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ABSTRACT 

In greenhouse experiments, the germination and emergence of 
pearl millet, sorghum and groundnut in an Alfisol, was found to 
decrease significantly with reduction in soil moisture content and 
increase in bulk density. The effect of increasing bulk density 
was considerable at low soil moisture contents. A bulk density of 
1.45 g ~ m ' ~  and moisture contents ranging from 8% to 11% were 
observed to be favorable for germination and emergence of all the 
three crops. A bulk density of 1.65 g cm-3 was critical for 
emergence of pearl millet and sorghum. Excessive dryness and high 
bulk density were detrimental to germination as well as seedling 
emergence. Initiation of germination occurred when the gravimetric 
moisture content ranged from 4% to 8% for the three crops. A 
gravimetric moisture content greater than 192 significantly 
decreased germination and emergence. Emergence was delayed by one 
or two days when the soil was at higher bulk density in the low 
moisture content ran es. Rate of emergence was faster at a bulk 
density of 1.45 g cmS than at either 1.55 or 1.65 g om-$. In the 
wet moisture range, the rate of emergence was faster at all the 
three bulk densities than in the dry moisture ranges. Emergence 
increased with increase in moisture content. Increase in bulk 
density decreased the emergence for the three crops. 



CHAPTER I 
INTRODUCTION 



C H A P T E R  I 

INTRODUCTION 

Alfisols which are a major order of soils found in the semi- 

arid tropical regions of India are poor soils, shallow in depth 

with low available water retention capacity, low infiltration rate 

often due to crusting at the soil surface and have poor nutrient 

status. Crusting is a major problem in these soils and it affects 

the germination and emergence of small seeded crops. Uncertain 

rainfall and low water holding capacity of these soils also play a 

major role in limiting the yield potential of crops grown on these 

soils. Bulk density of Alfisols increases with depth caused by 

compaction of the finer materials deposited in the lower soil 

depths. Due to the prevalence of aberrant weather and soil related 

constraints, the germination and emergence of seeds sown in these 

Alfisols decrease thereby resulting in low and unstable crop 

yields. 

Crop establishment problems on Alfisols are usually caused by 

a combination of soil, weather and environmental factors. Failure 

of crop establishment is a common problem in many sorghum and pearl 

millet growing areas. Poor seedling emergence frequently results 

from lack of sufficient seedbed moisture at the time of sowing. 

Seedling emergence is also inhibited largely by occurrence of 

surface soil crusts that can form naturally on Alfisols as a result 



of rainfall impact. Once these crusts are formed, they mechanically 

hinder the emergence of seedlings and cause poor stand. Crusting 

is a result of a combination of processes such as soil compaction, 

structural breakdown and deposition of fine particles on the 

surf ace. 

Germination of seeds and seedling emergence are greatly 

influenced by soil physical conditions especially bulk density and 

soil moisture status. When seedling emergence is poor, plant 

population would then be reduced and would in turn result in poor 

yields. For example, soybean yields were reduced by as much as 8 to 

9% due to poor crop stand as a result of decreased emergence (Goyal 

et. al., 1981). 

The soil or seed bed factors that influence the expression of 

germination and emergence potential of seed are many and they 

interact in various ways to permit, impede or prevent germination 

and emergence. The potential of seeds to germinate and emerge, 

under varying levels of factors is governed by a range of 

environmental conditions in which the seeds are planted. 

The main soil factors are temperature, soil moisture content, 

oxygen supply, microrganisms, bulk density, hydraulic conductivity 

and moisture suction or potential. Seed factors such as the 

genetic and physiological attributes also influence germination, 

emergence and stand establishment of crops. 



Pearl millet and sorghum are the two most important cereal 

crops cultivated in the semi-arid tropical regions of India. They 

constitute the staple food of a large section of population in 

India. Groundnut is also an important oil seed crop grown in this 

region. These crops are usually grown under erratic rainfall 

conditions, high temperatures and adverse soil characteristics that 

may inhibit crop establishment and also subsequently reduce their 

yield potential. India ranks first in terms of the area under 

sorghum and groundnut, ranks first in groundnut production and 

second in sorghum production in the world. Both pearl millet and 

sorghum are tolerant to drought conditions. Consequently, most of 

the farmers do not take,proper care and management in cultivating 

these crops. 

In recent years increased mechanization which relies on heavy 

machinery on farmlands has resulted in the deterioration of soil 

structure through compaction which affects infiltration of water, 

germination and seedling emergence. Increase in soil strength as 

a result of compaction is one of the critical factors affecting the 

emergence of seedlings. Increased soil bulk density results in 

reduced pore space, reduced aeration and decrease in hydraulic 

conductivity. If the bulk density of the soil is too high, then 

the emerging plumule would be unable to overcome the resistance of 

overlying soil and would therefore result in decreased emergence of 

the seedlings, The adverse effects of high bulk density on the 

seedling emergence of small seeded crops such as sorghum and pearl 



millet is great. 

The soil moisture status is another important factor which 

influences germination and emergence of crops. Even though sorghum 

and pearl millet are drought tolerant, their yields decrease during 

droughty years mainly because of poor emergence and crop stand due 

to lack of availability of sufficient moisture. Poor germination 

due to low soil moisture content is a major obstacle in increasing 

the production. If it was possible to identify the minimum 

moisture required for germination and the appropriate soil moisture 

ranges required for maximum germination then sowing of crops could 

be done at appropriate periods when there has been sufficient 

rainfall to ensure good,crop establishment. Effect of moisture on 

germination is very complex due to various factors involved, such 

as the initial water content of the seed, amount of water in soil, 

hydraulic conductivity of the soil, seed-soil contact and potential 

of water in the soil. Reduction in soil moisture content below a 

minimum results in reduced emergence. Optimum soil moisture 

condition around the seed is one of the critical factor governing 

the germination and emergence of seedlings. Therefore a study of 

the effect of soil moisture on germination and emergence would 

provide the basic information essential for ensuring an ideal soil 

environment for emergence and growth of seedlings. 

Because the volumetric water content of a soil comprises of 

the gravimetric water content and the bulk density, the gravimetric 

water content of the soil that ensures an optimum germination and 



emergence at one bulk density may not be the same for other bulk 

densities Of the same soil. Examination of the literature reveals 

that there is little quantitative studies on the interactive 

effects of bulk density and soil moisture status on germination and 

emergence of pearl millet, sorghum and groundnut grown on Alfisols. 

Therefore the present investigations were designed to determine 

the effect of different levels of soil moisture status and bulk 

density and their interactions on germination and emergence of 

pearl millet, sorghum and groundnut in Alfisols. 
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REVIEW 
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C H A P T E R  I 1  

REVIEW OF LITERATURE 

Seed germination and seedling emergence are the two critical 

stages governing the success or failure of a crop. Moisture is an 

essential requirement for seed germination. Seed germination 

varies with the species of the plant as well as with the soil 

moisture status. Bulk density is another important soil physical 

factor which influences germination and emergence of crops. Bulk 

density influences other soil physical factors especially soil 

temperature, volumetric'moisture content, moisture potential, total 

porosity, soil aeration and the hydraulic conductivity of the soil. 

In this chapter, the effect of temperature, moisture status 

and bulk density on the germination and emergence of crops would be 

briefly reviewed. 

2.1 Effect of temperature on germination of crops 

Temperature is an important environmental factor governing the 

germination of seeds in moist soil. The prevailing soil 

temperature determines the fraction of seeds which germinate and 

the rate at which they germinate. Indeed temperature exerts a 

major influence on the rate at which various crop plants develop. 

When a crop is sown, the time that elapses before germination and 



emergence of seedlings is strongly dependent on temperature as well 

as moisture in the seed bed. 

The imbibition of water by seeds, germination rate and final 

germination of the crops have been found to be linearly related to 

temperature (Dewez, 1964). However, in actual field situations the 

water content of the seed zone changes with time and therefore 

there is an interaction between temperature and water content of 

the seed zone. 

Kanemasu et al., (1975) indicated that soil temperature 

strongly influences both percentage germination and the time of 

emergence of sorghum. , Each crop has a minimum and a maximum 

temperature at which no seeds will germinate and an optimum 

temperature at which germination will be greatest. In their 

studies, Kanemasu et al., also found that sorghum required an 

optimum soil temperature of about 23°C. At that soil temperature, 

the percentage emergence of sorghum was found to be 81%. Similar 

results have been reported by Wilson et al., (1981). Poor and 

delayed emergence of sorghum seedlings was observed at high soil 

temperatures. 

Peacock (1981) observed that the minimum temperature for 

germination of sorghum is between 7.2% and 10°C. The minimum 

temperature for germination may vary within species from 4 . 6 C  to 

16.5~~. peacock (1981) found that during the initial germination 

of sorghum seedlings, respiration and mesocotyl extension declined 



as temperatures were reduced from 24% to 8%. 

In the tropics, high temperatures may cause a loss of 

viability of seeds. This has been reported to be responsible for 

poor seed germination and seedling emergence (Garcia-Huidobro et 

al., 1982). Also, the rate of germination has been found to 

increase linearly with temperature from a base temperature to a 

sharply defined optimumtemperature beyond which the rate decreases 

linearly as temperature approaches zero. 

Huges et al., (1984) reported from their laboratory 

experiments that no germination occurred within 14 days at 5/10°C 

nightfday temperatures.. The difference in germination percentage 

at 10115 and 15/20°C night/day temperatures was greatest for pearl 

millet. Germination percentage for Echinocloa and Pennisetum spp. 

was depressed more by low osmotic potential at 10/1SoC nightlday 

temperatures than at high temperatures. 

In laboratory experiments conducted by Khalifa and Ong (1990) 

on four pearl millet cultivars, there was no germination between 7 

to 8OC and 41 to 49OC. A 5% germination was obtained at lleC and the 

rate of germination for all four cultivars increased linearly with 

increase in temperature from a base temperature to an optimum 

temperature. Above the optimum temperature, the rate of 

germination decreased linearly to zero at maximum temperatures of 

46 to 4S0C. Short duration varieties were found to be more tolerant 

to high temperatures than long duration varieties. 



Xn laboratory studies conducted by Brar et al., to test a 
A 

model for sorghum seedling establishment, a combination of cool 

temperature (15.g°C) and moderate level of stored water at a matric 

potential of -0.1 MPa at planting produced an emergence count of 

80%. Similarly, a combination of warm temperature (35.E°C) with 

stored water at a matric potential of -0.03 MPa provided a 

favorable environment for 87% seedling emergence. Their study 

indicated that temperatures in the range of 20.5 to 30.2'C and 

moisture potentials between -0.03 and -0.1 MPa had no effect on 

final emergence. 

2.2 Effect of Moisture Status on Germination and Emergence of 

crops 

Even though several reports have been published on the effect 

of soil moisture on germination, very few report accurate 

measurements of available soil moisture. Consequently, there is 

little accurate experimental evidence on the effects of different 

levels of soil moisture on germination. 

Vegetable seeds have been found to give satisfactory 

germination percentage over a wide range of available soil 

moisture. Doneen and MacGillivray (1943) observed that germination 

at low soil moisture appeared not to be correlated with size of 

seeds. Seeds germinated more quickly at high soil moisture (1st) 

than at low ( a % ) ,  the interval between first and last germination 

of seeds increased as the gravimetric water content decreased. In 



all trials, soil moisture at planting was taken into 

consideration. 

Hunter and Erickson (1952) characterized the soil moieture 

required for seeds to germinate by relating germination to roil 

moisture tension. At soil moisture potentials lower than that 

required for germination, the seeds were unable to obtain 

sufficient amount of moisture to resume active growth even though 

the soil air was saturated with water vapour. Once seeds imbibed 

water from the surrounding environment, they became moist, fleshy 

and tender and unless they were able to obtain sufficient moisture 

for germination, they usually remained in this condition and became 

prey to certain fungi which caused their decay. 

Hanks and Thorp (1956) observed that seedling emergence was 

nearly the same when the moisture content was maintained between 

field capacity and wilting percentage if other factors were optimum 

for maximum seedling emergence. The rate of seedling emergence was 

faster at higher moisture content (three fourth of available water) 

than at lower moisture content (i.e., one fourth of available 

water). In general, the lower the moisture content the slower the 

seedling emergence rate. 

Collis-~eorge and Sands (1959) studied the response of 

Medicago species to decreased matric potential. Their results 

indicated that a decrease in matric potential by 0.1 bar, was 

sufficient to retard germination rate. When all other factors were 



constant, the water uptake by seeds would appear to be controlled 

by both the matric potential and hydraulic conductivity of the 

soil. 

Evans and Stickler (1961) in their studies on the effect of 

simulated drought on four sorghum varieties, indicated that there 

was a progressive decrease in germination with increasing moisture 

tension. They observed that a lot of time was required for sorghum 

to reach final germination as osmotic tension increased, an 

indication that lengthening of the time required for germination 

under drought stress would be critical under field conditions. The 

dehydrated and burned appearance of seedlings grown by these 

researchers under moisture tension of 15 atmospheres suggested 

that growth could not be sustained under such conditions. 

Hudspeth and Taylor (1961) studied the effect of moisture 

content on seedling emergence of Blackwell Switchgrass. They 

observed that 18-19% gravimetric moisture content was optimum for 

seedling emergence. Emergence decreased when moisture content was 

greater than 19%. At a soil moisture tension of 10 atmospheres no 

emergence occurred. 

Wright et. al. (1978) working with seeds of several grass and 

legume species found that as temperature and moisture tension 

increased, the rate of emergence and total emergence declined. 

Water uptake of several field crops decreased with increase in soil 

moisture tension. Highest emergence was obtained at low soil water 



potential Of -113 bars. Insufficient moisture reduced seedling 

emergence and resulted in seedling damage and death as a result of 

infection by pathogens. 

