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Abstract Unlike neighboring disciplines, anthropology rare-
ly studies how actual future events affect current behavior.
Such studies could lay the groundwork for studies of ethno-
forecasting. Psychologists argue that people forecast poorly,
but some empirical work in cultural anthropology suggests
that at least with weather, rural people might make
reasonably accurate forecasts. Using data from a small-
scale, pre-industrial rural society in the Bolivian Amazon,
this study estimates the effects of future weather on the
current collection of planted crops and wildlife. If actual
future events affect current behavior, then this would suggest
that people must forecast accurately. Longitudinal data
covering 11 consecutive months (10/2002–8/2003, inclusive)
from 311 women and 326 men ≥age 14 in 13 villages of a

contemporary society of forager-farmers in Bolivia’s Ama-
zon (Tsimane’) are used. Individual fixed-effect panel linear
regressions are used to estimate the effect of future weather
(mean hourly temperature and total daily rain) over the next
1–7 days from today on the probability of collecting wildlife
(game, fish, and feral plants excluding firewood) and planted
farm crops (annuals and perennials) today. Daily weather
records come from a town next to the Tsimane’ territory and
data on foraging and farming come from scans (behavioral
spot observations) and surveys of study participants done
during scans. Short-term future weather (≤3 days) affected
the probability of collecting planted crops and wildlife today,
although the effect was greater on the amount of planted
crops harvested today than on the amount of wildlife
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collected today. Future weather beyond 3 days bore no
significant association with the amount of planted crops
harvested today nor with the amount of wildlife collected
today. After controlling for future and past weather, today’s
weather (mean hourly temperature, but not rain) affected the
probability of collecting wildlife today, but today’s weather
(temperature or rain) did not affect the probability of
collecting planted crops today. The study supports prior
work by anthropologists suggesting that rural people forecast
accurately. If future weather affects the probability of
harvesting planted crops and collecting wildlife today, then
this suggests that Tsimane’ must forecast accurately. We
discuss possible reasons for the finding. The study also
supports growing evidence from rural areas of low-income
nations that rural people tend to protect their food production
and food consumption well against small idiosyncratic
shocks or, in our case, against ordinary daily weather that
is not extreme. However, the greater responsiveness of daily
foraging output compared with daily farming output to
today’s weather suggests that foraging might not protect food
consumption as well as farming against adverse climate
perturbations.

Keywords Weather .Weather forecasts . Amazon . Bolivia .

Tsimane’ . Foragers . Hunter gatherers . Vulnerability .

Forecasting

Introduction

In this article we address a simple question that has
received scant attention from anthropologists: Do actual
events in the future determine current behavior after
conditioning for the role of past and current confounders?
To do so we use an unusual data set: longitudinal data
collected over 11 consecutive months (October 2002–
August 2003, inclusive) from a low-income, contemporary
foraging and farming society of native Amazonians in
Bolivia (Tsimane’). The data set contains information on
daily weather (temperature and rain), behavioral spot
observations (or scans) of study participants, and survey
data on daily amounts of planted farm crops and wildlife
collected. We use the data to estimate the effect of future
weather (mean hourly temperature and total daily rain) over
the next 1–7 days on the probability of collecting wildlife
(game, fish, and feral plants excluding firewood) and
planted farm crops (annuals and perennials; hereafter
planted crops) today. To enhance the likelihood that our
estimates in fact capture the effect of future weather on
today’s behavior, we control for the confounding role of the
following: (1) the weather today, (2) the weather during the
previous 7 days, and (3) variables such as age, sex,
schooling, and the date and the time we observed behavior.

As well as filling a gap in the empirical work of
anthropology, this question has theoretical significance.
First, the analysis of how actual future events shape present
behavior could provide the empirical and intellectual
rationale for studies of ethno-forecasting. To show that
actual future events influence present behavior would lay
the empirical groundwork for assessing how people form
expectations and forecast (Tucker 2007).

Second, empirical work by psychologists about the
accuracy of forecasts and ethnographic work by anthropolo-
gists about subsistence decisions provide conflicting hypoth-
eses about what to expect when estimating the effect of future
events on current behavior. Psychologists have amassed
considerable evidence from industrial nations to suggest that
ordinary people and experts make inaccurate predictions
about a wide range of future events because they selectively
see and pick out patterns in the past that do not in fact exist and
use those patterns to predict the future, or because they focus
on too narrow a range of predictors and ignore how other
events might affect the forecast (Kahneman and Tversky
1973; Nisbett and Ross 1980; Vallone et al. 1990; Schkade
and Kahneman 1998; Dunn et al. 2007; Finkenauer et al.
2007; Aamodt and Wang 2008). In particular, people are
poor at judging contingency and accurately estimating
covariation. Tucker (2007) found that the Mikea of Mada-
gascar have a common, culturally shared understanding that
rainfall is positively associated with the harvest of some
crops and negatively associated with the harvest of other
crops, but at the individual level they failed to successfully
apply this simple and accurate heuristic because of memory
lapses. Even political analysts whose reputation depends on
the accuracy of their political forecasts provide no more
accurate forecasts of political events than the lay public
(Tetlock 2005). Research also suggests that the ability to
predict accurately might vary across cultures (Ji et al. 2001;
Lam et al. 2005; Sprott et al. 2006; Knuff 2007). If this is
correct, it would suggest that actual future events should
have a negligible effect on current behavior because people
predict inaccurately most of the time.

However, research by cultural anthropologists (Orlove et
al. 2000; Roncoli et al. 2002; Strauss and Orlove 2003;
Moran et al. 2006) suggests that rural people who depend on
rural-based activities for their subsistence make reasonably
accurate predictions of the weather. If this is correct it would
suggest that weather in the future (particularly in the short
and medium term) should affect current behavior.

The empirical work we present here is designed to help
test these two competing approaches, but from a novel angle.
Rather than compare forecasts with the actual future event,
we assess whether the actual future event in fact influences
present behavior. If it does, then one can reasonably infer
that people must be forecasting accurately, though it leaves
open the mechanics of how people forecast.
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Methods

Sample

The data used come from a panel study in progress
(Tsimane’ Amazonian Panel Study, TAPS) that started in
2002 (Leonard and Godoy 2008). The data used in this
article come from all Tsimane’ women (n=311) and men
(n=326) ≥14 years of age in 13 Tsimane’ villages along the
Maniqui River, Beni department1. The only town and
airport along the Maniqui River is San Borja. Villages
differed in their closeness to San Borja (mean=25.90 km;
standard deviation (SD)=16.70).

Dependent Variables: Collection of Wildlife and Planted
Crops

We used behavioral spot observations (hereafter scans) (Sacket
and Johnson 1998) and 24-h recall surveys done during the
scan to gather data on the daily collection of wildlife and
planted crops. For scans, we randomly selected 1 day each
week and within the chosen day, randomly selected a block
of 3 h to do the scan. For data collection, we split the chosen
day into four blocks of time: (1) 7 A.M.–9 A.M., (2) 10 A.M.–
12noon, (3) 1 P.M.–3 P.M., and (4) 4 P.M.–6 P.M.. The hours in a
block were inclusive; for example, the first block of time
from 7 A.M. until 9 A.M. went from 7:00 A.M. until 9:59 A.M..
During the scan we walked the village at a constant pace and
coded what people were doing when we first spotted
them. Half of the village was scanned 1 day and the other
half on the next day. We did 7.27 days of scans each month
(median=7.00 days; SD=1.73; total=80 days of scans for the
11 months of research), so we are able to capture variation in
activities throughout the year. Note that we scanned people in
and around the village, not in fields or forests.

