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Abstract 

Pearl millet (Pennisetum glaucum) is an important cereal grown in adverse agrocli
matic conditions where other crops fail to produce economic yields. Because of the 
cultivation of pearl millet mairily in rainfed production systems of arid and' semi
arid regions, drought is a primary constraint in its cultivation. In addition, high 
temperatures and salinity are emerging as new challenges in pearl millet cultiva
tion in specific production environments. TIlls chapter reviews the research dealing 
with improvement in drought tolerance of pearl millet and also updates the prog
ress made in improving high temperature and salinity tolerance. Response of pearl 
millet to moisture stress at various growth stages has clearly established that yield 
losses are maximum when moisture stress coincides with grain filling stage, which 
is commonly referred to as terminal water stress. Various physiological and mor
phological traits have been examined as alternative selection criteria to further 
enhance tolerance to terminal drought. Conventional approaches to improve 
drought tolerance in pearl millet have a very short history and attemRts have met .' 
with some success. Various novel approaches have been attempted in pearl millet 
for enhancing yield under drought environments. These include use of adapted 
germplasm, genetic diversification of adapted 1andraces through introgression of 
suitable elite genetic material, and exploitation of heterosis to amalgamate drought 
tolerance and high yield. Molecular breeding is fast emerging as, a supplement 
approach to enhance drought adaptation at a faster rate with greater precision. 
Molecular marker-based genetic linkage maps of pearl millet are available and 
genomic regions determining yield under drought environments have been identi
fied preparing a road map for marker-assisted selection. Genetic differences in tol
erance to salinity and high temperature at both seedling and grain filling stages 
have been established and screening techniques standardized. The germplasm and 
breeding material with a higher degree of tolerance to high temperature and salin
ity have been identified in order to use them in breeding programs. 
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12.1 

Introduction 

Pearl millet (Pennisetum glaucum (L). R. Br.), a C4 plant belonging to the family 
Poaceae, has a very high photosynthetic efficiency and dry matter production capac
ity. It is grown under the most adverse agrociimatic conditions where other crops 
fail to produce economic yields. Pearl millet is usually cultivated in regions with 
characteristically low and erratic rainfall, high mean temperature, high potential 
evaporation, and infertile and shallow soils with poor water holding capacity. In 
spite of this, pearl millet has a remarkable ability to respond to favorable environ
ments because of its short developmental stages and capacity for high growth rate, 
thus making it an excellent crop for short growing season and under improved crop 
management. 

Pearl millet is cultivated on about 30mha in more than 30 countries of 5 con
tinents, namely, Asia, Africa, North America, South America, and Australia 
(Figure 12.1). The majority of crop area is in Asia (>10mha) and Africa (about 
18mha). At individual country level, India has the highest area (9.3mha) and 
production (9.5 m tons) and the major pearl millet growing Indian states are 
Rajasthan, Maharashtra, Gujarat, Uttar Pradesh, and Haryana. In Africa, the major
ity of pearl millet acreage is in western Africa where it is grown in 17 countries, 
though Niger, Nigeria, Burkina Faso, Mali and Senegal account for nearly 90% of 
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Figure 12.1 Distribution of pearl millet cultivation across world. 
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total cultivated area in Africa. Pearl millet cultivation is also recently expanding to 
some of the non-traditional areas such as Brazil (about 2 m ha), and it is being 
experimented as a grain and forage crop in the United States, Canada, Mexico, the 
West Asia and North Africa (W ANA), and Central Asia. 

Pearl millet is primarily grown for food for human consumption and its dry 
fodder forms the basis of livestock ration during the dry period of year (November
January) in India [1]. Its grains are mostly used for human consumption in the 
form of diverse food types such as leavened and unleavened flat breads and por
ridges. Several bakery products and extruded and weaning food products are also 
prepared. Besides, pearl millet is a highly nutritious cereal with high level of metab
olizable energy and protein and more balanced amino acid profile [2]. Its grains 
have higher densities of iron and zinc [3], the two most important micronutrients 
for· human. Pearl millet flour can also be substituted up to 20% for wheat flour in 
making leavened bread. Grains of pearl millet are also used as cattle and poultry 
feed. Pearl millet is also an excellent forage crop because of its lower hydrocyanic 
acid content than sorghum. Its green fodder is rich in protein, calcium, phospho
rous, and other minerals with oxalic acid within safe limits. 

Pearl millet production is confronted with relatively fewer biotic stresses com
pared to other crops. Among the diseases, downy mildew (Sclerospora graminicola 
(Sacc.) Schroet.) is the most important constraint in both India and Africa, espe
cially on hybrids in India. Other diseases of relatively minor importance include 
smut (Moesziomyces penicillariae), rust (Puccinia substriata var. penicillariae), blast 
(Pyricularia grisea), and ergot (daviceps fosifonnis). Insect-pests and parasitic weed 
Striga are significant challenges in Africa but not in India. 

Because of the cultivation of pearl millet largely in rainfed production systems of 
semiarid and arid regions of world, crop growth is constrained by several abiotic 
stresses. Drought is the primary abiotic constraint and is caused by low and erratic 
distribution of rainfall. The mean annual rainfall in pearl millet-growing areas 
in India ranges from 150 to 750mm and most of it is received during June
September [4]. In western Africa, the crop is cultivated in regions with annual rain- .. ,' 
fall ranging from 300 to 900 mm [5], the majority of which is received between May 
and October. The bulk of the crop in the ~ahelian zone is grown with an annual 
rainfall of 300-600 mm and a growing season of 75-100 days. The Sudanian zone 
receives an annual rainfall of 600-900 mm with a growing season of 100-150 days. 
The coefficient of variation of annual rainfall ranges from 20% to 30% leading to 
variable drought conditions within and between crop seasons. 

