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Legumes have been part of the human diet since the early ages of agriculture. Many legume species 

are still an irreplaceable source of dietary proteins for humans (Table 1), especially in the mainly 

vegetarian diets of developing countries (Wang et al. 2003).  

 

Table 1, Worldwide production and cultivation data for the main food legume species (FAOSTAT 
2008) 

Species Cultivated area (x106 Ha) World Production (106 t) 

Soybean (G. max (L.) Merrill) 97 230 

Groundnut (A. hypogaea) 24.6 38.2c 

Common bean (P. vulgaris L.) 28a 20.4a 

Pea (P. sativum L.) 5.9a 9.8a 

Fababean (V. faba L.) 2.5b 3.7b 

Lentil (L. culinaris Medic L.) 3.8 3.5 

Chickpea (C. arietinum L.) 11.6 8.8 

Cowpea (V. unguiculata (L.) Walp) 11.8 5.4 

Pigeonpea (C. cajan (L.) Millsp.) 4.9 4.1 
a: Figures for dry peas and dry beans; b: Broad beans, horse beans, dry in FAOSTAT database; c: Including shells. 

 

In most centres of crop domestication, legumes and cereals have been domesticated together (Gepts, 

2004). Associated with cereals, legumes constitute the main component of traditional dishes 

throughout the world, where maize and beans, rice and lentils, barley and peas, wheat and chickpeas 

are eaten together. Legumes are consumed in many forms: seedling and young leaves are eaten in 

salads, fresh immature pods and seeds provide a green vegetable, and dry seeds are cooked in 

various dishes. However, researches have been mainly devoted to the dry seeds. Legume seeds 

provide an exceptionally varied nutrient profile, including proteins, fibres, vitamins and minerals 

(Mitchell et al. 2009). Nitrogen that is used by the young seedling during germination is stored in 

the seed in the form of storage proteins. Seeds contain from 16% to 50% of protein and provide one 

third of all dietary protein nitrogen (Graham and Vance, 2003). Anticipating the increasing demand 

for protein food sources, the Protein Advisory Group of the United Nations has identified the 

improvement of legumes as a critically important area of research. The protein-rich legumes as a 

complement to cereals make one of the best solutions to protein-calorie malnutrition, particularly in 

developing countries. The carbon energy supply that is needed upon germination is stored in grain 

legume seeds either mainly in the form of oil (soybean, groundnut), or as starch (common bean, 
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pea, fababean, lentil, chickpea, cowpea, mungbean). Grain legume seeds are also an important 

source of the 15 essential minerals required by man (Wang et al. 2003), of complex carbohydrates, 

of soluble fibres, and of other compounds that are alternatively considered anti-nutritional or health-

promoting: trypsin inhibitors, tannins, phytate, saponins, oligosaccharides have recently been 

associated with various health benefits, such as protective effect against cardiovascular diseases, 

cancers and diabetes (Champ et al. 2002, Clemente et al. 2009).  

Because we think that the main challenge for grain legumes in human nutrition is linked to their 

role as a source of protein, the main topic of this chapter will be the improvement of protein 

content, bio-availability, and nutritional quality.  

 

1. Improving the protein content of grain legume seeds: results and prospects 

1.1 Genetic variability, environmental variability and heritability 

In order to devise the best strategy to improve protein content in legumes, we surveyed the genetic 

variability of seed protein content in major food legumes, its relationship with other important traits 

such as yield components, its heritability and interactions with environment, and its genetic 

determinants.  

To improve seed protein content, there should be enough genetic variability for this trait. In Table 2, 

a survey of the literature illustrates the presence of a large variability in protein content in grain 

legume germplasm collections, segregating populations, mutant populations, and cultivated 

varieties. In soybean, seed protein content data vary from 26.5 and 57%; in common bean, it varies 

from 20.9 and 29.2%; in pea from 15.8 to 32.1%; in fababean from 22 to 36%; in lentil from 19 to 

32%, in chickpea from 16 to 28%; in cowpea from 16 to 31%; in mungbean from 21 to 31% and in 

pigeonpea from 16 to 24%. These results were compiled from various experiments, and thus 

variability among experiments could also in part reflect the environmental variability of protein 

content.  
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Table 2: Principal constituents of grain legume seeds: range of variation (% of seed weight) 

Species Protein Oil Starch Fiber Sucrose Reference 

Soybean 35.1 - 42 17.7-21 1.5 20 6.2 Hedley, 2001 

 34.7-55.2 6.5-28.7 - - - NGRP, 2001, USDA germplasm collection 

 40-45 19-21.5 - - - Hyten et al. 2004, RIL population 

 41.8-49.4 

15.2-

20.7 - - - Chung et al. 2003, RIL population 

 40.4-50.6 

13.4-

21.2 - - - Brummer et al. 1997, parents of RIL populations 

 31.7-57.4 - - - - Jun et al. 2008, Association mapping population 

 26.5-47.6 - - - - Vollman et al. 2000, 60 lines, 6 environments 

              

Groundnut 25.8 49.2 - 8.5 - Anonymous 

 - 44-50 - - - Lord and Wakelam 1950 

 20.7-28.1  - - - - Dwivedi et al. 1990, 64 accessions 

 16 - 34 - - - - Jambunathan et al. 1985 ICRISAT collection 

              

Common bean 20.9 - 27.8 0.9 – 2.4 41.5 10 5 Hedley, 2001 

 23-29.2 - - - - Coelho et al. 2009, 20 accessions 

              

Pea 18.3 - 31 0.6 – 5.5 45 12 2.1 Hedley, 2001 

 24-32.4 - 45.5-54.2 8.9-11.9 - Gabriel et al. 2008, dehulled seeds, 8 varieties 

 21.9-34.4 1.4-4.7 18.6-54.5 5,9 -12,7a 1.3-11.11 Bastianelli et al. 1998, 213 or 54 (1) accessions 

