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Resistance to biotic stresses in plants is either due to the presence of preformed bio-
chemical compounds or induced in response to external stimulus. In this study, 13
grain mould resistant and seven susceptible lines of sorghum were analysed for bio-
chemical defence mechanism. The levels of total phenols and phenylalanine ammo-
nia lyase were almost same in the resistant and susceptible genotypes. However, two
additional isoforms of peroxidase were found in the three of the 13 resistant geno-
types. The isoform peroxidase corresponding to the Rf value of 0.25 was found in
the resistant genotypes IS 13969, ICSB 377 and IS 8219-1, and two genotypes IS
13969 and ICSB 377 had an additional isoform corresponding to the Rf value of
0.32. The results indicated the genotype specific association of peroxidases with
grain mould resistance in sorghum. Nine bacterial strains (Bacillus pumilus SB 21,
Bacillus megaterium HiB 9, Bacillus subtilis BCB 19, Pseudomonas plecoglossicida
SRI 156, Brevibacterium antiquum SRI 158, B. pumilus INR 7, P. fluorescens UOM
SAR 80, P. fluorescens UOM SAR 14, B. pumilus SE 34) were tested to induce sys-
temic resistance in sorghum cultivars 296B and Bulk Y against the highly pathogenic
grain mould pathogens Curvularia lunata and Fusarium proliferatum, respectively.
The bacterial isolates were effective in inducing resistance in sorghum. Among the
strains tested, SRI 158 was found highly effective in reducing grain mould severity
in both the genotypes.

Keywords: grain mould; induced resistance; isoforms; peroxidase; phenols;
phenylalanine ammonia lyase

Introduction

Grain mould is a major disease of sorghum (Sorghum bicolor (L.) Moench) that affects
grain production and quality especially in short duration cultivars that mature during the
rainy season in the humid, tropical and subtropical climates. Damage due to grain
mould has been associated with losses in seed mass, grain density, seed germination,
storage quality and market value. Some of the mould fungi produce mycotoxin(s) that
are harmful to human and animal health and productivity (Thakur et al. 2006). Fungi
belonging to more than 40 genera are reported to be associated with sorghum grain
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mould (Navi et al. 1999). In India, Fusarium proliferatum, Curvularia lunata and
Alternaria alternata are more pathogenic among the fungi associated with grain mould
complex (Thakur et al. 2003).

Host plant resistance is the most effective strategy for managing sorghum grain
mould (Thakur et al. 2003, 2006). However, it is important to understand mechanism
of grain mould resistance in sorghum. Plant resistance mechanism can be broadly
divided into two types which relate either to constitutive features of the structure
and biochemical composition of the plant cells or to inducible systems, which are
only switched on when the plant is challenged by infection, damage or treatment
with a chemical elicitor. The constitutive resistance is conferred by the presence of
antifungal proteins, peptides and other biochemical compounds either in the apo-
plasm or within the cells, whereas the biochemical defence mechanism may consist
of the presence or absence of a particular chemical substance or group of substances
in a host plant, which inhibits the growth and multiplication of a pathogen. Such a
condition may exist constitutively either before the pathogen attacks the plant or as
a reaction of the host to infection by the pathogen. Among the biochemicals
involved in defence process, phenolics, peroxidases and phenylalanine ammonia
lyases (PAL) are significantly important (Dicko et al. 2002, 2005, 2006; Heldt
2005).

Role of phenolic compounds in disease resistance in sorghum has been docu-
mented (Nicholson and Hammerschmidt 1992). Studies have shown that the plant
resistance to both biotic (pathogens and predators) and abiotic (UV radiation, drought
etc.) stresses is related to the presence of phenolic compounds (Dicko et al. 2002,
2005, 2006). PAL is indirectly associated with the synthesis of phenol polymers
including lignin and suberin (Parr and Bolwell 2000; Heldt 2005). In sorghum, the
infection of the seedlings by the pathogen involves rapid accumulation of PAL
mRNA (Cui et al. 1996). Inhibition of PAL and cinnamyl alcohol dehydrogenase
has been reported to increase the susceptibility of barley to powdery mildew (Carver
et al. 1994).