Other abiotic constraints to pearl millet production include high temperatures, 
both during the germination and seedling stage in the rainy season, and during 
the flowering period during the summer season (in parts of India). Salinity is also 
being increasingly recognized as a significant abiotic constraint in many pearl mil
let growing areas in Africa and India, but more so in the prospective areas in the 
W ANA region and Central Asia. This chapter largely deals with drought tolerance 
as significant research efforts have gone into the understanding of and breeding for 
this trait. It also presents preliminary observations, on heat and salinity tolerance. 
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12.2 
Drought: Its Nature and Effects 

A great deal of work has been done on understanding the response of pearl millet 
to moisture stress at various growth stages with a view to understanding its adap
tation to drought stress conditions. It has been conclusively established that effects 

. of water stress depend on the developmental stage during which the crop is sub
jected to stress. Consequently, pearl millet research has concentrated on exploring 
the effects of drought at specific growth stages. 

12.2.1 
Seedling Phase 

Severe moisture stress during emergence and the early seedling phase causes seed
ling death, which results in poor crop establishment. Poor and uneven crop stands 
are some of the major causes of yield losses in pearl millet [&--8] in the semi-arid 
tropics. Stress occurring after crop establishment but within the seedling phase has 
little effect on grain yield [9] provided it is relieved at the later stages before flowering. 

Drought during the seedling phase affects seedling growth in several ways. 1he 
rate ofleaf appearance in seedling is affected by the timing of available water, that 
is, an early drought will prolong the seedling phase [10]. It has been further showed 
that drought affects the close relationship between leaf formation and secondary 
root development. Secondary roots are formed only when there is soil moisture at 
the coleoptile node [11]. Genetic variation in the rate ofleaf appearance and second
ary root formation and their relative rates have been observed under drought [10]. 
1here are no known reports dealing with the genetic manipulation of this trait in a 
breeding program. 

12.2.2 
Vegetative Phase 

/ 
/ 
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Water stress during vegetative growth,.may have little adverse effect on grain yield 
of pearl millet as it has been shown to increase the number of panicles per 
plant [12-14]. It has been established that only 25% of the tillers produce pani
cles in pearl millet under normal conditions [15]. 1he apparent excess produc
tion of tillers provides potential compensation for a damaged main shoot or 
primary tillers [16, 17]. High tillering and asynchrony of tillering contribute to 
adaptation to drought stress during the vegetative growth phase [18-20]. Water 
stress during the vegetative phase reduced the dominance of the main shoot 
and allowed additional tillers to complete their development [12,21]. Accumula
tion of abscisic acid under water stress may be responsible for this reduction in 
apical dominance. 

Water stress during the vegetative growth phase delays flowering of the main 
shoot [12, 13, 20]. 1his phenological plasticity increases the chances for escape, 
first from the most sensitive stage of growth until the stress has been relieved, 
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and second by closing stomata at relatively high water potentials during drought 
in the vegetative period [22]. The crop thus conserves the limited water 
resources, increasing the chances to survive the extended periods of stomatal 
behavior changes. Stomatal opening down to water potentials as low as 
2.3 MPa, during stress after flowering, has been observed [23]. Late-flowering 
genotypes do have a longer GS 1 period, that is, the time between seedling emer
gence to panicle initiation [24, 25] is longer than that for early maturing geno
types. Thus, such genotypes have a higher chance to escape drought stress 
during the most critical growth phases. 

12.2.3 
Reproductive Phase 

Grain yield losses are highest when stress coincides with the most sensitive 
stages of crop growth [26]. It has been found that pearl millet is most sensitive 
to water stress during flowering and grain filling stages [9, 20, 27]. Grain yield 
and its components are drastically reduced when drought occurs during this 
stage [12, 13, 28]. Yield reduction is due to both decrease in the number of pan
icles per plant and decrease in the grain mass. Seed setting that determin~s the 
number of grains per panicle is usually less affected if terminal stress occurs 
after flowering [13, 20]. 

The reduction in grain mass is mainly due to a shortening of the grain filling 
period rather than due to a reduction in grain growth rate [29]. This appears to be 
caused by restriction of the current assimilate supply and not by a reduction in the 
grain storage capacity [29]. Stomatal closure and a consequent reduction in photo
synthetic activity under drought stress have been documented for pearl millet, 
though only at very low water potentials [23, 30-32]. Pearl millet has the capacity to 
compensate for such a reduction in the supply of assimilates to the grains by mobi
lizing stored soluble sugars [28]. This contribution of stored assimilates to the grain 
growth during drought stress has not been quantified. The li9-k between ~' 
grain development and the transfer of assimilates from the leaves, with the stems 
playing a buffering role, appears to be one of the main adaptations of pearl millet to 
terminal drought stress [33]. 

12.3 
Genetic Improvement in Drought Tolerance 

Pearl millet is grown as a rainfed crop in areas where rainfall is too limited for 
higher yielding cereals such as sorghum or maize. Hence, improving drought toler
ance is a priority in pearl millet breeding programs. Breeding for increased adapta
tion to drought is, however, a challenging task due to various complexities 
associated with drought adaptation mechanism, uncertainty in timing, intensity 
and duration of stress, and a large genotype x environment interactions. Conven
tional approaches to improve drought tolerance in pearl millet have a very short 
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history and attempts have met with some, though limited, success. Recently, 
molecular breeding is being viewed as an additional tool to improve drought 
tolerance with greater precision and efficiency. 

12.3.1 
Conventional Breeding 

Empirical breeding for drought tolerance has mainly addressed the issue of criteria 
and environment of selection for improving drought adaptation. Various novel 
approaches have been attempted in pearl millet for enhancing yield under drought 
environments. 

