. armigera larvae (Shanower et al., 1997). There is an indication that the exudates 

contain a feeding stimulant for H. armigera larvae (Shanower et al.,  1997). 

The function of type B trichomes is not well known. However, Bisen and Sheldrake 

(1981) suggested that this trichome is the source of characteristic pigeonpea fragrance. The 

secretion by type B trichome is caused only when the cell wall is ruptured. This could be 

caused by a chewing insect, such as H armigera larvae or by the abiotic factors such as 

high temperatures or low humidity (Ascensao et a/ . ,  1995). Bisen and Sheldrake (1981) 

considered type E to be a developmental stage of the type B trichome. But in this study, no 

intermediate forms were found, indicating that type E is a separate trichome type. 

Morphologically similar trichome has been described in cowpea (Oghiake etal . ,  1992). 

Type C, non- glandular trichomes on the pods of C, scarabaeoides, might be 

conferring resistance against H. armigera. The mortality of small larvae was significantly 

higher on the pods of C. scarabaeoides compared to the C. cajan or C plarycarpus 

(Shanower et al.,  1997). This may be due to the presence of much higher density of type C 

trichomes on C. scarabaeoides, which prevented the larvae from reaching the pod surface. 

They further stated that the distribution and size of trichomes on pigeonpea leaves were 

significantly different from those on the reproductive structures. In this study, type A 

glandular trichomes on some of the C, scarabaeoides accessions have been reported for the 

first time. The earlier studies conducted on eight accessions of C. scarabaeoides could not 

detect the presence of type A trichomes (Shanower etal . ,  1997). There were no significant 

differences in different seasons, between the types and density of trichomes. However, 

Southwood (1986) stated that the season, plant habit and developmental variation can affect 

the ontogeny and expression of trichomes. The trichomes and their exudates, on pigeonpea 



pod surface are likely to play an important role in the selection of host and oviposition 

behaviour by herbivores such as H.armigera (Renwick and Chew, 1994). The trichomes 

and their sticky exudates on the reproductive plant structures will also interfere with the 

searching behaviour of the arthropod enemies, especially small parasitoids such as 

Trichogramma spp. (Shanower, 1999). The significance of trichomes in plant defense 

system against herbivores, has long been recognized (Challahan, 1957; Beck, 1965, Levin, 

1973; Noms and Kogan , 1980; Stipanivic, 1983; Jermy, 1984). 

Podborer resistance 

The C. scarabaeoides accessions; ICPW 83, ICPW 94, ICPW 116, ICPW 125, 

ICPW 130and ICPW 141 did not show bud, flower and pod damage and had no eggs or 

larvae on the inflorescences, whereas ICPW 147, ICPW 281 and ICPW 305 exhibited little 

pod damage and showed no eggs and larvae on the inflorescences were grouped as resistant 

genotypes which can be utilized in the breeding program for production of interspecific 

hybrids. The early flowering C, scarabaeoides accessions; ICPW 83 and ICPW 94; the 

medium flowering accessions, ICPW 116, ICPW 125, ICPW 130 and ICPW 141 can be 

utilized in the breeding program to yield early flowering, pod borer resistant hybrids. 

Sharma et al. (2001) screened several wild accessions of C. scarabaeoides and C. sericues 

and reported that the accessions; ICPW 83, ICPW 90,ICPW 94, ICPW 116, ICPW 125, 

ICPW 130, ICPW 137, ICPW 141, ICPW 152, ICPW 278, ICPW 280 and ICPW 281 

exhibited less than 10% pod damage and had no eggs and larvae on the inflorescence. 

Correlation among traits may result fiom pleiotropy or physiological associations 

among characters. Correlation coefficients indicate the degree and direction of association 

between different traits. They help in deciding a suitable selection criterion for the genetic 

improvement of complex associated characters. When two or more traits are considered, 

the correlation studies have been found to be useful in describing the associations, and 

often indicate useful selection indices. Correlation among the characters related to 

podborer resistance and some physical attributes of the pods and leaves prove to be 

important selection index for handling this very complicated menace of Helicoverpa. 



The correlation studies indicate that the pods having high densities of trichome types 

B, C and D were more resistant than those having lower densities of these trichomes or 

with a higher density of trichome A. Early flowering accessions were less susceptible to 

pod borer attack than the late flowering accessions. Plants having more number of primary 

and secondary branches, small leaves, longer pods, lighter seeds, pod wall surface with 

higher density of the trichomes B, C and D were less damaged by podborer. However, 

virtually no significant correlation, between the plant traits and resistance to either of the 

two major diseases of chickpea, Aschochyta blight and Fusarium wilt was noticed (Singh et 

al., 1983). 

Interspecific hybridisation 

Interspecific crosses were made between the wild accessions of C. scarabaeoides 

and cultivated varieties of C. cajan to raise FI, F1 and F, generations to study the genetic 

basis of qualitative and quantitative traits including resistance against podborer and its 

related traits. Besides, the FI hybrids of these crosses were also backcrossed to the 

cultivated parents to obtain BCIFI, BCIF~,  BCIF~ and BClFt seed to introgress the genes 

from the wild to cultivated genotypes. The five C, scarabaeoides accessions used as wild 

parents and two cultivated varieties of C.cajan genotypes used in the wide hybridization 

differed significantly for most of the characters studied. 

The C. scarabaeoides parents flowered and matured earlier than C. cajan parents, 

except the parents involved in the cross ICP 26 x ICPW 141 where both the parents 

matured almost at the same time. Parents differed significantly for leaf length and width, 

pod length, number of secondary branches, 100- seed weight, seed protein, density of 

trichomes A, B, C and D in all the ten crosses. Differences among parents were non- 

significant for pod width in crosses ICP 28 x ICPW 94, ICP 26 x ICPW 94, ICP 26 x ICPW 

116, ICp 26 x ICPW 125, ICP 26 x ICPW 130 and ICP 26 x ICPW 141. Parents involved 

in the crosses ICP 28 x ICPW 94, ICP 28 x ICPW 116, ICP 28 x ICPW 125, ICP 26 x 

ICPW 94, ICP 26 x ICPW 116, ICP 26 x ICPW 125, ICP 26 x ICPW 130 and ICP 26 x 

ICpW 141 did not differ significantly for number of locules per pod. Significant 

differences for seeds per pod were not observed in crosses ICP 28 x ICPW 94, ICP 28 x 
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ICPW 116, ICP 26 x ICPW 94 and ICP 26 x ICPW 116. In cross ICP 28 x ICPW 94 the 

parents did not differ significantly for number of primary branches but in all other crosses 

significant differences were observed in all the crosses for this character. 

Direct crosses gave fertile seed in all the crosses attempted but the reciprocal crosses 

made with pigeonpea parent as the male and C. scarabaeoides parent as the female did not 

give many seeds. This might be because of inhibition of the fertilization by the cytoplasm 

of the wild. The hybrids were pollen rich and highly fertile. 

Heterosis and inbreeding depression 

Heterosis is the manifestation of heterozygosity in Fls compared to their 

homozygous parents. It occurs both in self and pollinated species and is often exploited to 

increase the yield potential of crop plants. The magnitude of heterosis encountered in any 

crop species is of paramount importance in deciding as to whether or not heterosis breeding 

is practical. Inbreeding depression refers to decrease in the fitness and vigour due to 

inbreeding. Inbreeding depression is due to the fixation of unfavorable recessive genes in 

the F2, while in case of heterosis the favourable dominant genes of the other parent cover 

the unfavourable recessive genes of one parent line. Heterosis might be useful in breeding 

if F, and F2 performance was indicative of superiority and if inbreeding depression was 

lacking (Singh, and Choudhary ,1996) (Tables 33 - 42). 

Mid-parent heterosis for days to flower was positive in 3 crosses (2 crosses with 

ICP 28 and 1 crosses with ICP 26) and negative in 7 crosses (3 crosses with ICP 28 and 4 

cross with ICP 26). The negative heterosis indicates that hybrids of crosses, ICP 28 x ICPW 

94, ICP 28 x ICPW 130, ICP 28 x ICPW 141, ICP 26 x ICPW 94, ICP 26 x lCPW 116, ICP 

26 x ICPW 130 and ICP 26 x ICPW 141, flower earlier than the parents. Better parent 

heterosis was positive in 8 crosses (3 crosses with ICP 28 and 5 cross with ICP 26) and was 

negative in two crosses (ICP 28 x lCPW 94 and ICP 28 x ICPW 141). Among the latter two 

crosses, the hybrids of the first cross flowered earlier than the wild parent while the 

hybrids of second cross flowered earlier than the cultivated parent, Inbreeding depression, 

for days to flower, was positive in all crosses. The trend for days to flower indicates the 

preponderance of additive gene action governing this trait, which could be due to the 
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fixation of unfavorable recessive genes in F2 population. Positive mid- and better- parent 

heterosis was reported earlier for days to flower in the pigeonpea hybrids of a cross Mukta 

(Medium duration flowering) x UPAS (Shon- duration flowering) by Singh et ol., (1983) 

and in crosses of ~ A U T  82 -99 x ICP 9175 by Patel et 01. (1992). 

Mid-parent heterosis, for days to maturity, was positive in 2 crosses (one with ICP 

28 and another with ICP 26) and negative in 8 crosses (4 with ICP 28 and 4 with ICP 26). 