In a study conducted by Fawusi and Agboola (1980), 

germination of sorghum and millet seeds was observed to be 

adversely affected by soil moisture in excess of 50% of field 

capacity. This observation that sorghum and millet performed well 

at low soil moisture retention partly explains their ability to 

survive in dry ecological regions. Poor germination was also 

obtained at a soil moisture retention of 100% and 25% of field 

capacity in the case of tomato. Since germination was inhibited at 

high moisture (100% o,f field capacity), it would seem that 

respiration of seeds was inhibited because oxygen was limited 

whereas at low soil moisture (25% of field capacity), soil-seed 

contact seemed insufficient for optimum imbibition. It is also 

possible that at low soil moisture regimes, the moisture potential 

gradient was not sufficient for water to flow to seed for 

imbibition to occur thus reducing germination and emergence. 

Sorghum and millet showed increased emergence with increasing soil 

moisture retention. For optimum germination and emergence a soil 

moisture retention of 25 to 50% of field capacity for sorghum; 25% 

of field capacity for millet and 50% of field capacity for tomato 

was found to be essential. 

stout et al., (1980) reported delayed initiation, slow rate 

and reduced percentage of germination at low water potentials (-15 



bars). Sorghum seeds however were found to tolerate low water 

content and hence were able to survive in drought stress conditions 

(Wilson and Eastin, 1981). 

In laboratory studies conducted by Mali and Varade (1981) on 

emergence of rice seedling in a clay soil, a significant decrease 

in emergence with reduction in soil moisture content and increase 

in bulk density was observed. Seed germination and seedling 

emergence suffer due to soil moisture potential and hydraulic 

conductivity. Seedling emergence was reduced by 54.2% and 47.52 

when gravimetric soil moisture content decreased from 33% and 288 

to 20%. The lower emergence percentage at 20% soil moisture was 

due to lack of water fpr germination. The rate of emergence of 

rice seedling was also found to be influenced by moisture and bulk 

density interactions. 

Brar et. al. (1982) observed an increase in seedling emergence 

with increase in moisture content at a shallow depth of 2.5 cm 

while seedling emergence decreased with deeper seedling depth. 

Reduction in water content reduced water uptake by seeds and thus 

affected germination. 

Haller (1984) reported that decrease in yield was greater when 

the same low moisture, i.e., 30-352 of field capacity, prevailed 

from sowing to second leaf stage of wheat. He concluded that soil 

water and air regimes at germination have far reaching effects on 

crop development causing differences in density of plant cover and 



yield of grains. Insufficient aeration caused by high soil 

moisture or soil water deficits at the beginning of germination 

reduced yields. 

Painuli and Abrol (1984) found that seedling emergence was 

relatively fast initially at volumetric moisture content of 40%, 

10% and 5% i.e. at high, medium and low moisture content 

respectively, but emergence slowed down with time and finally 

became static. Ultimate emergence decreased with increasing crust 

strength. Rate of emergence in general decreased with increase in 

crust strength. Maize emergence was poor under low (i.e., 5%) 

volumetric moisture content and high (i.e., 40%) volumetric 

moisture content whereas the emergence for pearl millet was 

highest at 40% volumetric moisture content. 

Pearl millet is a potentially productive high-quality grain 

crop that appears superior to sorghum in establishment under 

limited soil moisture. Smith and Hoveland (1986) observed a 

reduction in germination of pearl millet and sorghum by 6% and 44% 

respectively when the osmotic potential (OP) increased from 0 to 

1.0 MPa. The median germination time for pearl millet wa's found to 

be significantly less than that of sorghum at all osmotic potential 

levels. Total sorghum germination decreased steadily with each 

increase in OP. These results imply that pearl millet is more 

capable of germinating under drought conditions than sorghum. The 

fact that pearl millet has a mass approximately one-fifth that of 

sorghum may play a role in its ability to germinate under drought 



conditions (Smith et al., 1989). 

Germination and emergence of most crop species are 

progressively delayed and reduced as soil water potential 

decreases. Emergence of cotton seedlings decreased slowly with 

decreased soil water potential from -400 to -750 kPa and a sharp 

decrease occurred at a potential of -800 kPa. Rao and Dao (1987) 

reported a decrease in total seedling emergence of Brassica sp. 

with decrease in soil water potential from -250 to -500 kPa. At 

lower soil temperatures, a significant difference was observed in 

seedling emergence at different soil water potentials. Differences 

between the time required for first seedling emergence and time 

required for attaining,50% seedling emergence were minimal when 

soil water potentials were in the range of -10 to -250 kPa. 

However that time interval increased with decrease in soil water 

potential from -250 to -500 kPa. Rapid uniform emergence can be 

achieved as long as soil water potential is greater (or less 

negative) than -250 kPa. Soil water potentials less (or more 

negative) than -250 kPa reduced and delayed germination and rate of 

seedling emergence under low soil temperatures. 

In experiments conducted by Bouaziz and Bruckler (1989) 

decreasing (or more negative) soil water potential was observed to 

lead to a significant reduction of both emergence and elongation 

rates of roots and shoots. Time required for complete emergence 

increased with decreasing water potential. 



Germination and early seedling growth involve the hydrolysis 

of stored seed constituents and the transfer of solubilized 

derivatives to the growing embryonic axis. This process is 

initiated by water uptake and eventually leads to seedling 

emergence. Hadas (1969) suggested that there are three stages in 

seed germination viz., ( a )  imbibition, (b) a pause in growth 

during which enzymatic and merismatic activities are initiated, and 

(c) the resumption of active growth and emergence of radicles from 

the seed coat. He contended that moisture stress has less effect 

on imbibition than on the crucial events during the "pauseu stage. 

Experimental evidence on the effects of soil moisture content 

on germination relates the reduction in the rate of germination to 

various factors. It has been well established that matric 

potential and hydraulic conductivity of the soil, the osmotic 

potential of the soil solution, the seed soil contact area and 

their interaction affects the rate and percentage of emergence 

(Collis- George and Sands, 1959). 

On the other hand, Hadas and Russo (1974) suggested that rate 

of water movement in the soil across the seed-soil interface and 

into the seed must be analyzed to predict the rate of emergence. 

It therefore appears that both soil and seed factors are 

determinants in the rate of water uptake by seed and rate of 

germination. 



2 . 2  Effect of Bulk Density on Germination and Emergence of crops 

~ermination and emergence of seeds require favorable soil 

water, oxygen and temperature. In a soil media, the seedling root 

and shoot encounters a porous medium composed of voids and 

obstructions through which growth occurs. Soils which are compact 

have higher bulk density and lead to excessive impedance which has 

adverse effects on the growth of roots and shoots of seedlings. 

The smaller seed size of some crops, like sorghum and millet, is an 

additional factor increasing the adverse effects of high bulk 

density on the germination and seedling emergence. Bulk density 

also influences the moi~ture content of the soil. The volumetric 

moisture content of the soil increases linearly with bulk density 

and depending on texture, a maximum bulk density is reached above 

which continued compaction decreased the water content. Increasing 

bulk density at constant moisture content and temperature, 

increases the matric potential in most soils. The moisture content 

increases as bulk density decreases because the volume of pores 

increases. Air capacity normally decreases progressively as bulk 

density increases. In all soils, compaction beyond a critical bulk 

density would progressively decrease available water capacity 

(Archer and Smith, 1972). 

The experimental data of Hanks and Thorp (1956) indicated that 

bulk density was related indirectly to seedling emergence in that 

any change in bulk density changed other factors such as oxygen 



diffusion rate and soil crust strength. They reported that an 

increase in bulk density decreased seedling emergence because of 

increase in soil strength. As soil compaction was increased from 

optimum, the oxygen diffusion rate decreased, crust strength also 

increased and these led to a decrease in seedling emergence. At 

the same bulk density, seedling emergence varied depending upon the 

soil moisture content. At higher soil moisture content i.e. at 

field capacity, the emergence was high (82%) even at a high bulk 

density of 1.5 g cm", but at the same bulk density a decrease in 

moisture content reduced the seedling emergence. Thus an 

interrelationship exists between bulk density and available 

moisture content in relation to seedling emergence. 

A high bulk density usually leads to increase in soil 

strength. This increase in bulk density also increases mechanical 

impedance which in turn limits seedling emergence. Hanks and Thorp 

(1957) studied the effect of soil crust strength on seedling 

emergence. Their results indicated that crust strength was 

dependant on soil moisture content. At a given crust strength, 

seedling emergence was lowest where soil moisture content was 

lowest ( i . e . ,  25% of the available water). Both moisture and crust 

strength greatly affected emergence of wheat seedlings. Emergence 

of wheat seedling through a crust was found by these researchers to 

be influenced by crust strength immediately around the growing tip 

and not by the strength of the entire crust. This suggests that 

seedlings do not "presszt on the crust until it breaks but rather 

must ttwormt1 their way slowly through the crust. The time required 



for a specified number of seedlings to emerge increased with the 

crust strength and decreased with moisture content. 

However, Hudspeth and Taylor (1961) observed that when 

compaction pressure was applied, emergence was not hindered. On a 

soil having gravimetric moisture content of 16.89,  all pressures 

either on the seed or on the soil surface increased the rate and 

total seedling emergence when compared to the soil medium where no 

pressure was applied. At high gravimetric moisture content of 212, 

pressures of 703 to 14060 kg m" applied on surface of soil had 

little effect on the rate of total seedling emergence. A pressure 

of 703 kg m 2  on loose soil caused significantly greater emergence 

than no pressure, which may be attributed to greater seed soil 

contact as a result of the applied pressure. 

Many investigators have found that excessive soil strength 

caused by increased bulk density reduces emergence of a large 

variety of crops, Parker and Taylor (1965) found that an increase 

in soil strength causes a progressive decrease in emergence. 

Sorghum emergence ceased when soil strength due to high bulk 

density increased to about 18 bars. Most of the seedlings emerged 

within a few days from soils having a low strength but the 

emergence rate decreased as soil strength was increased. An 

increase in soil moisture tension to 1 bar or greater, decreased 

the rate and amount of emergence and decreased total emergence at 

a specific soil strength. Thus an increase in soil moisture 

tension decreased seedling emergence, especially when the seedlings 



encountered considerable resistance to emergence as a result of 

high bulk density of 1.60 g cm.'. Greater percentage of plants 

emerged at low strength than at high soil strength. In the field, 

evaporation occurs continuously and this would have the effect of 

reducing soil moisture around the seed if there is no rainfall and 

thus increase the soil strength and decrease seedling emergence. 

Huges et al., (1966) observed a decrease in grass seedling 

emergence with increasing crust strength, when moisture content was 

held constant. For a given crust strength, seedling emergence was 

lowest (55%) at low moisture potential of -3 bars. At -3 bar 

soil water potential and all levels of bulk density, seedling 

emergence of Bermuda gr,ass was 55% and that of weeping lovegrass 

was 60%. At 1.5 g cm' bulk density, emergence of bermuda grass 

was 65% even at -113 bar soil water potential. 

The results of experiments conducted by Mali, et. al., (1977) 

indicate that seedling emergence of sorghum was adversely 

influenced by bulk density. The seedling emergence of sorghum 

varieties CSH-4 and M35-1 decreased from 97 to 8 0 %  and 93 to 835 

respectively as soil bulk density increased from 1.0 to 1.1 g cm3 

in a clay soil. Emergence of all varieties of sorghum seedlings 

was greatly influenced by soil bulk density of 1.2 g cm". The 

decrease in seedling emergence with increase in bulk density was 

attributed to increased mechanical impedance, low moisture 

availability, lack of oxygen and low temperatures. For a seedling 

to emerge it must not only germinate but also penetrate through the 



compacted layer. Energy required for emergence of seedling 

increases with-increase in bulk density. Therefore, it appears 

that seedling emergence was adversely affected by the increased 

mechanical impedance of the soil due to high soil strength induced 

by increasing bulk density. 

Hegarty and Royle (1978) found a negative linear relationship 

between seedling emergence and soil impedance, which accounted for 

80% variation in percentage emergence of carrot, onion and ginger. 

Pre-emergence losses of onions were found to be largely due to 

failure of seedlings to emerge through the soil after germination 

rather than failure of seeds to germinate. 

Mali and Varade (1981) in laboratory studies observed that 

emergence of rice seedling in a clay soil decreased with increase 

in bulk density and reduction in soil moisture content. The 

effects of increased bulk density was considerable at lower soil 

moisture. A gravimetric soil moisture content of 33% at 1 to 1.15 

g cm" bulk density was found to be most favorable. The rate of 

seedling emergence at all soil moisture levels was reduced with an 

increase in bulk density. An increase in bulk density to' 1.30 g cm. 

decreased the emergence by 11.7%. In the studies of Mali and 

Varade (1981) the interaction of soil moisture and bulk density was 

highly significant. At 20% moisture content, there was a drastic 

reduction in seedling emergence from 77 to 22% with increase in 

bulk density from 1.0 to 1.15 g cm". Similarly at a bulk density 

of 1.0 g cm.', the soil moisture did not affect the seedling 



emergence but at 1.15 and 1.30 g cm.' bulk density, decrease in soil 

moisture from 28% to 20% severely reduced the emergence. 

A seedling must exert considerable force to penetrate a crust 

during emergence from the soil. Therefore larger and heavier seeds 

such as corn have been shown to have greater emergence force than 

smaller and lighter seeds (Reusche, 1982). 

Soman, et. al., (1984) reported that due to small seed size of 

sorghum and millet, the seedling emergence was affected by soil 

crusting. Seedlings emerged through soil crusts in various ways. 

Individual seedlings can exert sufficient pressure through a soil 

crust to emerge or groups of seedlings may crack the crust from 

below by cumulative force. In case where seedlings did not emerge, 

curved plumules or damaged whorls of the first leaf were observed 

when surface crust was removed. 

Haller (1984) observed an inverse relation between barley 

yield and bulk density of the soil in early sowings but bulk 

density was proportional to yield in later sowings. This may be 

due to soil aeration rather than bulk density. In later sowings, 

soil moisture was usually lower and by increasing the bulk density 

the germinating seed was better supplied with water resulting in 

proportional relation between yield and bulk density of soil. 