12.3.1.1 Selection Environment 
Choosing an appropriate selection environment to improve .. productivity under 
drought has been a subject of the major debate in plant breeding, and several theo
retical and empirical studies have been reported. Some believe that cultivars tar
geted for drought conditions can be identified under non-drought conditions 
(indirect approach), while others think that selection of drought environments 
should be undertaken under drought stress (direct approach). . 

The indirect approach involves selection for high yield potential under non
stress conditions with the assumption that genotypes selected under optimum 
conditions [34-36] would also perform well under drought. In this approach, 
drought resistance is an unidentified component of performance over differ
ent environments and more emphasis is laid on· yield potential. The main 
advantage of this approach is that yield potential and its components have 
higher heritability in optimum conditions than that under stress condi
tions [37, 38]. Since yield potential has been reported to be a significant factor 
in pearl millet in determining the yield under moisture stress [13, 14, 28, 39], 
improvement in yield potential may have some spillover effects under water 
stress conditions. 

The direct approach recommends that varieties for drought-prone areas must be 
selected, developed, and tested in the target drought environments [40-42]. 
Theoretical analyses also indicate that selection for stress environments should be 
done in stress environments [41, 43, 44]. In this approach, improvement in yield 
under moisture stress requires dissociation from yield potential under optimum 
conditions as a major selection criterion [45-47] and the emphasis is placed on 
drought adaptation and yield under drought conditions. 

The subject of selection environments for improving pearl millet in drought 
environments has received little experimental attention. There are no reports avail
able in pearl millet comparing relative gains in performance under drought condi
tions through selection in drought vis-a.-vis non-drought environments. However, 
there are indirect inferences. For example, low correlations are often reported 
between yields of pearl millet measured in stress and optimum conditions [48-50], 
which indicate that yield performance under drought and non-drought conditions 
are separate genetic entities and direct selection for yield performance in the target 
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Table 12.1 Percent contribution of high yield potential, escape, and droughttolerance in 
determining performance of pearl millet under drought environments. 

No. of Types oflines Yield Escape Drought Reference 
genotypes tested potential tolerance 

105 landraces 5 22 73 [126] 
30 Hybrids 15 [50] 
14 Cultivars 0.4-9.3 23-81 18-68 [42] 
40 Breeding material 4-23 23-37 41-47 [28] 
216 Breeding lines 2-12 46-56 34-36 [13] 

drought environments would be required to make greater gains in productivity. 
This is further substantiated by existence of significant crossover genotype x envi
ronment interactions observed across optimum and stress environments [51-56]. 
Using evaluation data from drought stressed and non-stressed environments, many 
studies showed that drought tolerance and escape were major determinants of per
formance in drought environments (Table 12.1). On the other hand, high yield 
potential accounted for 10-15% variation toward performance in drought environ
ments. This has highlighted the importance of evaluation and selection in drought
prone locations and early maturity, and suggested for in situ breeding for drought 
environments. Alternatively, simple and efficient screening techniques might be 
employed for evaluating large number of genotypes under managed drought 
conditions. 

The work on screening techniques in pearl millet, for adaptation to drought, has 
primarily focused on terminal drought stress, because it causes higher and 
irreversible yield losses. Field screening for response to terminal drought can be 
carried out by withholding irrigation to impose water stress during the rain-free 
seasons to study the effects of drought stress and to identifY whole plant traits asso
ciated with adaptation to a particular stress [12-14, 20, 21, 57]. One such technique 
has been developed at ICRISAT, which compares genotype performance in artifi
cially created terminal stress (flowering to maturity) treatments with performance 
under fully irrigated, stress-free conditions [13, 14, 28]. Drought resistance is then 
determined on the basis of genotype performance in the stressed treatment after 
accounting for differences due to escape and yield potential among genotypes. 
However, off-season drought screening may not necessarily give results similar to 
naturally occurring stress in a rainy season crop like pearl millet, as fluctuations in 
atmospheric conditions or changes in phenology due to different day lengths may 
alter the results. The technique [58] that involves growing plants in main crop sea
son on sloping plots that are opposite to each other and connected to subchannel 
lines with polyethylene sheets avoids this problem by increasing the runoff and 
reducing the water availability. However, this technique has neither been validated 
nor used in applied breeding programs. 

Line-source sprinkler irrigation technique [59], which delivers a continuously 
declining amount of water, has been extensively used for screening sorghum [60, 61], 
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rice [62], and pearl millet [63, 64], especially when crop response to moisture stress 
is non-linear. The major disadvantage, however, with this technique is that even low 
winds may significantly alter the sprinkler patterns [59] and only a relatively small 
number of entries can be accurately tested to detect significant differences. It is 
because of these two factors that line-source sprinklers are no longer used in 
routine assessments of drought response in pearl millet breeding programs. 

Additional limitation of artificially created screening techniques is that they are 
unable to expose the test material to all the combinations of stress the crop might 
subsequently experience given that drought stress occurs in a wide range of combi
nations based on variability in timing, severity, and duration of drought. This 
necessitates selection in the target environments that are highly prone to terminal 
drought. There are extensive evidences from other crops that cultivars for stress 
environments should be selected, developed, and tested under target environ
ments [47, 65-68]. 

Due to the complexity of drought adaptation, it s~ems doubtful that anyone 
method or technique will be universally used to measure drought stress [69] 
because the variability in timing, intensity, and duration of moisture stress is 
almost infinite and screening methods can expose genotypes to only a few combi
nations [70]. In empirical breeding programs, evaluation and selection a~e con
ducted through multilocation testing of test material in locations that are highly 
prone to drought stress [47, 68]. The All India Coordinated Pearl Millet Improve
ment Project (AICPMIP) has carved out a special zone for testing and evaluation of 
experimental cultivars in locations receiving <400 mm of annual rainfall in order 
to identify and release cultivars adapted to drought environments and the results 
are encouraging [71]. 