Negative heterosis for days to maturity was observed in all the crosses except the crosses 

involving two cultivated pigeonpea parents with ICPW 94. Though, the hybrids obtained in 

a cross with lCPW 94 flowered earlier than the earliest parent (wild), yet it matured later 

than the late maturing parent (cultivated) which may be due to the masking 1 modification 

of gene(s) for flowering by those for maturity in this hybrid. Better parent heterosis was 

positive in 5 crosses (3 with ICP 28 and 2 with ICP 26) and negative in 5 crosses (2 with 

ICP 28 and 3 with ICP 26). Inbreeding depression was positive in all the crosses. 

Significant negative or positive values of heterosis for days to maturity followed by the 

positive inbreeding depression suggests the role of additive and non - additive gene action 

in governing the expression of this character, which could be due to the fixation of 

unfavorable genes in F2 population. Positive mid- and better- parent heterosis for days to 

maturity in crosses between Mukta (Medium duration flowering) x UPAS (Short- duration 

flowering) was reported by Singh eral., (1983) and in crosses of GAUT 82 -99 x ICP 9175 

by Patel er al., (1992). 

Mid-parent heterosis, for leaflet length, was positive in 2 crosses (1 with ICP 28 and 

1 with ICP 26) and negative in 8 crosses (4 with ICP 28 and 4 with ICP 26). Better parent 

heterosis was negative in all the 10 crosses. For leaflet length, the inbreeding depression 

was positive in all crosses, suggesting the prepondarance of non - additive gene action in 

governing this trait. 

Mid-parent heterosis for leaflet width was positive in 8 crosses (5 crosses with ICP 

28 and 3 crosses with ICP 26) and negative in 2 crosses with ICP 26. Better parent 

heterosis was positive in 4 crosses with ICP 28 and negative in 6 crosses (1 with ICP 28 

and 5 with ICp 26). High positive heterosis followed by inbreeding depression suggests the 



prepondarance of additive gene action and the negative heterosis followed by inbreeding 

depression indicated the prepondarance of non- additive gene effects governing this 

character. 

Mid-parent heterosis, for pod length, was positive in 2 crosses with ICP 28 and 

negative in 8 crosses (3 with ICP 28 and 5 with ICP 26). Better parent heterosis was 

negative in all the 10 crosses, Inbreeding depression, for pod length, was positive in all the 

crosses. Mid- and better parent negative heterosis followed by inbreeding depression 

suggests the non-additive gene action goveming the expression of this character. The 

inbreeding depression might be due to the fixation of unfavorable recessive genes from the 

wild parent. Expression of mid- and better parent heterosis was poor and in the undesired 

direction in cultivated pigeonpea crosses of GAUT - 135 x ICP 84010, GAUT 84-54 x ICP 

84010, GAUT - 83-17 x ICPL 332, GAUT 87-19 x ICP 9229 (Patel el al., 1992). Similar 

observations were also reported in cultivated pigeonpea crosses (Saxena et al., 1980; Singh 

et al., 1983). 

For pod width, the mid- and better parent heterosis, and the inbreeding depression 

were positive in all the 10 crosses. High positive mid- and better parent heterosis followed 

by inbreeding depression suggests that additive genes govern the expression of pod width. 

The increase in vigour could be due to the masking of the unfavorable recessive genes of 

the wild with the dominant genes of cultivated pigeonpea for pod width. Saxena et al., 

1980, and Singh er al., 1983, found similar observations in crosses between cultivated 

pigeonpea varieties. 

Mid-parent heterosis, for pod bearing length, was positive in 3 crosses (I with ICP 

28 and 2 with ICP 26) and negative in 7 crosses (4 with ICP 28 and 3 with ICP 26). Better 

parent heterosis was negative in all the crosses followed by a positive inbreeding 

depression. The negative heterosis followed by positive inbreeding depression suggested 

that the trait is governed by non - additive genes. Negative heterosis was reported in the 

intraspecific crosses between pigeonpea varieties for this trait by Saxena et a/.  

(1980). 



Mid-parent heterosis, for number of locules per pod, was positive in 7 crosses (3 

crosses with ICP 28 and 4 with ICP 26) and negative in 3 crosses ( 2 crosses in ICP 28 and 

1 cross with ICP 26). Better parent heterosis was positive in 2 crosses (I with ICP 28 and 1 

with ICP 26) and negative in 8 crosses (4 crosses with ICP 28 and 4 crosses ICP 26). 

Inbreeding depression was positive in all the 10 crosses. Positive mid- parent heterosis and 

negative better parent heterosis followed by the positive inbreeding depression indicates the 

additive and non - additive gene actions respectively in the expression of this character. 

Negative heterosis was observed in the cultivated pigeonpea crosses for number of locules 

per pod by Saxena et 01. (1 980). 

Mid-parent heterosis, for number of seeds per pod, was positive in 5 crosses (2 

crosses with ICP 28 and 3 crosses with ICP 26) and negative in 5 crosses (3 crosses in ICP 

28 and 2 crosses in ICP 26). Better parent heterosis was positive in 3 crosses (I with ICP 28 

and 2 with ICP 26) and negative in 7 crosses (4 crosses with ICP 28 and 3 with ICP 26). 

Inbreeding depression was positive in all the 10 crosses. Positive mid parent heterosis and 

negative better parent heterosis followed by the positive inbreeding depression indicates the 

additive and non - additive gene actions respectively in the expression of this character. 

Saxena et al. (1980) reported negative heterosis in pigeonpea x pigeonpea crosses for this 

trait. 

Mid-parent heterosis, for number of primary branches, was positive in 2 crosses with 

ICP 26 and negative in 8 crosses ( 5 crosses with ICP 28 and 3 with ICP 26). Better parent 

heterosis was positive in ICP 28 x ICPW 94 cross and negative in 9 crosses ( 4 with ICP 28 

and 5 with ICP 26). Inbreeding depression for number of primary branches was positive in 

all the crosses. Negative heterosis followed by inbreeding depression suggests the 

prepondarance of the non- additive gene action in the expression of this trait. 

Mid-parent heterosis, for number of secondary branches, was positive in all the 10 

crosses and better parent heterosis was positive in 8 crosses (4 crosses with ICP 28 parent 

and 4 with ICP 26 parent) and negative in 2 crosses (1 with ICP 28 and another with 

ICP 26 ). Inbreeding depression was positive in all the crosses. Positive mid- and better 

parent heterosis followed by inbreeding depression suggests the prepondarance of additive 



gene action in controlling the expression of this trait. Saxena et al. (1980). reported positive 

heterosis in pigeonpea x pigeonpea crosses, for number of primary and secondary branches. 

Negative heterosis for number of primary branches and positive heterosis for number of 

secondary branches indicate that the hybrids had profuse branching compared to the parents 

used in the crossing programme. The branching trait which is significantly positively 

correlated with the yield and yield related traits could be an important selection criterion in 

the pigeonpea breeding programme for selection of high yielding plants. 

Mid-parent heterosis, for 100-seed weight, was positive in cross ICP 28 x ICPW 116, 

and negative in 9 crosses (4 with ICP 28 and 5 with ICP 26). Better parent heterosis was 

negative in all the 10 crosses. The inbreeding depression was positive in all the ten crosses. 

Negative heterosis followed by inbreeding depression suggests the prepondarance of non - 
additive gene action in the expression of the trait. 

Mid-parent heterosis, for seed protein, was positive in cross ICP 28 x ICPW 94, and 

negative in 9 crosses (4 with ICP 28 and 5 with ICP 26). Better parent heterosis was 

negative in all the ten crosses. C. scarabaeoides seeds had higher protein content than the 

pigeonpea seeds, but bone of the FI hybrids had bener protein content than the parents, 

except the hybrids of a cross between ICP 28 x ICPW 94. 

Mid-parent heterosis, for harvest index, was positive in cross ICP 28 x ICPW 116, 

and was negative in 9 crosses (4 with ICP 28 and 5 with ICP 26). Better parent heterosis 

was negative in all the 10 crosses. The inbreeding depression was positive in all the ten 

crosses. Negative heterosis followed by inbreeding depression suggests the prepondarance 

of non- additive gene action in the expression of this trait. 

In the present investigation, mid- parent heterosis was low for 100- seed weight and 

seed protein but was average to high for seed yield and harvest index. Heterosis for harvest 

index is generally higher than any of its components, since yield is the product of several 

component characters (Matzinger and Wersman, 1967). Yield represents the ultimate 

expression during the development of plant metabolism hence, increase in yield level does 

not necessarily result in a change of its components (Grafius, 1965). Hybrids of the crosses 

ICP 28 x ICPW 116, ICP 28 x ICPW 141 and ICP 26 x ICP 130, exhibited considerable 
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heterosis for 100- seed weight, harvest index, seed yield. Hence, these lines with marked 

superiority may be utilized in the development of commercial hybrids. 

Mid-parent heterosis, for density of trichome A, was positive in 2 crosses with ICP 

26 and negative in 8 crosses (5 with ICP 28 and 3 with ICP 26). Better parent heterosis was 

positive in cross ICP 26 x ICPW 130 but negative in 9 crosses (5 with ICP 28 and 4 with 

ICP 26). 

Mid-parent heterosis, for density of trichome B, was positive in 9 crosses (5 crosses 

in ICP 28 and 4 crosses in ICP 26) and negative in cross ICP 26 x ICPW 125. Bener parent 

heterosis was positive in 2 crosses (1 with ICP 28 and 1 with ICP 26) but negative in 8 

crosses (4 crosses with ICP 28 and 4 with ICP 26). 

Mid-parent heterosis, for density of trichome C, was positive in all the 10 crosses. 

