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Abstract 

The frequency and severity of shallow landslides in New Zealand threatens life and property, 

both on- and off-site. The physically-based shallow landslide model LAPSUS-LS is tested for 

its performance in simulating shallow landslide locations induced by a high intensity rain 

event in a small-scale landscape. Furthermore, the effect of high resolution digital elevation 

models on the performance was tested. The performance of the model was optimized by 

calibrating different parameter values. A satisfactory result was achieved with a high 

resolution (1 m) DEM. Landslides, however, were generally predicted lower on the slope than 
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mapped erosion scars. This discrepancy could be due to i) inaccuracies in the DEM or in other 

model input data such as soil strength properties; ii) relevant processes for this environmental 

context that are not included in the model; or iii) the limited validity of the infinite length 

assumption in the infinite slope stability model embedded in the LAPSUS-LS. The trade-off 

between a correct prediction of landslides versus stable cells becomes increasingly worse with 

coarser resolutions; and model performance decreases mainly due to altering slope 

characteristics. The optimal parameter combinations differ per resolution. In this 

environmental context the 1 m resolution topography resembles actual topography most 

closely and landslide locations are better distinguished from stable areas than for coarser 

resolutions. More gain in model performance could be achieved by adding landslide process 

complexities and parameter heterogeneity of the catchment. 

 

Keywords: Landslide locations; LAPSUS-LS; New Zealand; DEM resolution; Model 

performance 

 

1. Introduction 

Landslides triggered by rainstorms present a global environmental and economic hazard, 

especially on steep hillslopes in populated areas. In mountainous countries, such as New 

Zealand, shallow landsliding is one of the most important erosion processes (Crozier, 1986). 

The frequency and severity of shallow landslides threaten life and property, both on- and off-

site (Brooks et al., 2002; Reid and Page, 2002). A long-term consequence is the loss of soil 

nutrients, and as a result a decline in soil productivity. Pasture production on 20-year old 

landslide scars can be as low as 20% compared to unaffected areas (Trustrum et al., 1984; in 

Brooks et al., 2002). In order to effectively battle the on- and off-site effects of landslides, 
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more information is needed on the spatial distribution of potential landslide hazard in the 

landscape and the associated possible contribution to catchment sediment load. 

Numerous landslide models have been developed to predict spatially explicit landslide hazard 

to mitigate unwanted effects. Most recent models combine steady-state hydrology concepts 

with the infinite slope stability model to estimate critical rainfall, which is the steady-state 

rainfall threshold to cause slope failure (e.g. Montgomery and Dietrich, 1994; Borga et al., 

1998; Burton and Bathurst, 1998; Claessens et al., 2005). One of the main factors determining 

the landslide location is surface topography through concentration of shallow subsurface flow 

and increased soil saturation which can trigger slope failure (Borga et al, 2002a). Other 

important input parameters are rainfall intensity, geomorphological expression (gradients and 

topography), and soil and vegetation properties. These types of data might be difficult to 

gather, especially over large and complex landscapes.  

Resolution of a digital elevation model (DEM) influences the calculation of critical rainfall 

(Zhang and Montgomery, 1994; Claessens et al., 2005), through derivation of topographical 

and hydrological parameters, and therefore the prediction of landslide locations. Moreover, in 

the last few years there is an emergence of promising new technologies for high resolution 

terrain mapping (e.g. total stations, terrestrial laser scanners and LiDAR). High resolution 

digital elevation data recognise more local variations in hillslope and valley morphology and 

thus might increase the potential in the detailed analysis of landslide locations (Tarolli and 

Fontana, 2009). However, Zhang and Montgomery (1994) suggest that a grid size of 10 m 

would suffice for DEM-based geomorphic and hydrological modelling. Tarolli and Tarboton 

(2006) noticed that a very high resolution DEM may lower performance of an infinite slope 

stability model. The surface topography at this resolution might be less representative of the 

more general slope conditions under which landslides occur. Given the advances in high 
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quality digital elevation data, it is desirable to investigate their effect on the performance of 

landslide models.  

