Chickpea: Crop Improvement under Changing Environment Conditions
B.K. Sarmah, S. Acharjee, and H.C. Sharma

Abstract

Chickpea, *Cicer arietinum*, is the second most important food legume in Asia after dry beans. Chickpea is an important source of protein, minerals, fiber, and vitamins in the diets of millions of people in Asia and Africa. Chickpea is also rich in essential amino acid lysine and deficient in sulfur-containing amino acids, methionine, and cysteine. Chickpea is mainly used for human consumption and only a small proportion is used as feed. It meets 80% of its N requirement from symbiotic nitrogen fixation and leaves substantial amount of residual nitrogen for the subsequent crops. It is a hardy crop well adapted to stress environments and a boon to the resource-poor marginal farmers in the tropics and subtropics. Average yields of chickpea are nearly 780 kg/ha, although farmers can harvest more than 2.5 tons/ha. The crop potential is nearly 5 tons/ha. Abiotic (drought, heat, and cold stress) and biotic (pod borers – *Helicoverpa armigera* and *Spodoptera exigua*, aphids – *Aphis craccivora*, leaf miner – *Liriomyza cicerina*, and bruchid – *Callosobruchus chinensis*) and diseases (*Fusarium* wilt, *Ascochyta* blight, *Botrytis* gray mold, and root rots) are the major stresses that constrain chickpea production in farmers fields. The major challenge is to reduce the losses due to biotic and abiotic constraints, and close the yield gap through crop improvement and crop management in future. A combination of productivity enhancement through varietal improvement, including biotechnological interventions, and integrated crop management is needed to realize the yield potential of this crop for improving food and nutritional security. Considerable progress has been made in developing high-yielding chickpea varieties to increase the productivity of this crop, while conventional breeding has been successfully used to breed disease-resistant varieties, little progress has been made in developing pod borer and drought-tolerant varieties, as the levels of resistance available in the cultivated germplasm are quite low. Wild relatives of chickpea have high levels of resistance to pod borer. Marker-assisted selection and genetic engineering of chickpea are being exploited to increase the levels of resistance/tolerance to these constraints and in future.
15.1 Introduction

Global warming and climate change present a major challenge to the human beings as we heavily depend on natural resources, particularly agriculture, for food, feed, fodder, timber, fuel wood, and so on. Changes in climate will affect crop productivity and may degrade cultivable land [1, 2]. The natural calamities such as droughts, storms, floods, and heat waves might occur more frequently. A steady increase in temperature, decrease/increase in relative humidity, moisture stress, and increase in atmospheric carbon dioxide (CO2) will also change the relative activity and abundance of insect pests, natural enemies, and their interaction with the host plants. Moreover, increased demand for biofuels will reduce the land available for cultivating food crops [3]. Therefore, there is need to enhance crop production by adopting modern tools of biotechnology and crop management to mitigate adverse effects of climate change.

Cereals, grain legumes, oilseeds, vegetables, and fruits are the major components of food for human beings. Among these, grain legumes play an important role in the dietary and nutritional needs of people, particularly in Asia, Africa, and Latin America. Among the many grain legumes consumed by people, chickpea is the most widely cultivated food legume in the world.