Better parent heterosis was positive in cross ICP 28 x ICPW 125, and negative in the 

remaining 9 crosses. The trichomes on FI hybrids were denser than on the C. cajan but less 

dense than on the C, scarabaeoides accessions (better parent). 

Mid-parent heterosis, for density of trichome D, was positive in 8 crosses (5 crosses 

with ICP 28 and 3 with ICP 26) and negative in 2 crosses with ICP 26. Better parent 

heterosis was positive in cross ICP 28 x ICPW 116, and was negative in the remaining 9 

crosses. The trichomes on FI  hybrids were denser than on the pigeonpea genotypes but less 

dense than on the C. scarabaeoides accessions. 

Positive correlations have been observed in the segregating populations between 

number of primary and secondary branches and seed yield. Increased branching can exert a 

positive effect on the pod number which then exerts a positive, though indirect, effect on 

the seed yield (Benjamin, 1981). This correlation provides the breeders with an easily 

recognized trait (s) on which to apply selection pressure during the plant development. 

Significant correlations were observed between branching and seed yield in chickpea 

crosses (Choudhary and Khan, 1974; Bhal and Jain, 1977; Tomar el al., 1982). 



Genetic basis of quantitative characters 

The means and variances obtained for various quantitative characters were subjected 

to scaling test and five parameter model generation mean analysis to determine their genetic 

basis. Knowledge of genetic components of multigenic traits and the environmental effects 

is important for the choice of breeding methods, size of populations and intensity of 

selection. Besides estimates of genetic parameters, inbreeding depression, beyond F2 

generation, indicates that dominance is not an important genetic variance component for 

yield in this crop. Knowledge of plant characteristics is essential for planning an effective 

breeding programme. This is useful in selection of individuals with adaptation to different 

agro- ecological zones. Measurement of genetic variability and understanding of inheritance 

of characters is of prime importance in pigeonpea to formulate a sound crop improvement 

program. 

To understand the major gene effects and different gene interactions, five parameter 

model of generation mean analysis was applied to five generations (parents, FI, F1 ,F3 and 

one backcross population) to estimate different genetic parameters that account for variation 

for different characters under study. Information on the additive, dominance, additive x 

additive and dominance x dominance interactions could be obtained from the study. In the 

absence of second backcross generation, the j (dominance x additive) interaction could not 

be calculated. Results of the scaling test are presented in Tables 79 - 81. 

Days to flowering 

The estimates of A, C and D scales deviated significantly from zero indicating the 

inadequacy of additive-dominance model to explain the variation for this character and 

presence of epistatic interaction effects in all the crosses except the scale A which was non- 

significant in cross (ICP 26 x ICPW 125). The estimates of additive, dominance, and 

dominance x dominance interactions were significant in all three crosses, whereas the 

additive x additive was significant in ICP 28 x ICPW 130 and ICP 26 x ICPW 125. The 

dominance and dominance x dominance gene effects expressed negatively for days to 

flowering indicate the presence of complementary epistatsis in cross ICP 28 x ICPW 94 

which suggests that simple pedigree breeding would be rewarding for bringing 
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improvement. However, in cross ICP 28 x ICPW 130 the dominance gene effects were 

negative and the dominance x dominance gene effects were positive indicating the duplicate 

epistatsis. In cross, ICP 26 x ICPW 125 the dominance effects were positive and the 

dominance x dominance effects were negative indicating duplicate epistasis which suggests 

that the biparental crosses can be adapted for the improvement. In cross ICP 28 x ICPW 94, 

dominance was more significant than the additive gene effect and additive x additive gene 

action was insignificant. In cross ICP 28 x ICPW 130, dominance was more significant than 

the additive gene effect but in cross ICP 26 x ICPW 125 the additive gene effect was more 

significant than dominance. Sharma el al. (1973a), Dahiya and Brar (1977), Dahiya and 

Satija (1978), Gupta et al. (1981), Reddy et al. (1981b) reported additive gene action for 

days to flowering in cultivated pigeonpea crosses, and non- additive gene action was 

reported by Reddy et al., (1981b). Additive and non- additive gene action for days to 

flowering was reported by Choudhary et al. (1980), Sidhu and Sandhu (1981) and Saxena et 

a[. (1981b). Additive and non- additive gene actions were reported by Kidambi et al., 

(1988), Salimath and Bhal(1989), Malhotra el al. (1993) and Jha el al. (1997) in chickpea. 

Days to maturity 

The estimates of A, C and D scales deviated significantly from zero indicating the 

inadequacy of additive-dominance model to explain the variation for this character and 

presence of epistatic interaction in all three crosses. Estimates of additive, dominance, and 

additive x additive interactions were significant, for days to maturity, in all crosses, but in 

cross ICP 26 x ICPW 125 the dominance x dominance effect was non-significant. In 

crosses, ICP 28 x ICPW 94 and ICP 26 x ICPW 125, the dominance gene effects were 

negative and the dominance x dominance gene effects were positive indicating the presence 

of duplicate epistatsis, which suggests that the biparental crosses can be adapted for 

improvement. In cross, ICP 28 x ICPW 130 dominance and dominance x dominance gene 

effects were negative indicating the presence of complemantary epistasis, which suggests 

that simple pedigree breeding would be rewarding for improvement. In ICP 28 x ICPW 94 

the additive x additive interaction was more significant than the dominance interaction. In 

ICP 28 x ICPW 130, dominance x dominance interaction was non- significant and the 

additive was more significant than the dominance and additive x additive gene actions. In 
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cross ICP 26 x ICPW 125, the dominance x dominance interaction was non - significant but 

additive x additive was more significant than the dominance gene action, which suggests 

that pedigree method of breeding should be followed for obtaining superior lines from 

segregating generations in the cross. Pandey (1972) and Sharma et a[. (1972) reported 

additive gene action for days to maturity. Kapur (1977) and Sidhu and Sandhu (1981) 

reported both additive and non-additive gene action for days to maturity. Importance of both 

additive and dominance gene actions were reported for days to maturity by Kidambi el a[. 

(1988) ; Salimath and Bhal(1989); and Jha et al. (1997). 

Leaflet length 

The estimates of A, C and D scales significantly deviated from zero indicating the 

inadequacy of additive - dominance model to explain the maximum variation for this trait 

and indicates presence of epistatic interaction effects in three crosses. Estimates of additive, 

dominance x dominance and additive x additive interactions were significant in all three 

crosses. Dominance gene effect was significant only in ICP 28 x ICPW 94 and ICP 26 x 

ICPW 125 crosses but non-significant in a cross, ICP 28 x ICPW 130. The dominance and 

dominance x dominance gene effects were positive indicating the presence of 

complemantary epistatis in cross ICP 28 x ICPW 94, which suggests simple pedigree 

breeding will be rewarding for bringing improvement. In crosses ICP 28 x ICPW 130 and 

ICP 26 x ICPW 125, the dominance gene effects were negative but the dominance x 

dominance gene effects were positive, indicating the presence of duplicate epistasis. Bi - 

parental crosses can be adapted for the improvement. In crosses, ICP 28 x ICPW 94, ICP 28 

x ICPW 130 and ICP 26 x ICPW 125, the additive x additive interaction was more 

significant than the dominance in explaining variance for this trait which suggests that 

pedigree method of breeding could be followed for obtaining superior lines from segregating 

generations in the crosses. 

Leaflet width 

The estimates of A, C and D scales significantly deviated form zero indicating the 

inadequacy of additive-dominance model in explaining the variation for this character. In the 

entire three crosses additive, dominance x dominance and additive x additive interactions 
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were significant. Dominance gene effects were significant only in ICP 28 x ICPW 94 and 

ICP 26 x ICPW 125 cross but non-significant in ICP 28 x ICPW 130. The dominance and 

dominance x dominance gene effects were positive indicating the presence of 

cornplemantary epistatis in all the three crosses, suggesting that simple pedigree breeding 

will be rewarding for bringing improvements. In cross, ICP 28 x ICPW 94 d (70.4%); in 

cross ICP 28 x ICPW 130 and h (58.7%) and i (60.4%) in cross ICP 26 x ICPW 125, were 

maximum in explaining variance in this trait. 

Pod length 

The estimates of A, C and D scales deviated significantly form zero indicating the 

inadequacy of the additive-dominance model to explain the variation for this character and 

the presence of epistatic interaction effects. In all the three crosses; additive, dominance and 

dominance x dominance and additive x additive interactions were significant .In all three 

crosses the dominance gene effects were negative and the dominance x dominance gene 

effects were positive indicating the duplicate epistatsis, suggests that the bi- parental crosses 

can be adapted for the improvement. In crosses, ICP 28 x ICPW 94 and ICP 28 x ICPW 130, 

the additive gene effects were more significant than the dominance interactions, suggesting, 

that the pedigree method of breeding could be followed for obtaining superior lines from 

segregating generations in the crosses. In cross ICP 26 x ICPW 125 the dominance x 

dominance gene action was more significant in explaining the variation for this trait. 

Pod width 

The estimates of A, C and D scales were significant in three crosses, except the 

estimates of A scale in cross ICP 28 x ICPW 94 which indicates the inadequacy of the 

additive- dominance model in explaining the variation for this trait. The additive, 

dominance, dominance x dominance and additive x additive gene actions were significant in 

all three crosses, except in cross ICP 28 x ICPW 94, where additive x additive type of 

interaction was non-significant. In crosses, ICP 28 x ICPW 94 and ICP 26 x lCPW 125 the 

gene effects of dominance were positive and that of dominance x dominance was negative, 

indicating the presence of duplicate epistatsis. However, in cross ICP 28 x ICPW 130, the 

estimates of dominance was negative and dominance x dominance was positive indicating 
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the presence of duplicate epistasis in explaining the variation in the cross. The maximum 

contribution was additive x additive in cross ICP 26 x ICP 125, additive in cross ICP 28 x 

ICPW 130 and dominance x dominance in cross ICP 28 x ICPW 94 in explaining the 

maximum variation for this character, except the additive x additive which was non- 

significant in cross ICP 28 x ICPW 94. 