Claessens et al. (2005) developed the LAPSUS-LS model to predict landscape evolution due 

to landslides on coarse temporal and spatial scales, with limited data requirements. Often 

there is a lack of representative and detailed soil-mechanical and hydrological parameters 

which might constrain models aiming for event-based landslide prediction on finer spatial and 

temporal scales. This study tests the LAPSUS-LS model beyond its original scope to explore 

its performance in predicting the spatial distribution of landslides, without the need for 

detailed spatially explicit input data, when calibrated and validated with high resolution 

elevation data for a small scale catchment in New Zealand. This study additionally 

investigates the impact of finer resolution digital topography on simulated landslides. 

 

2. Regional setting 

2.1. Study area 

Due to data availability, including a storm and landslide inventory, we applied the landslide 

model LAPSUS-LS (LandscApe ProcesS modelling at mUlti dimensions and scaleS with a 

LandSlide component) to a small catchment (0.1 km
2
) in New Zealand to assess model 

performance in small-scale landscapes with a high resolution (<10 m) DEM. The Hinenui 

study area is located in the coastal hills south-east of Gisborne on the eastern side of North 

Island, New Zealand (Fig. 1). The geology of the area predominantly consists of Miocene 

undifferentiated massive and bedded, slightly calcareous mudstone (Mazengarb and Speden, 

2000). The study catchment consists of two small valleys which merge into a common 

floodplain. The catchment contains no permanent channels but evidence of ephemeral 

channels is present, which function during intense rainfall events (Jones, 2009; Preston, 
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2008). The elevation ranges from 22.9 to 178.7 m a.s.l., while having an average slope of 

23.3°. Most of the watershed is covered with pasture, with a few scattered trees.  

Average annual rainfall in the region ranges from about 1000 mm on the coast near Gisborne 

to 2500 mm further inland. A large part, about 45%, of the annual precipitation falls during 

the winter months (May–August). The winter storms are usually of low intensity and long 

duration. However, from March to May, tropical cyclones occasionally cause high-intensity, 

short-duration storms. In addition, localised, brief high-intensity convective storms can occur 

in the area. All these types of storms are able to trigger landslides in the study area (Reid and 

Page, 2002). 

  

- Figure 1 approximately here -  

 

2.2. Storm event August 2002 

From August 5th to 7th 2002, the East Coast and northern Hawke´s bay were struck by a 

high-intensity rainfall storm. Near Gisborne, the highest rainfall recorded was over 300 mm 

for the entire event. Local landowners reported that most of the landsliding occurred towards 

the end of the storm following 12 hours of high-intensity precipitation (Preston, 2008). 

Rainfall data for the Hinenui study area for the August 2002 event was obtained through the 

National Climate Database of New Zealand. Daily rainfall data from four virtual climate 

stations (VCS) in the vicinity of the Hinenui catchment show an average rainfall of 104.4 mm 

day
−1

 on August 6th (Table 1). VCS data are estimates of daily rainfall on a regular (~5 km) 

grid based on the spatial interpolation of actual data observations made at climate stations 

located around the country. A thin-plate smoothing spline model was used for the spatial 

interpolations (http://cliflo.niwa.co.nz).  
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- Table 1 approximately here -  

 

3. Materials and methods 

3.1. Modelling framework 

This study used the LAPSUS modelling framework. LAPSUS is a multi-dimensional 

landscape evolution model addressing on-site and off-site effects of current and possible 

future water and soil redistribution by water run-off and tillage erosion (Schoorl et al., 2000). 

Claessens et al. (2005, 2007a,b) extended the model with a landslide component (LAPSUS-

LS), which is able to model the triggering of shallow landslides as a function of critical 

rainfall, their subsequent trajectory downwards and the final deposition of the lobe with 

sediment delivery rates to streams (Claessens et al., 2006). 

 

3.2. Critical rainfall  

The calculation of critical rainfall is based on a steady-state hydrological model in 

combination with a deterministic infinite slope stability model to delineate areas prone to 

landsliding due to surface topographic effects on hydrologic response (Montgomery and 

Dietrich, 1994; Pack et al. 2001; Claessens et al., 2007a,b). In an infinite slope stability 

model, the stability of a slope is usually expressed as the factor of safety (FS), which can be 

written as (Pack et al., 2001; Claessens et al., 2007a,b):  

 

w

s

cos 1 tan

sin

ρ
C θ W

ρ

θ
FS

 
  
   
                  (1) 
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where C is the combined cohesion made dimensionless relative to the perpendicular soil 

thickness (-), θ local slope angle (°), W the relative wetness index (-), ρw density of water (g 

cm
-3

), ρs wet soil bulk density (g cm
-3

) and φ the angle of internal friction of the soil (°).  