In a field experiment, Venkaiah (1985)  observed that a higher 

bulk density decreased the leaf area index of groundnut and 



reduced water supply resulting in dimunition of top growth. A high 

bulk density Per se apparently is not a controlling factor in root 

development but it is augmented by soil strength from this increase 

in bulk density. The increase in bulk density increased mechanical 

impedance which is mainly responsible for decreased peg penetration 

and ultimately led to reduced yields. The threshold bulk density 

for groundnut in sandy clay loam soils was identified to be 1.50 g 

cm.' . 

Maiti et a l . ,  (1986) reported that an increase in crust 

strength was accompanied by a decrease in soil moisture and an 

increase in soil temperature in the seed zone. The emergence 

percentage decreased wi,th increase in crust strength and decrease 

in soil moisture content. 

Ahmed et al., (1989) found that bulk density was a measure of 

soil compaction which hindered peg penetration and pod development 

in groundnut as reported by Venkaiah (1985). They found a 

restricted root growth both laterally and vertically at a bulk 

density of 1.6 g cm". Pod yield decreased with increasing bulk 

density. 

In field experiments conducted by Soman, et. al., (1992) 

seedling growth was observed to be affected by soil crusting. The 

crust tolerant varieties were found to have longer mesocotyls with 

faster growth rates which enabled them to escape the crust by 

emerging before the crust became to0 hard. Their results indLcate 
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that growth was inhibited by physical conditions of the soil where 

crust had not been disturbed. This indicates that mechanism 

involved in crust tolerant genotypes is crust avoidance resulting 

from faster growth of the plumule. 
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MATERIALS AHD METHODS 

3.1 Experimental site 

The experiments were conducted, under controlled temperature 

and relative humidity, in the greenhouse at the International Crops 

Research Institute forthe Semi-Arid Tropics (ICRISAT), Patancheru, 

during the post-rainy season of 1991-92. Patancheru is located on 

latitude 18' North and longitude 78' East at an altitude of 545 m 

above mean sea level. During the period of the series of 

experiments, the temperature and relative humidity were maintained 

in the greenhouse at 25 4 5°C and 60-75% respectively. Another 

experiment was conducted in the laboratory on a thermogradient 

table at ICRISAT, to know the effect of temperature on germination. 

The soil used in the experiments are classified as Alfisols, 

a fine mixed isohyperthermic family of Udic Rhodustalf (USDA, Soil 

Taxonomy, 1975) which are commonly known as red sandy loams derived 

from pink granite. They are medium dark, well drained, sandy loam 

to sandy clay loam at the surface, occurring on nearly flat to 

gently undulating uplands. The dominant clay mineral is kaolinite 

with varying but small proportion of 2:l clay mineral, and 

sesquioxides. They usually contain well-defined gravel and 



weathered rock fragments at lower depths in the profile. They are 

unstable in structure, thus slaking when wet, compacting when dry 

and have inherently low water holding capacity. 

Composite soil samples were collected at random from the 

field, air dried, and then seived to pass through a 2 mm mesh. The 

seived soil was stored in polythene bags and a portion of it was 

used for determining the physical and chemical characteristics 

prior to conducting the main pot experiments. The soil stored in 

the polythene bags was thoroughly mixed before samples were taken 

for physical and chemical analysis. 

3.2.1 soil Physical Analysis 

3.2.1.1 Partiale 8i1e Analysis 

Mechanical composition of the soil used in the experiments was 

determined using the Bouyoucos Hydrometer method as given by 

Bouyoucos (1962). Eighty grams of soil was weighed, to which 100 

ml of sodium hexametaphosphate solution was added, stirred and kept 

overnight. The following day the soil mixture was stirred using a 

mechanical stirrer, was transferred to a 1 L jar and the volume 

made upto mark. The jar was shaken by turning end-over-end for 

60 seconds and the first hydrometer reading was taken at 90 seconds 

after the shaking was stopped. Subsequent hydrometer readings were 

taken at 2, 3, 6, 16, 31, 61 minutes, 2, 4 and 8 hours elapsed 

time. 



The contents were transferred on to a 75 mesh sieve, washed, 

dried in an oven and weighed. The samples were then sieved through 

a set of sieves of size 1 mm, 500 microns, 212 microns and 100 

microns and the sand, silt and clay percentage were calculated. 

3.2.1.2 Moisture Characteristic of the soil 

Moisture content of the soil at different pressures, namely 

113, 1, 5, 10 and 15 bars were determined by using the pressure 

plate apparatus in a constant temperature room maintained at 20'2 

Z°C. Soil samples were pre-wetted for one day on pressure plates 

that have pore entry pressures greater than the required 

equilibrating pressure.. They were then transferred together with 

the pressure plate into the pressure plate apparatus and the 

pressure was raised gradually until the required predetermined 

pressure was reached. The apparatus was left until equilibrium was 

attained between water in the soil sample and the air pressure in 

the chamber. This is usually achieved in about 3 days when the 

outflow from the pressure membrane apparatus ceases. 

3.2.2 Boil Chemical Analysis 

3.2.2.1 soil Reaction (pH) 

The pH of the soil was determined using 1:2 soil to water 

extract and a systronix pH meter (model 335) with glass electrode 

as described by McLean (1982). Triplicate samples of 5 g of air dry 



soil were weighed and 10 ml deaerated distilled water Was added 

and shaken with a rotary Shaker for 1 hour. The pH electrode was 

immersed in the supernatant solution and the readings were noted. 

3.2.2.2 Electriaal Conductivity 

The electrical conductivity of the soil was determined on 1:2 

soil to water extract using an electrical conductivity meter (Elica 

Model EM 88) as described in detail by Richards st (1954). 

Triplicate sampl-es of 5 g of air dry soil were weighed and 10 ml of 

deaerated distilled water was added, shaken with a rotary shaker 

for 1 hour, filtered and the electrical conductivity of the 

filtrate measured by immersing the electrode of the EC meter in the 

filtrate and the readings were noted. 

3.2.2.3 Organic Carbon 

The organic carbon content of the soil was estimated as 

described by Nelson and Sommers (1982). To 10 g of air dry soil,, 10 

ml of 1 N K, Cr, 0, was added and the contents were swirled gently 

to disperse the soil in the solution. Then 20 ml of concentrated 

H, SO, were added rapidly. After thorough shaking of the contents, 

the flask was allowed to stand on asbestos sheet for 30 minutes. 

Three to four drops of phenanthroline indicator were added and the 

solution was titrated against 0.5 N Fe SO,, until the end point of 

dark green colour was achieved. Organic carbon percentage was 

determined using the formula, 



Organic (meq K,Cr,O, - meq Fe SO,) (0.003) (100) 

carbon % = ........................................ X f 

Soil weight 

where correction factor f = 1.3 (1) 

3.2.2.4 Available Nitrogen 

Available nitrogen content of the soil was determined by using 

potassium chloride as given by Keeney and Nelson (1982). To 10 g 

of soil sample placed in 250 ml wide mouth bottle, 100 ml of 2 M 

potassium chloride (KC1) was added. The contents were shaken on a 

mechanical shaker for 1 hour. The soil-KC1 suspension was allowed 

to settle until the supernatant liquid was clear. Aliquots of the 

supernatant liquid were taken, to which 2-3 drops of boric acid 

indicator were added, and the available N was determined by 

titrating against standard sulphuric acid until the end point was 

reached. 

3.2.2.5 Available Phosphorus 

Available phosphorus content of the soil was determined using 

the method given by Olsen and Sommer (1982) with a Klett-Sommerson 

photoelectric colorimeter. One gram of soil was placed in an 

extraction bottle and 7 ml. of extracting solution (0.03 N NH,F + 
0.25 N HC1) were added. The contents were shaken for 1 minute end 

filtered through Whatman number 42 filter paper. To 2 ml. of the 

filtrate 5 ml. of distilled water and 2 ml. of ammonium 



paramolybdate solution were added and the contents were mixed 

thoroughly. Then 1 ml. of Stannous chloride was added and the 

solution was mixed again. After 5 minutes, the colour was measured 

photometrically using 660 nm incident light. The concentration of 

available P was calculated as follows : 

ppm of P in Soil = ppm of P in solution X 35 

3.2.2.6 Available Potassium 

Available potassium content of  the soil was extracted with 1 

N neutral ammonium acetate solution and potassium in the extractant 

was determined using a flame photometer as described by Knudsen et. 

al. (1982). Samples of 10 g. of soil were placed in 50 ml. 

centrifuge tube and 25 ml 1 N of ammonium acetate (NH,OAc) was 

added. The tube was then shaken for 10 minutes. The tube was 

centrifuged until the supernatant liquid was clear. The 

supernatant liquid was decanted into a 100 ml. volumetric flask. 

Three additional extractions were made in a similar manner. The 

combined extracts were diluted to 100 ml. with NH,OAc, mixed 

thoroughly and the potassium was determined by flame photometer 

using 766.5 nm incident light. 

3.2.2.7 Exchangeable sodium, Calaium and Magnesium 

Exchangeable Na, Ca and Mg of the soils were determined using 

the method described by Thomas (1982). Samples of 10 g. soil were 



placed in 250 ml. flask and 2 5  ml. of 1 N ammonium acetate was 

added and shaken for 10 minutes.  he solution was filtered 

through Whatman number 1 filter paper and the concentration of Na, 

Ca and Mg was determined by using the Atomic Absorption 

Spectrophotometer. 

3.3 Crop 

Pearl millet variety WCC-75 was selected for the experiments. 

It has excellent resistance to downy mildew and is not susceptible 

to ergot and smut diseases. It matures in 85-90 days. 

For sorghum variety, CSH-9 was selected. It has a duration of 

106-110 days. It normally grows to a height of 1.8 m. 

Groundnut variety ICGS-11 was selected for the experiments. 

It is a spanish selection and has dark green foliage, small to 

medium-sized two seeded pods with tan coloured seeds about 48% oil 

and 70% shelling turnover. It is tolerant to bud necrosis disease 

under field conditions. 

3 . 4  LABORATORY EXPERIMENT 

3.4.1 aermination percentage and rate of germination experiments 

A laboratory experiment was conducted to determine the 

viability and the rate of gemination at different temperatures of 



the crop varieties that were selected for the greenhouse 

experiments. A thermogradient table,,.consisting of 12 compartments 

on either side was used for the study. Each compartment of the 

thermogradient table has 3 sections with different temperatures 

ranging from 5°C to 55°C. A Campbell CR21X micrologger with an AM32 

multiplexer, was used to record the hourly temperature in the 

sections. Copper-constantin thermocouples ( 3 0  SWG) were used to 

monitor the temperature in the petri dishes. A measurable 

difference in temperature between the three sections of each 

compartment (3-5°C) allowed the use of three temperature treatments 

within the same compartment. The lowest temperature was set at 8'C 

and the highest at 53'C. There was a total of 48 sections in the 

thermogradient table. , 

Seeds which were uniform, bold, free from diseases and free 

from mechanical damage, were selected and placed in petri-dishes 

containing two Whatman No. 42 filter papers. These petri-dishes 

were placed in different sections of the compartments of the 

thermogradient table. 

Two hundred seeds of sorghum and pearl millet and twenty five 

seeds of groundnut were put on the moist filter paper in the 

separate petri-dishes and placed in the compartments with the 

following different temperatures: 1O0C, 15'C, 20°C, 25C, 30°C and 

35'C. Each crop had two replications for each temperature. 



~ermination count was made at hourly intervals and the 

germinated seeds were discarded. A seed was considered germinated 

when the radicle and plumule were visible and distinct from the 

seed. The germination attributes measured were percentage 

germination and rate of germination i.e., the time from start of 

imbibition to the time the maximum number of seeds germinated. The 

volume of distilled water added was slightly more than the moisture 

holding capacity of the filter papers and was replenished 

periodically. 

From the rate of germination the time taken for 502 

germination of seeds atedifferent temperatures for all three crops 

i.e. millet, sorghum and groundnut was noted. An equation relating 

the percentage of seed germinated to temperature for the three 

crops was used to determine their base temperatures. 

3.5 OREENHOUSE EXPERIMENTS 

3.5.1 Exparimental Setup 

Altogether seven experiments of two weeks duration each, were 

conducted. An experimental run consisted of sixteen moisture 

treatments imposed on soil samples packed into the pots at three 

bulk densities viz., 1.45, 1.55 and 1.65 g cmJ. Each bulk density 

with a continuum of sixteen moisture contents ranging typically 

from dry (0.02 ggl) to wet (0.19 gg"), were replicated thrice. The 



experiment was laid out in simple randomized block design with 

sixteen treatments. The gravimetric moisture contents varied. 

depending upon the rate of soil evaporation occurring during the 

period of experimentation in the greenhouse. 

3.5.2 Bulk Density Treatments 

Pots of uniform 10 cm diameter size were selected and their 

volumes marked t0 a predetermined depth. The volume to that depth 

was measured by pouring water into the pot upto the mark and 

measuring the volume of water that occupied that space. Based on 

the measured volume, the mass of air-dry soil needed to obtain a 

specific bulk density was calculated using the gravimetric moisture 

content of the air-dry soil (Appendix I). This quantity of air-dry 

soil was weighed and then packed into the volume already marked in 

the pots to get the required bulk density. 

This procedure was used to get the three bulk densities used 

in all the experiments. A droplet hammer was used to pack the soil 

to the required volume in order to obtain the required bulk 

density. 

3.5.3 loisture Treatments 

In a preliminary experiment, the range of moisture content 

that can be obtained in the red sandy loam soil was determined by 

following the drying rate of the saturated soil over a period of 



time. For this purpose, a set of 144 pots of 10 cm diameter size 

were used. The predetermined volumes were marked in each pot. 

Then the mass of dry soil requiredto obtain bulk densities 1.45, 

1.55 and 1.65 g cm" was weighed on a mettler balance. The soil was 

then packed into the pots and levelled to the mark. Sixteen 

moisture content ranges for each of the three bulk densities 

replicated three times, necessitated using a total of 48 pots for 

each of the bulk densities. 