After coding the behavior of the person spotted, we
asked them about the type, provenience, and quantity of
goods they had brought to the household during the
previous 24 h. For people absent at the time of the scan,
we asked a proxy respondent in the household about the
current activity, collection of wildlife, and harvest of
planted crops of the absent person during the 24 h before
the interview. We later tested whether limiting the analysis
to direct observations by the researchers (and excluding
answers by proxy respondents) affected the main results.

We used the interview data collected during the scans to
create two dependent variables: foraging=1 if the person
reported bringing game, fish, or wild plants (except

firewood) to the household during the 24 h before the
interview and zero otherwise; and farming=1 if the person
reported harvesting a planted crop during the 24 h before
the interview and zero otherwise. The variable farming
captures only food, whereas the variable foraging captures
foods (whether plants or animals) plus wild resources used
for other purposes (e.g., wild plants used for medicines).
Since scan data were collected chiefly in or around the
village, our data on labor allocation to weeding, planting, or
various aspects of foraging are less reliable, which is why
we do not do the analysis on time allocation among various
stages of the foraging or farming cycle.

Explanatory Variable: Weather

We equate daily weather with the following: (1) the mean
hourly temperature (C) in a day and (2) the total amount of
rain (cm) in a day. Information on daily weather refers to
the airport in the town of San Borja. Elsewhere (Godoy et
al. 2008a, b) we show that daily mean hourly temperature
and daily total rain in the town of San Borja reflect
accurately daily mean hourly temperature and daily total
rain in the villages of the study. Part A of Appendix 1 lists
the sources of weather data and Part B is a step-by-step
description of how we constructed the weather variables
used in the regression analysis.

Because the weather today, the weather in the immediate
past, and the weather in the immediate future are correlated,
we control for (a) the weather during the 7 days before today
and (b) for today’s weather when estimating the effect of
future weather over the next 1–7 days from today on today’s
collection of wildlife and on today’s collection of planted
crops.

Other Explanatory Variables

Other explanatory variables included: (1) body-mass index
(BMI = body weight in kg/standing height in m2) (measured
quarterly) and (2) full sets of dummy variables for eight
surveyors, 13 villages, 11 months of research, 7 days of the
week, four 3-h time blocks in a day during which scans and
surveys took place, and data quality (1 = direct observation,
0 = proxy respondent). BMI is a reliable anthropometric
measure of short-term nutritional status for adults (Eveleth &
Tanner 1990) and is used here as a proxy variable for
objective health. All else held constant, we would expect
people with normal BMI to be more successful at foraging
than overweight or underweight people.

Analysis

We used multiple regressions with individual fixed effects,
clustering by subjects, and robust standard errors. We

1 The complete data and their documentation, along with publications
from the Tsimane’ Amazonian Panel Study (TAPS) project, are freely
available for public use at the following address: http://people.
brandeis.edu/~rgodoy/.
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regress separately the two dichotomous dependent varia-
bles, foraging or farming, against the following explanatory
variables: (a) the natural logarithm (hereafter log) of
today’s mean hourly temperature, (b) the log of today’s
total rain, (c) the log of the mean daily total rain for the
7 days before today, (d) the log of the daily mean of hourly
temperature for the 7 days before today, (e) the mean
weather for different number of days in the future, and (f)
the variables 1 and 2 above. The regression results shown
in Tables 2 and 3 contain the coefficients for (e). The rows
of Tables 2 and 3 capture the use of weather variables for
different number of days in the future (e). Regressions
always include as controls the variables under (a)-(d) and
(f). STATA 10 (hereafter STATA) for Windows was used
for the statistical analysis.

Tsimane’ Subsistence

Subsistence

The Tsimane’ number about 8,000 people and live in about
100 villages along riverbanks and logging roads, mostly in
Beni department. Subsistence centers on hunting, collection
of wild plants, fishing, and slash-and-burn farming (Vadez
et al. 2004). Without irrigation Tsimane’ depend on rain to
produce crops. Rain also affects the likelihood of fishing,
hunting, and collecting wild plants. Except for some
Tsimane’ who work as schoolteachers or for logging firms,
most Tsimane’ make their living by farming their own plots
and by foraging. Elsewhere (Godoy et al. 2007) we
document the low personal daily income (US$2.35–3.25)
and the economic self-sufficiency of Tsimane’. Because
Tsimane’ are highly autarkic, their daily collection of
wildlife and planted crops captures both production and
consumption.

The percentage of observations from scans indicating
that people had collected wildlife or planted crops on any
given day were similar: 16.93% and 15.69% respectively.
The variables foraging and farming had a Pearson

correlation coefficient of 0.001 (p=0.909), suggesting that
time spent in foraging does not reduce time spent in
farming (and vice versa) and that Tsimane’ carry out the
two activities independent of each other.

One important aspect of agriculture that needs to be
stressed to fully understand the regression results and
conclusion presented later has to do with the flow of
agricultural goods from the fields into the household in the
Amazon. In temperate climates, the agricultural harvest is
seasonal. On the other hand, in the Amazon rain forest
where agriculture is composed of annual and perennial
crops, the flow of agricultural goods from the fields into the
households is steadier, taking place throughout the year.
Among the Tsimane’, the main annual crops such as rice
and maize are typically harvested only once in a year, but
other crops, such as plantains, manioc, and a wide range of
tree crops are harvested year round. For this reason among
the Tsimane’ one can estimate the effect of future weather
on day-to-day collection of planted crops. The exercise
would be less meaningful in a temperate ecology where the
harvest of crops takes place only during specific times of
the year.

Weather

Figure 1 shows the mean total amount of rain for each
month during 1943–2005 (the longest weather record
available for San Borja) and for the period of this study
(October 2002–August 2003). Both data sources show two
seasons: a dry season between May and September and a
wet season between October and April. The figure also
shows that rain during the study period conformed to
long-run trends, except for 2 months: December (2002)
and January (2003) when total monthly rain levels were
75.21% and 62.13% below the long-term average for
those months.

Figure 2a shows that mean monthly temperature during
the study period tracked the long-term (1943–2005) trend
of mean monthly temperature. The mean monthly temper-
ature during the study period was 27.36°C, only 1.07°C
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Fig. 1 Total monthly rain in
the airport in the town
of San Borja: 1943–2005
and October 2002–August 2003

616 Hum Ecol (2009) 37:613–628



or 4.06% higher than the mean monthly temperature
during 1943–2005 (26.30°C). Figure 2b shows that the
mean of the minimum monthly temperature during the
study period was 20.41°C, 4.00°C or 24.38% higher than
the mean of the minimum monthly temperature during
1943–2005 (16.41°C). Figure 2c shows that the mean of
the maximum monthly temperature during the study
period (31.62°C) was 2.23°C or only 6.58% lower than
the mean of the maximum monthly temperature during
1943–2005 (33.85°C).