 20.6-27.3 - - - - Burstin et al. 2007, RIL population 

 15.8-32.1 - - - - Blixt 1978, 2200 accessions 

              

Fababean 26.1 - 38 1.1 – 2.5 37-45.6 7.5-13.1a 0.4 -2.3
z
 Duc et al. 1999 , 37 or 12 (

z
)spring varieties 

 22.4 - 36 1.2 – 4 41 12 3.3 Hedley, 2001 

 29.4-32 1.3-2 41.2-44.3 8.7-9.9 - Duc et al. 2010, 8 varieties 

 26-29.3 - 42.2-51.5 - - Avola et al. 2009, 15 accessions 

              

Lentil 23 - 32 0.8 – 2 46 12 2.9 Hedley, 2001 

 25.1-29.2 - 46-49.7 13.1-14.7 2.1-3.2 Wang et al. 2009, 8 varieties 

 18.6-30.2 - - - - Hamdi et al. 1991, 987 germplasm accessions 

              

Chickpea 15.5-28.2 3.1 – 7 44.4 9 2 Hedley, 2001 

 18.7-21.1 - 42-45.1 - - Frimpong et al. 2009, 7 Desi chickpea varieties 

 17.1-19.8 - 48-54.9 - - Frimpong et al. 2009, 9 Kabuli chickpea varieties 

 - - - 2.7-11.7 - Cho et al. 2002, RIL population 

  12.4-31.5 - - - - Hulse 1975 

              

Cowpea 23.5 1.3 - - - Hedley, 2001 

 24.8 1.9 - 6.3 - Kabas et al. 2006, mean of 8 varieties 

 20.9-36 2.6-4.2 - - - Oluwatosin 1997, 15 accessions 

 16-31 2.4-4.3 - - - Adekola and Oluleye 2007, 15 mutants  

 23.1-27.3 - - - - Bliss et al. 1973, 11 varieties 

              

Mungbean 22.9-23.6 1.2 45 7 1.1 Hedley, 2001 

 21-31.3 1.2-1.6 - 8.9-12.9 - Anwar et al. 2007, dehulled seed, 4 varieties 

 23.7-31.4 - - - - Lawn and Rebetzke 2006, 121 accessions 

              

Pigeonpea 19.5-22.9 1.3 – 3.8 44.3 10 2.5 Hedley, 2001 

 15.9-24.1 - - - - Upadhyaya et al. 2007, 310 accessions 

a: Acid-detergent fiber 
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A second important factor for efficient selection is the heritability of the trait. Seed protein content 

in grain legumes is strongly influenced by the environment. In pea, Mathews and Arthur (1985) 

underlined that environmental effects in seven environments had similar magnitude effects on 

protein content than genetic effects in 255 genotypes. Gueguen and Barbot (1988) found protein 

content varying from 18.1 to 27.8% for cultivar Amino depending on the environment. Significant 

environmental effects are reported for most grain legumes (cowpea: Oluwatosin 1997, Bliss et al. 

1973, chickpea: Frimpong et al. 2009, lentil: Hamdi et al. 1991, pigeonpea: Saxena et al. 2002, 

groundnut: Dwivedi et al. 1990). Environmental variability is probably caused by several factors. 

Karjalainen and Kortet (1987) showed that protein content was positively associated with the sum 

of temperature from sowing to maturity, and with the temperature during flowering and beginning 

of seed filling, while it was negatively associated with July precipitations. Larmure et al. (2005) 

further specified the effect of temperature during seed-filling on seed protein content through its 

effect on N/C ratio. All environmental factors that impact nitrogen nutrition, such as drought stress, 

soil compacting, root diseases and pests may also influence seed protein content through their 

impact on nitrogen availability (Biarnès et al. 2000). Foroud et al. (1993) described a variable effect 

of the level and timing of water stress on the protein content of soybean. Aerial disease could have 

opposite effects by increasing N/C ratio of assimilate reaching the seeds (Garry et al. 1996). Several 

authors also reported intra-plant variability resulting from fluctuating environment and N/C 

availability during seed filling of different fruiting nodes (Atta et al. 2004, Crochemore et al. 1994, 

Escalante and Wilcox 1993). Genotype-by-environment effects are also usually significant even 

though often of lower magnitude (Burstin et al. 2007, Biarnès et al. 2000, Matthews and Arthur 

1985, Oluwatosin 1997, Bliss et al. 1973, Lawn and Rebetzke 2006, Frimpong et al. 2009, Hamdi et 

al. 1991, Dwivedi et al. 1990). As a result, seed protein content heritability values are very variable 

across experiments, depending on the extent of genetic variability analysed, unpredictable 

environment variation and experimental design. However, despite significant influence of 

environment and the presence of frequent genotype-by-environment interactions, seed protein 
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content heritability is generally moderate to high among accessions (20 to 80%), suggesting that 

selection for protein can be successful.  

Fortunately, breeding for protein content can benefit from a very efficient analysis method, Near-

Infrared Spectrometry (Williams et al. 1978, Biston et al. 1992). Protein content measurements can 

be done very effectively for large number of seed samples in a non-destructive way after the 

development of a calibration curve based on reference crude protein content measures (generally, 

Kjehldal %N × 6.25). This method is largely used by breeders. 

This is for soybean that most of the information on seed protein content genetics is available. 

Improving seed protein content has been a major breeding target in soybean over the last 40 years 

and it is interesting to note that the selection of varieties with significantly increased protein content 

was achieved quite rapidly, through back-cross or recurrent selection (Brim and Burton 1978, 

Wilcox and Cavins 1995, Wilcox 1998, 2001, Helms and Orf 1998, Cober and Voldeng 2000). This 

was achieved thanks to: (i) the large variability present for protein content in germplasm, (ii) the 

sufficiently high heritability values, and (iii) the mostly additive inheritance (Chung et al. 2003). 