The soil in each pot was completely saturated by adding 250 ml 

of water. The pots were allowed to drain for 24 hours and then 

weighed to obtain the gravimetric moisture content at field 

capacity by first ca1cu;ating the equivalent mass of oven dry soil 

in each pot using the water content of the air-dry soil as shown in 

~ppendix 11. 

On the third day after wetting, all the pots were weighed 

again and the amount of water lost as a result of evaporation in a 

day was estimated by subtracting the previous day's weights (second 

day after wetting) from the third day's weights. With the 

exception of the first row of pots, all the other pots were 

rewetted to the initial field capacity water content by adding the 

calculated amount of water lost through evaporation. On the fourth 

day the first two rows were left and the remainder of the pots from 

the third row onwards were rewetted. This process was followed 

until a range of moisture contents, from air-dry to field 

capacity, was obtained. All the pots were weighed daily to obtain 



their water contents and also to enable the estimation of the 

amount of water needed to rewet the soils in pots to field 

capacity. BY following this procedure a range of gravimetric 

moisture contents from 2 9  to 192 was obtained. 

The above procedures were adopted in all the experiments that 

were conducted in order to get the desired bulk densities and 

desired range of moisture treatments. 

3 . 5 . 4  Moisture Potential 

After each experimental run in the greenhouse the moisture 

potential of each pot, was determined using the filter paper 

equilibration method as described by Greacen et al., (1987). Soil 

cores were taken from the pots. Four Whatman number 42 filter 

papers were placed in the center of each soil core. The cores were 

then sealed with sellotape and kept for one week to allow the soil 

moisture to equilibrate with the filter paper. After one week, the 

soil and the filter paper from the cores were removed and placed 

separately in cans. The 2 central filter papers devoid of soil 

particles were quickly weighed in aluminium cans on an electronic 

balance. The cans were than placed in an oven at 105'C for 24 

hours, after which period their dry weights were measured. Using 

the moisture content of the filter paper, the matric potential was 

calculated from the following equation (Greacen et al., 1987) : 



where S - matric suction (kPa) 

F - gravimetric moisture content of the filter paper 
3.5.5 nain experiment 1 

3.5.5.1 Effbct of bulk density and moisture status on germination 

Experiments for determining the effect of bulk density and 

moisture content and their interactions on the germination of pea*& 

millet were conducted ip pots of 10 cm diameter size. Three bulk 

density treatments and a range of moisture treatments from dry to 

wet as described in section 3.6.4 were used. Sowing was done when 

the desired range of moisture content was obtained. 

Fifty bold and healthy seeds of pearl millet were sown in each 

pot. A total number of 144 pots was obtained since there were 

three bulk densities, 16 moisture treatments and three replica'tions 

for each bulk density. Sowing was done by removing the top 2.5 cm 

of soil from the pots, placing the seeds in the pots at 

equidistance and then covering with the same soil. Thus sowing was 

done at a depth of 2.5 cm and the soil was then repacked to its 

original volume using a droplet hammer in order to get the desired 

bulk density. On the third day after sowing, the entire soil from 

each pot was removed to separate out the germinated seeds from the 



ungerminated ones in order to calculate the germination percentage. 

Similar experiments were also conducted to determine the 

effect of moisture content and bulk density on the germination of 

sorghum and groundnut. Two depths of sowing used for sorghum were 

2.5 and 5 cm. Fifty healthy sorghum seeds were selected and sown 

in the pots as described for pearl millet. Germination count was 

made on the third day after sowing. With groundnut, the depth of 

sowing was 5 cm and only 5 seeds were sown in the pots due to the 

size of the seeds. 

3.5.6 Main experiment 2 

3.5.6.1 Effect of bulk density and moisture status on seedling 

emergence 

In another series of experiments to determine the effect of 

moisture content and bulk density on seedling emergence of all the 

three crops, experiments similar to the germination trials, were 

conducted for two weeks duration. In these experiments, the 

specified bulk densities were obtained by the procedure described 

earlier and the different levels of moisture content were obtained 

by monitoring the changes in weight of the pots. 

Depth of sowing was 2.5 cm for pearl millet and 5 cm for 

sorghum and groundnut. Twenty five bold and healthy seeds each of 

millet and sorghum and five seeds of groundnut were selected and 



sown at equidistance in the pots. Sowing was done in 144 pots 

having 3 bulk densities, and 16 moisture treatments with three 

replications. 

Daily counts of seedlings that emerged was recorded to get the 

progressive emergence for the three crop i.e. millet, sorghum and 

groundnut. The emergence count was recorded to obtain cumulative 

number of seedlings that emerged with time. 

All the three experiments were terminated on the 16th day 

after wetting irrespective of emergence percentage. 

3.6. Statistical Analy,sis 

The experimental data were analyzed statistically by the 

technique of analysis of variance given by Gomez and Gomez (1984). 

statistical significance was tested by F value at 0.05 level of 

probability. Critical differences were calculated for testing the 

significance. The results were further depicted by graphical 

representation. 
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C H A P T E R  IV 

RESULTS 

The results of the physical and chemical analysis of the soil 

samples used in the greenhouse experiments are given in Table 1. 

The results indicate that the soil is near neutral in reaction. 

Organic carbon, nitrogen and phosphorous are in the available 

ranges. The results of mechanical composition indicate that the 

soil is sandy loam in nature. The moisture characteristic of the 

soil is presented in Figure 1. From Figure 1 it is observed that 

the moisture content inc,reases as the matric suction decreases and 

that there is an inflexion at a matric suction of about 100 bars 

indicating that most of the dominant pores in the soil drain at 

this suction. 

4.1 LABORATORY EXPERIMENT 

A laboratory experiment was first conducted to determine the 

influence of different temperatures on the rate of germination and 

the base temperatures for germination of the three crops. Figures 

2, 3 and 4 present a sigmoid shaped functional relationship between 

germination percentage and time for the three crops at five 

different temperatures. It is observed from Figures 2, 3 and 4 

that initiation of germination was slower at 15'C than at 3S°C for 

all the three crops. In the case of pearl millet and sorghum, 
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Fig. I Moisture characteristic of the soil 
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Fig.2 Germination percentage as a function of time 
for pearl millet at different temperatures 
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Fig.3 Germination percentage as a function of time 
for sorghum at different temperatures 
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Fig.4 Germination percentage as a function of time 
for groundnut at different temperatures 



germination at 35OC first occurred after seven and eleven hours 

respectively. Groundnut at the same temperature took a longer time 

(25 hours) to start germinating. The rate of germination was 

faster at 35'C and 30°C than at 20, 25 and 15'C for pearl millet and 

sorghum. In the case of groundnut, germination first started at 

25"C, followed by 35'C and then 30°C. The rate of germination in 

groundnut was fastest at 30 and 25'C followed by 35, 20 and 15'C. 

Figures 2, 3 and 4 were used to determine the time required for 509 

of the seeds to germinate at different temperatures. Inverse 

values of time for 50% of the'seeds to germinate were plotted as a 

function of temperature, for the three crops as shown in Figures 

5, 6 and 7. Table 2 presents data on regression of l/t on 

temperature which were wed to calculate the base temperatures for 

pearl millet, sorghum and groundnut. Calculation of base 

temperatures for the three crops are given in Appendix 111. The 

germination curves (Figures 2 and 3) for temperatures 3O0C and 35'C 

for pearl millet and sorghum are similar. Those for 30 and 2S°C for 

groundnut (Figure 4) are also similar indicating that the rates of 

germination are almost equal at those temperatures. At 15"C, 

initiation of germination in groundnut was very slow i.e., it took 

more than 40 hours for groundnut to start germinating it then 

proceeded at a slower rate than the other temperatures. Pearl 

millet however took about 15 hours to start germinationg at 15°C 

while sorghum at the same temperature took about 27 hours. In 

calculating the base temperature for groundnut the l/t value at 35OC 

which is an outlier due to experimental error was discarded (Figure 

7 )  
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versus temperature for sorghum 
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Table 2 : Regression of the inverse of time for 50% gemination 

(lit) on temperatures (T) . 
____------------------.-----*------------*--------------.--------------------- 

crop Equation R' 
.............................................................................. 
Millet l i t ~  = - 0.02896 + 0.004258 T 0.91 

sorghum lit,, = - 0.01980 + 0.002878 T 0.97 

Groundnut l/tJo = - 0.00292 + 0.001224 T 0.96 



Experiments for the evaluation of the effect of soil 

moisture (both moisture content and matric potential) and bulk 

density on the germination and emergence of pearl millet, sorghum 

and groundnut was conducted in the greenhouse. It involved the 

estimation of the minimum moisture content and potential required 

for initiation of germination and emergence, moisture content and 

potential at which maximum germination occurred at different bulk 

densities and also to assess the influence of bulk density on the 

germination and emergence of the three crops. 

Examples of the results of the preliminary experiment 

conducted to determine the range,of soil moisture contents that can 

be obtained by natural drying of the soil are depicted in Figures 

8, 9 and 10. Figure 8 depicts an exponentially declining moisture 

content in the dry range for moisture treatment one. In moisture 

treatment four the moisture content was constant at 0 . 2  gg" for 

the first two days and then it decreased exponentially. Figure 9 

depicts seventh and tenth moisture treatments in the medium 

moisture range. In this Figure it is observed that constant 

moisture content prevailed for about 6 days before a gradual 

decrease followed by a rapid decline in moisture content. From 

Figures 8 and 9 it is observed that there was a decrease in the 

moisture content as time elapsed until it reached 0 . 0 2  gg" on the 

16th day of the experiment in moisture treatment one and 0 . 0 4  gg" 
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in moisture treatment four. The moisture content decreased to 

0.06 gg" in the seventh moisture treatment and 0.11 gg" in the 

tenth moisture treatment on the 16th day. Figure 10 presents the 

moisture content in the wet range. It is observed from Figure 10 

that the moisture content remained nearly constant until about the 

twelfth day and then decreased slightly in the thirteenth moisture 

treatment. But in the sixteenth treatment the moisture content 

remained nearly constant throughout the period of the experiment. 

A statistical analysis was done for the sixteen moisture 

treatments, and the moisture content of each treatment was found to 

be significantly different from each other. 

4.2.1 Influence of moisture status and bulk density on 

germination of Pearl Millet 

The effect of increase in moisture content on germination 

percentage (Figure 11 and Table 1 in Appendix IV) at the 3 bulk 

densities indicate that at bulk densities 1.45, 1.55 and 1.65 

g cm", pearl millet required a moisture content of 0.0445, 0.0466 

and 0.0577 gg" respectively to start germinating. A hundred 

percent germination was observed at moisture contents of 0.1444 and 

0.1673 gql for the seeds sown in soil at bulk densities 1.45 and 

1.55 g ci3 respectively. At bulk density of 1.65 g cmJ, the 

maximum germination of 95% was observed at 0.1576 gql moisture 

content. Germination initiated at a lower moisture content for 

pots maintained at a bulk density of 1.45 g cm" than those at 1.55 

and 1.65 g cm.'. There was a significant increase in germination as 



BD: 1.45 &cc 

BD:1.55 o/ec 

BD: 7.66 LJcc 

Moisture Content Ig lg)  

F1g.l I Germination of pearl millet as Influenced by 
moisture content at different bulk density 



Metric Suction (kPa) 

Fig.12 Germination of pearl millet as influenced 
by matric suction at different bulk density 



gravimetric water content increased. ~t high moisture contents, 

there was a significant decrease in percent germination. There 

was significant decrease in germination percentage with increase in 

bulk density from 1.45 to 1.65 g c d .  From Figure 11, it is 

observed that the rate of germination of pearl millet was almost 

identical in pots maintained at the three different bulk densities. 

The relationship between matric suction and germination is given in 

Figure 12 and Table 2 in Appendix IV. As expected, there was no 

germination in all three bulk densities at higher matric suctions. 

The soil at the low bulk density (i.e. 1.45 g cm") started 

germinating at a higher suction (222.8 kPa) than those at a bulk 

density of 1.55 g cm" in which germination also started at a 

higher suction (i.e., 164.5 kPa) than the bulk density of 1.65 g 

cm". Germination started at a matric suction of 160.7 kPa for the 

soil packed at 1.65 g cm'). Germination increased with decrease in 

suction. Germination decreased significantly at moisture suctions 

below 4.6, 10.9 and 8.3 kPa in the bulk densities of 1.45, 1.55 

and 1.65 g cm" respectively. 

4.2.2 Influence of moisture status and bulk density on 

germination of sorghum sown at 2.5 cm and 5 cm depths. 

In two separate experiments, sorghum seeds were placed one at 

a depth of 2.5 cm and the other at 5 cm. The data for the 

germination of sorghum placed at 2.5 cm depth are presented in 

Figures 13 and 14, Tables 3 and 4 in Appendix IV. From Table 3 in 

Appendix IV, it is observed that at a bulk density of 1.65 g cm" 
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sorghum required more water (i.e. 0.0893 99.1) for germination to 

initiate than at the bulk densities of 1.45 and I. 55 g cm" where 

the gravimetric moisture content for germination to start was found 

to be 0.0655 and 0.0753 gg' respectively. Maximum germination of 

100% was observed at a moisture content of 0.1152, 0.1427 and 

0.1578 gg.' for bulk densities 1.45, 1.55 and 1.65 g cmJ 

respectively. It is observed from Figure 13 that as moisture 

content is increased, germination also increased. However, an 

increase in moisture content beyond 0.1349 gg.' in the case of bulk 

density of 1.45 g cm3, 0.1628 gg.' in the case of bulk density of 

1.55 g cm.' and 0.1579 gg.' in the case of bulk density of 1.65 g cm.] 

resulted in a significant decrease in germination. Low gravimetric 

moisture content was required for initiation of germination at bulk 

density of 1.45 g cm.3 compared with 0.0753 and 0.0893 gg'l required 

for the initiation of germination in the bulk density of 1.55 and 

1.65 g cm') respectively. The rate of germination was very slightly 

faster at 1.45 g cm.l bulk density than at bulk densities of 1.55 

and 1.65 g cm'3 as can be observed from the slopes in Figure 13. 