Pod bearing length 

The estimates of A, C and D scales deviated significantly from zero indicating the 

inadequacy of additive-dominance model in explaining the variation this character in all the 

three crosses .The estimates of additive, dominance, dominance x dominance and additive x 

additive gene actions were significant in all three crosses indicating the presence of epistatic 

gene interaction in explaining variation in this character. In all three crosses, the gene effects 

of dominance were negative and dominance x dominance were positive indicating the 

duplicate epitasis interaction in this character. The maximum contribution of dominance x 

dominance (60.9%) in ICP 28 x ICPW 94, h (64.3%) in cross ICP 28 x ICPW 130 and d 

(61.8%) in cross ICP 26 x lCPW 125, in explaining the variation for this character. Sharma 

et al. (l973a) and Sharma (1981) reported additive gene action, whereas Pandey, (1972) and 

Reddy et al. (1979) reported non-additive gene action while, Kapur (1977), Sidhu and 

Sandhu (1981), Saxena et a/.  (1981b) and Reddy et a/.  (1981b) reported additive and non- 

additve gene action for pod bearing length in the intraspecific crosses of pigeonpea. Dahiwal 

and Gill, (1973); Katiyar, (1975); Gowda and Bahl, (1978) and Malhotra et al. (1983) 

reported additive gene action for pod bearing length in interpsecific crosses of chickpea. 

Number of locules per pod 

The estimates of A, C and D scales deviated significantly from zero, indicating the 

inadequacy of additive-dominance model, to explain the variation in this character in all the 

three crosses. The estimates of dominance, dominance x dominance and additive x additive 

gene actions were significant in all three crosses, except d (additive) which was significant 

only in crosses ICP 28 x ICPW 130 and ICP 26 x ICPW 125. In all three crosses, the gene 

effects of h were negative and I were positive indicating the duplicate epistatic interaction 

governing this character. The maximum contribution was from 1 (42.9%) in cross ICP 28 x 
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ICPW 94, from 1 (59.7%) in ICP 28 x ICP 130 and h (45.5%) in ICP 26 x ICPW 125 in 

explaining the variation for this character. 

Number of seeds per pod 

The estimates of A, C and D scales deviated significantly from zero in two crosses, (ICP 28 

x ICPW 130 and ICP 26 x ICPW 125), suggesting the inadequacy of the additive-dominance 

model in explaining the variation in this character. In cross, ICP 28 x ICPW 94, the estimate 

of C was non-significant suggesting the absence of dominance x dominance interaction in 

this cross to explain the variation. The estimates of h (dominance), I (dominance x 

dominance) and i (additive x additive) were significant in all crosses, but in ICP 28 x ICPW 

130, the d (additive) effects were non-significant, explaining the presence of the epistatic 

interactions in this trait. In crosses, ICP 28 x ICPW 94, ICP 28 x ICPW 130, the gene effects 

of h were negative and I were positive, indicating the duplicate epistasis interaction in this 

character, but in cross ICP 26 x ICPW 125, the h and I gene effects were positive indicating 

the complementary epistatsis (Tables 53, 54 and 55). The maximum contribution of I 

(75.9%) in cross ICP 28 x ICPW 94, h (65.1%) in ICP 28 x ICP 130 and 1(53.37%) in cross 

ICP 26 x ICPW 125 in explaining the variation in these characters. Saxena er 01. (1981b) 

and Mohamed et al. (1985) reported the additive gene actions for number of seeds per pod 

while Kapur (1977) and Venkateshwarulu and Singh (1982) reported both additive and non- 

additve gene action in pigeonpea x pigeonpea crosses. In chickpea, diallelic crosses, additive 

gene action, for yield and its related components was reported (Dahiwal and Gill, 1973; 

Katiyar, 1975; Gowda and Bhal, 1978; Malhotra er a/., 1983). 

Number of primary branches 

Estimates of A, C and D values deviated significantly from zero indicating the 

inadequacy of additive - dominance model to explain the variation in this character, and the 

presence of inter- allelic interactions were effective in all three crosses. The estimates of d 

(additive), I (dominance x dominance) and i (additive x additive) interactions were 

significant in all three crosses, where as the h (dominance) was significant only in crosses 

ICP 28 x ICPW 94 and ICP 28 x ICPW 130. The h and I gene effects were positive in 

crosses, ICP 28 x ICPW 94 and ICP 26 x ICPW 125 for number of primary branches 
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indicate the presence of complementary epistasis, while in cross ICP 28 x ICPW 130 the 1 

gene effect was negative and h gene effect was positive indicating duplicate epistasis. The 

maximum contribution for variation in this character was from h (50.49%) in cross ICP 28 x 

ICPW 94; i (52.56 %) in cross ICP 28 x ICPW 130 and of d (44.67%) in cross ICP 26 x 

ICPW 125. Chaudhari et a/., (1980) reported additive gene action for number of primary and 

secondary branches in the interspecific crosses between pigeonpea genotypes. 

Number of secondary branches 

The estimates of A, C and D deviated significantly from zero indicating the 

inadequacy of the additive - dominance model to explain the variation for this character and 

the presence of epistatic interaction effects in all the crosses, except the scale A in cross, ICP 

26 x ICPW 125. The estimates of h (dominance), i (additive x additive) and I (dominance x 

dominance) were significant in all three crosses whereas the d (additive) was significant in 

crosses ICP 28 x ICPW 130 and ICP 26 x ICPW 125. The h and 1 gene effects were positive 

in ICP 28 x lCPW 130, indicating the presence of complementary epistatsis. The h gene 

effect was positive and I was negative in ICP 28 x ICPW 94 while in ICP 26 x ICPW 125 

the h gene effect was negative and I was positive indicating the duplicate epistasis in both 

the crosses. The maximum contribution in expressing the variation, for this character was 

from 1(58.49%) in ICP 28 x ICPW 94, d (67.28%) in ICP 28 x ICPW 130 and also (80.48%) 

in ICP 26 x ICPW 125. Chaudhari e ta / . ,  (1980) reported additive gene action for number of 

primary and secondary branches among the cultivated pigeonpea crosses. 

100 - Seed weight 

Estimates of A, C and D values deviated significantly from zero indicating the 

inadequacy of additive - dominance model to explain the variation for this character, and 

presence of the inter- allelic interactions effective in all three crosses. The estimates of d 

(additive), h (dominance) and i (additive x additive) interactions were significant in all three 

crosses, whereas the I (dominance x dominance) was significant in two crosses ICP 28 x 

ICPW 94 and ICP 28 x ICPW 130 but non - significant in ICP 26 x ICPW 125. The h gene 

effect expressed negatively and I gene effects positively in all three crosses indicating the 

presence of duplicate epistasis. Maximum contribution was of d in all the three crosses. 
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P a n d e ~  (1972); Sharma el 01. (1973a); Chaudhari et al. (1980) and Saxena et a/. (1981b) 

reported additive gene action for grain yield. Laxman Singh and Pandey, (1974); Dahiya and 

Brar (1977), Sidhu and Sandhu, (1981) reported the non-additive gene action for yield and 

yield components. Sidhu and Sandhu (1981); Reddy el a/. (1981b) and Venkateshwamlu 

and Singh (1982) reported both additive and non-additive gene actions. 

Harvest index 

Estimates of A, C and D values deviated significantly from zero indicating the 

inadequacy of additive - dominance model to explain the variation in this character, and the 

presence of inter- allelic interactions in all three crosses. The estimates of d (additive), h 

(dominance) and i (additive x additive) interactions were significant in all three crosses, 

whereas the I (dominance x dominance) was significant in two crosses ICP 28 x ICPW 94 

and ICP 28 x ICPW 130. The h gene effect was negative and I gene effects were positive in 

all three crosses indicating the presence of duplicate epistasis. The maximum contribution 

was from d in explaining the variation in this character. The importance of additive and non- 

additive gene actions, in explaining the variation in this character, was explained by Pandey 

(1972); Sharma et a1 (1973a); Laxman Singh and Pandey (1974); Dahiya and Brar (1977); 

Chaudhari et al. (1980) and Saxena el a/. (1981b), Sidhu and Sandhu (1981) in the 

pigeonpea x pigeonpea intraspecific crosses. In the diallellic crosses in chickpea, importance 

of both additive and non- additive gene action was reported by Singh et al. (1981); Singh 

and Bians, (1982); Singh and Paroda, (1983). 

Heritability 

Heritability is the ratio of genetic variance to phenotypic variance (Singh, 1977) and 

expressed in percentages. It is a good index of transmission of characters from parents to the 

offspring (Falconer, 1989). The knowledge of heritability helps the plant breeder in 

predicting the behavior of characters in succeeding generations and to make desirable 

selections. It depends on the variability present in the material and also on the environmental 

effects. Heritability estimates provide eficient selection criterion as they refer to the 

proportion of phenotypic variance which is a reflection of the genetic variance. A high 

heritability estimate suggests, that the character concerned can be easily selected in the test 
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environment. However, the heritability estimate is valid for a given population, and the 

environment in which it was obtained. Therefore, it is difficult to generalize heritability 

estimates from one population to another (Tables 44,48,51, 54, 56, 58 and 60). 

