Central Water Commission

FARMERS PARTICIPATOY ACTION RESEARCH **PROGRAMMES (FPARP)-2nd Phase**

COMPLETION REPORT

Submitted to

Ministry of Water Resources Government of India

ICRISAT International Crops Research Institute Science with a human face for the Semi-Firid Tropics Patanchery 502 324. Andhra Pradesh. India

Central Water Commission

FARMERS PARTICIPATOY ACTION RESEARCH PROGRAMMES (FPARP)-2nd Phase

COMPLETION REPORT

Submitted to

Ministry of Water Resources Government of India

International Crops Research Institute for the Semi-Arid Tropics Patanchera 502 324, Andhra Pradesh, India

Contents

(A) General	
1. Name of University/Institute1	
2. Name of the Programme Coordinator	
3. Address and Email ID1	
4. Experience in water related works	
5. Nature of works done by the Institutes/University during last 5 years	
6. Description of technology (ies) demonstrated	
(i) Chickpea in Rice Fallows (Chattisgarh)	
(ii) Chickpea in Rice Fallows (Jharkhand)	
(iii) Rainy season fallows management with improved Vertisols management	
technology in Madhya Pradesh5	
(iv) Rainwater conservation and productivity enhancement for increased	
water use efficiency in Rajasthan5	
7. Total Nos. of demonstrations to be conducted as per approved by MOWR	
8. Total no of demonstrations conducted/completed in the whole program	
9. No of demonstrations completed against each tehnology/ies	
10. Places where the technology (ies) had already been in use	
(B) Physical as given in proposal Actual	
11. Cost/hectare (in Rs)7	
12. Crops/farming system for which suited7	
13. Water use efficiency/water conserved	
(i) Chickpea in Rice Fallows (Chattisgarh)8	
(ii) Chickpea in Rice Fallows (Jharkhand)8	
(iii) Rainy season fallows management with improved Vertisols management	
technology in Madhya Pradesh9	
(iv) Rainwater conservation and productivity enhancement for increased	
water use efficiency in Rajasthan9	
14. Benefit – Cost Ratio10	
15. Increase in agricultural yield and other benefits in livestock and fisheries etc.	
(i) Chickpea in Rice Fallows (Chattisgarh)13	
(ii) Chickpea in Rice Fallows (Jharkhand)14	
(iii) Rainy season fallows management with improved Vertisols management	
technology in Madhya Pradesh15	
(iv) Rainwater conservation and productivity enhancement for increased	
water use efficiency in Rajasthan18	
16. Villages/Blocks/Districts where the technology was demonstrated with data on rainfa	1
and soil as also current land and water use pattern:	
(i) Chickpea in Rice Fallows (Chattisgarh)	
(ii) Chickpea in Rice Fallows (Jharkhand)	
(iii) Rainy season fallows management with improved Vertisols management	
technology in Madhya Pradesh	
(iv) Rainwater conservation and productivity enhancement for increased	
water use efficiency in Rajasthan22	

17. Payback period i.e. when the benefits will start accruing	22
18. Participants to whom the technology demonstrated i.e. group of farmers, WUAs,	
Panchayats and NGOs etc. and the number of participants	23
(i) Chickpea in Rice Fallows (Chattisgarh)	23
(ii) Chickpea in Rice Fallows (Jharkhand)	23
(iii) Rainwater conservation and productivity enhancement for increased	
water use efficiency in Rajasthan	24
19. Information on training/educational programme to promote technology (ies) also	
indicate the number of farmers	
(i) Chickpea in Rice Fallows (Chattisgarh)	
(ii) Chickpea in Rice Fallows (Jharkhand)	25
(iii) Rainy season fallows management with improved Vertisols management	
technology in Madhya Pradesh	25
(iv) Rainwater conservation and productivity enhancement for increased	
water use efficiency in Rajasthan	27
20. Total cost of the program together with information on the other water related	
program's in progress in the area	28
21. Strategy for sustainability of this programme	29
22. Benefits in monetary and ecological terms	30
23. Timeframe for implementation of the Action Research Programme as approved	
by PIT Funds with date(s) received from MoWR	31
24. Date of commencement & completion of the programme	31
25. Brief note on the feedback about the programme from the farmers	31
Publicity (a paper cutting)	
WUE_leaflet - Jharkand	
WUE_leaflet - Chattisgarh	
WUE_leaflet – Madhya Pradesh	
WUE_leaflet - Rajasthan	

MINISTRY OF WATER RESOURCES Central Water Commission

COMPLETION REPORT "FARMERS PARTICIPATOY ACTION RESEARCH PROGRAMMES" (FPARP)-2nd Phase

1. Name of University/Institute : International Crops Research Institute for the Semi Arid Tropics, Patancheru 502 324, Andhra Pradesh, India 2. Name of the Programme coordinator: Dr S P Wani 3. Address and Email ID • International Crops Research Institute for the Semi Arid Tropics, Patancheru 502 324, Andhra Pradesh, India Phone : 91 040 30713466 : 91 040 30713074 Fax E-mail : s.wani@cgiar.org

4. Experience in water related works:

(A) General

ICRISAT with its headquarters at Patancheru, Andhra Pradesh, India has operations across 55 countries in the World. ICRISAT is one of the 15 international centers and is working from 1976 in the area of watershed management with the objective of developing sustainable land and water management practices and enhancing agricultural productivity. ICRISAT has undertaken strategic research in the area of soil, water, nutrient and crop management with the sole aim of enhancing the objective of rainwater use efficiency through rainwater conservation and harvesting which can be used as supplementary irrigation during the dry spells. ICRISAT has developed consortium approach for managing community watersheds and have developed good agricultural practices for sustaining the development in the rainfed areas. Icrisat has long experience in conducting on-farm participatory trials in number of their benchmark watersheds in different states of India and Asia.

Our Research Program, Resilient Dryland Systems (RDS) works with an aim to improve rural livelihoods and increase food security through sustainable integrated natural resource management. Water is always in short supply in the dry tropics, so we place special importance on watershed management (including water harvesting techniques in the SAT. During last 36 years, institute has worked on various technologies for improving water use efficiency.

5. Nature of works done by the Institutes/University during last 5 years:

ICRISAT is the leader in crop improvement of its mandate crops (sorghum, pearl millet, groundnut, chickpea and pigeon pea). It uses high science tools to breed improved varieties of these crops which have been widely adopted in India and other SAT countries. ICRISAT is also the leader in agro-ecosystems research encompassing farmer's participatory integrated watershed management to enhance sustainable agricultural production while reducing land degradation and protecting the environment by adopting practices that enhance efficient use of natural resources. ICRISAT also does research in the area of institutions, market linkages and analysis of research impacts leading to the development of policies that enhance the adoption of new research outputs for enhanced productivity and greater welfare of the farming communities.

Some of the salient works done by our institute in the concerned area are:

- ICRISAT has demonstrated technologies for efficient use of water in the states of Madhya Pradesh, Rajasthan, Jharkhand and Chhattisgarh by conducting farmers' participatory action research trials supported by the Water Resources Ministry, Government of India.
- ICRISAT initiated productivity enhancement initiative at 10 nucleus watersheds of Kolar, Tumkur, Chitradurga, Haveri and Dharwad districts in Karnataka state under Sujala-ICRISAT program. Since last three years, productivity enhancement initiative "Bhoochetana" is technically supported for Department of Agriculture, Government of Karnataka. Farmers' yields increased by 21 to 66% over farmers' practice over 3 million ha.
- ICRISAT demonstrated on productivity enhancement technologies across five counties in Asia including China, India, Philippines, Thailand and Vietnam with the support of (ADB). Government of Andhra Pradesh had supported for up scaling the watershed technologies for improved Livelihood opportunities in five districts of the state through Andhra Pradesh Rural Livelihood Program (APRLP)
- ICRISAT developed Model cum learning watershed at Kothapally in Andhra Pradesh through Asian Development Bank (ADB) supported project which is covered in World Development Report 2008 and is also one of the seven best case studies for Integrated Natural Resource Management in the Consultative Group on International Agricultural Research (CGIAR).

- ICRISAT's Consortium approach for community watershed management is recommended by the Farmers Commission. Innovative water use efficiency enhancement options such as soil test based micronutrient amendments for increasing yields; in-situ generation of organic matter; availability of improved seeds through village based seed banks are few reflected in the farmers' commission report.
- ICRISAT has thirty five plus- years of research and development experience on integrated watershed management. Heritage watersheds at ICRISAT campus revealed that improved management practices could enhance crop yields to 5.2 t ha⁻¹ y⁻¹ in thirty five years whereas traditional systems have attained only 1.1 t ha⁻¹ y⁻¹ by doubling the rainwater use efficiency.
- ICRISAT-led consortium undertook comprehensive assessment (CA) of impacts of watershed programs in India for Ministry of Rural Development and Ministry of Agriculture, Government of India. The CA revealed that watershed can be growth engine for development of drylands in India and productivity and rural incomes could be doubled through enhanced water use efficiency.
- For the Comprehensive Assessment of water for food and water for life, ICRISAT-RDS team coordinated global assessment of rainfed agriculture and demonstrated through upgrading rainfed agriculture, water use efficiency could be enhanced and current farmers' field yields can be doubled.
- Sir Dorabji Tata Trust (SDTT) and Sir Ratan Tata Trust (SRTT) supported ICRISAT for combating Land degradation and increasing Productivity in watershed across 20 district watersheds in Madhya Pradesh Rajasthan and Jharkand states.

6. Description of technology (ies) demonstrated:

(i) Chickpea in Rice Fallows (Chattisgarh)

In this project, we primarily demonstrated role of growing chickpea in rice fallows with seed priming technology to enhance its productivity and cropping intensity for enhancing water use efficiency. Balanced nutrition to both rice and chickpea crops with application of secondary and micronutrients increased productivity and water use efficiency of the systems. The technology comprised of rapid tillage after rice harvest without much loss of soil moisture, growing of improved chickpea varieties, seed priming and seed treatment. The following were the technology components:

- a. Seed priming with sodium molybdate followed by treatment with *Rhizobium* and fungicide Captan.
- b. High yielding, short-duration improved chickpea varieties such as ICCV 2, JG11 and ICCV 10.
- c. Sowing of seeds in furrows through ploughs and planking.
- d. Basal dressing of single super phosphate and micronutrients based on soil analysis results

Improved management comprised of

- Growing chickpea with seed priming in the rice fields after its harvest.
- Improved rice cultivar, balanced nutrition of paddy that included application of zinc sulfate @ 50 kg ha⁻¹, Agribor @ 2.5 kg ha⁻¹ and single super phosphate @ 200 kg ha⁻¹ in addition to the farmers' traditional practice of applying nutrients.

(ii) Chickpea in Rice Fallows (Jharkhand)

In this project, we primarily demonstrated role of growing chickpea in rice fallows with seed priming technology to enhance its productivity and cropping intensity. Balanced nutrition to both rice and chickpea crops with application of secondary and micronutrients increased productivity and water use efficiency of the systems.

The technology comprised of

- Rapid tillage after rice harvest without much loss of soil moisture
- Growing of improved chickpea varieties, seed priming and seed treatment. The following were the technology components:
 - a. Seed priming with sodium molybdate followed by treatment with *Rhizobium* and fungicide Captan.
 - b. High yielding, short-duration improved chickpea varieties such as KAK 2, ICCV 2 and JG 11.
 - c. Sowing of seeds in furrows through ploughs and planking.

Improved management comprised of balanced nutrition of paddy that included application of zinc sulfate @ 50 kg ha⁻¹ and Agribor @ 2.5 kg ha⁻¹ in addition to the farmers' traditional practice of applying nutrients. The farmers grew chickpea in the same rice fields after its harvest.

iii) Rainy season fallows management with improved Vertisols management technology in Madhya Pradesh

The components of improved Vertisols management technology implemented in Madhya Pradesh to manage rainy season fallows included:

- Broadbed and Furrow System (BBF) land form for effective soil and water conservation and controlling water logging
- Two crops during a year through rainy season fallow management
- Integrated nutrient management including micronutrients applications
- Improved crop varieties for sequential cropping
- Improved implement viz. tractor mounted BBF maker cum seed drill
- Dry season tillage

iv) Rainwater conservation and productivity enhancement for increased water use efficiency in Rajasthan

In this project, we demonstrated

- The role of landform management (Conservation furrows, broad bed and furrow i.e. BBF)
- Micro irrigation (Drip), furrow irrigation
- Soil test-based balanced nutrition to enhance crop and water productivity.