Protein content variation in initial crosses was probably under the control of major genes. For 

example, the donor parent from the back-crossing scheme and from the recurrent breeding scheme 

of Wilcox (1998) and Wilcox and Cavins (1995) was Pando. The variety likely possesses the high 

protein content allele of G. soja at QTL LG-I identified in one of its derived line. Indeed, Diers et 

al. (1992) identified two major QTL controlling seed protein content in a population derived from a 

cross between a G. soja accession from China and a G. max breeding line. The G. soja parent 

possessed positive alleles of the QTL-LGI and QTL-LG E. Sebolt et al. (2002) checked the stability 

of these QTL alleles in the G.max genetic background by crossing G. Soja line (homozygous for the 

two G. Soja QTL alleles responsible for high protein content) with G. max breeding lines as 

recurrent parent. Among the two QTL alleles, only QTL-LGI allele showed significant effect in G. 

max background. The G. soja allele was associated with taller plant, reduced yield and oil, smaller 

seed and earlier maturity. Nichols et al. (2006) specified the location of the protein content QTL-
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LGI. The genetic association of the protein and oil QTL at this locus was confirmed in lines 

recombining in the region. The association with the maturity QTL was confirmed in three 

recombining lines out of 4 whereas the association with the yield QTL was confirmed only in one 

line out of 4. This result has to be confirmed in order to be sure that the linkage between the protein 

content QTL and yield QTL can be broken. The effect of this QTL-LGI was further validated by 

marker-assisted selection (MAS) involving improvement of protein content of soybean lines 

carrying homozygous alleles from the high protein parent (Yates et al. 2004). Many other soybean 

seed protein content QTL have been identified in a range of environments and in several genetic 

backgrounds (Mansur et al. 1993, Brummer et al. 1997, Csanádi et al. 2001, Hyten et al. 2004, Jun 

et al. 2008). A summary of all the major QTL (explaining more than 10% of phenotypic variation) 

has been presented elsewhere (Vuong et al. 2007): QTL controlling seed protein content were 

investigated on 17 soybean mapping populations and found to be located on all the linkage groups 

of soybean genome except for LG B1, D1b, D2, J, and O. The identified QTL may be efficiently 

utilised for developing future soybean varieties with desirable component in the seed through MAS 

(http://www.SoyBase.org). 

In pea, the selection for protein content is relatively recent. In France, it followed a decision taken 

in 1994 by the French official service for variety registration (CTPS) to fix a minimum seed protein 

content threshold to accept varieties for registration. Indeed, the selection for yield had lead to a 

rapid and undesirable decrease in protein content. Burstin et al. (2007) analysed in five 

environments the variation of protein content using a recombinant inbred line (RIL) mapping 

population segregating for three major developmental genes: afila controlling leaf tendril formation, 

le controlling internode length and plant height, and rms6 controlling plant branching. Eight QTL 

controlled seed protein content variation in this population, among which 5 were stable across at 

least two environments. Two of these QTL were located in the same genomic region which 

harbours developmental genes ‘afila’ and ‘le’, suggesting pleiotropic effects of these genes on 

several traits. Tar’an (2004) reported 3 seed protein QTL in pea, two of them being consistent in 
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many environments. Irzykowska and Wolko (2004) reported 5 QTL in a cross segregating for the r 

gene controlling starch synthesis and the wrinkled seed phenotype.  

In pigeonpea, genetic variability for seed protein content was studied using wild relatives and 

improved varieties (Saxena et al. 2002). The results indicated the possibility of developing 

genotypes possessing high-protein content similar to their wild relatives and seed characters similar 

to cultivated types. 

 

1.2 Seed protein content, yield and related traits: carbon costs and the possible role 

of C/N interplay  

Highly negative correlations between protein and oil are well documented in soybean and varieties 

improved for protein content had lower level of oil (Wilcox 1998, Cober and Voldeng 2000, Wilcox 

and Guodong 1997, Hyten et al. 2004). Negative correlation between seed protein and oil content 

were also reported in cowpea (Oluwatosin 1997) and groundnut (Dwivedi et al. 1990). Similarly, 

negative correlations were reported between starch and protein content, whatever the genepool 

considered, in pea (Bastianelli et al. 1998) and chickpea (Frimpong et al. 2009). De facto, there is 

an intrinsic relationship between protein content and other major constituents content in the seeds: 

modifying one of them necessarily has an impact on the percentage of the others, as a result of the 

distribution of a finite amount of assimilates in different seed constituents. Similarly, correlations 

between protein content and yield have been reported to be often negative, but also sometimes non-

significant, and sometimes positive (Cober and Voldeng 2000, Burstin et al. 2007, Bliss et al. 1973, 

Oluwatosin 1997, Leleji et al. 1972, Lawn and Rebetzke 2006, Frimpong et al. 2009, Hamdi et al. 

1991) and selection for high protein content has often but not always led to reduced yield (Leleji et 

al. 1972, Brim and Burton 1978, Wilcox and Cavins 1995). Similarly negative correlations have 

been reported between seed size and protein content in pigeonpea (Saxena et al. 2002) but some 

promising lines with high protein content and large seed size have been obtained at ICRISAT 
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suggesting the possibility of improvement of protein content and yield contributing traits 

simultaneously.  