Plant peroxidases are ubiquitous, haeme containing glycoproteins that catalyse the
oxidation of diverse organic and inorganic substances at the expense of hydrogen per-
oxide (Castillo 1992). Their roles in defence mechanism include the oxidation of
hydroxycinnamyl alcohols into free radical intermediates, phenol oxidation (POX),
cross-linking of polysaccharides and of extensin molecules, lignification and suberisa-
tion (Chittoor et al. 1997).

In the early twentieth century, evidence began to accumulate that plants could
be protected against pathogens by prior infection of the plant with other avirulent
strains. This phenomenon is known as induced or acquired resistance to disease
(Hammerschmidt and Kuc 1995; Sticher et al. 1997). One of the characteristics of
acquired resistance is that it is effective against a broad spectrum of pathogens. A
number of plant growth promoting rhizobacteria (PGPR) have been identified as
potential inducers of systemic resistance (ISR). Increased PAL activity has been
reported in the sorghum when inoculated with Azospirillum (Mohan et al. 1988).
Bacteria differ in their ability to induce resistance, some bacteria are more active
on certain plant species with varying results within the same species, and in some
cases they have no effect on other species (Van Loon 1997). The present study
was undertaken for the biochemical characterisation of grain mould resistant geno-
types and to identify the PGPR effective in reducing the grain mould severity in
sorghum.
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D
ow

nl
oa

de
d 

by
 [

R
aj

an
 S

ha
rm

a]
 a

t 2
0:

14
 2

9 
Ja

nu
ar

y 
20

13
 



Materials and methods

Biochemical characterisation of grain mould resistant sorghum genotypes

Plant materials

Thirteen grain mould resistant and seven susceptible genotypes were used in this study
(Thakur et al. 2003, Table 1). Seeds of these 20 genotypes were surface sterilised with
1% chlorox for 3min and washed three times with sterile distilled water. Sterilised
seeds were plated in humidity chambers and incubated at 30 °C for 5�6 days. The
plumules of the seedlings were used as a source material for the estimation of phenols,
PAL and peroxidase enzymes.

Assay for peroxidase, phenols and PAL

Isoenzyme analysis for peroxidase was carried out using the native polyacrylamide
gel electrophoresis (native-PAGE). Proteins were extracted using Tris-HCl buffer. Pro-
tein content was estimated as per the method of Lowry et al. (1951). Electrophoresis
was performed at 50 v for 7�8 h in a vertical gel electrophoresis using a gradient
gel of 10–155 concentration. Isoforms were visualised by incubating the gel in a
solution containing O-dianisidine. The activity of PAL was determined using the
method of Subba Rao and Towers (1970). The absorbance was measured at 290 nm
using trans-cinnamic acid at varying concentrations as the standard. Enzyme activity
was expressed in μM trans-cinnamic acid/g protein/min. Total phenols were deter-
mined as per the method of Malik and Singh (1980). The absorbance was read
using a spectrophotometer at 750 nm. Phenol content was expressed as mg phenols/g
sample.

Table 1. Grain mould reaction of sorghum lines selected for biochemical characterisation.

Entry no. Genotype Grain mould reaction

1 IS 12932-2 Resistant
2 IS 13969 Resistant
3 SGMR 24-5-1-2 Resistant
4 SGMR 11-3-5-1 Resistant
5 IS 14384-1 Resistant
6 ICSB 377 Resistant
7 IS 8219-1 Resistant
8 SGMR 33-5-6 Susceptible
9 PVK 801-4 Susceptible
10 SGMR 23-10-2-1 Susceptible
11 SGMR 40-1-2-3 Resistant
12 IS 41397-3 Resistant
13 ICSV 96094-2 Resistant
14 ISCB 402-3 Resistant
15 ISCB 402-1-2 Resistant
16 SPV 462-3 Resistant
17 IS 36469C 1187-1-2-9-8-2 Susceptible
18 SP 72521-2-6-6-6 Susceptible
19 SPV 104 Susceptible
20 Bulk Y Susceptible

Notes: Resistant6 3.0 grain mould score and SusceptibleP 7.0 score on a 1–9 progressive scale.
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Induction of resistance in sorghum with PGPRs

Seed source

Seeds of two susceptible sorghum genotypes 296B and Bulk Y used in the study were
obtained from Sorghum Breeding Unit, ICRISAT, Patancheru.