The use of conservation furrows or BBF is very useful particularly during rainy seasons in a way that it provides a safe channel for excess water to run off without distorting soil structure and ultimately affecting yields. The intact soil structure with proper landform also leads to more of infiltration of water into soil to enhance water table which maintains proper water regime during crop growth and leaves more residual moisture for next post-rainy crop and thus ultimately increases rainwater use efficiency. The benefits of drip irrigation are well documented for controlled irrigation to maintain proper moisture regime during crop growth and water saving also. Along with water related issues, the soils of target regions have multinutrient deficiencies mainly sulphur, boron and zinc along with nitrogen and phosphorus which are one of the main reasons leading to inefficient use of available water resources and resulting into low water use efficiency. The technology of soil test based balanced nutrition included in addition to nitrogen (N) and phosphorus (P), the application of deficient sulphur (S) through gypsum (200 kg ha⁻¹), zinc (Zn) through zinc sulfate (50 kg ha⁻¹), and boron (B) through agribor (2.5 kg ha⁻¹). In block level recommendations, full dose of a nutrient was applied when >50% farmers' fields tested low, while half the dose was added when <50% fields tested low in the nutrient concerned.

7. Total Nos. of demonstrations to be conducted as per approved by MOWR.

	State	No. of demonstrations
Rice Fallows	Chhattisgarh	100
Rice Fallows	Jharkhand	100
Rainy Season Fallows	Madhya Pradesh	100
Rainwater Conservation & Productivity Enhancement for increased WUE	Rajasthan	100

8. Total no of demonstrations conducted/completed in the whole program

	State	No. of demonstrations
Rice Fallows	Chhattisgarh	179 + 93
Rice Fallows	Jharkhand	330
Rainy Season Fallows	Madhya Pradesh	107 + 235
Rainwater Conservation & Productivity	Rajasthan	139
Enhanc. for increased WUE		

9. No of demonstrations completed against each tehnology/ies

	State	No. of demonstrations
Rice Fallows	Chhattisgarh	179 paddy trials + 93 chickpea with seed priming technique on residual moisture
Rice Fallows	Jharkhand	187 paddy trials + 143 chickpea with seed priming technique on residual moisture.
Rainy Season Fallows	Madhya Pradesh	107 + 235
Rainwater Conservation & Productivity Enhanc. for increased WUE	Rajasthan	Conservation furrow + balanced nutrition = 107 Furrow irrigation + balanced nutrition = 28 Broad bed and furrow (BBF) + micro irrigation = 4

	State	No. of demonstrations
Rice Fallows	Chhattisgarh	The technology was demonstrated in two districts of Chattisgarh (Bastar and Kanker), where the farmers keep their lands fallow after rice and do not grow any crop after rice to harness the potential of residual resources left in rice fallows.
Rice Fallows	Jharkhand	In Gumla and Saraikela districts where lands are left fallow after rice
Rainy Season Fallows	Madhya Pradesh	Vidisha, Sehore, Raisen and Guna districts of Madhya Pradesh
Rainwater Conservation & Productivity Enhanc. for increased WUE	Rajasthan	The technology was demonstrated in the districts of Bundi, Tonk, Sawai Madhopur in Rajasthan

10. Places where the technology (ies) had already been in use:

(B) Physical as given in proposal Actual

11. Cost/hectare (in Rs):

199000/400=497.5

12. Crops/farming system for which suited:

	State	Crops/farming system for which suited
Rice Fallows (Rice + Chickpea)	Chhattisgarh	The technology is suited for the rice- fallow system which is currently wide- spread in the north-eastern parts of the country (states of Chhattisgarh, Jharkhand and Orissa)
Rice Fallows (Rice + Chickpea)	Jharkhand	The technology is suited for the rice- fallow system which is currently wide- spread in the north-eastern parts of the country (states of Chhattisgarh, Jharkhand and Orissa)
Rainy Season Fallows (Soybean + Chickpea)	Madhya Pradesh	The major crops taken in the trials were soybean in kharif and chickpea and wheat in rabi season. There is one of the major cropping systems in the region.
Rainwater Conservation & Productivity Enhanc. for (all rainfed crops) increased WUE	Rajasthan	Maize, blackgram, pearl millet, groundnut, wheat, chickpea, mustard

13. Water use efficiency/water conserved:

i) Chickpea in Rice Fallows (Chattisgarh)

During the 2011-12 Rabi seasons, the farmers sold 50% their chickpea as green vegetable and 50% harvested for dry grain and yields were recorded and estimated Kg ha⁻¹ yield. The total rainfall, irrigation applied and soil moisture data and WUE was calculated and presented below. Water use efficiency (WUE) was ranging from 8.17 to 9.13 kg ha⁻¹ mm⁻¹ of residual moisture and amount of irrigation given or water applied. During 2011 rainy season rice crop, WUE was ranging from 6.98 to 7.01 kg ha⁻¹ mm⁻¹ in traditional and 8.52-8.74 kg ha⁻¹ mm⁻¹ for improved management in 2 districts. However, WUE for Kanker was higher in the improved management than in traditional management. Due to low rainfall during the year irrigation was necessary for rice and Desi chickpea varieties like JG 11 and ICCV 10 in Bastar district.

WUE of rice during the 2011 rainy season.						
	Rainfall	Irrigation Soil moisture WUE			UE	
District	(mm)	(mm)	Extraction	(kg ha-	1 mm ⁻¹)	
				Trad.	Imp.	
	Rice 2011 (Kharif season)					
Kanker	798	0 - 7.01		8.74		
Bastar	361	100	-	6.98	8.52	
	Rice+ Chickpea(2011-12 season)					
Kanker	798	50	88	-	9.13	
Bastar	361	200	35	-	8.17	

ii) Chickpea in Rice Fallows (Jharkhand)

During the 2011-12 Rabi seasons, the farmers sold 50% of their chickpea as green vegetable and 50% harvested for dry grain and yields were recorded and estimated Kg ha⁻¹ yield. The total rainfall, irrigation and soil moisture extracted data and WUE was calculated and presented below. Water use efficiency (WUE) was ranging from 5.05 to 6.40 kg ha⁻¹ mm⁻¹ of for rice + chickpea improved technology. During 2011 rainy season rice crop, WUE was ranging from 3.8 to 5.63 kg ha⁻¹ mm⁻¹ in traditional and 4.6 to 6.4 kg ha⁻¹ mm⁻¹ for improved management in 2 districts. However, WUE for Gumla was higher in the improved management than in traditional management.

WUE of rice during the 2011 rainy season.						
	Rainfall	Irrigation	Soil moisture	WUE		
District	(mm)	(mm)	Extraction	(kg ha-	¹ mm ⁻¹)	
				Trad.	Imp.	
	Rice 2012 (Kharif season)					
Sariekela-Kharsawan	1075	0	0	3.8	4.6	
Gumla	1085	0	0	5.63	6.63	
Rice+ Chickpea(2011-12 season						
Sariekela-Kharsawan	1207	0	132	_	5.05	
Gumla	1221	0	126	-	6.40	

iii) Rainy season fallows management with improved Vertisols management technology

Water use efficiency of soybean in different districts of Madhya Pradesh during 2011.					
	WUE (kg mm ⁻¹ ha ⁻¹)		Increase in WUE		
	Conventional Improved		(%)		
District	farmers practices*	practices*			
Sagar	0	0.94	In comparison with 0 WUE in		
Raisen	0	0.68	rainy season substantial		
Mandla	0	1.22	productivity was recorded.		

* Lands kept fallow during rainy season

Water use efficiency of Chickpea in different districts of Madhya Pradesh during Rabi 2011-2012.				
	WUE (mm	1 ⁻¹ ha ⁻¹)*		
	Conventional farmers	Improved	Increase in WUE	
District	practices	practices	(%)	
Sagar	3.9	4.2 + 0.94	7.7	
Raisen	4.5	4.8 + 0.68	8.6	
Shajapur	2.3	2.9	26.6	
Mandla	1.2	1.3 + 1.22	2.5	

*Average yield

Water use efficiency of Wheat in different districts of Madhya Pradesh during Rabi 2011-2012.				
	WUE (mn	n-1ha-1)*	Increase in	
	Conventional farmers	Improved practices	WUE	
District	practices	Improved practices	(%)	
Sagar	6.7	7.2	7.0	
Raisen	7.8	8.4	6.7	
Shajapur	9.3	9.9	9.8	

*Average yield of WUE trials

iv) Rainwater conservation and productivity enhancement for increased water use efficiency

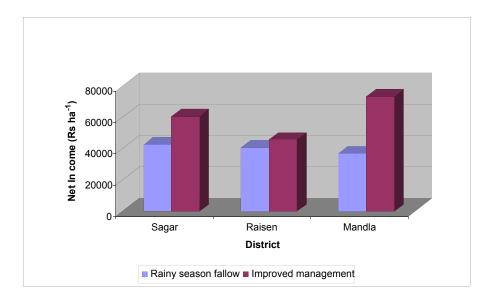
10 to 50%

	Effects of conservation furrow plus soil test based balanced fertilization on rainwater use efficiency in Rajasthan, 2010 rainy season										
District	No. of trials	No. of trials Crop WUE (kg mm-1 ha-1)									
			FP	BN	% inc.						
Tonk	5	Black gram	0.43	0.53	24						
	18	Maize	2.56	3.84	50						
	8	Pearl millet	1.78 2.21		24						
	15	Groundnut	Groundnut 1.13 1.38		22						
S. Madhopur	8	Maize	2.87	3.17	10						

Effects of conservation furrow plus soil test based balanced fertilization on rainwater use efficiency in Rajasthan, 2011 rainy season											
	No. of Trials	No. of Trials WUE (kg mm-1 ha-1) % inc.									
District		Crop	FP	BN							
Bundi	12	Maize	4.00	4.61	15						
Tonk	3	Maize	2.79	3.41	22						
	6	Pearl millet	1.83	2.20	20						
	9	Groundnut	1.54	1.79	17						
S. Madhopur	2	Maize	3.56	3.99	12						
	16	Pearl millet	1.69	1.90	13						
	5	Blackgram	1.02	1.18	16						

14. Benefit – Cost Ratio:

	State	Benefit – Cost Ratio
Rice Fallows	Chhattisgarh	During the year 2011 season, cost-benefit ratios for rice ranged from 1: 4.1 to 7.5 across districts for traditional management. With improved management (Paddy +Chickpea), the B:C ratios were 1: 4.1 to 8.5 high enough for the farmers to adopt the technology. The net income increase for improved system compared to traditional system ranged between 39 and 43% across 2 districts (Figure 3).
Rice Fallows	Jharkhand	Cost of production varied with district and season both for traditional and improved management. During the year 2011 season, cost-benefit ratios for rice ranged from 1: 6.89 to 11.76 across districts for traditional management. With improved management (Paddy +Chickpea), the B:C ratios were 1: 7.03 to 9.74 high enough for the farmers to adopt the technology. The net income increase for improved system compared to traditional system ranged between 53% and 91% across 2 districts (Figure 4).


Rainwater	Rajasthan	0.92 to 14.9
Conservation &		
Productivity		
Enhanc. for		
increased WUE		
Rainy Season	n Madhya	See Table and graph below
Fallows	Pradesh	

Fallow management trial

District	Rainy season fallow	Improved management (Double cropping)	Percentage Increase (%)
Sagar	2.66	3.93	48
Raisen	2.53	3.55	40
Mandla	2.30	4.58	99
Shajapur	2.70	2.79	3
Mean	2.55	3.71 (48% increase)	

WUE Trial

District	Rainy season	Improved management
	fallow	INM+BBF
Sagar	1.72	2.50
Raisen	0.73	1.85
Mandla	0.62	1.47
Shajapur	0.73	1.16

Figure 1. Net income from Traditional (rainy season fallow) and improved (rainy+post rainy season) mangement in Madhya Pradesh, 2011-12

	C: B ratio											
	Farr	ners Pract	ice	Impr	oved Pra							
	Kharif	Rabi	Total	Kharif	Rabi	Total	% increase					
Sagar	0.00	2.66	2.66	0.17	3.76	3.93	48					
Raisen	0.00	2.53	2.53	0.05	3.50	3.55	40					
Mandla	0.00	2.30	2.30	0.68	3.90	4.58	99					
Mean	0.00	2.50	2.50	0.30	3.72	4.02	62.4					

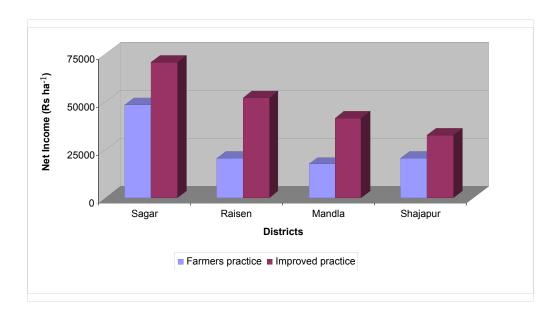
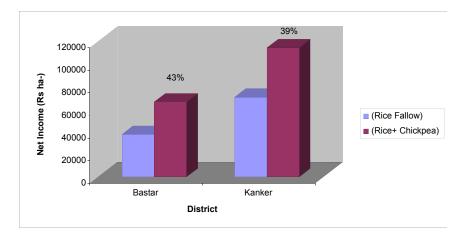



Figure 2. Net income in water use efficiency trials in Madhya Pradesh, 2011-12

	C: B ratio												
	Farn	ners Practi	ice	Impro	oved Prac	tice							
	Kharif	Rabi	Total	Kharif	Rabi	Total	% increase						
Sagar	0.00	1.72	1.72	0.17	2.33	2.50	45						
Raisen	0.00	0.73	0.73	0.02	1.82	1.85	154						
Mandla	0.00	0.62	0.62	0.38	1.09	1.47	137						
Shajapur	0.00	0.73	0.73	0.09	1.07	1.16	59						

Figure 3. Net income (Rs ha-1) of traditional (Rice+ fallow) and improved (Rice+ Chickpea) crop practices for 2 district of Chhattisgarh, rainy season 2011.