In sum, the weather data suggest that rain and temper-
ature patterns during the study period tracked closely local
rain and temperature patterns during 1943–2005. The
partial exception was minimum temperature.

Seasons

Tsimane’ clear the forest during the dry season, let the
underbrush and logs dry before they burn the debris (Vadez
et al. 2004) and then plant plantains and annual crops such
as rice, maize, and manioc. Planting takes place between
August and December, toward the end of the dry season
and the beginning of the rainy season. If they cut the forest
too early or if they wait too long (or if rains arrive early),
the debris burns too poorly to: (a) deposit nutrients into the
soil, (b) maximize the amount of space available for crops
to grow, and (c) minimize the amount of labor required to
prepare the field for planting (Baksh and Johnson 1990;
Wilkie et al. 1999), thus affecting crop yields.
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Starting in May with the onset of the dry season, many
edible fruits in the forest ripen; this is the time when wild
animals gain weight and provide ideal prey. The onset of
the dry season corresponds with a greater frequency and
duration of hunting expeditions. Some of the hunting
expeditions are in groups and take many days. The dry
season is also the time when Tsimane’ use plant poison to
fish, which they also often do in a group.

In Table 1 we show the percent of observations of people
foraging or farming during scans (columns A–B) or who
had collected wildlife or planted crops during the 24 h
before the scan (columns D–E). The percentages in
columns A–B suggest that during May–July Tsimane’ were
more likely to be foraging than farming, but with the onset
of the planting season, from about September until
November, time spent farming surpassed time spent
foraging. The percentages in columns D–E suggest that
dependence on foods from foraging and dependence on
foods from farming varied across months. During October–
December when Tsimane’ prepare their farm plots, the
probability of collecting wildlife was much higher than the
probability of collecting planted crops. During February
and March when they start to harvest annual crops (e.g.,
rice), collection of planted crops rose to 19.35% and
17.36% whereas collection of wildlife dropped to 14.17%
and 10.83%.

Weather Forecasts

Most of the rules-of-thumb Tsimane’ use to forecast
weather center on the short term, or 1–3 days into the
future. During open-ended, informal ethnographic inter-
views, Tsimane’ said that the following signs today cue
them that rains will arrive during the next 1–3 days: (a) one

or more previous hot days, (b) the color, shape, proximity,
and movement of clouds, (c) the behavior of some wild and
domesticated animals, (d) halo around stars called cava’-
vare, (e) a burial during the previous 1–2 days, and (f) holes
on the ground made by ants.

During May–July, the sur—rains and unusually cold
temperatures from the south—hit the Bolivian lowlands.
Tsimane’ use the flowering of some wild plants and the
singing of some birds to forecast the sur’s arrival. During
May–July, some Tsimane’ listen on small, battery-operated
transistor radios to reports of current weather from the
department of Santa Cruz (which lies to the south-east of its
territory) and, based on the arrival of the sur in Santa Cruz,
estimate its approximate arrival in the Maniqui River.
Tsimane’ say that depending on wind velocity, the sur
arrives in the Maniqui River between 6 h and 1 day after it
reaches Santa Cruz. During 2002–2003, 255 households or
54.14% of the sample of households had transistor radios,
but we do not know how many radios worked.

Except to forecast the sur, Tsimane’ do not rely on
weather reports from radio or from television stations
because stations transmit current weather (rather than
forecasts) for departments (rather than for smaller areas)
and since rain in the Amazon varies within small areas
(Moran et al. 2006) they are thus too general to be of use in
the Maniqui River.

Tsimane’ do not forecast the onset of the rainy season
nor the amount of rain they expect during the coming
agricultural cycle. We found no evidence that Tsimane’ use
the position of stars to forecast weather for the coming year,
as do farmers in the Andean highlands (Orlove et al. 2000).
Some Tsimane’ said they expected oscillations of weather
between years. For example, they expected an unusually
rainy year to follow an unusually dry year.

Month During scan person was: In 24-h recall, person brought:

Foraging Farming Obs Wildlife Planted crops Obs
[A] [B] [C] [D] [E] [F]

2002

October 11.30 21.53 469 13.48 9.05 519

November 11.74 13.10 954 23.96 12.42 1,014

December 15.66 6.92 664 20.62 14.50 703

2003

January 11.46 7.31 916 15.43 15.33 1,004

February 7.76 13.48 927 14.17 19.35 1,023

March 5.91 21.11 947 10.83 17.36 1,071

April 7.74 17.58 813 15.31 18.81 914

May 11.01 6.13 554 17.11 16.93 555

June 13.51 6.46 866 19.73 16.90 917

July 11.57 5.57 950 17.58 14.68 1,103

August 6.80 4.25 235 20.26 11.76 306

Table 1 Percent of observations
of Tsimane’ over 14 years of age
who were foraging or farming at
the time of scans, or who
reported having collected wild-
life or planted crops during the
24 h before the scan, by month,
October 2002–August 2003

Column A: person was hunting,
fishing, or collecting feral plants
other than firewood; column B:
person was planting, harvesting,
weeding, or processing any
planted crop; column D: Person
brought fish, game, or feral
plants other than firewood into
the household; column E: per-
son brought a planted crop into
the household
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Tsimane’ say that their expectation of tomorrow’s weather
informs what they will do today. For example, if they expect
rain tomorrow, then today they weed so weeds will dry well
and die from exposure to the hot sun, wash clothes so they dry
well, collect firewood, harvest, plant, forage, and take day
trips to nearby towns or villages. On rainy days, Tsimane’
prefer to rest, prepare home-brewed alcoholic beverages,
removemaize husks and grains from cobs, separate rice grains
from chaff, do handicrafts, harvest plantains and manioc, and
visit other households in the village.

Tsimane’ say rain discourages hunting because: (a) it
hampers a hunter’s ability to see or hear wild animals, (b) it
undermines the smelling acuity of hunting dogs, and (c)
lack of sunlight erodes the hunter’s ability to move through
the forest. On rainy days, many wild animals hide, making
it hard for hunters to spot their prey. Tsimane’ said they
could fish during a rainy day, but prefer not to do so
because it is uncomfortable.

To assess whether there is a cultural consensus on the
heuristics Tsimane’ use to forecast weather, we did a pilot
study during 2008 with 30 Tsimane’ women and 30
Tsimane’ men over 16 years of age living in villages
outside of the panel study. We presented study participants
with formal yes/no or true/false type questions (e.g., “If you
see bird x fly north, then it will rain tomorrow”), and found

high cultural consensus on local knowledge about weather
forecasts.