 

1.3 Potential levers for protein content improvement 

Seed protein content can be viewed as the result of the relative accumulation of proteins and dry 

matter in the seeds (Lhuiller-Soundele et al. 1999). The rate of protein accumulation depends on the 

sink strength capacity of seeds (i.e. their ability to synthesize and accumulate proteins), and on the 

the source strength of vegetative parts for nitrogenous assimilates resulting from nitrogen 

acquisition, assimilation, transport, and mobilization (Salon et al. 2001, Munier-Jolain et al. 2008). 

The rate of dry matter accumulation depends on the accumulation of all constituents including 

carbohydrates and oil, and relates mostly on carbon supply through efficient photosynthesis and 

effective biosynthetic pathways. Depodding or defoliation experiments were conducted in several 

legume species in order to analyse the effect of source/sink ratio variation on seed constituents’ 

accumulation. Burstin et al. (2007) analysed the genetic variability of the effect of depodding on the 

seed protein content of eight pea genotypes. The effects of genotype, depodding and genotype × 

depodding on seed protein content were all significant. For all genotypes, seed protein increased 

dramatically when the source/sink ratio increased. However, there was still a significant variation 

for seed protein content among the 8 genotypes, once depodded. This suggests that N source 

capacity is the major limiting factor of seed protein content in pea, but that the maximal rate of 

protein accumulation in the seed is also significant. Similar results were obtained for soybean 

(Proulx and Naeve 2009, Rotundo et al. 2009). We hypothesize that three types of genes/QTL could 

be identified for seed protein content (Burstin et al. 2007, Gallardo et al. 2008): primarily, major 

genes controlling developmental processes and having pleiotropic effect on the whole plant 

phenotype and on the source-sink structure, secondly genes of the plant metabolism controlling 

source-sink relationships at the plant metabolism level, and ultimately genes controlling solely the 
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capacity of seeds to accumulate storage compounds. The impact of these different types of effectors 

on yield will probably be different. 

 

1.3.1. Improving nitrogen supply to the seed 

Among all plant species, legumes have the unique ability to fix nitrogen through their symbiotic 

interaction with nitrogen-fixing bacteria. The establishment and optimal functioning of this 

symbiosis together with efficient mobilization of assimilates from vegetative parts to the seeds 

control the availability of nitrogen to the growing seeds. Many genes involved in the control of 

nodulation have been identified recently (Ferguson et al., 2010). Pea mutants with absence of N2 

fixation activity produce lower seed yield and protein content, which can be alleviated by adequate 

mineral fertilization, whereas an autoregulation mutant of pea displaying a supernodulating 

phenotype has a reduced shoot biomass and seed yield, associated with higher seed protein content 

(Sagan et al., 1993). A reduced root development was detected in supernodulating mutants of 

soybean or pea (Olsson et al. 1989, Bourion et al.2007) which may be explained by a competition 

effect of nodules for C, with a secondary a secondary effect of lower access to soil resources. The 

importance of a fine tuning between root and nodule establishment and functioning for final C/N 

equilibrium in seeds is illustrated by these extreme mutant phenotypes. The efficiency of the N-

fixing symbiosis relies on the carbon supply from aerial parts to the root parts. In a recent study, 

Bourion et al. (2010) have located QTL for root development in the region of QTL for seed protein 

content. However, QTL should be refined and further work is needed in order to define the ideotype 

of root/nodule/shoot development. 

 

1.3.2. Improving seed sink strength 

Functional interactions exist among the different seed constituents: for example, the disruption of 

the r gene abolishes starch synthesis in pea seeds, leading to a wrinkled seed phenotype. This defect 

in starch accumulation had a profound impact on seed metabolism, where elevated sucrose content 
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impacted the accumulation of storage protein families (Wang and Hedley 1991). By knocking down 

the accumulation of one of the constituents, the percentage of the others will increase. However, 

this may have a detrimental effect on seed yield. This strategy is possible if it allows producing 

specific seed products dedicated to specialty markets. However, in the perspective of increasing 

protein production in the world, strategies allowing maintained yield should be preferred. Strategies 

to increase seed sink strength have been tested through the manipulation of amino-acids and sucrose 

flux to the developing embryo (Weber et al. 2005). Weigelt et al. (2008) showed that seed-specific 

over-expression of an amino-acid permease in pea increases amino acid supply to the seed and the 

level of protein in the seed. This indicated a stimulation of storage protein synthesis by increased 

amino acid availability. However, compensatory changes lead to decreased seed weight, as 

discussed in paragraph 1.2. Seed-specific over-expression of a bacterial phosphoenol pyruvate 

carboxylase in Vicia narbonensis similarly increased seed protein content with compensatory effect 

on seed number and seed weight (Rolletschek et al. 2004). Few studies analysed the transcriptional 

control of common bean seed storage protein gene expression (Li et al. 1999, Ng et al. 2008). 

In conclusion, the genetics of seed protein content largely remain a black-box. With the advent of 

high-throughput genotyping and phenotyping tools, we think that two directions should be pursued 

in order to gain on efficiency in breeding: whole genome selection and plant modelling of 

interacting processes. 

 

2. Improving seed protein composition for better digestibility and nutrient balance 

Seed storage proteins are synthesized during seed development and confined in membrane-bound 

organelles until they are hydrolysed upon germination to provide carbon and nitrogen skeletons for 

the developing seedlings. Grain legume storage proteins include two major classes of salt-soluble 

globulins: the 7/8S vicilins and 11/12S legumins, each of which consists of a family of closely 

related molecules (Boulter and Croy, 1997). Legumins are compact hexamers of 350 to 400 kDa 

associating acidic alpha-polypeptides and basic beta-polypeptides. Vicilins and convicilins are 
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trimers of 150 to 280 kDa composed of very heterogeneous and differently processed polypeptides. 

Proteome reference maps have been developed for soybean (Hadjuch et al. 2005), pea (Bourgeois et 

al. 2009) and lentil (Scippa et al. 2010) revealing a complex composition of grain legume globulins. 