Generally germination in the soils packed at bulk density of 1.45 

g cm" occurred at lower moisture content than for those at 1.65 g 

~ m - ~ .  The influence of matric suction on germination is presented 

in Figure 14 and Table 4 in Appendix IV. ~ermination started at a 

higher matric suction of 160.3 kPa at 1.45 g cm-' bulk density 

compared to suctions of 154.5 and 135.6 kPa for 1.55 and 1.65 g cm. 

' bulk densities respectively. Below a matric suction of 5 kPa 

there was significant decrease in germination at all the three bulk 

densities. Maximum germination of 100% was observed at matric 
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Fig.14 Germination of sorghum sown at 2.5 cm as 
influenced by matric suction at different 
bulk density 



suctions of 50, 14 and 13 kPa at the three bulk densities 1.45, 

1.55 and 1.65 g ern'). 

The results for the germination of sorghum sown at 5 cm depth 

are presented in Figures 15 and 16, Tables 5 and 6 in Appendix IV. 

At a sowing depth of 5 cm sorghum required a moisture content of 

0.0457, 0.0541 and 0.0562 gg'l for germination to initiate at bulk 

densities of 1.45, 1.55 and 1.65 g cm') respectively. It is 

observed from Figures 13 and 15 (and also from Tables 3 and 5 in 

Appendix IV) that sorghum sown at 5 cm required lower moisture 

content for germination to initiate at all the three bulk densities 

than at 2.5 cm depth. Maximum germination, (100%) was observed at 

a moisture content of 0.1735 and 0.1651 gg" for the bulk densities 

1.45 and 1.55 g cmJ, while a maximum germination of 97.79 was 

obtained at a moisture content of 0.1456 gg.' in the bulk density of 

1.65 g cm-'. Germination percentage increased significantly with 

increase in moisture content, remained constant and then a 

significant decrease was observed at high moisture contents. For 

example, there was a decrease in germination percentage from 100 to 

96% when moisture content increased from 0.1754 to 0.1834 gg" at 

a bulk density of 1.45 g ern.), from 100 to 95% when moisture 

content increased from 0.1713 to 0.1799 g9.l in the pots with a bulk 

density of 1.55 g cm" and from 97.7 to 95% when moisture content 

increased from 0.1456 to 0.1575 gql in pots having the bulk density 

of 1.65 g cm'). This trend was observed in all the three bulk 

densities. The rate of germination followed the same trend as in 

sorghum sown at 2.5 cm depth (Figure 13). Unlike sorghum sown at 
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Fig.16 Germination of sorghum sown at 5 cm as 
influenced by matric suction at different 
bulk density 



2.5 cm depth, maximum germination occurred at a higher moisture 

content for the soils at a bulk density of 1.45 g cm" than those at 

1.55 and 1.65 g cm". The effect of matric suction on germination of 

sorghum sown at 5 cm depth is presented in Figure 16 and Table 6 

in Appendix IV. As it is observed in Figure 16, a decrease in 

matric suction results in an increase in the germination of 

sorghum. ~ermination initiated at matric suction of 222.8, 185.6 

and 196.8 kPa for soils packed at bulk densities of 1.45, 1.55 and 

1.65 g cm3 respectively. Maximum germination of 100% occurred at 

matric suctions of 6.8 and 7.1 kPa at 1.45 and 1.55 g cm" bulk 

density. At a matric suction of 29.8 kPa maximum germination of 

97.7% was observed in the soil at a bulk density of 1.65 g cmJ. 

4.2.3 Influence of moisture atatus and bulk density on 

germination of groundnu+. 

The results of the influence of moisture and bulk density on 

the germination of groudnut are shown in Figures 17 and 18 and 

Tables 7 and 8 in Appendix IV. It is noted that lower limit 

moisture content of 0.0520, 0.0584 and 0.0740 gg" was necessary for 

groundnut to germinate in soils packed at bulk densities of 1.45, 

1.55 and 1.65 g cm-' respectively. These lower limit moisture 

contents for germination of groundnut corresponded to matric 

suctions of 217.4, 217.9 and 201.6 kPa for the bulk densities 1.45, 

1.55 and 1.65 g ~ m - ~  respectively. Germination percentage increased 

with increase in moisture content but at high gravimetric moisture 

contents, the germination percentage decreased. A similar trend 
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Fig. 17 Germination of groundnut as influenced by 
moisture content at different bulk density 
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was observed for all the three bulk densities. Maximum germination 

of 100% occured at moisture contents of 0.1186, 0.1450 and 0.1342 

gg*' for 1.45, 1.55 and 1.65 g cm" bulk densities respectively. 

The rate of germination appeared to be similar for all three bulk 

densities. Figure 17 indicates that a lower moisture content is 

required for germination to initiate at a bulk density of 1.45 g cm' 

' than at either 1.55 or 1.65 g cmJ. There was no influence of bulk 

density on germination at bulk densities 1.45 and 1.55 g ern'>. 

However, a slight decrease in germination was observed at a bulk 

density of 1.65 g cm". Figure 18 shows the influence of matric 

suction on germination of groundnut. With increase in suction, 

germination decreased. Maximum germination of 100% was observed at 

suctions of 50.4, 76.4 and 55.9 kPa for the three bulk densities of 

1.45, 1.55 and 1.65 g cm.'. However, a decrease in suction below 

4.1 kPa in the case of 1.45 g cm'), 8.4 kPa in the case of 1.55 g cm- 

' and 11.9 kPa in the case of 1.65 g cm') bulk density resulted in 

significant decrease in the germination percentage. 

4.2.4 Influence of moisture status and bulk density on emergence 

of pearl millet 

The data for emergence of pearl millet are presented in 

Figures 19 and 20, Tables 9 and 10 in Appendix IV. Emergence was 

observed on the fourth day after sowing in all the three bulk 

densities.   bout 3% of the germinated seeds started emerging from 

the soil at a bulk density of 1.45 g cmJ when the moisture content 

was 0.0707 gg-l. In the case of soils at bulk densities 1.55 and 
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1.65 g cm'" 4 and 3% emergence were observed at moisture contents 

of 0.0651 and 0.0690 gg" respectively. Figure 19 indicates that 

the percent emergence increased significantly with increase in 

moisture content. Maximum emergence was 93.3% at a moisture 

content of 0.1687 ggl on the soil at bulk density of 1.45 g cm.'. 

At bulk density of 1.55 g cm" maximum emergence of 842 was observed 

when the moisture content was 0.1630 gg'l, while a maximum 

emergence of 63% was observed for the bulk density of 1.65 g cm" at 

a moisture content of 0.1483 gg". At high moisture contents, a 

significant decrease in emergence was observed. Emergence percent 

decreased from 93.3% to 61.4% as moisture content increased from 

0.1687 to 0.1754 gg.' for soils at bulk density of 1.45 g cm" and 

from 84% to 65.4% as moisture increased from 0.1630 to 0.1661 gg'l 

for soils at bulk density of 1.55 g cm3. It is observed from 

Figure 19 that bulk density did 'not have any influence on changes 

in emergence of pearl millet with changes of moisture content. The 

change of percent emergence with changes in water content was 

similar for all the three bulk densities as can be observed from 

the slopes in Figure 19. The low emergence at bulk density of 1.65 

g cm'= (63%) might be due to bulk density effect. 

Matric suction influenced emergence of pearl millet (Figure 20 

and Table 10 in Appendix IV). With decrease in suction, emergence 

increased. Emergence initiated at 195.3, 215.9 and 194.7 kPa 

suction for the three bulk densities 1.45, 1.55 and 1.65 g cm-' 

respectively. Maximum emergence of 93.3% was observed at a suction 

of 16 kPa for 1.45 g cma, 84% at a suction of 17.7 kPa for 1.55 g 
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Fig.20 Influence of matric suction on pearl millet 
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cm.3 and 63.3% at a suction of 6.1 kPa, for 1.65 g cm4 bulk density. 

At bulk densities of 1.45 and 1.55 g cm3 emergence decreased 

significantly when the matric suction was less than 16 kPa. 

4.2.5 Influence of moirture status and bulk density on amerganae 

of sorghum 

Emergence of sorghum was observed on the fifth day after 

sowing. Results of the influence of moisture and bulk density and 

the emergence of sorghum are presented in Figures 21 and 22, Tables 

11 and 12 in Appendix IV. Emergence of sorghum (8%) started at a 

gravimetric moisture content of 0.0484 gg-' for the soil at a bulk 

density of 1.45 g ern'>. However, emergence was only 4% at moisture 

contents of 0.0514 and 0'.0479 gg.' for the higher bulk densities of 

1.55 and 1.65 g cm". Figure 21 indicates that changes in emergence 

ddue to changes in water content were influenced by bulk density. 

As observed from the slopes in Figure 21, at bulk density of 1.65 

g cm" emergence changed less with changes in water content compared 

to that at 1.45 g ~m'~. Emergence increased with increase in 

moisture content. At bulk density of 1.45 g cmJ maximum emergence 

of 84% was obtained at a moisture content of 0.1004 gg-'. Maximum 

emergence of 78.7% was obtained at a moisture content of 0.1407 gg" 

for the soil at bulk density of 1.55 g cm". However at bulk 

density of 1.65 g cm.' the maximum emergence obtained was 22.75 

within a moisture range of 0.0468 and 0.0836 99.'. There was a 

further decrease in emergence as moisture content increased upto 

0.1189 gg''. Beyond this moisture content emergence increased again 
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from 12% to 18.7% for the soil at bulk density of 1.65 g cm". At 

bulk densities 1.45 and 1.55 g cm" the emergence decreased to 53.3 

and 58.79 respectively at moisture contents above 16%. Effect of 

matric suction on sorghum emergence is shown in Figure 22. 

Emergence started at a suction of 221 kPa at bulk densities 1.45 

and 1.55 g cm.' with 8 and 4% emergence. At bulk density of 1.65 

g cm.' 4% emergence was observed at a suction of 195.3 kPa. 

Emergence increased with decrease in suction. From Figure 22 it is 

observed that the changes in emergence as a result of changes in 

matric suction was fast at 1.45 g cm-I and slower at 1.65 g cmJ bulk 

density. Maximum emergence was only 22.7% at 96.8 kPa suction for 

the bulk density of 1.65 g cm". Whereas maximum emergence of 84% 

and 78.7% was observed at suctions of 126.3 and 36.8 kPa for the 

bulk densities 1.45 and 1.55 g cm-' respectively. 

4.2.6 Influence of moisture status and bulk density on emargence 

of groundnut 

Emergence was observed on the eighth day after sowing for 

groundnut. The results presented in Figures 23 and 24, Tables 13 

and 14 in Appendix IV show that emergence (20%) started at a 

moisture content of 0.0439 and 0.0510 gg'l for bulk densities 1.45 

and 1.55 g cm" respectively. At bulk density of 1.65 g cm.' 

emergence of 13.3% was first observed at a moisture content of 

0.0455 gg'l. No emergence was observed below 4% moisture content. 

Emergence increased with increase in moisture content (Figure 23). 

The trend followed by emergence as moisture content increased was 
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similar for all the three bulk densities as can be observed from 

Figure 23. Two outliers resulting possibly from experimental error 

were discarded in fitting a smooth curve to Figure 23 by eye. 

Maximum emergence of 86.7% was observed at a moisture content of 

0.1401 gg-' for bulk density of 1.45 g cm", whereas maximum 

emergence of 80% occurred at a moisture content of 0.1293 and 

0.1004 gg.' for the other two bulk densities of 1.55 and 1.65 g cm" 

respectively. Emergence decreased from 80% to 33.3% as moisture 

content increased from 0.1004 to 0.1245 gg'l for soils at bulk 

density of 1.65 g cm.' and from 80% to 40% as moisture content 

increased from 0.1293 to 0.1566 gg" for soil at a bulk density of 

1.55 g cm3. 

Matric suction was also observed to influence emergence. With 

decrease in matric suction, emergence increased significantly 

(Figure 24). Emergence started at matric suctions of 212.8, 197.5 

and 163.1 kPa for the bulk densities of 1.45, 1.55 and 1.65 g cm3 

respectively. At bulk density of 1.45 g cm.' maximum emergence of 

86.7% was observed at 94.7 kPa suction. Maximum emergence of 80% 

was observed at matric suctions of 33.7 and 55.1 kPa for bulk 

densities 1.55 and 1.65 g ~m'~. There was a significant decrease in 

emergence at matric suctions below 33.7 and 55.1 kPa for bulk 

densities of 1.55 and 1.65 g respectively. It is observed from 

Figure 24 that changes in emergence as a function of changes in 

matric suction is faster at bulk density 1.45 g cm-3 than at either 

1.55 or 1.65 g cmJ when matric suction is considered. Percent 

seedlings of groundnut that emerged is significantly higher for 
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soils at bulk density of 1.45 g cm" than those at either 1.55 or 

1.65 g cm". Emergence for groundnut seedlings in the soils at bulk 

densities of 1.55 and 1.65 g cm" was very similarly at matric 

suctions less than 125 kPa and were only different at matric 

suctions higher than 125 kPa. No groundnut seedlings emerged in 

all the three bulk densities when the matric suction was greater 

than 223 kPa. 



CHAPTER V 
DISCUSSION 



5.1 LABORATORY EXPERIMENT 

Temperature effeot on germiaatioa of millet, sorghum and 

groundnut 

The results obtained from the experiments on temperature 

effect on germination indicated that percent germination increases 

as temperature increases. This is because physiological and 

biological transformations and activities are accelerated by 

increase in temperature. Germination started 7 hrs after millet 

seeds were soaked and maintained at 25, 30 and 35°C whereas the 

seeds started germinating at 12 and 14 hrs after soaking when 

temperature was maintained at 20 and 15'C respectively. At 10°C, no 

seeds had germinated even after 48 hrs. 

