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Abstract The sequencing and detailed comparative func-
tional analysis of genomes of a number of select botanical
models open new doors into comparative genomics among
the angiosperms, with potential beneWts for improvement of
many orphan crops that feed large populations. In this
study, a set of simple sequence repeat (SSR) markers was
developed by mining the expressed sequence tag (EST)
database of sorghum. Among the SSR-containing
sequences, only those sharing considerable homology with
rice genomic sequences across the lengths of the 12 rice
chromosomes were selected. Thus, 600 SSR-containing
sorghum EST sequences (50 homologous sequences on

each of the 12 rice chromosomes) were selected, with the
intention of providing coverage for corresponding homolo-
gous regions of the sorghum genome. Primer pairs were
designed and polymorphism detection ability was assessed
using parental pairs of two existing sorghum mapping
populations. About 28% of these new markers detected poly-
morphism in this 4-entry panel. A subset of 55 polymorphic
EST-derived SSR markers were mapped onto the existing
skeleton map of a recombinant inbred population derived
from cross N13 £ E 36-1, which is segregating for Striga
resistance and the stay-green component of terminal
drought tolerance. These new EST-derived SSR markers
mapped across all 10 sorghum linkage groups, mostly to
regions expected based on prior knowledge of rice–
sorghum synteny. The ESTs from which these markers were
derived were then mapped in silico onto the aligned
sorghum genome sequence, and 88% of the best hits
corresponded to linkage-based positions. This study
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demonstrates the utility of comparative genomic informa-
tion in targeted development of markers to Wll gaps in link-
age maps of related crop species for which suYcient
genomic tools are not available.

Introduction

Sorghum [Sorghum bicolor (L.) Moench, 2n = 20] is one of
the most important cereal crops and well adapted to harsh
environments characterized by drought and high tempera-
tures. In addition to being an important source of calories
for millions of poor people living in the semi-arid tropics of
Africa and Asia, and an essential livestock feed there and
elsewhere, sorghum has been identiWed as a potential
source of bio-fuel (Antonopoulou et al. 2008). Sorghum is
a model organism for tropical grasses having the ‘C4’ pho-
tosynthetic pathway and is a logical complement to the ‘C3’
grass Oryza sativa (Kresovich et al. 2005), which was the
Wrst monocot with a completely sequenced genome (GoV
et al. 2002; Yu et al. 2002; International Rice Genome
Sequencing Project 2005). Sorghum has a relatively small
genome (»760 Mb; Arumuganathan and Earle 1991) that is
less complex than those of other major C4 crops like maize
(Zea mays L.) and sugarcane (Saccharum oYcinarum).
Genome sequencing of sorghum was initiated at the end of
2005 through the ‘Community sequencing program of
Department of Energy-Joint Genome Institute, USA’ and
during the course of this study the complete aligned
genome sequence (8£) information for this species was
made available to public use (Paterson et al. 2009; http://
www.jgi.doe.gov/sorghum). This has provided an opportu-
nity to better understand genome organization in sorghum,
its wild relatives including Johnson grass (Sorghum hale-
pense), and even maize.

Sorghum is the Wrst species in the crop improvement
mandate of the International Crops Research Institute for
the Semi-Arid Tropics (ICRISAT) for which a reasonable
amount of genomic tools are available that can be exploited
for applied crop improvement. Construction of molecular
marker-based linkage maps in sorghum started during the
1990s with restriction fragment length polymorphism
(RFLP) markers (Hulbert et al. 1990; Pereira et al. 1994;
Chittenden et al. 1994; Ragab et al. 1994; Xu et al. 1994;
Dufour et al. 1997; Tao et al. 1998a; Peng et al. 1999) fol-
lowed by maps adding other marker systems like ampliWed
fragment length polymorphism (AFLP), simple sequence
repeat (SSR), and recently diversity array technology
(DArT) markers (Boivin et al. 1999; Kong et al. 2000;
Bhattramakki et al. 2000; Klein et al. 2000; Subudhi and
Nguyen 2000; Haussmann et al. 2002a; Menz et al. 2002;
Bowers et al. 2003; Mace et al. 2008). Several genomic
regions associated with important agronomic traits including