Chickpea (Cicer arietinum L.) is the second most important food legume in Asia after dry beans in terms of area, production, and consumption. Average annual chickpea area in the world is 10.7 million ha with a production of 8.2 million tons – Asia accounts for 90% of the area and 88% of the production of chickpea in the world. Chickpea is an important source of protein, minerals, fiber, and vitamins in the diets of millions of people in Asia and Africa. Chickpea has 23% protein, 64% total carbohydrates, 47% starch, 5% fat, 6% crude fiber, 6% soluble sugar, and 3% ash [4]. Chickpea is rich in essential amino acid lysine and deficient in sulfur-containing amino acids, methionine, and cysteine. Chickpea also contains high amounts of carotenoids such as β-carotene, cryptoxanthin, lutein, and zeaxanthin [5]. Chickpea is mainly used for human consumption and only a small proportion is used as feed. The kabuli type (white or cream seed coat) is generally used as whole grains, while desi type (colored seed coat) is used as whole seeds, dehulled splits, or flour. Chickpea is used in preparation of a wide variety of dishes, popular snacks, soups sauces, enriched breads, and baby foods. Green chickpea leaves and twigs are eaten as a cooked vegetable and contain 4–8% protein [6]. Chickpea is also used as protein-rich animal feed and the vegetable biomass is highly valued as fodder in dry areas where grazing vegetation is scarce. Chickpea also plays an important role in improving soil fertility. It meets 80% of its N requirement from symbiotic nitrogen fixation and can fix up to 140 kg N/ha from air [7]. It leaves substantial amount of residual nitrogen behind for subsequent crops and adds much needed organic matter to maintain and improve soil health, long-term fertility, and sustainability of the ecosystems. Chickpea is a hardy crop well adapted to stress environments and a boon to the resource-poor marginal farmers in the tropics and subtropics.
Chickpea is an annual, self-pollinating, diploid \((2n = 2x = 16)\) pulse crop with a genome size of 931 Mb [8]. It is the third most important grain legume, which is largely cultivated in Asia, Africa (East and North), and the Mediterranean Europe [9]. In recent years, it is also being cultivated in Australia, Canada, and the United States, largely for export to India. Annual chickpea production is 9.7 million tons (mt), followed by cowpea (5.7 mt), lentil (3.6 mt), and pigeonpea (3.5 mt). The major constraints in chickpea production are biotic stresses such as pod borers, \textit{Helicoverpa armigera}, \textit{Spodoptera exigua}, and \textit{Helicoverpa punctigera} (in Australia), cutworm, \textit{Agrotis} spp., aphid, \textit{Aphis craccivora}, leaf miner, \textit{Liriomyza cicerina}, \textit{Fusarium} wilt, \textit{Ascochyta} blight, Botrytis gray mold, and the abiotic stresses such as drought, heat, cold, and high salinity [10]. The estimated yield losses due to abiotic stresses (6.4 mt) are significantly higher than that due to biotic stresses (4.8 mt) [11]. Among the abiotic stresses of chickpea, drought causes a 40–50% reduction in yield globally [8]. The advanced biotechnological approaches suitable to mitigate the major biotic and abiotic stresses are in the following sections.

15.2 Abiotic Constraints to Chickpea Production

Abiotic stresses such as drought, salinity, and high temperature affect crop growth and productivity. The crop under adverse climatic condition shows morphological, physiological, biochemical, and molecular alterations. Drought is one of the major constraints to chickpea production throughout Asia, as the crop is largely grown under rainfed conditions during the post-rainy season or residual soil moisture, and experiences end-of-season drought (terminal drought). Areas prone to drought stress are expanding quite fast [12]. With the prediction of increasing water scarcity, terminal drought will continue to be the major constraint to chickpea production in several parts of the world. Often high-temperature stress during the reproductive phase occurs along with terminal drought stress, particularly in tropical short season-growing environments and during late sown conditions in most environments. Thus, it is important to combine tolerance to both drought and heat stress.

Legumes, in general, are sensitive to salt [13], and increasing use of irrigation has often converted the arable land into saline [14]. Approximately 22% of the agricultural land is saline [15]. Salinity is also a major limiting constraint to chickpea production in many parts of Asia. Saline soils contain sufficient neutral soluble salts (mainly sodium chloride and sodium sulfate) that adversely affect plant growth and grain yield.

Chilling temperatures during early reproductive growth have been reported to cause yield losses in chickpea in many parts of Asia. The plants continue to produce flowers, but fail to set pods when the mean daily temperature falls below 15 °C. Low temperatures also adversely affect size and viability of pollen and ovules, anther dehiscence, pollen germination and pollen tube growth, and fertilization [16]. In the Mediterranean region, the change from spring to winter sowing of chickpea has enhanced yields, but tolerance to low temperature during flowering requires further improvements [17].
A steady rise in the atmospheric concentrations of carbon dioxide has been observed, from 315 ppm in 1959 to 385 ppm at present [18]. The CO₂ concentration will continue to rise to as much as 500–1000 ppm by the year 2100 [19]. This will have a profound effect on crop growth and development [20] and alter the CO₂ metabolism in the plant. Under elevated atmospheric CO₂ concentrations, the nutritional quality of crops will be reduced due to less accumulation of proteins and nitrogen content in the grain and the leaves [21, 22]. Much of the protein in leaves is involved in assimilating carbon dioxide into sugars [23]. There is some yield advantage in chickpea under elevated CO₂, but a simultaneous reduction in nitrogen concentration may decrease the protein content and negate the reduction in protein [24].