If FS is larger than 1 the slope is stable; if FS is below 1, the slope becomes unstable and a 

landslide will be triggered on that position. C can be interpreted as the relative contribution to 

slope stability of the cohesive forces, which consist of root cohesion and soil cohesion 

(Claessens et al., 2007a,b). W is the ratio of local flux at a given steady-state rainfall to that at 

soil profile saturation. Claessens et al. (2007a,b) used a steady-state hydrological response 

model based on work by O’Loughlin (1986) and Moore et al. (1988) for the calculation of W:  

 

sinbT

Ra
W                    (2) 

 

where R is steady-state rainfall recharge (m d
-1

), a the upslope contributing drainage area 

(m²), b the grid size (m), T soil transmissivity when saturated (m² day
-1

) and θ the local slope 

angle (°). 

The upslope contributing area is calculated using the concept of multiple downslope flow 

(Quinn et al, 1991). Wetness ranges between 0 and 1, since any excess of water is assumed to 

form overland flow.  

By substituting Eq. (2) into Eq. (1), equating FS to 1 since this is the threshold for instability, 

and solving for R, the minimum steady-state rainfall to cause slope failure, termed  critical 

rainfall Qcr (m d
-1

), can be determined as (Claessens et al., 2007a,b):  

 

s
cr

w

(sin )
sin 1

(cos tan

b C
Q T

a

 


  

    
     

    
             (3) 
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With the boundary conditions for W (between 0 and 1), the upper and lower thresholds for 

slopes that can fail can be calculated with Eq. (3). Unconditionally stable areas are predicted 

to be stable, even when saturated and satisfy the following condition (Claessens et al., 

2007a,b):  

 

w

s

tan 1 tan
cos

C 
 

 

  
    
   

             (4) 

 

Unconditionally unstable areas, consisting mostly of bedrock outcrops and unstable even 

when dry, satisfy the following condition (Claessens et al., 2007a,b):  

 














cos
tantan

C
                (5) 

 

3.3. Trajectories of failed slope material 

When the amount of rainfall exceeds the critical rainfall in a grid cell, the landslide starts and 

debris begins moving downslope. Following the initial failure, unstable soil material is eroded. 

The depth of such material (S, in m) can be estimated based on works by Johnson and Rodine 

(1984, as in Claessens et al., 2007a) and e.g. Burton and Bathurst (1998) as: 

 

 s

s

cos tan tan
S

C

    
                (6) 

 

where α is the minimum local slope for debris flow movement (°), δ a correction factor for 

dimensions (m
2
) and Cs is soil cohesion (kPa). 
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Landslide erosion follows the steepest descent and stops where the gradient falls below a 

certain slope angle α and the transported material is deposited over a number of downslope 

grid cells, defined as ‘cell distance’ D (-): 

 

b

r
D                     (7) 

 

where r is the run out distance (m), and b grid size or DEM resolution (m). Here, r of the 

depositional phase defines the distance over which material will be deposited and is calculated 

using the following equation from Burton and Bathurst (1998): 

 

yr                     (8) 

 

where Δy stands for the elevation difference between the head of the slide and the point where 

deposition begins (m), and  χ an empirically derived fraction set at 0.4 (-). 

The accumulated soil material is then further routed with ‘double’ multiple flow methodology 

(Quinn et al. 1991; Claessens et al., 2005, 2007a) to downslope neighbours until D < 1, where 

all the remaining sediment is deposited and the landslide halts (Claessens et al., 2007a). The 

sediment which is effectively delivered to grid cell n (Sn), is expressed as: 

 

n

n

n

n f
D

B
S 
















1

1                 (9) 

 

The term Bn−1 /Dn−1 is the amount of sediment deposited in the grid cell n, originating from 

erosion upslope, divided by the cell-distance (see Eq. 7). The fraction allocated to each lower 

neighbour is represented and determined by the multiple flow concept described by Quinn et 
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al. (1991). The remaining sediment budget of the grid cell n which is not deposited but 

‘passed through’ to the grid cell n+1, can be written as: 

 

n

n

nn f
D

BB 















1

1

1
1                (10) 

 

3.4. DEM and map preparation 

This study used a 1 m resolution digital elevation model (DEM), obtained in April 2008 by 

terrestrial laser scanning (Jones, 2009). The sinks in the DEM were filled, after which flats 

and pseudo-flats were removed to ensure that the LAPSUS-LS works with full hydrological 

connectivity and properly calculated upslope contributing areas. To investigate the influence 

of modelling resolution on the model performance, DEMs with 2, 5 and 10 m cell sizes were 

aggregated from the 1 m DEM. 