Other proteins (albumins, glutelins) complete the protein fraction of the seed and the composition in 

the different protein fractions depends on the species (Boulter and Croy 1997, Montoya et al. 2010, 

Gallardo et al. 2008). 

 

2.1 Protein composition and digestibility 

The different storage proteins have different in vitro and in vivo digestibility depending on their 

structural characteristics (Crévieu et al. 1997, Le Gall et al. 2007, Gabriel et al. 2008a, b, Montoya 

et al. 2010, Clemente et al. 2000). Studies on grain legume seed protein digestibility in human are 

scarce (an example of digestibility values on pea protein fractions is provided by Mariotti et al 

2001). But some relevant information can be found in digestibility surveys on monogastric animals. 

Generally, β-sheet structures are less digestible than α-helix structures and glycosylated proteins are 

less susceptible to hydrolysis. Several attempts have been made in order to improve protein 

digestibility through the suppression or over-expression of a particular storage protein family (for 

example Burow et al. 1993) but did not generally yield the expected outcome. Another strategy in 

order to improve protein digestibility could be to search for protein composition patterns favourable 

to digestibility in the germplasm variability (Montoya et al. 2010). Indeed, several authors reported 

intra-specific seed protein composition variability (in pea, Bastianelli et al. 1998, Burstin and Duc 

2005, Tzitzikas et al. 2006; in lentil, Scippa et al. 2010; in soybean, Natarajan et al. 2006). Other 

minor protein resistant to hydrolysis may also have a role in protein digestibility and their 

variability could be exploited (for example, the albumin PA2 in pea, Vigeolas et al. 2008). 

 

2.2. Improving amino acid balance in legume seeds: progress and prospects 
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Essential amino acids are important in the nutrition of humans, who are unable to synthesize them 

and are dependent on dietary sources of these amino acids. Among them, tryptophan and the 

sulphur-containing amino acid methionine are the most limiting in legume seeds (Table 3). To the 

contrary, legume seed proteins are rich in lysine while cereal seed proteins are low in this amino-

acid (Wang et al. 2003).  

 

Table 3: Four amino acids of grain legume seeds: range of variation (g/100g protein) 

 

Species Lys Met Cys Trp Reference 

Soybean 22.4-24.1 4.4-8.8 5.1-7.3 4.4-5.1 Panthee et al. 2006, RIL population 

            

Pea 15.5-19.7 2-2.4 2.9-3.6 2-2.7 Gabriel et al. 2008, 8 varieties 
a
 

 14.8-23 2.1-3.3 2.9-4.2 1.6-3.2 

Bastianelli et al. 1998, 54 acc. incl. rug 

mutants 

            

Fababean 17.3-21.6 2.3-2.9 2.9-4.3 2.0-3.2 Duc et al. 1999, 12 spring varieties 

  19.2-20.3 2.1-2.7 3.6-3.9 2.4-2.7 Duc et al. 2010, 8 varieties 

Lentil 4.5-12.6 1.2-1.7 0.4-0.5 - Rozan et al. 2001, 5 lens species 

            

Cowpea - 1.9-2.8 1.6-2.1 3-3.7 Bliss et al. 1973, 11 varieties 

 4.9-9 0.52-2.05 0.84-2.24
 
 0.72-1.91 Oluwatosin 1997, 15 accessions 

a dehulled seeds 

 

Genetic manipulations have been used in attempts to improve amino acid balance in legume seeds, 

particularly towards increasing methionine level. The main strategy employed was to modify 

storage protein composition in favor of accumulation of sulphur-rich proteins. For example, the 

sulphur-rich 2S albumin genes from Brazil nut and sunflower were expressed in seeds of soybean 

and lupins (Lupinus angustifolius L.), respectively (Altenbach et al. 1989, Molvig et al. 1997). 

Although these transgenic plants had increased seed methionine level, the introduced sulphur-rich 

sink proteins generally had allergenic properties (Pastorello et al. 2001). Importantly, the 

accumulation of such foreign proteins in seeds occurred at the expense of other sulphur compounds, 

such as free sulphur amino acids and glutathione (Tabe and Droux, 2002), thus indicating that the 

rate of synthesis of sulphur amino acids during legume seed development is limiting. Activating the 
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synthesis of essential amino acids might therefore be a possible route for improvement of amino 

acid balance in legume seeds. 

An aspect to be considered in view of stimulating the synthesis of essential amino acids is the 

crosstalk between the amino acid biosynthetic pathways, balancing the flux of carbon and nitrogen 

backbone atoms between them. This has been well documented for the aspartate family biosynthetic 

pathways leading to the synthesis of methionine and of two other essential amino acids (threonine 

and lysine) from a common precursor, aspartate (for a review, see Jander and Joshi, 2010). 

Molecular studies using Arabidopsis and tobacco as model plants have demonstrated that enzymes 

of these pathways are feedback-inhibited by several products along the pathways. Noteworthy, 

lysine negatively regulates the activity of the first enzyme of its own pathway, “dihydropicolinate 

synthase” (Galili, 2002), but also the amount of S-adenosylmethionine that is a negative regulator of 

a key enzyme for methionine synthesis, cystathionine gamma synthase (Hacham et al. 2007). Thus, 

lysine regulates the flux of carbon and nitrogen towards methionine synthesis. A similar feedback 

inhibition was observed for the tryptophane biosynthetic pathway, tryptophane inhibiting its own 

biosynthetic pathway by regulating negatively anthranilate synthase, which catalyses the conversion 

of chorismate to anthranilate (Ufaz and Galili, 2008). Interestingly, the modulation of feedback 

inhibition in these pathways allowed increasing the synthesis of some amino acids. As for example, 

the introduction of genes encoding anthranilate synthase forms insensitive to feedback inhibition 

enhanced the accumulation of tryptophane in seeds, including soybean seeds (Ufaz and Galili, 2008 