15.3
Modern Crop Breeding Approaches for Abiotic Stress Tolerance

15.3.1 Drought, Salinity, and Low Temperature

Efforts are being made to exploit traits that are expected to play an important role in drought avoidance under receding soil moisture conditions by improving water availability to the plant through more efficient extraction of available soil moisture. Drought tolerance is a complex phenomenon involving many known and unknown pathways.

To improve drought tolerance, quantitative trait loci (QTLs) have been identified for stomatal conductance [25–27], transpiration efficiency [28, 29], osmotic adjustment [30–32], relative water content [30, 25], canopy temperature [31, 30], drought sensitivity index [25], leaf ABA [29], chlorophyll content [33], water use efficiency [34], root traits [35, 36] and some yield-related traits [28, 30, 31, 34, 37–40].

The most promising drought-tolerant line, ICC 4958, has 30% higher root biomass than the popular variety Annigeri [41]. Chandra et al. [42] identified molecular markers for a major QTL that accounts for 33% of the variation in root weight as well as in root length. New mapping populations have been developed and are being used to identify molecular markers for additional QTLs. Moreover, understanding physiological mechanisms that regulate drought tolerance, together with the associated regulatory genes, will facilitate crop improvement for water use efficiency and tolerance to drought. The possibility of investigating the response of genes to drought and other stresses by profiling of transcriptome, proteome, and metabolome will offer more information about this complex trait. Besides, studies on functional genomics of chickpea will also help in chickpea improvement.

Earlier studies have indicated limited variability in salinity tolerance in chickpea. However, a recent screening of over 250 germplasm accessions (including 211 accessions of minicore collection) and breeding lines/cultivars revealed wide variation in salinity tolerance [7]. Some accessions gave 10–20% higher yield under salinity stress than the most tolerant variety CSG 8962 released in India. These
results have renewed interest in breeding for enhanced salinity tolerance in chickpea.

Several breeding lines (e.g., ICCV 88502, ICCV 88503, ICCV 88506, ICCV 88510, and ICCV 88516) have been developed, which are able to set pods at lower temperatures (mean daily temperature between 12 °C and 15 °C). A pollen selection method has been developed and successfully applied for transferring cold tolerance from ICCV 88516 to the popular variety amethyst in Australia [43].

15.4 Genetic Engineering of Chickpea for Tolerance to Abiotic Stresses

15.4.1 Drought and Salinity

Abiotic stress is a complex trait that may involve many genes and, therefore, expression of more than one gene is essential to have reasonable tolerance to abiotic stresses. Development of genetically modified (GM) plants by the introduction and/or overexpression of selected gene(s) appear to be quite promising for chickpea improvement. For the development of abiotic stress-resistant transgenic plants, several stress-induced genes with known or unknown enzymatic or structural functions and regulatory proteins have been used. For genetic transformation, stress-induced genes with known functions such as water channel proteins, key enzymes for osmolyte biosynthesis (proline, betaine, sugars such as trehalose, and polyamines), detoxification enzymes, and transport proteins have also been used. Enzymes involved in the metabolic pathways appear more amenable to manipulations than the structural and developmental traits. Stress-induced regulatory proteins that are involved in stress response can be used to enhance tolerance to multiple stresses, including drought, salinity, and freezing [44].

A dehydration responsive element construct, where DREBIA gene from Arabidopsis thaliana is attached to a drought-responsive promoter (rd 29A) is being used to enhance drought tolerance in chickpea [45]. This construct is known to regulate a number of genes involved in the response to drought and other stresses, such as salinity and cold temperature. In the case of tobacco, wheat, and groundnut, overexpression of DREBIA has been shown to improve the drought as well as low-temperature stress tolerance [46–50].

The transgenic tobacco (Nicotiana tabacum) developed using CAP2 gene from chickpea (C. arietinum) encoding a novel AP2 family transcription factor showed increase in leaf surface area and number of lateral roots. Transgenic plants were more tolerant to dehydration and salt stress than the wild-type plants, and expressed high steady-state transcript levels of abiotic stress–response genes NtERD10B and NtERD10C and auxin-response genes IAA4.2 and IAA2.5 [51].