Preston (2008) identified 71 earthflow failures at the study site within days of the storm event 

described above. The 71 scars at the study site were identifiable on a low resolution 2002 

aerial photo taken immediately after the storm event which clearly shows landslide scars and 

debris tails. From this aerial photograph a vector polygon layer map of the landslide scars was 

created (Jones, 2009). The polygon layer was also rectified against a high resolution ortho-

rectified aerial photograph from 2007 and checked against field mapping of visible scars in 

2008. Only one land cover class, pasture, was considered for both the calibration and 

validation catchments. 

 

3.5. Input parameters 

The default settings for the empirical parameters used in the soil redistribution equations (Eqs. 

6 to 10) were taken from Claessens et al. (2007a). The run-out fraction χ (Eq. 8) was set to 0.4 

and the minimum slope angle for maintaining flow α was set to 10°. Regolith depth (h) and 
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soil cohesion (Cs) were set to a constant value, respectively 1 m and 10 kPa. These settings 

are based on field evidence and literature (Burton and Bathurst, 1998; Claessens et al., 2006, 

2007a).  

 

3.6. Testing model performance 

To asses model performance it is important to evaluate the prediction of stable as well as 

unstable cells. If model performance is only based on the ratio of successfully predicted 

landslide sites over total actual landslide sites, over-prediction of landslides is not accounted 

for. Therefore, a measure that indicates the model performance in prediction of stable as well 

as unstable cells is preferred. Keijsers et al. (2011) used the modified success rate (MSR), 

proposed by Huang and Kao (2006), to asses LAPSUS-LS performance in predicting 

landslide locations in Taiwan. MSR is calculated as follows: 

NSC

PSC

NMP

CPP
MSR 5.05.0               (11) 

with CPP the number of landslide polygons that are correctly predicted, NMP total number of 

mapped landslide polygons, PSC number of correctly predicted stable cells and NSC total 

number of actual stable cells. 

A landslide polygon is considered correctly predicted if at least one cell with predicted 

erosion occurs within its boundary. A stable cell is counted as correctly predicted if it is not 

predicted as landslide erosion or deposition and is not contained in a landslide polygon. MSR 

can range from 0 to 1. If all cells are classified as stable or all cells are classified as landslides, 

MSR is 0.5. The highest score of 1 is achieved when both the landslide polygons and stable 

cells are perfectly predicted. 

 

3.7. Calibration and validation procedure 
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MSR was used to optimise the prediction of landslide locations by the LAPSUS-LS for the 

August 2002 event. The values for ρs, C, T and φ and critical rainfall threshold were used as 

calibration parameters. The critical rainfall threshold for landslide initiation is usually a fixed 

parameter, with values estimated from precipitation data. However, the model interprets the 

critical rainfall threshold value as a steady-state rainfall which might not account for 

variations in intensity during the rainfall event. Furthermore, not all precipitation actually 

contributes to sub-surface flow e.g. because of interception by vegetation. As such, this 

parameter can also be used to optimize model performance. MSR for the calibration 

catchment was calculated for a range of parameter values and increments (see Table 2) to find 

the best model fit for 1, 2, 5 and 10 m resolutions. The optimal parameters were then applied 

to the validation catchment (1 m resolution). 

 

- Table 2 approximately here -  

 

4 Results and discussion 

4.1. Model performance at 1 m resolution 

The 1 m resolution DEM was used for the optimisation runs with the indicated value ranges 

and increments of the optimisation parameters (Table 3). The optimal MSR value for the 

calibration catchment is 0.851. The model is able to correctly predict 89.7% of landslide 

locations and 80.6% of stable cell areas. Applying the same parameter combination to the 

validation catchment results in an MSR value of 0.648.  