The variances in parents, C. cajan and C scarabaeoides, and F l s  were lower for all 

the characters. The variances in F2 population, for all the characters, were higher than both 

the parents, indicating segregation for all the characters in all the crosses. In the absence of a 

second backcross inference cannot be drawn on the dominance of characters from one 

parent. 

The results indicate the existence of sufficient variability between the parents for the 

characters studied for the effective utilization. The more diversity among parents, the greater 

the chances of recovering desirable recombinants. Thus, crop improvement depends on the 

magnitude of genetic variability in the base population .This variability can be easily utilized 

if the heritability of these characters is high. 

High values of broad-sense heritability for days to flower, indicates that the 

environmental effects the influence the character the least. High broad -sense heritability 

value for days to flower was reported by Munoz and Abrahms (1971), Khan and Rachei 

(1972), Pandey (1972), Sharma el 01. (1973b), Kumar and Reddy (1982) and Patel et al., 

(1992) among the cultivated pigeonpea crosses but medium heritability was reported by 

Rubaihayo and Onim (1975) and Dahiya and Brar (1977). Rao et a/ . ,  (1994) and 

Sabaghpour (2000) reported high broad and narrow sense heritability values in chickpea 

diallelic crosses. 

Medium to high heritability values were observed in the interspecific hybrids of 

crosses involving ICP 28 with wild genotypes and high heritability in the hybrids of crosses 

of ICP 26 with wild genotypes, which indicates that the characters were not influenced by 

the environment and could be used as selection criteria for selecting early flowering and 

maturing hybrids. Similar results were reported by Kumar and Reddy (1982) and Sidhu et 

al. (1985). However, these results are in contrast to those of Sharma et al. (1973b) and Sidhu 

and Sandhu (1981) who reported low heritability values for days to maturity but medium 

heritability was reported by Dahiya and Satija (1978). 
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Medium to high heritability was seen, for pod length and width, in crosses of wild 

accessions with ICP 28; but medium heritability in crosses with ICP 26, indicating the 

influence of environment in controlling the expression of this character, medium broad sense 

heritability values were also reported by Dahiya and Brar (1977) and Sidhu and Sandhu 

(1981). 

Broad sense heritability was medium to high, for pod bearing length, in the crosses 

of wild accessions, both with ICP 28 and ICP 26 which indicated the less influence of 

environment in controlling the expression of this character. Kumar and Reddy (1982), in the 

interspecific crosses between the wild and cultivated pigeonpea, reported medium 

heritability for pod bearing length. 

Low heritability values, for number of locules per pod and number of seeds per pod, 

in the crosses of both ICP 28 and ICP 26 with wild accessions; and low to medium 

heritability was seen for 100- seed weight and harvest index, indicating that the yield and 

yield related components are under the environmental influence difficult to make selections 

based on these characters. Low heritability values were reported for number of seeds per 

pod, grain yield, 100- seed weight etc. by Munoz and Abrams (1971), Khan and Rachie 

(1972), Sharma et a1 (1973a), Sharma el al. (1973b), Rubaihayo and Onim (1975), Sidhu 

and Sandhu (1981), Kumar and Reddy (1982). Medium heritability values were reported by 

Munoz and Abrams (1971), Pandey (1972), Malhotra and Sodhi (1977) and Sidhu e l  a/., 

(1985) in the intraspecific cultivated pigeonpea crosses. 

Though, additive and non- additive genetic variances are important for yield and its 

related components, yet the heritability estimates have been small which hinders the 

selection. The heritability estimates are very small and measurements are time consuming 

and difficult to make. Direct measurement of yield is likely to be a better approach in 

breeding for improvement in yield. Improved yields can be obtained by partitioning the 

biomass more into the economic yield than the vegetative component. Tall, erect, and 

compact plant types would allow increased plant density and possibly gives a greater yield 

per unit area. 



Variance component estimates reveal little of mode of action of the genes involved. 

Studies being contemplated in this area should focus on the variance component estimates 

that are devoid of genotype x environmental interactions, and so improve their reliability 

and usefulness. Replicating the experiments in time and space can reduce the environmental 

affects on the genotype. 

Genetic basis of qualitative characten 

The inheritance pattern of the following characters ; plant habit, stem color, leaflet 

shape, seed mottleness, strophioled seeds, pod hairiness, resistance against podborer and 

trichome density was studied (Tables 61-66). 

Plant habit 

The FI hybrids were semi-spreading, suggesting the incomplete dominance of either 

genes in governing the character. Further, the F2 ratio of I spreading: 2 semi - spreading: I 

erect, suggests that the plant growth habit is governed by a single gene with incon~plete 

dominance. However, single dominant gene control of the growth habit was has been 

reported by in crosses of C. cajan with C. cajanijolius. Pundir and Singh (1985) reported 

the F l s  with intermediate plant habit between erect and spreading growth habit and in the F2 

generation they observed a ratio of I erect: 1 spreading: 14 intermediate, suggested the two 

genes with partial dominance. Reddy el al. (1980) obtained 13 spreading: 3 erect in crosses 

o f  C, scarabaeoides with C. cajan, suggested the twining growth habit of C. scarabaeoides 

as controlled by two genes with epistatic gene action. This was also suggested by Kumar et 

al. (1985) in crosses involving Pant- 2 and C. scarabaeoides and Pundir and Singh (1985) 

in interspecific crosses between C, sericeus and C, reticulatus with C cajan. Single 

dominant gene expression of the plant habit gave a ratio of 3 erect: I prostrate in the 

chickpea cross of BGM 417 x ponaflair which was confirmed by backcross progeny with a 

ratio of 1 erect: 1 prostrate. The results of F2 and backcrosses suggested that a single 

recessive gene governs the prostrate growth habit Singh el al., (1992). 



Stem colour 

The FI hybrids had mixed stem color, between the purple and green color of the 

parents, suggesting the incomplete dominance of genes in governing the character. Further. 

the F2 ratio of I purple: 2 mixed: I green, suggests that the plant growth habit is governed 

by a single gene with incomplete dominance. The control of stem color of C. scarabaeoides 

by a single partially dominant gene was earlier reponed by (Reddy, 1973; Kumar el al., 

1985 and Pundir and Singh, 1985). 

Leaflet shape 

Leaflet shape in FI hybrid was intermediate between the obovate leaflet shape of 

C. scarabaeoides and the lanceolate leaflet shape of C. cajan in all seven crosses 

interspecific crosses. F2 population in all the seven crosses gave a good fit for I obovate: 2 

intermediate: lanceolate suggested that the leaflet shape is governed by single gene with 

incomplete dominance. The control of obovate leaflet shape of C, scarabaeoides by a 

single partially dominant gene was earlier reported by (Reddy, 1973; Kumar et a/ . ,  1985; 

Pundir and Singh, 1985). In crosses of C sericeus with C. cajan, the FIS  had an 

intermediate leaflet shape between the oblance ovate of C. sericew and lanceolate of C. 

cajan in the F2 generation suggests the incomplete dominance of this gene governing this 

characters ( Singh., 2000). 

Seed mottleness 

Nature of FI seeds in all the seven interspecific crosses was unmottled and 

segregatied in F2 population into a ratio of 9 mottled: 7 unmottled seed indicated the 

epistatic interaction in the expression of this character. The involvement of complementary 

genes in the expression of mottledness of the seed was reported earlier in the crosses 

between ICP 7035 x C, scarabaeoides and ICP - 6915 x C. scarabaeoides and however the 

data fiom the cross of ICP 6997 x C, scarabaeoides indicated duplicate epistatic interaction 

with a good fit ofl5: 1 ratio (Reddy el al., 1980). 



Seed strophiole 

The strophioled nature of C scarabaeordes seeds was dominant over the non- 

strophioled seeded condition of pigeonpea cultivars was indicated by the strophioled seeds 

of FI hybrids. In Fz generation, the ratio of 13 (strophioled): 3 (non-strophioled) indicates 

the inhibitory gene action. ?he inhibitory gene action was also reported in the crosses of 

ICP 6195 x C. scarabaeoides and ICP - 6997 x C. serlceus however, 9:7 ratio was observed 

in the crosses between ICP- 7035 x C. scarabaeoides, indicating the complementary gene 

action in the expression this character (Reddy er a[., 1980). Pundir and Singh (1985) 

reported the duplicate gene action, while inhibitory gene action was reported in the crosses 

of pigeonpea with C, scarabaeoides, C. sericeus and C albicans (Reddy el a1.,1981a and 

Kumar er a!., 1985). 

Pod hairiness 

The hairiness of pods in C scarabaeoides accessions was dominant over the non- hairy 

nature of pigeonpea pods. The non - glandular hairs on the pods of wild accessions make 

the pods a non-preferring surface to the insects for oviposition. The F2 ratio in all the seven 

crosses gave a good fit for 3 (hairy): 1 (non-hairy) pods, suggests the gene controlling 

hairiness was single and dominant over the non-hairiness. Similar observations were also 

made in the interspecific crosses of ICP - 6915 x C scarabaeoides, however, the F1 data 

gave a good fit for 13:3 ratio suggesting the inhibitory gene action in crosses of ICP - 6997 

x C, scarabaeoides (Reddy er a/., 1980). Similar studies were also reported in the 

interspecific crosses between C. scarabaeoides x C, cajan and C, sericeus x 

C. cajan, suggesting the single dominant gene, designated as Hp, governing this trait 

(Pundir and Singh, 1985; Singh, 2000). 