Thus, maximum progress can be gained with a good understanding of the pre
dominant patterns of drought occurrence in the target environment, appropriate 
material that expresses sufficient genetic variability for the most appropriate traits 
for good adaptation, and reliable conditions for yield testing under drought 
conditions. 

/ , 
I 

12.3.1.2 Selection Criteria 
Several efforts have been made to identify traits that can be used as selection crite
ria in breeding drought tolerant genotypes. Most research has concentrated on the 
identification of physiological parameters like dehydration tolerance [72-76], dehy
dration avoidance [77], growth maintenance through stability of cellular mem
brane [78-80], osmotic adjustment [69, 81, 82], desiccation and heat tolerance [69], 
leaf gas exchange rate [83-85], and radiation reflectance [77] in various crops, 
including pearl millet [86]. However, most of these have hardly found any place in 
routine breeding programs, particularly in developing countries, owing to the lack 
of simple and easy techniques for selecting such characters on a large scale. On the 
other hand, morphological characters that can be measured easily appeal most to 
plant breeders for use as selection criteria. 

Growth in greenhouse pots under different soil moisture regimes, germination 
of seeds and growth of pearl millet seedlings in dimannitol solutions, and stability 
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of extracted chlorophyll under heat treatments to test drought resistance has been 
used in pearl millet [87]. Such studies under controlled conditions, however, do not 
necessarily represent the limiting moisture conditions of the field. 

A rapid development of the crop in the initial stages, that is, early vigor, has been 
correlated with drought tolerance as measured by time taken for wilting initiation 
and permanent wilting in pearl millet [88]. A crop with more rapid leaf area devel
opment could intercept a greater portion of incident radiation and limit water 
losses by soil evaporation. However, there are apprehensions that greater transpira
tion from a larger leaf area will exhaust soil water resources and cause severe water 
deficit in later growth stages [33]. 

Early flowering, the most important factor determining yield under terminal 
water stress [14, 28], is recognized as another selection criterion, although its 
advantage is due to drought escape rather than due to drought tolerance. Genetic 
variability for earliness is widely available in pearl millet [89, 90] and simple 
selection has been successful under most circumstances [91]. The most widely 
used sources of earliness are the Iniadi-type landraces from western Africa [92, 93]. 
New early-flowering cultivars bred by using Iniadi landraces have been widely 
adopted by farmers in India and Africa. However, value of earliness as a selection 
criterion is significant only if drought predictably occurs toward the end of the 
growing season. 

Panicle threshing percentage is another criterion proposed for improving toler
ance to terminal drought that indicates the plants' ability to set and fill grain under 
water limiting conditions and it integrates the effects of assimilation and trans
location under water stress. Research has indicated that it usually explains a large 
proportion of the variation among genotypes for grain yield under terminal 
drought stress [28, 77, 94]. Results of a selection study on panicle threshing per
centage also indicated that grain yield can be increased under stress conditions [94]. 
Furthermore, it has been shown that even in a small set of inbred lines, the narrow 
sense heritability for threshing percentage was sufficiently high to expect signifi
cant gain from selection for this trait under drought conditions [95]. Using this 
selection criterion, an open-pollinated variety (OPV) (ICMV 221) has been devel
oped from a high-yielding and early-maturing composite at ICRISAT. 

Low tillering and large panicles are commonly being used as selection criteria in 
pearl millet breeding. Selecting for these traits results in higher grain yield per pan
icle [14, 96], which are important yield components in pearl millet [97-99]. These 
traits are frequently assessed visually, under both drought and non-drought condi
tions. Variability in panicles size, yield per panicle, and tillering is abundant in 
pearl millet [90, 96, 100-105]. However, their specific contribution to improved 
grain yield and stability under terminal drought condition has not been quantified. 

Some studies have also used mathematical models to identifY crop cultivars that 
are productive in stressful marginal environments by comparing the change in 
seed yield between stress and non-stress (optimum) environments [14, 35, 44,73,106-
108]. Drought susceptibility index [106] that is based on the ratio of yield of individ
uallines under stress and non-stress conditions to the line means across stress and 
non-stress has also been widely used in identifying genotypes adapted to 
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stress [14, 50, 108-111]. Drought response index to provide an indicator of drought 
tolerance that was independent of escape and yield potential in favorable environ
ments has also been developed [14]. Drought susceptibility index of pearl millet 
genotypes is a useful criterion to identify genotypes adapted to drought stress con
ditions, but should be used in combination with yield under stress [50]. It has also 
been demonstrated that drought response index would be useful to identify geno
types adapted to stress environments, if days to flower don't differ considerably 
among test entries [50]. 

12.3.1.3 Yield Improvement 
Yield improvement in pearl millet under drought is essential for ensuring high 
grain yield under stress environments. Though drought tolerance might be per
ceived differently by physiologists, breeders, agronomists, or biochemists [112], 
farmers measure the success of new cultivar under drought environments by a 
known (often >15%) yield advantage. Various genetic approaches have been 
successfully employed to achieve significant gains in pearl millet productivity 
under drought conditions. These strategies include use of adapted germplasm, 
genetic diversification of adapted landraces through introgression of suitable 
elite genetic material, and exploitation of heterosis. 

12.3.1.3.1 Use of Adapted Germplasm for Stress Environments The base material 
required for a successful breeding program may differ for the drought and more 
favorable environments. Success in drought environments is often much more a 
consequence of adaptation to environmental stresses than it is of yield potential per 
se, which is not effectively expressed under severe stress. Plant breeders focusing 
on drought environments are faced with the choice of trying to improve either the 
adaptation of high yielding, but poorly adapted germplasm, or the yield potential of 
already adapted germplasm, often in the form oflocallandraces [113]. Improving 
adaptation to marginal environments is the more difficult alteljlative. than is 
improving yield potential, as adaptation is much less well unders~bod, physiologi
cally and genetically, than is yield potential. However, improving yield potential in 
traditionallandraces is constrained by a characteristic plant type that favors adapta
tion over productivity [16, 17]. 