a range of abiotic stress tolerances [primarily mid-season
and terminal drought tolerance (Tuinstra et al. 1996, 1997;
Crasta et al. 1999; Subudhi et al. 2000; Tao et al. 2000; Xu
et al. 2000; Kebede et al. 2001; Haussmann et al. 2002b;
Sanchez et al. 2002; Harris et al. 2007) and aluminum
tolerance (Magalhaes et al. 2004)], host plant resistances to
hemi-parasitic weeds [Striga spp. (Haussmann et al.
2004)], insect pests [aphids (Agrama et al. 2002; Katsar
et al. 2002; Nagaraj et al. 2005; Wu et al. 2007), midge
(Tao et al. 2003), and shoot Xy (Folkertsma et al. 2003)],
and diseases [of both foliage (Oh et al. 1996; Tao et al.
1998b; Nagy et al. 2007) and panicles (Klein et al. 2001)],
and a range of traits related to grain quality (Lijavetsky
et al. 2000), crop phenology [height and maturity (Lin et al.
1995; Pereira and Lee 1995; Klein et al. 2001; Feltus et al.
2006a)], and yield components (Hart et al. 2002; Hicks
et al. 2002) have been mapped. Now high-density genetic
maps are available for sorghum (Klein et al. 2000; Bowers
et al. 2003). However, these maps have some signiWcant
gaps and many genomic regions are covered by only AFLP
and RFLP markers. At the onset of this study there were
circa 300 publicly available primer pair sequences for
mapped sorghum SSR loci (Brown et al. 1996; Taramino
et al. 1997; Kong et al. 2000; Bhattramakki et al. 2000;
Menz et al. 2002; Schloss et al. 2002).

SSR markers have clear advantages over RFLP and
AFLP markers in terms of technical simplicity, throughput
level and automation (Varshney et al. 2005). SSRs are the
preferred marker system for many breeding applications.
Hence, enriching the existing sorghum linkage map with
more SSR markers is a valuable objective for the sorghum
breeding community globally. Conventional SSR marker
development is a costly and time-consuming process.
Thanks to the availability of genomic or expressed
sequence tag (EST) sequences in public databases and the
recent advent of bioinformatics tools, SSR marker develop-
ment has become easier and more cost-eVective (e.g.,
Jayashree et al. 2006). In the past, SSR markers have been
successfully developed by mining EST databases in several
crops (reviewed in Varshney et al. 2005). EST-SSRs are a
highly valued marker system as they are developed from
transcribed portions of the genome and often target func-
tional diversity. They are also superior in terms of cross-
species transferability, and thus are well suited for applica-
tion in phylogenetic analysis and comparative genome
mapping. The transfer rate of EST-SSR markers from sor-
ghum to paspalum (Paspalum spp.) and to maize was 68
and 61%, respectively (Wang et al. 2005).

The rice genome exhibits substantial collinearity with
the genomes of other grasses, such as sorghum, maize,
wheat (Triticum aestivum L.), and barley (Hordeum vulg-
are L.) (Ahn et al. 1993; Chen et al. 2002; Devos and Gale
1997; Tarchini et al. 2000). A direct comparison of the
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genetic linkage maps of sorghum and rice has been per-
formed by Ventelon et al. (2001) using the mapping infor-
mation of a common set of RFLP probes. Klein et al.
(2003) indicated that the overall architecture of sorghum
chromosome 3 and rice chromosome 1 has remained
largely intact with the exception of one major rearrange-
ment. The sorghum genome has now been reasonably
aligned with that of rice through comparative genetic, cyto-
genetic, and physical mapping approaches (Draye et al.
2001; Bowers et al. 2005, Kim et al. 2005a, Paterson et al.
2009). In this study, we attempted to develop a set of EST-
SSR markers that are expected to provide coverage for
gene-rich regions of the entire nuclear genome using com-
parative genomic information from rice as the sorghum
genome sequence information was not available when the
study was initiated.