Furthermore, introduction of an osmoregulatory gene P5CSF129A encoding the mutagenized Δ1-pyrroline-5-carboxylate synthetase (P5CS) in chickpea showed accumulation of high proline (two–sixfolds). The transgenic events showed a
decline in transpiration at lower values of the fraction of transpirable soil water (drier soil), and extracted more water than their untransformed parents. However, the overexpression of P5CSF129A gene caused less increase in transpiration efficiency, thereby indicating that the enhanced proline had little bearing on the components of yield architecture that are significant in overcoming the negative effects of drought stress in chickpea [52].

15.4.2

Elevated CO₂ Concentrations

Improving C₃ carbon fixation under temperature and drought conditions can be achieved by manipulation of Rubisco enzyme. The enzyme Rubisco dominates the limitation of C₃ fixation in conditions that restrict the supply of CO₂ such as high temperature or drought. The Rubisco enzyme is higher in plants comprised of chloroplasts encoding eight large subunits (LSU), while the nuclear DNA encoded eight small subunit (SSU) proteins. The large subunit (LSU) of Rubisco contains all the structural information necessary for catalysis, while the function of the small subunit (SSU) remains elusive. Genetic screening and site-directed mutagenesis have focused on the LSU of Rubisco as the catalytic site of the enzyme is on this subunit. Amino acid substitutions in several distinct areas of the Rubisco LSU that influenced the catalytic properties of Rubisco and genetic engineering have resulted in the production of an even less-efficient Rubisco [53–55]. Another alternative approach could be conversion of C₃ pathways to C₄ since C₄ pathway evolved in hot and arid regions in response to increasing O₂ levels as a mechanism to increase the CO₂ concentration at the site of Rubisco [56]. The C₄ system uses the enzyme phosphoenol pyruvate carboxylase (PEPC) to fix CO₂ from the atmosphere into C₄ in the mesophyll cells, which results in regeneration of phosphoenol pyruvate (PEP). Plants with C₄ pathway have a number of advantages, including high photosynthetic performance and high nitrogen and water-use efficiencies (WUE), allowing this group of plants to be highly productive in subtropical regions. Conventional plant breeding approaches have been used to try and transfer C₄ traits into C₃ plants, but these were unsuccessful. In the past decade, genes encoding enzymes in the C₄ pathway have been transferred to C₃ plants resulting in the production of the introduced enzyme [57–59]. However, to achieve this objective, it is necessary to use all the genes isolated from a C₄ species such as maize [60].

15.5

Biotic Constraints in Chickpea Production

15.5.1

Insect Pests

Nearly 60 insect species are known to feed on chickpea. The important insect pests damaging chickpea in different regions are cutworms (black cutworm –*Agrotis*
ipsilon (Hfn.) and turnip moth – Agrotis segetum Schiff, termites (Microtermes obesi (Holmgr.)), leaf feeding caterpillars (beet armyworm, S. exigua (Hub.) and hairy caterpillars Spilarctia obliqua Walker), leaf miners (L. cicerina (Rondani)), aphids (A. craccivora Koch), pod borers (cotton bollworm – H. armigera (Hub.), native budworm – H. punctigera (Wallengren)), and bruchids (Chinese bruchid – Callosobruchus chinensis L., bean bruchid – Acanthoscelides obtectus (Say.), pulse weevil – Callosobruchus analis F., and pulse bruchid – Callosobruchus phaseoli (Gyll.)) [61, 62].

The pod borer H. armigera and the aphid A. craccivora are the major pests of chickpea in the Indian Subcontinent. In the Mediterranean region, the most important pest is the leaf miner L. cicerina. A. craccivora is important as a vector of the chickpea stunt disease, while C. chinensis is the most dominant species in storage.

A continuous search is being made to identify resistant genotypes. More than 14000 chickpea germplasm accessions have been screened for resistance to H. armigera at ICRISAT, India, under field conditions. Several germplasm accessions (ICC 506EB, ICC 10667, ICC 10619, ICC 4935, ICC 10243, ICCV 95992, and ICC 10817) with resistance to H. armigera have been identified, and varieties such as ICCV 7, ICCV 10, and ICCL 86103 with moderate levels of resistance have been released for cultivation [63]. Progress has also been made in understanding the nature of gene action, and resistance to pod borer is largely controlled by additive gene action. Good combiners for pod borer resistance have also been identified [64]. However, most of these lines are highly susceptible to Fusarium wilt. Therefore, concerted efforts have been made to break the linkage by raising a large population of crosses between the lines with resistance to H. armigera and the lines resistant to wilt.