The breeding material should provide a good starting point for the program, that is, 
high productivity under drought conditions, as well as sufficient genetic variation to 
allow gains from selection. Pearl millet landraces that evolved in dry areas as a result 
of natural and human selection over centuries exhibit good adaptation to drought and 
other naturally occurring stresses [55, 56, 114-117] and represent a largely untapped 
reservoir of useful genes for adaptation to stress environments. A few attempts have 
been made to exploit them in pearl millet breeding programs in a systematic way. 
Given that landraces are genetically heterogeneous populations [118, 119], they make 
very appropriate base genetic material for improving adaptation to drought and other 
abiotic stresses. A few cycles of mass selection in landraces can increase yield consid
erably [120, 121]. Landrace-based populations adapted to drought have also been 
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shown as a useful source material for breeding inbred restorer lines [122]. However, 
selection needs to be carried out in target environments so that adapted germplasm 
can express its potential fully in area of its adaptation [41,123]. 

A commercial pearl millet variety, CZP 9802, has been developed from selected 
drought-adapted landraces [124]. In the Indian national testing system for new cul
tivars, its grain yield performance was 25-58% superior to two national checks 
(ICTP 8203 and Pusa 266) in drought environments and it also maintained its 
superiority under near-optimum growth conditions by a margin of 16-47% for 
stover yield and 4-6% for grain yield. It demonstrated that landrace-derived culti
vars can have unique features of adaptation to drought stress in addition to respon
siveness to improved conditions. As a result, pearl millet variety CZP 9802 was 
released by the Government of India for cultivation in drought-affected pearl 
millet-growing areas in the states of Rajasthan, Gujarat, and Haryana; and it has 
been adopted very well in drought-prone areas of north-western India [125]. 

12.3.1.3.2 Genetic Diversification of Drought-Adapted GermpJasm The traditional 
cultivars and landraces of pearl millet from drier regions possess good levels of 
drought adaptation [126], but fail to capitalize on yield-enhancing nutrient and 
moisture conditions, in the native soils, or externally applied [55, 127]. On the other 
hand, elite genetic material has a greater yield potential expressed under better 
endowed conditions, but lacks adaptation to severe drought stress condi
tions [16, 55, 120, 127]. Detailed physiological studies suggest that these two con
trasting groups of genetic materials have differential pathways to yield formation 
under drought stress [16, 17]. The use of elite breeding material may ensure the 
yield potential, but leaves behind the difficult task of improving adaptation. Land
races may ensure adaptation to drought stress, but they would need to be improved 
considerably for productivity. This situation suggests good prospects of breeding 
for drought-prone environments by diversifying the base of adapted landraces 
through use of appropriate genetic material to amalgamate the adaptation ofland
races with high productivity of elite genetic materials. Given that the Indian land
races are characteristically high tillering and have small-to-medium sized seeds, 
African elite materials possessing complimentary traits like lustrous and bold 
grain, compact and large panicles, and rapid grain filling are potential sources for 
introgression of variation [128]. 

Several attempts have been made in this direction through hybridization of 
selected landraces and elite materials (Table 12.2). There was considerable improve
ment in both grain and stover yield in crosses with individual crosses providing up 
to 50% higher grain and stover yields under drought stress [56,114,116,129]. Also, 
crosses had enhanced adaptation range, beyond that of their parental populations 
as they were better able than their landrace parents to capitalize on the additional 
resources of good growing seasons and simultaneously have a better capacity than 
their elite parents to tolerate drought [56, 116, 129-131]. These results suggested 
that the hybridization between landraces and exotic populations breaks up gene 
complexes of two contrasting groups of genetic material [41, 132, 133] and is effec
tive in combining drought tolerance and high productivity. 
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Table 12.2 Mean per cent improvement in performance of crosses between land races and elite 
composites over land races. 

No. of No. of elite Average improvement in Average improvement in Reference 
landraces lines crosses for grain yield crosses for stover yield 

4 5 9 17 [117] 
4 3 17 11 [115] 

3 4 20 26 [116] 

3 6 3 7 [130] 
5 5 2 13 [129] 

12.3.1.3.3 Exploitation of Heterosis Pearl millet is a naturally cross-pollinated 
crop and several sources of highly stable cytoplasmic genetic male sterility (CMS) 
systems are now available [134-136]. These two attributes render pearl millet an 
excellent crop to exploit heterosis through production of commercial hybrids. 
There are numerous reports of high magnitude of heterosis in pearl mil
let [48, 49, 137], but a vast majority of them are from drought-free high-productivity 
environments, leading to argument that heterosis is best exploited under highly 
productiveenvironmen~. 

The exploitation of heterosis in pearl millet for yield enhancement under 
drought conditions has been explored through developing hybrids between elite 
male-sterile lines and pollinators developed from drought-adapted landraces to 
combine the adaptation of landraces with a higher productivity potential achieved 
through heterosis expressed in hybrids. Many studies, based on a wide range of 
male-sterile lines and landraces, have quantified the degree of improvement in 
hybrids over adapted landraces under water-limited conditions (Table 12.3). Aver
age improvement in grain yield of landrace-based topcross hybrids (TCHs) over 
their landrace pollinators was 15% with potential benefit of up to 75% in best 
hybrids. Choice of male-sterile lines had considerable effect on the manifestation 

, / 

of heterosis for grain and stover yields [138, 139] and thus has a great bearing on 
manipulating grain/stover relationship of hybrids. 

Table 12.3 Mean and maximum (in parentheses) heterosis (%) in pearl millet topcross hybrids 
over land race pollinators. 