Results

Table 2 shows two noteworthy findings. First, future
weather during the next 3 days had a significant effect on
the probability of collecting planted crops today but not on
the probability of collecting wildlife today. For example, a
1% increase in the (a) total amount of rain tomorrow
(column B1, row 1), (b) mean amount of daily total rain
tomorrow and the day after tomorrow (column B1, row 2),
and (c) mean amount of daily total rain during the next
3 days from today (column B1, row 3) reduced the
probability of harvesting planted crops today by 0.03%,
0.05%, and 0.11%. A 1% increase in (a) mean hourly
temperature tomorrow (column B2, row 1), (b) mean hourly
temperature tomorrow and the day after tomorrow (column
B2, row 2), and (c) mean hourly temperature during the
next 3 days after today (column B2, row 3) increased the
probability of harvesting planted crop today by 0.14%,
0.15%, and 0.21%. In contrast, future weather generally
had no significant effect on today’s collection of wildlife
(columns A1–A2, rows 1–6).

Table 2 Effects of future rain and future temperature on the probability of collecting wildlife and planted crops today

Coefficient of future weather includes the mean of the log
of total daily rain or the mean of the log of the daily mean
of hourly temperature for the following no. of days after today:

No. Dichotomous dependent variables for today’s collection of:

A. Wildlife—foraging B. Planted crops—farming

Coefficient of future
weather:

R2 Coefficient of future
weather:

R2

1. Rain 2. Temp 1. Rain 2. Temp

1: 1 day (tomorrow’s weather) 7,099 0.005 0.019 0.001 −0.033a 0.148a 0.003

2: 2 days (weather tomorrow and day after tomorrow) 7,235 0.019 0.008 0.002 −0.050a 0.158a 0.005

3: 3 + 2 + 1 7,235 0.030 0.135 0.003 −0.112a 0.211a 0.005

4: 4 + 3 + 2 + 1 7,235 −0.003 0.125 0.002 −0.076 0.190 0.005

5: 5 + 4 + 3 + 2 + 1 7,235 −0.027 0.149 0.002 0.015 0.023 0.005

6: 6 + 5 + 4 + 3 + 2 + 1 7,235 −0.050 0.102 0.002 −0.033 0.011 0.005

7: 7 + 6 + 5 + 4 + 3 + 2 + 1 7,235 −0.034 0.352a 0.002 −0.021 0.113 0.005

Regressions include individual fixed effects, clustering by subject, and robust standard errors. The table includes results of 14 regressions for two
outcomes: seven for foraging (column A) and seven for farming (column B). For each of the two outcomes, we run seven regressions with various
combinations of future periods as controls. In row “1” (tomorrow) we include and report the log of tomorrow’s total rain and the log of the mean
hourly temperature of tomorrow; in row “2” (weather tomorrow and the day after tomorrow) we include the mean amount of total daily rain of
tomorrow and the day after tomorrow (expressed in logs) and the mean daily temperature of tomorrow and the day after tomorrow (expressed in
logs, with daily mean temperature based on the mean of hourly measures for that day). Explanatory variables shown in the table include: (1) the
log of future total rain (columns A1 and B1) and (b) the log of future daily hourly temperature (columns A2 and B2). Explanatory variables not
shown but included in all regressions include: (a) the log of the mean daily total rain for the 7 days before today, (b) the log of the mean daily
hourly temperature for the 7 days before today, (c) quarterly body-mass index (BMI) and household size, and (d) full set of dummy variables for
eight surveyors, 13 villages, 11 months of research, 7 days of the week, four 3-h time blocks in a day during which surveys took place, and data
quality (1 = direct observation, 0 = proxy respondent); R2 is overall
a Significant <1%
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Second, only future weather over the next 3 days from
today affected the probability of harvesting planted crops
today (columns B1–B2, rows 1–3); beyond 3 days into the
future (columns B1–B2, rows ≥4), weather no longer
affected the probability of harvesting planted crops today.
This finding buttresses the ethnographic evidence presented
earlier that Tsimane’ weather forecasts center on the short
term, typically 1–3 days.

Since we control for the weather today and for the weather
during the 7 days before today, future weather must affect
today’s farming harvest through signs that cue Tsimane’ on
what the weather will be like over the short-term.

Robustness

In Table 3 we show the results of additional analysis to
ensure the main conclusions do not hinge on how we
carried out the main analysis shown in Table 2. The
regressions of Table 3 are identical to the regressions of
Table 2 except for the changes noted in the sub-headings.
For Table 3 we reestimated the regressions of Table 2 using:
(A) the day-to-day measures of rain and temperature for the
previous 7 days from today instead of the mean daily
temperature and the mean daily total rain for the previous
7 days from today, (B) minimum daily temperature and (C)
maximum daily temperature instead of the mean of daily
hourly temperature, (D) only the four main planted crops
(rice, maize, manioc, and plantains) instead of any planted
crop, (E) only fish and wild game and not wild plants, (F)
only the months when the sur does not strike, (G) only
observations with complete weather data for all future
7 days, and (H) only direct observations (i.e., exclude
answers from proxy respondents). We next explain the
rationale for introducing the changes.

We do (A) to ensure that our results are driven by future
weather, rather than by an aspect of past daily weather that
may correlate with future weather but that got lost when we
averaged weather data for the 7 days before today. Recall
from the previous discussion that Tsimane’ use warm
weather to predict rain, so it is possible that today’s
collection of planted crops or today’s collection of wildlife
responds more to maximum or to minimum daily temper-
ature than to mean daily temperature. For this reason we do
(B)–(C). We do (D)–(E) because some so-called wild plants
may have been planted long ago (Huanca 1999), and some
planted crops may have been planted so long ago that they
could be considered wild. Limiting the analysis to the four
main planted crops that are unlikely to be harvested in their
wild state (D), and limiting the analysis to fish and wild
game (E) allows us to obtain sharper results for the
variables farming and foraging. Excluding the months
when the sur strikes (May–July, inclusive) (F) allows us
to remove the potential effect of weather reports from radio

stations because Tsimane’ are most likely to listen to such
reports during the months when the sur arrives. The results
of Table 2 could be biased by the missing observations for
tomorrow’s weather and for tomorrow’s rain. As Table 2
shows, and as discussed in Appendix 2, the number of
observations is lower for the first regression (row 1) than
for all other regressions (rows 2–7) because of the missing
values for tomorrow’s weather. To address this issue, we
reestimate the regressions of Table 2 using the same
observations (n=7099) for all the regressions (G). Last,
proxy respondents may have provided inaccurate answers
about the absent person; results could change if we limit the
analysis to events directly observed by researchers (H).

With two exceptions, the results of Table 3 support the
main findings of Table 2. Using maximum temperature (C),
limiting the analysis to the four main planted crops (D) and
to fish and wild game (E), or using only observations
without missing data for tomorrow’s weather (G) confirmed
the previous results that weather during the next 3 days
from today had a significant effect on the collection of
planted crops today but not on the collection of wildlife
today. Excluding the months when the sur strikes (F) made
four of the six coefficients under farming that were
statistically significant in Table 2 become statistically
insignificant at the 99% confidence interval or higher in
Table 3 because of the reduction in sample size, but the sign
of the weather coefficients under farming remained the
same and the size of these coefficients did not change
much. For instance, a 1%-increase in the total amount of
rain tomorrow lowered the probability of collecting planted
crops today by 0.03% in Table 2 (p=0.007)(column B1,
row 1); if we limit the analysis to the months without the
sur, the coefficient drops from 0.03% to 0.02% (p=0.085)
(column B1, row 1). Limiting the analysis to direct
observations (H) reduces the sample size for most regres-
sions by 42% (from about 7235 to about 4190) and makes
four of the six coefficients under farming that were
statistically significant in Table 2 become statistically
insignificant at the 1% level in Table 3, but the size of
coefficients for temperature for tomorrow, for the day after
tomorrow, and for the 2 days from today increased
considerably—from 0.148, 0.158, and 0.211 in Table 2, to
0.180, 0.225, and 0.294 in Table 3 (H). Thus, though
statistically weaker, the size of the effect of future weather
on the collection of planted crops increases.