The extent of losses to chickpea in South Asia by this pest is estimated at over US$ 400 million [11]. In the storage condition, bruchids (C. chinensis) cause nearly 20–30% damage.

Global warming and climate change resulting in increased temperatures and reduced humidity will impact insect–host plant interactions in several complex ways. The effects of climate change on H. armigera have been investigated since the larvae of H. armigera have a wide host range [65]. Studies conducted on H. armigera under various ambient CO2 concentrations (550–750 ppm) showed that larvae developed normally under elevated CO2, and the adult moths lived longer, but laid fewer eggs [66]. However, when the larvae were reared on milky grains of spring wheat for three generations at ambient CO2 concentration at 750 ppm, they exhibited slow growth in the second and third instars. It has been suggested that under elevated CO2 concentrations, net damage by the cotton bollworm will be slow due to slow development [67]. Severity of the damage caused by H. armigera and the population relationship between H. armigera and its parasitoid wasp, Microplitis mediator, has also been also studied [68]. The results have suggested that there are no significant changes in wheat consumptions by the larvae or in the parasitism by the wasp under elevated CO2 at 750 ppm.

Bt cotton being resistant to H. armigera was also evaluated under elevated CO2 along with conventional cotton [69]. The results suggest that damage under elevated CO2 might be higher, but there will be less pest population. Coll and
Hughes [70] reported that the *H. armigera* reared on pea plants (*Pisum sativum*) grown under elevated CO$_2$ at 700 ppm were significantly smaller than those reared on plants grown under ambient conditions. Furthermore, they also reported that the omnivorous bug, which feeds on plants but also preys on the bollworm, required prey to complete its development. The bugs performed best when the larvae reared under elevated CO$_2$, as the larvae were smaller and thus easily overcome by the predator. Elevated CO$_2$ may benefit generalist predators through increased prey vulnerability, which would put pest species under higher risk of predation. However, none of the above experiments were conducted under increased temperatures, which might level off the adverse effects of elevated CO$_2$ on *H. armigera* [71].

15.5.2 Diseases

The occurrence of pathogens is related to temperature, rainfall, humidity, radiation, and dew [72]. The movement of pathogens to their host plants depends on several factors, including its mode of dispersal and ability to survive on sources other than its primary host [73]. As dispersal of some pathogens is influenced by rain and winds [23], changes to these factors could also affect the spread of pathogens.

Fusarium wilt, Ascochyta blight, Botrytis gray mold, and root rot are the most important chickpea diseases [74, 75]. Fusarium wilt caused by *Fusarium oxysporum Schl. f. sp. ciceri* is the most important root disease of chickpea. The susceptible varieties can have up to 100% plant mortality. Ascochyta blight caused by *Ascochyta rabiei* is a highly devastating foliar disease of chickpea in northern India, Pakistan, and Central Asia. Botrytis gray mold caused by *Botrytis cinerea* is another important foliar disease of chickpea. It is a serious constraint to chickpea production in northern India, Nepal, Bangladesh, and Pakistan. Collar rot caused by *Sclerotium rolfsii* is becoming a serious problem in several parts of India, particularly central and southern India. Dry root rot caused by *Rhizoctonia bataticola* is a serious disease whenever the crop is exposed to moisture stress and temperature above 30°C. Resistance to Fusarium wilt is necessary for all chickpea-growing areas, and all improved varieties have Fusarium wilt resistance. The foliar diseases, Ascochyta blight and Botrytis gray mold, continue to be a big threat to chickpea production in cooler and humid areas.

Muehlbauer and Kaiser [75] reported that the resistance to Ascochyta blight is multigenic. The pathogen evolves continuously, which makes it difficult to develop lines with stable resistance to this pathogen. The wild relatives of chickpea such as *Cicer chinense*, *Cicer pinnatifidum*, *Cicer bijugum*, and *Cicer judacium* possess high levels of resistance to Ascochyta blight [76, 77].