; Ishimoto et al. 2010). These findings open perspectives towards modifying the synthesis of 

essential amino acids in legume seeds through the identification of feedback-insensitive natural 

allelic variants in genes of amino acid biosynthetic pathways. It should be noted that the up-

accumulation of amino acids under free forms in seeds could have negative effects on agronomic 

traits. As for example, the germination ability of transgenic seeds containing very high levels of free 

lysine or tryptophane was reduced (Zhu and Galili, 2003; Wakasa et al. 2006). This could be 

inferred to the toxicity of free amino acids and/or to modifications in the synthesis of compounds 
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derived from these amino acids. To avoid such deleterious effects on agronomic traits, a challenge 

would be to increase the synthesis of essential amino acids while working to increase their 

incorporation into storage proteins. 

The accumulation of the different classes of storage proteins during seed filling, which largely 

determines the seed amino acid balance in mature seeds, varies according to the availability of 

sulphur and nitrogen in the environment. Legume seeds produced in limiting sulphur conditions, but 

with adequate nitrogen, generally contained reduced levels of sulphur-rich storage proteins and 

accumulate more sulphur-poor proteins (Higgins et al. 1986, Tabe and Droux, 2002). In soybean, 

Paek et al. (1997) reported an increase in the proportion of sulphur-poor protein as protein 

concentration increased. Wilcox and Shibles (2001) to the contrary found a constant 

sulphur/nitrogen ratio in a population segregating for seed protein content; but seed yield was not 

high in this population, and thus sulphur was probably not limiting in this context. In cowpea, Bliss 

et al. (1973) found a positive correlation between seed protein content and the methionine content 

of proteins. In chickpea, the application of nitrogen, phosphorus and sulphur fertilizers improves the 

levels of protein and essential amino acids (Gupta and Singh, 1982; Williams and Singh, 1987). In 

pea seeds, the reduced levels of sulphur-rich proteins in conditions of limited sulphur availability 

were shown to be primarily a consequence of reduced levels of their mRNA (Higgins et al. 1986). 

O-acetylserine and free methionine, but not free cysteine, were implicated as signaling molecules 

controlling expression of genes for sulphur-rich storage proteins in legume seeds (Tabe et al. 2010, 

and references therein). These finding indicate that the capacity of legume plants to regulate the flux 

of sulphur and nitrogen compounds to the seeds should be considered if the accumulation of 

sulphur-rich storage proteins has to be increased. Sulphate is one of the dominant forms of sulphur 

found in the phloem supplying pods during legume seed development (Tabe and Droux, 2001). In 

plants, sulphate can be reduced to sulfide, leading to the synthesis of cysteine, the precursor for 

methionine synthesis, or it can be stored in the vacuoles. A recent study in Arabidopsis reports that 

sulphate stored in the vacuoles contributes only a little to the establishment of seed protein 
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composition, but is likely to be important in maintaining redox homeostasis in seeds (Zuber et al. 

2010). Hence, considering the importance of sulphate for the synthesis of sulphur compounds, one 

limiting step for accumulation of sulphur-rich proteins could be the uptake of sulphate by the root 

and its distribution within the plant by membrane-localized sulphate transporters. Several sulphate 

transporters of high affinity have been identified in several species that were strongly regulated by 

sulphur deficiency to facilitate the uptake of sulphate by the root (SULTR1;1 and SULTR1;2) or its 

translocation from source-to-sink (SULTR1;3) (for a review, see Hawkesford and De Kok, 2006). 

Other transport forms of sulphur in the phloem are glutathione and S-methylmethionine that can be 

respectively reconverted into cysteine and methionine (Bourgis et al. 1999). Interestingly, a 

characterization of knockdown Arabidopsis mutants for the isozyme 2 of homocysteine 

methyltransferase, which converts S-methylmethionine into methionine, suggests that increasing the 

transport of S-methylmethionine from vegetative tissues to seeds could increase seed methionine 

level (Lee et al. 2008). 

Furthermore, optimization of sulphur assimilation requires coordination with carbon and nitrogen 

pathways, and multiple processes have been proposed to contribute to this balance (see Hawkesford 

and De Kok, 2006). For example, cysteine synthesis from sulfide and O-acetyl-L-serine is a 

reaction interconnecting sulfate, nitrogen, and carbon assimilation. Indeed, O-acetyl-L-serine is 

dependent upon adequate nitrogen and carbon availability and regulates positively gene expression 

and activity of sulphate transporters, and of several enzymes of sulphate reduction and assimilation 

(see Hesse et al. 2004, and references therein). Moreover, O-acetyl-L-serine has been shown to be 

induced by sulphur deficiency (Hirai et al. 2003). In contrast, other metabolites acting as signals in 

response to the nutrient status are negative regulators of sulphate uptake and metabolism, such as 

glutathione and cysteine (Hawkesford, 2003). The combination of these feedback loops regulates 

the flux of sulphur and nitrogen atoms in the different metabolic pathways, thus controlling their 

distribution in plant parts, including seeds. 
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3. Seed protein bio-availability for human: breeding for minor compounds effective 

on the protein value or acceptability  

Grain legume seeds bring in the diet carbohydrates (lipids, starches, fibres) and minor seed 

compounds which will influence positively or negatively protein bio-availability by impacting 

digestibility or acceptability (health benefits or taste and colour requirements). Numerous studies 

have documented the possibility of improving the nutritional values of grain legumes as animal 

feeds (mainly for monogastric animals) but considering minor constituents, results cannot be easily 

extrapolated to humans: (i) even if monogastric, human beings have their own physiology varying 

with age, (ii) human diet is composed of a diversity of ingredients generating high dilutions and 

complex interactions. This situation is completely different from the simple, repetitive diets given to 

homogeneous genetic populations of young animals. This is why seed compounds called 

antinutritionals in feeds have been removed by breeding, when on the contrary some of them may 

have positive role on human health like on chronic diseases prevention, i.e. cancer, cardiovascular 

disease, diabetes, and obesity prevention. In this part, we will review the genetic variability 

available for minor legume seed compounds which may help breeders to significantly improve their 

protein contribution in human diets. 