Inheritance of podborer resistance 

The polyphagous nature of podborer is a serious problem and is highly devastating 

in many countries. It attacks the reproductive parts; the buds, flowers and pods. The 

identification and transfer of gene (s) for pod borer resistance from the wild accessions to 



cultivated background to create an inbuilt mechanism in the plants, is one of the major steps 

to control this devastating pest. 

Significant correlations were observed between the density of non-glandular 

trichomes and the pod borer resistance. The highly significant positive correlations between 

the density of trichome types; C and D; and podborer resistance, indicates the selection of 

plants bearing pods with high density of C and D trichomes for resistance against podborer. 

However, it is important to select those segregants which have cultivated pigeonpea seeds 

and pod wall resembling that of C. scarabaeoides. 

The C. scarabeoides accessions; ICPW 94, ICPW 125, and ICPW 130 were the most 

resistant parents with no damage to the flowers and pods by H. armigera. The FI hybrids in 

all three crosses, ICP 28 x ICPW 94, ICP 28 x ICPW 130 and ICP 26 x ICPW125, were 

almost like the C. scarabaeoides parents in resistance, with less than 5% damage, indicating 

that resistance was dominant over susceptibility. In F2 generation, a good fit for 3 resistant: 

1 susceptible was observed, indicating the monogenic control of antixenosis component 

mechanism of resistance. The monogenic control of resistance was further confirmed by 

1 (resistant) : I (susceptible) segregation in backcross generation (F, x ICP 28 and FI x ICP 

26). In F3 generation, the expected ratio of 1 non-segregating resistant : 2 segregating : 1 

non- segregating susceptible was recorded, which supported the monogenic control of 

resistance, in each of the three crosses individually and overall in three crosses. One 

hundred and sixty six segregating progenies in all three crosses (ICP 28 x ICPW 94 (56), 

ICP 28 x ICPW 130 (62) and ICP 26 x ICPW 125 (48)), in F3 generation gave a good fit for 

3 resistant: 1 susceptible, individually, as well as overall. The segregating F3 families were 

also homogeneous in each of the three crosses individually as well as overall. Further, there 

was homogeneity in segregation in F2 generation and segregating F3 families in all the three 

crosses. This confirmed that the antixenois mechanism of resistance to pod borer is 

controlled by dominant allele of a single gene in three interspecific crosses. However, the 

allelic relationships in these C. scarabaeoides parents are not knom. Crosses between the 

C. scarabaeoides parents would reveal the allelic relations for pod borer resistance gene. 



In the studies for antibiosis mechanism of resistance against podborer, the 

C scarabaeoides accession (ICPW 94) was found to be more resistant, with no damage, 

compared to the C. cajan (ICP 28) which showed the maximum damage. The FI plants were 

resistant to podborer attack indicating dominance of resistance over susceptibility. The F2 

generation segregated into 3 resistant: I susceptible, indicating the antibiosis component of 

resistance mechanism was controlled by the dominant allele of a single gene. The 

monogenic control of antibiosis mechanism of resistance was further confirmed by the 

segregation ratio of 1 resistant : 1 susceptible, backcross generation. Vemlkar el a/ . ,  (1997) 

observed similar results in the interspecific crosses, involving C. cajan and 

C. scarabaeoides, by dual choice arena test. They evaluated the parents, FI. F, and the 

BCIFI population for podborer and pod wasp resistance and their results indicated that the 

antibiosis mechanism of resistance is governed by the dominant allele of a single gene for 

podborer resistance and by the recessive allele of a single gene for the pod wasp resistance. 

Inheritance of trichomes 

The high density of erect non - glandular trichomes, predominantly on the pods of 

wild C, scarabaeoides accessions, confers a high level of resistance against podborer 

(Shanower et al., 1997). This necessitated the need to search and utilize the cross 

compatible wild relatives of Cajanus to produce hybrids having pods with higher number of 

non-glandular trichomes. The genetic basis, governing the expression of non - glandular and 

glandular hairs has been investigated in the present study. There are no reports on the 

inheritance of trichome type and density in pigeonpea. The results obtained in the study 

clearly indicate that the high density trichome nature of the wild was dominant over the low 

density on the cultivated features. The hairiness of pods in C. scarabaeoides accessions was 

dominant over the non- hairy nature of pigeonpea pods. The non - glandular hairs on the 

pods of wild accessions make the pod a non-preferring surface for oviposition. The F2 ratios 

obtained in all the seven crosses gave a good fit for 3 (hairy): 1 (non-hairy) pods, suggests 

that the, hairiness is dominant over the non-hairiness and is governed by a single gene. 

Similar observations were made by Reddy e ta / .  (1980) in the interspecific cross of ICP - 

6915 x C. scarabaeoides, however, they have noticed the inhibitory gene action in the cross 

of .ICP - 6997 x C,scrabaeoides, as the F2 data gave a good fit for 13: 3. Pundir and Singh 
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(1985) and Singh (2000) reported a single dominant gene, designated as Hp, governing this 

trait in the interspecific crosses between C. scarabaeoides, C, sericem and C.cajan. 

The hairiness of C, scarabaeoides pods was because of the presence of non- 

glandular trichomes types C and D. the density of trichome types; B, C and D is very high 

on the pods of C. scarabaeoides compared to the C. cajan pods. On the contrary, the density 

of trichome type A is very less on the pods of C. scarabaeoides compared to C. cajan pods. 

The study on the inheritance of these trichomes indicates that the C, scarabaeoides trichome 

features were dominant over the pigeonpea trichome features. Pods of F, plants had lower 

densities of type A, in all three crosses, similar to C, scarabaeoides pods. In F2 generation, a 

good fit for 3 (low density): 1 (high density) for type A was observed, indicating the 

monogenic the density of trichome A and the dominance of its low density in C. 

scarabaeoides over the high density in C cajan. Further, the monogenic control of this 

character was confirmed by the segregation in the backcross generation which gave a good 

fit for 1 (low density):l (high density). The segregation in F2 and BClFl generations were 

homogenous in all three crosses. 

The Fi pods had higher densities of type B, similar to the pods of C, scarabaeoides. 

In F1 generation, a good fit for 3 (high density): I (low density) was observed, indicating the 

monogenic dominance nature of the high density of trichome B. Further, this was confirmed 

by the ratio of l(low density): I (high density) segregation observed in the backcross 

generation. The results suggest that the wild characters of glandular trichomes are dominant 

over the cultivated. 

The non- glandular trichomes; C and D, were denser on the pods of C. scarabaeoides 

than on C. cajan. The pods of FI hybrids had higher densities of both types C and D, types, 

indicating the dominance of C, scarabaeoides features. In F2 generation, a good fit for 3 

(high density): 1 (low density), indicates the monogenic and dominance nature of high 

density of these trichomes. Further the segregation of 1 (high density) : I (low density) in 

the backcross generation confirmed the monogenic control of these two types of trichomes. 





Pigeonpea [Cajanus cajan (L.) Millspaugh] is an important pulse crop 

sustaining the livelihood of resource poor farmers in the semi-arid tropics. Major 

advancement in crop improvement has resulted in the development of short statured, 

photo-insensitive, high yielding, high seed protein content, varieties suitable for 

diverse agro-climatic conditions. Inspite of such a progress made in this crop, the 

productivity of cultivated pigeonpea continues to be constrained by various biotic 

and abiotic stresses. Insects are the most important biotic constraint to pigeonpea 

production worldwide, causing losses of more than US $ 1000 million every year. 

More than 200 species of insects feed on pigeonpea, of which Helicoverpa armigera, 

Maruca vitrata, Melanagromyza obfusa, Clavigralla spp., Nezara viridula and 

Callosobrvchus spp. are the most important (Lateef and Reed, 1992). Of these, 

legume podborer, Helicoverpo armigera, is the most destructive and notorious pest 

of the field crops (Lateef and Reed, 1992). Helicoverpa alone causes an estimated 

loss of US $927 million in chickpea and pigeonpea, and possibly, over US$2 billion 

on other crops worldwide. A conservative estimate is that over US$ 1 billion are 

spent on insecticides to control this pest. In addition to huge economic losses caused 

by the pest, there are several indirect costs from the deleterious effects of pesticides 

on the environment and human health (Sharma er al., 2001). Continuous use of 

insecticides and chemicals has led to the insecticide resistance in this species, which 

resulted in several crop failures. Therefore, host plant resistance plays an important 

role in the management of this pest. It offers a viable economic solution in this 

situation. 

Wild Cajauns species, especially C. scarabaeoides, has been identified as a 

potential genetic source of resistance (Pundir and Singh, 1987; Saxena et al., 1990; 

Shanower et al., 1997) that has not been fully explored and exploited in pigeonpea 

breeding. There is also some evidence that this species has different mechanisms of 

resistance than those in the cultivated types. The genes from the wild relatives can be 

tapped through wide hybridization for use in the crop improvement to diversify the 



basis of resistance to the pests. However, despite the availability of a wide array of 

wild sources of resistance, their utility in pigeonpea improvement has not been fully 

explored. C, scarabaeoides accessions are spread across India, SriLanka, Myanmar, 

Philippines, Australia and South America (Nene and Sheila, 1990). These wild 

accessions could be used to broaden the genetic base and provide alternate sources of 

resistance for the long-term control of major bioticiabiotic stresses. There is no 

report on the genetic basis of resistance, and resistance related characters, for pod 

borer resistance. With this in view, the present investigation was undertaken to study 

the morphological, molecular and biochemical diversity among wild accessions of 

C. scarabaeoides; to identify the physical and biochemical features which play an 

important role against podborer ; to identify the sources of resistance in wild 

accessions against podborer ; to introgress the pod borer resistance genes from wild 

accessions to the cultivated background through back crossing ; and to study the 

genetic basis of certain qualitative and quantitative traits, including the resistance 

against pod borer. 