Materials and methods

Data mining of sorghum ESTs

Sorghum EST sequences were downloaded in FASTA for-
mat from the J. Craig Venter Institute [formerly, The Insti-
tute for Genome Research (TIGR)] database (http://
www.tigr.org) as of May 2004. The identiWcation of micro-
satellites from these EST sequences was carried out using
SSRIT (www.gramene.org/db/searches/ssrtool), and simple
scripts (written in Visual Basic) to parse SSRIT output into
the relational database. CAP3 (Huang and Madan 1999)
was used to identify the non-redundant EST sequences.
Non-redundant sorghum EST sequences containing SSRs
were then obtained from this local database and used in this
study.

Selection of candidate ESTs and primer design

Non-redundant sorghum EST sequences containing micro-
satellites were BLAST searched against the rice genome
sequence available in the GRAMENE database (http://
www.gramene.org/db/searches/blast) as of May 2004. Each
rice chromosome was divided into Wve arbitrary regions
viz., ‘top’, ‘middle, ‘bottom’, ‘between top and middle’,
and ‘between middle and bottom’. The ten top-scoring sor-
ghum EST sequences for each region of the rice chromo-
some were picked. Thus, a total of 600 SSR-containing
EST sequences of sorghum (10 each for each region of the
12 rice chromosomes) having sequence homology with rice
sequences were identiWed. These 600 candidate EST-SSR
sequences were expected to sparsely cover the entire
nuclear genome of rice, and thereby the corresponding sor-
ghum genomic regions. Primer pairs were designed from
the selected 600 non-redundant sorghum EST-SSR

sequences using Primer3 (http://biotools.umassmed.edu/
bioapps/primer3_www.cgi) after masking the repeat units.
The primer pairs were designed with the following condi-
tions: primer length (min-18nt, opt-22nt, max-24nt), Tm
(min-54°C, opt-57°C, max-60°C), and GC content (min-45,
opt-50, max-60%).

Primer optimization and polymorphism assessment

PCR conditions for the EST-SSR primer pairs were opti-
mized using template DNA of genetically diverse parental
pairs of two sorghum mapping populations available at
ICRISAT, Patancheru viz., N13 £ E 36-1 and BTx623 £
IS 18551. N13 is Striga resistant while E 36-1 is stay-
green, drought tolerant, and Striga susceptible. BTx623 is
an elite hybrid parental line chosen for genome sequencing
(Paterson et al. 2009). It is susceptible to shoot Xy and
being used as the recurrent parent for ICRISAT’s explor-
atory shoot Xy resistance marker-assisted backcrossing pro-
gram. IS 18551 is a shoot Xy resistant donor parent being
used by ICRISAT for shoot Xy resistance QTL mapping
and marker-assisted backcrossing. DNA of parental lines
was isolated using a high-throughput DNA extraction
protocol as reported by Mace et al. (2003) and normalized
to a working concentration of 5 ng/�l.

PCR was performed in 5 �l reaction volume with Wnal
concentrations of 2.5 ng DNA, 2 mM MgCl2, 0.1 mM of
dNTPs, 1£ PCR buVer, 0.4 pM of each primer, and 0.1 U
of Taq DNA polymerase (AmpliTaq Gold®, Applied Bio-
systems, USA) in a GeneAmp® PCR System 9700 thermal
cycler (Applied Biosystems, USA) with the following
cyclic conditions: initial denaturation at 94°C for 15 min
(to activate Taq DNA polymerase) then 10 cycles of dena-
turation at 94°C for 15 s, annealing at 61°C for 20 s (tem-
perature reduced by 1°C for each cycle), and extension at
72°C for 30 s. This was followed by 34 cycles of denatur-
ation at 94°C for 10 s, annealing at 54°C for 20 s, and
extension at 72°C for 30 s with the Wnal extension of
20 min at 72°C. AmpliWed PCR products were resolved on
6% native polyacrylamide gels coupled with silver staining
as described by Tegelstrom (1992).