ISR agents and inoculum preparation

Nine bacterial strains (Bacillus pumilus SB 21, Bacillus megaterium HiB 9, Bacillus
subtilis BCB 19, Pseudomonas plecoglossicida SRI 156, Brevibacterium antiquum SRI
158, B. pumilus INR 7, P. fluorescens UOM SAR 80, P. fluorescens UOM SAR 14 and
B. pumilus SE 34) obtained from the department of Applied Sciences and Biotechnol-
ogy, University of Mysore, Karnataka and Biocontrol Unit, ICRISAT were used in these
studies. The bacterial suspensions were obtained by inoculating in the nutrient broth
with bacterial isolates and incubating at 27 °C at 120 rpm in a shaker cum incubator for
48 h. The 48-h-old cultures were used for inoculation of sorghum panicles for the
induction of resistance.

The panicles of both 296B and Bulk Y were spray inoculated at pre-flowering stage
(three days before anthesis) with the 48-h-old bacterial suspensions in the greenhouse at
25 °C. Proper controls were maintained by spraying sterile water. Each bacterial treat-
ment consisted of eight replications, one panicle/replication in each genotype.

Pathogen inoculation

C. lunata and F. proliferatum, the two major grain mould pathogens of sorghum were
used in this study. The pathogens were isolated from the moulded sorghum grains col-
lected from the grain mould nursery conducted at ICRISAT, Patancheru during 2010.
The conidial suspensions of C. lunata and F. proliferatum were prepared in the sterile
distilled water from 10-day-old cultures grown on potato dextrose agar. Spore concen-
tration was adjusted to 1�105 conidia/ml and spray inoculated on the bacteria-treated
panicles at 80% anthesis stage. The inoculated panicles were exposed to over head mist
for 48 h for facilitating the mould infection. The inoculated plants were maintained in
the greenhouse chambers at 25 °C until physiological maturity. At physiological
maturity, the plants were exposed to mist for 72 h for the grain mould development.
The inoculated panicles were harvested, dried and the grains were collected for further
use.

Observations on grain colonisation

The grains were assayed for fungal colonisation using blotter paper method (Thakur
et al. 2006). The grains were surface sterilised with clorox (1%) for 3min and thor-
oughly washed with sterilised distilled water. The grains were then kept in sterilised
moist Petri plates, 25 grains/Petri plate; two Petri plates/treatment. The plates were incu-
bated at 28 ± 1 °C for five days with 12 h photoperiod. The data were recorded on the
number of grain colonised by the pathogen inoculated as well as total moulded grains
due to natural infection by other fungi. Per cent grain colonisation was estimated as

Grain colonisation ð%Þ ¼ Moulded grains

Total grains
� 100

4 R. Nithya et al.
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Statistical analysis

The data-sets were subjected to analysis of variance to determine significant differences
among treatments using GENSTAT statistical package (Rothamsted Experiment Station,
Herpenden, Herts AL52JQ, UK).

Results

Biochemical characterisation of grain mould resistance in sorghum

Isozyme analysis

Zymogram of peroxidase isoforms in resistant and susceptible genotypes of sorghum is
presented in Figure 1. Six isoforms were common across resistant and susceptible geno-
types, but two additional isoforms corresponding to the Rf value of 0.25 were found in
three resistant genotypes (IS 13969, ICSB 377 and IS 8219-1) and two genotypes (IS
13969 and ICSB 377) had an isoform corresponding to Rf value of 0.32.