Section (A) of Table 3 produced weaker results and
section (B) of Table 3 produced unexpected results
compared with the results of Table 2. Using day-to-day
measures of total rain and the day-to-day measures of mean
hourly temperature for each of the 7 days before today (A)
reduced the size of the coefficients for future weather in
both farming and foraging and made them statistically
insignificant. A comparison of the coefficients for future
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Table 3 Sensitivity analysis of Table 2

Coefficient of future weather includes the mean of the log
of total daily rain or the mean of the log of the daily mean
of hourly temperature for the following no. of days after today:

No. Dichotomous dependent variables for today’s collection of:

A. Wildlife—foraging B. Planted crops—farming

Coefficient of future
weather:

R2 Coefficient of future
weather:

R2

1. Rain 2. Temp 1. Rain 2. Temp

A. Log of daily rain and log of daily temperature for previous 7 days, with each day entered separately

1: 1 day (control for tomorrow’s weather) 6,909 −0.006 −0.026 0.020 −0.015 0.089 0.009

2: 2 days (tomorrow and day after tomorrow) 6,909 −0.019 −0.010 0.020 −0.030 0.119 0.009

3: 3 + 2 + 1 6,909 −0.006 0.062 0.021 −0.080* 0.197 0.010

4: 4 + 3 + 2+ 1 6,909 −0.016 −0.017 0.021 −0.059 0.214 0.009

5: 5 + 4 + 3 + 2 + 1 6,909 −0.021 −0.037 0.003 0.015 0.042 0.008

6: 6 + 5 + 4 + 3 + 2 + 1 6,909 −0.040 −0.121 0.019 −0.028 −0.048 0.008

7: 7 + 6 + 5 + 4 + 3 + 2 + 1 6,909 −0.057 0.159 0.022 −0.027 0.156 0.009

B. Minimum daily hourly temperature instead of mean daily hourly temperature

1: 1 day (control for tomorrow’s weather) 7,099 0.003 0.115 0.001 −0.025 0.044 0.003

2: 2 days (tomorrow and day after tomorrow) 7,235 0.003 0.163* 0.002 −0.047* 0.035 0.005

3: 3 + 2 + 1 7,235 0.035 0.260* 0.005 −0.101* 0.079 0.006

4: 4 + 3 + 2 + 1 7,235 −0.009 0.296* 0.004 −0.071 0.110 0.005

5: 5 + 4 + 3 + 2 + 1 7,235 −0.062 0.281* 0.002 0.013 0.153 0.005

6: 6 + 5 + 4 + 3 + 2 + 1 7,235 −0.089 0.258* 0.001 −0.025 0.245 0.005

7: 7 + 6 + 5 + 4 + 3 + 2 + 1 7,235 −0.086 0.223 0.001 −0.021 0.317* 0.005

C. Maximum daily hourly temperature instead of mean daily hourly temperature

1 day (tomorrow) 7,099 0.001 −0.106 0.001 −0.028 0.189* 0.003

2 days (tomorrow and day after tomorrow) 7,235 0.014 −0.071 0.003 −0.056* 0.200* 0.005

3 7,235 0.027 0.049 0.003 −0.121* 0.260* 0.006

4 7,235 −0.023 0.064 0.002 −0.086* 0.221* 0.005

5 7,235 −0.061 0.110 0.002 −0.008 0.256* 0.005

6 7,235 −0.083 0.083 0.001 −0.074 0.287* 0.005

7 7,235 −0.070 0.104 0.001 −0.062 0.305 0.005

D. Farming limited to four main planted crops: maize, rice, manioc, and plantains

1: 1 day (control for tomorrow’s weather) 7,099 Not applicable −0.035* 0.125* 0.002

2: 2 days (tomorrow and day after tomorrow) 7,235 −0.053* 0.139 0.005

3: 3 + 2 + 1 7,235 −0.113* 0.188* 0.005

4: 4 + 3 + 2 + 1 7,235 −0.080* 0.170 0.005

5: 5 + 4 + 3 + 2 + 1 7,235 0.004 0.022 0.004

6: 6 + 5 + 4 + 3 + 2 + 1 7,235 −0.040 0.020 0.005

7: 7 + 6 + 5 + 4 + 3 + 2 + 1 7,235 −0.029 0.113 0.005

E. Wild plants excluded from foraging; only fish and wild game included

1: 1 day (control for tomorrow’s weather) 7,099 −0.0008 0.00008 0.006 Not applicable
2: 2 days (tomorrow and day after tomorrow) 7,235 0.007 0.027 0.001

3: 3 + 2 + 1 7,235 0.004 0.132 0.001

4: 4 + 3 + 2 + 1 7,235 −0.032 0.129 0.001

5: 5 + 4 + 3 + 2 + 1 7,235 −0.044 0.091 0.001

6: 6 + 5 + 4 + 3 + 2 + 1 7,235 −0.048 0.051 0.001

7: 7 + 6 + 5 + 4 + 3 + 2 + 1 7,235 −0.052 0.160 0.001

F. Limited to August-April (inclusive), the months without sur

1: 1 day (control for tomorrow’s weather) 5,355 0.002 0.030 0.008 −0.027 0.134 0.006

2: 2 days (tomorrow and day after tomorrow) 5,355 0.031 −0.012 0.009 −0.057* 0.192 0.006
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rain and future temperature for one, two, and 3 days from
today (rows 1–3) between Tables 2 and 3 (section A) shows
that the coefficients for rain fell by an average of 41.04%
and that the coefficients for temperature fell by an average
of 23.73%. The reduction in the size of the coefficients
suggests that (1) the sign of the indirect effect from
excluding day-to-day weather variables for the 7 days
before today in Table 2 is positive and (2) the loss of
statistical significance likely could have resulted from the
multicollinearity of including 14 additional explanatory
variables and reducing the sample size from 7235 observa-
tions to 6909 observations.

The use of minimum temperature (B) suggests that
future minimum daily temperature 2–6 days from today has
a significant positive effect on the collection of wildlife; on
average, an increase of 1% in minimum temperature during
the next 2–6 days from today increased the probability of
collecting wildlife today by 0.16–0.29% (section B, column

A2, rows 2–7). In the regression with farming as a
dependent variable the use of minimum daily temperature
made the coefficients for daily minimum temperature for
the next one, two, and 3 days from today (section B,
column B2, rows 1–3) about 70% smaller than the
coefficients for the mean of daily temperature for the next
one, two, and 3 days from today in Table 2. In the
regressions with farming as a dependent variable the use of
minimum daily temperature did not affect the coefficients
for future rain during the next two and 3 days from today
(section B, column B1, rows 2–3); these coefficients
remained essentially unchanged from Table 1 and statisti-
cally significant.