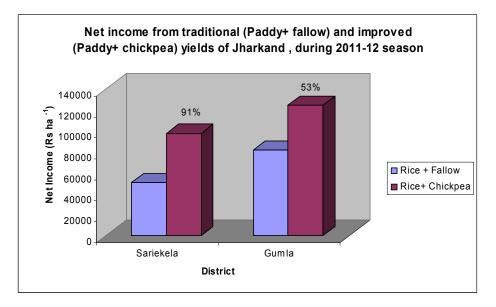


Figure 4. Net Profit from traditional and improved systems during 2011-12 seasons

15. Increase in agricultural yield and other benefits in livestock and fisheries etc.:

i) Chickpea in Rice Fallows (Chattisgarh)

Application of balanced nutrition to rice increased both the biomass and grain yield of rice. Percent gain in grain yield with balanced nutrition was 22.5% to 25.6% across the two districts. From the grain yields of chickpea crop it is evident that residual effect of applied micronutrients to rice crop on chickpea crop gave additional benefit to farmers. The crops yields of paddy during rainy season were ranging from 3220 to 3930 kg ha⁻¹ in traditional and 5600 to 6970 kg ha⁻¹ in improved management in 2 districts. The chickpea yields in improved management during rabi season were ranging from 675 to 820 kg ha⁻¹ in two

districts. The combine yields of improved management rice + chickpea system were ranging from 4610 to 7730 kg ha⁻¹ in two districts. The cost of cultivation, gross returns, net income and Benefit cost ratio for rice crop, chickpea crop and rice + chickpea crop for two districts during 2011-12 season data are calculated and presented below.

Gain in rice yields	Gain in rice yields with improved management, 2011 season.											
	No. of	Area	Biomas	s yield	Grair	% gain						
	farmers	sown	(kg ł	1a-1)	(kg	ha-1)	in grain					
District	participated	(ha)	Trad	Imp	Trad	Imp	yield					
Rice 2011 (Kharif	season)											
Kanker	113	45	7980	9740	5600	6970	25.6					
Bastar	66	40	4470	5460	3220	3930	22.5					
Chickpea 2011-12	(Rabi season)											
Kankar	63	12.0	-	1600	-	820	-					
Bastar	30	7.4	-	1490	-	670	-					
Rice+ Chickpea (2	Rice+ Chickpea (2011-12 season)											
Kankar	176	57.0	-	10250	-	7730	-					
Bastar	96	47.4	-	6960	-	4610	-					

Trad = Rice-fallow with traditional management; Imp = Rice-Chickpea with balanced nutrition of rice

Net inco	Net income and cost: benefit ratios for rice and chickpea, 2011-12 seasons.											
	Total cost	t (Rs ha-1)	Gross 1	Gross return (Rs ha-1)		come (Rs ha-1)	B:C ratio					
District	Trad	Imp	Trad	Imp	Trad	Imp	Trad	Imp				
Rice 2011	Rice 2011 (Kharif season)											
Kanker	9476	10476	80020	98971	70444	88495	7.48	8.52				
Bastar	9075	10944	45567	55641	36493	44698	4.07	4.12				
Chickpea	a 2011-12 (F	Rabi seaso	n)									
Kanker	-	6020	-	32961	-	26941	-	4.56				
Bastar	-	7442	-	27009	-	19567	-	2.65				
Rice+ Ch	ickpea (20	11-12 seas	on)									
Kanker	-	16480	-	131040	-	114560	-	6.99				
Bastar	-	18418	-	80685	-	65882	-	3.58				

Farmers don't grow chickpea

ii) Chickpea in Rice Fallows (Jharkhand)

Application of balanced nutrition to rice increased both the biomass and grain yield of rice. Percent gain in grain yield with balanced nutrition was 11% to 17% across the two districts. From the grain yields of chickpea crop it is evident that residual effect of applied micronutrients to rice crop on chickpea crop given additional benefit to farmers. The crops yields of paddy during rainy season were ranging from 4208-6108 kgha⁻¹ in traditional and 5094-6869 kg ha⁻¹ in improved management in 2 districts. The chickpea yields in improved management during rabi season were ranging from 950 to 1000 kg ha⁻¹ in 2 districts. The combine yields of improved management rice + chickpea system were ranging from 6094 to 7819 kg ha⁻¹ in 2 districts.

Gain in rice yields with improved management, 2012 season.											
	No. of	Area	Biomass yield		Grain yield		% gain				
	farmers	sown	(kg	ha-1)	(kg	ha-1)	in grain				
District	participated	(ha)	Trad	Imp	Trad	Imp	yield				
Rice 2012 (Kharif se	Rice 2012 (Kharif season)										
Sariekela-karshaw	70	27	5550	7060	4210	5094	17				
Gumla	117	53	7600	8690	6110	6870	11				
Chickpea 2011-12 (F	Rabi season)										
Sariekela-karshaw	50	10	-	1960	-	999	-				
Gumla	93	17	-	1860	-	950	-				
Rice+ Chickpea (2011-12 season)											
Sariekela-karshaw	120	37	-	9020	-	6094	-				
Gumla	210	70	-	10550	-	7819	-				

Trad = Rice-fallow with traditional management; Imp = Rice-Chickpea with balanced nutrition of rice

Net income and cost: benefit ratios for rice 2011 rainy season.											
	Tota	Total cost		return	Net i	ncome	B:C				
	(Rs	ha-1)	(Rs ha-1)		(Rs	ha-1)	ratio				
District	Trad	Imp	Trad	Imp	Trad	Imp	Trad	Imp			
Rice 2012 (Kharif seaso	on)										
Sariekela-karshaw	7486	8805	58733	72125	51247	63320	6.89	7.21			
Gumla	6964	7824	88762	100259	81798	92435	11.76	11.84			
Chickpea 2011-12 (Rab	i season))									
Sariekela-karshaw	-	5165	-	39967	-	34802	-	6.73			
Gumla	-	5053	-	37993	-	32940	-	6.51			
Rice+ Chickpea (2011-12 season)											
Sariekela-karshaw	-	13970	-	112092	-	98122	-	7.03			
Gumla	-	12877	-	138252	-	125375	-	9.74			

iii) Rainy season fallows management with improved Vertisols management technology

Soybean crop yield in improved management (IM) and farmers' management (FM) in water use efficiency trials, 2011.

District	Villages	Crop	Grain	yield	Bio ma	ass yield	Gain in
			(kg	/ha)	(k	g/ha)	grain yield
			FM	IM	FM	IM	(%)
Sagar	Karaiya	Soy	860	940	650	690	8.7
		bean	(±28.3)*	(±24.3)	(±44.6)	(±43.6)	
	Shobhapur		870	940	630	680	6.9
			(±22.4)	(±91.9)	(±62.2)	(±66.6)	
	District		870	930	630	680 (±10.5)	7.6
	average		(±18.2)	(±15.5)	(±12.5)		
Raisen	Siyalwada	Soy	190 (±2.9)	220	310	340 (±3.3)	16.6
		bean		(±4.5)	(±3.3)		
	Pehariya		610	680	610	730 (±40.9)	12.4
			(±32.9)	(±31.3)	(±25.8)		
	District		300	340	380	440 (±44.1)	14.5
	average		(±46.9)	(±51.6)	(±33.8)		
Mandla	Katangsavini	Soy	1180	1220	2800	2970	3.4
		bean	(±36.0)	(±49.5)	(±124.4)	(±140.4)	

* values in parentheses are SE values

Crop yield in improved management (IM) and farmers' management (FM) in monsoon fallow management field trials during 2011.

District	Сгор	Grain yield in IM (kg/ha)	Bio mass yield in IM (kg/ha)
Sagar	Soybean	840 (±26.2)	550 (±15.5)
Raisen	Soybean	240 (±20.7)	320 (±23.1)

* values in parentheses are SE values

During 2011 the crop yields during monsoon season were very low both in Sagar and Raisen district due to continuous rainfall which did not allow any weeding and fertilizer application and fields were waterlogged.

Chickpea	Chickpea crop yield in improved management (IM) and farmers' management (FM) in										
water use efficiency trials, Rabi 2011-2012											
Grain yield* Straw yield* Gain in											
District	Villages	Crop	(kg/ha)		(kg/ha)		grain yield				
			FM	IM	FM	IM	(%)				
	Karaiya		2100	2250	1470	1570	7.3				
Sagar	Shobhapur	Chickpea	2050	2220	1440	1550	8.0				
	District average		2070	2230	1450	1560	7.7				
Raisen	Siyalwada	Chickpea	2070	2250	1450	1570	8.6				
Raisen	District average	Спскреа	2070	2250	1450	1570	8.6				

	Khanota		1150	1450	26.1
	Mahudiya		1130	1440	27.1
	Ralayti		1020	1410	37.8
Shajapur	Barkheda	Chickpea	1170	1470	24.8
	Salari		1120	1400	24.4
	Baigaon		1190	1420	20.0
	District average		1130	1440	26.6
	Katangsavini		1100	1120	1.8
	Padarpani		970	990	2.2
Mandla	Mawai Maal	Chickpea	960	1020	5.7
	Mawai Rayat		930	930	0.0
	District average		1030	1060	2.5

* Average yield

	op yield in improve ency trials, Rabi 201		nent (IM)	and farme	ers' manag	gement (F	M) in water
District	Villages	Crop		yield* /ha)	Straw (kg	Gain in grain	
		-	FM	IM	FM	IM	yield (%)
	Karaiya		3800	4070	2990	3170	7.2
Caran	Shobhapur	Wheat	3240	3520	2570	2790	8.5
Sagar	Narayanpur		3760	3980	3050	3130	5.7
	District average		3630	3880	2890	3050	7.0
	Siyalwada		3950	4190	3160	3270	5.9
Raisen	Pehariya	Wheat	3590	3860	2880	3040	7.5
Raisen	Gaganwada	Wheat	2800	3000	2210	2390	7.0
	District average		3640	3880	2910	3050	6.7
	Mahudiya		4500	4740			5.4
	Barkheda		4670	5040			7.9
Shajapur	Chappriya	Wheat	4550	4850			6.7
	Khannota		4460	4820			8.0
	District average		4550	4860			6.8

* Average yield

Crop yield in improved management (IM) and farmers' manageme	ent (FM) in fallow
management field trials during Rabi 2011-2012	

District	Crop	Grain yield (l	kg/ha)*	Straw yield (kg/ha) *		
	Clop	FM	IM	FM	IM	
Sagar	Chickpea	1950	2290	1350	1590	
Raisen	Chickpea	1880	2240	1310	1560	
Shajapur	Chickpea	1440	1720			

* Average yield

iv) Rainwater conservation and productivity enhancement for increased WUE

10 to 64%; other benefit was similar increase in the stover yield which is important fodder for cattle and thereby a boost to livestock based livelihoods

16. Villages/Blocks/Districts where the technology was demonstrated with data on rainfall and soil as also current land and water use pattern:

i) Chickpea in Rice Fallows (Chattisgarh)

The table below gives the list of districts and villages where technology was demonstrated and the number of farmers participated in the demonstrations. Number of farmers participating in growing of chickpea and the area under the crop slightly reduced.

During rainy season 2011, Bastar district received only 361mm rainfall and Kanker district received 798 mm. Soils in the Kanker and Bastar districts are heavy in texture.