Mapping of EST-SSRs

The polymorphic markers were subsequently mapped using
recombinant inbred lines (RILs) of N13 £ E 36-1 (Hauss-
mann et al. 2004). The markers polymorphic between N13
and E 36-1 were surveyed on a subset of 94 F3-derived F5

RILs. The segregation data were used to place the new
markers on to the existing skeleton map with 164 previ-
ously mapped RFLP, AFLP, RAPD, and SSR markers
(Haussmann et al. 2002a, 2004) at LOD score of 3.0 using
Mapmaker 3.0v (Lander et al. 1987). The Haldane mapping
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function (Haldane 1919) was used to convert recombina-
tion frequency into linkage map distance. The linkage
groups were oriented and designated following Kim et al.
(2005b).

In silico mapping of ESTs

Aligned sorghum genome sequence information (Sbi 1.4)
for elite sorghum inbred BTx623 was made available for
public use (http://www.jgi.doe.gov/sorghum) during the
course of this study (Paterson et al. 2009). This aligned sor-
ghum genome sequence information was downloaded and
formatted into a database. All mapped SSR-containing EST
sequences (55 markers) were searched against this database
using Paracel BLAST (Altschul et al. 1990) on a Paracel
High Performance Computing system. These sequences
were then aligned on to the sequence-based physical map
according to their hit location on each linkage group.

Results

Data mining of sorghum ESTs

In the TIGR database, about 187,282 sorghum EST
sequences were available when this study was initiated. We
identiWed 39,106 EST sequences with SSRs using the
SSRIT tool. These sequences were clustered using the
CAP3 program to identify 10,044 non-redundant EST
sequences containing microsatellites.

A set of 1,486 non-redundant sorghum EST sequences
containing microsatellites were BLAST searched against the
rice genome in the GRAMENE database. From the sequence
similarity search, 150 sorghum EST sequences had no hits
on rice genome sequence; 180 sequences had homology with
sequences on rice chromosome 1; 130 on chromosome 2,
243 on chromosome 3, 98 on chromosome 4, 115 on chro-
mosome 5, 77 on chromosome 6, 67 on chromosome 7, 66
each on chromosomes 8 and 9, 71 on chromosome 10, 144
on chromosome 11, and 79 on chromosome 12. On each
chromosome, 50 sorghum SSR-containing EST sequences
with highest BLAST search score that provided coverage
across the entire length of each rice chromosome were iden-
tiWed. Thus, 1,486 non-redundant EST sequences were
BLAST searched against the rice genome to identify 600
sequences (50 per rice chromosome). Primer pairs Xanking
the SSR motifs were designed using Primer3. These primer
pairs were designated as ‘ICRISAT Sorghum EST Primers
(ISEP)’ (listed as electronic supplementary information S1).
Among the selected 600 SSR-containing sorghum EST
sequences, 470 (78%) sequences have putative annotations.
The majority of these are classiWed as transcription factors or
DNA binding proteins.

Out of the 600 sorghum EST-SSR markers developed,
63 were di-nucleotide repeats (10.5%); 425 were tri-nucleo-
tide repeats (70.8%); 78 were tetra-nucleotide repeats
(13.0%); and 34 were penta-nucleotide repeats (5.6%). The
most abundant repeats among the selected EST sequences
were AG and CCG. A total of 79 SSR motifs (13%) were of
Class I type of SSRs (¸20 nucleotides in length) and 496
SSR motifs were Class II type of SSRs (>12 but <20 nucle-
otides in length), and remaining 25 SSR motifs were 10
nucleotides in length. Further details on SSR frequency and
distribution in the set of EST sequences used here have
been published by Jayashree et al. (2006).