In sum, the results of the additional analysis generally
support the main finding of Table 2 that rain and
temperature over the next 3 days from today affects the
probability of collecting planted crops today more than the
probability of collecting wildlife today.

Table 3 (continued)

Coefficient of future weather includes the mean of the log
of total daily rain or the mean of the log of the daily mean
of hourly temperature for the following no. of days after today:

No. Dichotomous dependent variables for today’s collection of:

A. Wildlife—foraging B. Planted crops—farming

Coefficient of future
weather:

R2 Coefficient of future
weather:

R2

1. Rain 2. Temp 1. Rain 2. Temp

3: 3 + 2 + 1 5,355 0.051 0.158 0.008 −0.135* 0.175 0.008

4: 4 + 3 + 2 + 1 5,355 0.025 0.038 0.008 −0.095 0.214 0.007

5: 5 + 4 + 3 + 2 + 1 5,355 0.004 0.126 0.009 −0.002 −0.047 0.006

6: 6 + 5 + 4 + 3 + 2 + 1 5,355 −0.057 −0.009 0.008 −0.076 −0.147 0.006

7: 7 + 6 + 5 + 4 + 3 + 2 + 1 5,355 0.013 0.200 0.009 −0.063 −0.079 0.006

G. Excluding days with missing weather for tomorrow to equalize the sample size of observations across regressions

1: 1 day (control for tomorrow’s weather) 7,099 0.005 0.019 0.001 −0.033* 0.148* 0.003

2: 2 days (tomorrow and day after tomorrow) 7,099 0.024 −0.011 0.001 −0.055* 0.169* 0.003

3: 3 + 2 + 1 7,099 0.037 0.109 0.001 −0.118* 0.225* 0.003

4: 4 + 3 + 2 + 1 7,099 0.002 0.085 0.001 −0.082* 0.212 0.003

5: 5 + 4 + 3 + 2 + 1 7,099 −0.018 0.118 0.001 0.008 0.037 0.003

6: 6 + 5 + 4 + 3 + 2 + 1 7,099 −0.038 0.058 0.001 −0.041 0.035 0.003

7: 7 + 6 + 5 + 4 + 3 + 2 + 1 7,099 −0.025 0.309* 0.001 −0.032 0.151 0.003

H. Analysis limited to direct observations by researchers (excludes data from proxy respondents)

1: 1 day (control for tomorrow’s weather) 4,130 0.021 −0.051 0.014 −0.021 0.180 0.001

2: 2 days (tomorrow and day after tomorrow) 4,190 0.040 −0.067 0.001 −0.052 0.225 0.001

3: 3 + 2 + 1 4,190 0.045 0.069 0.007 −0.108* 0.294* 0.001

4: 4 + 3 + 2 + 1 4,190 0.019 0.041 0.007 −0.045 0.279 0.001

5: 5 + 4 + 3 + 2 + 1 4,190 −0.008 0.088 0.001 0.067 0.138 0.001

6: 6 + 5 + 4 + 3 + 2 + 1 4,190 −0.037 0.052 0.007 0.002 0.155 0.001

7: 7 + 6 + 5 + 4 + 3 + 2 + 1 4,190 −0.024 0.402* 0.001 0.035 0.280 0.001

Same notes and definitions as Table 2. A: Instead of using the log of the mean hourly temperature and the log of mean daily total rain for the
7 days before today, we introduce the log of mean daily hourly temperature and the log of daily total rain for each of the 7 days before today; this
produces 14 additional explanatory variables
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Extensions

So far we have presented evidence suggesting that future
weather affects the probability of collecting planted crops
more than the probability of collecting wildlife today, but
how does today’s weather affect the probability of today’s
collection of planted crops or wildlife after conditioning for
past and future weather?

In Table 4 we show the effects of today’s total rain and
today’s mean hourly temperature on the probability of
collecting planted crops or collecting wildlife today; the
coefficients in Table 4 come from the regressions of Table 2.
Table 4 shows three important findings.

First, today’s mean hourly temperature affected the
probability of collecting wildlife today (column A2).
Without controlling for future temperature (row 0, column
A2) we see that a 1% increase in today’s mean hourly
temperature increased by 0.26% the probability of collect-
ing wildlife today. Controlling for tomorrow’s total rain and
for tomorrow’s mean hourly temperature (row 1, column
A2) or controlling for the mean total daily rain and for the
mean daily temperature of tomorrow plus the day after
tomorrow (row 2, column A2) did not change the
magnitude of the effect; a 1% increase in today’s mean
hourly temperature increased the probability of collecting
wildlife today by 0.26–0.27%. Controlling for the mean
amount of daily total rain and for the mean daily hourly
temperature for the next 3, 4, 5, 6, and 7 days from today
lowered the effects of today’s mean hourly temperature on
the probability of collecting wildlife today (rows 3–7,

column A2). Whereas a 1% increase in today’s mean hourly
temperature increased the probability of collecting wildlife
today by about 0.26% if we control for the mean amount of
total daily rain and for the mean hourly temperature for the
next 1–2 days in the future (rows 1–2, column A2), the
same increase in today’s mean hourly temperature increased
the probability of collecting wildlife today by about 0.22%
if we control for weather 3–7 days into the future (rows 3–
7, column A2). On average, a 1% increase in today’s mean
hourly temperature raised the probability of collecting
wildlife today by about 0.24% (average of estimate of rows
0–7, column A2).

Second, a 1% increase in today’s total rain lowered by
about 0.01% the probability of collecting wildlife today
(0.01%=mean estimate of rows 0–7, column A1) and it
lowered by about 0.02% the probability of collecting
planted crops today (0.02%=mean estimate of rows 0–7,
column B1), but results were generally statistically insig-
nificant at the 99% confidence level or higher.

Third, today’s mean hourly temperature or today’s total
rain generally did not affect the probability of collecting
planted crops today (columns B1 and B2).

In sum, after controlling for weather during the 7 days
before today, and for the weather for periods of time into
the future that ranged from 1 day to 7 days, we find that the
probability of collecting wildlife responds to today’s mean
hourly temperature (but not to today’s total rain). In
contrast, the probability of collecting planted crops today
remained largely unaffected by today’s mean hourly
temperature or by today’s total rain.