No. of male-sterile (A) No. oflandrace Average heterosis (%) Reference 
lines F" pollinators for grain yield 

2 19 31 (75) [138] 
3 6 15 (28) [182] 

12 6 18 (61) [140] 
15 1 3 (26) [183] 

7 7 5 (17) [139] 
1 4 32 [121] 
2 15 22 [184] 
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Considering that in drought-prone regions, livestock (maintained largely on pearl 
millet dry stover) is an integral component of rural economy, any improvement in 
grain yield should not be at the cost of stover yield, and hence total biomass produc
tivity needs to be increased. This objective was achieved through landrace-based 
hybrids. An average of 15% heterosis in growth rate in TCHs based on landrace 
pollinators [138] has been reported, which translated to a positive biomass heterosis. 
The partitioning of this extra biomass to either grain or fodder appeared to be 
controlled by the harvest index of the seed parent, resulting in differential heterosis 
for either grain or stover yields, depending upon the seed parent used [139]. 

Research has also shown that variation in biomass heterosis is the major deter
minant of both grain-yield heterosis and stover-yield heterosis [140]. However, con
tribution of harvest index heterosis to grain- and stover-yield heterosis has been 
observed to be of a compromising nature. Harvest index heterosis leads to a posi
tive higher grain-yield heterosis but negative heterosis for stover yield, suggesting 
that the strategy for increasing grain yield by improving harvest index will not 
result in the desired outcome in the marginal drought environments where stover 
yield is also important. There are reports of exploitable genetic differences among 
the male-sterile lines and landrace-based restorers in their ability to produce heter
otic crosses for biomass [140-143] and selection for biomass can be highly ~ffec
tive [144, 145]. These results have clearly demonstrated that it is possible to 
improve the grain and stover production to meet farmers' needs, while retaining 
critical adaptation to drought environments by exploiting heterosis between 
drought-adapted pollinators and carefully selected male-sterile seed parents that 
partition the extra dry matter to both grain and stover. Thus, exploiting heterosis in 
hybrids is an effective and rapid way to improve pearl millet production, while 
retaining critical adaptation to drought environments. 

These results have been extended to pearl millet hybrid breeding for drought
prone environments of northwestern India. Since last one decade, a large number 
of hybrids and open-pollinated varieties have been tested under drought environ
ments and it has been explicitly shown that hybrids provided 25% higher grain_' 
yield than OPYs [71]. This magnitude of advantage in grain productivity of hybrids 
shows that hybrids have greater yielding capacity than OPYs under drought 
environments and are likely to playa much greater role in enhancing pearl millet 
productivity in drought-prone regions. 

12.3.2 
Molecular Breeding 

Because of the intrinsic difficulties in breeding for drought adaptation by conven
tional phenotypic selection [146, 147], this field has become a prime focus for 
molecular marker-assisted breeding. Efforts in this direction started in pearl millet 
in the early 1990s with the development of a molecular marker-based genetic link
age map that largely comprised of RFLP loci [148]. This linkage map was short 
(about 300cM), but was longer than subsequent maps [149-151] based on crosses 
of cultivated pearl millet with accessions of its wild progenitors. The linkage map 
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has been expanded [152] and current genetic linkage map of pearl millet is 
1148 cM long [153]. 

Genetic mapping has targeted terminal drought tolerance. Research at ICRISAT 
has identified quantitative trait loci (QTL) that had significant effects on pearl millet 
yield in drought stress environments [105, 154, 155]. Comparison of hybrids with 
and without these QTL showed that QTL-based hybrids were significantly, but mod
estly, higher yielding in a series of terminal drought stress environments [154]. 
However, this gain under stress was achieved at the cost of a lower yield in the non
drought environments. A major QTL mapped on Linkage Group (LG) 2 accounted 
for up to 32% of the phenotypic variation in grain yield under post-flowering 
drought stress environments [155, 156]. In addition, a number of other QTL were 
detected that were associated with maintenance of grain yield-determining compo
nenttraits [157]. 

The QTL with little interaction with environment [158] has been transferred to 
drought-sensitive pearl millet lines through marker-assisted backcross breed
ing [159]. Several introgressed lines carrying LG 2 genomic region exhibited posi
tive general combining ability (GCA) for grain yield under terminal stress that was 
associated with a higher panicle harvest index [157]. Physiological dissections indi
cated that lines having QTLs had lower transpiration rate compared to lines not 
carrying this QTL. There are reports that LG 2 QTL is also associated with salinity 
tolerance [160]. 

12.4 
Heat Tolerance 

Several growth processes like the rate of germination, rate of coleoptile elonga
tion, or the rate of photosynthesis require rather high optimum temperatures, 
for example, 35°C in pearl millet [161], which is indicative of good adaptation 
of pearl millet to the hot growing conditions in the Sahel and in ~any parts of 
India. The high temperature tolerance has relevance at both seedling and repro-
ductive stages of crop. . 

12.4.1 
Tolerance at Seedling Stage 

Germination rate and final germination percentage are reduced following short 
exposure to 50°C, but not at 45 °C [161, 162]. At constant exposure to 47°C, no 
germination has been observed under controlled environment conditions. Field 
studies in the Sahel [10] indicated that pearl millet seedlings are most vulnera
ble to high temperatures during the first 10 days of sowing. This was confirmed 
by field studies in the Indian Thar Desert [163]. During other stages of seedling .. 
growth, the effect of high temperatures is small when the available water is sm. 
ficient for transpiration that cools the leaves [10, 163]. Controlled environment 
studies with young seedlings have shown that pearl millet responds to 
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supraoptimal temperature conditions with the production of a series of heat 
shock proteins [164]. A conditioning or hardening effect of intermediate tem
peratures has also been observed. 