 

- Table 3 approximately here - 
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Visual analysis of landslide locations (Fig. 2) show that landslides higher up the slope, near 

the water divide are under-predicted and that there is an over-prediction of landslide 

trajectories where the water converges on the slope (e.g. valley bottom and drainage 

channels).  

 

- Figure 2 approximately here -  

 

Difference in the calibration and validation model performances could be due to different 

morphologic or soil characteristics of the two small catchments which make different 

parameter combinations more suitable for each catchment. However, even with optimised 

parameter values, the maximum MSR value for the validation catchment is only 0.707.  

The model performance for the entire range of C, T, ρs and φ, with the critical rainfall 

threshold set to 0.01 m d
-1

, is plotted for the calibration and validation catchments (Fig. 3). 

For both catchments there is a trade-off between a good prediction of landslide sites and that 

of stable cells, as can be seen from the dome-shape of the plotted success rates. Furthermore 

these plots show that this trade-off is more severe for the validation catchment, resulting in a 

lower MSR value.  

 

- Figure 3 approximately here -  

 

In Fig. 4 the critical rainfall values are presented for both catchments. For the validation 

catchment landslides are more over-predicted (lower MSR for stable cell prediction), because 

slopes are still steep enough to cause landslides where the water converges. In the calibration 

catchment the slopes are generally much more gentle, where the water converges, proven by 

the larger area that is unconditionally stable (Fig. 4).  
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- Figure 4 approximately here –  

 

In the following sections we argue that the inaccuracy in predicting landslide locations could 

be due to i) the exclusion, from the model, of relevant processes causing landslides in this 

specific context (Borga et al., 1998); ii) incorrect or incomplete input data such as 

inaccuracies in the DEM and spatial variability in soil and vegetation related parameters; or 

iii) the reduced validity of the infinite length assumption in the infinite slope stability model 

for high resolution DEMs and landslides with small length/depth ratios. 

 

4.1.1. Exclusion of relevant processes 

There are several processes that are not represented in the LAPSUS-LS model that might have 

an influence on the triggering of landslides: i) regolith stripping, ii) preferential flow paths, 

and iii) non steady-state hydrological processes. 

 

Brooks et al. (2002) described the process of regolith stripping in the Hawke’s Bay region 

with three significant phases based on Crozier and Preston (1999). The stripping of the 

regolith layer progressively moves upslope with subsequent landslide events and landslide 

debris deposited at the base of the slope (Crozier and Preston, 1999; Brooks et al., 2002). 

Preston (2008) describes the specific geometry of the Hinenui catchment as a mosaic of old 

failure scars and associated colluvial deposits on middle and lower slopes, while the remnant 

of undisturbed regolith can mainly be found on the spurs and crests of slopes. Landslide 

debris deposited downslope frequently shows an increase in bulk density, internal friction 

angle and cohesion, increasing the resistance to failure (Preston, 1996; Crozier and Preston, 

1999; Brooks et al., 2002). In contrast, the increase in regolith depths downslope may 
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decrease resistance to failure, by the development of higher pore water pressures. However, in 

combination with lower slope angles, the overall result for the colluvial foot slope is likely 

one of higher stability. More uphill, removal of failed landslide material could take away 

support and may trigger upslope failure (see Claessens et al., 2007a). This means that the 

trigger locations of landslides might be correctly predicted by the model but as it does not 

include the parameterization of the above mentioned processes, upslope failures are not 

always accurately predicted.  

Changes in both the hydrological and geotechnical conditions of the slope add more 

complexity to the calculation of critical rainfall values as they change thresholds for slope 

failure. Therefore, landslide predictions might be more accurate when changes in both the 

hydrological and geotechnical properties, as regolith develops on slopes, are taken into 

account. This concept of different phases of regolith stripping introduces the importance of 

the legacy effect of landsliding on the landscape, and especially on the DEM for modelling 

purposes (Hewitt et al., 2008, Keijsers et al.2011). The prediction of landslide locations might 

improve by modelling the storm in multiple time steps and by introducing spatial 

heterogeneity of soil strength parameters in the model. 

 

Another process not represented in the current model is preferential flow paths of throughflow 

such as piping. Preston (2008) stated that in some cases sub-surface flow in pipes was 

identified as a factor in triggering landslides in the Hinenui catchment. The occurrence of sub-

surface flow could be, among others, caused by sub-horizontal bedded parent material. 