0	Villages, Blocks and Districts where the technology was demonstrated with information on rainfall and soil.										
District	Block	Village	No. of farmers participated	Area sown (ha)	Seasonal rainfall (mm)	Soil type					
	2011 rainy season - Rice										
Kanker	Kanker	Siltera, Markatola,	113	45	798	Black and					
		and Dhanelnkher				Red soils					
Bastar	Bakawand	Milbeda, Sawra	66	40	361	Black clay					
	•	2011 Rab	oi-Chickpea								
Kanker	Kanker	Siltera, Markatola,	63	12	-	Black and					
		and Dhanelnkher				Red soils					
Bastar	Bakawand	Milbeda, Sawra	30	7.4	-	Black clay					

Monthly rainfall received at Bastar and Kanker district during the year 2011 for Chhattisgarh state Rainfall (mm) for Chattissgarh January to December 2011 Bastar Kanker 0.0 0.0 January February 0.0 0.0 March 0.0 0.0 0.0 April 0.0 0.0 0.0 May June 0.00 73.50 July 63.75 276.35 August 191.25 258.50 188.75 September 106.00 October 0 0 November 0 0 December 0 0 Total 361 797

ii) Chickpea in Rice Fallows (Jharkhand)

The table below gives the list of districts and villages where technology was demonstrated and the number of farmers participated in the demonstrations. Number of farmers participating in growing of chickpea and the area under the crop more or less remained the same. The 2011 season rainfall ranged from 1207 mm to 1221 mm. Soils in the Sariekelakarshaw and Gumla districts are yellowish in color and heavy in texture.

0		Districts where the technolog	y was demons	strated v	with info	ormation
on rainfall	and soil.	1				
District	Block	Village	No. of	Area	Rainf	Soil type
			farmers	sown	all	
			participated	(ha)	(mm)	
		2011 kharif seaso	n - Rice			
Sariekela	Karshaw	Kanchanpur,Begnadhi,	70	27	1207	Yellow
-karshaw		Lakhodhi and Rakakocha				clay soils
Gumla	Raidey	Shahitoli, Sipringa, Pogra,	117	53	1226	Yellow
		parkartoli and Teleya				clay soils
2011 Rabi-	Chickpea					
Sariekela	Karshaw	Kanchanpur,Begnadhi,	50	10	-	Yellow
-karshaw		Lakhodhi and Rakakocha				clay soils
Gumla	Raidey	Shahitoli, Sipringa, Pogra,	93	17	-	Yellow
		parkartoli and Teleya				clay soils

Month	Gumla (mm)	Saraikela-Kharsaw (mm)		
	2011	2011		
Jan	0	0		
Feb	0	0		
March	8	0		
April	0	20		
May	65	33		
June	65	384		
July	150	162		
August	536	334		
September	515	295		
October	20	32		
November	18	0		
December	0	0		
Total	1377	1260		

Monthly ra	infall (mm) in four	target districts N	/Iadhya Pradesh di	uring 2011.
Month	Sagar	Raisen	Shajapur	Mandla
Jan	29.60	0	0.00	0
Feb	12.80	0	0.00	0
Mar	9.60	0	0.00	12.50
Apr	4.20	0	0.00	0
May	8.30	17.5	7.00	0
Jun	145.40	138.4	241.00	257.00
Jul	264.60	311.0	416.74	615.50
Aug	418.50	348.5	264.00	519.00
Sep	228.10	217.1	162.60	595.00
Oct	43.00	0	0.00	0
Nov	24.00	0	0.00	0
Dec	6.90	0	0.00	0
Total	1195.00	1032.40	1091.34	1999.00

iii) Rainy season fallows management with improved Vertisols management technology

Soils:

The soils in all the three target districts are mostly deep black soils (Vertisols and associated soils). These soils are self-mulching and exhibits cracking and becomes hard when dry and sticky when wet. Because of prevailing 2:1 clay type and the relatively high clay contents, the soils are usually imperfectly drained during the wet periods in the rainy season and have a very low saturated hydraulic conductivity. Most of the soils are deep and rich in swelling clay and their water storage capacity are high. Cultivation practices in these soils are particularly affected by the sticky nature, poor infiltration and impeded internal drainage of the soils while wet, as well excessive hardness and difficult workability while dry. Some of the key chemical characteristics of these soils are shown in below Table. The soils are generally deficient in phosphorus, sulphur, zinc and boron.

Soil cher	Soil chemical properties in three target districts of Madhya Pradesh.										
Average of three districts	рН	EC (dS/m)	OC (%)	Ols-P (ppm)	Exch. K (ppm)	Avail. S (ppm)	Avail. B (ppm)	Avail. Zn (ppm)	Avail. Fe (ppm)	Avail. Mn (ppm)	Avail. Mg (ppm)
Mean	8.0	0.25	1.02	2.22*	261.3	5.83*	0.58*	0.69*	9.5	10.4	536

* Deficient

Number of participants to whom technologies were demonstrated in water use efficiency trials, 2011.							
District	Villages	No. of farmers participated					
Sagar	2	15					
Raisen	2	16					
Mandla	1	20					
Total	5	51					

Villages, blocks and district where technology was demonstrated on monsoon fallow management trials (Nucleus), 2011.

District	Villages	No. of farmers participated
Sagar	3	11
Raisen	6	25
Total	9	36

Villages, blocks and district where technology was demonstrated in fallow management trials (Satellite), 2011.						
District	istrict Villages No. of farmers participated*					
Sagar	4	13				
Raisen	3	18				
Total	7	31				

Number of participants to whom technologies were demonstrated in water use efficiency trials during rabi 2011-2012						
District Villages No. of farmers participated						
Sagar	3	25				
Raisen	3	20				
Shajapur	7	33				
Mandla	4	15				
Total	17	93				

Villages, blocks and district where technology was demonstrated in fallow management trial (Nucleus) during rabi 2011-2012						
District Villages No. of farmers participated						
Sagar	3	15				
Raisen	3	15				
Shajapur	3	3				
Total	9	33				

Villages, blocks and district where technology was demonstrated in fallow management trials (Satellite) during rabi 2011-2012						
District Villages No. of farmers participated						
Sagar	4	46				
Raisen	4	50				
Shajapur	6	13				
Total	14	109				

District	Block	Village	No. of	Area	Rainfall (mm)		Soil
			farmers	sown	2010	2011 kharif	type
				(ha)	(Jun-Dec)	season	
Bundi	Hindoli	Gokulpura,	12	4.8		792	Black
		Vijaygarh					and Red
Tonk	Deoli	Dharola,	63+18	7.5+7.2	768	786	Black
		Rampura,					and Red
		Khwaspura					
Sawai	Khandh	Juwar, Mui,	23+23	2.3+9.2	782	747	Black
Madhop	ar	Kushtla					and Red
ur							

iv) Rainwater conservation and productivity enhancement for increased water use efficiency

17. Payback period i.e. when the benefits will start accruing:

	State	Payback period i.e. when the benefits will start
		accruing:
Rice Fallows	Chhattisg arh	With this technology the benefits start accruing immediately as not very heavy investments are made. The farmers usually use traditional machinery for plowing, sowing and harvesting of crops. However, there is need to introduce no-till machines for sowing of chickpea in rice fallows for greater coverage of the areas without loosing much soil moisture for crop establishments. These costs are not known as yet.
Rice Fallows	Jharkhand	All the trials (100ha) were conducted as per agreement in micronutrient in paddy for rainy season and within post rainy season chickpea crop in residual nutrient and moisture trials were conducted in 2 districts of Jharkand during the year 2011-12.
Rainy Season Fallows	Madhya Pradesh	Major benefits of improved technologies are in terms of increased crop yields and income as well as reduced runoff and land degradation. The benefits start from the first cropping season. In case of most of the improved technologies the payback period is less than one year except for the improved machinery where the payback period could be 2-3 years.
Rainwater Conservation & Productivity Enhanc. for increased WUE	Rajasthan	With these technologies the benefits start accruing immediately during the same season through improved crop productivity and so better returns. Moreover, the investments are not heavy which farmers can easily afford. In addition to immediate returns which make the technology acceptable, it has built in long term benefits in ensuring soil health, sustainability and resilience of the farm production systems.

18. Participants to whom the technology demonstrated i.e. group of farmers, WUAs, Panchayats and NGOs etc. and the number of participants.

i) Chickpea in Rice Fallows (Chattisgarh)

The technology was primarily demonstrated to the farmers as listed below. However, the participating NGOs and the village Panchayat members also got the benefit. Several farmers days were also organized to showcase the benefits of the new technology to the farmers from the nearby villages as listed out below.

During 2011-12, eight training programs in the form of field days, awareness building and maintenance of seed storage were conducted during February-March 2012 in the two districts. A total of 410 farmers in Bastar district and 590 in Kanker district participated in these programs.

Training	Training programs and number of participants in the districts.						
District	Village	Training program	Date	No. of			
	_			participati			
				ng farmers			
Bastar	Mibeda and	Green manuring, vermi-	7-9 June 2011	200			
	Sawra	composting, seed priming and					
		improved chickpea varieties,					
		nutrient management					
Kanker	Markatola,	Green manuring, vermi-	10-12 June	300			
	Siltera and	composting, seed priming and	2011				
	Danelknher	improved chickpea varieties,					
		nutrient management					
Kanker	Markatola,	seed priming and improved	15-16 Oct	150			
	Siltera and	chickpea varieties, nutrient	2011				
	Danelknher	management					
Bastar	Mibeda and	seed priming and improved	19-20 Oct	100			
	Sawra	chickpea varieties, nutrient	2011				
		management					
Bastar	Milbeda	Field day	10 Oct 2011	60			
Kanker	Markatola	Field day	25 Oct 2011	75			
Bastar	Milbeda	Seed storage training	18 Feb 2012	50			
Kanker	Markatola	Seed storage training	1 Mar 2012	65			

ii) Chickpea in Rice Fallows (Jharkhand)

The technology was primarily demonstrated to the farmers as listed below. However, the participating NGOs and the village Panchayat members also got the benefit. Several farmers' days were also organized to showcase the benefits of the new technology to the farmers from the nearby villages as listed out below. During 2011-12, eight training programs in the form of field days, awareness building and maintenance of seed storage were conducted during February-March 2012 in the two districts. A total of 610 farmers in Sariekela-Karshaw district and 770 in Gumla district participated in these programs.

Training pr	ograms and nun	nber of participants in the districts		
District	Village	Training program	Date	No. of participating farmers
Sariekela- Karshaw	Kanchanpur, Begnadhi, Lakhodhi and Rakakocha	Improved cropping, Glyricidia nursery growing hedge for green manuring, vermi-composting, seed priming and improved chickpea varieties, nutrient management	5-10 June 2011	160
Gumla	Shahitoli, Sipringa, Pogra, parkartoli and Teleya	Improved cropping, legume crop cultivation, Glyricidia nursery and growing hedge for green manuring, vermi-composting, seed priming and improved chickpea varieties, nutrient management in rice crop	11-15 June 2011	250
Sariekela- Karshaw	Kanchanpur, Begnadhi, Lakhodhi and Rakakocha	seed priming chickpea with Rhizobium culture and sodium molybdate and improved chickpea varieties, nutrient management.	15-16 Oct 2011	150
Gumla	Shahitoli, Sipringa, Pogra, parkartoli and Teleya	seed priming chickpea with Rhizobium culture and sodium molybdate and availability on improved chickpea varieties, nutrient management	19-20 Oct 2011	120
Sariekela- Karshaw	Lakhodhi and Kanchanpur	Field day for rice crop	21-22 Nov 2011	200
Gumla	Sipringa and Teleya	Field day for rice crop	24-25 Nov 2011	250
Sariekela- Karshaw	Kanchanpur, Begnadhi, Lakhodhi and Rakakocha	Chickpea and paddy Seed storage training	22Feb 2012	100
Gumla	Shahitoli, Sipringa, Pogra, parkartoli and Teleya	Chickpea and paddy Seed storage training	4 Mar 2012	150

iii) Rainwater conservation and productivity enhancement for increased water use efficiency

139 farmers/trials

19. Information on training/educational programme to promote technology (ies) also indicate the number of farmers

i) Chickpea in Rice Fallows (Chattisgarh)

In collaboration with the NGO (Bastar Sevak Mandal, BSM) of the Catholic Relief Services (CRS) and NABARD a training program was conducted to 200 farmers and extension workers at Milbeda and Sawra villages from 7-9 June, 2011 on vermi-composting and green manuring with *Glyricidia* to be grown on field bunds. Agricultural extension workers and farmers were trained in seed priming practice of chickpea. Training was also provided to about 300 farmers from 10-12, June 2011 villages Siltera, Markatola, and Danelknher in seed priming, soil sampling, availability of improved chickpea varieties and the importance of nutrient management, particularly micronutrients deficiencies, in increasing crop productivity. A Training program was repeated on 15-20 of October 2011 for the benefit of agricultural extension workers and farmers of both district villages. ICRISAT also participated in the 4 training programs conducted by BSM along with NABARD on the above subject areas.