In the present investigation, thirty wild accessions of C. scarabaeoides, from 

six geographical locations, in and out side India, and six cultivated varieties of 

C. cajan were used. All the 36 genotypes could be clearly identified based on 

diagnostic morphological traits. Distinct genetic differences were observed for the 

quantitative traits (days to flowering and maturity, leaf area, leaf specific area, pod 

length and width, pod bearing length, number of locules per pod, number of seeds 

per pod, 100- seed weight, number of primary and secondary branches and seed 

protein) in 2000 and 2001 Kharif seasons. The large phenotypic variability obtained 

for the quantitative traits facilitated a clear distinction among accessions from 

different geographical locations indicating the existence of region specific 

adaptations. UPGMA dendrogram and PcoA analysis, based on the morphological 

traits, revealed hierarchical clustering of the accessions. C. scarabaeoides accessions 

were grouped into different sub - clusters based on the geographical origin. Indian, 

Sri Lankan, Australian, Myanmar and Philippines origin accessions formed separate 

sub - clusters. 



Molecular diversity in 42 accessions, belonging to three wild species; 

C. scarabaeoides. C. sericeus and C. rericulatus ; and cultivated C, cajan, was 

assessed using (i) nine maize mitochondria1 DNA probe-enzyme combinations, (ii) 

five AFLP primer combinations and (iii) ten SSR primer sets. 

The studies revealed that all three molecular markers were informative in 

evaluating the genetic diversity in the wild relatives of pigeonpea. Differences 

between species could be resolved with all the three marker types. However, the 

intraspecific differences were more prominent with AFLP markers, and the four 

cajanus species, C. scarabaeoides, C, sericeus, C. reticulatus and C, cajan, formed 

distinct groups. 

The RFLP profiles of mt DNA, AFLP and SSRs clearly differentiated the 

three wild and one cultivated species. In 42 accessions, the levels of polymorphism 

varied in all the three marker types ranging from 95.4 % for AFLPs and RFLPs to 

100 % for SSRs. The diversity index values were very high for SSRs (H = 0.89), 

followed by RFLPs (H = 0.85) and AFLPs (H = 0.75). Effective multiplex ratio was 

highest for AFLP markers which could uniquely fingerprint each accession. The 

distance matrix D, produced from the binary data was subjected to sequential 

agglomerative hierarchical cluster (SHAN) analysis using UPGMA (Unweighted 

pair group arithematic mean) of NTSYS software. The relationship between 

accessions, as revealed by three molecular markers, was visualized through 

dendrograms. Differences between three dendrograms were tested by generating 

cophenetic values (r) for each dendrogram, and the assembly of the cophenetic 

matrix for each marker type. A highly significant correlation (r = 0.96) between the 

cophenetic matrix and the dendrogram was observed. This was further confirmed by 

a high stringent stress value (0.5 to 0.7) on MDS (Multi-dimensional scaling) scatter 

plot. The grouping pattern in the combined dendrogram (RFLP, AFLP and SSR) was 

similar to that obtained from the morphological data with a high cophenetic 

correlation (I = 0.97). 



UI'GkfA dendrogram and PCoA analysis based on the AFLP, RFLP and SSR 

markers revealed similar grouping of accessions. The four different species formed 

different major groups. C. scarabaeoides accessions belonging to the same 

geographical location grouped together. Accessions from India, Australia, Sri Lanka. 

Indonesia, Myanmar and Philippines formed different sub-clusters under the major 

C. scarabaeoides group. Intraspecific variation was effectively revealed by SSRs and 

AFLPs compared to the RFLP markers. The SSR markers further clustered the 

C. scarabaeoides accessions of Indian origin based on three maturity groups (early. 

medium and late flowering). 

The accessions were also screened against pod borer under field conditions 

by tagging two inflorescences per plant and observations were recorded on the 5", 

71h, 1 lXh, 21" and 31'' day of tagging. ICPW 83, ICPW 94, ICPW 116, ICPW 125, 

ICPW 130 and ICPW 141 were found to be highly resistant among the C. 

scarabaeoides accessions screened based on no bud, flower and pod damage and no 

eggs and larvae per inflorescence. These early and medium flowering wild 

accessions, with high resistance to podborer can be effectively utilized in the 

breeding programme for producing podborer resistant varieties. 

Biochemical analysis of total protein content by Lowry's method, trypsin 

inhibitors using BAPNA as a substrate and lectin by haemagglutination was carried 

out on all the thirty C. scarabaeoides accessions and six cultivated pigeonpeas. Total 

protein content was maximum in mature pods, followed by the immature and 

juvenile pods in both the wild and cultivated varieties. Mean protein content was 

higher in the wild pods than in the cultivated ones. The trypsin inhibitor levels were 

found to be high among the C. scarabaeoides accessions. Significant differences 

were not found between the juvenile and immature stages; however its content was 

maximum in mature pods compared to other two stages of pods. The lectin content 

significantly differed among different maturity stages of pod, with maximum lectin 

content in the juvenile stage followed by the immature stage. However, there was no 

lectin in the mature pods. Significant differences were observed for the lectin content 

among the C. $carabaeaides accessions. The lectin content was more in wild than the 



cultivated varieties. ICPW 138 and ICPW 98 had the highest lectin content among 

the C. scarabaeoides accessions. 

TrichOmes play an important role in plant-insect interactions (Jeffree, 1986; 

David and Easwamoorthy, 1988; Smith, 1989; Peter et a/., 1995). Therefore, the 

study was conducted to identify different types of trichomes and their distribution in 

cultivated pigeonpeas and C. scarabaeoides accessions. Ten pods were collected 

from each accession, in all the three replications, in both the seasons. The pods were 

examined under the light microscope at a magnification of IOOx with an ocular 

measuring grid to identify different types of trichomes and also their distribution. 

The pods were also scanned under the Scanning Electron Microscope (SEM) using 

the methodology described by Reddy el a/. (1995). Electron micrographs were taken 

with a JEOL JSM 35 CF. Five different types of trichomes; three glandular (A, B and 

E) and two non-glandular types (C and D) were found on the pods of wild accessions 

and pigeonpea varieties. Significant differences were observed among the density of 

four types of trichomes (A, B, C and D) on the pods of different wild and cultivated 

accessions. However, the density of trichome E could not be studied due to its very 

small size. Types B, C and D trichomes were present on pods of all the 

C scarabaeoides accessions and C. cajan. Type A was absent in most of the 

C. scarabaeoides accessions and even if present in a few accessions their density 

was very low. Pods of C. scarabaeoides were more pubescent than the pods of 

C. cajan because of the higher density of types B, C and D trichomes. Density of 

trichome type C was significantly correlated negatively with the percentage bud, 

flower and pod damage and number of eggs and larvae per inflorescence. Significant 

seasonal variation for type and density of trichomes was not found in wild and 

cultivated genotypes. 

Days to flower and maturity, leaflet length and width, pod length and width, 

pod bearing length, number of locules and seeds per pod, seed protein, density of 

trichomes A, B, C and D showed highest broad sense heritability. The 100 - seed 

weight showed medium heritability value. This suggests that these traits are less 



affected by the season and therefore can be effectively used as selection criteria in 

breeding programmes. 

In the interspecifc hybridization studies, five C. scarabaeoides accessions 

(ICPW 94, ICPW 116, ICPW 125, ICPW 130 and ICPW 141) and two varieties of 

C cajan (ICP 28 and ICP 26) were used as parents for the production of interspecific 

hybrids. Medium- and short-duration C. scarabaeoi(fes accessions were used in the 

hybridization program based on their resistance to pod borer. Short-duration 

pigeonpea varieties, ICP 26 and ICP 28 (susceptible to pod borer), grown in India, 

were used as female parents and C, scarabaeoides as male parents. The parents 

differed significantly for all the morphological and agronomic characters. This study 

involved production and evaluation of hybrids for pod borer resistance. 

In all, ten crosses were made, five with ICP 28 (ICP 28 x ICPW 94, ICP 28 x 

ICPW 116, ICP 28 x ICPW 125, ICP 28 x ICPW 130 and ICP 28 x ICPW 141) and 

five with ICP 26 (ICP 26 x ICPW 94, ICP 26 x ICPW 116, ICP 26 x ICPW 125, ICP 

26 x ICPW 130 and ICP 26 x ICPW 141), in 1999-2000 Kharif season. Reciprocal 

crosses were also attempted with C. cajan as the male parent and C. scarabaeoides 

as the female parent. The t-test revealed significant differences among the parents 

used in the crossing program. The pollen viability test revealed that the hybrids 

showed 92 - 95 % viability. FI hybrids of seven of the ten crosses were selfed to 

produce F2 plants during 2001 Kharif, and three out of the seven populations were 

further selfed to produce F, population in the consecutive years. The FI hybrids of 

these three crosses were also used in the backcrossing programme, 

The FI plants were also screened for bud, flower and pod damage in field 

under multi-choice conditions for podborer resistance. The resistant FI hybrids of 

three crosses (ICP 28 x ICPW 94, ICP 28 x ICPW 130 and ICP 26 x lCPW 125), out 

of the ten FI crosses, were further backcrossed with C. cajan parent to produce the 

backcross generations. The BCIFl plants were screened in the next season for pod 

borer resistance in the field under multi-choice conditions. The resistant plants were 

again backcrossed to produce the next generation of backcrosses; BC2 and BC,. 