High seedbed temperature (>45°C) is one of the most important factors 
causing poor plant stands of pearl millet [165]. Poor seedbed preparation, 
inappropriate sowing methods, poor seed quality, and low soil fertility are other 
factors responsible for low and variable plant populations. Plant stand losses 
due to these factors can be minimized by better agronomic management, but 
losses due to high soil surface temperature are difficult to control by cultural 
methods. Therefore, genetic improvement in tolerance of high seedbed temper
ature assumes importance. 

A rapid screening procedure for seedling emergence under high temperatures, 
using a large steel tank and infrared heat lamps mounted on an adjustable rack 
suspended over the tank is in place [8]. Temperatures can be adjusted by raising 
and lowering the lamp rack. This procedure was used for a selection experiment in 
two populations for two cycles and found that it was effective in increasing emer
gence under high temperature conditions in the absence of water stress [166]. 

Peacock et al. [163] identified genetic differences in seedling survival under high 
soil surface temperatures using a field screening procedure during the hot and dry 
seasons in sandy soils in the Thar Desert in India. The method is rapid and 
inexpensive and can be used with a large number of genotypes. Its usefulness, 
however, is limited because tests can be conducted only during 2 months in a year, 
and experiment's failure due to occasional rains is possible. The present use of this 
method in a selection study indicates that it is effective in identifying genotypes 
with superior seedling heat tolerance [167, 168]. 

To overcome limitations of the field screening procedure, a controlled environ
ment method using a sand bed that can be heated electrically and a laboratory 
method based on measuring membrane thermostability have been developed [169]. 
Initial results from a selection study in variable populations show that both proce
dures appear to be effective in increasing seedling survival under heat stress. 
Results from these two procedures show good correlations with field results. Their 
advantage appears to be higher heritabilities and more flexibility in their 
application [167,168]. 

12.4.2 
Tolerance at Reproductive Stage 

In view of climate change and rising temperatures, tolerance of crops to high tem
perature during their reproductive stage has recently assumed high significance. 
A temperature rise of 0.5-1.2 °C by 2020, 0.88-3.16 °C by 2050, and 1.56-5.44 °C 
by 2080 has been projected for South Asia [170]. It has also been projected that by 
the end of twenty first century, mean annual temperatures in India will increase by 
3-6°C [171]. Climate change models have indicated drastic reductions in yield of 
cereal crops in tropical regions with moderate increase (I-2°C) in temperature. 
This is likely to result in significant changes in cropping pattern and areas of crop 
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production, and maize and sorghum might be replaced by pearl millet in some of 
the semi-arid regions of Asia and Africa. 

The impact of high temperature stress during reproductive period has been stud
ied in many crops. High temperature stress (>35°C) for Ih has been found to 
induce spikelet sterility in rice [172, 173]. Similarly, temperature higher than 36°C 
is reported to reduce pollen viability in maize [174] leading to reduction in yields. 
Similar effects of short spells of high temperature during flowering on fertility have 
been reported in sorghum [175] and wheat [176]. Contrary to this, pearl millet has 
good degree of tolerance to high temperatures of up to 42°C during flowering. 
Hence it has occupied considerable areas (>600000 hal in the hot and dry post
rainy season (locally referred to as summer) in the northern and western parts of 
India. In summer season, pearl millet hybrids of 80-85 day duration can provide 
4-5 tonsjha of grain and 8-10tonsjha of dry stover under irrigated and well-man
aged conditions. Owing to higher air temperatures (often above 42°C) coinciding 
with flowering in this region, the summer crop suffers from spikelet sterility lead
ing to drastic reductions in grain yield. Only a few hybrids have shown good seed 
set under such high temperature conditions, leaving a limited choice of cultivars 
that always runs the risk of such cultivars breaking down to downy mildew. Thus, 
there is a need to identify sources of flowering-period heat tolerance to strengthen 
the hybrid breeding program for summer season. 

ICRISAT made initial efforts in this direction by conducting some pilot studies 
under both controlled environmental and field conditions in target environments 
of northwestern India. In the controlled environments, screening for heat tolerance 
is conducted under growth chambers (simulated for a normal day where maximum 
temperature reaches 43°C) by exposing pearl millet to high-temperature stress at 
boot leaf stage [177]). Screening for heat tolerance is also conducted under field 
conditions in target environment of northwestern India. Since the occurrence of 
high temperatures is unpredictable and breeding lines generally have a wide range 
of maturity, material is planted at three different dates during February-March at 
about 10 days interval at three-four locations with high tempera~es so that the 
temperatures of 2':42 °C coincide with flowering of all the entries at least in one 
of the planting dates at each location. Weather loggers are installed in the experi
mental field to record air temperatures on hourly basis. The nursery is irrigated at 
regular intervals to avoid moisture stress in the field. 

Dates of emergence of boot leaf and flowering are recorded in each planting date, 
and panicles are bagged after pollination to protect them from bird damage. At 
dough stage, seed set is recorded and data on seed set of plants that got exposed 
during flowering to air temperatures of 2':42 °C across the three dates are used to 
identify those with higher seed set (>60%) and presumably with high levels of heat 
tolerance. 

Large genetic variation in tolerance to heat at reproductive stage among pearl 
millet breeding lines and populations has been observed, and heat-tolerant sources 
have been identified. Based on multilocational screening during the 2009-2010 
summer season, two maintainer lines ICMB 92777 and ICMB 05666 were found 
to have >60% seed set when the air temperature during flowering exceeded 42°C. 
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In addition, four B-lines (ICMB 00333, ICMB 01888, ICMB 02333, and ICMB 
03555) were found as heat tolerant on the basis of 2010 screening that needs fur
ther validation in multiyear and multilocation testing. Populations like ICMV 
82132, MC 94, ICTP 8202 and MC- Bulk have also been identified as sources of 
heat tolerance for further selection. Three germplasm accessions (IP 19799, IP 
19877, and IP 19743) were also identified as heat tolerant (seed set of >50%), and 
can also be further utilized for diversifying the genetic base of heat-tolerant materi
als in pearl millet. However, the mechanism of heat tolerance is yet to be investi
gated in these materials. 