Estimation of PAL

Comparative PAL activity in the resistant and susceptible genotypes is presented in
Figure 2. There were significant differences in the PAL activity among test lines; how-
ever, no significant variation between the resistant and susceptible groups was observed.
The highest enzyme activity (41.75 μM/min/g protein) was found in resistant genotype

Genotypes

Rf Value Bands 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.09 B1

0.17 B2

0.25 B3

0.30 B4

0 32 B50.32 B5

0 35 B60.35 B6

0 47 B70.47 B7

0 52 B80.52 B8

Figure 1. Zymogram showing banding pattern of peroxidase isozyme in grain mould resistant
and susceptible sorghum lines.
Notes: Lanes 1�20 represents genotypes IS 12932-2, IS 13969, SGMR 24-5-1-2, SGMR 11-3-5-
1, IS 14384-1, ICSB 377, IS 8219-1, SGMR 33-5-6, PVK 801-4, SGMR 23-10-2-1, SGMR 40-
1-2-3, IS 41397-3, ICSV 96094-2, ISCB 402-3, ISCB 402-1-2, SPV 462-3, IS 36469C 1187-1-2-
9-8-2, SP 72521-2-6-6-6, SPV 104 and Bulk Y.
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ICSB 377 while the lowest (27.88 μM/min/g protein) in the susceptible genotype
SPV 104.

Estimation of total phenols

There was no significant variation in the phenolic contents of resistant and susceptible
genotypes (Figure 3). The highest amount of phenols (21.60mg/g) was recorded in two
genotypes SGMR 3-3-5-6, a susceptible genotype and SGMR 24-5-1-2, a resistant
genotype. The lowest amount (15.51mg/g) was recorded in the susceptible genotype, IS
36469C 1187-1-2-9-8-2.

Figure 2. Concentration of cinnamic acid in the selected resistant and susceptible sorghum lines.

Figure 3. Total phenol content in the resistant and susceptible sorghum lines.

6 R. Nithya et al.
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Induction of disease resistance in sorghum

Efficacy of bacterial strains as inducers of grain mould resistance

Analysis of variance indicated that the bacterial strains were significantly effective in
reducing the gain mould severity in 296B and Bulk Y inoculated with C. lunata and F.
proliferatum, respectively (Table 2). In 296B, the grain colonisation by C. lunata in the
bacteria-treated plants was significantly lower compared to control (Table 3). The lowest
grain colonisation by Curvularia (4%) was observed in SRI 158 treated plants followed
by treatment with P. fluorescens UOM SAR 14, that resulted in 5% grain colonisation,
whereas 56% grain colonisation was observed in the control. Also per cent total mould
infection (by pathogen inoculation as well as due to natural infection by other fungi)
was higher in the control (67%) compared to bacteria-treated plants. Treatment with
SRI 158 resulted in lowest mould infection (6%) compared to 67% in control.

In Bulk Y, the lowest grain colonisation (2%) by F. proliferatum was observed in
treatment with SRI 158 against the control (17%) (Table 3). However, treatment with P.
fluorescens UOM SAR 14 resulted in lowest total mould infection (18%) compared to
control (30%).

Table 3. Efficacy of ISR against grain colonisation of sorghum genotypes caused by Curvularia
lunata and Fusarium proliferatum in greenhouse conditions.

Treatment
no. ISR agent

Grain colonisation (%)a

296B Bulk Y

C.
lunata

Other
fungi

F.
proliferatum

Other
fungi

T 1 B. pumilus SB 21 27 34 12 28
T 2 B. megaterium HiB 9 23 70 3 47
T 3 B. subtilis BCB 19 21 40 4 50
T 4 P. plecoglossicida SRI 156 13 30 9 52
T 5 Brevibacterium antiquum SRI

158
4 6 2 28

T 6 B. pumilus INR 7 25 32 5 34
T 7 P. fluorescens UOM SAR 80 12 20 7 44
T 8 P. fluorescens UOM SAR 14 5 18 5 18
T 9 B. pumilus SE 34 13 20 10 54
T 10 Control (Distilled water) 56 67 17 30

Mean 20 34 7 38
LSD (p < 0.05) 8.4 13.7 5.1 16.1

Note: aBased on the mean of 8 replications.