Mid- and better parent heterosis was studied for days to flower, days to 

maturity, leaflet length and width, pod length and width, number of locules per pod, 

 umber of seeds per pod, 100- seed weight, number of primary and secondary 

branches, density of trichomes A, B, C and D. Mid- and better parent heterosis 

values for days to flower and maturity indicated that the hybrids flowered and 

matured earlier than both the parents, had smaller leaves than the parents, had wider 

but short pods compared to parents, had less seed protein content but heavier seeds 

than the parents, had more number of primary but less number of secondary 

branches. Pods of hybrids had less number of trichome A but more number of 

trichomes B. C and D. 

Parents, FI and F2populations of seven interspecific crosses were evaluated to 

study the inheritance pattern of qualitative (plant habit, stem color, leaflet shape, 

presence and absence of strophiole, mottleness of seed and pod hairiness) characters. 

The results indicated that the plant habit (erect, semi-spreading and spreading) is 

controlled by a single gene with incompletelpartial dominance, the leaflet shape 

(obovate, intermediate and lanceolate) was controlled by a single gene with 

incomplete 1 partial dominance. The seed mottleness is under the dominant epistatic 

gene interaction, presence and absence of strophiole on seed was under the inhibitory 

gene action and pod hairiness was controlled by a single dominant gene. 

The means and variances obtained for various quantitative characters, in five 

generations (parents, FI, F2 and F3), and in three crosses (ICP 28 X ICPW 94, ICP 28 

X ICPW 130 and ICP 26 X ICPW 129, were subjected to joint scaling test and five 

parameter model of generation mean analysis to determine their genetic basis. The 

joint scaling test (Cavalli, 1952) was conducted to obtain information on the nature 

of the gene effects involved in the quantitative characters (days to flowering, days to 

maturity, leaflet length, leaflet width, pod length, pod width, pod bearing length, 

number of locules per pod, number of seeds per pod, number of primary and 

secondary branches, 100-seed weight and harvest index). The parameters estimated 

were m (mean), d (pooled additive effects), h (pooled dominance effects), i (the 

pooled additive x additive epistatic effects), and 1 (pooled dominance x dominance 



effects). In the absence of second backcross progeny, the j (pooled additive x 

dominance effects) component was not estimated. 

In all the three crosses, estimates of d (additive) were significant for days to 

flower. pod length, pod bearing length, seeds per pod, number of primary branches, 

100 - seed weight and harvest index; h (dominance) was significant for days to 

flower, days to maturity, leaflet width, pod bearing length, seeds per pod, locules per 

pod and number of primary branches. The estimates of i (additive x additive) were 

significant for days to maturity, leaflet length, leaflet width, pod width, locules per 

pod, number of secondary branches, while I (dominance x dominance) was 

significant for leaflet length, leaflet width, pod length, pod width, seeds per pod, 

locules per pod, number of primary and secondary branches. 

In the cross, ICP 28 x ICPW 94; h and I effects expressed negatively for days 

to flower, and positively for leaflet length, leaflet width and number of primary 

branches indicating duplicate epistasis. The h and I effects expressed with opposite 

signs indicated complimentary epistasis for days to maturity, pod length, pod width, 

pod bearing length, number of locules per pod, number of seeds per pod, number of 

secondary branches, 100 - seed weight and harvest index . 

In the cross, ICP 28 x ICPW 130; h and I effects expressed negatively for 

days to maturity, and positively for leaflet width and number of secondary branches 

indicating duplicate epistasis. The h and I effects expressed with opposite signs 

indicated complimentary epistasis for days to flower, leaflet length, leaflet width, 

pod length, pod bearing length, number of locules per pod, number of seeds per pod, 

number of primary branches, 100 - seed weight and harvest index. 

In the cross, ICP 26 x ICPW 125; h and I effects expressed positively for 

leaflet width and number of seeds per pod and number of secondary branches 

indicating duplicate epistasis. The h and 1 effects expressed with opposite signs 

indicated complimentary epistasis for days to flower, days to maturity, leaflet length, 

pod length, pod width, pod bearing length, number of locules per pod, number of 

primary branches, 100 - seed weight and harvest index . 
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Variation in the population was explained with contributions of d, h, i and I 

for all the traits studied. The contribution of d in cross, ICP 28 x ICPW 94 was 

maximum for pod length (87.5%), 100 - seed weight (95.10%) and harvest index 

(94.56%); while h was maximum for pod width (48.82%) and number of primary 

branches (50.49%); i for days to flower (86.48%). days to maturity (47.77%). leaflet 

length (60.36%) and leaflet width (76.77%); and I for pod bearing length (60.85%). 

number of seeds per pod (75.83%), number of locules per pod (42.86%) and number 

of secondary branches (58.49%). 

In the cross, ICP 28 x ICPW 130; contribution of d was maximum for days to 

maturity (69.30%), pod length (47.79%), number of secondary branches (67.28%), 

100-seed weight (98.59%) and harvest index (98.32%); h for days to flower 

(57.48%), leaflet length (71.89%), leaflet width (58.75%), pod bearing length 

(64.27%) and number of seeds per pod (65.06%); i for pod width (70.51%) and 

number of primary branches (52.55%); and I for number of locules per pod (59.66%) 

in explaining the variation of these characters. 

In the cross, ICP 26 x ICPW 125; contribution of d was maximum for days to 

flower (86.53%), leaflet width (70.43%), pod bearing length (61.85%), number of 

primary branches (44.67%), number of secondary branches (80.48%), 100 - seed 

weight (98.56%) and harvest index (97.28%); h for number of locuies per pod 

(45.50%); i for days to maturity (55.75%) and leaflet length (65.78%), and I for pod 

length (77.73%), pod width (81.56%) and number of seeds per pod (53.37%). 

The harvest index was explained with maximum contribution from d in 

crosses, ICP 28 x ICPW 94 (94.56), ICP 28 x ICWP 130 (98.00) and ICP 26 x ICWP 

125 (97.28). Seed weight in all three crosses was explained with maximum 

contribution from d (95.104 to 98.61) in crosses ICP 28 x ICPW 94, ICP 26 x ICPW 

125 and ICP 28 x ICPW 130 indicating that the additive effect was significant in all 

the crosses. The contribution of i and I were non-significant in crosses ICP 28 x 

ICPW 94 and ICP 26 x ICPW 125, while in cross ICP 28 x ICPW 130 only the i was 

non-significant for both harvest index and the seed weight. 



Inheritance of type and density of trichomes, on the pod wall, was determined 

in two crosses; ICP 28 x ICPW 94 and ICP 26 x ICPW 125. Ten pods from each 

plant and ten plants in each parent (PI and P2). ten from FI, 250 plants of the F2 

generation, and 75 from the BClFl generation were observed for the type and density 

of trichomes in each cross. The data on type and density of trichomes types A, B, C 

and D on pods in parents, FI,  F2, and backcross generations in both the crosses were 

analyzed using x2-test for goodness of fit. The low density of trichomes A and B, and 

high density of trichome C and D types were dominant over high density of A, B, 

and low density of C and D, respectively. The segregation pattern in F2 and 

backcross generations indicated that low density of trichome A and B types in both 

crosses, and high density of C type in both the crosses and D type only in one cross 

(ICP 28 x ICPW 94) was governed by the dominant allele of a single gene. The 

segregation pattern in F2 and backcross generations of the cross ICP 26 x ICPW 125 

did not fit a single gene pattern, indicating presence of digenic or higher order 

interlocus interaction. 

Parents, FI ,  F2 and BCI populations of three crosses (ICP 28 x ICPW 94, ICP 

28 x ICPW 130 and ICP 26 x ICPW 125) were evaluated in the field under multi- 

choice conditions for pod borer resistance. Percentage of bud, flower and pod 

damage and numbers of eggs and larvae per inflorescence were recorded. The plants 

of a cross ICP 28 x ICPW 94 were also screened under no-choice conditions in the 

laboratory for pod borer resistance. Pods of parents, FI,  F2 and backcross generations 

were screened for antibiosis. The genetics of pod borer resistance for antixenosis and 

antibiosis mechanisms were determined. The segregation pattern of 3 (resistant): 1 

(susceptible), in F2 generation, indicated that the antixenosis and antibiosis 

mechanisms of resistance are governed by the dominant allele of a single gene, 

indicating a simple inheritance. 

Pigeonpea improvement was hitherto based on the variability present within 

the primary gene pool, as gene transfer from one variety to another can be easily 

achieved. The present study demonstrates that 30 wild accessions of 

C, scarabaeoides, evaluated for the first time, could be a potential and valuable 



source of germplasm for pigeonpea improvement. Hence, large-scale morphological, 

molecular and biochemical diversity studies, on wild accessions of 

C. scarabaeoides, have been carriedout for the first time. The identification of 

parents is an important prerequisite in any crop-breeding programme. Further, 

pigeonpea, for the first time, pod borer resistance gene (s) from the wild 

C scrrrubaeoides were successfully introgressed into the cultivated background 

through backcross programme. Also, the genetic bases of different qualitative and 

quantitative characters, including resistance to podborer as well as resistance related 

traits such as trichome type and their densities have been determined. In the present 

study, sufficient genetic information has been generated for undertaking gene 

mapping besides F4 and BC3 populations that can be advanced to further generations 

for selecting desirable recombinants. 
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