The wilt caused by the soil borne fungi *F. oxysporum f. sp. ciceri* is an economically important disease of chickpea. Haware and Nene [77] identified seven distinct races of *Fusarium* in India. Of these races, race 1 is common in central India, and race 2 in northern India. However, race 3 and race 4 appear in various pockets of Punjab and Haryana. Race, 0, 5, and 6 were identified in Spain by Jimenez-Daiz *et al.* [78].
15.5.3 Biological Nitrogen Fixation

Biological nitrogen fixation offers an alternative means to increase plant-available nitrogen [7]. Nearly 20% of all N available to the crops is due to rhizobial N fixation [79]. Herridge et al. [80] estimated that 50% nitrogen fixed by a chickpea crop remains underground and is available to the following crop. However, symbiotic fixation of nitrogen is sensitive to even modest soil water deficits [81]. In the case of chickpea, the high nodulating selection ICC 4948 fixed more N and yielded 31% more than its low nodulating version [82]. Sufficient numbers of compatible rhizobia are often not naturally occurring in most of the soils where grain legumes are cultivated [83], and there is need for rhizobia application to seeds [84].

15.6 Modern Molecular Breeding Approaches for Biotic Stress Tolerance

15.6.1 Pod Borers

In the field, the pod borer *H. armigera* is a major threat to chickpea cultivation. Yoshida et al. [85] investigated the mechanisms of resistance to pod borers and found that oxalic acid and malic acid are the major components that govern resistance to *H. armigera*. Genotypes resistant to pod borer accumulated more oxalic acid on the leaves than the susceptible genotypes. Oxalic acid showed significant growth inhibition of the pod borer larvae when included in a semisemifical diet, while malic acid had no effect on larval growth.

Development of crop cultivars with resistance to pod borer is the most cost-effective and eco-friendly option for the control of *H. armigera*, particularly under subsistence farming conditions in the developing countries [86]. Availability of stable sources of resistance is a prerequisite to develop cultivars for resistance to insect pests. Screening of more than 14 000 germplasm accessions and breeding line has resulted in the identification of several genotypes with low to moderate levels of resistance to *H. armigera* for use in breeding programs. Some of these have also been found to be resistant in different agroclimatic zones under natural infestation. Germplasm accessions of wild relatives of chickpea (*C. bijugum*, *C. judaicum*, and *C. pinnatifidum*) have shown high levels of resistance to pod borer [87].

The chickpea cultivars and wild *Cicer* species have been found to differ significantly in their ability to inhibit *H. armigera* gut proteinases [88]. But none of the species offered complete protection against the pod borer by inhibiting the gut proteinases. The wild relatives of chickpea *C. bijugum* exhibited highest larval inhibition (36%), followed by *C. echinospermum* and *C. arietinum* (cv Vijay) (33%).

Stored chickpeas are highly susceptible to attack by the bruchids *Callosobruchus maculatus* and *C. chinensis*. Germplasm with some degree of resistance to bruchids
has been identified, but it appears to be correlated with undesirable physical characteristics of the seed coat. Bruchids-resistant chickpeas are usually consist of thick, dark color seed coat with altered chemical composition, but are less desirable for human consumption.

The preliminary linkage map based on interspecific crosses of *C. arietinum* × *Cicer reticulatum* and *C. arietinum* × *Cicer echinospermum* was made available by Gaur and Slinkard [89]. The mapping population derived from a cross between a wilt-resistant kabuli variety (ICCV 2) and a wilt-susceptible desi variety (JG 62) has been used to develop the first molecular map of chickpea based on an intraspecific cross [90]. A beginning has been made to identify molecular markers for resistance to *Helicoverpa* in chickpea. Mapping genes associated with resistance to *H. armiger* has been reported by Lawlor et al. [91]. High levels of resistance to *H. armiger* have been identified in wild relatives of chickpea (*C. bijugum, C. judaicum, and C. reticulatum*) [63], of which *C. reticulatum* can be easily crossed with the cultivated species to develop mapping populations to identify QTL associated with resistance to *H. armiger*.