Primer optimization and polymorphism assessment

PCR conditions for the 600 primer pairs were optimized
using template DNA from the four inbred parental lines of
the two mapping populations, and parental polymorphism
was simultaneously scored. Out of 600 primer pairs, 457
(76.1%) ampliWed the template and 386 (84.5%) produced
simple and easy to score ampliWcation products, whereas
the remaining 15.5% of template-amplifying primer pairs
produced multiple fragments that were diYcult to score.
Most of the primer pairs that produced no ampliWcation or
gave non-speciWc ampliWcation were targeting tri-nucleo-
tide repeats. Of the 386 primer pairs that produced good
ampliWcation proWles, 133 primer pairs (34.5%) detected
polymorphism between N13 and E 36-1 and 140 primer
pairs detected polymorphism between BTx623 and
IS 18551 (listed as electronic supplementary information
S1). In both crosses, di-nucleotide repeats were found most
polymorphic (30–38%), followed by tetra-nucleotide
repeats in the N13 £ E 36-1 cross, and penta-nucleotide
repeats in the BTx623 £ IS 18551 cross.

Mapping of EST-SSRs

The polymorphic markers were surveyed on 94 RILs
derived from the cross N13 £ E 36-1 and the segregation
data were scored. A total of 55 EST-SSR markers were
added (Table 1) to the existing skeleton map of this map-
ping population. These markers mapped to all 10 sorghum
linkage groups and were well-distributed within each link-
age group except in the case of SBI-06 for which the newly
mapped markers clustered along the bottom of the linkage
group in a region corresponding to the long arm of the sor-
ghum chromosome. Among these 55 newly mapped EST-
SSR markers, 9 mapped to SBI-09, 8 markers each mapped
to SBI-02 and SBI-03, 7 mapped to SBI-01, 6 markers each
mapped on SBI-04 and SBI-07, 3 markers each mapped on
SBI-05, SBI-06, and SBI-10, and 2 markers mapped on
SBI-08, with an average of 5.5 EST-SSR markers per link-
age group. The linkage map augmented with these 55
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newly mapped loci spanned 2,838 cM (Fig. 1). Markers
such as Xisep0841, Xisep0733, and Xisep0938 on SBI-02,
and Xisep0138, Xisep0824, and Xisep0843 on SBI-03,
mapped to the vicinity of previously reported stay-green
QTLs (Haussmann et al. 2002b) whereas Xisep0747,
Xisep0701, and Xisep1013 on SBI-02 mapped in the vicin-
ity of previously reported Striga resistance QTLs (Hauss-
mann et al. 2004).

In silico mapping of SSR containing ESTs

All genetically mapped SSR-containing ESTs were then
mapped physically by BLAST search against the aligned
sorghum genome sequence. These markers were then
aligned on to the sorghum physical map (Fig. 1). Physical
map positions were essentially as expected from the genetic

linkage analysis of these markers, except in case of
Xisep0110, Xisep0314, Xisep0522, Xisep0608, Xisep1008,
Xisep1025, and Xisep1128. Physical and linkage map posi-
tions for all 55 mapped markers are listed in Table 1.

Discussion

The nature and frequency of SSRs in sorghum EST collec-
tion has been comprehensively discussed in Jayashree et al.
(2006). Generally, EST-derived SSR markers are found to
be less polymorphic than genomic SSRs. In this study, only
28% of the EST-SSR markers developed were polymorphic
among the four sorghum genotypes initially screened. A
similar percentage of polymorphism (25%) was reported
for EST-SSRs in durum wheat (Eujayl et al. 2002), whereas

Fig. 1 Distribution of EST-SSR markers across sorghum linkage groups. Linkage group nomenclature follows Kim et al. (2005b). Newly added
markers are highlighted in bold font.  Striga resistance QTL and  stay-green QTL
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Thiel et al. (2003) reported 8–54% polymorphism on three
diVerent mapping population parental line pairs in barley.
Di-nucleotide repeats were more polymorphic (listed as
electronic supplementary information S1) than other repeat
classes, as reported by Thiel et al. (2003) in barley. In our
study, a total of 169 EST-SSR markers (28%) detected
polymorphism between parental lines of two mapping pop-
ulations. Among these, 104 EST-SSR markers were poly-
morphic in both populations whereas 36 and 29 detected
polymorphism speciWc to the shoot Xy and the Striga resis-
tance mapping populations, respectively.