Table 2. ANOVA for efficacy of ISR agents in reducing grain colonisation (%) by C. lunata on
296B and F. proliferatum on Bulk Y.

Source of variation Degree of freedom

Mean square

296B Bulk Y

Replications 7 393.6 69.18
ISR agents 9 3637.5⁄⁄ 333.75⁄⁄

Residual 143 144.9 53.46
Total 159

Note: ⁄⁄significant at p< 0.01
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Discussion

The biochemical basis of disease resistance in plants is a complex phenomenon. Total
phenols and phenolics have long been considered as important defence-related
compounds whose levels are naturally high in the resistant varieties of many crops
(Onyeneho and Heltiarachchy 1992; Saini et al. 1988). According to Nicholson and
Hammerschmidt (1992), some antibiotic phenols occur in plants constitutively to func-
tion as preformed inhibitors, while some occur in response to ingress of pathogens,
exhibiting active pathogen defence.

Many attempts have been made to find and identify toxic compounds, which, by
their presence in the resistant varieties and absence or smaller concentrations in the
susceptible varieties, could be assigned a role in the host defence against a particular
pathogen. However, few cases in which such compounds are correlated with pre-infec-
tional defence against the pathogen have been adequately documented. In the present
study, no significant differences in the total phenol content between susceptible and resis-
tant genotypes were found. Leaves of sorghum resistant to fungi have been found to con-
tain a higher content of total phenols than those of susceptible upon pathogen challenge
(Luthra et al. 1988). This suggests that total phenols in sorghum grains, which are not
challenged by the pathogens, are not good indicator for resistance to biotic stress.

POX is involved in cross-linking extensin molecules to form lignin (Brisson et al.
1994). Increased lignin deposition is believed to play a role in barricading the pathogen
from invading the plant through physical exclusion (Milosevic and Slusarenko 1996).
According to Yang et al. (1984), isozyme bands of peroxidases are the expression of
individual genes. Among 20 sorghum lines tested, the three resistant genotypes (IS
13969, ICSB 377 and IS 8219-1) shared some common loci (Figure 1), indicating
genotype specific association of peroxidases with disease resistance. Castor and Freder-
iksen (1980) observed that sorghum resistant to one genus of fungus or mode of fungal
attack was not necessarily resistant to other genera or modes of attack. The sorghum
varieties in this study may have different resistance mechanisms to the grain mould
fungi. This could explain the variation in peroxidase isozyme banding patterns even
among resistant varieties.

PAL activity has been reported to be associated with the biosynthesis of toxic
metabolites such as phytoalexins, phenols, lignins and salicylic acid in plant defence
pathways (Mauch-Mani and Slusarenko 1996). In the present study, the PAL activity
was almost same in both resistant and susceptible genotypes. The PAL expression might
increase in response to pathogen attack. Therefore, PAL activity should be compared in
resistant and susceptible lines following inoculation of a pathogen to determine the
association of the enzyme with mould resistance. The total phenols and related enzymes
analysed in this study did not correlate well with grain mould resistance. However,
genotype specific association of peroxidase for grain mould resistance was observed in
this study. Thus, the ability of sorghum to resist fungal attack does not appear to be
due to a single factor, but is most likely the result of interaction and combination of
many factors.

The bacterial isolates were effective in inducing resistance in sorghum against the
mould fungi. Among strains tested, SRI 158 was most effective in inducing disease resis-
tance in both the genotypes tested. A number of PGPR have been selected for their abil-
ity to systemically control various diseases when localised to plant roots, as an soil
drench, transplant mix, root dip or seed treatment (Van Loon et al. 1998; Chen et al.
2000). B. pumilus INR7 is an exemplary example of a PGPR strain that effectively

8 R. Nithya et al.
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protected cucumber plants against angular leaf spot and anthracnose in several field trials
(Raupach and Kloepper 1998; Wei et al. 1996). Hence, spray application of SRI 158 at
the anthesis stage coupled with reasonable levels of resistance in the host could become
an integral component of integrated disease management in sorghum. However, the effi-
cacy of SRI 158 as a potential ISR agent needs to be further confirmed at field level.
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