A mapping population of 126 F13 RILs of ICCV 2 × JG 62 has been evaluated for resistance to *H. armiger*. The overall resistance score (1 = <10 leaf area and/or pods damaged, and 9 = >80% leaf area and/or pods damaged) varied from 1.7 to 6.0 in the RIL population compared to 1.7 in the resistant check, ICC 506EB, and 5.0 in the susceptible check, ICCV 96029. The results indicated that there is considerable variation in this mapping population for susceptibility to *H. armiger*. Another RIL mapping population from the cross between Vijay (susceptible) × ICC 506EB (resistant) has also been evaluated for resistance to *H. armiger*. Interspecific mapping populations based on the crosses between ICC 3137 (*C. arietinum*) × IG 72933 (*C. reticulatum*) and ICC 3137 × IG 72953 (*C. reticulatum*) have also been developed, and putative QTLs linked to various components of resistance to *H. armiger* have been identified [92].

Based on interspecific genetic linkage map of chickpea (ICC 4958 × PI 489777) and phenotyping for resistance to *H. armiger* and *S. exigua* under field and greenhouse conditions, QTLs associated with resistance to pod borers have been identified [93] and can be used in conjunction with biochemical markers to develop cultivars with resistance to this pest. In addition, oxalic and malic acids and protease inhibitors have been identified as biochemical markers for resistance to *H. armiger* in cultivated chickpea and are being used to identify lines with resistance to this insect [94].

15.6.2

Ascochyta and Fusarium

Ascochyta blight appears to be controlled by several genes [95]. It has also been reported that there are two major complementary recessive genes for resistance to Ascochyta blight [96, 97]. Tekeoglu et al. [97] identified two major QTLs and one minor QTL from the interspecific crosses between *C. arietinum* and *C. reticulatum*. Morjane et al. [98] performed genetic characterization of various isolates of *Ascochyta* of single field using DNA fingerprinting method and 12 haplotypes were
observed with varying frequencies. Santra et al. [99] developed a RAPD marker specific to Indian isolate. Coram and Pang [100] studied the molecular basis of the Ascochyta blight resistance in a highly resistant chickpea accession (ICC3996) and a susceptible cultivar (Lasseter) using microarrays. After inoculation with A. rabiei, a time-series expression patterns of 20 defense-related ESTs were studied and found upregulation or downregulation of 10 defense-related ESTs in ICC 3996 and/or Lasseter compared to the uninoculated control. Hierarchical clustering grouped the ESTs into different clusters. Three defense-related ESTs showed differential upregulation in ICC 3996 compared to Lasseter – a leucine zipper protein, SNAKIN2 antimicrobial peptide precursor, and elicitor-induced receptor protein.

Warkentin et al. [101] constructed a linkage map for resistance to Ascochyta blight and identified one QTL on each of LG3, LG4, and LG6, which accounted for 13%, 29%, and 12% of the total variation, respectively. Of these, three QTLs on LG4 and LG6 were in common with the previously reported QTL for Ascochyta blight resistance, whereas the QTL on LG3 was unique to this population.

The chickpea wilt caused by F. oxysporum f. sp. ciceris is one of the major factors limiting production of this pulse crop. The affected plants exhibit drooping crown, xylem, and stem discoloration and root rotting. Development of resistant varieties is thought to be the most viable strategy to overcome this problem. Muehlbauer and Kaiser [75] reported that resistance to different races of Fusarium is controlled by a single gene. Evaluation of both desi- and kabuli-type chickpea accessions revealed that almost 160 accessions were resistant to the fungus [102]. The wild accessions of C. bijugum, C. judaicum, C. reticulatum, and C. chinonasperum were resistant, while accessions belonging to C. yamashitae were susceptible. Breeding varieties resistant to Fusarium wilt were quite successful. However, some of the cultivars do not show resistance to all the races of the Fusarium wilt [103]. Mayer et al. [104] identified RAPD markers, UBC-170 and CS-27, located on same side of the locus, which were linked to resistance and susceptibility, respectively. Locus specificity of the primer UBC-170 was confirmed by allele-specific associated primer s (ASAPs). ISSR marker (UBC-855) linked to the gene conferring resistance to race 4 of Fusarium has been identified and appears to cosegregate with CS-27 [105]. Later, ISSR makers UBC 825 comprising dinucleotide repeats ([AC]8T) was identified, which was 5.0 cM to the wilt resistant Foc-4 gene [106].