Sequence-based alignment studies accelerate the Wlling
of gaps on linkage maps of related species and can be eVec-
tively used for comparative genome mapping across spe-
cies (Klein et al. 2003). When searching the homology of
1,486 non-redundant sorghum SSR-containing EST
sequences against the rice genome, the highest alignment
scores were obtained for those aligning to the long arms of
rice linkage groups (listed as electronic supplementary
information S1). Rice chromosome 3 had the highest num-
ber of hits followed by chromosomes 1 and 11. In the

sequence similarity search, 150 of these sorghum EST
sequences did not have any hit on the rice genome. Klein
et al. (2003) also found that 10% of the sorghum ESTs
studied have no homologs in the rice genome. Interestingly,
this agrees well with the observation that 7% of the pre-
dicted genes from the aligned 8£ shotgun sequence of sor-
ghum inbred BTx623 have no apparent homologs in
Arabidposis, rice or poplar (Paterson et al. 2009).

After incorporating the new markers, the total map dis-
tance for the 94-entry (N13 £ E 36-1)-based RIL popula-
tion was 2,838 cM, which is similar to that reported by Tao
et al. (2000) using 152 RILs and 306 markers. However,
the present map is longer than sorghum linkage maps previ-
ously reported by several authors (Haussmann et al. 2002a;
Pereira et al. 1994; Chittenden et al. 1994). The variation in
map length of diVerent mapping populations is generally
attributed to diVerences in population size, the type of pop-
ulation, and the genetic distance between the parents, which
strongly aVect observed recombination rates, and thus,
genetic distances (Menz et al. 2002). A comparison of the
present map with that of Haussmann et al. (2002a), which

Fig. 1 continued
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was based on a larger sample of progenies from the same
mapping population, revealed that 94 out of 113 (83%)
common markers had the same linear order in both maps.
Some possible rearrangements were detected, which mostly
involved alternative orders for closely linked loci. Such
rearrangements are likely due to the use of a sub-sample of
94 lines from this mapping population in the current study.
The only major change observed in the order of markers
was in the upper part of linkage group SBI-04, inverting the
order of two markers separated by 9 cM. These EST-SSR
markers, however, Wlled gaps or marker-rare regions in the
existing linkage map of sorghum targeted based on rice–
sorghum sequence similarity.

The newly developed EST-SSR markers have shown
practical signiWcance by virtue of their positions. For exam-
ple, Xisep0138, Xisep0843, and Xisep0824, which were
mapped to SBI-03, are located in the vicinity of a stay-
green QTL reported by Haussmann et al. (2002b) (Fig. 1).
Three of the markers mapped to SBI-05 (Xisep1111,
Xisep1107, and Xisep1133) are located in close proximity
to Striga resistance QTLs (Haussmann et al. 2004). These
markers are currently being used by ICRISAT and our
national program partners in the introgression of stay-green
and Striga resistance QTLs into a wide range of farmer-pre-
ferred sorghum genotypes through marker-assisted back-
crossing. Two markers [Xisep0107 (SBI-03) and Xisep0310
(SBI-02)] were selected based on their linkage map posi-
tions and used by the Generation Challenge Programme
(GCP) in large-scale SSR-based diversity analysis of over
3,000 sorghum accessions in a global composite germplasm
collection. Across this very broad range of wild and culti-
vated sorghums, a total of nine alleles were noted for
Xisep0310 and six alleles for Xisep0107 (data not shown).
Such small allele numbers with EST-SSRs in such a large
and diverse set of germplasm, as compared to genomic
SSRs agrees with expectations that EST-SSRs are less
polymorphic than genomic SSRs, as the former are derived
from conserved and expressed regions of the genome.
Although this makes EST-SSRs less useful than genomic
SSRs for Wngerprinting purposes, this lower level of vari-
ability is helpful in diversity analysis, in which relation-
ships between accessions are much more diYcult to assess
when there are large numbers of rare alleles. Hence, these
EST-SSRs have potential for use in assessing functional
diversity among diVerent genotypes, as well as use as Xank-
ing markers for foreground selection in marker-assisted
breeding programs.