Base temperature corresponds to zero development rate and was 

determined following the linear regression method suggested by Brar 

et al., (1991). The time taken for 50% of the millet seeds to 

germinate was 9, 9, 12, 23 and 26 hrs after soaking for 35, 30, 25 

20 and 15'C respectively. The time taken for 50% of the seeds to 

germinate for sorghum was 12, 16, 21, 32 and 35 hrs whereas 

groundnut seeds took 40, 32, 34, 44 and 71 hrs after soaking at 35, 

30, 25, 20 and 15°C respectively. The inverse values of time for 



50% gemination (lit) as a function of temperature (T) (Figures 5, 

6 and 7) was used to calculate the base temperature for the three 

crops (~ppendix 111). Using the model in equation 1 (Appendix 111) 

~anemasu et ale (1975) found that the base temperature for sorghum 

is 9.g0c. Garcia-Huidobro et al., (1982) found the base temperature 

of pearl millet (cv. BK 560) to be 11.5'C. Using the linear 

regression model of Brar et al., (1991) the base temperatures were 

calculated (~ppendix 111) and found to be 6 -8, 6.9 and 2.5OC for 

pearl millet, sorghum and groundnut respectively. 

The rate of germination as a function of temperature increased 

linearly with increase in temperature for millet and sorghum and it 

differed slightly for groundnut crop.  his response ot rate of 

germination to temperature is consistent with that described by 

Xhalifa and ong (1990) and Garcia-Huidobro et al., (1982) for all 

the 3 crops. 

Sorghum and groundnut took longer time to germinate at 15°C 

than millet. This implies that pearl millet is more capable of 

germinating under lower temperatures than sorghum and groundnut. 

Similar results were obtained by Smith, et. al. (1989). 

As temperature decreased for all the three crops, greater time 

was required to reach maximum germination. This indicates that at 

lower temperatures, germination was delayed, possibly because of 

inability of the seeds to utilize their carbohydrate reserves due 

to low temperatures. For most crops, the viability of seeds can be 



maintained by storing them at low temperatures thus preventing them 

from germinating. 

5.2 QREENXOUSE EXPERIMENT 

5.2.1 Influence of moisture status and bulk density on 

germination of pearl millet 

Table 1 in Appendix I V  shows that at soil bulk density of 1.45 

g cmJ, pearl millet required a minimum gravimetric moisture content 

of about 4% for germination to start and that seeds failed to 

germinate at soil moisture contents below this initial value. 

Increase in moisture content enhanced germination. Further 

increase beyond an optimum moisture content of 14% when 100% 

germination was obtained, resulted in a significant decrease in 

germination. Increasing moisture content from 00445 to 0.0487 gg" 

resulted in an increase of germination from 25% to 612. Further 

increase in moisture content to 0.0585 gg-' increased germination to 

74%. However, at high moisture contents of 0.1874 gg" germination 

decreased significantly to 95%. This decrease of germination at 

high moisture content may be the result of decreased oxygen (as the 

pores are filled with water) which is necessary for germination to 

As the bulk density increased the volumetric water Content 

required for germination to start also increased. For example at 

the bulk density of 1.45 g cm'l germination started at volumetric 



water content of 0.0638 cm3 cm.' while at bulk densities of 1.55 and 

1.65 g cmJ gemination started at volumetric water content of 

0.0722 and 0.0954 cm3 cm" respectively. This result was unexpected 

because one expects that the seed-soil contact would be better at 

1.65 g cm.l than at bulk density of 1.45 g cm.' and that this good 

seed-soil contact at the high bulk density would enable initiation 

of germination to occur at lower volumetric water content in soils 

with bulk density of 1.65 g cm" than those at 1.45 g cmJ. 

Similarly the optimum volumetric moisture content for 100% 

germination increased from 0,2094 cm3 cm.' for bulk density of 1.45 

g cm" to 0.2593 cm3 cm" for 1.55 g cm". At bulk density of 1.65 g 

c$ however the volumetric moisture content at which a maximum 

germination of 95% was obtained, was not very different from that 

for 1.55 g cm3 bulk density (i.e. 0.2598 cm3 crn.'). 

Because the initial processes in germination involves 

imbibition of water and therefore the flux density of water from 

the soil to the seed, water content per se does not very well 

explain the process that are taking place. However, when the water 

contents are examined together with the matric suctions an 

interesting scenario emerges. It is noted that because of the 

effect of soil structure on the moisture characteristics of the 

soil, the volumetric moisture content of 0.0638 cm3 cmm3 at which 

germination started in the soils packed at 1.45 g cm.l corresponds 

to a matric suction of 223 kPa. In bulk density of 1.55 g cm" and 

1.65 g cm-3 the volumetric moisture content (i.e. 0.0722 cm3 for 

1.55 and 0.0954 cm3 cm" for 1.65 g cm.') correspond to matric 



suctions of 165 and 161 kPa respectively. Assuming then that the 

matric suction in the seeds is the same for all the seeds (since 

they were at the same moisture content) then the flux of water to 

the seeds, which depends on the gradient of moisture suction 

between the soil and the seed, would be greater in the soils at 

bulk density of 1.65 g cm13 than those at bulk densities of 1.45 and 

1.55 g ern.), since the gradient of matric suction in the soil at 

1.65 g cm" bulk density is greater than in the soil at either 1.55 

or 1.45 g bulk densities. The greater flux of water at bulk 

density of 1.65 g cm" then would result in more water movement to 

the seeds and therefore higher moisture content required for 

initiation of germination. Maximum germination of 100% was 

observed at 16 and 13 kPa for bulk densities of 1.45 and 1.55 g cm' 

', while for the bulk density of 1.65 g ~m.~, the maximum germi.nation 

of 95% was observed at a suctior) of 8 kPa, indicating that fairly 

wet soil conditions prevailed to enhance germination, and that at 

matric suction of 8 kPa, the soils were too wet and thus possibly 

interfering with the oxygen supply to the seeds sown at bulk 

density of 1.65 g ern.', resulting in 95% and not 100% germination. 

As with pearl millet sown at a bulk density of 1.45 g cm", 

initial germination in the other two bulk densities was fast. Thus 

at bulk density of 1.55 g ern'), an increase in the gravimetric 

moisture content by 0.0063 gq' (i.e. from 0.0466 to 0.0529 gg.') 

resulted in an increase of 42% germination. Similarly when the 

gravimetric water content in the soil at 1.65 g cm.' bulk density 

increased from 0.0486 to 0.0682 gg", germination (which was 



practically zero at the former water content) increased to 311 

because of a burst of biochemical activities as water was suddenly 

made available to the dry seed culminating in accelerated cell 

division and its resultant emergence of the plumule and radicle 

from the testa. 

Germination was poor at matric suctions ranging from 160 to 

240 kPa for the three bulk densities. This may be attributed to 

unavailability of sufficient moisture at those matric suctions. At 

high bulk densities of 1.65 g cm", germination was retarded as a 

result of insufficient aeration and lack of optimum conditions for 

the seeds to germinate. High moisture contents also caused a 

decrease in germination at all the three bulk densities. This 

decrease in germination may be the result of inhibition of 

respiration of the seeds at high soil moisture due to inadequate 

levels of oxygen. Similar results were obtained by Fawusi and 

Agboola (1980), Rao and Dao (1987) and Mali and Varade (1981). 

5.2.2 rnfluenae of moisture status and bulk density on 

germination of sorghum sown at 2.5 and 5 cm depth 

Sorghum sown at 2.5cm depth required a minimum moisture 

content of 0.0655 gg" for germination to initiate at bulk density 

of 1.45 g cm" whereas higher moisture contents of 0.0753 and 0.0893 

gql were required for initiation of germination at bulk densities 

of 1.55 and 1.65 g respectively. The movement of water from 

soil to seed depends on two factors : (i) gradient of moisture 



suction and (ii) the hydraulic conductivity of the soil which is a 

function of water content. Due to high compaction at bulk density 

of 1.65 g cmJ, the movement of water to the seeds might be 

restricted which may cause decrease in germination percent. 

Similar observations were made by Huges et al., (1966) and Mali et 

al., (1977). The optimum gravimetric moisture content required for 

100% germination of sorghum sown at 2.5cm depth was within the 

range of 13 to 15% at all the three bulk densities. However, an 

increase in gravimetric moisture content beyond 17% resulted in 

significant decrease in the germination percentage of sorghum sown 

in soils at the three bulk densities. 

Bulk density was also found to influence germination. At 

nearly the same moisture content, i.e., 0.0896, 0.0809 and 0.0893 

gg-', the germination percent was 718, 56% and 11% respectively for 

1.45, 1.55 and 1.65 g ~ m ' ~  bulk densities respectively (Table 3 in 

Appendix IV). Thus with increase in bulk density, the germination 

percent decreased. However, the effect of bulk density on 

germination varied with the moisture content of the soil. 

Since imbibition is involved in germination which depends on 

the moisture suction of soil as well as the seed, matric suction 

studies were also conducted. Movement of water occurs from a lower 

matric suction to higher matric suction. Seeds which are dry and 

at high matric suction imbibe water from the soil which is at a 

lower moisture suction. ~ermination initiated at a matric suctions 

of 160.3, 154.5 and 135.5 kPa which correspond to moisture contents 



of 0.0655, 0.0753 and 0.0893 gg" at the bulk densities of 1.45, 

1.55 and 1.65 g cm" respectively. No germination occurred at 

matric suctions above 196 kPa for soils packed at bulk density of 

1.45 and 1.55 g cm') and above 167 kPa for soils at bulk density of 

1.65 g cm.l. This might be attributed to lack of availability of 

sufficient water because of inadequate gradient of moisture suction 

from the soils to seeds. Decrease in suction below 5 kPa resulted 

in significant decrease in germination for all three bulk 

densities. Due to lack of oxygen at high moisture contents 

(moisture suctions less than 5 kPa) germination percentage of 

sorghum sown at 2.5cm depth decreased. 

At high bulk densities, water is held with more energy due to 

compaction of the soil and small sizes of pores, whereas at lower 

bulk density water is held with less energy because of the loose 

nature of the soil and the comparatively large pores. Therefore 

the seeds were able to absorb moisture more easily at lower bulk 

density and germinate at lower moisture content than at high bulk 

densities. At bulk density of 1.65 g crn.', the seeds had to exert 

more energy to absorb moisture at high moisture suctions, hence 

germination started at higher moisture contents. Lack of aerat'ion 

due to low total porosity may account for suppressed germination at 

bulk density of 1.65 g cm". Similar results were obtained by 

Hudspeth and Taylor (1961), Fa~Usi and Agboola (1980) and Smith et 

al., (1989). 



Sorghum sown at 5cm depth required lesser gravimetric moisture 

content for germination to initiate at all the three bulk densities 

than sorghum sown at 2.5cm depth (Tables 3 and 5 in Appendix IV). 

From Figure 15, it can be observed that germination percent 

increased with increase in moisture content. The rate of 

germination followed the same trend as that observed for sorghum 

sown at 2.5cm depth (Figure 13). At high moisture contents, 

germination decreased significantly. The only difference between 

sorghum sown at 2.5 and 5cm depth was the moisture content for 

initiation of germination and for maximum germination but the trend 

followed was nearly similar. Germination of 100% was not observed 

at bulk density of 1.65,g cm.' for sorghum sown at 5 cm depth, only 

97% germination was obtained within a moisture range of 0.1468 to 

0.1503 gg.' and at moisture content of 0.1575 gg.' germination 

decreased to 95%. As with sorghum sown at 2.5 cm germination 

started at a lower moisture content at bulk density of 1.45 g cm" 

than at 1.55 and 1.65 g cm-a (Table 3). Rate of germination was 

also faster at bulk density of 1.45 g cm.' followed by 1.55 and 1.65 

g cm" as can be observed from Figure 15. 

Matric suction also influenced germination (Figure 16). At 

matric suction greater than 223 kPa, no germination was observed. 

Germination started at suctions of 222, 185 and 196 kPa at the 

three bulk densities for sorghum sown at 5 cm whereas gemination 

initiated at lower matric suctions (leas than 160 kPa) for sorghum 

sown at 2.5cm depth. These observations indicate that when seads 





are sown at greater depth, they are able to germinate even at high 

moisture suctions (i.e. 222 kPa suction) (Table 3). Lack of 

availability of sufficient moisture for imbibition by the seeds 

causes poor germination at high matric suctions because of low 

suction gradients between the soil and the seed. Decrease in 

germination at low matric suction (high soil moisture content) 

might be attributed to lack of sufficient oxygen for the seeds to 

respire and germinate, since all or most of the pores are filled 

with moisture. 

5.2.3 Influence of moisture status and bulk density on garmination 

of groundnut 

Interaction of bulk density and moisture content was observed 

to have a significant influence on germination of groundnut. At 5% 

gravimetric moisture content, germination started at lower bulk 

density (1.45 g cm") whereas initiation of germination at higher 

bulk density (1.65 g cm") required 7% moisture content. 

Germination increased with increase in moisture content. From 

Figure 17 it is observed that the rate oi germination is nearly 

same at all the three bulk densities indicating that bulk density 

did not have a major effect on germination of groundnut. This 

might be due to its large seed size and its food reserves which 

provided enough energy to overcome the bulk density effect. At 

gravimatric moisture contents less than 52, germination did not 

occur due to insufficient moisture for the seeds to imbibe and 

geminate. The moisture was not sufficient for the seeds to 



utilize in order to mobilize the food reserve for germination. 

Germination decreased significantly at gravimetric moisture content 

above 17% which may be attributed to lack of oxygen as a result of 

insufficient aeration. Figure 18 shows the influence of matric 

suction on groundnut germination. With decrease in suction, 

germination increased. At suction greater than 217 kPa which 

corresponds to gravimetric moisture contents less than 52, 

germination did not occur. At suction values less than 4 kPa 

corresponding to 17% gravimetric moisture content, germination 

decreased slightly. 