Natural pipes or other macropores can carry significant downslope flows and act as a bypass 

to soil flow (Borga et al., 1998). These processes are not included in the LAPSUS-LS model, 

but will likely influence the triggering of landslides. However, there are at present many 

difficulties and uncertainties in pipe flow modelling (Jones, 2010). 
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The assumption of steady-state hydrology as well as steady-state rainfall characteristics might 

lead to inaccurate prediction of landslides for this study area. The assumption of steady-state 

hydrology implies that the relative potential for shallow landslides is determined by 

convergence of shallow subsurface flow, determined by surface topography, and is 

proportional to the upslope contributing area (Montgomery and Dietrich, 1994; Claessens et 

al., 2007a). The low velocity of subsurface flow might indicate that most areas in the 

catchment do not receive subsurface flow from their entire upslope contributing area (Borga 

et al., 2002a). Furthermore, the steady-state hydrology assumption might not be valid for 

high-intensity rains (Iverson, 2000). Chiang and Chang (2009) reported that the steady-state 

assumption results in less accurate prediction of landslides with a small contributing area, as 

is the case for most landslides in our catchment. Assuming steady-state hydrology also does 

not take into account the hydrological processes acting on the initially unsaturated soil and its 

initial wetness conditions. Several studies introduce a quasi-dynamic wetness index as an 

alternative approach to overcome some limitations of the steady-state assumption (e.g. 

Barling et al., 1994; Borga et al., 2002b).  

In addition to these three most important processes, landslide initiation might also be 

influenced by soil heterogeneity, variations in vegetation density and spatial distribution of 

rainfall which are presently not accounted for in the model. However, while extending the 

model with more detailed data and processes might improve model performance, they demand 

more detailed information on triggering rainfall events and soil properties than is usually 

available or feasible to collect. 

 

4.1.2. Incorrect or incomplete input data 
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A second type of error is incomplete or incorrect input data. Given that topography is one of 

the main drivers of slope failure, the quality of the DEM is important. Elevation values are 

used to calculate surface derivatives such as slope, aspect, flow direction, catchment 

boundaries and upstream contributing area. As already mentioned, the DEM was processed 

several years after the 2002 rainfall event. Consequently, alteration of the surface and 

topography after the landslide event might indirectly be included. On the other hand, given 

the legacy effect of landslides in this landscape, old landslide scars were most likely already 

present before the event, justifying the use of the 2008 DEM. 

In the calculation of MSR a stable cell or a landslide cell is defined by respectively the 

absence or the occurrence of erosion, including the slide trajectory, as well as deposition in 

that cell. In the observed landslide polygon layer only the visible landslide erosion scar was 

included, often light coloured as a result of the bedrock or saprolite exposure. The sediment 

debris path and deposition lobe with dark coloured soil material was often not mapped. This 

will likely influence the calculation of MSR. These darker sediment lobes, usually present in 

the drainage ways might obscure erosion scars. Therefore, part of the over-prediction of 

landslides in these locations, might not be due to model inaccuracy but because of inaccuracy 

in landslide mapping.  

Spatial heterogeneity of soil and vegetation characteristics was not taken into account in our 

modelling. Lumping of soil and vegetation parameters could influence model performance by 

ignoring important spatial variability, and related processes, in the landscape. Finally, no field 

data were available for estimation of soil parameters. The parameter values used for 

modelling were chosen because they best fit the model equations, but it is not clear if they 

have a valid link with the physical reality. 

 

4.1.3. Limited validity of the infinite length assumption  
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Milledge et al. (2012) have shown that the infinite length assumption within the infinite slope 

stability model is only valid for landslides with a high length/depth (L/H) ratio. They 

established a critical L/H ratio of 25, implying reasonable validity of the assumption for 

modeling when a coarse (>25 m) DEM resolution is used. For models with a finer resolution 

(<10 m) DEM, the assumption of infinite length proves to be less valid depending on the 

assumed landslide failure plane depth and on the material properties. In our study area, most 

landslides have an L/H ratio >25 (see Fig. 1, typical landslide depth is 1 m). However, as also 

found by Milledge et al. (2012), the limited validity of the assumption could be responsible 

for the under-prediction of landslides upslope, which in general have a somewhat smaller L/H 

ratio. Milledge et al. (2012) also conclude that the infinite length assumption can be valid for 

smaller DEM resolutions (e.g., 1 m). Lateral subsurface flow determines pore water pressure 

in our study area; the spatial organization in the predicted pore water pressure field reduces 

the probability of short landslides; and minimizes the risk that predicted landslides will have 

L/H ratios less than 25.    