ii) Chickpea in Rice Fallows (Jharkhand)

In collaboration with the NGO (Tata steel Rural Development Society (TSRDS) a training program was conducted to 160 farmers and extension workers at Kanchanpur,Begnadhi, Lakhodhi and Rakakocha villages from 5-10 June, 2011 on Improved cropping system, Glyricidia nursery and growing hedge for green manuring, vermi-composting, seed riming and availability on improved chickpea varieties, nutrient management in rice crop extension workers and farmers were trained in seed priming practice of chickpea. Training was also provided in collaboration with NGO (Professional Assistance for Development Action (PRADAN)) to about 250 farmers from 11-15, June 2011 villages Shahitoli, Sipringa, Pogra, parkartoli and Teleya in seed priming, soil sampling, availability of improved chickpea varieties and the importance of nutrient management, particularly micronutrients deficiencies, in increasing crop productivity. A Training program was repeated on 15-20 of October 2011 for the benefit of agricultural extension workers and farmers of both district villages. ICRISAT also participated in the 6 training programs conducted by TSRDS and PRADAN along with ICRISAT on various aspects.

iii) Rainy season fallows management with improved Vertisols management technology

Trainings conducted:

NGOs, districts, number of farmers participated and number of villages						
S. No. NGOs Districts Number of farmers participated Number of village						
1.	BYPASS	Raisen	45	13		
2.	BYPASS	Sagar	15	5		

NGOs, districts, number of farmers training, number of villages and total number of farmers participated in the farmers training

S. No.	NGOs	Districts	Number of Farmers training	Number of Villages	Total number of farmers participated in farmers training
1.	BYPASS	Raisen	36	12	883
2.	BYPASS	Sagar	14	6	356

NGOs, number	NGOs, number of vermicompost existed				
S. No.	NGOs	Districts	No. of villages	Number of vermicompost Existed	Vermicompost Produced (qt)
1.	BYPASS	Raisen	12	48 (E)	480
2.	FES	Mandla	3	24 (C)	-

E: Existed; C: Constructed

NGOs, districts, number of *Gliricidia* seedlings distributed, number of *Gliricidia* seedlings distributed to number of farmers and *Gliricidia* seedlings distributed in number of villages

S. No.	NGOs	Districts	Number of <i>Gliricidia</i> seedlings distributed	<i>Gliricidia</i> seedlings distributed to number of farmers	<i>Gliricidia</i> seedlings distributed in number of villages
1.	BYPASS	Raisen	1,170	11	4
2.	BYPASS	Sagar	2,900	16	3

(b) Trainings conducted during rabi season:

	NGOs, districts, number of farmers trainings, number of farmers participated and number of villages					
S. No.	NGOs	Districts	Number of farmers trainings	Number of farmers participated	Number of villages	
1.	BYPASS	Raisen	14	285	06	
2.	BYPASS	Sagar	16	402	05	
3.	CARD	Shajapur	02	80	02	

Date	District	Location	No. of villages farmers	No. of farmers, government officials and other participants
07/01/2012	Sagar	Karaiya,	4	100
30/01/2012	Raisen	Siyalwada	5	185
10/01/2012	Shajapur	Barkheda	3	95
11/1/2012	Mandla	Katangsivni	6	180

(c) Field days conducted in 4 target districts of Madhya Pradesh during 2011-12.

(d) Exposure Visit:

An exposure visit was organized for farmers from Sagar, Raisen and Mandla districts to ICRISAT Hyderabad during 14-16 Nov 2011.

iv) Rainwater conservation and productivity enhancement for increased water use efficiency

District	Block	Village	No.	Area	Rainfa	all (mm)	Soil type
			of farm ers	sown (ha)	2010 (June- Dec)	2011 kharif season	
Bundi	Hindoli	Gokulpura, Vijaygarh	12	4.8		792	Black and Red
Tonk	Deoli	Dharola, Rampura, Khwaspura	81	32.4	768	786	Black and Red
Sawai Madhopur	Khandhar	Juwar, Mui, Kushtla	46	19.2	782	747	Black and Red

Farmers' days during 2010-11

Two farmers' days (FD's) were organized during the 2010 rainy season as per detail given below. Good interactive sessions were held between the experts and farmers as to how we can increase crop and water productivity. The farmers who had earlier used improved crop technologies like balanced plant nutrition shared the benefits they got in productivity and their residual effects in the next season. After interactive sessions farmers also visited the demonstration plots to see them the benefits of improved management.

S. No.	Date/s	Location	District	Farmers participated
1.	23.9.2010	Dharola	Tonk	142
2.	11.10.2010	Gokulpura	Bundi	135

Similarly two FD's as per detail below were organized during 2010-11 post-rainy season to disseminate the technologies in the neighboring areas.

S. No.	Date/s	Location	District	Farmers participated
1.	28.2.2011	Dharola	Tonk	161
2.	10.3.2011	Deviji Ka Thana	Bundi	163

Farmer trainings during 2010-11

District	Date of Training	Number of participants
	5/01/2011	35
Bundi	24/02/2011	35
	26/02/2011	50
	15/01/2011	10
Tonk	16/01/2011	28
	23/03/2011	27
S. Madhopur	6/02/2011	29
	16/03/2011	26

Farmers' days during rainy season 2011

One farmers' day was organized at Devaji Ka Thana in bundi to disseminate the technologies to maximum farmers in the adjoining fields and villages. A total 88 men and 7 women farmers participated in it.

Farmer trainings during rainy season 2011

During April to September, 2011, one farmer training was conducted on 21st September, 2011 in Devaji Ka Thana village in Bundi district. Around 30 men and women farmers attended it. The farmers were particularly trained in application of balanced nutrition to their crops and recycling of farm wastes for compost preparation. Good interactions were held over demonstration trials and boosting animal based livelihoods thru improved fodder availability.

20. Total cost of the program together with information on the other water related program's in progress in the area:

State	Total cost of the program together
Chhattisgarh	Additional cost of the technology is balanced nutrition of rice (application of P, Zn, B and S) to the rice crop during the rainy season. The cost of fertilizers and its application is Rs 3300 per ha. Cost of improved variety of chickpea (80 kg ha ⁻¹ & Rs 40 kg ⁻¹) seed is Rs 3200 ha ⁻¹ and seed priming is Rs. 230 ha ⁻¹ . Thus the total additional cost of the improved technology is Rs. 6730 per ha. Total cost of crop production varied with the seasons, crop and the district

Jharkhand	Additional cost of the technology is balanced nutrition of rice (application of Zn, B) to the rice crop during the rainy season. The cost of fertilizers and its application is Rs 1800 per ha. Cost of improved variety of chickpea (80 kg ha ⁻¹ & Rs 40 kg ⁻¹) seed is Rs 3200 ha ⁻¹ and seed priming is Rs. 230 ha ⁻¹ . Thus the total additional cost of the improved technology is Rs. 5230 per ha. Total cost of crop production varied with the seasons, crop and the district
Madhya	Rs. 0.49 crores
Pradesh	
Rajasthan	In water use efficiency enhancement program, the technology of BBF + micro irrigation involves a cost of ~ 80000/- per ha. But keeping in mind the long life, the cost per season comes at around Rs. 4000/ per ha. In interventions like conservation furrow + balanced nutrition, and furrow irrigation + balanced nutrition, the landform component does not bring much cost as furrows are prepare easily by attaching furrow openers in the cultivator at the time of land preparation. Additional cost of balanced nutrition component is in addition of deficient S (thru 200 kg ha ⁻¹ gypsm), B (thru 2.5 kg ha ⁻¹ agribor), and Zn (thru 50 kg ha ⁻¹ zinc sulphate). Therefore, the additional cost of fertilizers (50% recommended where deficiency is on <50% fields; 100% recommended where >50% fields are deficient) ranges between Rs. 1195/- to Rs 2390/- per ha, which are applied once in 2 to 3 years.

21. Strategy for sustainability of this programme:

State	Strategy for sustainability of this programme
Chhattisgarh	Further awareness and capacity-building of the farmers will help in sustaining and scaling-up of the technology. Timely availability of inputs such as fertilizers and seed are the major constraints. The group of farmers needs to be encouraged for establishing their own seed banks and collective actions for obtaining inputs, pests and disease control and marketing of the produce. Block planting of chickpea rather scattered planting would help the farmers save their crop from grazing by wandering animals. Introduction of no-till machines for reducing costs and covering large areas under the crop and supplemental irrigation equipments would help the farmers for sustaining adoption of this technology.
Jharkhand	Further awareness and capacity-building of the farmers will help in sustaining and scaling-up of the technology. Timely availability of inputs such as fertilizers and seed are the major constraints. The group of farmers needs to be encouraged for establishing their own seed banks and collective actions for obtaining inputs, pests and disease control and marketing of the produce. Block planting of chickpea rather scattered planting would help the farmers save their crop from grazing by wandering animals. Introduction of no-till machines for reducing costs and covering large areas under the crop and supplemental irrigation equipments would help the farmers for sustaining adoption of this technology.

Madhya Pradesh	 Ensure the availability of improved implements for making BBF system Ensure the availability of credit for purchasing the implements and other inputs More farmers' awareness and capacity building is required to take full advantage of promising technologies (improved seeds, balanced nutrition of crops, BBF system, water use efficient technologies, farm
	 machinery etc.) Timely availability of information and agricultural inputs are essential to support productivity enhancement. Local production of improved seeds, seeds and fertilizer banks needs to be encouraged. Farmers need to be provided with timely soil testing support for better fertilization of their crops. Community participation, collective actions and social responsibility of communities for the protection, use and sharing of natural resources is essential for sustainable productivity enhancement. Efforts should be made to improve the situation. The results and lessons learnt need to be documented thru reports, flyers, pamphlets and videos in local languages for sharing with others and for better assimilation by the rural communities.
Rajasthan	Awareness and capacity-building of the farmers is targeted to make the program self-sustaining for scaling-up of the technology. Timely availability of inputs such as fertilizers and seed are the major constraints. The groups of farmers are being encouraged for establishing their own seed banks and collective actions for obtaining inputs and marketing of the produce. To manage bulky fertilizers like gypsum, the consortium has entered into partnership with private sector to develop low volume fertilizer mixture containing S, B and Zn, so as to make transport, storage and application easy.

22. Benefits in monetary and ecological terms:

State	Benefits in monetary and ecological terms
Chhattisgarh	It has been demonstrated that the new technology gives additional income to the farmers. The other ecological benefits are that the residual soil moisture and nutrients are used up by the chickpea crop which otherwise are liable to be lost from the soil system to pollute the groundwater or lost to the atmosphere. Legumes add N-rich organic matter to the soil, thus improving soil fertility. Cropped lands would also have to be less weedy and save the costs.
Jharkhand	It has been demonstrated that the new technology gives additional
	income to the farmers. The other ecological benefits are that the residual

	soil moisture and nutrients are used up by the chickpea crop which otherwise are liable to be lost from the soil system to pollute the groundwater or lost to the atmosphere. Legumes add N-rich organic matter to the soil, thus improving soil fertility. Cropped lands would also have to be less weedy and save the costs.				
Madhya Pradesh	District	Additional monitory benefit due to improved technology	Ecological benefits		
	Sagar	Rs. 6435 ha-1	Taking two crops both in the rainy		
	Raisen	-	and postrainy seasons has greatly		
	Mandla	Rs. 12420 ha-1	help in the conservation of soil and water resources. Reducing monsoon fallow areas in this region will have significant effect in reducing land degradation.		
Rajasthan	It has been demonstrated that the new technologies give additional income to the farmers. The other ecological benefits are that the residual soil moisture and nutrients are used up efficiently by the crop which otherwise are liable to be lost from the soil system to pollute the groundwater or lost to the atmosphere.				