5.2.4 Influence of moisture status and bulk density on emergence 

of pearl millet 

Emergence of pearl millet seedlings started at lower moisture 

content for bulk density of 1.55 g cm" but required more time for 

emergence to occur. With increase in moisture content emergence 

increased and at high moisture content emergence decreased 

significantly. Most of the pearl millet seedlings had emerged on 

the fourth and fifth days after sowing (DAS) at bulk density of 

1.45 g cm.' whereas 2 more days were required for most of the 

seedlings to emerge at 1.65 g cm'). Emergence percent was lowest 

(63.3%) for bulk density 1.65 g cm-' and highest (93.3%) for bulk 

density 1.45 g cm". These observations indicate that bulk density 

plays a major role in the emergence of pearl millet due to the 

small size of the seed. At high bulk densities such as 1.65 g cm", 

there was a decrease in emergence of pearl millet seedlings due to 



increase in soil strength and compaction. The energy required for 

emergence of seedlings increases with increase in bulk density. At 

high bulk densities, the pearl millet seedlings were unable to 

develop sufficient force to overcome the mechanical impedance 

resulting in poor emergence (Mali et. el. 1977). Various factors 

such as cracking of soil, emergence force and emergence behaviour 

of the seedlings play an important role in effecting seedling 

emergence at high bulk densities. At higher bulk density the 

total porosity decreases and this reduces aeration as well as the 

water retention capacity of the soil, leading to decreased 

emergence of pearl millet as reflected by the observation that only 

63% emergence was obtained at bulk density of 1.65 g cm.'. Similar 

results were obtained by Stout et al., (1961). The movement of 

water and air is also restricted at high bulk densities and account 

for decrease in the availability of water to the seeds, leading to 

a decrease in emergence. These results are in agreement with those 

reported by Hegarty and Royale (1978) and Maiti et. al. (1986). 

~hough change in emergence with respect to change in moisture 

contents was not much affected as observed from the slopes of the 

curves in Figure 19. 

When adequate moisture was available, the emergence of 

seedlings was restricted by compaction caused by high bulk density, 

as the seedlings were unable to penetrate the compacted soil at 

bulk density of 1.65 g cm" and moisture content of 12 to 158. 

These results are consistent with those obtained by Stout et al., 

(1961). For most of the moisture contents more seed emerged at 



bulk density of 1.45 g om.' than at 1.55 or 1.65 g cmS3. The 

seedling emergence in the dry range was reduced as a result of 

insufficient moisture for the seeds to imbibe and for germination 

to occur leading to emergence. 

Soil moisture was also found to have a significant influence 

on emergence. Lower emergence (4%) was obtained at lower 

gravimetric moisture content (6%) and higher emergence (60-902) was 

obtained at higher moisture contents (14-16%). As moisture 

content varied, the rate of moisture imbibition and germination 

also varied. Decrease in emergence at low soil moisture levels 

less than 5% was due to insufficient available water. At 

moisture contents of 17% and above, lack of sufficient aeration led 

to a decrease in emergence. Emergence decreased from 93.3% to 

61.4% at bulk density of 1.45 g cm" and from 84% to 65.4% at 1.55 

g cmJ as the gravimetric moisture content increased above 16%. 

5.2.5 Influence of moisture status and bulk density on emergence 

of sorghum 

Moisture is held with less energy at lower bulk densities 

hence absorption of moisture by seeds is easier at lower bulk 

density than at higher bulk density. Consequently, higher 

emergence (84%) was observed at lower bulk density i.e. 1.45 g cm" 

than at higher bulk density (i.e. 1.65 g cm") which showed only 23% 

emergence. Change in emergence of sorghum seedlings with respect 

to changes in moisture contents was higher at bulk density of 1.45 



g than at bulk densities 1.55 and 1.65 g cm-'. Optimum 
moisture for maximum emergence of 84% was observed to be 0.1004 gq- 

at 1.45 g om'' and 0.1407 gql at bulk density of 1.55 g om-' which 

had an emergence of 78.7%. ~aximum emergence was only 232. at bulk 

density of 1.65 g cmJ, and moisture content of 0.0836 99.'. This 

might be attributed to high mechanical impedance caused by high 

bulk density. The sorghum seedlings had to exert a lot of force in 

order to overcome the impedance, and they may not have been able to 

develop sufficient pressure to emerge. At high gravimetric 

moisture contents greater than 16%, there was a significant 

decrease in emergence. Lack of aeration as a result of high 

moisture content affected the respiration of the germinating seeds. 

As a consequence, emergence decreased. Therefore lower emergence 

occurred at high moisture contents which correspond to matric 

suctions less than 16 kPa. 

At a soil matric suction of 221 kPa emergence of 82 and 4% 

were observed at bulk densities of 1.45 and 1.55 g cm.' 

respectively. Emergence initiated at matric suction of 195 kPa at 

1.65 g cm" bulk density. Maximum emergence was 842 at a soil 

moisture suction of 126 kPa for 1.45 g cm.' bulk density. At lower 

suctions less than 106 kPa, emergence decreased significantly. At 

bulk density of 1.55 g cmJ, the maximum emergence observed at a 

moisture suction of 37 kPa was 79%. Below this moisture suction, 

emergence decreased significantly. Maximum emergence of 232 was 

observed at a suction of 97 kPa at bulk density of 1.65 g cm". 

Emergence decreased significantly at moisture suction equal to or 



less than 54 kPa. 

Sorghum emergence varied with increase in moisture content at 

the three bulk densities. Both moisture and bulk density had a 

significant influence on emergence of sorghum. It was observed 

during the course of the experiment that most of the seedlings had 

emerged in the first two days at bulk density 1.45 g cm.'. However, 

at bulk density 1.65 g cmm3 two more days elapsed before most of the 

seedlings emerged; even then, the maximum emergence was only 23%. 

The rate and percent of sorghum seedlings that emerged were reduced 

drastically at higher bulk density. At high bulk densities such as 

1.65 g cm3 used in this experiment, soil compaction was very high. 

As a consequence, the mechanical impedance increased, and in turn 

affected seedling emergence. The seedlings had to exert greater 

force to emerge and those that were unable to overcome the 

mechanical impedance did not emerge. These results are in 

agreement with those of Hegarty and Royale (1978). The total 

porosity and pore size were very much reduced at high bulk density 

of 1.65 g cm", thus restricting the supply of oxygen as well as 

nutrients. Consequently, the respiration of the germinating seeds 

was affected and they were not able to emerge from the soil (Archer 

and Smith, 1972). For seedlings to emerge they must germinate and 

penetrate through the soil. Mali et al., (1977), Maiti et al., 

(1986) and Mali and Varade, (1981) also reported that increase in 

bulk density, increases mechanical impedance and soil strength 

resulting in the inability of seedlings to emerge. 



The interaction of soil moisture and bulk density also had a 

significant influence on the emergence of sorghum seedlings. At 

low soil moisture contents corresponding to matric suctions less 

than 221 kPa there was no emergence in all the three bulk 

densities. Emergence was higher at 1.45 g cm" than at bulk 

densities of 1.55 and 1.65 g cm". The reduction in emergence was 

more at bulk density 1.65 g cm" in the dry moisture range than at 

1.45 g cmJ. This might be attributed to high mechanical impedance 

and lack of water. The change in emergence of sorghum seedlings was 

also influenced by changes in moisture content and bulk density. 

Change in emergence of sorghum was faster at 1.45 g cmJ than 1.65 

g cm4 with changes in soil moisture. Similar results were observed 

by Huges, at. al. 1966. 

Moisture also had a significant influence on emergence of 

sorghum seedlings. Emergence of sorghum seedlings was found to 

decrease at the lower as well as the higher soil moisture content. 

Rate of moisture imbibition and germination varied with moisture 

content. At low soil moisture contents, due to lack of sufficient 

moisture, very little imbibition occurred and as a result 

germination and emergence did not occur, leading to damage of the 

seeds by micro organisms (Wright et al., 1978) . Emergence was low 

at soil moisture contents below 4% whereas at higher soil moisture 

contents (lo to IS%), emergence was higher. These results are in 

agreement with those obtained by Brar, et. al. (1982) in 

experiments conducted on cotton. 



In studies of this nature, it is difficult to separate the 

effect of bulk density and moisture content on emergence. As bulk 

density increased, soil compaction also increased and in turn 

increased mechanical impedance leading to a reduction in the 

emergence of seedlings. Increased bulk density also reduced the 

total porosity of the soil thus decreasing the water holding 

capacity of the soil, which subsequently decreased the emergence of 

seedlings at high bulk densities. At nearly the same moisture 

content of 0.0759, 0.0796 and 0.0748 gg", emergence of sorghum was 

found to be 38.7, 22.7 and 14.7% at bulk densities of 1.45, 1.55 

and 1.65 g cm" respectively. This shows that emergence of sorghum 

seedlings decreased with increase in bulk density at nearly the 

same moisture content (Table 11 in Appendix IV). Hanks and Thorp 

(1956) observed similar results in experiments conducted on 

seedling emergence of wheat. At low matric suctions below 16 kPa, 

there was a significant reduction in emergence as was in the case 

of pearl millet, which might be due to lack of aeration. The small 

seed size of sorghum may be an additional factor increasing the 

adverse effects of high bulk density on seedling emergence. These 

results are consistent with those obtained by Soman et al., (1984). 

5.2.6 Influanoe of moisture status and bulk den~ity on emergenoe 

of groundnut 

The interaction of matric suction, bulk density and moisture 

content caused a significant variation in the emergence of 

groundnut seedlings. Similar results were observed by Hunter and 



Erickson (1972) in wheat crop. Excessive dryness was also 

detrimental in groundnut seedling emergence. The rate of moisture 

absorption by the seeds also depends on external factors such as 

the capillary flow of water through the soil. At low soil moisture 

content the rate of movement of soil water (hydraulic conductivity) 

would be too slow to supply sufficient water to the immediate 

environment of the seed for its germination and subsequent 

emergence within a short time. The replenishment of water in the 

vicinity of the seed would also be slower. Hence the seed may take 

longer time to germinate with the result that seedling emergence 

may or may not take place at the low moisture status. The 

emergence of groundnut seedlings was relatively fast initially but 

it slowed down with time as most of the seedlings emerged. The 

groundnut seedlings failed to emerge at low moisture contents due 

to lack of sufficient moisture. At high moisture contents, there 

was a significant decrease in emergence due possibly to inadequate 

aeration and lack of sufficient oxygen. As a result some of the 

seedlings were unable to germinate and emerge. Similar 

observations were reported by Painuli and Abrol (1984) on maize 

crop. 

The interaction of moisture and bulk density had a great 

influence on emergence of groundnut seedlings. The effect of bulk 

density on emergence varied with the moisture content. As bulk 

density increased, the soil strength and mechanical impedance 

increased but due to large seed size, groundnut seedlings were 

able to overcome the mechanical impedance caused by high bulk 



density of 1.65 g cmJ easily. Since increase in bulk density 

causes an increase in compaction, which decreases the total 

porosity, (from 0.453 in 1.45 g c13 to 0.377 in 1.65 g cm3) the 

water holding capacity of the soil decreased. Hence more moisture 

is required for emergence to initiate at high bulk density. At 

1.65 g cmJ bulk density emergence initiated at a moisture content 

of 7% whereas only 5% of moisture content was required for 

emergence to initiate at lower bulk density of 1.45 g cm". Supply 

of oxygen and nutrients will also be restricted at high bulk 

density. These may cause a decrease in emergence of groundnut 

seedlings at high bulk densities (Mali and Varade, 1981; Venkaiah, 

1985; Ahmed, et. al. 1989). At low moisture contents emergence 

percentage was poor and at high moisture contents higher emergence 

percentage was observed. 

Figure 24 shows the influence of matric suction on groundnut 

emergence. At lower bulk density of 1.45 g cm" emergence was 

faster even at higher matric suction (above 225 kPa). At bulk 

densities 1.55 and 1.65 g cm-I emergence followed nearly the same 

trend at the lower matric suctions between 0 to 100 kPa. Above 100 

kPa the emergence was lower for bulk density 1.65 g cm" and higher 

for bulk density 1.55 g cm-'. Maximum emergence (86.7%) was 

observed at higher matric suction (94.7 kPa) for bulk density 1.45 

g cm-' and maximum emergence of 80% was observed at lower matric 

suctions (below 50 kPa) for bulk densities 1.55 and 1.65 g cm.' 

indicating that emergence started at lower moisture content at bulk 

density of 1.45 g cmJ and higher moisture content was required for 

emergence at higher bulk densities (i.e. 1.55 and 1.65 g cm.'). 



CHAPTER VI 
SUMMARY 



C H A P T E R  V I  

BVMI(ARY 

The principal goal of this research was to determine the 

influence of moisture status and bulk density on germination and 

emergence of pearl millet, sorghum and groundnut, in greenhouse 

experiments conducted at the International Crops Research Institute 

for the Semi-Arid Tropics (ICRISAT). Soil used was an Alfisol 

which commonly occur in the semi-arid tropics. 

A laboratory experiment was first conducted to determine the 

rate of germination at different temperatures. Lesser time was 

required for maximum germination at higher temperatures such as 25, 

30 and 35'C whereas at lower temperatures of 20 and lS°C longer time 

was required for maximum germination. Rate of germination was also 

observed to be more rapid at the higher temperatures than at 20 and 

15°C. The base temperature at which germination does not occur was 

calculated using a linear regression model and was found to be 6.8, 

6.9 and 2.4'C for pearl 'millet, sorghum and groundnut respectively. 

Moisture contents ranging from 0.0200 gg" to 0.1900 gg" were 

taken as one factor and their interactions with three bulk 

densities 1.45, 1.55 and 1.65 g cme3 were studied as the second 

factor. Each experiment was of two weeks duration. 



Bulk density and moisture content were found to have a 

significant influence on germination of pearl millet. Germination 

started at a lower soil moisture content for the bulk density of 

1 . 4 5  g cmJ. A higher soil moisture content was required for the 

initiation of germination at bulk densities of 1 .55  and 1 . 6 5  g ~m.~. 