 

4.2. Influence of DEM resolution 

Apart from the process type errors in the model outputs, we also assessed the model 

performance for the entire range of optimisation parameters for the calibration catchment, 

with 1, 2, 5 and 10 m resolution DEMs. There is a clear decrease in model performance with 

coarser DEM resolutions (Table 4), illustrating the fact that it is increasingly difficult for the 

model to predict accurate landslide patterns. 

 

- Table 4 approximately here –  
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The optimal combination of parameters differs for each DEM resolution. Only for the 

optimised rainfall values there is a clear trend with coarsening resolution. If DEM resolution 

increases, critical rainfall values increase to make more cells available for landslide initiating 

to compensate for lower slope gradients. This is at the cost of stable cell prediction and  

overall MSR. The optimal parameter combinations give no indication that these are the most 

realistic values or have a clear link with physical properties. 

Resampling to coarser resolutions filters out high slope gradients and smoothens the 

landscape (Table 5). As high slope gradients are an important factor in triggering landslides, 

this will influence the landslide locations because possible initiation locations are lost and 

landslide routing becomes less accurate. 

 

- Table 5 approximately here - 

 

Furthermore the total watershed area might be altered by the resampling. Claessens et al. 

(2005) showed that coarser resolutions yield higher specific catchment areas (contributing 

area per unit contour length). Effects of resolution on the distribution of slope gradient and 

specific catchment area have a direct impact on critical rainfall calculations (Claessens et al., 

2005).  

At 10 m resolution the model does not perform satisfactory any more for our small-scale 

catchment. This is in contrast to the findings of Keijsers et al. (2011) where the LAPSUS-LS 

model performed satisfactory with 9 m resolution. In this study the 10 m resolution itself 

might not be the cause of the low success in predicting landslides. Rather the aggregation 

method affected slope characteristics and contributing area. In other words, this small-scale 

landscape with rather short slope lengths is very sensitive for the grid cell resolution and 

number of grids in the downslope direction (Schoorl et al., 2000). In addition, Claessens et al. 
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(2005) stress that topographical and hydrological properties do vary for different landscapes 

and that optimal DEM resolution is thus context-dependent. Large watersheds with long slope 

lengths may perform better with coarser resolutions than small watersheds with short slopes. 

Taking into consideration earlier arguments that more complex and localized processes play a 

role in landsliding in this small catchment, finer resolutions might capture those processes 

better. 

 

5. Conclusions 

LAPSUS-LS, the landslide component of a multi-dimensional landscape evolution model, 

combines a steady-state hydrological model with an infinite slope model to predict the 

triggering of landslides and their subsequent movement downslope. The performance of the 

model has been studied with an existing dataset of 71 mapped shallow landslides in the 

Hinenui catchment on the East Coast of North Island, New Zealand. The performance of the 

model was optimized by calibrating parameter values for topographical, hydrological and 

geotechnical terrain attributes. The highest MSR value for the study area (0.851) was achieved 

at 1 m resolution for a specific parameter combination.  

Landslides located upslope were generally not well predicted, and there was an over-

prediction of landslides in local drainage channels. This discrepancy could be due to 

inaccuracies in the DEM or other input data, lumping of soil and vegetation parameters, due 

to the possibility that relevant processes for this particular landscape and process context are 

not included in the model, or due to limited validity of the infinite length assumption for 

landslides with a small length/depth ratio. The complex geometry of the catchment with 

different stages of regolith stripping change both the hydrological and geotechnical conditions 

of slopes and add more complexity to the spatial variation of critical rainfall values calculated 

by the model. Solutions could be to introduce a legacy effect in the model by using multiple 
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time steps, and to introduce spatial variability in soil and vegetation parameters. The specific 

characteristics of the landslides in the area might make the model performance vulnerable for 

simplifications regarding steady-state hydrology and rainfall characteristics. 