Table 4 Effects of (1) the log of today’s total rain and (2) the log of today’s mean hourly temperature on the probability of collecting wildlife or
planted crops today: results of individual fixed-effect regressions

Controlling for the mean of the log of
daily rain and the mean of the log of daily
hourly temperature for the following
no. days after today:

No. Dichotomous dependent variables for today’s collection of:

A. Wildlife—foraging B. Planted crops—farming

Coefficient of log of today’s: R2 Coefficient of log of today’s: R2

1. Total rain 2. Mean hourly
temperature

1. Total rain 2. Mean hourly
temperature

0: 0 (today; no control for future weather) 7,235 −0.010 0.261* 0.002 −0.021 0.030 0.005

1: 1 day (control for tomorrow’s
weather)

7,099 −0.012 0.277* 0.001 −0.026* −0.116 0.003

2: 2 days (tomorrow and day after
tomorrow)

7,235 −0.011 0.268* 0.002 −0.024 −0.084 0.005

3: 3 + 2 + 1 7,235 −0.020 0.216* 0.003 −0.022 −0.057 0.005

4: 4 + 3 + 2 + 1 7,235 −0.014 0.224* 0.002 −0.021 −0.048 0.005

5: 5 + 4 + 3 + 2 + 1 7,235 −0.012 0.214* 0.002 −0.023 0.031 0.005

6: 6 + 5 + 4 + 3 + 2 + 1 7,235 −0.009 0.228* 0.002 −0.019 0.018 0.005

7: 7 + 6 + 5 + 4 + 3 + 2 + 1 7,235 −0.021 0.230* 0.002 −0.024 0.017 0.005

Same notes as Table 2.
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Limitations

This study contains at least two limitations. First, our data
are not refined enough to allow us to estimate how future
weather might affect different stages of the farming or of
the foraging cycle. The dependent variables in Tables 2, 3
and 4 refer only to the collection of wildlife or to the
collection of planted crops and come from 24-h recall
surveys. Foraging requires several steps, such as pursuit
and collection. Farming also requires several steps, such as
cutting and burning the forest, planting, weeding, and
harvesting. Future weather might have different effects on
these steps. Second, it is possible that weather over the next
1–3 days has an impact on the harvest of planted crops, but
only in regions such as the Amazon with abundant
perennial crops (e.g., plantains, tree crops). The effect of
short-term weather forecasts on the harvest of planted crops
might be very different in areas without (or with less)
perennial crops or in areas that depend heavily on planted
annual crops.

Discussion and Conclusions

We return to our original question: To what extent do actual
events in the future determine current behavior after
conditioning for the role of past and current confounders?
Drawing on our data from the Tsimane’, we find that rain
and temperature over the next 3 days from today affect the
probability of collecting planted crops today more than the
probability of collecting wildlife today. This could have
happened if future weather correlated with past and current
weather, but since we conditioned for past and for current
rain and temperature, future weather must affect today’s
farming harvest through signals that tell Tsimane’ what
future weather will be like. Although we have not explicitly
measured or incorporated forecasting in the regression
analysis, our results are in accord with prior work by
anthropologists (discussed in the introduction) who have
found that rural people in low-income nations tend to make
reasonably accurate short-term weather forecasts.

How do Tsimane’ Forecast Weather?

The finding that future weather affects the probability of
collecting planted crops today raises the question of how
Tsimane’ forecast weather. The question lies beyond the
scope of this paper and we have no direct data to address it.
This said, we can rule out the hypothesis that Tsimane’
forecast weather accurately because they have locally
developed cultural knowledge because we used an individ-
ual fixed-effect regression model. In so doing, we swept

away any attribute that remained fixed in the individual
during the study period. The stock of local knowledge of
weather (or cultural competence) for an individual is
unlikely to have changed over such a short period of time.
The fixed-effect regression also purges the estimates of the
possible effects of visual acuity or the innate ability to ‘feel’
tomorrow’s weather.

In our model, accuracy cannot reflect fixed attributes.
Rather, accuracy must reflect attributes that change over
time. One promising line of research, suggested by Tucker
(2007), traces accuracy to on-the-spot judgments about
future weather, judgments that reflect cultural theories of
covariation of events, strength of individual memory, and
other factors that change over time. For instance, a
Tsimane’ might know that the presence of a bird flying in
a certain direction predicts well rain tomorrow, but the
Tsimane’ might misclassify the bird or the bird’s flight
direction on particular days. Since weather forecasts rest on
several heuristics—for instance, not only a certain type of
bird flying but also the presence of a critical amount of
particular ants—then Tsimane’ must use their memory to
weigh and harmonize many strands of evidence before
making a final judgment about future weather. Furthermore,
Tsimane’ might look at their neighbors for confirmation on
what to expect. If one sees many people taking umbrellas to
work, then one can be more confident in forecasting rain
later in the day. Just by chance, on some days people might
see neighbors and make more informed forecasts about the
weather, but on other days they might have to rely on their
own knowledge and observations. We remove some of this
noise by using dummy variables for communities, days,
and time-of-day, but it is possible that some of the
information gathering about the future takes place by
watching only selected individuals over a smaller geo-
graphic focus (e.g., a small cluster of households within a
village). In short, explanations of the accuracy of weather
forecasts probably go far beyond local weather knowledge,
to more complex psychological processes and biases about
how people make decisions under uncertainty.

On the Differential Vulnerability of Foraging and Farming
to Current Weather

We found that today’s mean hourly temperature (but not
today’s total rain) affected the probability of collecting
wildlife today, but today’s weather did not affect the
probability of collecting planted crops today. This result
suggests that today’s success at collecting wildlife is more
sensitive to today’s weather than today’s success at
collecting planted farm crops. The finding that today’s
farming output is protected against ordinary daily weather
that is not extreme (e.g., floods, droughts) is consistent with
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a large body of empirical work in rural areas of low-income
nations suggesting that small-scale farmers protect their
food production well against small idiosyncratic adverse
shocks (see Godoy et al. 2008a, b for recent reviews). On
the other hand, the greater responsiveness of the foraging
harvest to today’s weather after conditioning for future and
for past weather suggests that foraging might be more
vulnerable to climate perturbations than farming. If farming
protects daily food consumption better than foraging
against daily weather, then this might provide one more
stimulus to increase dependence on farming.
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Appendix 1: Sources of Weather Data and Construction
of Weather Variables

A. Sources for Weather Data

1) Source: National Oceanic & Atmospheric Administra-
tion (NOAA); US department of Commerce

a) Home page. http://www.noaa.gov/
b) Data downloaded from this link. http://www.ncdc.noaa.

gov/oa/ncdc.html (Data link)
c) For free data. http://www.ncdc.noaa.gov/oa/mpp/freedata.

html
d) Scroll down to free data J- Surface data- Global

summary of the day.

& Select the country
& Choose the station of interest (in this case San-

Borja, Rurrenabaque, and Trinidad)

e) Data from Jan 2002 to Dec 2003 was downloaded.
2) Address:

National Climatic Data Center
Federal Building
151 Patton Avenue
Asheville NC 28801-5001
1-828-271-4800
FAX: 1-828-271-4876
Email: ncdc.info@noaa.gov
All contact information for various departments can be

access through this link
http://www.ncdc.noaa.gov/oa/about/ncdccontacts.html

3) Coding
First record—header record.
All ensuing records—data records as described below.
All 9’s in a field (e.g., 99.99 for PRCP) indicates no

report or insufficient data.

FIELD POSITION TYPE DESCRIPTION

STN 1–6 Int Station number (WMO/DATSAV3
number) for the location.

WBAN 8–12 Int WBAN number where applicable—this
is the historical “Weather Bureau Air
Force Navy” number—with WBAN
being the acronym.

YEAR 15–18 Int The year

MODA 19–22 Int The month and day

TEMP 25–30 Real Mean temperature for the day in
degrees Fahrenheit to tenths.
Missing=9999.9 (Celsius to tenths
for metric version.)