Maximum germination was also observed at lower moisture content for 

bulk density of 1 . 4 5  g cm". With increase in soil moisture 

content, germination also increased. But at very high moisture 

contents, there was a significant decrease in germination. Similar 

trends were observed for all the three bulk densities. Bulk 

density had a negative influence on germination. At the same 

moisture content with increase in bulk density germination 

decreased. Germination involves imbibition of water therefore the 

matric suction plays an important role in the movement of water 

from lower matric suction to higher matric suction. For millet 

germination occurred at suctions below 223 kPa. At low matric 

suctions below 8 kPa the soil was too wet, leading to reduced 

germination due to lack of supply of oxygen. 

In the case of sorghum crop, two depths of sowing i.e., 2.5p 

and 5cm were investigated. In sorghum also, germination increased 

with increase in moisture content. At very high moisture contents 

germination decreased significantly. Similar trends were observed 

for both the depths. It was observed that higher moisture content 

was required for germination to initiate at 2.5cm depth than at 5cm 

depth in all the three bulk densities. At 2.5cm depth, 68 soil 



moisture was required for germination to initiate at bulk density 

of 1.45 g cm4 whereas 79 and 89 soil moisture contents were 

required for germination to initiate in sorghum seed sown at bulk 

density of 1.55 and 1.65 g cm". In the case of sorghum sown at 5cm 

depth, germination initiated at 4% soil moisture for bulk density 

1.45 g ~ m - ~  and 5% soil moisture for bulk densities 1.55 and 1.65 g 

~ m - ~ .  Maximum germination occurred at lower moisture contents for 

sorghum sown at 2.5cm and higher soil moisture contents was 

required for maximum germination at 5cm depth. Bulk density was 

observed to have a negative influence on germination. At higher 

bulk density, germination decreased, bulk density 1.45 g cm" was 

found to be optimum but bulk density of 1.65 g cm.] was found to 

suppress germination. For sorghum sown at 5cm depth germination 

started at higher matric suctions (i.e. 222 kPa) whereas for 

sorghum sown at 2.5cm depth germination started at lower matric 

suctions (i.e. 160 kPa). At suctions below 10 kPa germination 

decreased significantly at all the three bulk densities for sorghum 

sown at 2.5 as well as 5cm depth. 

Bulk density had a negligible influence on germination of 

groundnut. However, the interaction of bulk density with soil 

moisture had a significant influence. Germination started at lower 

moisture content for bulk density of 1.45 g cm". Moisture suction 

was observed to have a negative influence on germination. 

Germination started at matric suctions of less than 200 kPa for 

groundnut. With increase in suction, germination decreased. In 

very dry range of soil moisture, no germination was observed. Soil 



moisture was observed to have more effect on germination of 

groundnut. Rate of germination was more rapid at bulk density of 

1.45 g cg3 than at 1.55 and 1.65 g cm3. 

Emergence of pearl millet was observed on the fourth day after 

sowing. In the dry range emergence was delayed by one or two days 

at bulk density of 1.65 g cw3. At bulk density of 1.65 g cm" 

lowest emergence count (63.3%) was obtained while the highest 

emergence count (93.3%) was obtained at bulk density of 1.45 g cm.'. 

Change in emergence with respective change in moisture content was 

rapid at the lower bulk density and slower at the higher bulK 

densities. Emergence increased with increase in moisture content. 

A bulk density of 1.65 g cm" decreased the seedling emergence count 

due to increase in soil strength. 

Sorghum emergence was influenced more by bulk density. 

Maximum emergence was only 22.72 at bulk density of 1.65 g cmJ as 

compared to 84% emergence at bulk density 1.45 g cm3. Emergence 

was observed on the fifth day after sowing in all the three bulk 

densities. At the dry range of soil moisture emergence was delayed 

by one or two days in the soils packed at bulk densities 1.55 ahd 

1.65 g ern->. Change in emergence was rapid at the bulk density of 

1.45 g cm" at changes in all the soil moisture levels compared to 

the bulk density of 1.65 g cm-'. Emergence increased with increase 

in moisture content. At soil moisture contents greater than 162, 

a decrease in emergence due to lack of aeration was observed. 



Emergence occurred on the eighth day after sowing for 

groundnut at all the three bulk densities. Bulk density had a 

negligible influence on emergence of groundnut. The large seed, 

size of groundnut and small size of pots may be responsible for 

this observation. High soil moisture resulted in increasing 

emergence. Emergence was rapid at the high soil moisture content 

compared to dry moisture content. Emergence decreased as moisture 

increased above 15% at bulk density 1.55 and 1.65 g cm". At bulk 

density of 1.45 g cm-I, maximum emergence of 86.7% was observed 

whereas 80% was the maximum emergence observed at bulk densities of 

1.55 and 1.65 g cm". 

The above results indicated that 1.45 g cm" was optimum bulk 

density for germination as well as emergence for millet and 

sorghum. Soil moisture of at least 4% was required for germination 

to initiate at bulk density 1.45 g cm-I for all the three crops. At 

bulk density of 1.55 g cm'l, soil moisture of 5% to 7% was required 

for germination to initiate for the three crops. Very high 

moisture contents of 17% to 20% reduced germination in the three 

crops possibly due to insufficient oxygen for seeds to respire. 

Emergence of pearl millet and sorghum decreased with increase in 

bulk density. Due to small seed size, the adverse effects of bulk 

density, such as increase in mechanical impedance, led to a 

decrease in emergence at bulk density of 1.55 and 1.65 g ca3. As 

soil moisture content increased emergence counts also increased. 

However, moisture contents above 17% caused a decrease in emergence 

of seedlings for all the three crops. 
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APPENDICES 



Appendix I 

CALCULATION OF BULK DENSITY OF THE SOIL 

By definition bulk density (pb) of a soil is given as 

where Mo = Mass of oven dry soil (g) 

Vt = Total volume of the soil (cc) 

Similarly by definition the gravimetric moisture content ( Ba) 

of the air dry soil 

8a = Ma - Mo ( 2 )  

where Ma is mass of air-dry soil (g) 

Upon rearrangement, equation (2) gives 



Equation (1) was a l so  uaad t o  calculate  the  t o t a l  volume (vt) 

By rewriting, equation (1) gives  



Appendix I1 

CALCULATION OF THE EQUIVALENT MASS OF OVEN DRY SOIL AND THE 

GRAVIMETRIC WATER CONTENT OF THE SATURATED SOIL 

~y definition, gravimetric water content (%a) of air-dry soil Fs 

MO 

where Ma is the mass of air-dry soil (g) and 

Mo is the mass of oven-dry soil (g) 

Upon rearrangement, equation (1) gives 

MO = Ma/(l t @a) ( 2 )  

Similarly by definition the gravimetric water content 

(8s) of the saturated soil is 

which upon substitution of Mo from equation (2) yields 



In equation ( 4 ) ,  Ms is the mass of the saturated soil. 

Equation 4 was also used to calculate the water content of the 

soil in the pots at various stages of dryloss during the 

experiments. By rewriting 0s as B in which case equation 4 can be 

recasted as 

% = Mw 

------------- - 1 

~ a / ( l  + Ba) 

in which B = water content g g", and Mw is mass of wet soil 



Appendix I11 

Calculation of Base Temperatures 

a) Millet 

The model for calculating base temperature is 

T = b , + b t l  

where 

T is Temperature ( O C )  

b, is Base temperature ( O C )  

b is Slope of the curve 

t is Time for 50% of seeds to germinate 

The equation has two unknown values b, and b. From the 

straight line graph (Figure 5) two points are selected, using 

these the base temperature is calculated as follows : 

b 

TI = b, + --- ( 2 )  

t 1 



30 = b, + 0.09878 b 

Substract equation 3 from 2 

30 - 15 = (b, - b,) + (0.09878b - 0.03491b) 

15 - 0.06387 b 

Substitute b value in equation 2 to get : 

By substituting the values of b and b,, Equation (1) i~ 

finally written as 



b) sorghum 

The equation has two unknown values b, and b. From the 

straight line graph (Figure 6) two points are selected, using 

these the base temperature is calculated as follows : 

b 

T, = b, + --- (2) 

tl 

Substract equation 3 from 2 



Substitute b value in equation 2 to get : 

By substituting the values of b and b,, Equation (1) is 

finally written as 

T = 6.9 + 347.342 t.' 

c) Groundnut 

The equation has two unknown values b, and b. From the 

straight line graph (Figure 7) two points are selected, using 

these the base temperature is calculated as follows : 

b 

T, = b. + --- ( 2 )  

t1 



Substract equation 3 from 2 

25 - 15 = (be - b,) + (0.027681, - 0.01544b) 

Substitute b value in equation 2 to get : 

b, = 15-12.61=2.4F (5 )  

By substituting the values of b and b,, Equation (1) is 

finally written as 

T = 2.4 + 816.99 t" (6) 



Table 1 : Germination of pearl millet as influenced by bulk density at different moisture contents 

.................................................................................................... 
Bulk density 1.45 g cm-3 Bulk density 1.55 g Bulk density 1.65 g cm-3 ....................................................................................... 

S1-No. Xoisture Germination Moisture Germination Moisture Germination 
conte t ( $ 1  conte t ( a )  content ( a )  
(99-P) css-P, ('39-1) 

.................................................................................................... 
1 0.0160 0.0 0.0153 0.0 0.0168 0.0 

2 0.0188 0.0 0.0195 0.0 0.0175 0.0 

3 0.0215 0.0 0.0208 0-0 0.0188 0.0 

4 0.0239 0.0 0.0215 0.0 0.0194 0.0 

5 0.0274 0.0 0.0241 0.0 0.0244 0.0 

6 0.0304 0.0 0.0282 0.0 0.0297 0.0 

7 0.0362 0.0 0.0323 0.0 0.0351 0.0 

8 0.0445 25.0 0.0394 0.0 0.0486 0.0 

9 0.0487 61.3 0.0466 22.0 0.0578 31.3 

10 0.0585 74.3 0.0529 64.3 0 -0682 57.0 

11 0.0786 86.7 0.0771 75.3 0.0761 75.0 

12 0.0964 89.0 0.0861 85.0 0.0872 84.7 

13 0.1443 100.0 0 .I229 95.3 0.1172 88.0 

14 0 -1843 98.0 0.1673 100.0 0 .I319 91.3 

15 0.1816 100.0 0.1735 98.7 0.1575 95.3 

16 0.1874 94.7 0 .I677 94.7 0.1667 86 - 3  





Table 3 : Germination of sorghum as influenced by bulk density at different moisture 
levels at 2 . 5  cm depth 

Bulk density 1.45 g Bulk density 1.55 g Bulk density 1.65 g ~ m - ~  

S1.No. Moisture Germination Noisture Germination noisture Germination 
conte t ($1 content ( % )  content 
(gg-P) (gg-l) (99-I1 



Table 4 : Germination of sorghum as influenced by bulk density at different matrlc succron 
at 2.5 cn depth 

Bulk density 1-45 g cm-3 Bulk density 1.55 g cm-3 Bulk density 1.65 g ...................................................................................... 
S1. NO. natric Germination Matric Germination Matric Germination 

suction ( % I  suction (81 suction ($1 
(kPa) (kpa) (kPa) 



Table 5 : Germination of sorghum as influenced by bulk density at different moisture levels 
at 5 cm depth 

Bulk density 1.45 g cmA3 Bulk density 1.55 g cm-3 Bulk density 1.65 g cm-3 ___________________-------------------------------------------------------------------- 
S1.No. noisture Germination Moisture Germination noisture Germination 

conte t (81 content ($1 content (81 
(ss-~, (99-1) (99-11 

1 0.0298 0.0 0.0294 0.0 0.0318 0.0 

2 0.0309 0.0 0.0325 0.0 0.0342 0.0 

3 0.0333 0.0 0.0328 0.0 0.0343 0.0 

4 0.0386 0.0 0.0382 0.0 0.0435 0.0 

5 0.0413 0.0 0.0439 0.0 0.0444 0.0 

6 0 -0457 20.0 0.0479 0.0 0.0488 0.0 

7 0.0530 53 -0 0.0541 25.0 0.0562 8.8 

8 0 -0616 74 -7 0-0639 53 -7 0.0616 57.7 

9 0.0762 91.0 0.0750 78.0 0.0689 82.6 

10 0.0763 91 -7 0,0788 81.0 0.0706 84.0 

11 0.1346 98.0 0.1307 96 -7 0.1115 95.0 

12 0 .I735 100.0 0 -1651 100.0 0.1468 96.7 

13 0.1743 100.0 0.1676 100 -0 0.1501 97 -0 

14 0.1754 100.0 0.1713 100.0 0.1503 97 .O 

15 0.1723 97.0 0.1681 97.0 0.1456 97.7 

16 0.1834 96.0 0.1799 95.0 0.1575 95.0 

SE ( + I  0.002162 0.916 0.002162 0 -916 0.002162 0.916 

CD (0.05) 0.00429' 1.819 0.00429 1.819 0.00429 1.819 









Table 9 : Effect of moisture content on emergence of pearl millet at different bulk densities 

Bulk density 1.45 g/cc Bulk density 1.55 g/cc Bulk density 1.65 g/cc ______________--___-------------------------------------------------------------------- 
S1. No. Moisture Emergence Moisture Emergence Moisture gmer ence 

content (a) content ($1 content 1%) 
(9/9) (9/9) (4/9) 

Figures in brackets are standard errors of the mean 
127 









Table 13 : Effect of lnoisture content on emergence of groundnut at different bulk densities 

Bulk density 1.45 g/cc Bulk density 1.55 g/cc Bulk density 1.65 g/cc ___________________-------------------------------------------------------------------- 
51. NO. Moisture Emer ence Moisture Emer ence ( 9 )  (21 

Moisture Emer ence 
content content content (2) 
19/91 C 4.31 (9/9) 

.................................................................................................... 
Figures in brackets are standard errors of the mean 

% 2, 



Table 14 : Emergence of groundnut as influenced by bulk density at different matric suction levels 

Bulk density 1.45 g ~ r n - ~  Bulk density 1.55 g Bulk density 1.65 g cm-3  ....................................................................................... 
S1. NO. Watric Emergence Matric Emergence natric Emergence 

suction (a )  suction ($1 suction ( a )  
(kPa) (kPa) (kPa) 
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