Furthermore, the effect of DEM resolution on model performance was studied. MSR 

decreased with increasing DEM resolution. The trade-off between a correct prediction of 

landslides versus stable cells becomes increasingly worse with coarser resolutions. 

Resampling to coarser resolutions filters out high slope gradients and smoothens the 

landscape. As high slope gradients are an important factor in triggering landslides, this will 

influence the landslide locations, resulting in the loss of possible initiation locations and less 

accurate landslide routing. Other variables like total watershed surface area and specific 

catchment area also change with resolution.  

In this environmental context the 1 m resolution topography seems to resemble reality most 

closely and landslide locations are better distinguished from stable areas than for coarser 

resolutions. More gain in model performance could be achieved by adding complexities and 

parameter variations in the catchment. This is an interesting topic for further research. 

However, at this moment the model performs satisfactory at the 1 m resolution in the sense 

that it can give a reliable indication of spatial distribution of landslide hazard and can 

potentially be used in hazard mitigation and disaster prevention. 
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Fig. 1. DEM of the study area (contour interval 4 m) showing observed locations of landslide 

scars in A) calibration and B) validation catchment.  

Fig. 2. Example of modelling landslide locations and trajectories at 1 m resolution. 
 

Fig. 3. Model performance during parameter optimisation. All model runs are shown for both 

the calibration and validation catchments. MSR is indicated as diagonals. 

Fig. 4. Map of critical rainfall values for landslide initiation for the Hinenui catchment.  
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Figure 4 
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Table 1. Virtual Climate Station data: 24-hour rainfall total (mm) from 9 AM on August 6th, 2002. 

Station number Rain (mm d
-1

) 

28027 80.0 

29601 94.9 

30100 131.6 

30637 111.1 

Source: http://cliflo.niwa.co.nz 
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Table 2 

Range and increments of optimization parameters for calibration. 

Parameter Range Increment 

Bulk density ρs (g cm
-3

)   1.4 – 1.8 0.1 

Combined cohesion C (-)   0.1 – 0.4 0.1 

Angle of internal friction φ (°) 28.4 – 36.4 1° 

Transmissivity T (m
2
 d

-1
)    10 – 18 1 

Critical rainfall threshold (m d
-1

) 0.01 – 0.1 0.01 
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Table 3. Model performance MSR for the calibration and validation catchments, including landslide 

and stable cell prediction and optimal parameter combinations. 

 

 

  

 

MSR 

(-) 

Landslide 

prediction 

Stable cell 

prediction 

C 

(-) 
φ  
(°) 

T 

(m
2
 d

-1
) 

ρs 

(g cm
-3

) 

Critical 

rainfall 

threshold 

(m d
-1

) 

Calibration 0.851 0.897 0.806 

0.1 30.4 15 1.8 0.01 

Validation 0.648 0.725 0.570 
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Table 4. MSR for different DEM resolutions. 

DEM 

resolution 

(m) 

MSR 

(-) 

Landslide 

prediction 

Stable cell 

prediction 

C 

(-) 

φ  

(°) 

T  

(m
2
 d

-1
) 

ρs  

(g cm
-3

) 

Rainfall 

intensity 

1 0.851 0.897 0.806 0.1 30.4 15 1.8 0.01 

2 0.775 0.724 0.826 0.1 34.4 18 1.8 0.03 

5 0.709 0.828 0.590 0.1 29.4 13 1.5 0.05 

10 0.568 0.538 0.598 0.1 29.4 10 1.5 0.1 
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Table 5 

Hinenui study area minimum, maximum, mean and standard deviation of slope gradients in relation to 

DEM resolution  

DEM resolution 

(m) 

Min 

(°) 

Max 

(°) 

Mean 

(°) 

SD 

 

1 0.01 56.67 21.40 10.16 

2 0.13 44.66 21.03 9.83 

5 0.65 40.23 20.06 9.19 

10 1.34 36.46 18.63 8.39 
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Landslide model performance in a high resolution small-scale landscape 
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Highlights 

 We test the performance of LAPSUS-LS, a physically-based shallow landslide model 

 We model landslide locations in a small-scale landscape with high resolution DEMs 

 LAPSUS-LS performs satisfactory in predicting landslide locations for storm events 

 The model performance decreased with coarsening DEM resolution 

 Performance could be increased by adding complexities and parameter variations 
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