23. Timeframe for implementation of the Action Research Programme as approved by PIT

June 2011 to May 2012

24. Funds with date(s) received from MoWR:

Date of Funds received: Rs.1.99 crores received on 10-3-2011

Expenditure: Rs.2,07,38,056 (including interest of Rs.8,38,056)

25. Date of commencement & completion of the programme:

Date of commencement	:	June, 2011
Date of completion	:	May, 2012

26. Brief note on the feedback about the programme from the farmers:

(Giving relevant information e.g. number of farmers trained/participated/ willing to adopt the technology etc. on the basis of feedback received from the farmers)

State	Brief note on the feedback about the programme from the farmers
Chhattisgarh	Over the project period, 1000 farmers have been exposed to various aspects of the improved technology to enhance productivity and water

	use efficiency of the rice-chickpea cropping system in the three districts of Chhattisgarh. Large number of farmers, especially in the Kanker district is willing to adopt this technology. As the technology was implemented in the tribal areas of Chhattisgarh, where the infrastructure development is meager and the farmers are very poor, the adoption, sustainability and further scaling up of the technology would depend upon the availability of the essential inputs (micronutrients, improved seeds, Rhizobium culture and pesticides) for crop production and credit availability. The farmers in groups need to be linked to markets for purchase of inputs and selling of outputs. As the groundwater availability in most districts is enough, the farmers also seek government support for irrigation equipments for providing supplemental irrigation.
Jharkhand	Over the project period, 1380 farmers have been exposed to various aspects of the improved technology to enhance productivity and water use efficiency of the rice-chickpea cropping system in the three districts of Jharkhand. Large number of farmers from Gumla and Sarielkela district is willing to adopt this technology. As the technology was implemented in the tribal areas of Jharkhand, where the infrastructure development is meager and the farmers are very poor, the adoption, sustainability and further scaling up of the technology would depend upon the availability of the essential inputs (micronutrients, improved seeds, Rhizobium culture) for crop production and credit availability. The farmers in groups need to be linked to markets for purchase of inputs and selling of outputs. As the groundwater availability in most districts is enough, the farmers also seek government support for irrigation equipments for providing supplemental irrigation.
Madhya Pradesh	 a. Farmers expressed that the improved Vertisol management technologies is highly beneficial in increasing crop yield, mainly due to application of micronutrients and improved land and water management system i.e. BBF system. However, for better adoptability of BBF system, farmers need BBF maker cum planter and hands-on training on use of the equipment. Some credit also may be needed to buy the new implements. b. Farmers could see the advantage of BBF land form system during continuous rainfall situation to overcome the water logging problem, which is quite common in this region and also, addition moisture conservation in BBF for subsequent rabi crop.

	BBF formation, sowing, and good soybean crop in improved management system at Madhya Pradesh, 2011.
	management system at Maunya Hauesh, 2011.
	 c. Farmers are quite happy with new simple low cost BBF maker. Most of the small and medium farmers feel good scope for adoption of this low-cost implement. d. Farmers observed that about 30-40% irrigation water can be saved and more area can be covered in BBF system compared to conventional flooding in flat system. e. Availability of micronutrients is one of the major problems for increased adoption f.
Rajasthan	During the rainy and post rainy seasons 2010-11, a total of 86 and during the rainy season 2011, a total of 53 farmer participatory research trials / demonstrations were successfully conducted to improve crop and water productivity. To disseminate the technology and to show farmers the impact of technology in their own fields, the farmer days/trainings were conducted in addition to day to informal trainings, in which around 1000 farmers participated. A positive feedback is recorded from the farmers who have used improved crop technologies. Once having seen the benefits on their or neighboring farmers' fields, they are willing to adopt the improved management to rest of their farm bearing full cost of the same. In general the farmers are happy to learn the current technology, and a timely availability of the inputs is only what farmers' demand now.

Publicity (a paper cutting):

गुना गुरूवार 2 फरवरी 2012	सांध्य दैनिक चंचल एक्सप्रेस
	किसान दिवस का हुआ आयोजन
	बीनागंज। ग्राम बरखेड़ा खुर्द में 31 जनवरी को बायफ डेक्लपमेंट रिसर्च फाउण्डेशन गुना द्वारा इक्रिसेट परियोजना के माध्यम से किसान दिवस का आयोजन किया गया। आयोजन का शुभारंभ कार्यक्रम के मुख्य अतिथि मदन सिंह मीना भूतपूर्व जनपद अध्यक्ष द्वारा दीप प्रज्जवलित कर किया गया एवं अपने उद्भोदन में कार्यक्रम में पधारे सभी वरिष्ठ अधिकारियों एवं उपस्थित
	,सभी किसान भाईयों का आभार व्यक्त किया। बायफ डेब्ल्तपमेंट रिसर्च फाउण्डेशन गुना के परियोजना
	अधिकारी डी.एस. रघुवंशी द्वारा क्षेत्र में परियोजना के माध्यम से चलाई जा रही गतिविधियां एवं माइल वाटरशेड के अंतर्गत किए गए निर्माण कार्यों की जानकारी
	दी गई एवं परियोजना के उद्देश्यों से किसानों को अवगत कराया गया। इसके बाद इक्रिसेट हैदराबाद से पधारे वैज्ञानिक श्री प्रसाद द्वारा परियोजना क्षेत्र की मिट्टी
	परीक्षण अनुसार फसलों में सूक्ष्म तत्वों की आवश्कता एवं मात्रा के बारे में जानकारी दी गई। इसके बाद इक्रिसेट हैदराबाद से पधारे कृषि वैज्ञानिक डॉ. गिरीश चन्दर द्वारा
	सूक्ष्म तत्व प्रबंधक के माध्यम से अंतर्वती फसल एवं रोग प्रतिरोधी फसलों के बारे में जानकारी दी गई। इसके बाद बायफ भोपाल से पधारे जे.पी.डी. डॉ. जे.डी. अम्बेडकर
	बायक नापाल संपंतार जाया.डा. डा. जा.डा. जम्बडकर द्वारा क्षेत्र में किसान भाईयों से कृषि के साथ उन्नत नरत्न के पशु रखने के बारे में जानकारी दी गई एवं इससे होने वाले लाभों के बारे में जानकारी दी गई। इसके बाद कृषि
	विभाग से पधारे ग्रा.क.वि.अ. एम.आर. द्वारा क्षेत्र में कृषि विभाग द्वारा चलाई जा रही योजनाओं की जानकारी दी
	गई। इसके बाद कार्यक्रम में पधारे एबीके आरोन के प्रभारी डॉ. जी.एस. द्वारा कार्यक्रम में उपस्थित किसानों को उन्नत फसल तकनीक अपनाने, उन्नत किस्मों का
	चयन करने एवं फसलों में होने वाले रोगों एवं कीट व्याधि तथा उसके निदान के बारे में जानकारी दी गई।

Farmers Day news published in local news paper, Madhya Pradesh.

1 SI S.P. Wani

Signature of the authorized signatory with date

International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)

Email ID: <u>s.wani@cgiar.org</u>

Telephone: 040 – 30713466

LEAFLET PERFORMA (FPARP - 2nd phase)

Introduction of chickpea in rice fallows of Chhatisgarh with low input system

1.	Name of Institute:	International Crops Research Institute for the
		Semi-Arid Tropics, Patancheru 502 324,
		Andhra Pradesh, India

- 2. Date of commencement of Program: June 2011
- **3. Date of Completion of program**: May 2012
- **4. No. of demonstrations to be conducted: 100 (100 ha)** As the farm holdings in tribal areas are small, more number of trials conducted to cover 100 ha.

S. No.	Name of location	Number of demonstrations
1	Bastar district	40
2	Kanker district	60

- **5. No. of demonstrations completed:** During the project year 2011-12 total 272 demonstrations on rice in rainy and chickpea in post-rainy season were conducted in Kanker and Bastar district of Chhatisgarh. Total area covered under demonstrations was 104 ha.
- 6. No. of demonstrations under progress: All the planned demonstration completed as per plan and in Bastar district due to low rainfall some of the chickpea trials were not conducted.
- **7. Districts and villages covered under the program:** The demonstrations were conducted in the Kanker and Bastar district of Chhatisgarh in the following villages.

S.	District	Village	Rice crop		Chickpea crop		Total area
No.			No of	Area	No of	Area	(ha)
			Farmers	(ha)	Farmers	(ha)	
1	Kanker	Siltera	38	15.2	26	4.8	20.0
2	Kanker	Markatola	51	20.4	27	6.0	26.4
3	Kanker	Dienalkher	24	9.6	10	1.2	10.8
4	Bastar	Milbeda	32	16.8	13	3.6	20.4
5	Bastar	Sawra	34	23.2	17	3.2	26.4
		Total	179	85.2	93	18.8	104.0

- 8. Number of farmers participating in the program: Total 272 farmers, covering an area of 104 ha, participated in the program.
- **9. Technology demonstrated:** The technology comprised of rapid tillage after rice harvest without much loss of soil moisture, growing of improved chickpea varieties, **seed priming and seed treatment**. The following were the technology components.
 - a. High yielding, short duration improved chickpea varieties such as ICCV 2, JG 11 and ICCV10.
 - b. Seed priming with sodium molybdate followed by treatment with *Rhizobium* and fungicide Captan.
 - c. Sowing of seeds in furrows through ploughs and planting (needs to be further promoted)
 - d. Basal dressing of single super phosphate, Zinc Sulphate and Agribor for Rice crop along with NPK balance nutrition based on soil test results.
- **10. Impact of each or combination of technologies:** Economic benefits like total cost, gross return and net income and Benefit cost ratio of growing chickpea after rice were estimated for each farmer. Extractable water capacity of the soil was considered to be 100 mm.

	Total cost (Rs ha ⁻¹)		Gross return (Rs ha ⁻¹)		Net income (Rs ha ⁻¹)		P.C.	ratio
	(INS	na ')	(KS	na ^r)	(KS	na [•])	D:C	ratio
District	Trad	Imp	Trad	Imp	Trad	Imp	Trad	Imp
		Ric	e 2011 (K	harif seas	son)			
Kanker	9476	10476	80020	98971	70444	88495	7.48	8.52
Bastar	9075	10944	45567	55641	36493	44698	4.07	4.12
			Chickp	ea 2011-12	(Rabi seas	son)		
Kanker	-	6020	-	32961	-	26941	-	4.56
Bastar	-	7442	-	27009	-	19567	-	2.65
	Rice+ Chickpea (2011-12 season)							
Kanker	-	16480	-	131040	-	114560	-	6.99
Bastar	-	18418	-	80685	-	65882	-	3.58

- **11. Cost of each technology:** Total cost of seed priming and seed treatment with sodium molybdate, *Rhizobium* and fungicide is only rupees 230 per ha. Costs of improved chickpea seed, land preparation, weeding and harvesting is rupees 5000 per ha. Total cost of production of chickpea is estimated to be rupees 5230 per ha.
- **12. Response of farmers about adaptability of the technology:** The farmers are convinced about the benefits of the new technology. They are very keen to expand chickpea production in the region. Major problems in the adoption of technology faced by the farmers are their ignorance about the new technology and availability of improved seeds and fertilizers especially the micro-nutrients.

13. Photographs exhibiting relevant information:

Training program conducted for farmers for technology dissemination and sign board in the field indicating details of field trials in village.

Rice crop demonstration with balance nutrition with micronutrients and chickpea field on residual moisture. with seed priming technique.

Field day celebration farmers visiting rice crop from different villages.

14. Efforts made to promote the technology:

- The farmers and the NGOs are trained in the new technology.
- The SHGs are encouraged to have seed banks in the villages to have timely availability of quality seeds.
- NGOs are linking farmers with the market for supply of inputs and marketing of their produce.
- Block planting is being encouraged to protect the crops from freeanimal grazing.
- Field days and training programs were conducted for 1000 farmers to share the results of improved technologies on the following topics.
 - Soil nutrient Management
 - o Improved cultivars
 - Water use efficiency
 - Crop diversification
 - o IPM
 - o Seed priming and seed treatment

International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)

Email ID: <u>s.wani@cgiar.org</u>

Telephone: 040 – 30713466

LEAFLET PERFORMA (FPARP - 2nd phase)

Introduction of chickpea in rice fallows of Jharkand with low input system

- 1. Name of Institute:International Crops Research Institute for the
Semi Arid Tropics, Patancheru 502 324,
Andhra Pradesh, India
- 2. Date of commencement of Program: June 2011
- **3. Date of Completion of program**: May 2012
- 4. No. of demonstrations to be conducted: 100 (100 ha) As the farm holdings in tribal areas are small, more number of trials conducted to cover 100 ha.

S. No.	Name of location	Number of demonstrations
1	Sariekela- Kharsawan district	30
2	Gumla district	70

- **5. No. of demonstrations completed:** During the project year 2011-12 total 330 demonstrations on rice in rainy and chickpea in post-rainy season were conducted in Sariekela-Kharsawan district of Chhatisgarh. Total area covered under demonstrations was 105.3ha.
- **6. No. of demonstrations under progress:** All the planned demonstration completed as per plan and results are obtained.
- 7. Districts and villages covered under the program: The demonstrations were conducted in the Sariekela-Kharsawan district of Jharkand in the following villages.