 

3.1 Minor compounds effective on digestibility and /or health 

3.1.1 Trypsin inhibitors: 

Trypsin inhibitors are present in most grain legume seeds (Table 4). High inhibiting activities are 

found in soybean seeds which are usually reduced by processing, But null mutants for both 

Bowman–Birk and Kunitz trypsin inhibitors have been identified in soybean, allowing low trypsin 

inhibitor cultivars to be produced (Clarke and Wiseman, 2000). In pea, large genetic variability is 

available for the activity of Bowman-Birk trypsin/chymotrypsin inhibitor proteins (TIA) 

(Bastianelli et al. 1998). The polymorphism in coding and promoter sequences of genes at Tri locus 

accounts for most of the variation in TIA and this allowed to initiate marker-assisted selection (Page 
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et al. 2002). However, if low TIA activity is a benefit in pig or poultry feed digestibility, recent data 

suggest that high contents of trypsin inhibitors in foods should be positive, since a reduction of 

HT29 colon cancer cells has been shown when grown in vitro in the presence of pea TI (Domoney 

et al. 2009). If validated in vivo, this would encourage breeding for high content of TI for food or 

nutraceutical applications. 

 

Table 4: Minor constituents of grain legume seeds: range of variation 

Species 

TIA 

(TIU/mg) 

Tannins 

(g/kg) 

Saponin 

(g/kg) 

Total alpha-

galactosides 

(%DM) 

Phytic 

acid 

(g/kg) Reference 

Soybean - - 6.5 - - Kadlec et al. 2001 

 - - - - 6.2-20.5 Saghai Maroof et al. 2009, 31 lines 

 - - - - 32.4-41.3 Chitra et al. 1995, 6 lines, dehulled seeds 

 43-83 - - - - Guillamon et al. 2008 

              

Common bean - - 2.3 - 3.5 0.4-8 - Kadlec et al., Koslovska et al. 2001 

 - 0-38.5 - - - Caldas and Blair 2009, 3 RIL populations 

 - - - - 2.9-17.8 Blair et al. 2009, RIL population 

 17-51 - - - - Guillamon et al. 2008 

              

Pea - - 1.1 2.3-9.6 - Kadlec et al., Koslovska et al. 2001 

 1-14.6 0.04-7.4 0.3-1 3.6 - 10b 1.3 - 10.2 Bastianelli et al. 1998, 54 pea accessions 

 1.9-6.8 - - - - Gabriel et al. 2008, dehulled seeds, 8 varieties 

 6-15 - - - - Guillamon et al. 2008 

              

Fababean 0.3 -5.3 0.1 - 10.4 - 1.4 - 6.2b 3.8 - 13.4 Duc et al. 1999, 12 spring varieties 

 - - 0.1 1-4.5 - Kadlec et al., Koslovska et al. 2001 

 - 2.1-3.2 - - - Avola et al. 2009, 15 accessions 

 0.8-3.6 - - - - Filipetti et al. 1999, 6 lines 

 5-10 - - - - Guillamon et al. 2008 

              

Lentil - - 1.1 1.8-7.5 - Kadlec et al., Koslovska et al. 2001 

 1.9-2.8 3.4-6.1 - - 6.2-8.8 Wang et al. 2009, 8 varieties 

 3-8 - - - - Guillamon et al. 2008 

              

Chickpea - - 2.3 2-7.6 - Kadlec et al., Koslovska et al. 2001 

 - - - - 7.7-12.3 Chitra et al. 1995, 13 desi lines, dehulled seed 

 - - - - 5.4-11.7 Chitra et al. 1995, 3 kabuli lines, dehulled seed 

 12.7     Singh and Jambunatham, 1981, desi lines 

 10.3     Singh and Jambunatham, 1981, kabuli lines 

 15-19 - - - - Guillamon et al. 2008 

              

Cowpea 12-16.6a - - - - Vasconcelos et al. 2010, 3 varieties 

 - 0.3-6.9 - - - Plahar et al. 1997 

              

Mungbean - - - - 10.2-14.8 Chitra et al. 1995, 3 lines, dehulled seeds 

              

Pigeonpea - - - - 6.8-14.9 Chitra et al. 1995, 16 lines, dehulled seeds 

 - - - - 9.9-16.4 Singh 1999, dehulled seeds 

a: g inhibited /kg seed flour, b: Raffinose + stachyose + verbascose 
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3.1.2 Lectins: 

Most grain legumes cotyledons contain lectins (haemagglutinins), polysaccharide-binding proteins 

that bind to glycoprotein in epithelial surface of the small intestine, interfering with nutrient 

absorption and increasing production of mucins and a loss of plasma proteins in the intestinal lumen 

(Pusztai, 1989). Duranti (2006) listed numerous bioactive effects of lectins in humans including 

small intestine hyperplasia, change in intestinal flora, immuno-modulating activity, hormone 

secretion, access to the systemic circulation, and this complex role has hampered their medical use 

for limiting tumour growth which was suggested by experiments on animal models. In plants, 

lectins are very diverse and are involved in plant defense (Etzler, 1985) or symbiosis with Rhizobia 

(van Rhijn et al. 2001). Some natural variability exists for lectin hemagluglutinin activity in 

germplasm (Valdebouze et al. 1980). However, the low content and toxicity of lectins together with 

the complexity of lectin roles did not allow for the definition of a breeding target for this trait.  