MAX 103–108 Real Maximum temperature reported during
the day in Fahrenheit to tenths—time
of max temp report varies by country
and region, so this will sometimes not
be the max for the calendar day.

Missing=9999.9 (Celsius to tenths for
metric version.)

Flag 109–109 Char Blank indicates max temp was taken
from the explicit max temp report and
not from the ‘hourly’ data. * indicates
max temp was derived from the
hourly data (i.e., highest hourly or
synoptic-reported temperature)

MIN 111–116 Real Minimum temperature reported during
the ay in Fahrenheit to tenths—time
of min temp report varies by country
and region, so this will sometimes not
be the min for the calendar day.

Missing=9999.9(Celsius to tenths for
metric version.)

Flag 117–117 Char Blank indicates min temp was taken
from the explicit min temp report
and not from the hourly’ data. *
indicates min temp was derived
from the hourly data (i.e., lowest
hourly or synoptic-reported
temperature)

PRCP 119–123 Real Total precipitation (rain and/or
melted snow) reported during the
day in inches and hundredths; will
usually not end with the midnight
observation—i.e., may include latter
part of previous day.

.00 indicates no measurable
precipitation (includes a trace).

Missing=99.99 (For metric version,
units = millimeters to tenths and
missing=999.9.
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Note: Many stations do not report ‘0’
on days with no precipitation—
therefore, ‘99.99’ will often appear on
these days. Also, for example, a
station may only report a 6-h amount
for the period during which rain fell.
See Flag field for source of data.

Flag 124–124 Char A = 1 report of 6-h precipitation
amount.

B = Summation of 2 reports
of 6-h precipitation amount.

C = Summation of 3 reports
of 6-h precipitation amount.

D = Summation of 4 reports
of 6-h precipitation amount.

E = 1 report of 12-h precipitation
amount.

F = Summation of 2 reports
of 12-h precipitation amount.

G = 1 report of 24-h precipitation
amount.

H = Station reported ‘0’ as the amount
for the day (e.g., from 6-h reports),
but also reported at least one occur-
rence of precipitation in hourly
observations—this could indicate a
trace occurred, but should be consid-
ered as incomplete data for the day.

I = Station did not report any rain data
for the day and did not report any
occurrences of precipitation in its
hourly observations—it’s still
possible that rain occurred but was
not reported.

The NCDC Climate Services Branch (CSB) is respon-
sible for distribution of NCDC products to users. NCDC’s
CSB can be contacted via the following phone number,
internet address, or fax number:

Telephone number: 1-828-2714800
Fax number: 1-828-2714876
Internet address: ncdc.orders@noaa.gov

4) Methods used to impute the missing values

& Daily temperature comes from hourly records of
temperature. Daily temperature was converted to
centigrade using the following formula,
T in C = [(T in F-32)/9]*5

& Rain data refers to the total for a given day and was
given in inches; multiplied by 2.54 to convert into
centimeters

& If San Borja had a missing value, we imputed the
mean value from Trinidad and Rurrenabaque, two
nearby towns. Recent publications contain discus-
sion of imputation methods for missing weather
data (Godoy et al. 2008a, b).

B. Construction of Weather Variables

Log transformation. We took the natural logarithm
(hereafter log) of daily temperature. We added +1 to
daily total rain before taking the log of daily rain to
avoid producing missing values for days without rain.
First step: measures of future weather day by day. We
took the log of the mean daily hourly temperature and
the log of daily total rain for 1, 2, 3, 4, 5, 6, and 7 days
after today. Day 1 after today refers to tomorrow, day 2
after today refers to the day after tomorrow, etc. The
first step produced a total of 14 variables for future
weather, seven variables capturing daily total rain for
each of the next 7 days after today and another seven
variables capturing the mean of hourly temperature for
each of the next 7 days after today.
Second step: future weather—mean values. Drawing on
the values from the first step we took themean of the log of
daily rain and the mean of the log of daily temperature for
seven future periods. For example, we estimated (1) the
mean amount of total daily rain (in logs) for tomorrow
(day 1), (2) the mean amount of total daily rain (in logs)
for tomorrow and the day after tomorrow (mean of day 1
and day 2 after today), or (3) the mean amount of total
daily rain (in logs) for the next 7 days from today (mean
of days 1 + 2 + 3 + 4 + 5 + 6 + 7 after today). This step
produced 14 additional variables for the mean of weather
variables for different periods of time in the future (e.g.,
mean temperature of tomorrow and the day after
tomorrow; mean temperature of the next 7 days).
Third step: measures of past weather day by day. We
took the log of the mean daily hourly temperature and
the log of daily total rain for 1, 2, 3, 4, 5, 6, and 7 days
before today. In the previous sentence, day 1 before
today refers to yesterday, day 2 before today refers to
the day before yesterday, etc. The third step produced a
total of 14 variables for past weather, seven variables
capturing daily total rain for each of the previous
7 days before today and another seven variables
capturing the mean of hourly temperature for each of
the previous 7 days before today.
Fourth step: past weather—average of last 7 days
before today. Drawing on the values from the third
step, we took the mean of the log of rain and the mean
of the log of temperature for the 7 days before today.
The fourth step produced two variables for past
weather: the mean daily total rain and the mean daily
temperature for the 7 days before today.
Fifth step: today’s weather. We took the log of today’s
total rain and the log of today’s mean hourly temperature.

In the regressions we only use the variables from the
second, fourth, and fifth steps; the variables from the first
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and third step were used as inputs to construct variables
in the other steps. All the variables from the fourth and
the fifth step appear in all regressions; that is, in all
regressions we control for the weather during the
previous 7 days before today (fourth step) and for today’s
weather (fifth step). Among the variables of the second
step (future weather), only some variables are entered in
each regression, as shown in the first columns of Tables 2,
3 and 4.

Appendix 2: A Note on the Sample Size
of the Regressions

In Table 2, the sample size of the regressions with
tomorrow’s weather as an explanatory variable (row 1) is
smaller (n=7099) than the sample size (n=7235) of the
other regressions (rows 2–7). The difference arises from
the way STATA computes the mean of variables across
rows. The STATA command “egen x = rowmean (×1 ×2
×3)” produces the mean of x1, x2, and x3; if the value of
one variable is missing, STATA estimates a mean for the
remaining two variables. Nine days had missing data
for tomorrow’s rain or for tomorrow’s temperature, and for
these days the mean rain and the mean temperature for
tomorrow were set to missing values. There were no days
that had two or more consecutive future days of missing
values for weather variables. Therefore, the mean of the
weather variables for days 1 + 2, days 1 + 2 + 3, days 1 +
2 + 3 + 4, days 1 + 2 + 3 + 4 + 5, days 1 + 2 + 3 + 4 + 5 +
6, and days 1 + 2 + 3 + 4 + 5 + 6 + 7 into the future had
more observations than the variable for only tomorrow’s
weather (mean of day 1) since the mean of a weather
variable for two or more days into the future always
produced a non-missing value, even if one of the days in
the future had a missing value. In the article we show that
the main results do not change if we exclude the
observations with missing data for tomorrow’s weather
and run all the regressions with the same number of
observations.
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