S.	District	Village	Rice crop		Chickpea crop		Total
No.			No of	Area	No of	Area	area
			Farmers	(ha)	Farmers	(ha)	(ha)
1	Sariekela- Kharswan	Kanchanpur	23	7.2	16	2.6	9.8
2	Sariekela- Kharswan	Begnadhi	15	8.0	11	2.8	10.8
3	Sariekela- Kharswan	Lakhodhi	20	4.0	15	1.9	5.9
4	Sariekela- Kharswan	Rakakocha	12	7.2	8	2.6	9.8
5	Gumla	Shahitoli	17	10.0	9	1.6	11.6
6	Gumla	Sipringa	19	8.6	16	2.4	11.0
7	Gumla	Pogra	36	15.0	31	5.5	20.5
8	Gumla	Parkartoli	28	12.0	23	4.7	16.7
9	Gumla	Teleya	17	6.6	14	2.6	9.2
		Total	187	78.6	143	26.7	105.3

- 8. Number of farmers participating in the program: Total 330 farmers, covering an area of 105.3 ha, participated in the program
- **9. Technology demonstrated:** The technology comprised of rapid tillage after rice harvest without much loss of soil moisture, growing of improved chickpea varieties, **seed priming and seed treatment**. The following were the technology components.
 - a. High yielding, short duration improved chickpea varieties such as ICCV 2, JG 11 and KAK2.
 - b. Seed priming with sodium molybdate followed by treatment with *Rhizobium* and fungicide Captan.
 - c. Sowing of seeds in furrows through ploughs and planting (needs to be further promoted)
 - d. Basal dressing of single super phosphate, Zinc Sulphate and Agribor for Rice crop along with NPK balance nutrition based on soil test results.
- **10. Impact of each or combination of technologies:** Economic benefits like total cost, gross return and net income and Benefit cost ratio of growing chickpea after rice were estimated for each farmer. Extractable water capacity of the soil was considered to be 130 mm.

	Total cost (Rs ha ⁻¹)		Gross return (Rs ha ⁻¹)		Net income (Rs ha-1)		B:C ratio	
District	Trad	Imp	Trad	Imp	Trad	Imp	Trad	Imp
		Rice 2	011 (Kha	rif season)			
Kanker Sariekela-								
Kharswan	7486	8805	58733	72125	51247	63320	6.89	7.21
Gumla	6964	7824	88762	100259	81798	92435	11.76	11.84
		Chickpea 2011-12			12 (Rabi season)			
Sariekela-								
Kharswan	-	5165	-	39967	-	34802	-	6.73
Gumla	-	5053	-	37993	-	32940	-	6.51
			Rice+ Cl	hickpea (2	2011-12 se	ason)		
Sariekela-								
Kharswan	-	13970	-	112092	-	98122	-	7.03
						12537		
Gumla	-	12877	-	138252	-	5	-	9.74

11. Cost of each technology: Total cost of seed priming and seed treatment with sodium molybdate, *Rhizobium* and fungicide is only rupees 230 per ha. Costs of improved chickpea seed, land preparation, weeding and harvesting is rupees 5000 per ha. Total cost of production of chickpea is estimated to be rupees 5230 per ha.

- **12. Response of farmers about adaptability of the technology:** The farmers are convinced about the benefits of the new technology. They are very keen to expand chickpea production in the region. Major problems in the adoption of technology faced by the farmers are their ignorance about the new technology and availability of improved seeds and fertilizers especially the micro-nutrients.
- **13.** Photographs exhibiting relevant information:

Training program conducted for farmers for technology dissemination here seed priming for chickpea is demonstrated in Kanchanpur village Sariekela Kharsawan.

Field day celebration in Teleya village Gumla, farmers visiting chickpea crop from different villages.

15. Efforts made to promote the technology:

- The farmers and the NGOs are trained in the new technology.
- The SHGs are encouraged to have seed banks in the villages to have timely availability of quality seeds.
- NGOs are linking farmers with the market for supply of inputs and marketing of their produce.
- Block planting is being encouraged to protect the crops from free-animal grazing.
- Field days and training programs were conducted for 1380 farmers
- to share the results of improved technologies on the following topics.
 - o Soil nutrient Management
 - o Improved cultivars
 - o Water use efficiency
 - Crop diversification
 - o IPM
 - Seed priming and seed treatment

International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)

Email ID: s.wani@cgiar.org

Telephone: 040 – 30713466

LEAFLET PERFORMA (FPARP - 2nd phase)

- 1. Name of Institute:International Crops Research Institute for the
Semi Arid Tropics, Patancheru 502 324,
Andhra Pradesh, India
- 2. Date of commencement of Program: June 2011
- **3. Date of Completion of program**: May 2012
- 4. Total nos. of demonstrations to be conducted as approved by MoWR: 100
- 5. Total nos. of demonstrations conducted/ completed: 343

(a) Demonstrations completed during kharif season 2011-12

The project was implemented in three districts of Madhya Pradesh viz. Sagar, Raisen and Mandla, which have large percent of area under rainy season fallow that comes under the agro-climatic zone of Malwa platue and Narmada valley, hot dry sub-humid ESR with medium and deep clayey black soils (Vertisols and associated soils) high available water holding capacity with medium to high annual rainfall (800-1250 mm).

Details of field trials during kharif season 2011-12 in three districts of Madhya Pradesh:

efficiency field	efficiency field trials, 2011.							
District	Block	Village	No. of farmers	Area (ha)				
Sagar (15)	Sagar	Karaiya	10	4.0				
_	JC nagar	Shobhapur	5	2.0				
Raisen (16)	Silwani	Siyalwada	12	4.8				
		Pehariya	4	1.6				
Mandla (20)	Niwas	Katangsavini	20	8.0				
Total			51	20.4				

Villages, blocks and district where technologies were demonstrated in water use efficiency field trials, 2011.

Villages, blocks and district where technologies were demonstrated on monsoon fallow management (Nucleus), 2011.

District	Block	Village	No. of farmers	Area (ha)
Sagar (10)	Sagar	Karaiya	3	3
	JC nagar	Shobhapur	4	4
	-	Hanota	3	3
Raisen (15)	Silwani	Siyalwada	6	6
		Pehariya	1	1
		Gagnewada	3	3
		Paradiya	2	2
		Khamariya	2	2
		Bamori	1	1
Total			26	26

Villages, blocks and district where technology was demonstrated on monsoon fallow management (Satellite), 2011.

District	Block	Village	No. of farmers	Area (ha)
Sagar (13)	Sagar	Karaiya	4	4
		Taalguhari	1	1
	JC nagar	Shobhapur	4	4
	-	Hanota	4	4
Raisen (18)	Silwani	Siyalwada	9	9
		Dungariya	5	5
		Rampura	4	4
Total			31	31

(b) Demonstrations completed during Rabi season 2011-12

Villages, blocks and district where technologies were demonstrated in water use efficiency field trials of Chickpea during Rabi 2011-2012

District	Block	Villages	No. of farmers	Area (ha)
Sagar (11)	Sagar	Karaiya	4	1.60
Sagar (11)	Jasinagar	Shobhapur	7	2.80
Raisen (7)	Silwani	Siyalwada	7	2.80
	Agar	Mahudiya	4	1.60
	Barod	Barkheda	3	1.20
Chaianum (12)	Barod	Ralayti	2	0.80
Shajapur (13)	Nalkheda	Baigaon	2	0.80
	Agar	Salari	1	0.40
	Susner	Khanota	1	0.40
	Niwas	Katangsivni	8	3.20
Mandla (15)	Niwas	Mawai Maal	3	1.20
Mandla (15)	Niwas	Padarpani	3	1.20
	Niwas	Mawai Rayat	1	0.40
	Total		46	18.40

Villages, blocks and district where technologies were demonstrated in water use efficiency field trials of Wheat during Rabi 2011-2012

District	Block	Villages	No. of farmers	Area (ha)
	Sagar	Karaiya	5	2.00
Sagar (14)	Jasinagar	Shobhapur	4	1.60
	Sagar	Narayanpur	5	2.00
		Siyalwada	6	2.40
Raisen (13)	Silwani	Pehariya	5	2.00
		Gaganwada	2	0.8
	Agar	Mahudiya	5	2.00
Shaiamur (20)	Barod	Barkheda	4	1.60
Shajapur (20)	Susner	Chappriya	8	3.20
	Susner	Khanota	3	1.20
	Total		47	18.80

Villages, blocks and district where technologies were demonstrated in fallow management (Nucleus) of Chickpea during rabi 2011-2012

District	Block	Villages	No. of farmers	Area (ha)
	Sagar	Karaiya	7	2.80
Sagar (15)	Lacina gan	Shobhapur	5	2.00
	Jasinagar	Hanota	3	1.20
		Siyalwada	7	2.80
Raisen (15)	Silwani	Gaganwada	5	2.00
		Rampura	3	1.20
	Barod	Barkheda	1	0.40
Shajapur (3)	Nalkheda	Lasudiya Gopal	1	0.40
	Agar	Raipuriya	1	0.40
Total			33	13.20

Villages, blocks and district where technology was demonstrated in fallow management (Satellite) of Chickpea during rabi 2011-2012

District	Block	Villages	No. of farmers	Area (ha)
		Karaiya	20	8.00
Sagar (16)	Sagar	Narayanpur	7	2.80
Sagar (46)		Talguari	7	2.80
	Jasinagar	Shobhapur	12	4.80
		Siyalwada	21	8.40
Paicon (50)	Silwani	Gaganwada	14	5.60
Raisen (50)	Silwalu	Chorpipariya	7	2.80
		Dunagriya	8	3.20
	Agar	Mahudiya	4	1.60
	Barod	Barkheda	3	1.20
Chaiamur (12)	Barod	Ralayti	2	0.80
Shajapur (13)	Nalkheda	Baigaon	2	0.80
	Agar	Salari	1	0.40
	Susner	Khanota	1	0.40
	Total		109	43.60

6. No. of demonstrations under progress if any

- Nil -

7. Villages/districts covered under the whole programme:

S.	Agroclimatic Zone (Name)	States	Districts	Villages
No.		(Name)	(Serial wise	(District wise
			name of all)	name of all)
	Malwa platue and Narmada valley, hot dry sub-humid ESR with medium and deep clayey black soils (Vertisols and	5	1. Sagar	Karaiya Shobhapur Hanota Taalguhari
	associated soils) high available water holding capacity with medium to high annual rainfall (800-1250 mm)		2. Raisen	Siyalwada Pehariya Gangnewada Paradiya Kamariya Bamori Dungariya Rampura
			3. Mandla	Katangsavini
			4. Shajapur	Mahudiya Barkheda Chappriya Khannota

8. Technologies demonstrated:

			No. of farmers
		No. of	benefited in the
S.No.	Description of Technologies	Demonstrations	programme
1.	The components of improved		
	Vertisols management	108	108
	technology implemented in	During kharif	During kharif
	Madhya Pradesh included:	season	season
	 Two crops during a year 	235	235
	through rainy season	During rabi season	During rabi
	fallow management		season
	 Broadbed and Furrow 		
	System (BBF) land form		
	for effective soil and water		

conservation and controlling water loggingIntegrated nutrient	
management including micronutrients	
applications Improved crop varieties 	
 Improved implement viz. tractor mounted BBF 	
maker cum seed drill Dry season tillage	

9. Impact of Technology (Crop wise)

- (a) *Name of Technology* : Monsoon fallow management through improved Vertisol management technology
- (b) *Name of crop*: Soybean

S.No	Items (with units)	Convention	Using	Saving/Ben	Saving/
		al Method	Technologies	efit in	Benefit in
				quantity	%age
1.	Water use	0.85	0.96	0.11	12.9
	efficiency (kg				
	mm ⁻¹ ha ⁻¹)				
2.	Yield				
	(a) Main product	697	784	87	12.4
	(kg/ha)				
	(b) Bio-mass	858	939	81	9.4
	(kg/ha)				
3.	Input (kg/ha)				
	(a) Seed	92	80	12	13
	(b) Fertiliser				
	(c) Pesticide	-	-	-	-
	(d) Others	-	-	-	-
4.	Increase in	-	1.8	-	-
	income/ (benefit				
	cost ratio)				
5.	Others benefits if	-	Less soil loss	-	-
	any				

(c) Name of crop: Chickpea

S.No	Items (with units)	Convention	Using	Saving/Ben	Saving/
		al Method	Technologies	efit in	Benefit
			_	quantity	in %age
1.	Water use efficiency	2.98	3.4	0.42	14.1
	(kg mm ⁻¹ ha ⁻¹)				
2.	Yield				
	(a) Main product	1757	2085	328	18.7
	(kg/ha)				
	(b) Bio-mass (kg/ha)	1331	1596	265	19.8
3.	Input (kg/ha)				
	(c)Seed	85	70	15	17.6
	(d) Others	-	-	-	-
4.	Increase in income/	-	1.78	-	-
	(benefit cost ratio)				
5.	Others benefits if any	-	Improved	-	-
			soil health		

10. Cost of each technology (Rs/ha):

The details of fixed and variable costs of the technologies are given below:

Fixed cost:

Modular type BBF maker cum planter equipment cost: Rs 30000. (one time investment to replace the existing cultivator and seed drill. This is expected to last for minimum of 10 years.