 

3.1.3 Alpha-galactosides: 

Major alpha-galactosides in grain legume seeds are raffinose, stachyose and verbascose. They are 

not degraded in upper gastrointestinal tract and thus pass into large intestine where bacterial 

enzymes decompose them in short chain fatty acids and gases responsible of digestive discomfort; 

they have however highly probable prebiotic properties which may be of interest against colorectal 

cancer (Guillon and Champ 2002). Even if some genetic variation exists (Table 4), genetic tool to 

monitor these contents have never been worked out, due to competition with easy cooking or 

technological treatments such as soaking in water added with bicarbonate, germination or adding 

commercial exogenous alpha-galactosidase in the diet (Guillon and Champ 2002).  

 

3.1.4. Vicine and convicine: 
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The glycosides vicine and convicine (VC) are concentrated in cotyledons of faba bean seeds. 

Conventional cultivars contain from 6 to 14 g/kg DM of VC in mature seed. A mutant allele vc- has 

been discovered which reduces 10 to 20 fold VC contents (Duc et al. 1989). This allele has a 

positive effects on egg production by laying hen and energy value of feeds for chicken (Crepon et 

al. 2010). VC are causing favism, an acute hemolysis caused by the ingestion of faba beans 

occurring only in G6PD-deficient human individuals (Arese and De Flora, 1990). Because of high 

cost of chemical determinations, molecular markers were proposed to assist the selection for low 

VC content genotypes (Gutierrez et al. 2006). Low VC cultivars are presently in test in humans in 

order to evaluate their nutritional safety on individuals susceptible to favism.  

 

3.1.5 Tannins and flavonoid compounds: 

Flavonoids are major phenolic compounds involved in the determination of seed coat colours and in 

the tanning power on proteins (Nozzozilo et al. 1989, Plahar et al. 1997, Caldas and Blair 2009). 

Tannins or proanthocyanidins are synthesized through the flavonoid pathway (Dixon et al. 2005). 

These polyphenolic compounds bind to proteins and reduce their digestibility. In pea and faba bean, 

a single gene mutation has a pleiotropic effect eliminating tannins from seed coat and determining a 

white flower trait. They increase protein digestibility in pigs or poultry by ca 10 % when compared 

to tannin-containing lines (Grosjean et al. 1999, Crepon et al. 2010). This quality trait was 

economically valuable for feed efficiency and zero tannin varieties were bred for Europe. In 

common bean, the genetics of seed-coat colour and tannin content was shown to be under the 

control of 12 QTL (Caldas and Blair 2009). However, limited data is available for individual 

phenolic compounds. Removal of tannins for humans may have positive nutritional effect but is 

certainly impacting the level of astringent taste with positive or negative consumer reactions 

according to habits. Moreover, the health benefit of proanthocyanidins may deserve some attention. 

The diverse colours of common beans were suggested to be important sources of dietary 

antioxidants (Beninger and Hosfield, 2003).  
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3.1.6 Phytic acid: 

It is commonly found in cereal and legume seeds and its anti-nutritional effect is associated with 

mineral-complexing (especially Zn, Ca and Fe) and inactivation of digestive enzymes. In feeds the 

small magnitude in anti-nutritional effects did not justify a breeding action. In foods, the reduction 

of bioavailability of minerals and proteins induced by phytic acid may be a nutritional concern 

(Frossard et al. 2000), but on the other hand phytic acid may have protective effects such as a 

decrease of the risk of iron-mediated colon cancer and lowering serum cholesterol and triglycerides 

(Champ, 2002). In common bean, 5 QTL were identified that controlled total and net seed phytate 

content (Blair et al. 2009). Any breeding activity to improve the contents of phytic acid should also 

be evaluated in comparison with technological processes able to eliminate them and to health 

benefits. 

 

3.2. Acceptability of legume seed proteins in food: Compounds effective on taste and colour 

Lipoxygenase activity can cause unpleasant tastes and aromas when reacting with seed lipids. In 

soybean and pea, null mutants were found for 3 and 2 LOX genes respectively. Their molecular 

characterization (Forster et al. 1999, Lenis et al. 2010) has well progressed and offers possibilities 

of breeding for lipoxygenase-free varieties. 

Saponins are triterpenoid glycosides with detergent like effects resulting in haemolytic capabilities 

when incubated with erythrocytes. However, their anti-nutritional role on animal performances has 

not been clearly established. A large number of different saponins exists in legumes (Heng et al 

2006) and they contribute to the bitterness of peas as well as that of soybean. Saponins have been 

studied for their positive hypo-cholesterolaemic effects and also because may also have anti-

carcinogenic effects (Champ, 2002) Some genetic diversity has already been described for quantity 

and quality of seed saponins (Table 4, Heng et al. 2006) but its genetics basis is unknown.  
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Finally, seed-coat as well as cotyledon colours define the appealing value for local or specific food 

markets. These traits are generally easy to breed because of oligogenic control and high 

heritabilities. They are of primary importance for specific food ingredient market niches. 

 

In conclusion, there is an urgent need to acquire new references on health and nutritional values of 

grain legumes. Determining the value of particular fractions in nutraceutic applications may provide 

new markets with higher added value. We did not develop here the effects and cost of the 

technological treatments on bioactive components, but this may help to choose between genetic 

strategies or technological processes (Champ 2002). Finally, several studies have demonstrated 

effectiveness of proteins in protection against parasitic insects (Rahbé et al. 2003) or fungi attacks. 

Attempts to modify contents in minor bioactive compounds should be associated with an appraisal 

of their consequences on plant behaviour against biotic or abiotic stresses. 
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