In silico mapping of the ESTs (from which these new
SSRs were developed) on the aligned sorghum genome
sequence (Paterson et al. 2009) gave very similar positions
as the conventional linkage analysis, both in terms of chro-
mosome arm location and order. The order of these EST-
SSRs from the in silico mapping agrees with the linkage

map for all ten sorghum linkage groups provided that the
latter are oriented with the short chromosome arm at the
top, as per the suggestion of Kim et al. (2005a). Only seven
(12.7%) out of 55 mapped EST-SSR markers added to the
N13 £ E 36-1-based skeleton map were mapped in silico to
sorghum chromosomes other than those expected. Some of
these diVerences are likely because the ESTs have been
drawn of multi-gene families with members distributed on
more than one chromosome as a result of ancestral genome
duplication events or transposition. For example,
Xisep1025 mapped in silico to SBI-01 where as it is
mapped to SBI-02 based on linkage analysis. However, the
sorghum EST sequence (which had a best hit on rice chro-
mosome 1) from which the primer pair for Xisep1025 was
derived also has a low e-value hit on SBI-02. This may be
due to presence of duplicate loci on SBI-01 and SBI-02.
Recently, 5,012 genomic SSRs were mapped in silico on to
the aligned sorghum genome sequence assembly (Yone-
maru et al. 2009).

The sorghum genome sequencing project has revealed
that predicted gene density in sorghum is much higher at
the ends of each chromosome and that heterochromatic
regions near the centromere are essentially devoid of pre-
dicted genes (Paterson et al. 2009). In silico positions for
all mapped EST-SSRs are located at the ends of sorghum
chromosome arms, away from the centromeric regions, in
agreement with the predicted genomic distribution of sor-
ghum genes. The in silico-predicted physical map positions
of candidate markers (including EST-SSRs that have not
yet been mapped) can help to choose markers to Wll gaps
and better saturate linkage maps. Thus the availability of
genome sequences and other marker information can help
in selecting or developing markers for targeted mapping not
only in a given crop but also in related crops for which
suYcient genomic tools are not yet available in the public
domain.

On-going and future sequencing projects will contribute
many more genomic and genic sequences to publicly avail-
able databases, facilitating development of diVerent types
of markers at lower cost. As economically important
grasses have more conserved regions across taxa than
found in other crop lineages, EST-SSRs should become an
extremely powerful tool for better understanding of rela-
tionships between the grass species and for genetic map-
ping. Our initial attempt to develop EST-SSRs based on
sorghum–rice synteny was successful in Wlling important
gaps in the existing sorghum linkage map. We propose to
investigate further the large number of SSR-containing sor-
ghum EST sequences to develop a dense linkage map based
on these functional markers. The newly developed markers
in hand, which are tightly linked to genomic regions con-
trolling Striga resistance and the stay-green component
of terminal drought tolerance, can be used in functional
123
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analysis of these traits. These markers are being used by
ICRISAT, along with the newly reported CISP markers
(Feltus et al. 2006b), for mapping of sorghum resistance to
shoot Xy, stem borers, and grain mold. Through this study,
we have demonstrated the value of a comparative sequence
similarity approach for targeted development of PCR-com-
patible molecular markers for practical applications in crop
genetics and breeding. It has previously been reported that
more than half (57%) of EST-SSR markers developed from
sorghum ESTs show cross-species transferability (Wang
et al. 2005), hence these markers can also be successfully
used in other related grass species for which insuYcient
numbers of PCR-compatible markers are available. Primer
pairs for non-redundant sorghum EST-SSRs are available
from our database (http://intranet.icrisat.org/gt1/ssr/ssrdat-
abase.html).
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