Variable cost:

Broadbed and furrow making	- Rs 200 ha ⁻¹
----------------------------	---------------------------

Micronutrients:

For Boron and Gypsum - Rs 1500 ha⁻¹

For Boron Gypsum and Zinc sulphate - Rs 2500 ha-1

Improved seed:

Soybean - Rs 2100 ha-1

11. Response of farmers about adaptability of technologies:

- a) Farmers expressed that the improved Vertisol management technologies is highly beneficial in increasing crop yield, mainly due to application of micronutrients and improved land and water management system i.e. BBF system. However, for better adoptability of BBF system, farmers need BBF maker cum planter and hands-on training on use of the equipment. Some credit also may be needed to buy the new implements.
- b) Farmers could see the advantage of BBF land form system during continuous rainfall situation to overcome the water logging problem, which is quite common in this region and also, addition moisture conservation in BBF for subsequent rabi crop.
- c) Farmers are quite happy with new simple low cost BBF maker. Most of the small and medium farmers feel good scope for adoption of this low-cost implement.
- d) Farmers observed that about 30-40% irrigation water can be saved and more area can be covered in BBF system compared to conventional flooding in flat system.
- e) Availability of micronutrients is one of the major problems for increased adoption.

12. Efforts made to promote the technologies:

- Trainings have been organized in the project districts for NGOs and other partners on improved technologies for managing monsoon fallow in Vertisols
- Efforts are being made to improve the availability of improved implements for making BBF and other inputs viz. micronutrients, improved seeds etc. in six districts of Madhya Pradesh

13. Photographs exhibiting relevant information (attach hard & soft copy)

Tractor drawn BBF maker cum seed and fertilizer drill unit BBF formation, sowing, and good soybean crop in improved management system at Madhya Pradesh, 2011.

Cultivatin on BBF system and good chickpea crop in improved management system in Madhya Pradesh, 2011-12.

Good chickpea crop in target districts of Madhya Pradesh, 2011-12.

Farmers day at target district, Madhya Pradesh

Publicity (a paper cutting):

Farmers Day news published in local news paper, Madhya Pradesh.

International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)

Email ID: s.wani@cgiar.org

Telephone: 040 - 30713466

LEAFLET PERFORMA (FPARP - 2nd phase)

- 1.Name of Institute:International Crops Research Institute for the
Semi Arid Tropics, Patancheru 502 324,
Andhra Pradesh, India
- 2. Date of commencement of Program: June 2011
- 3. Date of Completion of program: May 2012
- 4. Total nos. of demonstrations to be conducted as approved by MoWR: 100
- 5. Total nos. of demonstrations conducted/ completed: 139
 - (a) Demonstrations completed during Rabi season 2010-11: 32
 - (b) Demonstrations completed during Kharif season 2010-11: 54
 - (c) Demonstrations completed during Kharif season 2011-12: 53
- 6. No. of demonstrations under progress if any: 65 (Rabi, 2011-12 being processed)
- 7. Villages/districts covered under the whole programme:

Agroclimatic	States	Districts (Serial	Villages (District wise name of all)
Zone (Name)	(Name)	wise name of	_
		all)	
Semi-arid	Rajasthan	Bundi	Gokulpura, Vijaygarh, thana,
tropics	-		Goverdhanpura, Tahala,
_			Visupura, Salawaliya
		Tonk	Dharola, Rampura, Khwaspura
		Sawai	Juwar, Mui, Kushtla
		Madhopur	

8. Technologies demonstrated:

Description of	No. of	No. of farmers benefitted
Technologies	Demonstrations	in the programme
Conservation furrow +	107	139 directly, but as such
balanced nutrition		>900 participated in
Furrow irrigation +	28	capacity building
balanced nutrition		
Broad bed and furrow	4	
(BBF) + micro irrigation		

Impact of Technology (Crop wise)

- (a) Name of Technology: Conservation furrow + balanced nutrition
- (b) Name of crop: Maize, blackgram, pearl millet, groundnut

S.No	Items (with units)	Conventional Method	Using Technologies	Saving/Bene fit in quantity	Saving/ Benefit in
		Wiethou	rechnologies	in in quantity	%age
1.	Water use (m³/ha)	Rainfed	Rainfed	Rainwater efficiency improved by 10-50%	10-50%
2.	Yield				
	a) Main product (kg/ha)	Maize=1730- 3170 Blackgram = 290-760 Pearlmillet = 1200-1440 Groundnut = 760-1210	Maize=2140-3650 Blackgram = 360- 880 Pearlmillet = 1420-1730 Groundnut = 930-1410	Maize=200- 860 Blackgram = 70-120 Pearlmillet = 160-290 Groundnut = 170-200	Maize=10-50 Blackgram = 16-24 Pearlmillet = 13-24 Groundnut = 17-22
	b) By-product (straw)(kg/ha)	Maize=2220 -4600 Blackgram = 520-2888 Pearlmillet = 1790-5670 Groundnut = 1020-2750	Maize=2490- 5340 Blackgram = 520-3116 Pearlmillet = 2080-6220 Groundnut = 1150-3250	Maize=230- 1020 Blackgram = 0-228 Pearlmillet = 290-950 Groundnut = 130-500	Maize=8-46 Blackgram = 0-8 Pearlmillet = 10-24 Groundnut = 13-18
3.	Input (kg/ha)	- 1020-2750	1150-5250	- 130-300	
	(a) Seed				
	(b) Fertiliser	Flat bed + Nitrogen (N), phosphorus (P)	Conservation furrow +N, P + sulphur + boron + zinc		
	(c) Pesticide				
	(d) Others				

4.	Increase in income/ Monetary benefits from agriculture, fisheries & livestock etc.	Rs. 220 to Rs. Rs. 6210	
5.	Others benefits if any	Better household nutrition and increased fodder availability a boost to livestock based livelihoods	

(a) Name of Technology: Furrow irrigation + balanced nutrition

(b) Name of crop: Chickpea, wheat, mustard

S.Nc	Items (with units)	Conventional	Using	Saving/	Saving/
	``````````````````````````````````````	Method	Technologies	Benefit in quant	Benefit in %age
1.	Water use			Water use	10-60%
	(m ³ /ha)			efficiency	
				improved by	
				10-60%	
2.	Yield				
	a)	Chickpea	Chickpea	Chickpea	Chickpea
	Main product	=1650-1850	=2710-2730	=880-1060	=48-64
	(kg/ha)	Wheat = 4080-	Wheat = 4860-	Wheat = 440-	Wheat =
		4420	5360	1280	10-31
		Mustard =	Mustard =	Mustard	Mustard
		1650-2860	2550-3720	=860-900	=30-55
	b)	Chickpea	Chickpea	Chickpea =-	Chickpea
	By-product	=1830-2210	=3500-3710	1500-1670	=68-91
	(straw)(kg/ha)	Wheat = 4860-	Wheat = $5550$ -	Wheat = 130-	Wheat = 2-
		5420	6960	2100	43
		Mustard =	Mustard =5530-	Mustard	Mustard
2	$\mathbf{T} (1 / 1)$	4160-4420	6390	=1370-1979	=33-45
3.	Input (kg/ha)				
	(a) Seed	Election time	E		
	(b) Fertiliser	Flood irrigation +N, P	Furrow		
		+N, P	irrigation +N, P + sulphur +		
			+ sulphur + boron + zinc		
$\left  \right $	(c) Pesticide				
	(d) Others				
4.	Increase in		Rs. 2890 to		
4.	income/ Monetary		Rs. 21755		
	benefits from		1.5. 217 55		
	agriculture,				
	ugiicuituie,				

	fisheries & livestock etc.		
5.	Others benefits if	Better household	
	any	nutrition and	
		increased fodder	
		availability a	
		boost to livestock	
		based livelihoods	

# Name of Technology: BBF+micro irrigation Name of crop: Wheat (a) (b)

b	Items (with	Conventional	Using	Saving/Benef	Saving/
-	units)	Method	Technologies	it in quantity	Benefit in
	,		0	1 5	%age
	Water use			Water use	20%
	$(m^3/ha)$			efficiency	2070
	(111 / 114)			improved by	
				20%	
	Yield				
	(a) Main	Wheat = 3500	Wheat = 4200	Wheat = 700	Wheat =20
	product				
	(kg/ha)				
	(b) bBy-product				
	(straw)				
	(kg/ha				
	(c) Input				
	(kg/ha)				
	(d) Seed				
	(e) Fertiliser				
	(f) Pesticide				
	(g) Others	Flat bed sowing,	BBF, drip		
		flood irrigation	irrigation		
	Increase in		Rs. 8400		
	income/				
	Monetary				
	benefits from				
	agriculture,				
	fisheries &				
	livestock etc.				
	Others benefits if		Better household		
	any		nutrition and		
			increased fodder		
			availability a		
			boost to livestock		
			based		
			livelihoods		

- 9. Cost of each technology (Rs/ha): Balanced nutrition = Rs. 1195 Rs. 2390; and micro irrigation + BBF ~Rs 4000/- per season.
- 10. Response of farmers about adaptability of technologies:

A positive feedback is recorded from the farmers who have used improved crop technologies like balanced plant nutrition and happily share the benefits they get in productivity and their residual effects in the next season. Once having seen the benefits on their or neighboring farmers' fields, they are willing to adopt the improved management to rest of their farm bearing full cost of the same. In general the farmers are happy to learn the current technology, and a timely availability of the inputs is only what farmers' demand now.

11. Efforts made to promote the technologies:

About 5 big Farmer days and 9 formal farmer trainings were organized in addition to day to day informal training so as to promote the technologies

12. Photographs exhibiting relevant information (attach hard & soft copy)



Fig. Farmers day at Bundi, Oct, 2010



Fig. Farmers' day at Tonk, Sept, 2010



Fig. Farmer day in Bundi, Oct 11

# About ICRISAT



The International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) is a non-profit, non-political organization that conducts agricultural research for development in Asia and sub-Saharan Africa with a wide array of partners throughout the world. Covering 6.5 million square kilometers of land in 55 countries, the semi-arid tropics have over 2 billion people, and 644 million of these are the poorest of the poor. ICRISAT and its partners help empower these poor people to overcome poverty, hunger, malnutrition and a degraded environment through better and more resilient agriculture.

ICRISAT is headquartered in Hyderabad, Andhra Pradesh, India, with two regional hubs and four country offices in sub-Saharan Africa. It belongs to the Consortium of Centers supported by the Consultative Group on International Agricultural Research (CGIAR).

#### Contact Information

#### ICRISAT-Patancheru (Headquarters) Patancheru 502 324 Andhra Pradesh, India Tel +91 40 30713071 Fax +91 40 30713074 icrisat@cgiar.org

ICRISAT-Bamako BP 320 Bamako, Mali Tel +223 20 223375 Fax +223 20 228683 icrisat-w-mali@cgiar.org

ICRISAT-Liaison Office CG Centers Block NASC Complex Dev Prakash Shastri Marg New Delhi 110 012, India Tel +91 11 32472308 to 08 Fax +91 11 25841294

#### ICRISAT-Bulawayo Matopos Research Station PO Box 776 Bulawayo, Zimbabwe Tel +263 383 311 to 15 Fax +263 383 307 icrisatzw@cgiar.org

#### ICRISAT-Nairobi (Regional hub ESA) PO Box 39063, Nairobi, Kenya Tel +254 20 7224550 Fax +254 20 7224001 icrisat-nairobi@cgiar.org

ICRISAT-Lilongwe Chitedze Agricultural Research Station PO Box 1096 Lilongwe, Malawi Tel +265 1 707297/071/067/057 Fax +265 1 707298 icrisat-malawi@cgiar.org

#### **ICRISAT-Niamey**

(Regional hub WCA) BP 12404, Niamey, Niger (Via Paris) Tel +227 20722529, 20722725 Fax +227 20734329 icrisatsc@cgiar.org

ICRISAT-Maputo c/o IIAM, Av. das FPLM No 2698 Caixa Postal 1906 Maputo, Mozambique +258 21 461657 +258 21 461581 Tel Fax icrisatmoz@panintra.com

www.icrisat.org