15.6.3 Wide Hybridization

Wild relatives of chickpea are an important source of resistance to leaf miner L. cicerins and the bruchid C. chinensis [107]. Accessions belonging to C. bijugum (ICC 17206, IG 70002, IG 70003, IG 70006, 70012, IG 70016, and IG 70016), C. judaicum (IG 69980, IG 70032, and IG 70033), C. pinnatifidum (IG 69948), and C. reticulatum (IG 70020, IG 72940, IG 72948, IG 72949, and IG 72964) [108] have shown high levels of resistance to H. armigera. Some of the wild relatives of chickpea have different mechanisms than those in the cultivated types, which can be used in crop improvement to diversify the bases of resistance to this pest. High
levels of antibiosis were evident when \textit{H. armigera} larvae were fed on leaves and pods, and the mechanisms are different from those in \textit{C. arietinum} [109].

15.7
Application of Gene Technology

15.7.1
Pod Borers

Bacteria \textit{Bacillus thuringiensis} consists of genes that encode several insecticidal proteins during sporulation (Cry or Cyt) and vegetative growth (Vips) proteins. Crickmore \textit{et al.} [110] described more than 140 genes that produce Cry proteins, with specificities for Lepidoptera, Coleoptera, and Diptera. The Vips also possess toxic effects toward insects [111]. Vip3 is highly toxic to \textit{Agrotis} and \textit{Spodoptera} [105] and \textit{H. armigera} [113].

Globally, insect-resistant crops have been one of the successful applications of plant genetic engineering technology. The first successful genetic transformation of chickpeas was reported in 1997 using the \textit{cry1Ac} gene [114]. Later, transgenic chickpea expressing \textit{Cry1Ac} [115–117] and \textit{Cry2Aa} [118] genes were also generated. Recently, chickpea lines expressing pyramided \textit{Bi} genes, \textit{cry1Ac} and \textit{cry1Ab} [117], have also been developed; however, the previous reports have suggested that \textit{Cry1Ac} is more effective against \textit{H. armigera}, and pyramiding two or more genes with different mode of action is preferred for effective pest management.

Another strategy, known as plant-delivered RNAi or in-plant RNAi, appears to be useful for the control of various insect pests, including the lepidopterans. A cytochrome P450 gene (\textit{CYP6AE14}), which expresses in the midgut of \textit{H. armigera}, is proven to be a suitable candidate gene to control this pest. The \textit{H. armigera} larvae fed on transgenic tobacco (\textit{N. tabacum}) and \textit{A. thaliana} plants expressing \textit{dsRNA} of this gene have shown downregulation of cytochrome P450 gene and a significant larval growth retardation [119]. However, silencing of lepidopteran genes by RNAi has been found to be difficult. There may be several factors responsible for lower efficacy of RNAi in lepidopterans such as absence of RdRP orthologues in most insects [120], barriers to uptake of dsRNA, improper sorting of dsRNA during endosome trafficking to dsRNA-processing machinery, and so on [121]. Till date, the fate of the injected or ingested dsRNA in lepidopteran has not been understood. Recently, a tobacco rattle virus vector was found to be efficient in silencing a lepidopteran (\textit{Manduca sexta}) gene \textit{CYP6AE14} [121].

15.8
Conclusion

Chickpea cultivars with resistance to abiotic and biotic factors will form the backbone of chickpea production in future. The development and deployment of
chickpea plants with resistance to insects would offer the advantage of allowing some degree of selection for specificity effects, so that pests, but not the beneficial organisms, are targeted. Deployment of insect-resistant chickpeas will result in decreased use of chemical pesticides and increased activity of natural enemies and thus, higher yields. For pest management programs to be effective in future, there is a need for the following:

- Utilization of wild relatives of chickpea to diversify the genetic basis and thus, increase the levels of resistance to the target insect pests.
- Identification of quantitative trait loci associated with resistance to abiotic and biotic stress factors.
- Development of insect-resistant varieties through genetic transformation using genes with diverse modes of action.
- Combining resistance to insects with resistance to important diseases, drought, and cold tolerance.
- Focusing attention on crop management and insecticide resistance management.

References

11. Ryan, J. (1997) A global perspective on pigeon pea and chickpea sustainable production systems: present status and future potential, in Recent Advances in...

Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., and Shinozaki,

CPC (2007) Crop protection compendium CAB.

References

114 Kar, S., Basu, D., Das, S., Ramkrishnan, N.A., Mukherjee, P.,