The lines identified for heat tolerance need to be validated for this trait and those 
found stable can be used for developing mapping populations to identifY QTL for 
use in marker-assisted breeding. Among the three major abiotic production con
straints presented in this chapter, marker-assisted breeding is likely to be more suc
cessful for flowering period heat tolerance because the upper limit of temperature 
is known well predictably unlike salinity and drought stress. The main challenge 
would be to identify reliable QTL because the temperatures during flowering 
time below the predicted maximum might vary (sometime below 40°C) due to occa
sional rains and cloud cover, and thus pose a challenge to reliable phenotyping for 
this trait. Development of a controlled environment facility for high temperatures 
maintenance during flowering would accelerate the process of QTL identification. 

12.5 
Salinity Tolerance 

Salinity is a major constraint to crop production, especially in the arid and semi
arid regions of the world, where low precipitation, high surface evaporation, irriga
tion with saline water, rising water tables, and poor irrigation practices generally 
increase the levels of soluble salts. Increased frequency of drought events over 
most land areas [178, 179], coupled with higher temperature, will intensify saliniza- .. 
tion due to increasing upward capillary transport of water and water-soluble salts 
from the groundwater to the root zone with no or negligible leaching under water
limiting environments [180, 181]. Thus, salinization is expected to be increasing in 
the future climate change scenario. At present, about 77 mha (5-7% of the cultiva
ble lands) are affected by salinity across the globe. Management of saline soils by 
flushing out of salts using fresh water is costly, and is limited by availability of fresh 
water. Thus, crop production by using salinity-tolerant crops is one of the best 
options. Pearl millet having high in-built tolerance to saline soils will be in advanta
geous position and can be deployed in saline lands for grain and forage production. 

Some preliminary research work has been done at ICRISATon salinity tolerance 
in pearl millet in collaboration with the International Center for Biosaline Agricul
ture (ICBA), and its NARS partners in both India and WANA region. Advanced 
breeding materials have been screened for salinity tolerance at ICRISAT, Patan
cheru, India, and ICBA, Dubai, initially through pot culture method, which is 
followed by screening of these identified materials in salinity-affected fields. In pot 
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Table 12.4 Performance of salinity.tolerant pearl millet breeding material under saline fields at 
Gangavathi, Karnataka, India during 2004--2005 [185]. 

Type of breeding material 

B-lines: ICMB 01222, ICMB 96333, ICMB 95222 
Sensitive B-line (control) 
R-lines: HTP 94/54, CZI 9621, ICMP 451 
Sensitive R-line (control) 
Gennplasm accessions: IP 6105, IP 6098, IP 22269 
Improved populations: Dauro genepool, Sudan Pop III, 
HHVBCTail 

Grain yield 
(kg/ha) 

940-1265 
797 
1081-1311 
974 
1155-1411 
1452-1996 

Range 

Dry fodder yield 
(kg/ha) 

3980-6940 
2486 
4113-6721 
3794 
4196-6117 
4009-6117 

rulture method, breeding material is grown in pots with salinity treatment in 
an outdoor environment equipped with a rainout shelter along with controls. At 
ICRISAT, a 200mM NaCl treatment is provided for screening tolerant genotypes, 
whereas screening is done at 5, 10, and 15 dS/m salinity levels at ICBA. This) salin
ity-tolerant material identified under controlled environments then undergoes test
ing in salinity-affected fields at Gangavathi (Karnataka, India), Rumais (Sultanate of 
Oman), Dubai (UAE), and some other locations in WANA region. The trials are 
drip irrigated with saline water (7.5-8.25 dS/m) at Dubai and Rumais, while they 
are conducted under saline rainfed conditions at Gangavathi. 

Screening resulted in identification of advanced breeding lines, parental lines of 
potential hybrids, improved population (including open-pollinated varieties), gene 
pools and composites, and germplasm accessions with high biomass (forage) pre
sumably with high degree of salinity tolerance under salinity levels up to 15 dS 1m 
(Table 12.4). In the short-to-medium terms, some of these materials can be released 
for rultivation after extensive validation of their yield performances in on-farm 

I 
trials. Working on these lines, a pearl millet variety "HASHAKI I" has been identi-
fied for release in Uzbekistan in 2012 as a high-forage variety for salt-affected 
areas. The identified salinity-tolerant pearl millet lines should be utilized in breed
ing programs to develop salinity-tolerant locally adapted cultivars (both OPVs and 
hybrids). This will enable farmers in salt-affected areas to adopt and grow a new 
crop such as pearl millet in lands that otherwise are fallow most of the years. 

Since populations have shown large intra-population variability for forage yield in 
saline soils, and forage yield under saline conditions has been shown to have signif
icant and high positive correlation (? = 0.92) with salinity tolerance index (STI), 
direct selection for forage yield in saline soils can effectively enhance not only 
forage yield but also salinity tolerance. Direct selection for grain yield under saline 
conditions can also enhance salinity tolerance for this trait, although it would 
be less effective than selection for tolerance with respect to forage yield because the 
correlation between grain yield under salinity conditions and salinity tolerance 
index, though Significant and positive, is smaller in magnitude. 
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Several parental lines and populations with both high grain yield ratio (ratio 
of yield under salinity versus control) and stover yield ratio were identified in 
pearl millet and there was highly significant and positive correlation between 
grain yield ratio and stover yield ratio (r = 0.80), implying that selection for 
high stover yield ratio is likely to also lead to concomitant genetic improve
ment in grain yield ratio, and that simultaneous selection for both productivity 
and STI will be highly effective. Parental lines with large contrasts for grain 
yield ratio have been identified to develop mapping populations to identify 
QTL for salinity tolerance. 
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